1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function *F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore noalias because it doesn't affect the call sequence.
59   AttributeList CallerAttrs = F->getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     unsigned Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
102                                                      unsigned ArgIdx) {
103   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment  = CS->getParamAlignment(ArgIdx);
114 }
115 
116 /// Generate a libcall taking the given operands as arguments and returning a
117 /// result of type RetVT.
118 std::pair<SDValue, SDValue>
119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
120                             ArrayRef<SDValue> Ops, bool isSigned,
121                             const SDLoc &dl, bool doesNotReturn,
122                             bool isReturnValueUsed) const {
123   TargetLowering::ArgListTy Args;
124   Args.reserve(Ops.size());
125 
126   TargetLowering::ArgListEntry Entry;
127   for (SDValue Op : Ops) {
128     Entry.Node = Op;
129     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
130     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
131     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Args.push_back(Entry);
133   }
134 
135   if (LC == RTLIB::UNKNOWN_LIBCALL)
136     report_fatal_error("Unsupported library call operation!");
137   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
138                                          getPointerTy(DAG.getDataLayout()));
139 
140   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
141   TargetLowering::CallLoweringInfo CLI(DAG);
142   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
143   CLI.setDebugLoc(dl)
144       .setChain(DAG.getEntryNode())
145       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
146       .setNoReturn(doesNotReturn)
147       .setDiscardResult(!isReturnValueUsed)
148       .setSExtResult(signExtend)
149       .setZExtResult(!signExtend);
150   return LowerCallTo(CLI);
151 }
152 
153 /// Soften the operands of a comparison. This code is shared among BR_CC,
154 /// SELECT_CC, and SETCC handlers.
155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
156                                          SDValue &NewLHS, SDValue &NewRHS,
157                                          ISD::CondCode &CCCode,
158                                          const SDLoc &dl) const {
159   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
160          && "Unsupported setcc type!");
161 
162   // Expand into one or more soft-fp libcall(s).
163   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
164   bool ShouldInvertCC = false;
165   switch (CCCode) {
166   case ISD::SETEQ:
167   case ISD::SETOEQ:
168     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
169           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
170           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
171     break;
172   case ISD::SETNE:
173   case ISD::SETUNE:
174     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
175           (VT == MVT::f64) ? RTLIB::UNE_F64 :
176           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
177     break;
178   case ISD::SETGE:
179   case ISD::SETOGE:
180     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
181           (VT == MVT::f64) ? RTLIB::OGE_F64 :
182           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
183     break;
184   case ISD::SETLT:
185   case ISD::SETOLT:
186     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187           (VT == MVT::f64) ? RTLIB::OLT_F64 :
188           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
189     break;
190   case ISD::SETLE:
191   case ISD::SETOLE:
192     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
193           (VT == MVT::f64) ? RTLIB::OLE_F64 :
194           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
195     break;
196   case ISD::SETGT:
197   case ISD::SETOGT:
198     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
199           (VT == MVT::f64) ? RTLIB::OGT_F64 :
200           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
201     break;
202   case ISD::SETUO:
203     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
204           (VT == MVT::f64) ? RTLIB::UO_F64 :
205           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
206     break;
207   case ISD::SETO:
208     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
209           (VT == MVT::f64) ? RTLIB::O_F64 :
210           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
211     break;
212   case ISD::SETONE:
213     // SETONE = SETOLT | SETOGT
214     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
215           (VT == MVT::f64) ? RTLIB::OLT_F64 :
216           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
217     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
218           (VT == MVT::f64) ? RTLIB::OGT_F64 :
219           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
220     break;
221   case ISD::SETUEQ:
222     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
223           (VT == MVT::f64) ? RTLIB::UO_F64 :
224           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
225     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
226           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
227           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
228     break;
229   default:
230     // Invert CC for unordered comparisons
231     ShouldInvertCC = true;
232     switch (CCCode) {
233     case ISD::SETULT:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
235             (VT == MVT::f64) ? RTLIB::OGE_F64 :
236             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
237       break;
238     case ISD::SETULE:
239       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
240             (VT == MVT::f64) ? RTLIB::OGT_F64 :
241             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
242       break;
243     case ISD::SETUGT:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
245             (VT == MVT::f64) ? RTLIB::OLE_F64 :
246             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
247       break;
248     case ISD::SETUGE:
249       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
250             (VT == MVT::f64) ? RTLIB::OLT_F64 :
251             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
252       break;
253     default: llvm_unreachable("Do not know how to soften this setcc!");
254     }
255   }
256 
257   // Use the target specific return value for comparions lib calls.
258   EVT RetVT = getCmpLibcallReturnType();
259   SDValue Ops[2] = {NewLHS, NewRHS};
260   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
261                        dl).first;
262   NewRHS = DAG.getConstant(0, dl, RetVT);
263 
264   CCCode = getCmpLibcallCC(LC1);
265   if (ShouldInvertCC)
266     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
267 
268   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
269     SDValue Tmp = DAG.getNode(
270         ISD::SETCC, dl,
271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
272         NewLHS, NewRHS, DAG.getCondCode(CCCode));
273     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
274                          dl).first;
275     NewLHS = DAG.getNode(
276         ISD::SETCC, dl,
277         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
278         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
279     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
280     NewRHS = SDValue();
281   }
282 }
283 
284 /// Return the entry encoding for a jump table in the current function. The
285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
286 unsigned TargetLowering::getJumpTableEncoding() const {
287   // In non-pic modes, just use the address of a block.
288   if (!isPositionIndependent())
289     return MachineJumpTableInfo::EK_BlockAddress;
290 
291   // In PIC mode, if the target supports a GPRel32 directive, use it.
292   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
293     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
294 
295   // Otherwise, use a label difference.
296   return MachineJumpTableInfo::EK_LabelDifference32;
297 }
298 
299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
300                                                  SelectionDAG &DAG) const {
301   // If our PIC model is GP relative, use the global offset table as the base.
302   unsigned JTEncoding = getJumpTableEncoding();
303 
304   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
305       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
306     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
307 
308   return Table;
309 }
310 
311 /// This returns the relocation base for the given PIC jumptable, the same as
312 /// getPICJumpTableRelocBase, but as an MCExpr.
313 const MCExpr *
314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
315                                              unsigned JTI,MCContext &Ctx) const{
316   // The normal PIC reloc base is the label at the start of the jump table.
317   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
318 }
319 
320 bool
321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
322   const TargetMachine &TM = getTargetMachine();
323   const GlobalValue *GV = GA->getGlobal();
324 
325   // If the address is not even local to this DSO we will have to load it from
326   // a got and then add the offset.
327   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
328     return false;
329 
330   // If the code is position independent we will have to add a base register.
331   if (isPositionIndependent())
332     return false;
333 
334   // Otherwise we can do it.
335   return true;
336 }
337 
338 //===----------------------------------------------------------------------===//
339 //  Optimization