1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1366                              Depth + 1))
1367       return true;
1368     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1369     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1370                              Known2, TLO, Depth + 1))
1371       return true;
1372     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1373 
1374     // Attempt to avoid multi-use ops if we don't need anything from them.
1375     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1376       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1377           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1379           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1380       if (DemandedOp0 || DemandedOp1) {
1381         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1382         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1383         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1384         return TLO.CombineTo(Op, NewOp);
1385       }
1386     }
1387 
1388     // If all of the demanded bits are known one on one side, return the other.
1389     // These bits cannot contribute to the result of the 'and'.
1390     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1391       return TLO.CombineTo(Op, Op0);
1392     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1393       return TLO.CombineTo(Op, Op1);
1394     // If all of the demanded bits in the inputs are known zeros, return zero.
1395     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1396       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1397     // If the RHS is a constant, see if we can simplify it.
1398     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1399                                TLO))
1400       return true;
1401     // If the operation can be done in a smaller type, do so.
1402     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1403       return true;
1404 
1405     Known &= Known2;
1406     break;
1407   }
1408   case ISD::OR: {
1409     SDValue Op0 = Op.getOperand(0);
1410     SDValue Op1 = Op.getOperand(1);
1411 
1412     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1413                              Depth + 1))
1414       return true;
1415     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1416     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1417                              Known2, TLO, Depth + 1))
1418       return true;
1419     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1420 
1421     // Attempt to avoid multi-use ops if we don't need anything from them.
1422     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1423       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1424           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1426           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1427       if (DemandedOp0 || DemandedOp1) {
1428         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1429         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1430         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1431         return TLO.CombineTo(Op, NewOp);
1432       }
1433     }
1434 
1435     // If all of the demanded bits are known zero on one side, return the other.
1436     // These bits cannot contribute to the result of the 'or'.
1437     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1438       return TLO.CombineTo(Op, Op0);
1439     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1440       return TLO.CombineTo(Op, Op1);
1441     // If the RHS is a constant, see if we can simplify it.
1442     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1443       return true;
1444     // If the operation can be done in a smaller type, do so.
1445     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1446       return true;
1447 
1448     Known |= Known2;
1449     break;
1450   }
1451   case ISD::XOR: {
1452     SDValue Op0 = Op.getOperand(0);
1453     SDValue Op1 = Op.getOperand(1);
1454 
1455     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1456                              Depth + 1))
1457       return true;
1458     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1459     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1460                              Depth + 1))
1461       return true;
1462     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1463 
1464     // Attempt to avoid multi-use ops if we don't need anything from them.
1465     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1466       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1467           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1469           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1470       if (DemandedOp0 || DemandedOp1) {
1471         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1472         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1473         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1474         return TLO.CombineTo(Op, NewOp);
1475       }
1476     }
1477 
1478     // If all of the demanded bits are known zero on one side, return the other.
1479     // These bits cannot contribute to the result of the 'xor'.
1480     if (DemandedBits.isSubsetOf(Known.Zero))
1481       return TLO.CombineTo(Op, Op0);
1482     if (DemandedBits.isSubsetOf(Known2.Zero))
1483       return TLO.CombineTo(Op, Op1);
1484     // If the operation can be done in a smaller type, do so.
1485     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1486       return true;
1487 
1488     // If all of the unknown bits are known to be zero on one side or the other
1489     // turn this into an *inclusive* or.
1490     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1491     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1492       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1493 
1494     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1495     if (C) {
1496       // If one side is a constant, and all of the set bits in the constant are
1497       // also known set on the other side, turn this into an AND, as we know
1498       // the bits will be cleared.
1499       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1500       // NB: it is okay if more bits are known than are requested
1501       if (C->getAPIntValue() == Known2.One) {
1502         SDValue ANDC =
1503             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1504         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1505       }
1506 
1507       // If the RHS is a constant, see if we can change it. Don't alter a -1
1508       // constant because that's a 'not' op, and that is better for combining
1509       // and codegen.
1510       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1511         // We're flipping all demanded bits. Flip the undemanded bits too.
1512         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1513         return TLO.CombineTo(Op, New);
1514       }
1515     }
1516 
1517     // If we can't turn this into a 'not', try to shrink the constant.
1518     if (!C || !C->isAllOnes())
1519       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1520         return true;
1521 
1522     Known ^= Known2;
1523     break;
1524   }
1525   case ISD::SELECT:
1526     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1527                              Depth + 1))
1528       return true;
1529     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1530                              Depth + 1))
1531       return true;
1532     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1533     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1534 
1535     // If the operands are constants, see if we can simplify them.
1536     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1537       return true;
1538 
1539     // Only known if known in both the LHS and RHS.
1540     Known = KnownBits::commonBits(Known, Known2);
1541     break;
1542   case ISD::SELECT_CC:
1543     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1544                              Depth + 1))
1545       return true;
1546     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1547                              Depth + 1))
1548       return true;
1549     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1550     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1551 
1552     // If the operands are constants, see if we can simplify them.
1553     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1554       return true;
1555 
1556     // Only known if known in both the LHS and RHS.
1557     Known = KnownBits::commonBits(Known, Known2);
1558     break;
1559   case ISD::SETCC: {
1560     SDValue Op0 = Op.getOperand(0);
1561     SDValue Op1 = Op.getOperand(1);
1562     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1563     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1564     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1565     // -1, we may be able to bypass the setcc.
1566     if (DemandedBits.isSignMask() &&
1567         Op0.getScalarValueSizeInBits() == BitWidth &&
1568         getBooleanContents(Op0.getValueType()) ==
1569             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1570       // If we're testing X < 0, then this compare isn't needed - just use X!
1571       // FIXME: We're limiting to integer types here, but this should also work
1572       // if we don't care about FP signed-zero. The use of SETLT with FP means
1573       // that we don't care about NaNs.
1574       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1575           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1576         return TLO.CombineTo(Op, Op0);
1577 
1578       // TODO: Should we check for other forms of sign-bit comparisons?
1579       // Examples: X <= -1, X >= 0
1580     }
1581     if (getBooleanContents(Op0.getValueType()) ==
1582             TargetLowering::ZeroOrOneBooleanContent &&
1583         BitWidth > 1)
1584       Known.Zero.setBitsFrom(1);
1585     break;
1586   }
1587   case ISD::SHL: {
1588     SDValue Op0 = Op.getOperand(0);
1589     SDValue Op1 = Op.getOperand(1);
1590     EVT ShiftVT = Op1.getValueType();
1591 
1592     if (const APInt *SA =
1593             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1594       unsigned ShAmt = SA->getZExtValue();
1595       if (ShAmt == 0)
1596         return TLO.CombineTo(Op, Op0);
1597 
1598       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1599       // single shift.  We can do this if the bottom bits (which are shifted
1600       // out) are never demanded.
1601       // TODO - support non-uniform vector amounts.
1602       if (Op0.getOpcode() == ISD::SRL) {
1603         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1604           if (const APInt *SA2 =
1605                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1606             unsigned C1 = SA2->getZExtValue();
1607             unsigned Opc = ISD::SHL;
1608             int Diff = ShAmt - C1;
1609             if (Diff < 0) {
1610               Diff = -Diff;
1611               Opc = ISD::SRL;
1612             }
1613             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1614             return TLO.CombineTo(
1615                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1616           }
1617         }
1618       }
1619 
1620       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1621       // are not demanded. This will likely allow the anyext to be folded away.
1622       // TODO - support non-uniform vector amounts.
1623       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1624         SDValue InnerOp = Op0.getOperand(0);
1625         EVT InnerVT = InnerOp.getValueType();
1626         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1627         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1628             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1629           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1630           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1631             ShTy = InnerVT;
1632           SDValue NarrowShl =
1633               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1634                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1635           return TLO.CombineTo(
1636               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1637         }
1638 
1639         // Repeat the SHL optimization above in cases where an extension
1640         // intervenes: (shl (anyext (shr x, c1)), c2) to
1641         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1642         // aren't demanded (as above) and that the shifted upper c1 bits of
1643         // x aren't demanded.
1644         // TODO - support non-uniform vector amounts.
1645         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1646             InnerOp.hasOneUse()) {
1647           if (const APInt *SA2 =
1648                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1649             unsigned InnerShAmt = SA2->getZExtValue();
1650             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1651                 DemandedBits.getActiveBits() <=
1652                     (InnerBits - InnerShAmt + ShAmt) &&
1653                 DemandedBits.countTrailingZeros() >= ShAmt) {
1654               SDValue NewSA =
1655                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1656               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1657                                                InnerOp.getOperand(0));
1658               return TLO.CombineTo(
1659                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1660             }
1661           }
1662         }
1663       }
1664 
1665       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1666       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1667                                Depth + 1))
1668         return true;
1669       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1670       Known.Zero <<= ShAmt;
1671       Known.One <<= ShAmt;
1672       // low bits known zero.
1673       Known.Zero.setLowBits(ShAmt);
1674 
1675       // Attempt to avoid multi-use ops if we don't need anything from them.
1676       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1677         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1678             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1679         if (DemandedOp0) {
1680           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1681           return TLO.CombineTo(Op, NewOp);
1682         }
1683       }
1684 
1685       // Try shrinking the operation as long as the shift amount will still be
1686       // in range.
1687       if ((ShAmt < DemandedBits.getActiveBits()) &&
1688           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1689         return true;
1690     }
1691 
1692     // If we are only demanding sign bits then we can use the shift source
1693     // directly.
1694     if (const APInt *MaxSA =
1695             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1696       unsigned ShAmt = MaxSA->getZExtValue();
1697       unsigned NumSignBits =
1698           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1699       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1700       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1701         return TLO.CombineTo(Op, Op0);
1702     }
1703     break;
1704   }
1705   case ISD::SRL: {
1706     SDValue Op0 = Op.getOperand(0);
1707     SDValue Op1 = Op.getOperand(1);
1708     EVT ShiftVT = Op1.getValueType();
1709 
1710     // Try to match AVG patterns.
1711     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1712                                         DemandedElts, Depth + 1))
1713       return TLO.CombineTo(Op, AVG);
1714 
1715     if (const APInt *SA =
1716             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1717       unsigned ShAmt = SA->getZExtValue();
1718       if (ShAmt == 0)
1719         return TLO.CombineTo(Op, Op0);
1720 
1721       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1722       // single shift.  We can do this if the top bits (which are shifted out)
1723       // are never demanded.
1724       // TODO - support non-uniform vector amounts.
1725       if (Op0.getOpcode() == ISD::SHL) {
1726         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1727           if (const APInt *SA2 =
1728                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1729             unsigned C1 = SA2->getZExtValue();
1730             unsigned Opc = ISD::SRL;
1731             int Diff = ShAmt - C1;
1732             if (Diff < 0) {
1733               Diff = -Diff;
1734               Opc = ISD::SHL;
1735             }
1736             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1737             return TLO.CombineTo(
1738                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1739           }
1740         }
1741       }
1742 
1743       APInt InDemandedMask = (DemandedBits << ShAmt);
1744 
1745       // If the shift is exact, then it does demand the low bits (and knows that
1746       // they are zero).
1747       if (Op->getFlags().hasExact())
1748         InDemandedMask.setLowBits(ShAmt);
1749 
1750       // Compute the new bits that are at the top now.
1751       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1752                                Depth + 1))
1753         return true;
1754       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1755       Known.Zero.lshrInPlace(ShAmt);
1756       Known.One.lshrInPlace(ShAmt);
1757       // High bits known zero.
1758       Known.Zero.setHighBits(ShAmt);
1759     }
1760     break;
1761   }
1762   case ISD::SRA: {
1763     SDValue Op0 = Op.getOperand(0);
1764     SDValue Op1 = Op.getOperand(1);
1765     EVT ShiftVT = Op1.getValueType();
1766 
1767     // If we only want bits that already match the signbit then we don't need
1768     // to shift.
1769     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1770     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1771         NumHiDemandedBits)
1772       return TLO.CombineTo(Op, Op0);
1773 
1774     // If this is an arithmetic shift right and only the low-bit is set, we can
1775     // always convert this into a logical shr, even if the shift amount is
1776     // variable.  The low bit of the shift cannot be an input sign bit unless
1777     // the shift amount is >= the size of the datatype, which is undefined.
1778     if (DemandedBits.isOne())
1779       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1780 
1781     // Try to match AVG patterns.
1782     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1783                                         DemandedElts, Depth + 1))
1784       return TLO.CombineTo(Op, AVG);
1785 
1786     if (const APInt *SA =
1787             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1788       unsigned ShAmt = SA->getZExtValue();
1789       if (ShAmt == 0)
1790         return TLO.CombineTo(Op, Op0);
1791 
1792       APInt InDemandedMask = (DemandedBits << ShAmt);
1793 
1794       // If the shift is exact, then it does demand the low bits (and knows that
1795       // they are zero).
1796       if (Op->getFlags().hasExact())
1797         InDemandedMask.setLowBits(ShAmt);
1798 
1799       // If any of the demanded bits are produced by the sign extension, we also
1800       // demand the input sign bit.
1801       if (DemandedBits.countLeadingZeros() < ShAmt)
1802         InDemandedMask.setSignBit();
1803 
1804       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1805                                Depth + 1))
1806         return true;
1807       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1808       Known.Zero.lshrInPlace(ShAmt);
1809       Known.One.lshrInPlace(ShAmt);
1810 
1811       // If the input sign bit is known to be zero, or if none of the top bits
1812       // are demanded, turn this into an unsigned shift right.
1813       if (Known.Zero[BitWidth - ShAmt - 1] ||
1814           DemandedBits.countLeadingZeros() >= ShAmt) {
1815         SDNodeFlags Flags;
1816         Flags.setExact(Op->getFlags().hasExact());
1817         return TLO.CombineTo(
1818             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1819       }
1820 
1821       int Log2 = DemandedBits.exactLogBase2();
1822       if (Log2 >= 0) {
1823         // The bit must come from the sign.
1824         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1825         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1826       }
1827 
1828       if (Known.One[BitWidth - ShAmt - 1])
1829         // New bits are known one.
1830         Known.One.setHighBits(ShAmt);
1831 
1832       // Attempt to avoid multi-use ops if we don't need anything from them.
1833       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1834         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1835             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1836         if (DemandedOp0) {
1837           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1838           return TLO.CombineTo(Op, NewOp);
1839         }
1840       }
1841     }
1842     break;
1843   }
1844   case ISD::FSHL:
1845   case ISD::FSHR: {
1846     SDValue Op0 = Op.getOperand(0);
1847     SDValue Op1 = Op.getOperand(1);
1848     SDValue Op2 = Op.getOperand(2);
1849     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1850 
1851     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1852       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1853 
1854       // For fshl, 0-shift returns the 1st arg.
1855       // For fshr, 0-shift returns the 2nd arg.
1856       if (Amt == 0) {
1857         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1858                                  Known, TLO, Depth + 1))
1859           return true;
1860         break;
1861       }
1862 
1863       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1864       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1865       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1866       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1867       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1868                                Depth + 1))
1869         return true;
1870       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1871                                Depth + 1))
1872         return true;
1873 
1874       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1875       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1876       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1877       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1878       Known.One |= Known2.One;
1879       Known.Zero |= Known2.Zero;
1880 
1881       // Attempt to avoid multi-use ops if we don't need anything from them.
1882       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1883           !DemandedElts.isAllOnes()) {
1884         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1885             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1886         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1887             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1888         if (DemandedOp0 || DemandedOp1) {
1889           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1890           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1891           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
1892                                           DemandedOp1, Op2);
1893           return TLO.CombineTo(Op, NewOp);
1894         }
1895       }
1896     }
1897 
1898     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1899     if (isPowerOf2_32(BitWidth)) {
1900       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1901       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1902                                Known2, TLO, Depth + 1))
1903         return true;
1904     }
1905     break;
1906   }
1907   case ISD::ROTL:
1908   case ISD::ROTR: {
1909     SDValue Op0 = Op.getOperand(0);
1910     SDValue Op1 = Op.getOperand(1);
1911     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1912 
1913     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1914     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1915       return TLO.CombineTo(Op, Op0);
1916 
1917     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1918       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1919       unsigned RevAmt = BitWidth - Amt;
1920 
1921       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1922       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1923       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1924       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1925                                Depth + 1))
1926         return true;
1927 
1928       // rot*(x, 0) --> x
1929       if (Amt == 0)
1930         return TLO.CombineTo(Op, Op0);
1931 
1932       // See if we don't demand either half of the rotated bits.
1933       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1934           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1935         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1936         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1937       }
1938       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1939           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1940         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1941         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1942       }
1943     }
1944 
1945     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1946     if (isPowerOf2_32(BitWidth)) {
1947       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1948       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1949                                Depth + 1))
1950         return true;
1951     }
1952     break;
1953   }
1954   case ISD::UMIN: {
1955     // Check if one arg is always less than (or equal) to the other arg.
1956     SDValue Op0 = Op.getOperand(0);
1957     SDValue Op1 = Op.getOperand(1);
1958     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1959     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1960     Known = KnownBits::umin(Known0, Known1);
1961     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1962       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1963     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1964       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1965     break;
1966   }
1967   case ISD::UMAX: {
1968     // Check if one arg is always greater than (or equal) to the other arg.
1969     SDValue Op0 = Op.getOperand(0);
1970     SDValue Op1 = Op.getOperand(1);
1971     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1972     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1973     Known = KnownBits::umax(Known0, Known1);
1974     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1975       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1976     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1977       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1978     break;
1979   }
1980   case ISD::BITREVERSE: {
1981     SDValue Src = Op.getOperand(0);
1982     APInt DemandedSrcBits = DemandedBits.reverseBits();
1983     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1984                              Depth + 1))
1985       return true;
1986     Known.One = Known2.One.reverseBits();
1987     Known.Zero = Known2.Zero.reverseBits();
1988     break;
1989   }
1990   case ISD::BSWAP: {
1991     SDValue Src = Op.getOperand(0);
1992 
1993     // If the only bits demanded come from one byte of the bswap result,
1994     // just shift the input byte into position to eliminate the bswap.
1995     unsigned NLZ = DemandedBits.countLeadingZeros();
1996     unsigned NTZ = DemandedBits.countTrailingZeros();
1997 
1998     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1999     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2000     // have 14 leading zeros, round to 8.
2001     NLZ = alignDown(NLZ, 8);
2002     NTZ = alignDown(NTZ, 8);
2003     // If we need exactly one byte, we can do this transformation.
2004     if (BitWidth - NLZ - NTZ == 8) {
2005       // Replace this with either a left or right shift to get the byte into
2006       // the right place.
2007       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2008       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2009         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2010         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2011         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2012         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2013         return TLO.CombineTo(Op, NewOp);
2014       }
2015     }
2016 
2017     APInt DemandedSrcBits = DemandedBits.byteSwap();
2018     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2019                              Depth + 1))
2020       return true;
2021     Known.One = Known2.One.byteSwap();
2022     Known.Zero = Known2.Zero.byteSwap();
2023     break;
2024   }
2025   case ISD::CTPOP: {
2026     // If only 1 bit is demanded, replace with PARITY as long as we're before
2027     // op legalization.
2028     // FIXME: Limit to scalars for now.
2029     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2030       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2031                                                Op.getOperand(0)));
2032 
2033     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2034     break;
2035   }
2036   case ISD::SIGN_EXTEND_INREG: {
2037     SDValue Op0 = Op.getOperand(0);
2038     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2039     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2040 
2041     // If we only care about the highest bit, don't bother shifting right.
2042     if (DemandedBits.isSignMask()) {
2043       unsigned MinSignedBits =
2044           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2045       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2046       // However if the input is already sign extended we expect the sign
2047       // extension to be dropped altogether later and do not simplify.
2048       if (!AlreadySignExtended) {
2049         // Compute the correct shift amount type, which must be getShiftAmountTy
2050         // for scalar types after legalization.
2051         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2052                                                getShiftAmountTy(VT, DL));
2053         return TLO.CombineTo(Op,
2054                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2055       }
2056     }
2057 
2058     // If none of the extended bits are demanded, eliminate the sextinreg.
2059     if (DemandedBits.getActiveBits() <= ExVTBits)
2060       return TLO.CombineTo(Op, Op0);
2061 
2062     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2063 
2064     // Since the sign extended bits are demanded, we know that the sign
2065     // bit is demanded.
2066     InputDemandedBits.setBit(ExVTBits - 1);
2067 
2068     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2069       return true;
2070     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2071 
2072     // If the sign bit of the input is known set or clear, then we know the
2073     // top bits of the result.
2074 
2075     // If the input sign bit is known zero, convert this into a zero extension.
2076     if (Known.Zero[ExVTBits - 1])
2077       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2078 
2079     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2080     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2081       Known.One.setBitsFrom(ExVTBits);
2082       Known.Zero &= Mask;
2083     } else { // Input sign bit unknown
2084       Known.Zero &= Mask;
2085       Known.One &= Mask;
2086     }
2087     break;
2088   }
2089   case ISD::BUILD_PAIR: {
2090     EVT HalfVT = Op.getOperand(0).getValueType();
2091     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2092 
2093     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2094     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2095 
2096     KnownBits KnownLo, KnownHi;
2097 
2098     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2099       return true;
2100 
2101     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2102       return true;
2103 
2104     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2105                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2106 
2107     Known.One = KnownLo.One.zext(BitWidth) |
2108                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2109     break;
2110   }
2111   case ISD::ZERO_EXTEND:
2112   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2113     SDValue Src = Op.getOperand(0);
2114     EVT SrcVT = Src.getValueType();
2115     unsigned InBits = SrcVT.getScalarSizeInBits();
2116     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2117     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2118 
2119     // If none of the top bits are demanded, convert this into an any_extend.
2120     if (DemandedBits.getActiveBits() <= InBits) {
2121       // If we only need the non-extended bits of the bottom element
2122       // then we can just bitcast to the result.
2123       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2124           VT.getSizeInBits() == SrcVT.getSizeInBits())
2125         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2126 
2127       unsigned Opc =
2128           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2129       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2130         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2131     }
2132 
2133     APInt InDemandedBits = DemandedBits.trunc(InBits);
2134     APInt InDemandedElts = DemandedElts.zext(InElts);
2135     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2136                              Depth + 1))
2137       return true;
2138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2139     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2140     Known = Known.zext(BitWidth);
2141 
2142     // Attempt to avoid multi-use ops if we don't need anything from them.
2143     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2144             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2145       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2146     break;
2147   }
2148   case ISD::SIGN_EXTEND:
2149   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2150     SDValue Src = Op.getOperand(0);
2151     EVT SrcVT = Src.getValueType();
2152     unsigned InBits = SrcVT.getScalarSizeInBits();
2153     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2154     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2155 
2156     // If none of the top bits are demanded, convert this into an any_extend.
2157     if (DemandedBits.getActiveBits() <= InBits) {
2158       // If we only need the non-extended bits of the bottom element
2159       // then we can just bitcast to the result.
2160       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2161           VT.getSizeInBits() == SrcVT.getSizeInBits())
2162         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2163 
2164       unsigned Opc =
2165           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2166       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2167         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2168     }
2169 
2170     APInt InDemandedBits = DemandedBits.trunc(InBits);
2171     APInt InDemandedElts = DemandedElts.zext(InElts);
2172 
2173     // Since some of the sign extended bits are demanded, we know that the sign
2174     // bit is demanded.
2175     InDemandedBits.setBit(InBits - 1);
2176 
2177     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2178                              Depth + 1))
2179       return true;
2180     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2181     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2182 
2183     // If the sign bit is known one, the top bits match.
2184     Known = Known.sext(BitWidth);
2185 
2186     // If the sign bit is known zero, convert this to a zero extend.
2187     if (Known.isNonNegative()) {
2188       unsigned Opc =
2189           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2190       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2191         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2192     }
2193 
2194     // Attempt to avoid multi-use ops if we don't need anything from them.
2195     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2196             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2197       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2198     break;
2199   }
2200   case ISD::ANY_EXTEND:
2201   case ISD::ANY_EXTEND_VECTOR_INREG: {
2202     SDValue Src = Op.getOperand(0);
2203     EVT SrcVT = Src.getValueType();
2204     unsigned InBits = SrcVT.getScalarSizeInBits();
2205     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2206     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2207 
2208     // If we only need the bottom element then we can just bitcast.
2209     // TODO: Handle ANY_EXTEND?
2210     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2211         VT.getSizeInBits() == SrcVT.getSizeInBits())
2212       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2213 
2214     APInt InDemandedBits = DemandedBits.trunc(InBits);
2215     APInt InDemandedElts = DemandedElts.zext(InElts);
2216     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2217                              Depth + 1))
2218       return true;
2219     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2220     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2221     Known = Known.anyext(BitWidth);
2222 
2223     // Attempt to avoid multi-use ops if we don't need anything from them.
2224     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2225             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2226       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2227     break;
2228   }
2229   case ISD::TRUNCATE: {
2230     SDValue Src = Op.getOperand(0);
2231 
2232     // Simplify the input, using demanded bit information, and compute the known
2233     // zero/one bits live out.
2234     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2235     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2236     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2237                              Depth + 1))
2238       return true;
2239     Known = Known.trunc(BitWidth);
2240 
2241     // Attempt to avoid multi-use ops if we don't need anything from them.
2242     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2243             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2244       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2245 
2246     // If the input is only used by this truncate, see if we can shrink it based
2247     // on the known demanded bits.
2248     if (Src.getNode()->hasOneUse()) {
2249       switch (Src.getOpcode()) {
2250       default:
2251         break;
2252       case ISD::SRL:
2253         // Shrink SRL by a constant if none of the high bits shifted in are
2254         // demanded.
2255         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2256           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2257           // undesirable.
2258           break;
2259 
2260         const APInt *ShAmtC =
2261             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2262         if (!ShAmtC || ShAmtC->uge(BitWidth))
2263           break;
2264         uint64_t ShVal = ShAmtC->getZExtValue();
2265 
2266         APInt HighBits =
2267             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2268         HighBits.lshrInPlace(ShVal);
2269         HighBits = HighBits.trunc(BitWidth);
2270 
2271         if (!(HighBits & DemandedBits)) {
2272           // None of the shifted in bits are needed.  Add a truncate of the
2273           // shift input, then shift it.
2274           SDValue NewShAmt = TLO.DAG.getConstant(
2275               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2276           SDValue NewTrunc =
2277               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2278           return TLO.CombineTo(
2279               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2280         }
2281         break;
2282       }
2283     }
2284 
2285     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2286     break;
2287   }
2288   case ISD::AssertZext: {
2289     // AssertZext demands all of the high bits, plus any of the low bits
2290     // demanded by its users.
2291     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2292     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2293     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2294                              TLO, Depth + 1))
2295       return true;
2296     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2297 
2298     Known.Zero |= ~InMask;
2299     break;
2300   }
2301   case ISD::EXTRACT_VECTOR_ELT: {
2302     SDValue Src = Op.getOperand(0);
2303     SDValue Idx = Op.getOperand(1);
2304     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2305     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2306 
2307     if (SrcEltCnt.isScalable())
2308       return false;
2309 
2310     // Demand the bits from every vector element without a constant index.
2311     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2312     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2313     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2314       if (CIdx->getAPIntValue().ult(NumSrcElts))
2315         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2316 
2317     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2318     // anything about the extended bits.
2319     APInt DemandedSrcBits = DemandedBits;
2320     if (BitWidth > EltBitWidth)
2321       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2322 
2323     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2324                              Depth + 1))
2325       return true;
2326 
2327     // Attempt to avoid multi-use ops if we don't need anything from them.
2328     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2329       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2330               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2331         SDValue NewOp =
2332             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2333         return TLO.CombineTo(Op, NewOp);
2334       }
2335     }
2336 
2337     Known = Known2;
2338     if (BitWidth > EltBitWidth)
2339       Known = Known.anyext(BitWidth);
2340     break;
2341   }
2342   case ISD::BITCAST: {
2343     SDValue Src = Op.getOperand(0);
2344     EVT SrcVT = Src.getValueType();
2345     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2346 
2347     // If this is an FP->Int bitcast and if the sign bit is the only
2348     // thing demanded, turn this into a FGETSIGN.
2349     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2350         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2351         SrcVT.isFloatingPoint()) {
2352       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2353       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2354       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2355           SrcVT != MVT::f128) {
2356         // Cannot eliminate/lower SHL for f128 yet.
2357         EVT Ty = OpVTLegal ? VT : MVT::i32;
2358         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2359         // place.  We expect the SHL to be eliminated by other optimizations.
2360         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2361         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2362         if (!OpVTLegal && OpVTSizeInBits > 32)
2363           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2364         unsigned ShVal = Op.getValueSizeInBits() - 1;
2365         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2366         return TLO.CombineTo(Op,
2367                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2368       }
2369     }
2370 
2371     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2372     // Demand the elt/bit if any of the original elts/bits are demanded.
2373     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2374       unsigned Scale = BitWidth / NumSrcEltBits;
2375       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2376       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2377       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2378       for (unsigned i = 0; i != Scale; ++i) {
2379         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2380         unsigned BitOffset = EltOffset * NumSrcEltBits;
2381         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2382         if (!Sub.isZero()) {
2383           DemandedSrcBits |= Sub;
2384           for (unsigned j = 0; j != NumElts; ++j)
2385             if (DemandedElts[j])
2386               DemandedSrcElts.setBit((j * Scale) + i);
2387         }
2388       }
2389 
2390       APInt KnownSrcUndef, KnownSrcZero;
2391       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2392                                      KnownSrcZero, TLO, Depth + 1))
2393         return true;
2394 
2395       KnownBits KnownSrcBits;
2396       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2397                                KnownSrcBits, TLO, Depth + 1))
2398         return true;
2399     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2400       // TODO - bigendian once we have test coverage.
2401       unsigned Scale = NumSrcEltBits / BitWidth;
2402       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2403       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2404       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2405       for (unsigned i = 0; i != NumElts; ++i)
2406         if (DemandedElts[i]) {
2407           unsigned Offset = (i % Scale) * BitWidth;
2408           DemandedSrcBits.insertBits(DemandedBits, Offset);
2409           DemandedSrcElts.setBit(i / Scale);
2410         }
2411 
2412       if (SrcVT.isVector()) {
2413         APInt KnownSrcUndef, KnownSrcZero;
2414         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2415                                        KnownSrcZero, TLO, Depth + 1))
2416           return true;
2417       }
2418 
2419       KnownBits KnownSrcBits;
2420       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2421                                KnownSrcBits, TLO, Depth + 1))
2422         return true;
2423     }
2424 
2425     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2426     // recursive call where Known may be useful to the caller.
2427     if (Depth > 0) {
2428       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2429       return false;
2430     }
2431     break;
2432   }
2433   case ISD::MUL:
2434     if (DemandedBits.isPowerOf2()) {
2435       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2436       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2437       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2438       unsigned CTZ = DemandedBits.countTrailingZeros();
2439       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2440       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2441         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2442         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2443         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2444         return TLO.CombineTo(Op, Shl);
2445       }
2446     }
2447     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2448     // X * X is odd iff X is odd.
2449     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2450     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2451       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2452       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2453       return TLO.CombineTo(Op, And1);
2454     }
2455     LLVM_FALLTHROUGH;
2456   case ISD::ADD:
2457   case ISD::SUB: {
2458     // Add, Sub, and Mul don't demand any bits in positions beyond that
2459     // of the highest bit demanded of them.
2460     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2461     SDNodeFlags Flags = Op.getNode()->getFlags();
2462     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2463     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2464     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2465                              Depth + 1) ||
2466         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2467                              Depth + 1) ||
2468         // See if the operation should be performed at a smaller bit width.
2469         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2470       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2471         // Disable the nsw and nuw flags. We can no longer guarantee that we
2472         // won't wrap after simplification.
2473         Flags.setNoSignedWrap(false);
2474         Flags.setNoUnsignedWrap(false);
2475         SDValue NewOp =
2476             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2477         return TLO.CombineTo(Op, NewOp);
2478       }
2479       return true;
2480     }
2481 
2482     // Attempt to avoid multi-use ops if we don't need anything from them.
2483     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2484       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2485           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2486       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2487           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2488       if (DemandedOp0 || DemandedOp1) {
2489         Flags.setNoSignedWrap(false);
2490         Flags.setNoUnsignedWrap(false);
2491         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2492         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2493         SDValue NewOp =
2494             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2495         return TLO.CombineTo(Op, NewOp);
2496       }
2497     }
2498 
2499     // If we have a constant operand, we may be able to turn it into -1 if we
2500     // do not demand the high bits. This can make the constant smaller to
2501     // encode, allow more general folding, or match specialized instruction
2502     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2503     // is probably not useful (and could be detrimental).
2504     ConstantSDNode *C = isConstOrConstSplat(Op1);
2505     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2506     if (C && !C->isAllOnes() && !C->isOne() &&
2507         (C->getAPIntValue() | HighMask).isAllOnes()) {
2508       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2509       // Disable the nsw and nuw flags. We can no longer guarantee that we
2510       // won't wrap after simplification.
2511       Flags.setNoSignedWrap(false);
2512       Flags.setNoUnsignedWrap(false);
2513       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2514       return TLO.CombineTo(Op, NewOp);
2515     }
2516 
2517     // Match a multiply with a disguised negated-power-of-2 and convert to a
2518     // an equivalent shift-left amount.
2519     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2520     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2521       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2522         return 0;
2523 
2524       // Don't touch opaque constants. Also, ignore zero and power-of-2
2525       // multiplies. Those will get folded later.
2526       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2527       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2528           !MulC->getAPIntValue().isPowerOf2()) {
2529         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2530         if (UnmaskedC.isNegatedPowerOf2())
2531           return (-UnmaskedC).logBase2();
2532       }
2533       return 0;
2534     };
2535 
2536     auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) {
2537       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2538       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2539       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2540       SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl);
2541       return TLO.CombineTo(Op, Sub);
2542     };
2543 
2544     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2545       if (Op.getOpcode() == ISD::ADD) {
2546         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2547         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2548           return foldMul(Op0.getOperand(0), Op1, ShAmt);
2549         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2550         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2551           return foldMul(Op1.getOperand(0), Op0, ShAmt);
2552         // TODO:
2553         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2554       }
2555     }
2556 
2557     LLVM_FALLTHROUGH;
2558   }
2559   default:
2560     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2561       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2562                                             Known, TLO, Depth))
2563         return true;
2564       break;
2565     }
2566 
2567     // Just use computeKnownBits to compute output bits.
2568     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2569     break;
2570   }
2571 
2572   // If we know the value of all of the demanded bits, return this as a
2573   // constant.
2574   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2575     // Avoid folding to a constant if any OpaqueConstant is involved.
2576     const SDNode *N = Op.getNode();
2577     for (SDNode *Op :
2578          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2579       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2580         if (C->isOpaque())
2581           return false;
2582     }
2583     if (VT.isInteger())
2584       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2585     if (VT.isFloatingPoint())
2586       return TLO.CombineTo(
2587           Op,
2588           TLO.DAG.getConstantFP(
2589               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2590   }
2591 
2592   return false;
2593 }
2594 
2595 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2596                                                 const APInt &DemandedElts,
2597                                                 DAGCombinerInfo &DCI) const {
2598   SelectionDAG &DAG = DCI.DAG;
2599   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2600                         !DCI.isBeforeLegalizeOps());
2601 
2602   APInt KnownUndef, KnownZero;
2603   bool Simplified =
2604       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2605   if (Simplified) {
2606     DCI.AddToWorklist(Op.getNode());
2607     DCI.CommitTargetLoweringOpt(TLO);
2608   }
2609 
2610   return Simplified;
2611 }
2612 
2613 /// Given a vector binary operation and known undefined elements for each input
2614 /// operand, compute whether each element of the output is undefined.
2615 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2616                                          const APInt &UndefOp0,
2617                                          const APInt &UndefOp1) {
2618   EVT VT = BO.getValueType();
2619   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2620          "Vector binop only");
2621 
2622   EVT EltVT = VT.getVectorElementType();
2623   unsigned NumElts = VT.getVectorNumElements();
2624   assert(UndefOp0.getBitWidth() == NumElts &&
2625          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2626 
2627   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2628                                    const APInt &UndefVals) {
2629     if (UndefVals[Index])
2630       return DAG.getUNDEF(EltVT);
2631 
2632     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2633       // Try hard to make sure that the getNode() call is not creating temporary
2634       // nodes. Ignore opaque integers because they do not constant fold.
2635       SDValue Elt = BV->getOperand(Index);
2636       auto *C = dyn_cast<ConstantSDNode>(Elt);
2637       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2638         return Elt;
2639     }
2640 
2641     return SDValue();
2642   };
2643 
2644   APInt KnownUndef = APInt::getZero(NumElts);
2645   for (unsigned i = 0; i != NumElts; ++i) {
2646     // If both inputs for this element are either constant or undef and match
2647     // the element type, compute the constant/undef result for this element of
2648     // the vector.
2649     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2650     // not handle FP constants. The code within getNode() should be refactored
2651     // to avoid the danger of creating a bogus temporary node here.
2652     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2653     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2654     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2655       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2656         KnownUndef.setBit(i);
2657   }
2658   return KnownUndef;
2659 }
2660 
2661 bool TargetLowering::SimplifyDemandedVectorElts(
2662     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2663     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2664     bool AssumeSingleUse) const {
2665   EVT VT = Op.getValueType();
2666   unsigned Opcode = Op.getOpcode();
2667   APInt DemandedElts = OriginalDemandedElts;
2668   unsigned NumElts = DemandedElts.getBitWidth();
2669   assert(VT.isVector() && "Expected vector op");
2670 
2671   KnownUndef = KnownZero = APInt::getZero(NumElts);
2672 
2673   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2674   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2675     return false;
2676 
2677   // TODO: For now we assume we know nothing about scalable vectors.
2678   if (VT.isScalableVector())
2679     return false;
2680 
2681   assert(VT.getVectorNumElements() == NumElts &&
2682          "Mask size mismatches value type element count!");
2683 
2684   // Undef operand.
2685   if (Op.isUndef()) {
2686     KnownUndef.setAllBits();
2687     return false;
2688   }
2689 
2690   // If Op has other users, assume that all elements are needed.
2691   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2692     DemandedElts.setAllBits();
2693 
2694   // Not demanding any elements from Op.
2695   if (DemandedElts == 0) {
2696     KnownUndef.setAllBits();
2697     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2698   }
2699 
2700   // Limit search depth.
2701   if (Depth >= SelectionDAG::MaxRecursionDepth)
2702     return false;
2703 
2704   SDLoc DL(Op);
2705   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2706   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2707 
2708   // Helper for demanding the specified elements and all the bits of both binary
2709   // operands.
2710   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2711     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2712                                                            TLO.DAG, Depth + 1);
2713     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2714                                                            TLO.DAG, Depth + 1);
2715     if (NewOp0 || NewOp1) {
2716       SDValue NewOp = TLO.DAG.getNode(
2717           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2718       return TLO.CombineTo(Op, NewOp);
2719     }
2720     return false;
2721   };
2722 
2723   switch (Opcode) {
2724   case ISD::SCALAR_TO_VECTOR: {
2725     if (!DemandedElts[0]) {
2726       KnownUndef.setAllBits();
2727       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2728     }
2729     SDValue ScalarSrc = Op.getOperand(0);
2730     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2731       SDValue Src = ScalarSrc.getOperand(0);
2732       SDValue Idx = ScalarSrc.getOperand(1);
2733       EVT SrcVT = Src.getValueType();
2734 
2735       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2736 
2737       if (SrcEltCnt.isScalable())
2738         return false;
2739 
2740       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2741       if (isNullConstant(Idx)) {
2742         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2743         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2744         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2745         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2746                                        TLO, Depth + 1))
2747           return true;
2748       }
2749     }
2750     KnownUndef.setHighBits(NumElts - 1);
2751     break;
2752   }
2753   case ISD::BITCAST: {
2754     SDValue Src = Op.getOperand(0);
2755     EVT SrcVT = Src.getValueType();
2756 
2757     // We only handle vectors here.
2758     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2759     if (!SrcVT.isVector())
2760       break;
2761 
2762     // Fast handling of 'identity' bitcasts.
2763     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2764     if (NumSrcElts == NumElts)
2765       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2766                                         KnownZero, TLO, Depth + 1);
2767 
2768     APInt SrcDemandedElts, SrcZero, SrcUndef;
2769 
2770     // Bitcast from 'large element' src vector to 'small element' vector, we
2771     // must demand a source element if any DemandedElt maps to it.
2772     if ((NumElts % NumSrcElts) == 0) {
2773       unsigned Scale = NumElts / NumSrcElts;
2774       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2775       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2776                                      TLO, Depth + 1))
2777         return true;
2778 
2779       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2780       // of the large element.
2781       // TODO - bigendian once we have test coverage.
2782       if (IsLE) {
2783         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2784         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2785         for (unsigned i = 0; i != NumElts; ++i)
2786           if (DemandedElts[i]) {
2787             unsigned Ofs = (i % Scale) * EltSizeInBits;
2788             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2789           }
2790 
2791         KnownBits Known;
2792         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2793                                  TLO, Depth + 1))
2794           return true;
2795 
2796         // The bitcast has split each wide element into a number of
2797         // narrow subelements. We have just computed the Known bits
2798         // for wide elements. See if element splitting results in
2799         // some subelements being zero. Only for demanded elements!
2800         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2801           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2802                    .isAllOnes())
2803             continue;
2804           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2805             unsigned Elt = Scale * SrcElt + SubElt;
2806             if (DemandedElts[Elt])
2807               KnownZero.setBit(Elt);
2808           }
2809         }
2810       }
2811 
2812       // If the src element is zero/undef then all the output elements will be -
2813       // only demanded elements are guaranteed to be correct.
2814       for (unsigned i = 0; i != NumSrcElts; ++i) {
2815         if (SrcDemandedElts[i]) {
2816           if (SrcZero[i])
2817             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2818           if (SrcUndef[i])
2819             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2820         }
2821       }
2822     }
2823 
2824     // Bitcast from 'small element' src vector to 'large element' vector, we
2825     // demand all smaller source elements covered by the larger demanded element
2826     // of this vector.
2827     if ((NumSrcElts % NumElts) == 0) {
2828       unsigned Scale = NumSrcElts / NumElts;
2829       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2830       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2831                                      TLO, Depth + 1))
2832         return true;
2833 
2834       // If all the src elements covering an output element are zero/undef, then
2835       // the output element will be as well, assuming it was demanded.
2836       for (unsigned i = 0; i != NumElts; ++i) {
2837         if (DemandedElts[i]) {
2838           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2839             KnownZero.setBit(i);
2840           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2841             KnownUndef.setBit(i);
2842         }
2843       }
2844     }
2845     break;
2846   }
2847   case ISD::BUILD_VECTOR: {
2848     // Check all elements and simplify any unused elements with UNDEF.
2849     if (!DemandedElts.isAllOnes()) {
2850       // Don't simplify BROADCASTS.
2851       if (llvm::any_of(Op->op_values(),
2852                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2853         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2854         bool Updated = false;
2855         for (unsigned i = 0; i != NumElts; ++i) {
2856           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2857             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2858             KnownUndef.setBit(i);
2859             Updated = true;
2860           }
2861         }
2862         if (Updated)
2863           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2864       }
2865     }
2866     for (unsigned i = 0; i != NumElts; ++i) {
2867       SDValue SrcOp = Op.getOperand(i);
2868       if (SrcOp.isUndef()) {
2869         KnownUndef.setBit(i);
2870       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2871                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2872         KnownZero.setBit(i);
2873       }
2874     }
2875     break;
2876   }
2877   case ISD::CONCAT_VECTORS: {
2878     EVT SubVT = Op.getOperand(0).getValueType();
2879     unsigned NumSubVecs = Op.getNumOperands();
2880     unsigned NumSubElts = SubVT.getVectorNumElements();
2881     for (unsigned i = 0; i != NumSubVecs; ++i) {
2882       SDValue SubOp = Op.getOperand(i);
2883       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2884       APInt SubUndef, SubZero;
2885       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2886                                      Depth + 1))
2887         return true;
2888       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2889       KnownZero.insertBits(SubZero, i * NumSubElts);
2890     }
2891 
2892     // Attempt to avoid multi-use ops if we don't need anything from them.
2893     if (!DemandedElts.isAllOnes()) {
2894       bool FoundNewSub = false;
2895       SmallVector<SDValue, 2> DemandedSubOps;
2896       for (unsigned i = 0; i != NumSubVecs; ++i) {
2897         SDValue SubOp = Op.getOperand(i);
2898         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2899         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2900             SubOp, SubElts, TLO.DAG, Depth + 1);
2901         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2902         FoundNewSub = NewSubOp ? true : FoundNewSub;
2903       }
2904       if (FoundNewSub) {
2905         SDValue NewOp =
2906             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2907         return TLO.CombineTo(Op, NewOp);
2908       }
2909     }
2910     break;
2911   }
2912   case ISD::INSERT_SUBVECTOR: {
2913     // Demand any elements from the subvector and the remainder from the src its
2914     // inserted into.
2915     SDValue Src = Op.getOperand(0);
2916     SDValue Sub = Op.getOperand(1);
2917     uint64_t Idx = Op.getConstantOperandVal(2);
2918     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2919     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2920     APInt DemandedSrcElts = DemandedElts;
2921     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2922 
2923     APInt SubUndef, SubZero;
2924     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2925                                    Depth + 1))
2926       return true;
2927 
2928     // If none of the src operand elements are demanded, replace it with undef.
2929     if (!DemandedSrcElts && !Src.isUndef())
2930       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2931                                                TLO.DAG.getUNDEF(VT), Sub,
2932                                                Op.getOperand(2)));
2933 
2934     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2935                                    TLO, Depth + 1))
2936       return true;
2937     KnownUndef.insertBits(SubUndef, Idx);
2938     KnownZero.insertBits(SubZero, Idx);
2939 
2940     // Attempt to avoid multi-use ops if we don't need anything from them.
2941     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2942       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2943           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2944       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2945           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2946       if (NewSrc || NewSub) {
2947         NewSrc = NewSrc ? NewSrc : Src;
2948         NewSub = NewSub ? NewSub : Sub;
2949         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2950                                         NewSub, Op.getOperand(2));
2951         return TLO.CombineTo(Op, NewOp);
2952       }
2953     }
2954     break;
2955   }
2956   case ISD::EXTRACT_SUBVECTOR: {
2957     // Offset the demanded elts by the subvector index.
2958     SDValue Src = Op.getOperand(0);
2959     if (Src.getValueType().isScalableVector())
2960       break;
2961     uint64_t Idx = Op.getConstantOperandVal(1);
2962     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2963     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2964 
2965     APInt SrcUndef, SrcZero;
2966     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2967                                    Depth + 1))
2968       return true;
2969     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2970     KnownZero = SrcZero.extractBits(NumElts, Idx);
2971 
2972     // Attempt to avoid multi-use ops if we don't need anything from them.
2973     if (!DemandedElts.isAllOnes()) {
2974       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2975           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2976       if (NewSrc) {
2977         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2978                                         Op.getOperand(1));
2979         return TLO.CombineTo(Op, NewOp);
2980       }
2981     }
2982     break;
2983   }
2984   case ISD::INSERT_VECTOR_ELT: {
2985     SDValue Vec = Op.getOperand(0);
2986     SDValue Scl = Op.getOperand(1);
2987     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2988 
2989     // For a legal, constant insertion index, if we don't need this insertion
2990     // then strip it, else remove it from the demanded elts.
2991     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2992       unsigned Idx = CIdx->getZExtValue();
2993       if (!DemandedElts[Idx])
2994         return TLO.CombineTo(Op, Vec);
2995 
2996       APInt DemandedVecElts(DemandedElts);
2997       DemandedVecElts.clearBit(Idx);
2998       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2999                                      KnownZero, TLO, Depth + 1))
3000         return true;
3001 
3002       KnownUndef.setBitVal(Idx, Scl.isUndef());
3003 
3004       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3005       break;
3006     }
3007 
3008     APInt VecUndef, VecZero;
3009     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3010                                    Depth + 1))
3011       return true;
3012     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3013     break;
3014   }
3015   case ISD::VSELECT: {
3016     // Try to transform the select condition based on the current demanded
3017     // elements.
3018     // TODO: If a condition element is undef, we can choose from one arm of the
3019     //       select (and if one arm is undef, then we can propagate that to the
3020     //       result).
3021     // TODO - add support for constant vselect masks (see IR version of this).
3022     APInt UnusedUndef, UnusedZero;
3023     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
3024                                    UnusedZero, TLO, Depth + 1))
3025       return true;
3026 
3027     // See if we can simplify either vselect operand.
3028     APInt DemandedLHS(DemandedElts);
3029     APInt DemandedRHS(DemandedElts);
3030     APInt UndefLHS, ZeroLHS;
3031     APInt UndefRHS, ZeroRHS;
3032     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
3033                                    ZeroLHS, TLO, Depth + 1))
3034       return true;
3035     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
3036                                    ZeroRHS, TLO, Depth + 1))
3037       return true;
3038 
3039     KnownUndef = UndefLHS & UndefRHS;
3040     KnownZero = ZeroLHS & ZeroRHS;
3041     break;
3042   }
3043   case ISD::VECTOR_SHUFFLE: {
3044     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3045 
3046     // Collect demanded elements from shuffle operands..
3047     APInt DemandedLHS(NumElts, 0);
3048     APInt DemandedRHS(NumElts, 0);
3049     for (unsigned i = 0; i != NumElts; ++i) {
3050       int M = ShuffleMask[i];
3051       if (M < 0 || !DemandedElts[i])
3052         continue;
3053       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3054       if (M < (int)NumElts)
3055         DemandedLHS.setBit(M);
3056       else
3057         DemandedRHS.setBit(M - NumElts);
3058     }
3059 
3060     // See if we can simplify either shuffle operand.
3061     APInt UndefLHS, ZeroLHS;
3062     APInt UndefRHS, ZeroRHS;
3063     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3064                                    ZeroLHS, TLO, Depth + 1))
3065       return true;
3066     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3067                                    ZeroRHS, TLO, Depth + 1))
3068       return true;
3069 
3070     // Simplify mask using undef elements from LHS/RHS.
3071     bool Updated = false;
3072     bool IdentityLHS = true, IdentityRHS = true;
3073     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3074     for (unsigned i = 0; i != NumElts; ++i) {
3075       int &M = NewMask[i];
3076       if (M < 0)
3077         continue;
3078       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3079           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3080         Updated = true;
3081         M = -1;
3082       }
3083       IdentityLHS &= (M < 0) || (M == (int)i);
3084       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3085     }
3086 
3087     // Update legal shuffle masks based on demanded elements if it won't reduce
3088     // to Identity which can cause premature removal of the shuffle mask.
3089     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3090       SDValue LegalShuffle =
3091           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3092                                   NewMask, TLO.DAG);
3093       if (LegalShuffle)
3094         return TLO.CombineTo(Op, LegalShuffle);
3095     }
3096 
3097     // Propagate undef/zero elements from LHS/RHS.
3098     for (unsigned i = 0; i != NumElts; ++i) {
3099       int M = ShuffleMask[i];
3100       if (M < 0) {
3101         KnownUndef.setBit(i);
3102       } else if (M < (int)NumElts) {
3103         if (UndefLHS[M])
3104           KnownUndef.setBit(i);
3105         if (ZeroLHS[M])
3106           KnownZero.setBit(i);
3107       } else {
3108         if (UndefRHS[M - NumElts])
3109           KnownUndef.setBit(i);
3110         if (ZeroRHS[M - NumElts])
3111           KnownZero.setBit(i);
3112       }
3113     }
3114     break;
3115   }
3116   case ISD::ANY_EXTEND_VECTOR_INREG:
3117   case ISD::SIGN_EXTEND_VECTOR_INREG:
3118   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3119     APInt SrcUndef, SrcZero;
3120     SDValue Src = Op.getOperand(0);
3121     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3122     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3123     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3124                                    Depth + 1))
3125       return true;
3126     KnownZero = SrcZero.zextOrTrunc(NumElts);
3127     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3128 
3129     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3130         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3131         DemandedSrcElts == 1) {
3132       // aext - if we just need the bottom element then we can bitcast.
3133       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3134     }
3135 
3136     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3137       // zext(undef) upper bits are guaranteed to be zero.
3138       if (DemandedElts.isSubsetOf(KnownUndef))
3139         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3140       KnownUndef.clearAllBits();
3141 
3142       // zext - if we just need the bottom element then we can mask:
3143       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3144       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3145           Op->isOnlyUserOf(Src.getNode()) &&
3146           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3147         SDLoc DL(Op);
3148         EVT SrcVT = Src.getValueType();
3149         EVT SrcSVT = SrcVT.getScalarType();
3150         SmallVector<SDValue> MaskElts;
3151         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3152         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3153         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3154         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3155                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3156           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3157           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3158         }
3159       }
3160     }
3161     break;
3162   }
3163 
3164   // TODO: There are more binop opcodes that could be handled here - MIN,
3165   // MAX, saturated math, etc.
3166   case ISD::ADD: {
3167     SDValue Op0 = Op.getOperand(0);
3168     SDValue Op1 = Op.getOperand(1);
3169     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3170       APInt UndefLHS, ZeroLHS;
3171       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3172                                      Depth + 1, /*AssumeSingleUse*/ true))
3173         return true;
3174     }
3175     LLVM_FALLTHROUGH;
3176   }
3177   case ISD::OR:
3178   case ISD::XOR:
3179   case ISD::SUB:
3180   case ISD::FADD:
3181   case ISD::FSUB:
3182   case ISD::FMUL:
3183   case ISD::FDIV:
3184   case ISD::FREM: {
3185     SDValue Op0 = Op.getOperand(0);
3186     SDValue Op1 = Op.getOperand(1);
3187 
3188     APInt UndefRHS, ZeroRHS;
3189     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3190                                    Depth + 1))
3191       return true;
3192     APInt UndefLHS, ZeroLHS;
3193     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3194                                    Depth + 1))
3195       return true;
3196 
3197     KnownZero = ZeroLHS & ZeroRHS;
3198     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3199 
3200     // Attempt to avoid multi-use ops if we don't need anything from them.
3201     // TODO - use KnownUndef to relax the demandedelts?
3202     if (!DemandedElts.isAllOnes())
3203       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3204         return true;
3205     break;
3206   }
3207   case ISD::SHL:
3208   case ISD::SRL:
3209   case ISD::SRA:
3210   case ISD::ROTL:
3211   case ISD::ROTR: {
3212     SDValue Op0 = Op.getOperand(0);
3213     SDValue Op1 = Op.getOperand(1);
3214 
3215     APInt UndefRHS, ZeroRHS;
3216     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3217                                    Depth + 1))
3218       return true;
3219     APInt UndefLHS, ZeroLHS;
3220     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3221                                    Depth + 1))
3222       return true;
3223 
3224     KnownZero = ZeroLHS;
3225     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3226 
3227     // Attempt to avoid multi-use ops if we don't need anything from them.
3228     // TODO - use KnownUndef to relax the demandedelts?
3229     if (!DemandedElts.isAllOnes())
3230       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3231         return true;
3232     break;
3233   }
3234   case ISD::MUL:
3235   case ISD::AND: {
3236     SDValue Op0 = Op.getOperand(0);
3237     SDValue Op1 = Op.getOperand(1);
3238 
3239     APInt SrcUndef, SrcZero;
3240     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3241                                    Depth + 1))
3242       return true;
3243     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3244                                    TLO, Depth + 1))
3245       return true;
3246 
3247     // If either side has a zero element, then the result element is zero, even
3248     // if the other is an UNDEF.
3249     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3250     // and then handle 'and' nodes with the rest of the binop opcodes.
3251     KnownZero |= SrcZero;
3252     KnownUndef &= SrcUndef;
3253     KnownUndef &= ~KnownZero;
3254 
3255     // Attempt to avoid multi-use ops if we don't need anything from them.
3256     // TODO - use KnownUndef to relax the demandedelts?
3257     if (!DemandedElts.isAllOnes())
3258       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3259         return true;
3260     break;
3261   }
3262   case ISD::TRUNCATE:
3263   case ISD::SIGN_EXTEND:
3264   case ISD::ZERO_EXTEND:
3265     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3266                                    KnownZero, TLO, Depth + 1))
3267       return true;
3268 
3269     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3270       // zext(undef) upper bits are guaranteed to be zero.
3271       if (DemandedElts.isSubsetOf(KnownUndef))
3272         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3273       KnownUndef.clearAllBits();
3274     }
3275     break;
3276   default: {
3277     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3278       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3279                                                   KnownZero, TLO, Depth))
3280         return true;
3281     } else {
3282       KnownBits Known;
3283       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3284       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3285                                TLO, Depth, AssumeSingleUse))
3286         return true;
3287     }
3288     break;
3289   }
3290   }
3291   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3292 
3293   // Constant fold all undef cases.
3294   // TODO: Handle zero cases as well.
3295   if (DemandedElts.isSubsetOf(KnownUndef))
3296     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3297 
3298   return false;
3299 }
3300 
3301 /// Determine which of the bits specified in Mask are known to be either zero or
3302 /// one and return them in the Known.
3303 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3304                                                    KnownBits &Known,
3305                                                    const APInt &DemandedElts,
3306                                                    const SelectionDAG &DAG,
3307                                                    unsigned Depth) const {
3308   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3309           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3310           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3311           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3312          "Should use MaskedValueIsZero if you don't know whether Op"
3313          " is a target node!");
3314   Known.resetAll();
3315 }
3316 
3317 void TargetLowering::computeKnownBitsForTargetInstr(
3318     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3319     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3320     unsigned Depth) const {
3321   Known.resetAll();
3322 }
3323 
3324 void TargetLowering::computeKnownBitsForFrameIndex(
3325   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3326   // The low bits are known zero if the pointer is aligned.
3327   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3328 }
3329 
3330 Align TargetLowering::computeKnownAlignForTargetInstr(
3331   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3332   unsigned Depth) const {
3333   return Align(1);
3334 }
3335 
3336 /// This method can be implemented by targets that want to expose additional
3337 /// information about sign bits to the DAG Combiner.
3338 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3339                                                          const APInt &,
3340                                                          const SelectionDAG &,
3341                                                          unsigned Depth) const {
3342   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3343           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3344           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3345           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3346          "Should use ComputeNumSignBits if you don't know whether Op"
3347          " is a target node!");
3348   return 1;
3349 }
3350 
3351 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3352   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3353   const MachineRegisterInfo &MRI, unsigned Depth) const {
3354   return 1;
3355 }
3356 
3357 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3358     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3359     TargetLoweringOpt &TLO, unsigned Depth) const {
3360   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3361           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3362           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3363           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3364          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3365          " is a target node!");
3366   return false;
3367 }
3368 
3369 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3370     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3371     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3372   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3373           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3374           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3375           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3376          "Should use SimplifyDemandedBits if you don't know whether Op"
3377          " is a target node!");
3378   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3379   return false;
3380 }
3381 
3382 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3383     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3384     SelectionDAG &DAG, unsigned Depth) const {
3385   assert(
3386       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3387        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3388        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3389        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3390       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3391       " is a target node!");
3392   return SDValue();
3393 }
3394 
3395 SDValue
3396 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3397                                         SDValue N1, MutableArrayRef<int> Mask,
3398                                         SelectionDAG &DAG) const {
3399   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3400   if (!LegalMask) {
3401     std::swap(N0, N1);
3402     ShuffleVectorSDNode::commuteMask(Mask);
3403     LegalMask = isShuffleMaskLegal(Mask, VT);
3404   }
3405 
3406   if (!LegalMask)
3407     return SDValue();
3408 
3409   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3410 }
3411 
3412 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3413   return nullptr;
3414 }
3415 
3416 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3417     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3418     bool PoisonOnly, unsigned Depth) const {
3419   assert(
3420       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3421        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3422        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3423        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3424       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3425       " is a target node!");
3426   return false;
3427 }
3428 
3429 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3430                                                   const SelectionDAG &DAG,
3431                                                   bool SNaN,
3432                                                   unsigned Depth) const {
3433   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3434           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3435           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3436           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3437          "Should use isKnownNeverNaN if you don't know whether Op"
3438          " is a target node!");
3439   return false;
3440 }
3441 
3442 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3443                                                const APInt &DemandedElts,
3444                                                APInt &UndefElts,
3445                                                unsigned Depth) const {
3446   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3447           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3448           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3449           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3450          "Should use isSplatValue if you don't know whether Op"
3451          " is a target node!");
3452   return false;
3453 }
3454 
3455 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3456 // work with truncating build vectors and vectors with elements of less than
3457 // 8 bits.
3458 bool TargetLowering::isConstTrueVal(SDValue N) const {
3459   if (!N)
3460     return false;
3461 
3462   unsigned EltWidth;
3463   APInt CVal;
3464   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3465                                                /*AllowTruncation=*/true)) {
3466     CVal = CN->getAPIntValue();
3467     EltWidth = N.getValueType().getScalarSizeInBits();
3468   } else
3469     return false;
3470 
3471   // If this is a truncating splat, truncate the splat value.
3472   // Otherwise, we may fail to match the expected values below.
3473   if (EltWidth < CVal.getBitWidth())
3474     CVal = CVal.trunc(EltWidth);
3475 
3476   switch (getBooleanContents(N.getValueType())) {
3477   case UndefinedBooleanContent:
3478     return CVal[0];
3479   case ZeroOrOneBooleanContent:
3480     return CVal.isOne();
3481   case ZeroOrNegativeOneBooleanContent:
3482     return CVal.isAllOnes();
3483   }
3484 
3485   llvm_unreachable("Invalid boolean contents");
3486 }
3487 
3488 bool TargetLowering::isConstFalseVal(SDValue N) const {
3489   if (!N)
3490     return false;
3491 
3492   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3493   if (!CN) {
3494     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3495     if (!BV)
3496       return false;
3497 
3498     // Only interested in constant splats, we don't care about undef
3499     // elements in identifying boolean constants and getConstantSplatNode
3500     // returns NULL if all ops are undef;
3501     CN = BV->getConstantSplatNode();
3502     if (!CN)
3503       return false;
3504   }
3505 
3506   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3507     return !CN->getAPIntValue()[0];
3508 
3509   return CN->isZero();
3510 }
3511 
3512 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3513                                        bool SExt) const {
3514   if (VT == MVT::i1)
3515     return N->isOne();
3516 
3517   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3518   switch (Cnt) {
3519   case TargetLowering::ZeroOrOneBooleanContent:
3520     // An extended value of 1 is always true, unless its original type is i1,
3521     // in which case it will be sign extended to -1.
3522     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3523   case TargetLowering::UndefinedBooleanContent:
3524   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3525     return N->isAllOnes() && SExt;
3526   }
3527   llvm_unreachable("Unexpected enumeration.");
3528 }
3529 
3530 /// This helper function of SimplifySetCC tries to optimize the comparison when
3531 /// either operand of the SetCC node is a bitwise-and instruction.
3532 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3533                                          ISD::CondCode Cond, const SDLoc &DL,
3534                                          DAGCombinerInfo &DCI) const {
3535   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3536     std::swap(N0, N1);
3537 
3538   SelectionDAG &DAG = DCI.DAG;
3539   EVT OpVT = N0.getValueType();
3540   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3541       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3542     return SDValue();
3543 
3544   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3545   // iff everything but LSB is known zero:
3546   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3547       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3548        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3549     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3550     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3551     if (DAG.MaskedValueIsZero(N0, UpperBits))
3552       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3553   }
3554 
3555   // Match these patterns in any of their permutations:
3556   // (X & Y) == Y
3557   // (X & Y) != Y
3558   SDValue X, Y;
3559   if (N0.getOperand(0) == N1) {
3560     X = N0.getOperand(1);
3561     Y = N0.getOperand(0);
3562   } else if (N0.getOperand(1) == N1) {
3563     X = N0.getOperand(0);
3564     Y = N0.getOperand(1);
3565   } else {
3566     return SDValue();
3567   }
3568 
3569   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3570   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3571     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3572     // Note that where Y is variable and is known to have at most one bit set
3573     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3574     // equivalent when Y == 0.
3575     assert(OpVT.isInteger());
3576     Cond = ISD::getSetCCInverse(Cond, OpVT);
3577     if (DCI.isBeforeLegalizeOps() ||
3578         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3579       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3580   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3581     // If the target supports an 'and-not' or 'and-complement' logic operation,
3582     // try to use that to make a comparison operation more efficient.
3583     // But don't do this transform if the mask is a single bit because there are
3584     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3585     // 'rlwinm' on PPC).
3586 
3587     // Bail out if the compare operand that we want to turn into a zero is
3588     // already a zero (otherwise, infinite loop).
3589     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3590     if (YConst && YConst->isZero())
3591       return SDValue();
3592 
3593     // Transform this into: ~X & Y == 0.
3594     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3595     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3596     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3597   }
3598 
3599   return SDValue();
3600 }
3601 
3602 /// There are multiple IR patterns that could be checking whether certain
3603 /// truncation of a signed number would be lossy or not. The pattern which is
3604 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3605 /// We are looking for the following pattern: (KeptBits is a constant)
3606 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3607 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3608 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3609 /// We will unfold it into the natural trunc+sext pattern:
3610 ///   ((%x << C) a>> C) dstcond %x
3611 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3612 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3613     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3614     const SDLoc &DL) const {
3615   // We must be comparing with a constant.
3616   ConstantSDNode *C1;
3617   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3618     return SDValue();
3619 
3620   // N0 should be:  add %x, (1 << (KeptBits-1))
3621   if (N0->getOpcode() != ISD::ADD)
3622     return SDValue();
3623 
3624   // And we must be 'add'ing a constant.
3625   ConstantSDNode *C01;
3626   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3627     return SDValue();
3628 
3629   SDValue X = N0->getOperand(0);
3630   EVT XVT = X.getValueType();
3631 
3632   // Validate constants ...
3633 
3634   APInt I1 = C1->getAPIntValue();
3635 
3636   ISD::CondCode NewCond;
3637   if (Cond == ISD::CondCode::SETULT) {
3638     NewCond = ISD::CondCode::SETEQ;
3639   } else if (Cond == ISD::CondCode::SETULE) {
3640     NewCond = ISD::CondCode::SETEQ;
3641     // But need to 'canonicalize' the constant.
3642     I1 += 1;
3643   } else if (Cond == ISD::CondCode::SETUGT) {
3644     NewCond = ISD::CondCode::SETNE;
3645     // But need to 'canonicalize' the constant.
3646     I1 += 1;
3647   } else if (Cond == ISD::CondCode::SETUGE) {
3648     NewCond = ISD::CondCode::SETNE;
3649   } else
3650     return SDValue();
3651 
3652   APInt I01 = C01->getAPIntValue();
3653 
3654   auto checkConstants = [&I1, &I01]() -> bool {
3655     // Both of them must be power-of-two, and the constant from setcc is bigger.
3656     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3657   };
3658 
3659   if (checkConstants()) {
3660     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3661   } else {
3662     // What if we invert constants? (and the target predicate)
3663     I1.negate();
3664     I01.negate();
3665     assert(XVT.isInteger());
3666     NewCond = getSetCCInverse(NewCond, XVT);
3667     if (!checkConstants())
3668       return SDValue();
3669     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3670   }
3671 
3672   // They are power-of-two, so which bit is set?
3673   const unsigned KeptBits = I1.logBase2();
3674   const unsigned KeptBitsMinusOne = I01.logBase2();
3675 
3676   // Magic!
3677   if (KeptBits != (KeptBitsMinusOne + 1))
3678     return SDValue();
3679   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3680 
3681   // We don't want to do this in every single case.
3682   SelectionDAG &DAG = DCI.DAG;
3683   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3684           XVT, KeptBits))
3685     return SDValue();
3686 
3687   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3688   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3689 
3690   // Unfold into:  ((%x << C) a>> C) cond %x
3691   // Where 'cond' will be either 'eq' or 'ne'.
3692   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3693   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3694   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3695   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3696 
3697   return T2;
3698 }
3699 
3700 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3701 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3702     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3703     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3704   assert(isConstOrConstSplat(N1C) &&
3705          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3706          "Should be a comparison with 0.");
3707   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3708          "Valid only for [in]equality comparisons.");
3709 
3710   unsigned NewShiftOpcode;
3711   SDValue X, C, Y;
3712 
3713   SelectionDAG &DAG = DCI.DAG;
3714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3715 
3716   // Look for '(C l>>/<< Y)'.
3717   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3718     // The shift should be one-use.
3719     if (!V.hasOneUse())
3720       return false;
3721     unsigned OldShiftOpcode = V.getOpcode();
3722     switch (OldShiftOpcode) {
3723     case ISD::SHL:
3724       NewShiftOpcode = ISD::SRL;
3725       break;
3726     case ISD::SRL:
3727       NewShiftOpcode = ISD::SHL;
3728       break;
3729     default:
3730       return false; // must be a logical shift.
3731     }
3732     // We should be shifting a constant.
3733     // FIXME: best to use isConstantOrConstantVector().
3734     C = V.getOperand(0);
3735     ConstantSDNode *CC =
3736         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3737     if (!CC)
3738       return false;
3739     Y = V.getOperand(1);
3740 
3741     ConstantSDNode *XC =
3742         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3743     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3744         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3745   };
3746 
3747   // LHS of comparison should be an one-use 'and'.
3748   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3749     return SDValue();
3750 
3751   X = N0.getOperand(0);
3752   SDValue Mask = N0.getOperand(1);
3753 
3754   // 'and' is commutative!
3755   if (!Match(Mask)) {
3756     std::swap(X, Mask);
3757     if (!Match(Mask))
3758       return SDValue();
3759   }
3760 
3761   EVT VT = X.getValueType();
3762 
3763   // Produce:
3764   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3765   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3766   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3767   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3768   return T2;
3769 }
3770 
3771 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3772 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3773 /// handle the commuted versions of these patterns.
3774 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3775                                            ISD::CondCode Cond, const SDLoc &DL,
3776                                            DAGCombinerInfo &DCI) const {
3777   unsigned BOpcode = N0.getOpcode();
3778   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3779          "Unexpected binop");
3780   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3781 
3782   // (X + Y) == X --> Y == 0
3783   // (X - Y) == X --> Y == 0
3784   // (X ^ Y) == X --> Y == 0
3785   SelectionDAG &DAG = DCI.DAG;
3786   EVT OpVT = N0.getValueType();
3787   SDValue X = N0.getOperand(0);
3788   SDValue Y = N0.getOperand(1);
3789   if (X == N1)
3790     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3791 
3792   if (Y != N1)
3793     return SDValue();
3794 
3795   // (X + Y) == Y --> X == 0
3796   // (X ^ Y) == Y --> X == 0
3797   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3798     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3799 
3800   // The shift would not be valid if the operands are boolean (i1).
3801   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3802     return SDValue();
3803 
3804   // (X - Y) == Y --> X == Y << 1
3805   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3806                                  !DCI.isBeforeLegalize());
3807   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3808   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3809   if (!DCI.isCalledByLegalizer())
3810     DCI.AddToWorklist(YShl1.getNode());
3811   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3812 }
3813 
3814 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3815                                       SDValue N0, const APInt &C1,
3816                                       ISD::CondCode Cond, const SDLoc &dl,
3817                                       SelectionDAG &DAG) {
3818   // Look through truncs that don't change the value of a ctpop.
3819   // FIXME: Add vector support? Need to be careful with setcc result type below.
3820   SDValue CTPOP = N0;
3821   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3822       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3823     CTPOP = N0.getOperand(0);
3824 
3825   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3826     return SDValue();
3827 
3828   EVT CTVT = CTPOP.getValueType();
3829   SDValue CTOp = CTPOP.getOperand(0);
3830 
3831   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3832   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3833   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3834     return SDValue();
3835 
3836   // (ctpop x) u< 2 -> (x & x-1) == 0
3837   // (ctpop x) u> 1 -> (x & x-1) != 0
3838   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3839     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3840     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3841       return SDValue();
3842     if (C1 == 0 && (Cond == ISD::SETULT))
3843       return SDValue(); // This is handled elsewhere.
3844 
3845     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3846 
3847     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3848     SDValue Result = CTOp;
3849     for (unsigned i = 0; i < Passes; i++) {
3850       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3851       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3852     }
3853     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3854     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3855   }
3856 
3857   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3858   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3859     // For scalars, keep CTPOP if it is legal or custom.
3860     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3861       return SDValue();
3862     // This is based on X86's custom lowering for CTPOP which produces more
3863     // instructions than the expansion here.
3864 
3865     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3866     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3867     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3868     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3869     assert(CTVT.isInteger());
3870     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3871     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3872     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3873     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3874     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3875     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3876     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3877   }
3878 
3879   return SDValue();
3880 }
3881 
3882 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3883                                    ISD::CondCode Cond, const SDLoc &dl,
3884                                    SelectionDAG &DAG) {
3885   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3886     return SDValue();
3887 
3888   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3889   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3890     return SDValue();
3891 
3892   auto getRotateSource = [](SDValue X) {
3893     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3894       return X.getOperand(0);
3895     return SDValue();
3896   };
3897 
3898   // Peek through a rotated value compared against 0 or -1:
3899   // (rot X, Y) == 0/-1 --> X == 0/-1
3900   // (rot X, Y) != 0/-1 --> X != 0/-1
3901   if (SDValue R = getRotateSource(N0))
3902     return DAG.getSetCC(dl, VT, R, N1, Cond);
3903 
3904   // Peek through an 'or' of a rotated value compared against 0:
3905   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3906   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3907   //
3908   // TODO: Add the 'and' with -1 sibling.
3909   // TODO: Recurse through a series of 'or' ops to find the rotate.
3910   EVT OpVT = N0.getValueType();
3911   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3912     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3913       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3914       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3915     }
3916     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3917       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3918       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3919     }
3920   }
3921 
3922   return SDValue();
3923 }
3924 
3925 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3926                                         ISD::CondCode Cond, const SDLoc &dl,
3927                                         SelectionDAG &DAG) {
3928   // If we are testing for all-bits-clear, we might be able to do that with
3929   // less shifting since bit-order does not matter.
3930   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3931     return SDValue();
3932 
3933   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3934   if (!C1 || !C1->isZero())
3935     return SDValue();
3936 
3937   if (!N0.hasOneUse() ||
3938       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3939     return SDValue();
3940 
3941   unsigned BitWidth = N0.getScalarValueSizeInBits();
3942   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3943   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3944     return SDValue();
3945 
3946   // Canonicalize fshr as fshl to reduce pattern-matching.
3947   unsigned ShAmt = ShAmtC->getZExtValue();
3948   if (N0.getOpcode() == ISD::FSHR)
3949     ShAmt = BitWidth - ShAmt;
3950 
3951   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3952   SDValue X, Y;
3953   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3954     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3955       return false;
3956     if (Or.getOperand(0) == Other) {
3957       X = Or.getOperand(0);
3958       Y = Or.getOperand(1);
3959       return true;
3960     }
3961     if (Or.getOperand(1) == Other) {
3962       X = Or.getOperand(1);
3963       Y = Or.getOperand(0);
3964       return true;
3965     }
3966     return false;
3967   };
3968 
3969   EVT OpVT = N0.getValueType();
3970   EVT ShAmtVT = N0.getOperand(2).getValueType();
3971   SDValue F0 = N0.getOperand(0);
3972   SDValue F1 = N0.getOperand(1);
3973   if (matchOr(F0, F1)) {
3974     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
3975     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
3976     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
3977     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3978     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3979   }
3980   if (matchOr(F1, F0)) {
3981     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
3982     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
3983     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
3984     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3985     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3986   }
3987 
3988   return SDValue();
3989 }
3990 
3991 /// Try to simplify a setcc built with the specified operands and cc. If it is
3992 /// unable to simplify it, return a null SDValue.
3993 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3994                                       ISD::CondCode Cond, bool foldBooleans,
3995                                       DAGCombinerInfo &DCI,
3996                                       const SDLoc &dl) const {
3997   SelectionDAG &DAG = DCI.DAG;
3998   const DataLayout &Layout = DAG.getDataLayout();
3999   EVT OpVT = N0.getValueType();
4000 
4001   // Constant fold or commute setcc.
4002   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4003     return Fold;
4004 
4005   bool N0ConstOrSplat =
4006       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4007   bool N1ConstOrSplat =
4008       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4009 
4010   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4011   // TODO: Handle non-splat vector constants. All undef causes trouble.
4012   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4013   // infinite loop here when we encounter one.
4014   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4015   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4016       (DCI.isBeforeLegalizeOps() ||
4017        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4018     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4019 
4020   // If we have a subtract with the same 2 non-constant operands as this setcc
4021   // -- but in reverse order -- then try to commute the operands of this setcc
4022   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4023   // instruction on some targets.
4024   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4025       (DCI.isBeforeLegalizeOps() ||
4026        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4027       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4028       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4029     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4030 
4031   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4032     return V;
4033 
4034   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4035     return V;
4036 
4037   if (auto *N1C = isConstOrConstSplat(N1)) {
4038     const APInt &C1 = N1C->getAPIntValue();
4039 
4040     // Optimize some CTPOP cases.
4041     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4042       return V;
4043 
4044     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4045     // equality comparison, then we're just comparing whether X itself is
4046     // zero.
4047     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4048         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4049         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4050       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4051         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4052             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4053           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4054             // (srl (ctlz x), 5) == 0  -> X != 0
4055             // (srl (ctlz x), 5) != 1  -> X != 0
4056             Cond = ISD::SETNE;
4057           } else {
4058             // (srl (ctlz x), 5) != 0  -> X == 0
4059             // (srl (ctlz x), 5) == 1  -> X == 0
4060             Cond = ISD::SETEQ;
4061           }
4062           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4063           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4064                               Cond);
4065         }
4066       }
4067     }
4068   }
4069 
4070   // FIXME: Support vectors.
4071   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4072     const APInt &C1 = N1C->getAPIntValue();
4073 
4074     // (zext x) == C --> x == (trunc C)
4075     // (sext x) == C --> x == (trunc C)
4076     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4077         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4078       unsigned MinBits = N0.getValueSizeInBits();
4079       SDValue PreExt;
4080       bool Signed = false;
4081       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4082         // ZExt
4083         MinBits = N0->getOperand(0).getValueSizeInBits();
4084         PreExt = N0->getOperand(0);
4085       } else if (N0->getOpcode() == ISD::AND) {
4086         // DAGCombine turns costly ZExts into ANDs
4087         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4088           if ((C->getAPIntValue()+1).isPowerOf2()) {
4089             MinBits = C->getAPIntValue().countTrailingOnes();
4090             PreExt = N0->getOperand(0);
4091           }
4092       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4093         // SExt
4094         MinBits = N0->getOperand(0).getValueSizeInBits();
4095         PreExt = N0->getOperand(0);
4096         Signed = true;
4097       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4098         // ZEXTLOAD / SEXTLOAD
4099         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4100           MinBits = LN0->getMemoryVT().getSizeInBits();
4101           PreExt = N0;
4102         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4103           Signed = true;
4104           MinBits = LN0->getMemoryVT().getSizeInBits();
4105           PreExt = N0;
4106         }
4107       }
4108 
4109       // Figure out how many bits we need to preserve this constant.
4110       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4111 
4112       // Make sure we're not losing bits from the constant.
4113       if (MinBits > 0 &&
4114           MinBits < C1.getBitWidth() &&
4115           MinBits >= ReqdBits) {
4116         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4117         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4118           // Will get folded away.
4119           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4120           if (MinBits == 1 && C1 == 1)
4121             // Invert the condition.
4122             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4123                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4124           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4125           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4126         }
4127 
4128         // If truncating the setcc operands is not desirable, we can still
4129         // simplify the expression in some cases:
4130         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4131         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4132         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4133         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4134         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4135         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4136         SDValue TopSetCC = N0->getOperand(0);
4137         unsigned N0Opc = N0->getOpcode();
4138         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4139         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4140             TopSetCC.getOpcode() == ISD::SETCC &&
4141             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4142             (isConstFalseVal(N1) ||
4143              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4144 
4145           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4146                          (!N1C->isZero() && Cond == ISD::SETNE);
4147 
4148           if (!Inverse)
4149             return TopSetCC;
4150 
4151           ISD::CondCode InvCond = ISD::getSetCCInverse(
4152               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4153               TopSetCC.getOperand(0).getValueType());
4154           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4155                                       TopSetCC.getOperand(1),
4156                                       InvCond);
4157         }
4158       }
4159     }
4160 
4161     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4162     // equality or unsigned, and all 1 bits of the const are in the same
4163     // partial word, see if we can shorten the load.
4164     if (DCI.isBeforeLegalize() &&
4165         !ISD::isSignedIntSetCC(Cond) &&
4166         N0.getOpcode() == ISD::AND && C1 == 0 &&
4167         N0.getNode()->hasOneUse() &&
4168         isa<LoadSDNode>(N0.getOperand(0)) &&
4169         N0.getOperand(0).getNode()->hasOneUse() &&
4170         isa<ConstantSDNode>(N0.getOperand(1))) {
4171       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4172       APInt bestMask;
4173       unsigned bestWidth = 0, bestOffset = 0;
4174       if (Lod->isSimple() && Lod->isUnindexed()) {
4175         unsigned origWidth = N0.getValueSizeInBits();
4176         unsigned maskWidth = origWidth;
4177         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4178         // 8 bits, but have to be careful...
4179         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4180           origWidth = Lod->getMemoryVT().getSizeInBits();
4181         const APInt &Mask = N0.getConstantOperandAPInt(1);
4182         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4183           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4184           for (unsigned offset=0; offset<origWidth/width; offset++) {
4185             if (Mask.isSubsetOf(newMask)) {
4186               if (Layout.isLittleEndian())
4187                 bestOffset = (uint64_t)offset * (width/8);
4188               else
4189                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4190               bestMask = Mask.lshr(offset * (width/8) * 8);
4191               bestWidth = width;
4192               break;
4193             }
4194             newMask <<= width;
4195           }
4196         }
4197       }
4198       if (bestWidth) {
4199         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4200         if (newVT.isRound() &&
4201             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4202           SDValue Ptr = Lod->getBasePtr();
4203           if (bestOffset != 0)
4204             Ptr =
4205                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4206           SDValue NewLoad =
4207               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4208                           Lod->getPointerInfo().getWithOffset(bestOffset),
4209                           Lod->getOriginalAlign());
4210           return DAG.getSetCC(dl, VT,
4211                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4212                                       DAG.getConstant(bestMask.trunc(bestWidth),
4213                                                       dl, newVT)),
4214                               DAG.getConstant(0LL, dl, newVT), Cond);
4215         }
4216       }
4217     }
4218 
4219     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4220     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4221       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4222 
4223       // If the comparison constant has bits in the upper part, the
4224       // zero-extended value could never match.
4225       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4226                                               C1.getBitWidth() - InSize))) {
4227         switch (Cond) {
4228         case ISD::SETUGT:
4229         case ISD::SETUGE:
4230         case ISD::SETEQ:
4231           return DAG.getConstant(0, dl, VT);
4232         case ISD::SETULT:
4233         case ISD::SETULE:
4234         case ISD::SETNE:
4235           return DAG.getConstant(1, dl, VT);
4236         case ISD::SETGT:
4237         case ISD::SETGE:
4238           // True if the sign bit of C1 is set.
4239           return DAG.getConstant(C1.isNegative(), dl, VT);
4240         case ISD::SETLT:
4241         case ISD::SETLE:
4242           // True if the sign bit of C1 isn't set.
4243           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4244         default:
4245           break;
4246         }
4247       }
4248 
4249       // Otherwise, we can perform the comparison with the low bits.
4250       switch (Cond) {
4251       case ISD::SETEQ:
4252       case ISD::SETNE:
4253       case ISD::SETUGT:
4254       case ISD::SETUGE:
4255       case ISD::SETULT:
4256       case ISD::SETULE: {
4257         EVT newVT = N0.getOperand(0).getValueType();
4258         if (DCI.isBeforeLegalizeOps() ||
4259             (isOperationLegal(ISD::SETCC, newVT) &&
4260              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4261           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4262           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4263 
4264           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4265                                           NewConst, Cond);
4266           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4267         }
4268         break;
4269       }
4270       default:
4271         break; // todo, be more careful with signed comparisons
4272       }
4273     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4274                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4275                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4276                                       OpVT)) {
4277       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4278       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4279       EVT ExtDstTy = N0.getValueType();
4280       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4281 
4282       // If the constant doesn't fit into the number of bits for the source of
4283       // the sign extension, it is impossible for both sides to be equal.
4284       if (C1.getMinSignedBits() > ExtSrcTyBits)
4285         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4286 
4287       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4288              ExtDstTy != ExtSrcTy && "Unexpected types!");
4289       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4290       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4291                                    DAG.getConstant(Imm, dl, ExtDstTy));
4292       if (!DCI.isCalledByLegalizer())
4293         DCI.AddToWorklist(ZextOp.getNode());
4294       // Otherwise, make this a use of a zext.
4295       return DAG.getSetCC(dl, VT, ZextOp,
4296                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4297     } else if ((N1C->isZero() || N1C->isOne()) &&
4298                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4299       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4300       if (N0.getOpcode() == ISD::SETCC &&
4301           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4302           (N0.getValueType() == MVT::i1 ||
4303            getBooleanContents(N0.getOperand(0).getValueType()) ==
4304                        ZeroOrOneBooleanContent)) {
4305         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4306         if (TrueWhenTrue)
4307           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4308         // Invert the condition.
4309         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4310         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4311         if (DCI.isBeforeLegalizeOps() ||
4312             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4313           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4314       }
4315 
4316       if ((N0.getOpcode() == ISD::XOR ||
4317            (N0.getOpcode() == ISD::AND &&
4318             N0.getOperand(0).getOpcode() == ISD::XOR &&
4319             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4320           isOneConstant(N0.getOperand(1))) {
4321         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4322         // can only do this if the top bits are known zero.
4323         unsigned BitWidth = N0.getValueSizeInBits();
4324         if (DAG.MaskedValueIsZero(N0,
4325                                   APInt::getHighBitsSet(BitWidth,
4326                                                         BitWidth-1))) {
4327           // Okay, get the un-inverted input value.
4328           SDValue Val;
4329           if (N0.getOpcode() == ISD::XOR) {
4330             Val = N0.getOperand(0);
4331           } else {
4332             assert(N0.getOpcode() == ISD::AND &&
4333                     N0.getOperand(0).getOpcode() == ISD::XOR);
4334             // ((X^1)&1)^1 -> X & 1
4335             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4336                               N0.getOperand(0).getOperand(0),
4337                               N0.getOperand(1));
4338           }
4339 
4340           return DAG.getSetCC(dl, VT, Val, N1,
4341                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4342         }
4343       } else if (N1C->isOne()) {
4344         SDValue Op0 = N0;
4345         if (Op0.getOpcode() == ISD::TRUNCATE)
4346           Op0 = Op0.getOperand(0);
4347 
4348         if ((Op0.getOpcode() == ISD::XOR) &&
4349             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4350             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4351           SDValue XorLHS = Op0.getOperand(0);
4352           SDValue XorRHS = Op0.getOperand(1);
4353           // Ensure that the input setccs return an i1 type or 0/1 value.
4354           if (Op0.getValueType() == MVT::i1 ||
4355               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4356                       ZeroOrOneBooleanContent &&
4357                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4358                         ZeroOrOneBooleanContent)) {
4359             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4360             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4361             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4362           }
4363         }
4364         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4365           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4366           if (Op0.getValueType().bitsGT(VT))
4367             Op0 = DAG.getNode(ISD::AND, dl, VT,
4368                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4369                           DAG.getConstant(1, dl, VT));
4370           else if (Op0.getValueType().bitsLT(VT))
4371             Op0 = DAG.getNode(ISD::AND, dl, VT,
4372                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4373                         DAG.getConstant(1, dl, VT));
4374 
4375           return DAG.getSetCC(dl, VT, Op0,
4376                               DAG.getConstant(0, dl, Op0.getValueType()),
4377                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4378         }
4379         if (Op0.getOpcode() == ISD::AssertZext &&
4380             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4381           return DAG.getSetCC(dl, VT, Op0,
4382                               DAG.getConstant(0, dl, Op0.getValueType()),
4383                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4384       }
4385     }
4386 
4387     // Given:
4388     //   icmp eq/ne (urem %x, %y), 0
4389     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4390     //   icmp eq/ne %x, 0
4391     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4392         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4393       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4394       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4395       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4396         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4397     }
4398 
4399     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4400     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4401     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4402         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4403         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4404         N1C && N1C->isAllOnes()) {
4405       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4406                           DAG.getConstant(0, dl, OpVT),
4407                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4408     }
4409 
4410     if (SDValue V =
4411             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4412       return V;
4413   }
4414 
4415   // These simplifications apply to splat vectors as well.
4416   // TODO: Handle more splat vector cases.
4417   if (auto *N1C = isConstOrConstSplat(N1)) {
4418     const APInt &C1 = N1C->getAPIntValue();
4419 
4420     APInt MinVal, MaxVal;
4421     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4422     if (ISD::isSignedIntSetCC(Cond)) {
4423       MinVal = APInt::getSignedMinValue(OperandBitSize);
4424       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4425     } else {
4426       MinVal = APInt::getMinValue(OperandBitSize);
4427       MaxVal = APInt::getMaxValue(OperandBitSize);
4428     }
4429 
4430     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4431     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4432       // X >= MIN --> true
4433       if (C1 == MinVal)
4434         return DAG.getBoolConstant(true, dl, VT, OpVT);
4435 
4436       if (!VT.isVector()) { // TODO: Support this for vectors.
4437         // X >= C0 --> X > (C0 - 1)
4438         APInt C = C1 - 1;
4439         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4440         if ((DCI.isBeforeLegalizeOps() ||
4441              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4442             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4443                                   isLegalICmpImmediate(C.getSExtValue())))) {
4444           return DAG.getSetCC(dl, VT, N0,
4445                               DAG.getConstant(C, dl, N1.getValueType()),
4446                               NewCC);
4447         }
4448       }
4449     }
4450 
4451     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4452       // X <= MAX --> true
4453       if (C1 == MaxVal)
4454         return DAG.getBoolConstant(true, dl, VT, OpVT);
4455 
4456       // X <= C0 --> X < (C0 + 1)
4457       if (!VT.isVector()) { // TODO: Support this for vectors.
4458         APInt C = C1 + 1;
4459         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4460         if ((DCI.isBeforeLegalizeOps() ||
4461              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4462             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4463                                   isLegalICmpImmediate(C.getSExtValue())))) {
4464           return DAG.getSetCC(dl, VT, N0,
4465                               DAG.getConstant(C, dl, N1.getValueType()),
4466                               NewCC);
4467         }
4468       }
4469     }
4470 
4471     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4472       if (C1 == MinVal)
4473         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4474 
4475       // TODO: Support this for vectors after legalize ops.
4476       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4477         // Canonicalize setlt X, Max --> setne X, Max
4478         if (C1 == MaxVal)
4479           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4480 
4481         // If we have setult X, 1, turn it into seteq X, 0
4482         if (C1 == MinVal+1)
4483           return DAG.getSetCC(dl, VT, N0,
4484                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4485                               ISD::SETEQ);
4486       }
4487     }
4488 
4489     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4490       if (C1 == MaxVal)
4491         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4492 
4493       // TODO: Support this for vectors after legalize ops.
4494       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4495         // Canonicalize setgt X, Min --> setne X, Min
4496         if (C1 == MinVal)
4497           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4498 
4499         // If we have setugt X, Max-1, turn it into seteq X, Max
4500         if (C1 == MaxVal-1)
4501           return DAG.getSetCC(dl, VT, N0,
4502                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4503                               ISD::SETEQ);
4504       }
4505     }
4506 
4507     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4508       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4509       if (C1.isZero())
4510         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4511                 VT, N0, N1, Cond, DCI, dl))
4512           return CC;
4513 
4514       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4515       // For example, when high 32-bits of i64 X are known clear:
4516       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4517       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4518       bool CmpZero = N1C->getAPIntValue().isZero();
4519       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4520       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4521         // Match or(lo,shl(hi,bw/2)) pattern.
4522         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4523           unsigned EltBits = V.getScalarValueSizeInBits();
4524           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4525             return false;
4526           SDValue LHS = V.getOperand(0);
4527           SDValue RHS = V.getOperand(1);
4528           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4529           // Unshifted element must have zero upperbits.
4530           if (RHS.getOpcode() == ISD::SHL &&
4531               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4532               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4533               DAG.MaskedValueIsZero(LHS, HiBits)) {
4534             Lo = LHS;
4535             Hi = RHS.getOperand(0);
4536             return true;
4537           }
4538           if (LHS.getOpcode() == ISD::SHL &&
4539               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4540               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4541               DAG.MaskedValueIsZero(RHS, HiBits)) {
4542             Lo = RHS;
4543             Hi = LHS.getOperand(0);
4544             return true;
4545           }
4546           return false;
4547         };
4548 
4549         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4550           unsigned EltBits = N0.getScalarValueSizeInBits();
4551           unsigned HalfBits = EltBits / 2;
4552           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4553           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4554           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4555           SDValue NewN0 =
4556               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4557           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4558           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4559         };
4560 
4561         SDValue Lo, Hi;
4562         if (IsConcat(N0, Lo, Hi))
4563           return MergeConcat(Lo, Hi);
4564 
4565         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4566           SDValue Lo0, Lo1, Hi0, Hi1;
4567           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4568               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4569             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4570                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4571           }
4572         }
4573       }
4574     }
4575 
4576     // If we have "setcc X, C0", check to see if we can shrink the immediate
4577     // by changing cc.
4578     // TODO: Support this for vectors after legalize ops.
4579     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4580       // SETUGT X, SINTMAX  -> SETLT X, 0
4581       // SETUGE X, SINTMIN -> SETLT X, 0
4582       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4583           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4584         return DAG.getSetCC(dl, VT, N0,
4585                             DAG.getConstant(0, dl, N1.getValueType()),
4586                             ISD::SETLT);
4587 
4588       // SETULT X, SINTMIN  -> SETGT X, -1
4589       // SETULE X, SINTMAX  -> SETGT X, -1
4590       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4591           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4592         return DAG.getSetCC(dl, VT, N0,
4593                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4594                             ISD::SETGT);
4595     }
4596   }
4597 
4598   // Back to non-vector simplifications.
4599   // TODO: Can we do these for vector splats?
4600   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4601     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4602     const APInt &C1 = N1C->getAPIntValue();
4603     EVT ShValTy = N0.getValueType();
4604 
4605     // Fold bit comparisons when we can. This will result in an
4606     // incorrect value when boolean false is negative one, unless
4607     // the bitsize is 1 in which case the false value is the same
4608     // in practice regardless of the representation.
4609     if ((VT.getSizeInBits() == 1 ||
4610          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4611         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4612         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4613         N0.getOpcode() == ISD::AND) {
4614       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4615         EVT ShiftTy =
4616             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4617         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4618           // Perform the xform if the AND RHS is a single bit.
4619           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4620           if (AndRHS->getAPIntValue().isPowerOf2() &&
4621               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4622             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4623                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4624                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4625           }
4626         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4627           // (X & 8) == 8  -->  (X & 8) >> 3
4628           // Perform the xform if C1 is a single bit.
4629           unsigned ShCt = C1.logBase2();
4630           if (C1.isPowerOf2() &&
4631               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4632             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4633                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4634                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4635           }
4636         }
4637       }
4638     }
4639 
4640     if (C1.getMinSignedBits() <= 64 &&
4641         !isLegalICmpImmediate(C1.getSExtValue())) {
4642       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4643       // (X & -256) == 256 -> (X >> 8) == 1
4644       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4645           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4646         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4647           const APInt &AndRHSC = AndRHS->getAPIntValue();
4648           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4649             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4650             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4651               SDValue Shift =
4652                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4653                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4654               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4655               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4656             }
4657           }
4658         }
4659       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4660                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4661         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4662         // X <  0x100000000 -> (X >> 32) <  1
4663         // X >= 0x100000000 -> (X >> 32) >= 1
4664         // X <= 0x0ffffffff -> (X >> 32) <  1
4665         // X >  0x0ffffffff -> (X >> 32) >= 1
4666         unsigned ShiftBits;
4667         APInt NewC = C1;
4668         ISD::CondCode NewCond = Cond;
4669         if (AdjOne) {
4670           ShiftBits = C1.countTrailingOnes();
4671           NewC = NewC + 1;
4672           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4673         } else {
4674           ShiftBits = C1.countTrailingZeros();
4675         }
4676         NewC.lshrInPlace(ShiftBits);
4677         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4678             isLegalICmpImmediate(NewC.getSExtValue()) &&
4679             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4680           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4681                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4682           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4683           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4684         }
4685       }
4686     }
4687   }
4688 
4689   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4690     auto *CFP = cast<ConstantFPSDNode>(N1);
4691     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4692 
4693     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4694     // constant if knowing that the operand is non-nan is enough.  We prefer to
4695     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4696     // materialize 0.0.
4697     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4698       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4699 
4700     // setcc (fneg x), C -> setcc swap(pred) x, -C
4701     if (N0.getOpcode() == ISD::FNEG) {
4702       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4703       if (DCI.isBeforeLegalizeOps() ||
4704           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4705         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4706         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4707       }
4708     }
4709 
4710     // If the condition is not legal, see if we can find an equivalent one
4711     // which is legal.
4712     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4713       // If the comparison was an awkward floating-point == or != and one of
4714       // the comparison operands is infinity or negative infinity, convert the
4715       // condition to a less-awkward <= or >=.
4716       if (CFP->getValueAPF().isInfinity()) {
4717         bool IsNegInf = CFP->getValueAPF().isNegative();
4718         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4719         switch (Cond) {
4720         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4721         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4722         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4723         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4724         default: break;
4725         }
4726         if (NewCond != ISD::SETCC_INVALID &&
4727             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4728           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4729       }
4730     }
4731   }
4732 
4733   if (N0 == N1) {
4734     // The sext(setcc()) => setcc() optimization relies on the appropriate
4735     // constant being emitted.
4736     assert(!N0.getValueType().isInteger() &&
4737            "Integer types should be handled by FoldSetCC");
4738 
4739     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4740     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4741     if (UOF == 2) // FP operators that are undefined on NaNs.
4742       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4743     if (UOF == unsigned(EqTrue))
4744       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4745     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4746     // if it is not already.
4747     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4748     if (NewCond != Cond &&
4749         (DCI.isBeforeLegalizeOps() ||
4750                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4751       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4752   }
4753 
4754   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4755       N0.getValueType().isInteger()) {
4756     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4757         N0.getOpcode() == ISD::XOR) {
4758       // Simplify (X+Y) == (X+Z) -->  Y == Z
4759       if (N0.getOpcode() == N1.getOpcode()) {
4760         if (N0.getOperand(0) == N1.getOperand(0))
4761           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4762         if (N0.getOperand(1) == N1.getOperand(1))
4763           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4764         if (isCommutativeBinOp(N0.getOpcode())) {
4765           // If X op Y == Y op X, try other combinations.
4766           if (N0.getOperand(0) == N1.getOperand(1))
4767             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4768                                 Cond);
4769           if (N0.getOperand(1) == N1.getOperand(0))
4770             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4771                                 Cond);
4772         }
4773       }
4774 
4775       // If RHS is a legal immediate value for a compare instruction, we need
4776       // to be careful about increasing register pressure needlessly.
4777       bool LegalRHSImm = false;
4778 
4779       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4780         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4781           // Turn (X+C1) == C2 --> X == C2-C1
4782           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4783             return DAG.getSetCC(
4784                 dl, VT, N0.getOperand(0),
4785                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4786                                 dl, N0.getValueType()),
4787                 Cond);
4788 
4789           // Turn (X^C1) == C2 --> X == C1^C2
4790           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4791             return DAG.getSetCC(
4792                 dl, VT, N0.getOperand(0),
4793                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4794                                 dl, N0.getValueType()),
4795                 Cond);
4796         }
4797 
4798         // Turn (C1-X) == C2 --> X == C1-C2
4799         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4800           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4801             return DAG.getSetCC(
4802                 dl, VT, N0.getOperand(1),
4803                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4804                                 dl, N0.getValueType()),
4805                 Cond);
4806 
4807         // Could RHSC fold directly into a compare?
4808         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4809           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4810       }
4811 
4812       // (X+Y) == X --> Y == 0 and similar folds.
4813       // Don't do this if X is an immediate that can fold into a cmp
4814       // instruction and X+Y has other uses. It could be an induction variable
4815       // chain, and the transform would increase register pressure.
4816       if (!LegalRHSImm || N0.hasOneUse())
4817         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4818           return V;
4819     }
4820 
4821     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4822         N1.getOpcode() == ISD::XOR)
4823       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4824         return V;
4825 
4826     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4827       return V;
4828   }
4829 
4830   // Fold remainder of division by a constant.
4831   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4832       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4833     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4834 
4835     // When division is cheap or optimizing for minimum size,
4836     // fall through to DIVREM creation by skipping this fold.
4837     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4838       if (N0.getOpcode() == ISD::UREM) {
4839         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4840           return Folded;
4841       } else if (N0.getOpcode() == ISD::SREM) {
4842         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4843           return Folded;
4844       }
4845     }
4846   }
4847 
4848   // Fold away ALL boolean setcc's.
4849   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4850     SDValue Temp;
4851     switch (Cond) {
4852     default: llvm_unreachable("Unknown integer setcc!");
4853     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4854       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4855       N0 = DAG.getNOT(dl, Temp, OpVT);
4856       if (!DCI.isCalledByLegalizer())
4857         DCI.AddToWorklist(Temp.getNode());
4858       break;
4859     case ISD::SETNE:  // X != Y   -->  (X^Y)
4860       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4861       break;
4862     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4863     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4864       Temp = DAG.getNOT(dl, N0, OpVT);
4865       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4866       if (!DCI.isCalledByLegalizer())
4867         DCI.AddToWorklist(Temp.getNode());
4868       break;
4869     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4870     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4871       Temp = DAG.getNOT(dl, N1, OpVT);
4872       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4873       if (!DCI.isCalledByLegalizer())
4874         DCI.AddToWorklist(Temp.getNode());
4875       break;
4876     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4877     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4878       Temp = DAG.getNOT(dl, N0, OpVT);
4879       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4880       if (!DCI.isCalledByLegalizer())
4881         DCI.AddToWorklist(Temp.getNode());
4882       break;
4883     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4884     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4885       Temp = DAG.getNOT(dl, N1, OpVT);
4886       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4887       break;
4888     }
4889     if (VT.getScalarType() != MVT::i1) {
4890       if (!DCI.isCalledByLegalizer())
4891         DCI.AddToWorklist(N0.getNode());
4892       // FIXME: If running after legalize, we probably can't do this.
4893       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4894       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4895     }
4896     return N0;
4897   }
4898 
4899   // Could not fold it.
4900   return SDValue();
4901 }
4902 
4903 /// Returns true (and the GlobalValue and the offset) if the node is a
4904 /// GlobalAddress + offset.
4905 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4906                                     int64_t &Offset) const {
4907 
4908   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4909 
4910   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4911     GA = GASD->getGlobal();
4912     Offset += GASD->getOffset();
4913     return true;
4914   }
4915 
4916   if (N->getOpcode() == ISD::ADD) {
4917     SDValue N1 = N->getOperand(0);
4918     SDValue N2 = N->getOperand(1);
4919     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4920       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4921         Offset += V->getSExtValue();
4922         return true;
4923       }
4924     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4925       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4926         Offset += V->getSExtValue();
4927         return true;
4928       }
4929     }
4930   }
4931 
4932   return false;
4933 }
4934 
4935 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4936                                           DAGCombinerInfo &DCI) const {
4937   // Default implementation: no optimization.
4938   return SDValue();
4939 }
4940 
4941 //===----------------------------------------------------------------------===//
4942 //  Inline Assembler Implementation Methods
4943 //===----------------------------------------------------------------------===//
4944 
4945 TargetLowering::ConstraintType
4946 TargetLowering::getConstraintType(StringRef Constraint) const {
4947   unsigned S = Constraint.size();
4948 
4949   if (S == 1) {
4950     switch (Constraint[0]) {
4951     default: break;
4952     case 'r':
4953       return C_RegisterClass;
4954     case 'm': // memory
4955     case 'o': // offsetable
4956     case 'V': // not offsetable
4957       return C_Memory;
4958     case 'p': // Address.
4959       return C_Address;
4960     case 'n': // Simple Integer
4961     case 'E': // Floating Point Constant
4962     case 'F': // Floating Point Constant
4963       return C_Immediate;
4964     case 'i': // Simple Integer or Relocatable Constant
4965     case 's': // Relocatable Constant
4966     case 'X': // Allow ANY value.
4967     case 'I': // Target registers.
4968     case 'J':
4969     case 'K':
4970     case 'L':
4971     case 'M':
4972     case 'N':
4973     case 'O':
4974     case 'P':
4975     case '<':
4976     case '>':
4977       return C_Other;
4978     }
4979   }
4980 
4981   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4982     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4983       return C_Memory;
4984     return C_Register;
4985   }
4986   return C_Unknown;
4987 }
4988 
4989 /// Try to replace an X constraint, which matches anything, with another that
4990 /// has more specific requirements based on the type of the corresponding
4991 /// operand.
4992 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4993   if (ConstraintVT.isInteger())
4994     return "r";
4995   if (ConstraintVT.isFloatingPoint())
4996     return "f"; // works for many targets
4997   return nullptr;
4998 }
4999 
5000 SDValue TargetLowering::LowerAsmOutputForConstraint(
5001     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5002     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5003   return SDValue();
5004 }
5005 
5006 /// Lower the specified operand into the Ops vector.
5007 /// If it is invalid, don't add anything to Ops.
5008 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5009                                                   std::string &Constraint,
5010                                                   std::vector<SDValue> &Ops,
5011                                                   SelectionDAG &DAG) const {
5012 
5013   if (Constraint.length() > 1) return;
5014 
5015   char ConstraintLetter = Constraint[0];
5016   switch (ConstraintLetter) {
5017   default: break;
5018   case 'X':    // Allows any operand
5019   case 'i':    // Simple Integer or Relocatable Constant
5020   case 'n':    // Simple Integer
5021   case 's': {  // Relocatable Constant
5022 
5023     ConstantSDNode *C;
5024     uint64_t Offset = 0;
5025 
5026     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5027     // etc., since getelementpointer is variadic. We can't use
5028     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5029     // while in this case the GA may be furthest from the root node which is
5030     // likely an ISD::ADD.
5031     while (true) {
5032       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5033         // gcc prints these as sign extended.  Sign extend value to 64 bits
5034         // now; without this it would get ZExt'd later in
5035         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5036         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5037         BooleanContent BCont = getBooleanContents(MVT::i64);
5038         ISD::NodeType ExtOpc =
5039             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5040         int64_t ExtVal =
5041             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5042         Ops.push_back(
5043             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5044         return;
5045       }
5046       if (ConstraintLetter != 'n') {
5047         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5048           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5049                                                    GA->getValueType(0),
5050                                                    Offset + GA->getOffset()));
5051           return;
5052         }
5053         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5054           Ops.push_back(DAG.getTargetBlockAddress(
5055               BA->getBlockAddress(), BA->getValueType(0),
5056               Offset + BA->getOffset(), BA->getTargetFlags()));
5057           return;
5058         }
5059         if (isa<BasicBlockSDNode>(Op)) {
5060           Ops.push_back(Op);
5061           return;
5062         }
5063       }
5064       const unsigned OpCode = Op.getOpcode();
5065       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5066         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5067           Op = Op.getOperand(1);
5068         // Subtraction is not commutative.
5069         else if (OpCode == ISD::ADD &&
5070                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5071           Op = Op.getOperand(0);
5072         else
5073           return;
5074         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5075         continue;
5076       }
5077       return;
5078     }
5079     break;
5080   }
5081   }
5082 }
5083 
5084 std::pair<unsigned, const TargetRegisterClass *>
5085 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5086                                              StringRef Constraint,
5087                                              MVT VT) const {
5088   if (Constraint.empty() || Constraint[0] != '{')
5089     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5090   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5091 
5092   // Remove the braces from around the name.
5093   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5094 
5095   std::pair<unsigned, const TargetRegisterClass *> R =
5096       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5097 
5098   // Figure out which register class contains this reg.
5099   for (const TargetRegisterClass *RC : RI->regclasses()) {
5100     // If none of the value types for this register class are valid, we
5101     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5102     if (!isLegalRC(*RI, *RC))
5103       continue;
5104 
5105     for (const MCPhysReg &PR : *RC) {
5106       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5107         std::pair<unsigned, const TargetRegisterClass *> S =
5108             std::make_pair(PR, RC);
5109 
5110         // If this register class has the requested value type, return it,
5111         // otherwise keep searching and return the first class found
5112         // if no other is found which explicitly has the requested type.
5113         if (RI->isTypeLegalForClass(*RC, VT))
5114           return S;
5115         if (!R.second)
5116           R = S;
5117       }
5118     }
5119   }
5120 
5121   return R;
5122 }
5123 
5124 //===----------------------------------------------------------------------===//
5125 // Constraint Selection.
5126 
5127 /// Return true of this is an input operand that is a matching constraint like
5128 /// "4".
5129 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5130   assert(!ConstraintCode.empty() && "No known constraint!");
5131   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5132 }
5133 
5134 /// If this is an input matching constraint, this method returns the output
5135 /// operand it matches.
5136 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5137   assert(!ConstraintCode.empty() && "No known constraint!");
5138   return atoi(ConstraintCode.c_str());
5139 }
5140 
5141 /// Split up the constraint string from the inline assembly value into the
5142 /// specific constraints and their prefixes, and also tie in the associated
5143 /// operand values.
5144 /// If this returns an empty vector, and if the constraint string itself
5145 /// isn't empty, there was an error parsing.
5146 TargetLowering::AsmOperandInfoVector
5147 TargetLowering::ParseConstraints(const DataLayout &DL,
5148                                  const TargetRegisterInfo *TRI,
5149                                  const CallBase &Call) const {
5150   /// Information about all of the constraints.
5151   AsmOperandInfoVector ConstraintOperands;
5152   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5153   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5154 
5155   // Do a prepass over the constraints, canonicalizing them, and building up the
5156   // ConstraintOperands list.
5157   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5158   unsigned ResNo = 0; // ResNo - The result number of the next output.
5159 
5160   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5161     ConstraintOperands.emplace_back(std::move(CI));
5162     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5163 
5164     // Update multiple alternative constraint count.
5165     if (OpInfo.multipleAlternatives.size() > maCount)
5166       maCount = OpInfo.multipleAlternatives.size();
5167 
5168     OpInfo.ConstraintVT = MVT::Other;
5169 
5170     // Compute the value type for each operand.
5171     switch (OpInfo.Type) {
5172     case InlineAsm::isOutput:
5173       // Indirect outputs just consume an argument.
5174       if (OpInfo.isIndirect) {
5175         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5176         break;
5177       }
5178 
5179       // The return value of the call is this value.  As such, there is no
5180       // corresponding argument.
5181       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5182       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5183         OpInfo.ConstraintVT =
5184             getSimpleValueType(DL, STy->getElementType(ResNo));
5185       } else {
5186         assert(ResNo == 0 && "Asm only has one result!");
5187         OpInfo.ConstraintVT =
5188             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5189       }
5190       ++ResNo;
5191       break;
5192     case InlineAsm::isInput:
5193       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5194       break;
5195     case InlineAsm::isClobber:
5196       // Nothing to do.
5197       break;
5198     }
5199 
5200     if (OpInfo.CallOperandVal) {
5201       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5202       if (OpInfo.isIndirect) {
5203         OpTy = Call.getParamElementType(ArgNo);
5204         assert(OpTy && "Indirect operand must have elementtype attribute");
5205       }
5206 
5207       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5208       if (StructType *STy = dyn_cast<StructType>(OpTy))
5209         if (STy->getNumElements() == 1)
5210           OpTy = STy->getElementType(0);
5211 
5212       // If OpTy is not a single value, it may be a struct/union that we
5213       // can tile with integers.
5214       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5215         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5216         switch (BitSize) {
5217         default: break;
5218         case 1:
5219         case 8:
5220         case 16:
5221         case 32:
5222         case 64:
5223         case 128:
5224           OpInfo.ConstraintVT =
5225               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5226           break;
5227         }
5228       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5229         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5230         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5231       } else {
5232         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5233       }
5234 
5235       ArgNo++;
5236     }
5237   }
5238 
5239   // If we have multiple alternative constraints, select the best alternative.
5240   if (!ConstraintOperands.empty()) {
5241     if (maCount) {
5242       unsigned bestMAIndex = 0;
5243       int bestWeight = -1;
5244       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5245       int weight = -1;
5246       unsigned maIndex;
5247       // Compute the sums of the weights for each alternative, keeping track
5248       // of the best (highest weight) one so far.
5249       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5250         int weightSum = 0;
5251         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5252              cIndex != eIndex; ++cIndex) {
5253           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5254           if (OpInfo.Type == InlineAsm::isClobber)
5255             continue;
5256 
5257           // If this is an output operand with a matching input operand,
5258           // look up the matching input. If their types mismatch, e.g. one
5259           // is an integer, the other is floating point, or their sizes are
5260           // different, flag it as an maCantMatch.
5261           if (OpInfo.hasMatchingInput()) {
5262             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5263             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5264               if ((OpInfo.ConstraintVT.isInteger() !=
5265                    Input.ConstraintVT.isInteger()) ||
5266                   (OpInfo.ConstraintVT.getSizeInBits() !=
5267                    Input.ConstraintVT.getSizeInBits())) {
5268                 weightSum = -1; // Can't match.
5269                 break;
5270               }
5271             }
5272           }
5273           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5274           if (weight == -1) {
5275             weightSum = -1;
5276             break;
5277           }
5278           weightSum += weight;
5279         }
5280         // Update best.
5281         if (weightSum > bestWeight) {
5282           bestWeight = weightSum;
5283           bestMAIndex = maIndex;
5284         }
5285       }
5286 
5287       // Now select chosen alternative in each constraint.
5288       for (AsmOperandInfo &cInfo : ConstraintOperands)
5289         if (cInfo.Type != InlineAsm::isClobber)
5290           cInfo.selectAlternative(bestMAIndex);
5291     }
5292   }
5293 
5294   // Check and hook up tied operands, choose constraint code to use.
5295   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5296        cIndex != eIndex; ++cIndex) {
5297     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5298 
5299     // If this is an output operand with a matching input operand, look up the
5300     // matching input. If their types mismatch, e.g. one is an integer, the
5301     // other is floating point, or their sizes are different, flag it as an
5302     // error.
5303     if (OpInfo.hasMatchingInput()) {
5304       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5305 
5306       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5307         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5308             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5309                                          OpInfo.ConstraintVT);
5310         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5311             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5312                                          Input.ConstraintVT);
5313         if ((OpInfo.ConstraintVT.isInteger() !=
5314              Input.ConstraintVT.isInteger()) ||
5315             (MatchRC.second != InputRC.second)) {
5316           report_fatal_error("Unsupported asm: input constraint"
5317                              " with a matching output constraint of"
5318                              " incompatible type!");
5319         }
5320       }
5321     }
5322   }
5323 
5324   return ConstraintOperands;
5325 }
5326 
5327 /// Return an integer indicating how general CT is.
5328 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5329   switch (CT) {
5330   case TargetLowering::C_Immediate:
5331   case TargetLowering::C_Other:
5332   case TargetLowering::C_Unknown:
5333     return 0;
5334   case TargetLowering::C_Register:
5335     return 1;
5336   case TargetLowering::C_RegisterClass:
5337     return 2;
5338   case TargetLowering::C_Memory:
5339   case TargetLowering::C_Address:
5340     return 3;
5341   }
5342   llvm_unreachable("Invalid constraint type");
5343 }
5344 
5345 /// Examine constraint type and operand type and determine a weight value.
5346 /// This object must already have been set up with the operand type
5347 /// and the current alternative constraint selected.
5348 TargetLowering::ConstraintWeight
5349   TargetLowering::getMultipleConstraintMatchWeight(
5350     AsmOperandInfo &info, int maIndex) const {
5351   InlineAsm::ConstraintCodeVector *rCodes;
5352   if (maIndex >= (int)info.multipleAlternatives.size())
5353     rCodes = &info.Codes;
5354   else
5355     rCodes = &info.multipleAlternatives[maIndex].Codes;
5356   ConstraintWeight BestWeight = CW_Invalid;
5357 
5358   // Loop over the options, keeping track of the most general one.
5359   for (const std::string &rCode : *rCodes) {
5360     ConstraintWeight weight =
5361         getSingleConstraintMatchWeight(info, rCode.c_str());
5362     if (weight > BestWeight)
5363       BestWeight = weight;
5364   }
5365 
5366   return BestWeight;
5367 }
5368 
5369 /// Examine constraint type and operand type and determine a weight value.
5370 /// This object must already have been set up with the operand type
5371 /// and the current alternative constraint selected.
5372 TargetLowering::ConstraintWeight
5373   TargetLowering::getSingleConstraintMatchWeight(
5374     AsmOperandInfo &info, const char *constraint) const {
5375   ConstraintWeight weight = CW_Invalid;
5376   Value *CallOperandVal = info.CallOperandVal;
5377     // If we don't have a value, we can't do a match,
5378     // but allow it at the lowest weight.
5379   if (!CallOperandVal)
5380     return CW_Default;
5381   // Look at the constraint type.
5382   switch (*constraint) {
5383     case 'i': // immediate integer.
5384     case 'n': // immediate integer with a known value.
5385       if (isa<ConstantInt>(CallOperandVal))
5386         weight = CW_Constant;
5387       break;
5388     case 's': // non-explicit intregal immediate.
5389       if (isa<GlobalValue>(CallOperandVal))
5390         weight = CW_Constant;
5391       break;
5392     case 'E': // immediate float if host format.
5393     case 'F': // immediate float.
5394       if (isa<ConstantFP>(CallOperandVal))
5395         weight = CW_Constant;
5396       break;
5397     case '<': // memory operand with autodecrement.
5398     case '>': // memory operand with autoincrement.
5399     case 'm': // memory operand.
5400     case 'o': // offsettable memory operand
5401     case 'V': // non-offsettable memory operand
5402       weight = CW_Memory;
5403       break;
5404     case 'r': // general register.
5405     case 'g': // general register, memory operand or immediate integer.
5406               // note: Clang converts "g" to "imr".
5407       if (CallOperandVal->getType()->isIntegerTy())
5408         weight = CW_Register;
5409       break;
5410     case 'X': // any operand.
5411   default:
5412     weight = CW_Default;
5413     break;
5414   }
5415   return weight;
5416 }
5417 
5418 /// If there are multiple different constraints that we could pick for this
5419 /// operand (e.g. "imr") try to pick the 'best' one.
5420 /// This is somewhat tricky: constraints fall into four classes:
5421 ///    Other         -> immediates and magic values
5422 ///    Register      -> one specific register
5423 ///    RegisterClass -> a group of regs
5424 ///    Memory        -> memory
5425 /// Ideally, we would pick the most specific constraint possible: if we have
5426 /// something that fits into a register, we would pick it.  The problem here
5427 /// is that if we have something that could either be in a register or in
5428 /// memory that use of the register could cause selection of *other*
5429 /// operands to fail: they might only succeed if we pick memory.  Because of
5430 /// this the heuristic we use is:
5431 ///
5432 ///  1) If there is an 'other' constraint, and if the operand is valid for
5433 ///     that constraint, use it.  This makes us take advantage of 'i'
5434 ///     constraints when available.
5435 ///  2) Otherwise, pick the most general constraint present.  This prefers
5436 ///     'm' over 'r', for example.
5437 ///
5438 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5439                              const TargetLowering &TLI,
5440                              SDValue Op, SelectionDAG *DAG) {
5441   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5442   unsigned BestIdx = 0;
5443   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5444   int BestGenerality = -1;
5445 
5446   // Loop over the options, keeping track of the most general one.
5447   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5448     TargetLowering::ConstraintType CType =
5449       TLI.getConstraintType(OpInfo.Codes[i]);
5450 
5451     // Indirect 'other' or 'immediate' constraints are not allowed.
5452     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5453                                CType == TargetLowering::C_Register ||
5454                                CType == TargetLowering::C_RegisterClass))
5455       continue;
5456 
5457     // If this is an 'other' or 'immediate' constraint, see if the operand is
5458     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5459     // the operand is an integer in the range [0..31] we want to use I (saving a
5460     // load of a register), otherwise we must use 'r'.
5461     if ((CType == TargetLowering::C_Other ||
5462          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5463       assert(OpInfo.Codes[i].size() == 1 &&
5464              "Unhandled multi-letter 'other' constraint");
5465       std::vector<SDValue> ResultOps;
5466       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5467                                        ResultOps, *DAG);
5468       if (!ResultOps.empty()) {
5469         BestType = CType;
5470         BestIdx = i;
5471         break;
5472       }
5473     }
5474 
5475     // Things with matching constraints can only be registers, per gcc
5476     // documentation.  This mainly affects "g" constraints.
5477     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5478       continue;
5479 
5480     // This constraint letter is more general than the previous one, use it.
5481     int Generality = getConstraintGenerality(CType);
5482     if (Generality > BestGenerality) {
5483       BestType = CType;
5484       BestIdx = i;
5485       BestGenerality = Generality;
5486     }
5487   }
5488 
5489   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5490   OpInfo.ConstraintType = BestType;
5491 }
5492 
5493 /// Determines the constraint code and constraint type to use for the specific
5494 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5495 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5496                                             SDValue Op,
5497                                             SelectionDAG *DAG) const {
5498   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5499 
5500   // Single-letter constraints ('r') are very common.
5501   if (OpInfo.Codes.size() == 1) {
5502     OpInfo.ConstraintCode = OpInfo.Codes[0];
5503     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5504   } else {
5505     ChooseConstraint(OpInfo, *this, Op, DAG);
5506   }
5507 
5508   // 'X' matches anything.
5509   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5510     // Constants are handled elsewhere.  For Functions, the type here is the
5511     // type of the result, which is not what we want to look at; leave them
5512     // alone.
5513     Value *v = OpInfo.CallOperandVal;
5514     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5515       return;
5516     }
5517 
5518     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5519       OpInfo.ConstraintCode = "i";
5520       return;
5521     }
5522 
5523     // Otherwise, try to resolve it to something we know about by looking at
5524     // the actual operand type.
5525     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5526       OpInfo.ConstraintCode = Repl;
5527       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5528     }
5529   }
5530 }
5531 
5532 /// Given an exact SDIV by a constant, create a multiplication
5533 /// with the multiplicative inverse of the constant.
5534 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5535                               const SDLoc &dl, SelectionDAG &DAG,
5536                               SmallVectorImpl<SDNode *> &Created) {
5537   SDValue Op0 = N->getOperand(0);
5538   SDValue Op1 = N->getOperand(1);
5539   EVT VT = N->getValueType(0);
5540   EVT SVT = VT.getScalarType();
5541   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5542   EVT ShSVT = ShVT.getScalarType();
5543 
5544   bool UseSRA = false;
5545   SmallVector<SDValue, 16> Shifts, Factors;
5546 
5547   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5548     if (C->isZero())
5549       return false;
5550     APInt Divisor = C->getAPIntValue();
5551     unsigned Shift = Divisor.countTrailingZeros();
5552     if (Shift) {
5553       Divisor.ashrInPlace(Shift);
5554       UseSRA = true;
5555     }
5556     // Calculate the multiplicative inverse, using Newton's method.
5557     APInt t;
5558     APInt Factor = Divisor;
5559     while ((t = Divisor * Factor) != 1)
5560       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5561     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5562     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5563     return true;
5564   };
5565 
5566   // Collect all magic values from the build vector.
5567   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5568     return SDValue();
5569 
5570   SDValue Shift, Factor;
5571   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5572     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5573     Factor = DAG.getBuildVector(VT, dl, Factors);
5574   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5575     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5576            "Expected matchUnaryPredicate to return one element for scalable "
5577            "vectors");
5578     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5579     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5580   } else {
5581     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5582     Shift = Shifts[0];
5583     Factor = Factors[0];
5584   }
5585 
5586   SDValue Res = Op0;
5587 
5588   // Shift the value upfront if it is even, so the LSB is one.
5589   if (UseSRA) {
5590     // TODO: For UDIV use SRL instead of SRA.
5591     SDNodeFlags Flags;
5592     Flags.setExact(true);
5593     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5594     Created.push_back(Res.getNode());
5595   }
5596 
5597   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5598 }
5599 
5600 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5601                               SelectionDAG &DAG,
5602                               SmallVectorImpl<SDNode *> &Created) const {
5603   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5604   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5605   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5606     return SDValue(N, 0); // Lower SDIV as SDIV
5607   return SDValue();
5608 }
5609 
5610 SDValue
5611 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5612                               SelectionDAG &DAG,
5613                               SmallVectorImpl<SDNode *> &Created) const {
5614   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5615   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5616   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5617     return SDValue(N, 0); // Lower SREM as SREM
5618   return SDValue();
5619 }
5620 
5621 /// Given an ISD::SDIV node expressing a divide by constant,
5622 /// return a DAG expression to select that will generate the same value by
5623 /// multiplying by a magic number.
5624 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5625 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5626                                   bool IsAfterLegalization,
5627                                   SmallVectorImpl<SDNode *> &Created) const {
5628   SDLoc dl(N);
5629   EVT VT = N->getValueType(0);
5630   EVT SVT = VT.getScalarType();
5631   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5632   EVT ShSVT = ShVT.getScalarType();
5633   unsigned EltBits = VT.getScalarSizeInBits();
5634   EVT MulVT;
5635 
5636   // Check to see if we can do this.
5637   // FIXME: We should be more aggressive here.
5638   if (!isTypeLegal(VT)) {
5639     // Limit this to simple scalars for now.
5640     if (VT.isVector() || !VT.isSimple())
5641       return SDValue();
5642 
5643     // If this type will be promoted to a large enough type with a legal
5644     // multiply operation, we can go ahead and do this transform.
5645     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5646       return SDValue();
5647 
5648     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5649     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5650         !isOperationLegal(ISD::MUL, MulVT))
5651       return SDValue();
5652   }
5653 
5654   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5655   if (N->getFlags().hasExact())
5656     return BuildExactSDIV(*this, N, dl, DAG, Created);
5657 
5658   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5659 
5660   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5661     if (C->isZero())
5662       return false;
5663 
5664     const APInt &Divisor = C->getAPIntValue();
5665     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5666     int NumeratorFactor = 0;
5667     int ShiftMask = -1;
5668 
5669     if (Divisor.isOne() || Divisor.isAllOnes()) {
5670       // If d is +1/-1, we just multiply the numerator by +1/-1.
5671       NumeratorFactor = Divisor.getSExtValue();
5672       magics.Magic = 0;
5673       magics.ShiftAmount = 0;
5674       ShiftMask = 0;
5675     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5676       // If d > 0 and m < 0, add the numerator.
5677       NumeratorFactor = 1;
5678     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5679       // If d < 0 and m > 0, subtract the numerator.
5680       NumeratorFactor = -1;
5681     }
5682 
5683     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5684     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5685     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5686     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5687     return true;
5688   };
5689 
5690   SDValue N0 = N->getOperand(0);
5691   SDValue N1 = N->getOperand(1);
5692 
5693   // Collect the shifts / magic values from each element.
5694   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5695     return SDValue();
5696 
5697   SDValue MagicFactor, Factor, Shift, ShiftMask;
5698   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5699     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5700     Factor = DAG.getBuildVector(VT, dl, Factors);
5701     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5702     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5703   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5704     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5705            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5706            "Expected matchUnaryPredicate to return one element for scalable "
5707            "vectors");
5708     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5709     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5710     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5711     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5712   } else {
5713     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5714     MagicFactor = MagicFactors[0];
5715     Factor = Factors[0];
5716     Shift = Shifts[0];
5717     ShiftMask = ShiftMasks[0];
5718   }
5719 
5720   // Multiply the numerator (operand 0) by the magic value.
5721   // FIXME: We should support doing a MUL in a wider type.
5722   auto GetMULHS = [&](SDValue X, SDValue Y) {
5723     // If the type isn't legal, use a wider mul of the the type calculated
5724     // earlier.
5725     if (!isTypeLegal(VT)) {
5726       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5727       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5728       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5729       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5730                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5731       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5732     }
5733 
5734     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5735       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5736     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5737       SDValue LoHi =
5738           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5739       return SDValue(LoHi.getNode(), 1);
5740     }
5741     return SDValue();
5742   };
5743 
5744   SDValue Q = GetMULHS(N0, MagicFactor);
5745   if (!Q)
5746     return SDValue();
5747 
5748   Created.push_back(Q.getNode());
5749 
5750   // (Optionally) Add/subtract the numerator using Factor.
5751   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5752   Created.push_back(Factor.getNode());
5753   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5754   Created.push_back(Q.getNode());
5755 
5756   // Shift right algebraic by shift value.
5757   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5758   Created.push_back(Q.getNode());
5759 
5760   // Extract the sign bit, mask it and add it to the quotient.
5761   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5762   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5763   Created.push_back(T.getNode());
5764   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5765   Created.push_back(T.getNode());
5766   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5767 }
5768 
5769 /// Given an ISD::UDIV node expressing a divide by constant,
5770 /// return a DAG expression to select that will generate the same value by
5771 /// multiplying by a magic number.
5772 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5773 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5774                                   bool IsAfterLegalization,
5775                                   SmallVectorImpl<SDNode *> &Created) const {
5776   SDLoc dl(N);
5777   EVT VT = N->getValueType(0);
5778   EVT SVT = VT.getScalarType();
5779   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5780   EVT ShSVT = ShVT.getScalarType();
5781   unsigned EltBits = VT.getScalarSizeInBits();
5782   EVT MulVT;
5783 
5784   // Check to see if we can do this.
5785   // FIXME: We should be more aggressive here.
5786   if (!isTypeLegal(VT)) {
5787     // Limit this to simple scalars for now.
5788     if (VT.isVector() || !VT.isSimple())
5789       return SDValue();
5790 
5791     // If this type will be promoted to a large enough type with a legal
5792     // multiply operation, we can go ahead and do this transform.
5793     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5794       return SDValue();
5795 
5796     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5797     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5798         !isOperationLegal(ISD::MUL, MulVT))
5799       return SDValue();
5800   }
5801 
5802   bool UseNPQ = false;
5803   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5804 
5805   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5806     if (C->isZero())
5807       return false;
5808     // FIXME: We should use a narrower constant when the upper
5809     // bits are known to be zero.
5810     const APInt& Divisor = C->getAPIntValue();
5811     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5812     unsigned PreShift = 0, PostShift = 0;
5813 
5814     // If the divisor is even, we can avoid using the expensive fixup by
5815     // shifting the divided value upfront.
5816     if (magics.IsAdd != 0 && !Divisor[0]) {
5817       PreShift = Divisor.countTrailingZeros();
5818       // Get magic number for the shifted divisor.
5819       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5820       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5821     }
5822 
5823     APInt Magic = magics.Magic;
5824 
5825     unsigned SelNPQ;
5826     if (magics.IsAdd == 0 || Divisor.isOne()) {
5827       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5828              "We shouldn't generate an undefined shift!");
5829       PostShift = magics.ShiftAmount;
5830       SelNPQ = false;
5831     } else {
5832       PostShift = magics.ShiftAmount - 1;
5833       SelNPQ = true;
5834     }
5835 
5836     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5837     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5838     NPQFactors.push_back(
5839         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5840                                : APInt::getZero(EltBits),
5841                         dl, SVT));
5842     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5843     UseNPQ |= SelNPQ;
5844     return true;
5845   };
5846 
5847   SDValue N0 = N->getOperand(0);
5848   SDValue N1 = N->getOperand(1);
5849 
5850   // Collect the shifts/magic values from each element.
5851   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5852     return SDValue();
5853 
5854   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5855   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5856     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5857     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5858     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5859     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5860   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5861     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5862            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5863            "Expected matchUnaryPredicate to return one for scalable vectors");
5864     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5865     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5866     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5867     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5868   } else {
5869     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5870     PreShift = PreShifts[0];
5871     MagicFactor = MagicFactors[0];
5872     PostShift = PostShifts[0];
5873   }
5874 
5875   SDValue Q = N0;
5876   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5877   Created.push_back(Q.getNode());
5878 
5879   // FIXME: We should support doing a MUL in a wider type.
5880   auto GetMULHU = [&](SDValue X, SDValue Y) {
5881     // If the type isn't legal, use a wider mul of the the type calculated
5882     // earlier.
5883     if (!isTypeLegal(VT)) {
5884       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5885       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5886       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5887       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5888                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5889       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5890     }
5891 
5892     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5893       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5894     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5895       SDValue LoHi =
5896           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5897       return SDValue(LoHi.getNode(), 1);
5898     }
5899     return SDValue(); // No mulhu or equivalent
5900   };
5901 
5902   // Multiply the numerator (operand 0) by the magic value.
5903   Q = GetMULHU(Q, MagicFactor);
5904   if (!Q)
5905     return SDValue();
5906 
5907   Created.push_back(Q.getNode());
5908 
5909   if (UseNPQ) {
5910     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5911     Created.push_back(NPQ.getNode());
5912 
5913     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5914     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5915     if (VT.isVector())
5916       NPQ = GetMULHU(NPQ, NPQFactor);
5917     else
5918       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5919 
5920     Created.push_back(NPQ.getNode());
5921 
5922     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5923     Created.push_back(Q.getNode());
5924   }
5925 
5926   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5927   Created.push_back(Q.getNode());
5928 
5929   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5930 
5931   SDValue One = DAG.getConstant(1, dl, VT);
5932   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5933   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5934 }
5935 
5936 /// If all values in Values that *don't* match the predicate are same 'splat'
5937 /// value, then replace all values with that splat value.
5938 /// Else, if AlternativeReplacement was provided, then replace all values that
5939 /// do match predicate with AlternativeReplacement value.
5940 static void
5941 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5942                           std::function<bool(SDValue)> Predicate,
5943                           SDValue AlternativeReplacement = SDValue()) {
5944   SDValue Replacement;
5945   // Is there a value for which the Predicate does *NOT* match? What is it?
5946   auto SplatValue = llvm::find_if_not(Values, Predicate);
5947   if (SplatValue != Values.end()) {
5948     // Does Values consist only of SplatValue's and values matching Predicate?
5949     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5950           return Value == *SplatValue || Predicate(Value);
5951         })) // Then we shall replace values matching predicate with SplatValue.
5952       Replacement = *SplatValue;
5953   }
5954   if (!Replacement) {
5955     // Oops, we did not find the "baseline" splat value.
5956     if (!AlternativeReplacement)
5957       return; // Nothing to do.
5958     // Let's replace with provided value then.
5959     Replacement = AlternativeReplacement;
5960   }
5961   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5962 }
5963 
5964 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5965 /// where the divisor is constant and the comparison target is zero,
5966 /// return a DAG expression that will generate the same comparison result
5967 /// using only multiplications, additions and shifts/rotations.
5968 /// Ref: "Hacker's Delight" 10-17.
5969 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5970                                         SDValue CompTargetNode,
5971                                         ISD::CondCode Cond,
5972                                         DAGCombinerInfo &DCI,
5973                                         const SDLoc &DL) const {
5974   SmallVector<SDNode *, 5> Built;
5975   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5976                                          DCI, DL, Built)) {
5977     for (SDNode *N : Built)
5978       DCI.AddToWorklist(N);
5979     return Folded;
5980   }
5981 
5982   return SDValue();
5983 }
5984 
5985 SDValue
5986 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5987                                   SDValue CompTargetNode, ISD::CondCode Cond,
5988                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5989                                   SmallVectorImpl<SDNode *> &Created) const {
5990   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5991   // - D must be constant, with D = D0 * 2^K where D0 is odd
5992   // - P is the multiplicative inverse of D0 modulo 2^W
5993   // - Q = floor(((2^W) - 1) / D)
5994   // where W is the width of the common type of N and D.
5995   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5996          "Only applicable for (in)equality comparisons.");
5997 
5998   SelectionDAG &DAG = DCI.DAG;
5999 
6000   EVT VT = REMNode.getValueType();
6001   EVT SVT = VT.getScalarType();
6002   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6003   EVT ShSVT = ShVT.getScalarType();
6004 
6005   // If MUL is unavailable, we cannot proceed in any case.
6006   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6007     return SDValue();
6008 
6009   bool ComparingWithAllZeros = true;
6010   bool AllComparisonsWithNonZerosAreTautological = true;
6011   bool HadTautologicalLanes = false;
6012   bool AllLanesAreTautological = true;
6013   bool HadEvenDivisor = false;
6014   bool AllDivisorsArePowerOfTwo = true;
6015   bool HadTautologicalInvertedLanes = false;
6016   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6017 
6018   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6019     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6020     if (CDiv->isZero())
6021       return false;
6022 
6023     const APInt &D = CDiv->getAPIntValue();
6024     const APInt &Cmp = CCmp->getAPIntValue();
6025 
6026     ComparingWithAllZeros &= Cmp.isZero();
6027 
6028     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6029     // if C2 is not less than C1, the comparison is always false.
6030     // But we will only be able to produce the comparison that will give the
6031     // opposive tautological answer. So this lane would need to be fixed up.
6032     bool TautologicalInvertedLane = D.ule(Cmp);
6033     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6034 
6035     // If all lanes are tautological (either all divisors are ones, or divisor
6036     // is not greater than the constant we are comparing with),
6037     // we will prefer to avoid the fold.
6038     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6039     HadTautologicalLanes |= TautologicalLane;
6040     AllLanesAreTautological &= TautologicalLane;
6041 
6042     // If we are comparing with non-zero, we need'll need  to subtract said
6043     // comparison value from the LHS. But there is no point in doing that if
6044     // every lane where we are comparing with non-zero is tautological..
6045     if (!Cmp.isZero())
6046       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6047 
6048     // Decompose D into D0 * 2^K
6049     unsigned K = D.countTrailingZeros();
6050     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6051     APInt D0 = D.lshr(K);
6052 
6053     // D is even if it has trailing zeros.
6054     HadEvenDivisor |= (K != 0);
6055     // D is a power-of-two if D0 is one.
6056     // If all divisors are power-of-two, we will prefer to avoid the fold.
6057     AllDivisorsArePowerOfTwo &= D0.isOne();
6058 
6059     // P = inv(D0, 2^W)
6060     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6061     unsigned W = D.getBitWidth();
6062     APInt P = D0.zext(W + 1)
6063                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6064                   .trunc(W);
6065     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6066     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6067 
6068     // Q = floor((2^W - 1) u/ D)
6069     // R = ((2^W - 1) u% D)
6070     APInt Q, R;
6071     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6072 
6073     // If we are comparing with zero, then that comparison constant is okay,
6074     // else it may need to be one less than that.
6075     if (Cmp.ugt(R))
6076       Q -= 1;
6077 
6078     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6079            "We are expecting that K is always less than all-ones for ShSVT");
6080 
6081     // If the lane is tautological the result can be constant-folded.
6082     if (TautologicalLane) {
6083       // Set P and K amount to a bogus values so we can try to splat them.
6084       P = 0;
6085       K = -1;
6086       // And ensure that comparison constant is tautological,
6087       // it will always compare true/false.
6088       Q = -1;
6089     }
6090 
6091     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6092     KAmts.push_back(
6093         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6094     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6095     return true;
6096   };
6097 
6098   SDValue N = REMNode.getOperand(0);
6099   SDValue D = REMNode.getOperand(1);
6100 
6101   // Collect the values from each element.
6102   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6103     return SDValue();
6104 
6105   // If all lanes are tautological, the result can be constant-folded.
6106   if (AllLanesAreTautological)
6107     return SDValue();
6108 
6109   // If this is a urem by a powers-of-two, avoid the fold since it can be
6110   // best implemented as a bit test.
6111   if (AllDivisorsArePowerOfTwo)
6112     return SDValue();
6113 
6114   SDValue PVal, KVal, QVal;
6115   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6116     if (HadTautologicalLanes) {
6117       // Try to turn PAmts into a splat, since we don't care about the values
6118       // that are currently '0'. If we can't, just keep '0'`s.
6119       turnVectorIntoSplatVector(PAmts, isNullConstant);
6120       // Try to turn KAmts into a splat, since we don't care about the values
6121       // that are currently '-1'. If we can't, change them to '0'`s.
6122       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6123                                 DAG.getConstant(0, DL, ShSVT));
6124     }
6125 
6126     PVal = DAG.getBuildVector(VT, DL, PAmts);
6127     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6128     QVal = DAG.getBuildVector(VT, DL, QAmts);
6129   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6130     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6131            "Expected matchBinaryPredicate to return one element for "
6132            "SPLAT_VECTORs");
6133     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6134     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6135     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6136   } else {
6137     PVal = PAmts[0];
6138     KVal = KAmts[0];
6139     QVal = QAmts[0];
6140   }
6141 
6142   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6143     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6144       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6145     assert(CompTargetNode.getValueType() == N.getValueType() &&
6146            "Expecting that the types on LHS and RHS of comparisons match.");
6147     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6148   }
6149 
6150   // (mul N, P)
6151   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6152   Created.push_back(Op0.getNode());
6153 
6154   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6155   // divisors as a performance improvement, since rotating by 0 is a no-op.
6156   if (HadEvenDivisor) {
6157     // We need ROTR to do this.
6158     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6159       return SDValue();
6160     // UREM: (rotr (mul N, P), K)
6161     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6162     Created.push_back(Op0.getNode());
6163   }
6164 
6165   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6166   SDValue NewCC =
6167       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6168                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6169   if (!HadTautologicalInvertedLanes)
6170     return NewCC;
6171 
6172   // If any lanes previously compared always-false, the NewCC will give
6173   // always-true result for them, so we need to fixup those lanes.
6174   // Or the other way around for inequality predicate.
6175   assert(VT.isVector() && "Can/should only get here for vectors.");
6176   Created.push_back(NewCC.getNode());
6177 
6178   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6179   // if C2 is not less than C1, the comparison is always false.
6180   // But we have produced the comparison that will give the
6181   // opposive tautological answer. So these lanes would need to be fixed up.
6182   SDValue TautologicalInvertedChannels =
6183       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6184   Created.push_back(TautologicalInvertedChannels.getNode());
6185 
6186   // NOTE: we avoid letting illegal types through even if we're before legalize
6187   // ops – legalization has a hard time producing good code for this.
6188   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6189     // If we have a vector select, let's replace the comparison results in the
6190     // affected lanes with the correct tautological result.
6191     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6192                                               DL, SETCCVT, SETCCVT);
6193     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6194                        Replacement, NewCC);
6195   }
6196 
6197   // Else, we can just invert the comparison result in the appropriate lanes.
6198   //
6199   // NOTE: see the note above VSELECT above.
6200   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6201     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6202                        TautologicalInvertedChannels);
6203 
6204   return SDValue(); // Don't know how to lower.
6205 }
6206 
6207 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6208 /// where the divisor is constant and the comparison target is zero,
6209 /// return a DAG expression that will generate the same comparison result
6210 /// using only multiplications, additions and shifts/rotations.
6211 /// Ref: "Hacker's Delight" 10-17.
6212 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6213                                         SDValue CompTargetNode,
6214                                         ISD::CondCode Cond,
6215                                         DAGCombinerInfo &DCI,
6216                                         const SDLoc &DL) const {
6217   SmallVector<SDNode *, 7> Built;
6218   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6219                                          DCI, DL, Built)) {
6220     assert(Built.size() <= 7 && "Max size prediction failed.");
6221     for (SDNode *N : Built)
6222       DCI.AddToWorklist(N);
6223     return Folded;
6224   }
6225 
6226   return SDValue();
6227 }
6228 
6229 SDValue
6230 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6231                                   SDValue CompTargetNode, ISD::CondCode Cond,
6232                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6233                                   SmallVectorImpl<SDNode *> &Created) const {
6234   // Fold:
6235   //   (seteq/ne (srem N, D), 0)
6236   // To:
6237   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6238   //
6239   // - D must be constant, with D = D0 * 2^K where D0 is odd
6240   // - P is the multiplicative inverse of D0 modulo 2^W
6241   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6242   // - Q = floor((2 * A) / (2^K))
6243   // where W is the width of the common type of N and D.
6244   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6245          "Only applicable for (in)equality comparisons.");
6246 
6247   SelectionDAG &DAG = DCI.DAG;
6248 
6249   EVT VT = REMNode.getValueType();
6250   EVT SVT = VT.getScalarType();
6251   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6252   EVT ShSVT = ShVT.getScalarType();
6253 
6254   // If we are after ops legalization, and MUL is unavailable, we can not
6255   // proceed.
6256   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6257     return SDValue();
6258 
6259   // TODO: Could support comparing with non-zero too.
6260   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6261   if (!CompTarget || !CompTarget->isZero())
6262     return SDValue();
6263 
6264   bool HadIntMinDivisor = false;
6265   bool HadOneDivisor = false;
6266   bool AllDivisorsAreOnes = true;
6267   bool HadEvenDivisor = false;
6268   bool NeedToApplyOffset = false;
6269   bool AllDivisorsArePowerOfTwo = true;
6270   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6271 
6272   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6273     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6274     if (C->isZero())
6275       return false;
6276 
6277     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6278 
6279     // WARNING: this fold is only valid for positive divisors!
6280     APInt D = C->getAPIntValue();
6281     if (D.isNegative())
6282       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6283 
6284     HadIntMinDivisor |= D.isMinSignedValue();
6285 
6286     // If all divisors are ones, we will prefer to avoid the fold.
6287     HadOneDivisor |= D.isOne();
6288     AllDivisorsAreOnes &= D.isOne();
6289 
6290     // Decompose D into D0 * 2^K
6291     unsigned K = D.countTrailingZeros();
6292     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6293     APInt D0 = D.lshr(K);
6294 
6295     if (!D.isMinSignedValue()) {
6296       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6297       // we don't care about this lane in this fold, we'll special-handle it.
6298       HadEvenDivisor |= (K != 0);
6299     }
6300 
6301     // D is a power-of-two if D0 is one. This includes INT_MIN.
6302     // If all divisors are power-of-two, we will prefer to avoid the fold.
6303     AllDivisorsArePowerOfTwo &= D0.isOne();
6304 
6305     // P = inv(D0, 2^W)
6306     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6307     unsigned W = D.getBitWidth();
6308     APInt P = D0.zext(W + 1)
6309                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6310                   .trunc(W);
6311     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6312     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6313 
6314     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6315     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6316     A.clearLowBits(K);
6317 
6318     if (!D.isMinSignedValue()) {
6319       // If divisor INT_MIN, then we don't care about this lane in this fold,
6320       // we'll special-handle it.
6321       NeedToApplyOffset |= A != 0;
6322     }
6323 
6324     // Q = floor((2 * A) / (2^K))
6325     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6326 
6327     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6328            "We are expecting that A is always less than all-ones for SVT");
6329     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6330            "We are expecting that K is always less than all-ones for ShSVT");
6331 
6332     // If the divisor is 1 the result can be constant-folded. Likewise, we
6333     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6334     if (D.isOne()) {
6335       // Set P, A and K to a bogus values so we can try to splat them.
6336       P = 0;
6337       A = -1;
6338       K = -1;
6339 
6340       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6341       Q = -1;
6342     }
6343 
6344     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6345     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6346     KAmts.push_back(
6347         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6348     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6349     return true;
6350   };
6351 
6352   SDValue N = REMNode.getOperand(0);
6353   SDValue D = REMNode.getOperand(1);
6354 
6355   // Collect the values from each element.
6356   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6357     return SDValue();
6358 
6359   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6360   if (AllDivisorsAreOnes)
6361     return SDValue();
6362 
6363   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6364   // since it can be best implemented as a bit test.
6365   if (AllDivisorsArePowerOfTwo)
6366     return SDValue();
6367 
6368   SDValue PVal, AVal, KVal, QVal;
6369   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6370     if (HadOneDivisor) {
6371       // Try to turn PAmts into a splat, since we don't care about the values
6372       // that are currently '0'. If we can't, just keep '0'`s.
6373       turnVectorIntoSplatVector(PAmts, isNullConstant);
6374       // Try to turn AAmts into a splat, since we don't care about the
6375       // values that are currently '-1'. If we can't, change them to '0'`s.
6376       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6377                                 DAG.getConstant(0, DL, SVT));
6378       // Try to turn KAmts into a splat, since we don't care about the values
6379       // that are currently '-1'. If we can't, change them to '0'`s.
6380       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6381                                 DAG.getConstant(0, DL, ShSVT));
6382     }
6383 
6384     PVal = DAG.getBuildVector(VT, DL, PAmts);
6385     AVal = DAG.getBuildVector(VT, DL, AAmts);
6386     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6387     QVal = DAG.getBuildVector(VT, DL, QAmts);
6388   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6389     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6390            QAmts.size() == 1 &&
6391            "Expected matchUnaryPredicate to return one element for scalable "
6392            "vectors");
6393     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6394     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6395     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6396     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6397   } else {
6398     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6399     PVal = PAmts[0];
6400     AVal = AAmts[0];
6401     KVal = KAmts[0];
6402     QVal = QAmts[0];
6403   }
6404 
6405   // (mul N, P)
6406   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6407   Created.push_back(Op0.getNode());
6408 
6409   if (NeedToApplyOffset) {
6410     // We need ADD to do this.
6411     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6412       return SDValue();
6413 
6414     // (add (mul N, P), A)
6415     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6416     Created.push_back(Op0.getNode());
6417   }
6418 
6419   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6420   // divisors as a performance improvement, since rotating by 0 is a no-op.
6421   if (HadEvenDivisor) {
6422     // We need ROTR to do this.
6423     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6424       return SDValue();
6425     // SREM: (rotr (add (mul N, P), A), K)
6426     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6427     Created.push_back(Op0.getNode());
6428   }
6429 
6430   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6431   SDValue Fold =
6432       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6433                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6434 
6435   // If we didn't have lanes with INT_MIN divisor, then we're done.
6436   if (!HadIntMinDivisor)
6437     return Fold;
6438 
6439   // That fold is only valid for positive divisors. Which effectively means,
6440   // it is invalid for INT_MIN divisors. So if we have such a lane,
6441   // we must fix-up results for said lanes.
6442   assert(VT.isVector() && "Can/should only get here for vectors.");
6443 
6444   // NOTE: we avoid letting illegal types through even if we're before legalize
6445   // ops – legalization has a hard time producing good code for the code that
6446   // follows.
6447   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6448       !isOperationLegalOrCustom(ISD::AND, VT) ||
6449       !isOperationLegalOrCustom(Cond, VT) ||
6450       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6451     return SDValue();
6452 
6453   Created.push_back(Fold.getNode());
6454 
6455   SDValue IntMin = DAG.getConstant(
6456       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6457   SDValue IntMax = DAG.getConstant(
6458       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6459   SDValue Zero =
6460       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6461 
6462   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6463   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6464   Created.push_back(DivisorIsIntMin.getNode());
6465 
6466   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6467   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6468   Created.push_back(Masked.getNode());
6469   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6470   Created.push_back(MaskedIsZero.getNode());
6471 
6472   // To produce final result we need to blend 2 vectors: 'SetCC' and
6473   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6474   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6475   // constant-folded, select can get lowered to a shuffle with constant mask.
6476   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6477                                 MaskedIsZero, Fold);
6478 
6479   return Blended;
6480 }
6481 
6482 bool TargetLowering::
6483 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6484   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6485     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6486                                 "be a constant integer");
6487     return true;
6488   }
6489 
6490   return false;
6491 }
6492 
6493 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6494                                          const DenormalMode &Mode) const {
6495   SDLoc DL(Op);
6496   EVT VT = Op.getValueType();
6497   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6498   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6499   // Testing it with denormal inputs to avoid wrong estimate.
6500   if (Mode.Input == DenormalMode::IEEE) {
6501     // This is specifically a check for the handling of denormal inputs,
6502     // not the result.
6503 
6504     // Test = fabs(X) < SmallestNormal
6505     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6506     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6507     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6508     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6509     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6510   }
6511   // Test = X == 0.0
6512   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6513 }
6514 
6515 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6516                                              bool LegalOps, bool OptForSize,
6517                                              NegatibleCost &Cost,
6518                                              unsigned Depth) const {
6519   // fneg is removable even if it has multiple uses.
6520   if (Op.getOpcode() == ISD::FNEG) {
6521     Cost = NegatibleCost::Cheaper;
6522     return Op.getOperand(0);
6523   }
6524 
6525   // Don't recurse exponentially.
6526   if (Depth > SelectionDAG::MaxRecursionDepth)
6527     return SDValue();
6528 
6529   // Pre-increment recursion depth for use in recursive calls.
6530   ++Depth;
6531   const SDNodeFlags Flags = Op->getFlags();
6532   const TargetOptions &Options = DAG.getTarget().Options;
6533   EVT VT = Op.getValueType();
6534   unsigned Opcode = Op.getOpcode();
6535 
6536   // Don't allow anything with multiple uses unless we know it is free.
6537   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6538     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6539                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6540     if (!IsFreeExtend)
6541       return SDValue();
6542   }
6543 
6544   auto RemoveDeadNode = [&](SDValue N) {
6545     if (N && N.getNode()->use_empty())
6546       DAG.RemoveDeadNode(N.getNode());
6547   };
6548 
6549   SDLoc DL(Op);
6550 
6551   // Because getNegatedExpression can delete nodes we need a handle to keep
6552   // temporary nodes alive in case the recursion manages to create an identical
6553   // node.
6554   std::list<HandleSDNode> Handles;
6555 
6556   switch (Opcode) {
6557   case ISD::ConstantFP: {
6558     // Don't invert constant FP values after legalization unless the target says
6559     // the negated constant is legal.
6560     bool IsOpLegal =
6561         isOperationLegal(ISD::ConstantFP, VT) ||
6562         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6563                      OptForSize);
6564 
6565     if (LegalOps && !IsOpLegal)
6566       break;
6567 
6568     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6569     V.changeSign();
6570     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6571 
6572     // If we already have the use of the negated floating constant, it is free
6573     // to negate it even it has multiple uses.
6574     if (!Op.hasOneUse() && CFP.use_empty())
6575       break;
6576     Cost = NegatibleCost::Neutral;
6577     return CFP;
6578   }
6579   case ISD::BUILD_VECTOR: {
6580     // Only permit BUILD_VECTOR of constants.
6581     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6582           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6583         }))
6584       break;
6585 
6586     bool IsOpLegal =
6587         (isOperationLegal(ISD::ConstantFP, VT) &&
6588          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6589         llvm::all_of(Op->op_values(), [&](SDValue N) {
6590           return N.isUndef() ||
6591                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6592                               OptForSize);
6593         });
6594 
6595     if (LegalOps && !IsOpLegal)
6596       break;
6597 
6598     SmallVector<SDValue, 4> Ops;
6599     for (SDValue C : Op->op_values()) {
6600       if (C.isUndef()) {
6601         Ops.push_back(C);
6602         continue;
6603       }
6604       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6605       V.changeSign();
6606       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6607     }
6608     Cost = NegatibleCost::Neutral;
6609     return DAG.getBuildVector(VT, DL, Ops);
6610   }
6611   case ISD::FADD: {
6612     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6613       break;
6614 
6615     // After operation legalization, it might not be legal to create new FSUBs.
6616     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6617       break;
6618     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6619 
6620     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6621     NegatibleCost CostX = NegatibleCost::Expensive;
6622     SDValue NegX =
6623         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6624     // Prevent this node from being deleted by the next call.
6625     if (NegX)
6626       Handles.emplace_back(NegX);
6627 
6628     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6629     NegatibleCost CostY = NegatibleCost::Expensive;
6630     SDValue NegY =
6631         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6632 
6633     // We're done with the handles.
6634     Handles.clear();
6635 
6636     // Negate the X if its cost is less or equal than Y.
6637     if (NegX && (CostX <= CostY)) {
6638       Cost = CostX;
6639       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6640       if (NegY != N)
6641         RemoveDeadNode(NegY);
6642       return N;
6643     }
6644 
6645     // Negate the Y if it is not expensive.
6646     if (NegY) {
6647       Cost = CostY;
6648       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6649       if (NegX != N)
6650         RemoveDeadNode(NegX);
6651       return N;
6652     }
6653     break;
6654   }
6655   case ISD::FSUB: {
6656     // We can't turn -(A-B) into B-A when we honor signed zeros.
6657     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6658       break;
6659 
6660     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6661     // fold (fneg (fsub 0, Y)) -> Y
6662     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6663       if (C->isZero()) {
6664         Cost = NegatibleCost::Cheaper;
6665         return Y;
6666       }
6667 
6668     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6669     Cost = NegatibleCost::Neutral;
6670     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6671   }
6672   case ISD::FMUL:
6673   case ISD::FDIV: {
6674     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6675 
6676     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6677     NegatibleCost CostX = NegatibleCost::Expensive;
6678     SDValue NegX =
6679         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6680     // Prevent this node from being deleted by the next call.
6681     if (NegX)
6682       Handles.emplace_back(NegX);
6683 
6684     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6685     NegatibleCost CostY = NegatibleCost::Expensive;
6686     SDValue NegY =
6687         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6688 
6689     // We're done with the handles.
6690     Handles.clear();
6691 
6692     // Negate the X if its cost is less or equal than Y.
6693     if (NegX && (CostX <= CostY)) {
6694       Cost = CostX;
6695       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6696       if (NegY != N)
6697         RemoveDeadNode(NegY);
6698       return N;
6699     }
6700 
6701     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6702     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6703       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6704         break;
6705 
6706     // Negate the Y if it is not expensive.
6707     if (NegY) {
6708       Cost = CostY;
6709       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6710       if (NegX != N)
6711         RemoveDeadNode(NegX);
6712       return N;
6713     }
6714     break;
6715   }
6716   case ISD::FMA:
6717   case ISD::FMAD: {
6718     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6719       break;
6720 
6721     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6722     NegatibleCost CostZ = NegatibleCost::Expensive;
6723     SDValue NegZ =
6724         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6725     // Give up if fail to negate the Z.
6726     if (!NegZ)
6727       break;
6728 
6729     // Prevent this node from being deleted by the next two calls.
6730     Handles.emplace_back(NegZ);
6731 
6732     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6733     NegatibleCost CostX = NegatibleCost::Expensive;
6734     SDValue NegX =
6735         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6736     // Prevent this node from being deleted by the next call.
6737     if (NegX)
6738       Handles.emplace_back(NegX);
6739 
6740     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6741     NegatibleCost CostY = NegatibleCost::Expensive;
6742     SDValue NegY =
6743         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6744 
6745     // We're done with the handles.
6746     Handles.clear();
6747 
6748     // Negate the X if its cost is less or equal than Y.
6749     if (NegX && (CostX <= CostY)) {
6750       Cost = std::min(CostX, CostZ);
6751       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6752       if (NegY != N)
6753         RemoveDeadNode(NegY);
6754       return N;
6755     }
6756 
6757     // Negate the Y if it is not expensive.
6758     if (NegY) {
6759       Cost = std::min(CostY, CostZ);
6760       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6761       if (NegX != N)
6762         RemoveDeadNode(NegX);
6763       return N;
6764     }
6765     break;
6766   }
6767 
6768   case ISD::FP_EXTEND:
6769   case ISD::FSIN:
6770     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6771                                             OptForSize, Cost, Depth))
6772       return DAG.getNode(Opcode, DL, VT, NegV);
6773     break;
6774   case ISD::FP_ROUND:
6775     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6776                                             OptForSize, Cost, Depth))
6777       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6778     break;
6779   }
6780 
6781   return SDValue();
6782 }
6783 
6784 //===----------------------------------------------------------------------===//
6785 // Legalization Utilities
6786 //===----------------------------------------------------------------------===//
6787 
6788 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6789                                     SDValue LHS, SDValue RHS,
6790                                     SmallVectorImpl<SDValue> &Result,
6791                                     EVT HiLoVT, SelectionDAG &DAG,
6792                                     MulExpansionKind Kind, SDValue LL,
6793                                     SDValue LH, SDValue RL, SDValue RH) const {
6794   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6795          Opcode == ISD::SMUL_LOHI);
6796 
6797   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6798                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6799   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6800                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6801   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6802                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6803   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6804                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6805 
6806   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6807     return false;
6808 
6809   unsigned OuterBitSize = VT.getScalarSizeInBits();
6810   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6811 
6812   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6813   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6814          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6815 
6816   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6817   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6818                           bool Signed) -> bool {
6819     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6820       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6821       Hi = SDValue(Lo.getNode(), 1);
6822       return true;
6823     }
6824     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6825       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6826       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6827       return true;
6828     }
6829     return false;
6830   };
6831 
6832   SDValue Lo, Hi;
6833 
6834   if (!LL.getNode() && !RL.getNode() &&
6835       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6836     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6837     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6838   }
6839 
6840   if (!LL.getNode())
6841     return false;
6842 
6843   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6844   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6845       DAG.MaskedValueIsZero(RHS, HighMask)) {
6846     // The inputs are both zero-extended.
6847     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6848       Result.push_back(Lo);
6849       Result.push_back(Hi);
6850       if (Opcode != ISD::MUL) {
6851         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6852         Result.push_back(Zero);
6853         Result.push_back(Zero);
6854       }
6855       return true;
6856     }
6857   }
6858 
6859   if (!VT.isVector() && Opcode == ISD::MUL &&
6860       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6861       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6862     // The input values are both sign-extended.
6863     // TODO non-MUL case?
6864     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6865       Result.push_back(Lo);
6866       Result.push_back(Hi);
6867       return true;
6868     }
6869   }
6870 
6871   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6872   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6873   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6874 
6875   if (!LH.getNode() && !RH.getNode() &&
6876       isOperationLegalOrCustom(ISD::SRL, VT) &&
6877       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6878     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6879     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6880     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6881     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6882   }
6883 
6884   if (!LH.getNode())
6885     return false;
6886 
6887   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6888     return false;
6889 
6890   Result.push_back(Lo);
6891 
6892   if (Opcode == ISD::MUL) {
6893     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6894     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6895     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6896     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6897     Result.push_back(Hi);
6898     return true;
6899   }
6900 
6901   // Compute the full width result.
6902   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6903     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6904     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6905     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6906     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6907   };
6908 
6909   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6910   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6911     return false;
6912 
6913   // This is effectively the add part of a multiply-add of half-sized operands,
6914   // so it cannot overflow.
6915   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6916 
6917   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6918     return false;
6919 
6920   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6921   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6922 
6923   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6924                   isOperationLegalOrCustom(ISD::ADDE, VT));
6925   if (UseGlue)
6926     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6927                        Merge(Lo, Hi));
6928   else
6929     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6930                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6931 
6932   SDValue Carry = Next.getValue(1);
6933   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6934   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6935 
6936   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6937     return false;
6938 
6939   if (UseGlue)
6940     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6941                      Carry);
6942   else
6943     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6944                      Zero, Carry);
6945 
6946   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6947 
6948   if (Opcode == ISD::SMUL_LOHI) {
6949     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6950                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6951     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6952 
6953     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6954                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6955     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6956   }
6957 
6958   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6959   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6960   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6961   return true;
6962 }
6963 
6964 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6965                                SelectionDAG &DAG, MulExpansionKind Kind,
6966                                SDValue LL, SDValue LH, SDValue RL,
6967                                SDValue RH) const {
6968   SmallVector<SDValue, 2> Result;
6969   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6970                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6971                            DAG, Kind, LL, LH, RL, RH);
6972   if (Ok) {
6973     assert(Result.size() == 2);
6974     Lo = Result[0];
6975     Hi = Result[1];
6976   }
6977   return Ok;
6978 }
6979 
6980 // Check that (every element of) Z is undef or not an exact multiple of BW.
6981 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6982   return ISD::matchUnaryPredicate(
6983       Z,
6984       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6985       true);
6986 }
6987 
6988 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6989                                           SelectionDAG &DAG) const {
6990   EVT VT = Node->getValueType(0);
6991 
6992   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6993                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6994                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6995                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6996     return SDValue();
6997 
6998   SDValue X = Node->getOperand(0);
6999   SDValue Y = Node->getOperand(1);
7000   SDValue Z = Node->getOperand(2);
7001 
7002   unsigned BW = VT.getScalarSizeInBits();
7003   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7004   SDLoc DL(SDValue(Node, 0));
7005 
7006   EVT ShVT = Z.getValueType();
7007 
7008   // If a funnel shift in the other direction is more supported, use it.
7009   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7010   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7011       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7012     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7013       // fshl X, Y, Z -> fshr X, Y, -Z
7014       // fshr X, Y, Z -> fshl X, Y, -Z
7015       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7016       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7017     } else {
7018       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7019       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7020       SDValue One = DAG.getConstant(1, DL, ShVT);
7021       if (IsFSHL) {
7022         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7023         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7024       } else {
7025         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7026         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7027       }
7028       Z = DAG.getNOT(DL, Z, ShVT);
7029     }
7030     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7031   }
7032 
7033   SDValue ShX, ShY;
7034   SDValue ShAmt, InvShAmt;
7035   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7036     // fshl: X << C | Y >> (BW - C)
7037     // fshr: X << (BW - C) | Y >> C
7038     // where C = Z % BW is not zero
7039     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7040     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7041     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7042     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7043     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7044   } else {
7045     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7046     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7047     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7048     if (isPowerOf2_32(BW)) {
7049       // Z % BW -> Z & (BW - 1)
7050       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7051       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7052       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7053     } else {
7054       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7055       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7056       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7057     }
7058 
7059     SDValue One = DAG.getConstant(1, DL, ShVT);
7060     if (IsFSHL) {
7061       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7062       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7063       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7064     } else {
7065       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7066       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7067       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7068     }
7069   }
7070   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7071 }
7072 
7073 // TODO: Merge with expandFunnelShift.
7074 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7075                                   SelectionDAG &DAG) const {
7076   EVT VT = Node->getValueType(0);
7077   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7078   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7079   SDValue Op0 = Node->getOperand(0);
7080   SDValue Op1 = Node->getOperand(1);
7081   SDLoc DL(SDValue(Node, 0));
7082 
7083   EVT ShVT = Op1.getValueType();
7084   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7085 
7086   // If a rotate in the other direction is more supported, use it.
7087   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7088   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7089       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7090     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7091     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7092   }
7093 
7094   if (!AllowVectorOps && VT.isVector() &&
7095       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7096        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7097        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7098        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7099        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7100     return SDValue();
7101 
7102   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7103   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7104   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7105   SDValue ShVal;
7106   SDValue HsVal;
7107   if (isPowerOf2_32(EltSizeInBits)) {
7108     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7109     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7110     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7111     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7112     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7113     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7114     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7115   } else {
7116     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7117     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7118     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7119     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7120     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7121     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7122     SDValue One = DAG.getConstant(1, DL, ShVT);
7123     HsVal =
7124         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7125   }
7126   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7127 }
7128 
7129 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7130                                       SelectionDAG &DAG) const {
7131   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7132   EVT VT = Node->getValueType(0);
7133   unsigned VTBits = VT.getScalarSizeInBits();
7134   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7135 
7136   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7137   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7138   SDValue ShOpLo = Node->getOperand(0);
7139   SDValue ShOpHi = Node->getOperand(1);
7140   SDValue ShAmt = Node->getOperand(2);
7141   EVT ShAmtVT = ShAmt.getValueType();
7142   EVT ShAmtCCVT =
7143       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7144   SDLoc dl(Node);
7145 
7146   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7147   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7148   // away during isel.
7149   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7150                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7151   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7152                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7153                        : DAG.getConstant(0, dl, VT);
7154 
7155   SDValue Tmp2, Tmp3;
7156   if (IsSHL) {
7157     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7158     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7159   } else {
7160     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7161     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7162   }
7163 
7164   // If the shift amount is larger or equal than the width of a part we don't
7165   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7166   // values for large shift amounts.
7167   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7168                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7169   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7170                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7171 
7172   if (IsSHL) {
7173     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7174     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7175   } else {
7176     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7177     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7178   }
7179 }
7180 
7181 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7182                                       SelectionDAG &DAG) const {
7183   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7184   SDValue Src = Node->getOperand(OpNo);
7185   EVT SrcVT = Src.getValueType();
7186   EVT DstVT = Node->getValueType(0);
7187   SDLoc dl(SDValue(Node, 0));
7188 
7189   // FIXME: Only f32 to i64 conversions are supported.
7190   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7191     return false;
7192 
7193   if (Node->isStrictFPOpcode())
7194     // When a NaN is converted to an integer a trap is allowed. We can't
7195     // use this expansion here because it would eliminate that trap. Other
7196     // traps are also allowed and cannot be eliminated. See
7197     // IEEE 754-2008 sec 5.8.
7198     return false;
7199 
7200   // Expand f32 -> i64 conversion
7201   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7202   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7203   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7204   EVT IntVT = SrcVT.changeTypeToInteger();
7205   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7206 
7207   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7208   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7209   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7210   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7211   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7212   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7213 
7214   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7215 
7216   SDValue ExponentBits = DAG.getNode(
7217       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7218       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7219   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7220 
7221   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7222                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7223                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7224   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7225 
7226   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7227                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7228                           DAG.getConstant(0x00800000, dl, IntVT));
7229 
7230   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7231 
7232   R = DAG.getSelectCC(
7233       dl, Exponent, ExponentLoBit,
7234       DAG.getNode(ISD::SHL, dl, DstVT, R,
7235                   DAG.getZExtOrTrunc(
7236                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7237                       dl, IntShVT)),
7238       DAG.getNode(ISD::SRL, dl, DstVT, R,
7239                   DAG.getZExtOrTrunc(
7240                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7241                       dl, IntShVT)),
7242       ISD::SETGT);
7243 
7244   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7245                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7246 
7247   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7248                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7249   return true;
7250 }
7251 
7252 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7253                                       SDValue &Chain,
7254                                       SelectionDAG &DAG) const {
7255   SDLoc dl(SDValue(Node, 0));
7256   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7257   SDValue Src = Node->getOperand(OpNo);
7258 
7259   EVT SrcVT = Src.getValueType();
7260   EVT DstVT = Node->getValueType(0);
7261   EVT SetCCVT =
7262       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7263   EVT DstSetCCVT =
7264       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7265 
7266   // Only expand vector types if we have the appropriate vector bit operations.
7267   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7268                                                    ISD::FP_TO_SINT;
7269   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7270                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7271     return false;
7272 
7273   // If the maximum float value is smaller then the signed integer range,
7274   // the destination signmask can't be represented by the float, so we can
7275   // just use FP_TO_SINT directly.
7276   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7277   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7278   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7279   if (APFloat::opOverflow &
7280       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7281     if (Node->isStrictFPOpcode()) {
7282       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7283                            { Node->getOperand(0), Src });
7284       Chain = Result.getValue(1);
7285     } else
7286       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7287     return true;
7288   }
7289 
7290   // Don't expand it if there isn't cheap fsub instruction.
7291   if (!isOperationLegalOrCustom(
7292           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7293     return false;
7294 
7295   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7296   SDValue Sel;
7297 
7298   if (Node->isStrictFPOpcode()) {
7299     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7300                        Node->getOperand(0), /*IsSignaling*/ true);
7301     Chain = Sel.getValue(1);
7302   } else {
7303     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7304   }
7305 
7306   bool Strict = Node->isStrictFPOpcode() ||
7307                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7308 
7309   if (Strict) {
7310     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7311     // signmask then offset (the result of which should be fully representable).
7312     // Sel = Src < 0x8000000000000000
7313     // FltOfs = select Sel, 0, 0x8000000000000000
7314     // IntOfs = select Sel, 0, 0x8000000000000000
7315     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7316 
7317     // TODO: Should any fast-math-flags be set for the FSUB?
7318     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7319                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7320     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7321     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7322                                    DAG.getConstant(0, dl, DstVT),
7323                                    DAG.getConstant(SignMask, dl, DstVT));
7324     SDValue SInt;
7325     if (Node->isStrictFPOpcode()) {
7326       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7327                                 { Chain, Src, FltOfs });
7328       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7329                          { Val.getValue(1), Val });
7330       Chain = SInt.getValue(1);
7331     } else {
7332       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7333       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7334     }
7335     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7336   } else {
7337     // Expand based on maximum range of FP_TO_SINT:
7338     // True = fp_to_sint(Src)
7339     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7340     // Result = select (Src < 0x8000000000000000), True, False
7341 
7342     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7343     // TODO: Should any fast-math-flags be set for the FSUB?
7344     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7345                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7346     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7347                         DAG.getConstant(SignMask, dl, DstVT));
7348     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7349     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7350   }
7351   return true;
7352 }
7353 
7354 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7355                                       SDValue &Chain,
7356                                       SelectionDAG &DAG) const {
7357   // This transform is not correct for converting 0 when rounding mode is set
7358   // to round toward negative infinity which will produce -0.0. So disable under
7359   // strictfp.
7360   if (Node->isStrictFPOpcode())
7361     return false;
7362 
7363   SDValue Src = Node->getOperand(0);
7364   EVT SrcVT = Src.getValueType();
7365   EVT DstVT = Node->getValueType(0);
7366 
7367   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7368     return false;
7369 
7370   // Only expand vector types if we have the appropriate vector bit operations.
7371   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7372                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7373                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7374                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7375                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7376     return false;
7377 
7378   SDLoc dl(SDValue(Node, 0));
7379   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7380 
7381   // Implementation of unsigned i64 to f64 following the algorithm in
7382   // __floatundidf in compiler_rt.  This implementation performs rounding
7383   // correctly in all rounding modes with the exception of converting 0
7384   // when rounding toward negative infinity. In that case the fsub will produce
7385   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7386   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7387   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7388       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7389   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7390   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7391   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7392 
7393   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7394   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7395   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7396   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7397   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7398   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7399   SDValue HiSub =
7400       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7401   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7402   return true;
7403 }
7404 
7405 SDValue
7406 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7407                                                SelectionDAG &DAG) const {
7408   unsigned Opcode = Node->getOpcode();
7409   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7410           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7411          "Wrong opcode");
7412 
7413   if (Node->getFlags().hasNoNaNs()) {
7414     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7415     SDValue Op1 = Node->getOperand(0);
7416     SDValue Op2 = Node->getOperand(1);
7417     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7418     // Copy FMF flags, but always set the no-signed-zeros flag
7419     // as this is implied by the FMINNUM/FMAXNUM semantics.
7420     SDNodeFlags Flags = Node->getFlags();
7421     Flags.setNoSignedZeros(true);
7422     SelCC->setFlags(Flags);
7423     return SelCC;
7424   }
7425 
7426   return SDValue();
7427 }
7428 
7429 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7430                                               SelectionDAG &DAG) const {
7431   SDLoc dl(Node);
7432   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7433     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7434   EVT VT = Node->getValueType(0);
7435 
7436   if (VT.isScalableVector())
7437     report_fatal_error(
7438         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7439 
7440   if (isOperationLegalOrCustom(NewOp, VT)) {
7441     SDValue Quiet0 = Node->getOperand(0);
7442     SDValue Quiet1 = Node->getOperand(1);
7443 
7444     if (!Node->getFlags().hasNoNaNs()) {
7445       // Insert canonicalizes if it's possible we need to quiet to get correct
7446       // sNaN behavior.
7447       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7448         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7449                              Node->getFlags());
7450       }
7451       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7452         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7453                              Node->getFlags());
7454       }
7455     }
7456 
7457     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7458   }
7459 
7460   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7461   // instead if there are no NaNs.
7462   if (Node->getFlags().hasNoNaNs()) {
7463     unsigned IEEE2018Op =
7464         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7465     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7466       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7467                          Node->getOperand(1), Node->getFlags());
7468     }
7469   }
7470 
7471   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7472     return SelCC;
7473 
7474   return SDValue();
7475 }
7476 
7477 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7478                                          unsigned Test, SDNodeFlags Flags,
7479                                          const SDLoc &DL,
7480                                          SelectionDAG &DAG) const {
7481   EVT OperandVT = Op.getValueType();
7482   assert(OperandVT.isFloatingPoint());
7483 
7484   // Degenerated cases.
7485   if (Test == 0)
7486     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7487   if ((Test & fcAllFlags) == fcAllFlags)
7488     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7489 
7490   // PPC double double is a pair of doubles, of which the higher part determines
7491   // the value class.
7492   if (OperandVT == MVT::ppcf128) {
7493     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7494                      DAG.getConstant(1, DL, MVT::i32));
7495     OperandVT = MVT::f64;
7496   }
7497 
7498   // Some checks may be represented as inversion of simpler check, for example
7499   // "inf|normal|subnormal|zero" => !"nan".
7500   bool IsInverted = false;
7501   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7502     IsInverted = true;
7503     Test = InvertedCheck;
7504   }
7505 
7506   // Floating-point type properties.
7507   EVT ScalarFloatVT = OperandVT.getScalarType();
7508   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7509   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7510   bool IsF80 = (ScalarFloatVT == MVT::f80);
7511 
7512   // Some checks can be implemented using float comparisons, if floating point
7513   // exceptions are ignored.
7514   if (Flags.hasNoFPExcept() &&
7515       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7516     if (Test == fcZero)
7517       return DAG.getSetCC(DL, ResultVT, Op,
7518                           DAG.getConstantFP(0.0, DL, OperandVT),
7519                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7520     if (Test == fcNan)
7521       return DAG.getSetCC(DL, ResultVT, Op, Op,
7522                           IsInverted ? ISD::SETO : ISD::SETUO);
7523   }
7524 
7525   // In the general case use integer operations.
7526   unsigned BitSize = OperandVT.getScalarSizeInBits();
7527   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7528   if (OperandVT.isVector())
7529     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7530                              OperandVT.getVectorElementCount());
7531   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7532 
7533   // Various masks.
7534   APInt SignBit = APInt::getSignMask(BitSize);
7535   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7536   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7537   const unsigned ExplicitIntBitInF80 = 63;
7538   APInt ExpMask = Inf;
7539   if (IsF80)
7540     ExpMask.clearBit(ExplicitIntBitInF80);
7541   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7542   APInt QNaNBitMask =
7543       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7544   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7545 
7546   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7547   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7548   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7549   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7550   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7551   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7552 
7553   SDValue Res;
7554   const auto appendResult = [&](SDValue PartialRes) {
7555     if (PartialRes) {
7556       if (Res)
7557         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7558       else
7559         Res = PartialRes;
7560     }
7561   };
7562 
7563   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7564   const auto getIntBitIsSet = [&]() -> SDValue {
7565     if (!IntBitIsSetV) {
7566       APInt IntBitMask(BitSize, 0);
7567       IntBitMask.setBit(ExplicitIntBitInF80);
7568       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7569       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7570       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7571     }
7572     return IntBitIsSetV;
7573   };
7574 
7575   // Split the value into sign bit and absolute value.
7576   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7577   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7578                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7579 
7580   // Tests that involve more than one class should be processed first.
7581   SDValue PartialRes;
7582 
7583   if (IsF80)
7584     ; // Detect finite numbers of f80 by checking individual classes because
7585       // they have different settings of the explicit integer bit.
7586   else if ((Test & fcFinite) == fcFinite) {
7587     // finite(V) ==> abs(V) < exp_mask
7588     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7589     Test &= ~fcFinite;
7590   } else if ((Test & fcFinite) == fcPosFinite) {
7591     // finite(V) && V > 0 ==> V < exp_mask
7592     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7593     Test &= ~fcPosFinite;
7594   } else if ((Test & fcFinite) == fcNegFinite) {
7595     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7596     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7597     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7598     Test &= ~fcNegFinite;
7599   }
7600   appendResult(PartialRes);
7601 
7602   // Check for individual classes.
7603 
7604   if (unsigned PartialCheck = Test & fcZero) {
7605     if (PartialCheck == fcPosZero)
7606       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7607     else if (PartialCheck == fcZero)
7608       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7609     else // ISD::fcNegZero
7610       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7611     appendResult(PartialRes);
7612   }
7613 
7614   if (unsigned PartialCheck = Test & fcInf) {
7615     if (PartialCheck == fcPosInf)
7616       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7617     else if (PartialCheck == fcInf)
7618       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7619     else { // ISD::fcNegInf
7620       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7621       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7622       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7623     }
7624     appendResult(PartialRes);
7625   }
7626 
7627   if (unsigned PartialCheck = Test & fcNan) {
7628     APInt InfWithQnanBit = Inf | QNaNBitMask;
7629     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7630     if (PartialCheck == fcNan) {
7631       // isnan(V) ==> abs(V) > int(inf)
7632       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7633       if (IsF80) {
7634         // Recognize unsupported values as NaNs for compatibility with glibc.
7635         // In them (exp(V)==0) == int_bit.
7636         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7637         SDValue ExpIsZero =
7638             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7639         SDValue IsPseudo =
7640             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7641         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7642       }
7643     } else if (PartialCheck == fcQNan) {
7644       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7645       PartialRes =
7646           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7647     } else { // ISD::fcSNan
7648       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7649       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7650       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7651       SDValue IsNotQnan =
7652           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7653       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7654     }
7655     appendResult(PartialRes);
7656   }
7657 
7658   if (unsigned PartialCheck = Test & fcSubnormal) {
7659     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7660     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7661     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7662     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7663     SDValue VMinusOneV =
7664         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7665     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7666     if (PartialCheck == fcNegSubnormal)
7667       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7668     appendResult(PartialRes);
7669   }
7670 
7671   if (unsigned PartialCheck = Test & fcNormal) {
7672     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7673     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7674     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7675     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7676     APInt ExpLimit = ExpMask - ExpLSB;
7677     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7678     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7679     if (PartialCheck == fcNegNormal)
7680       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7681     else if (PartialCheck == fcPosNormal) {
7682       SDValue PosSignV =
7683           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7684       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7685     }
7686     if (IsF80)
7687       PartialRes =
7688           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7689     appendResult(PartialRes);
7690   }
7691 
7692   if (!Res)
7693     return DAG.getConstant(IsInverted, DL, ResultVT);
7694   if (IsInverted)
7695     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7696   return Res;
7697 }
7698 
7699 // Only expand vector types if we have the appropriate vector bit operations.
7700 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7701   assert(VT.isVector() && "Expected vector type");
7702   unsigned Len = VT.getScalarSizeInBits();
7703   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7704          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7705          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7706          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7707          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7708 }
7709 
7710 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7711   SDLoc dl(Node);
7712   EVT VT = Node->getValueType(0);
7713   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7714   SDValue Op = Node->getOperand(0);
7715   unsigned Len = VT.getScalarSizeInBits();
7716   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7717 
7718   // TODO: Add support for irregular type lengths.
7719   if (!(Len <= 128 && Len % 8 == 0))
7720     return SDValue();
7721 
7722   // Only expand vector types if we have the appropriate vector bit operations.
7723   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7724     return SDValue();
7725 
7726   // This is the "best" algorithm from
7727   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7728   SDValue Mask55 =
7729       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7730   SDValue Mask33 =
7731       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7732   SDValue Mask0F =
7733       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7734 
7735   // v = v - ((v >> 1) & 0x55555555...)
7736   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7737                    DAG.getNode(ISD::AND, dl, VT,
7738                                DAG.getNode(ISD::SRL, dl, VT, Op,
7739                                            DAG.getConstant(1, dl, ShVT)),
7740                                Mask55));
7741   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7742   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7743                    DAG.getNode(ISD::AND, dl, VT,
7744                                DAG.getNode(ISD::SRL, dl, VT, Op,
7745                                            DAG.getConstant(2, dl, ShVT)),
7746                                Mask33));
7747   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7748   Op = DAG.getNode(ISD::AND, dl, VT,
7749                    DAG.getNode(ISD::ADD, dl, VT, Op,
7750                                DAG.getNode(ISD::SRL, dl, VT, Op,
7751                                            DAG.getConstant(4, dl, ShVT))),
7752                    Mask0F);
7753 
7754   if (Len <= 8)
7755     return Op;
7756 
7757   // Avoid the multiply if we only have 2 bytes to add.
7758   // TODO: Only doing this for scalars because vectors weren't as obviously
7759   // improved.
7760   if (Len == 16 && !VT.isVector()) {
7761     // v = (v + (v >> 8)) & 0x00FF;
7762     return DAG.getNode(ISD::AND, dl, VT,
7763                      DAG.getNode(ISD::ADD, dl, VT, Op,
7764                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7765                                              DAG.getConstant(8, dl, ShVT))),
7766                      DAG.getConstant(0xFF, dl, VT));
7767   }
7768 
7769   // v = (v * 0x01010101...) >> (Len - 8)
7770   SDValue Mask01 =
7771       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7772   return DAG.getNode(ISD::SRL, dl, VT,
7773                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7774                      DAG.getConstant(Len - 8, dl, ShVT));
7775 }
7776 
7777 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7778   SDLoc dl(Node);
7779   EVT VT = Node->getValueType(0);
7780   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7781   SDValue Op = Node->getOperand(0);
7782   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7783 
7784   // If the non-ZERO_UNDEF version is supported we can use that instead.
7785   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7786       isOperationLegalOrCustom(ISD::CTLZ, VT))
7787     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7788 
7789   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7790   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7791     EVT SetCCVT =
7792         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7793     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7794     SDValue Zero = DAG.getConstant(0, dl, VT);
7795     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7796     return DAG.getSelect(dl, VT, SrcIsZero,
7797                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7798   }
7799 
7800   // Only expand vector types if we have the appropriate vector bit operations.
7801   // This includes the operations needed to expand CTPOP if it isn't supported.
7802   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7803                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7804                          !canExpandVectorCTPOP(*this, VT)) ||
7805                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7806                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7807     return SDValue();
7808 
7809   // for now, we do this:
7810   // x = x | (x >> 1);
7811   // x = x | (x >> 2);
7812   // ...
7813   // x = x | (x >>16);
7814   // x = x | (x >>32); // for 64-bit input
7815   // return popcount(~x);
7816   //
7817   // Ref: "Hacker's Delight" by Henry Warren
7818   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7819     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7820     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7821                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7822   }
7823   Op = DAG.getNOT(dl, Op, VT);
7824   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7825 }
7826 
7827 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7828   SDLoc dl(Node);
7829   EVT VT = Node->getValueType(0);
7830   SDValue Op = Node->getOperand(0);
7831   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7832 
7833   // If the non-ZERO_UNDEF version is supported we can use that instead.
7834   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7835       isOperationLegalOrCustom(ISD::CTTZ, VT))
7836     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7837 
7838   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7839   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7840     EVT SetCCVT =
7841         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7842     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7843     SDValue Zero = DAG.getConstant(0, dl, VT);
7844     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7845     return DAG.getSelect(dl, VT, SrcIsZero,
7846                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7847   }
7848 
7849   // Only expand vector types if we have the appropriate vector bit operations.
7850   // This includes the operations needed to expand CTPOP if it isn't supported.
7851   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7852                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7853                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7854                          !canExpandVectorCTPOP(*this, VT)) ||
7855                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7856                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7857                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7858     return SDValue();
7859 
7860   // for now, we use: { return popcount(~x & (x - 1)); }
7861   // unless the target has ctlz but not ctpop, in which case we use:
7862   // { return 32 - nlz(~x & (x-1)); }
7863   // Ref: "Hacker's Delight" by Henry Warren
7864   SDValue Tmp = DAG.getNode(
7865       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7866       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7867 
7868   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7869   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7870     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7871                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7872   }
7873 
7874   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7875 }
7876 
7877 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7878                                   bool IsNegative) const {
7879   SDLoc dl(N);
7880   EVT VT = N->getValueType(0);
7881   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7882   SDValue Op = N->getOperand(0);
7883 
7884   // abs(x) -> smax(x,sub(0,x))
7885   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7886       isOperationLegal(ISD::SMAX, VT)) {
7887     SDValue Zero = DAG.getConstant(0, dl, VT);
7888     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7889                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7890   }
7891 
7892   // abs(x) -> umin(x,sub(0,x))
7893   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7894       isOperationLegal(ISD::UMIN, VT)) {
7895     SDValue Zero = DAG.getConstant(0, dl, VT);
7896     Op = DAG.getFreeze(Op);
7897     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7898                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7899   }
7900 
7901   // 0 - abs(x) -> smin(x, sub(0,x))
7902   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7903       isOperationLegal(ISD::SMIN, VT)) {
7904     Op = DAG.getFreeze(Op);
7905     SDValue Zero = DAG.getConstant(0, dl, VT);
7906     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7907                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7908   }
7909 
7910   // Only expand vector types if we have the appropriate vector operations.
7911   if (VT.isVector() &&
7912       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7913        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7914        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7915        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7916     return SDValue();
7917 
7918   Op = DAG.getFreeze(Op);
7919   SDValue Shift =
7920       DAG.getNode(ISD::SRA, dl, VT, Op,
7921                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7922   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7923 
7924   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7925   if (!IsNegative)
7926     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7927 
7928   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7929   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7930 }
7931 
7932 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7933   SDLoc dl(N);
7934   EVT VT = N->getValueType(0);
7935   SDValue Op = N->getOperand(0);
7936 
7937   if (!VT.isSimple())
7938     return SDValue();
7939 
7940   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7941   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7942   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7943   default:
7944     return SDValue();
7945   case MVT::i16:
7946     // Use a rotate by 8. This can be further expanded if necessary.
7947     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7948   case MVT::i32:
7949     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7950     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7951     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7952     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7953     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7954                        DAG.getConstant(0xFF0000, dl, VT));
7955     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7956     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7957     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7958     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7959   case MVT::i64:
7960     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7961     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7962     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7963     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7964     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7965     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7966     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7967     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7968     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7969                        DAG.getConstant(255ULL<<48, dl, VT));
7970     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7971                        DAG.getConstant(255ULL<<40, dl, VT));
7972     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7973                        DAG.getConstant(255ULL<<32, dl, VT));
7974     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7975                        DAG.getConstant(255ULL<<24, dl, VT));
7976     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7977                        DAG.getConstant(255ULL<<16, dl, VT));
7978     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7979                        DAG.getConstant(255ULL<<8 , dl, VT));
7980     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7981     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7982     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7983     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7984     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7985     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7986     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7987   }
7988 }
7989 
7990 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7991   SDLoc dl(N);
7992   EVT VT = N->getValueType(0);
7993   SDValue Op = N->getOperand(0);
7994   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7995   unsigned Sz = VT.getScalarSizeInBits();
7996 
7997   SDValue Tmp, Tmp2, Tmp3;
7998 
7999   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8000   // and finally the i1 pairs.
8001   // TODO: We can easily support i4/i2 legal types if any target ever does.
8002   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8003     // Create the masks - repeating the pattern every byte.
8004     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8005     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8006     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8007 
8008     // BSWAP if the type is wider than a single byte.
8009     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8010 
8011     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8012     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8013     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8014     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8015     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8016     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8017 
8018     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8019     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8020     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8021     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8022     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8023     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8024 
8025     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8026     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8027     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8028     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8029     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8030     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8031     return Tmp;
8032   }
8033 
8034   Tmp = DAG.getConstant(0, dl, VT);
8035   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8036     if (I < J)
8037       Tmp2 =
8038           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8039     else
8040       Tmp2 =
8041           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8042 
8043     APInt Shift(Sz, 1);
8044     Shift <<= J;
8045     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8046     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8047   }
8048 
8049   return Tmp;
8050 }
8051 
8052 std::pair<SDValue, SDValue>
8053 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8054                                     SelectionDAG &DAG) const {
8055   SDLoc SL(LD);
8056   SDValue Chain = LD->getChain();
8057   SDValue BasePTR = LD->getBasePtr();
8058   EVT SrcVT = LD->getMemoryVT();
8059   EVT DstVT = LD->getValueType(0);
8060   ISD::LoadExtType ExtType = LD->getExtensionType();
8061 
8062   if (SrcVT.isScalableVector())
8063     report_fatal_error("Cannot scalarize scalable vector loads");
8064 
8065   unsigned NumElem = SrcVT.getVectorNumElements();
8066 
8067   EVT SrcEltVT = SrcVT.getScalarType();
8068   EVT DstEltVT = DstVT.getScalarType();
8069 
8070   // A vector must always be stored in memory as-is, i.e. without any padding
8071   // between the elements, since various code depend on it, e.g. in the
8072   // handling of a bitcast of a vector type to int, which may be done with a
8073   // vector store followed by an integer load. A vector that does not have
8074   // elements that are byte-sized must therefore be stored as an integer
8075   // built out of the extracted vector elements.
8076   if (!SrcEltVT.isByteSized()) {
8077     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8078     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8079 
8080     unsigned NumSrcBits = SrcVT.getSizeInBits();
8081     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8082 
8083     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8084     SDValue SrcEltBitMask = DAG.getConstant(
8085         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8086 
8087     // Load the whole vector and avoid masking off the top bits as it makes
8088     // the codegen worse.
8089     SDValue Load =
8090         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8091                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8092                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8093 
8094     SmallVector<SDValue, 8> Vals;
8095     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8096       unsigned ShiftIntoIdx =
8097           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8098       SDValue ShiftAmount =
8099           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8100                                      LoadVT, SL, /*LegalTypes=*/false);
8101       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8102       SDValue Elt =
8103           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8104       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8105 
8106       if (ExtType != ISD::NON_EXTLOAD) {
8107         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8108         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8109       }
8110 
8111       Vals.push_back(Scalar);
8112     }
8113 
8114     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8115     return std::make_pair(Value, Load.getValue(1));
8116   }
8117 
8118   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8119   assert(SrcEltVT.isByteSized());
8120 
8121   SmallVector<SDValue, 8> Vals;
8122   SmallVector<SDValue, 8> LoadChains;
8123 
8124   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8125     SDValue ScalarLoad =
8126         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8127                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8128                        SrcEltVT, LD->getOriginalAlign(),
8129                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8130 
8131     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8132 
8133     Vals.push_back(ScalarLoad.getValue(0));
8134     LoadChains.push_back(ScalarLoad.getValue(1));
8135   }
8136 
8137   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8138   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8139 
8140   return std::make_pair(Value, NewChain);
8141 }
8142 
8143 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8144                                              SelectionDAG &DAG) const {
8145   SDLoc SL(ST);
8146 
8147   SDValue Chain = ST->getChain();
8148   SDValue BasePtr = ST->getBasePtr();
8149   SDValue Value = ST->getValue();
8150   EVT StVT = ST->getMemoryVT();
8151 
8152   if (StVT.isScalableVector())
8153     report_fatal_error("Cannot scalarize scalable vector stores");
8154 
8155   // The type of the data we want to save
8156   EVT RegVT = Value.getValueType();
8157   EVT RegSclVT = RegVT.getScalarType();
8158 
8159   // The type of data as saved in memory.
8160   EVT MemSclVT = StVT.getScalarType();
8161 
8162   unsigned NumElem = StVT.getVectorNumElements();
8163 
8164   // A vector must always be stored in memory as-is, i.e. without any padding
8165   // between the elements, since various code depend on it, e.g. in the
8166   // handling of a bitcast of a vector type to int, which may be done with a
8167   // vector store followed by an integer load. A vector that does not have
8168   // elements that are byte-sized must therefore be stored as an integer
8169   // built out of the extracted vector elements.
8170   if (!MemSclVT.isByteSized()) {
8171     unsigned NumBits = StVT.getSizeInBits();
8172     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8173 
8174     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8175 
8176     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8177       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8178                                 DAG.getVectorIdxConstant(Idx, SL));
8179       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8180       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8181       unsigned ShiftIntoIdx =
8182           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8183       SDValue ShiftAmount =
8184           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8185       SDValue ShiftedElt =
8186           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8187       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8188     }
8189 
8190     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8191                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8192                         ST->getAAInfo());
8193   }
8194 
8195   // Store Stride in bytes
8196   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8197   assert(Stride && "Zero stride!");
8198   // Extract each of the elements from the original vector and save them into
8199   // memory individually.
8200   SmallVector<SDValue, 8> Stores;
8201   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8202     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8203                               DAG.getVectorIdxConstant(Idx, SL));
8204 
8205     SDValue Ptr =
8206         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8207 
8208     // This scalar TruncStore may be illegal, but we legalize it later.
8209     SDValue Store = DAG.getTruncStore(
8210         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8211         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8212         ST->getAAInfo());
8213 
8214     Stores.push_back(Store);
8215   }
8216 
8217   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8218 }
8219 
8220 std::pair<SDValue, SDValue>
8221 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8222   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8223          "unaligned indexed loads not implemented!");
8224   SDValue Chain = LD->getChain();
8225   SDValue Ptr = LD->getBasePtr();
8226   EVT VT = LD->getValueType(0);
8227   EVT LoadedVT = LD->getMemoryVT();
8228   SDLoc dl(LD);
8229   auto &MF = DAG.getMachineFunction();
8230 
8231   if (VT.isFloatingPoint() || VT.isVector()) {
8232     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8233     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8234       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8235           LoadedVT.isVector()) {
8236         // Scalarize the load and let the individual components be handled.
8237         return scalarizeVectorLoad(LD, DAG);
8238       }
8239 
8240       // Expand to a (misaligned) integer load of the same size,
8241       // then bitconvert to floating point or vector.
8242       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8243                                     LD->getMemOperand());
8244       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8245       if (LoadedVT != VT)
8246         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8247                              ISD::ANY_EXTEND, dl, VT, Result);
8248 
8249       return std::make_pair(Result, newLoad.getValue(1));
8250     }
8251 
8252     // Copy the value to a (aligned) stack slot using (unaligned) integer
8253     // loads and stores, then do a (aligned) load from the stack slot.
8254     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8255     unsigned LoadedBytes = LoadedVT.getStoreSize();
8256     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8257     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8258 
8259     // Make sure the stack slot is also aligned for the register type.
8260     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8261     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8262     SmallVector<SDValue, 8> Stores;
8263     SDValue StackPtr = StackBase;
8264     unsigned Offset = 0;
8265 
8266     EVT PtrVT = Ptr.getValueType();
8267     EVT StackPtrVT = StackPtr.getValueType();
8268 
8269     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8270     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8271 
8272     // Do all but one copies using the full register width.
8273     for (unsigned i = 1; i < NumRegs; i++) {
8274       // Load one integer register's worth from the original location.
8275       SDValue Load = DAG.getLoad(
8276           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8277           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8278           LD->getAAInfo());
8279       // Follow the load with a store to the stack slot.  Remember the store.
8280       Stores.push_back(DAG.getStore(
8281           Load.getValue(1), dl, Load, StackPtr,
8282           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8283       // Increment the pointers.
8284       Offset += RegBytes;
8285 
8286       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8287       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8288     }
8289 
8290     // The last copy may be partial.  Do an extending load.
8291     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8292                                   8 * (LoadedBytes - Offset));
8293     SDValue Load =
8294         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8295                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8296                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8297                        LD->getAAInfo());
8298     // Follow the load with a store to the stack slot.  Remember the store.
8299     // On big-endian machines this requires a truncating store to ensure
8300     // that the bits end up in the right place.
8301     Stores.push_back(DAG.getTruncStore(
8302         Load.getValue(1), dl, Load, StackPtr,
8303         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8304 
8305     // The order of the stores doesn't matter - say it with a TokenFactor.
8306     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8307 
8308     // Finally, perform the original load only redirected to the stack slot.
8309     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8310                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8311                           LoadedVT);
8312 
8313     // Callers expect a MERGE_VALUES node.
8314     return std::make_pair(Load, TF);
8315   }
8316 
8317   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8318          "Unaligned load of unsupported type.");
8319 
8320   // Compute the new VT that is half the size of the old one.  This is an
8321   // integer MVT.
8322   unsigned NumBits = LoadedVT.getSizeInBits();
8323   EVT NewLoadedVT;
8324   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8325   NumBits >>= 1;
8326 
8327   Align Alignment = LD->getOriginalAlign();
8328   unsigned IncrementSize = NumBits / 8;
8329   ISD::LoadExtType HiExtType = LD->getExtensionType();
8330 
8331   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8332   if (HiExtType == ISD::NON_EXTLOAD)
8333     HiExtType = ISD::ZEXTLOAD;
8334 
8335   // Load the value in two parts
8336   SDValue Lo, Hi;
8337   if (DAG.getDataLayout().isLittleEndian()) {
8338     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8339                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8340                         LD->getAAInfo());
8341 
8342     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8343     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8344                         LD->getPointerInfo().getWithOffset(IncrementSize),
8345                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8346                         LD->getAAInfo());
8347   } else {
8348     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8349                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8350                         LD->getAAInfo());
8351 
8352     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8353     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8354                         LD->getPointerInfo().getWithOffset(IncrementSize),
8355                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8356                         LD->getAAInfo());
8357   }
8358 
8359   // aggregate the two parts
8360   SDValue ShiftAmount =
8361       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8362                                                     DAG.getDataLayout()));
8363   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8364   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8365 
8366   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8367                              Hi.getValue(1));
8368 
8369   return std::make_pair(Result, TF);
8370 }
8371 
8372 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8373                                              SelectionDAG &DAG) const {
8374   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8375          "unaligned indexed stores not implemented!");
8376   SDValue Chain = ST->getChain();
8377   SDValue Ptr = ST->getBasePtr();
8378   SDValue Val = ST->getValue();
8379   EVT VT = Val.getValueType();
8380   Align Alignment = ST->getOriginalAlign();
8381   auto &MF = DAG.getMachineFunction();
8382   EVT StoreMemVT = ST->getMemoryVT();
8383 
8384   SDLoc dl(ST);
8385   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8386     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8387     if (isTypeLegal(intVT)) {
8388       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8389           StoreMemVT.isVector()) {
8390         // Scalarize the store and let the individual components be handled.
8391         SDValue Result = scalarizeVectorStore(ST, DAG);
8392         return Result;
8393       }
8394       // Expand to a bitconvert of the value to the integer type of the
8395       // same size, then a (misaligned) int store.
8396       // FIXME: Does not handle truncating floating point stores!
8397       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8398       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8399                             Alignment, ST->getMemOperand()->getFlags());
8400       return Result;
8401     }
8402     // Do a (aligned) store to a stack slot, then copy from the stack slot
8403     // to the final destination using (unaligned) integer loads and stores.
8404     MVT RegVT = getRegisterType(
8405         *DAG.getContext(),
8406         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8407     EVT PtrVT = Ptr.getValueType();
8408     unsigned StoredBytes = StoreMemVT.getStoreSize();
8409     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8410     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8411 
8412     // Make sure the stack slot is also aligned for the register type.
8413     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8414     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8415 
8416     // Perform the original store, only redirected to the stack slot.
8417     SDValue Store = DAG.getTruncStore(
8418         Chain, dl, Val, StackPtr,
8419         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8420 
8421     EVT StackPtrVT = StackPtr.getValueType();
8422 
8423     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8424     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8425     SmallVector<SDValue, 8> Stores;
8426     unsigned Offset = 0;
8427 
8428     // Do all but one copies using the full register width.
8429     for (unsigned i = 1; i < NumRegs; i++) {
8430       // Load one integer register's worth from the stack slot.
8431       SDValue Load = DAG.getLoad(
8432           RegVT, dl, Store, StackPtr,
8433           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8434       // Store it to the final location.  Remember the store.
8435       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8436                                     ST->getPointerInfo().getWithOffset(Offset),
8437                                     ST->getOriginalAlign(),
8438                                     ST->getMemOperand()->getFlags()));
8439       // Increment the pointers.
8440       Offset += RegBytes;
8441       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8442       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8443     }
8444 
8445     // The last store may be partial.  Do a truncating store.  On big-endian
8446     // machines this requires an extending load from the stack slot to ensure
8447     // that the bits are in the right place.
8448     EVT LoadMemVT =
8449         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8450 
8451     // Load from the stack slot.
8452     SDValue Load = DAG.getExtLoad(
8453         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8454         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8455 
8456     Stores.push_back(
8457         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8458                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8459                           ST->getOriginalAlign(),
8460                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8461     // The order of the stores doesn't matter - say it with a TokenFactor.
8462     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8463     return Result;
8464   }
8465 
8466   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8467          "Unaligned store of unknown type.");
8468   // Get the half-size VT
8469   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8470   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8471   unsigned IncrementSize = NumBits / 8;
8472 
8473   // Divide the stored value in two parts.
8474   SDValue ShiftAmount = DAG.getConstant(
8475       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8476   SDValue Lo = Val;
8477   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8478 
8479   // Store the two parts
8480   SDValue Store1, Store2;
8481   Store1 = DAG.getTruncStore(Chain, dl,
8482                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8483                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8484                              ST->getMemOperand()->getFlags());
8485 
8486   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8487   Store2 = DAG.getTruncStore(
8488       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8489       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8490       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8491 
8492   SDValue Result =
8493       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8494   return Result;
8495 }
8496 
8497 SDValue
8498 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8499                                        const SDLoc &DL, EVT DataVT,
8500                                        SelectionDAG &DAG,
8501                                        bool IsCompressedMemory) const {
8502   SDValue Increment;
8503   EVT AddrVT = Addr.getValueType();
8504   EVT MaskVT = Mask.getValueType();
8505   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8506          "Incompatible types of Data and Mask");
8507   if (IsCompressedMemory) {
8508     if (DataVT.isScalableVector())
8509       report_fatal_error(
8510           "Cannot currently handle compressed memory with scalable vectors");
8511     // Incrementing the pointer according to number of '1's in the mask.
8512     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8513     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8514     if (MaskIntVT.getSizeInBits() < 32) {
8515       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8516       MaskIntVT = MVT::i32;
8517     }
8518 
8519     // Count '1's with POPCNT.
8520     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8521     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8522     // Scale is an element size in bytes.
8523     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8524                                     AddrVT);
8525     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8526   } else if (DataVT.isScalableVector()) {
8527     Increment = DAG.getVScale(DL, AddrVT,
8528                               APInt(AddrVT.getFixedSizeInBits(),
8529                                     DataVT.getStoreSize().getKnownMinSize()));
8530   } else
8531     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8532 
8533   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8534 }
8535 
8536 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8537                                        EVT VecVT, const SDLoc &dl,
8538                                        ElementCount SubEC) {
8539   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8540          "Cannot index a scalable vector within a fixed-width vector");
8541 
8542   unsigned NElts = VecVT.getVectorMinNumElements();
8543   unsigned NumSubElts = SubEC.getKnownMinValue();
8544   EVT IdxVT = Idx.getValueType();
8545 
8546   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8547     // If this is a constant index and we know the value plus the number of the
8548     // elements in the subvector minus one is less than the minimum number of
8549     // elements then it's safe to return Idx.
8550     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8551       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8552         return Idx;
8553     SDValue VS =
8554         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8555     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8556     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8557                               DAG.getConstant(NumSubElts, dl, IdxVT));
8558     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8559   }
8560   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8561     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8562     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8563                        DAG.getConstant(Imm, dl, IdxVT));
8564   }
8565   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8566   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8567                      DAG.getConstant(MaxIndex, dl, IdxVT));
8568 }
8569 
8570 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8571                                                 SDValue VecPtr, EVT VecVT,
8572                                                 SDValue Index) const {
8573   return getVectorSubVecPointer(
8574       DAG, VecPtr, VecVT,
8575       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8576       Index);
8577 }
8578 
8579 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8580                                                SDValue VecPtr, EVT VecVT,
8581                                                EVT SubVecVT,
8582                                                SDValue Index) const {
8583   SDLoc dl(Index);
8584   // Make sure the index type is big enough to compute in.
8585   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8586 
8587   EVT EltVT = VecVT.getVectorElementType();
8588 
8589   // Calculate the element offset and add it to the pointer.
8590   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8591   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8592          "Converting bits to bytes lost precision");
8593   assert(SubVecVT.getVectorElementType() == EltVT &&
8594          "Sub-vector must be a vector with matching element type");
8595   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8596                                   SubVecVT.getVectorElementCount());
8597 
8598   EVT IdxVT = Index.getValueType();
8599   if (SubVecVT.isScalableVector())
8600     Index =
8601         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8602                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8603 
8604   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8605                       DAG.getConstant(EltSize, dl, IdxVT));
8606   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8607 }
8608 
8609 //===----------------------------------------------------------------------===//
8610 // Implementation of Emulated TLS Model
8611 //===----------------------------------------------------------------------===//
8612 
8613 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8614                                                 SelectionDAG &DAG) const {
8615   // Access to address of TLS varialbe xyz is lowered to a function call:
8616   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8617   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8618   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8619   SDLoc dl(GA);
8620 
8621   ArgListTy Args;
8622   ArgListEntry Entry;
8623   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8624   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8625   StringRef EmuTlsVarName(NameString);
8626   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8627   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8628   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8629   Entry.Ty = VoidPtrType;
8630   Args.push_back(Entry);
8631 
8632   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8633 
8634   TargetLowering::CallLoweringInfo CLI(DAG);
8635   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8636   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8637   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8638 
8639   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8640   // At last for X86 targets, maybe good for other targets too?
8641   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8642   MFI.setAdjustsStack(true); // Is this only for X86 target?
8643   MFI.setHasCalls(true);
8644 
8645   assert((GA->getOffset() == 0) &&
8646          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8647   return CallResult.first;
8648 }
8649 
8650 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8651                                                 SelectionDAG &DAG) const {
8652   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8653   if (!isCtlzFast())
8654     return SDValue();
8655   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8656   SDLoc dl(Op);
8657   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8658     if (C->isZero() && CC == ISD::SETEQ) {
8659       EVT VT = Op.getOperand(0).getValueType();
8660       SDValue Zext = Op.getOperand(0);
8661       if (VT.bitsLT(MVT::i32)) {
8662         VT = MVT::i32;
8663         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8664       }
8665       unsigned Log2b = Log2_32(VT.getSizeInBits());
8666       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8667       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8668                                 DAG.getConstant(Log2b, dl, MVT::i32));
8669       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8670     }
8671   }
8672   return SDValue();
8673 }
8674 
8675 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8676   SDValue Op0 = Node->getOperand(0);
8677   SDValue Op1 = Node->getOperand(1);
8678   EVT VT = Op0.getValueType();
8679   unsigned Opcode = Node->getOpcode();
8680   SDLoc DL(Node);
8681 
8682   // umin(x,y) -> sub(x,usubsat(x,y))
8683   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8684       isOperationLegal(ISD::USUBSAT, VT)) {
8685     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8686                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8687   }
8688 
8689   // umax(x,y) -> add(x,usubsat(y,x))
8690   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8691       isOperationLegal(ISD::USUBSAT, VT)) {
8692     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8693                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8694   }
8695 
8696   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8697   ISD::CondCode CC;
8698   switch (Opcode) {
8699   default: llvm_unreachable("How did we get here?");
8700   case ISD::SMAX: CC = ISD::SETGT; break;
8701   case ISD::SMIN: CC = ISD::SETLT; break;
8702   case ISD::UMAX: CC = ISD::SETUGT; break;
8703   case ISD::UMIN: CC = ISD::SETULT; break;
8704   }
8705 
8706   // FIXME: Should really try to split the vector in case it's legal on a
8707   // subvector.
8708   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8709     return DAG.UnrollVectorOp(Node);
8710 
8711   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8712   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8713   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8714 }
8715 
8716 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8717   unsigned Opcode = Node->getOpcode();
8718   SDValue LHS = Node->getOperand(0);
8719   SDValue RHS = Node->getOperand(1);
8720   EVT VT = LHS.getValueType();
8721   SDLoc dl(Node);
8722 
8723   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8724   assert(VT.isInteger() && "Expected operands to be integers");
8725 
8726   // usub.sat(a, b) -> umax(a, b) - b
8727   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8728     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8729     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8730   }
8731 
8732   // uadd.sat(a, b) -> umin(a, ~b) + b
8733   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8734     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8735     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8736     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8737   }
8738 
8739   unsigned OverflowOp;
8740   switch (Opcode) {
8741   case ISD::SADDSAT:
8742     OverflowOp = ISD::SADDO;
8743     break;
8744   case ISD::UADDSAT:
8745     OverflowOp = ISD::UADDO;
8746     break;
8747   case ISD::SSUBSAT:
8748     OverflowOp = ISD::SSUBO;
8749     break;
8750   case ISD::USUBSAT:
8751     OverflowOp = ISD::USUBO;
8752     break;
8753   default:
8754     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8755                      "addition or subtraction node.");
8756   }
8757 
8758   // FIXME: Should really try to split the vector in case it's legal on a
8759   // subvector.
8760   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8761     return DAG.UnrollVectorOp(Node);
8762 
8763   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8764   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8765   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8766   SDValue SumDiff = Result.getValue(0);
8767   SDValue Overflow = Result.getValue(1);
8768   SDValue Zero = DAG.getConstant(0, dl, VT);
8769   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8770 
8771   if (Opcode == ISD::UADDSAT) {
8772     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8773       // (LHS + RHS) | OverflowMask
8774       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8775       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8776     }
8777     // Overflow ? 0xffff.... : (LHS + RHS)
8778     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8779   }
8780 
8781   if (Opcode == ISD::USUBSAT) {
8782     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8783       // (LHS - RHS) & ~OverflowMask
8784       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8785       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8786       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8787     }
8788     // Overflow ? 0 : (LHS - RHS)
8789     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8790   }
8791 
8792   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8793   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8794   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8795   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8796                               DAG.getConstant(BitWidth - 1, dl, VT));
8797   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8798   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8799 }
8800 
8801 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8802   unsigned Opcode = Node->getOpcode();
8803   bool IsSigned = Opcode == ISD::SSHLSAT;
8804   SDValue LHS = Node->getOperand(0);
8805   SDValue RHS = Node->getOperand(1);
8806   EVT VT = LHS.getValueType();
8807   SDLoc dl(Node);
8808 
8809   assert((Node->getOpcode() == ISD::SSHLSAT ||
8810           Node->getOpcode() == ISD::USHLSAT) &&
8811           "Expected a SHLSAT opcode");
8812   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8813   assert(VT.isInteger() && "Expected operands to be integers");
8814 
8815   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8816 
8817   unsigned BW = VT.getScalarSizeInBits();
8818   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8819   SDValue Orig =
8820       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8821 
8822   SDValue SatVal;
8823   if (IsSigned) {
8824     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8825     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8826     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8827                              SatMin, SatMax, ISD::SETLT);
8828   } else {
8829     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8830   }
8831   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8832 
8833   return Result;
8834 }
8835 
8836 SDValue
8837 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8838   assert((Node->getOpcode() == ISD::SMULFIX ||
8839           Node->getOpcode() == ISD::UMULFIX ||
8840           Node->getOpcode() == ISD::SMULFIXSAT ||
8841           Node->getOpcode() == ISD::UMULFIXSAT) &&
8842          "Expected a fixed point multiplication opcode");
8843 
8844   SDLoc dl(Node);
8845   SDValue LHS = Node->getOperand(0);
8846   SDValue RHS = Node->getOperand(1);
8847   EVT VT = LHS.getValueType();
8848   unsigned Scale = Node->getConstantOperandVal(2);
8849   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8850                      Node->getOpcode() == ISD::UMULFIXSAT);
8851   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8852                  Node->getOpcode() == ISD::SMULFIXSAT);
8853   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8854   unsigned VTSize = VT.getScalarSizeInBits();
8855 
8856   if (!Scale) {
8857     // [us]mul.fix(a, b, 0) -> mul(a, b)
8858     if (!Saturating) {
8859       if (isOperationLegalOrCustom(ISD::MUL, VT))
8860         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8861     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8862       SDValue Result =
8863           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8864       SDValue Product = Result.getValue(0);
8865       SDValue Overflow = Result.getValue(1);
8866       SDValue Zero = DAG.getConstant(0, dl, VT);
8867 
8868       APInt MinVal = APInt::getSignedMinValue(VTSize);
8869       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8870       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8871       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8872       // Xor the inputs, if resulting sign bit is 0 the product will be
8873       // positive, else negative.
8874       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8875       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8876       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8877       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8878     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8879       SDValue Result =
8880           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8881       SDValue Product = Result.getValue(0);
8882       SDValue Overflow = Result.getValue(1);
8883 
8884       APInt MaxVal = APInt::getMaxValue(VTSize);
8885       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8886       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8887     }
8888   }
8889 
8890   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8891          "Expected scale to be less than the number of bits if signed or at "
8892          "most the number of bits if unsigned.");
8893   assert(LHS.getValueType() == RHS.getValueType() &&
8894          "Expected both operands to be the same type");
8895 
8896   // Get the upper and lower bits of the result.
8897   SDValue Lo, Hi;
8898   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8899   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8900   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8901     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8902     Lo = Result.getValue(0);
8903     Hi = Result.getValue(1);
8904   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8905     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8906     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8907   } else if (VT.isVector()) {
8908     return SDValue();
8909   } else {
8910     report_fatal_error("Unable to expand fixed point multiplication.");
8911   }
8912 
8913   if (Scale == VTSize)
8914     // Result is just the top half since we'd be shifting by the width of the
8915     // operand. Overflow impossible so this works for both UMULFIX and
8916     // UMULFIXSAT.
8917     return Hi;
8918 
8919   // The result will need to be shifted right by the scale since both operands
8920   // are scaled. The result is given to us in 2 halves, so we only want part of
8921   // both in the result.
8922   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8923   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8924                                DAG.getConstant(Scale, dl, ShiftTy));
8925   if (!Saturating)
8926     return Result;
8927 
8928   if (!Signed) {
8929     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8930     // widened multiplication) aren't all zeroes.
8931 
8932     // Saturate to max if ((Hi >> Scale) != 0),
8933     // which is the same as if (Hi > ((1 << Scale) - 1))
8934     APInt MaxVal = APInt::getMaxValue(VTSize);
8935     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8936                                       dl, VT);
8937     Result = DAG.getSelectCC(dl, Hi, LowMask,
8938                              DAG.getConstant(MaxVal, dl, VT), Result,
8939                              ISD::SETUGT);
8940 
8941     return Result;
8942   }
8943 
8944   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8945   // widened multiplication) aren't all ones or all zeroes.
8946 
8947   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8948   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8949 
8950   if (Scale == 0) {
8951     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8952                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8953     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8954     // Saturated to SatMin if wide product is negative, and SatMax if wide
8955     // product is positive ...
8956     SDValue Zero = DAG.getConstant(0, dl, VT);
8957     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8958                                                ISD::SETLT);
8959     // ... but only if we overflowed.
8960     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8961   }
8962 
8963   //  We handled Scale==0 above so all the bits to examine is in Hi.
8964 
8965   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8966   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8967   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8968                                     dl, VT);
8969   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8970   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8971   // which is the same as if (HI < (-1 << (Scale - 1))
8972   SDValue HighMask =
8973       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8974                       dl, VT);
8975   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8976   return Result;
8977 }
8978 
8979 SDValue
8980 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8981                                     SDValue LHS, SDValue RHS,
8982                                     unsigned Scale, SelectionDAG &DAG) const {
8983   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8984           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8985          "Expected a fixed point division opcode");
8986 
8987   EVT VT = LHS.getValueType();
8988   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8989   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8990   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8991 
8992   // If there is enough room in the type to upscale the LHS or downscale the
8993   // RHS before the division, we can perform it in this type without having to
8994   // resize. For signed operations, the LHS headroom is the number of
8995   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8996   // The headroom for the RHS is the number of trailing zeroes.
8997   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8998                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8999   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9000 
9001   // For signed saturating operations, we need to be able to detect true integer
9002   // division overflow; that is, when you have MIN / -EPS. However, this
9003   // is undefined behavior and if we emit divisions that could take such
9004   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9005   // example).
9006   // Avoid this by requiring an extra bit so that we never get this case.
9007   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9008   // signed saturating division, we need to emit a whopping 32-bit division.
9009   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9010     return SDValue();
9011 
9012   unsigned LHSShift = std::min(LHSLead, Scale);
9013   unsigned RHSShift = Scale - LHSShift;
9014 
9015   // At this point, we know that if we shift the LHS up by LHSShift and the
9016   // RHS down by RHSShift, we can emit a regular division with a final scaling
9017   // factor of Scale.
9018 
9019   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9020   if (LHSShift)
9021     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9022                       DAG.getConstant(LHSShift, dl, ShiftTy));
9023   if (RHSShift)
9024     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9025                       DAG.getConstant(RHSShift, dl, ShiftTy));
9026 
9027   SDValue Quot;
9028   if (Signed) {
9029     // For signed operations, if the resulting quotient is negative and the
9030     // remainder is nonzero, subtract 1 from the quotient to round towards
9031     // negative infinity.
9032     SDValue Rem;
9033     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9034     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9035     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9036     if (isTypeLegal(VT) &&
9037         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9038       Quot = DAG.getNode(ISD::SDIVREM, dl,
9039                          DAG.getVTList(VT, VT),
9040                          LHS, RHS);
9041       Rem = Quot.getValue(1);
9042       Quot = Quot.getValue(0);
9043     } else {
9044       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9045                          LHS, RHS);
9046       Rem = DAG.getNode(ISD::SREM, dl, VT,
9047                         LHS, RHS);
9048     }
9049     SDValue Zero = DAG.getConstant(0, dl, VT);
9050     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9051     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9052     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9053     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9054     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9055                                DAG.getConstant(1, dl, VT));
9056     Quot = DAG.getSelect(dl, VT,
9057                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9058                          Sub1, Quot);
9059   } else
9060     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9061                        LHS, RHS);
9062 
9063   return Quot;
9064 }
9065 
9066 void TargetLowering::expandUADDSUBO(
9067     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9068   SDLoc dl(Node);
9069   SDValue LHS = Node->getOperand(0);
9070   SDValue RHS = Node->getOperand(1);
9071   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9072 
9073   // If ADD/SUBCARRY is legal, use that instead.
9074   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9075   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9076     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9077     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9078                                     { LHS, RHS, CarryIn });
9079     Result = SDValue(NodeCarry.getNode(), 0);
9080     Overflow = SDValue(NodeCarry.getNode(), 1);
9081     return;
9082   }
9083 
9084   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9085                             LHS.getValueType(), LHS, RHS);
9086 
9087   EVT ResultType = Node->getValueType(1);
9088   EVT SetCCType = getSetCCResultType(
9089       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9090   SDValue SetCC;
9091   if (IsAdd && isOneConstant(RHS)) {
9092     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9093     // the live range of X. We assume comparing with 0 is cheap.
9094     // The general case (X + C) < C is not necessarily beneficial. Although we
9095     // reduce the live range of X, we may introduce the materialization of
9096     // constant C.
9097     SetCC =
9098         DAG.getSetCC(dl, SetCCType, Result,
9099                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9100   } else {
9101     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9102     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9103   }
9104   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9105 }
9106 
9107 void TargetLowering::expandSADDSUBO(
9108     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9109   SDLoc dl(Node);
9110   SDValue LHS = Node->getOperand(0);
9111   SDValue RHS = Node->getOperand(1);
9112   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9113 
9114   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9115                             LHS.getValueType(), LHS, RHS);
9116 
9117   EVT ResultType = Node->getValueType(1);
9118   EVT OType = getSetCCResultType(
9119       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9120 
9121   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9122   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9123   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9124     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9125     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9126     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9127     return;
9128   }
9129 
9130   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9131 
9132   // For an addition, the result should be less than one of the operands (LHS)
9133   // if and only if the other operand (RHS) is negative, otherwise there will
9134   // be overflow.
9135   // For a subtraction, the result should be less than one of the operands
9136   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9137   // otherwise there will be overflow.
9138   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9139   SDValue ConditionRHS =
9140       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9141 
9142   Overflow = DAG.getBoolExtOrTrunc(
9143       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9144       ResultType, ResultType);
9145 }
9146 
9147 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9148                                 SDValue &Overflow, SelectionDAG &DAG) const {
9149   SDLoc dl(Node);
9150   EVT VT = Node->getValueType(0);
9151   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9152   SDValue LHS = Node->getOperand(0);
9153   SDValue RHS = Node->getOperand(1);
9154   bool isSigned = Node->getOpcode() == ISD::SMULO;
9155 
9156   // For power-of-two multiplications we can use a simpler shift expansion.
9157   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9158     const APInt &C = RHSC->getAPIntValue();
9159     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9160     if (C.isPowerOf2()) {
9161       // smulo(x, signed_min) is same as umulo(x, signed_min).
9162       bool UseArithShift = isSigned && !C.isMinSignedValue();
9163       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9164       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9165       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9166       Overflow = DAG.getSetCC(dl, SetCCVT,
9167           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9168                       dl, VT, Result, ShiftAmt),
9169           LHS, ISD::SETNE);
9170       return true;
9171     }
9172   }
9173 
9174   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9175   if (VT.isVector())
9176     WideVT =
9177         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9178 
9179   SDValue BottomHalf;
9180   SDValue TopHalf;
9181   static const unsigned Ops[2][3] =
9182       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9183         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9184   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9185     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9186     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9187   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9188     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9189                              RHS);
9190     TopHalf = BottomHalf.getValue(1);
9191   } else if (isTypeLegal(WideVT)) {
9192     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9193     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9194     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9195     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9196     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9197         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9198     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9199                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9200   } else {
9201     if (VT.isVector())
9202       return false;
9203 
9204     // We can fall back to a libcall with an illegal type for the MUL if we
9205     // have a libcall big enough.
9206     // Also, we can fall back to a division in some cases, but that's a big
9207     // performance hit in the general case.
9208     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9209     if (WideVT == MVT::i16)
9210       LC = RTLIB::MUL_I16;
9211     else if (WideVT == MVT::i32)
9212       LC = RTLIB::MUL_I32;
9213     else if (WideVT == MVT::i64)
9214       LC = RTLIB::MUL_I64;
9215     else if (WideVT == MVT::i128)
9216       LC = RTLIB::MUL_I128;
9217     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9218 
9219     SDValue HiLHS;
9220     SDValue HiRHS;
9221     if (isSigned) {
9222       // The high part is obtained by SRA'ing all but one of the bits of low
9223       // part.
9224       unsigned LoSize = VT.getFixedSizeInBits();
9225       HiLHS =
9226           DAG.getNode(ISD::SRA, dl, VT, LHS,
9227                       DAG.getConstant(LoSize - 1, dl,
9228                                       getPointerTy(DAG.getDataLayout())));
9229       HiRHS =
9230           DAG.getNode(ISD::SRA, dl, VT, RHS,
9231                       DAG.getConstant(LoSize - 1, dl,
9232                                       getPointerTy(DAG.getDataLayout())));
9233     } else {
9234         HiLHS = DAG.getConstant(0, dl, VT);
9235         HiRHS = DAG.getConstant(0, dl, VT);
9236     }
9237 
9238     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9239     // pre-lowered to the correct types. This all depends upon WideVT not
9240     // being a legal type for the architecture and thus has to be split to
9241     // two arguments.
9242     SDValue Ret;
9243     TargetLowering::MakeLibCallOptions CallOptions;
9244     CallOptions.setSExt(isSigned);
9245     CallOptions.setIsPostTypeLegalization(true);
9246     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9247       // Halves of WideVT are packed into registers in different order
9248       // depending on platform endianness. This is usually handled by
9249       // the C calling convention, but we can't defer to it in
9250       // the legalizer.
9251       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9252       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9253     } else {
9254       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9255       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9256     }
9257     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9258            "Ret value is a collection of constituent nodes holding result.");
9259     if (DAG.getDataLayout().isLittleEndian()) {
9260       // Same as above.
9261       BottomHalf = Ret.getOperand(0);
9262       TopHalf = Ret.getOperand(1);
9263     } else {
9264       BottomHalf = Ret.getOperand(1);
9265       TopHalf = Ret.getOperand(0);
9266     }
9267   }
9268 
9269   Result = BottomHalf;
9270   if (isSigned) {
9271     SDValue ShiftAmt = DAG.getConstant(
9272         VT.getScalarSizeInBits() - 1, dl,
9273         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9274     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9275     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9276   } else {
9277     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9278                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9279   }
9280 
9281   // Truncate the result if SetCC returns a larger type than needed.
9282   EVT RType = Node->getValueType(1);
9283   if (RType.bitsLT(Overflow.getValueType()))
9284     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9285 
9286   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9287          "Unexpected result type for S/UMULO legalization");
9288   return true;
9289 }
9290 
9291 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9292   SDLoc dl(Node);
9293   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9294   SDValue Op = Node->getOperand(0);
9295   EVT VT = Op.getValueType();
9296 
9297   if (VT.isScalableVector())
9298     report_fatal_error(
9299         "Expanding reductions for scalable vectors is undefined.");
9300 
9301   // Try to use a shuffle reduction for power of two vectors.
9302   if (VT.isPow2VectorType()) {
9303     while (VT.getVectorNumElements() > 1) {
9304       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9305       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9306         break;
9307 
9308       SDValue Lo, Hi;
9309       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9310       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9311       VT = HalfVT;
9312     }
9313   }
9314 
9315   EVT EltVT = VT.getVectorElementType();
9316   unsigned NumElts = VT.getVectorNumElements();
9317 
9318   SmallVector<SDValue, 8> Ops;
9319   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9320 
9321   SDValue Res = Ops[0];
9322   for (unsigned i = 1; i < NumElts; i++)
9323     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9324 
9325   // Result type may be wider than element type.
9326   if (EltVT != Node->getValueType(0))
9327     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9328   return Res;
9329 }
9330 
9331 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9332   SDLoc dl(Node);
9333   SDValue AccOp = Node->getOperand(0);
9334   SDValue VecOp = Node->getOperand(1);
9335   SDNodeFlags Flags = Node->getFlags();
9336 
9337   EVT VT = VecOp.getValueType();
9338   EVT EltVT = VT.getVectorElementType();
9339 
9340   if (VT.isScalableVector())
9341     report_fatal_error(
9342         "Expanding reductions for scalable vectors is undefined.");
9343 
9344   unsigned NumElts = VT.getVectorNumElements();
9345 
9346   SmallVector<SDValue, 8> Ops;
9347   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9348 
9349   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9350 
9351   SDValue Res = AccOp;
9352   for (unsigned i = 0; i < NumElts; i++)
9353     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9354 
9355   return Res;
9356 }
9357 
9358 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9359                                SelectionDAG &DAG) const {
9360   EVT VT = Node->getValueType(0);
9361   SDLoc dl(Node);
9362   bool isSigned = Node->getOpcode() == ISD::SREM;
9363   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9364   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9365   SDValue Dividend = Node->getOperand(0);
9366   SDValue Divisor = Node->getOperand(1);
9367   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9368     SDVTList VTs = DAG.getVTList(VT, VT);
9369     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9370     return true;
9371   }
9372   if (isOperationLegalOrCustom(DivOpc, VT)) {
9373     // X % Y -> X-X/Y*Y
9374     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9375     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9376     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9377     return true;
9378   }
9379   return false;
9380 }
9381 
9382 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9383                                             SelectionDAG &DAG) const {
9384   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9385   SDLoc dl(SDValue(Node, 0));
9386   SDValue Src = Node->getOperand(0);
9387 
9388   // DstVT is the result type, while SatVT is the size to which we saturate
9389   EVT SrcVT = Src.getValueType();
9390   EVT DstVT = Node->getValueType(0);
9391 
9392   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9393   unsigned SatWidth = SatVT.getScalarSizeInBits();
9394   unsigned DstWidth = DstVT.getScalarSizeInBits();
9395   assert(SatWidth <= DstWidth &&
9396          "Expected saturation width smaller than result width");
9397 
9398   // Determine minimum and maximum integer values and their corresponding
9399   // floating-point values.
9400   APInt MinInt, MaxInt;
9401   if (IsSigned) {
9402     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9403     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9404   } else {
9405     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9406     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9407   }
9408 
9409   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9410   // libcall emission cannot handle this. Large result types will fail.
9411   if (SrcVT == MVT::f16) {
9412     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9413     SrcVT = Src.getValueType();
9414   }
9415 
9416   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9417   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9418 
9419   APFloat::opStatus MinStatus =
9420       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9421   APFloat::opStatus MaxStatus =
9422       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9423   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9424                              !(MaxStatus & APFloat::opStatus::opInexact);
9425 
9426   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9427   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9428 
9429   // If the integer bounds are exactly representable as floats and min/max are
9430   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9431   // of comparisons and selects.
9432   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9433                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9434   if (AreExactFloatBounds && MinMaxLegal) {
9435     SDValue Clamped = Src;
9436 
9437     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9438     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9439     // Clamp by MaxFloat from above. NaN cannot occur.
9440     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9441     // Convert clamped value to integer.
9442     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9443                                   dl, DstVT, Clamped);
9444 
9445     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9446     // which will cast to zero.
9447     if (!IsSigned)
9448       return FpToInt;
9449 
9450     // Otherwise, select 0 if Src is NaN.
9451     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9452     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9453                            ISD::CondCode::SETUO);
9454   }
9455 
9456   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9457   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9458 
9459   // Result of direct conversion. The assumption here is that the operation is
9460   // non-trapping and it's fine to apply it to an out-of-range value if we
9461   // select it away later.
9462   SDValue FpToInt =
9463       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9464 
9465   SDValue Select = FpToInt;
9466 
9467   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9468   // MinInt if Src is NaN.
9469   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9470                            ISD::CondCode::SETULT);
9471   // If Src OGT MaxFloat, select MaxInt.
9472   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9473                            ISD::CondCode::SETOGT);
9474 
9475   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9476   // is already zero.
9477   if (!IsSigned)
9478     return Select;
9479 
9480   // Otherwise, select 0 if Src is NaN.
9481   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9482   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9483 }
9484 
9485 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9486                                            SelectionDAG &DAG) const {
9487   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9488   assert(Node->getValueType(0).isScalableVector() &&
9489          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9490 
9491   EVT VT = Node->getValueType(0);
9492   SDValue V1 = Node->getOperand(0);
9493   SDValue V2 = Node->getOperand(1);
9494   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9495   SDLoc DL(Node);
9496 
9497   // Expand through memory thusly:
9498   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9499   //  Store V1, Ptr
9500   //  Store V2, Ptr + sizeof(V1)
9501   //  If (Imm < 0)
9502   //    TrailingElts = -Imm
9503   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9504   //  else
9505   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9506   //  Res = Load Ptr
9507 
9508   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9509 
9510   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9511                                VT.getVectorElementCount() * 2);
9512   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9513   EVT PtrVT = StackPtr.getValueType();
9514   auto &MF = DAG.getMachineFunction();
9515   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9516   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9517 
9518   // Store the lo part of CONCAT_VECTORS(V1, V2)
9519   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9520   // Store the hi part of CONCAT_VECTORS(V1, V2)
9521   SDValue OffsetToV2 = DAG.getVScale(
9522       DL, PtrVT,
9523       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9524   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9525   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9526 
9527   if (Imm >= 0) {
9528     // Load back the required element. getVectorElementPointer takes care of
9529     // clamping the index if it's out-of-bounds.
9530     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9531     // Load the spliced result
9532     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9533                        MachinePointerInfo::getUnknownStack(MF));
9534   }
9535 
9536   uint64_t TrailingElts = -Imm;
9537 
9538   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9539   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9540   SDValue TrailingBytes =
9541       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9542 
9543   if (TrailingElts > VT.getVectorMinNumElements()) {
9544     SDValue VLBytes = DAG.getVScale(
9545         DL, PtrVT,
9546         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9547     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9548   }
9549 
9550   // Calculate the start address of the spliced result.
9551   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9552 
9553   // Load the spliced result
9554   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9555                      MachinePointerInfo::getUnknownStack(MF));
9556 }
9557 
9558 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9559                                            SDValue &LHS, SDValue &RHS,
9560                                            SDValue &CC, SDValue Mask,
9561                                            SDValue EVL, bool &NeedInvert,
9562                                            const SDLoc &dl, SDValue &Chain,
9563                                            bool IsSignaling) const {
9564   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9565   MVT OpVT = LHS.getSimpleValueType();
9566   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9567   NeedInvert = false;
9568   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9569   bool IsNonVP = !EVL;
9570   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9571   default:
9572     llvm_unreachable("Unknown condition code action!");
9573   case TargetLowering::Legal:
9574     // Nothing to do.
9575     break;
9576   case TargetLowering::Expand: {
9577     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9578     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9579       std::swap(LHS, RHS);
9580       CC = DAG.getCondCode(InvCC);
9581       return true;
9582     }
9583     // Swapping operands didn't work. Try inverting the condition.
9584     bool NeedSwap = false;
9585     InvCC = getSetCCInverse(CCCode, OpVT);
9586     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9587       // If inverting the condition is not enough, try swapping operands
9588       // on top of it.
9589       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9590       NeedSwap = true;
9591     }
9592     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9593       CC = DAG.getCondCode(InvCC);
9594       NeedInvert = true;
9595       if (NeedSwap)
9596         std::swap(LHS, RHS);
9597       return true;
9598     }
9599 
9600     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9601     unsigned Opc = 0;
9602     switch (CCCode) {
9603     default:
9604       llvm_unreachable("Don't know how to expand this condition!");
9605     case ISD::SETUO:
9606       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9607         CC1 = ISD::SETUNE;
9608         CC2 = ISD::SETUNE;
9609         Opc = ISD::OR;
9610         break;
9611       }
9612       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9613              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9614       NeedInvert = true;
9615       LLVM_FALLTHROUGH;
9616     case ISD::SETO:
9617       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9618              "If SETO is expanded, SETOEQ must be legal!");
9619       CC1 = ISD::SETOEQ;
9620       CC2 = ISD::SETOEQ;
9621       Opc = ISD::AND;
9622       break;
9623     case ISD::SETONE:
9624     case ISD::SETUEQ:
9625       // If the SETUO or SETO CC isn't legal, we might be able to use
9626       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9627       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9628       // the operands.
9629       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9630       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9631           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9632            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9633         CC1 = ISD::SETOGT;
9634         CC2 = ISD::SETOLT;
9635         Opc = ISD::OR;
9636         NeedInvert = ((unsigned)CCCode & 0x8U);
9637         break;
9638       }
9639       LLVM_FALLTHROUGH;
9640     case ISD::SETOEQ:
9641     case ISD::SETOGT:
9642     case ISD::SETOGE:
9643     case ISD::SETOLT:
9644     case ISD::SETOLE:
9645     case ISD::SETUNE:
9646     case ISD::SETUGT:
9647     case ISD::SETUGE:
9648     case ISD::SETULT:
9649     case ISD::SETULE:
9650       // If we are floating point, assign and break, otherwise fall through.
9651       if (!OpVT.isInteger()) {
9652         // We can use the 4th bit to tell if we are the unordered
9653         // or ordered version of the opcode.
9654         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9655         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9656         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9657         break;
9658       }
9659       // Fallthrough if we are unsigned integer.
9660       LLVM_FALLTHROUGH;
9661     case ISD::SETLE:
9662     case ISD::SETGT:
9663     case ISD::SETGE:
9664     case ISD::SETLT:
9665     case ISD::SETNE:
9666     case ISD::SETEQ:
9667       // If all combinations of inverting the condition and swapping operands
9668       // didn't work then we have no means to expand the condition.
9669       llvm_unreachable("Don't know how to expand this condition!");
9670     }
9671 
9672     SDValue SetCC1, SetCC2;
9673     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9674       // If we aren't the ordered or unorder operation,
9675       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9676       if (IsNonVP) {
9677         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9678         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9679       } else {
9680         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9681         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9682       }
9683     } else {
9684       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9685       if (IsNonVP) {
9686         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9687         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9688       } else {
9689         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9690         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9691       }
9692     }
9693     if (Chain)
9694       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9695                           SetCC2.getValue(1));
9696     if (IsNonVP)
9697       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9698     else {
9699       // Transform the binary opcode to the VP equivalent.
9700       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9701       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9702       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9703     }
9704     RHS = SDValue();
9705     CC = SDValue();
9706     return true;
9707   }
9708   }
9709   return false;
9710 }
9711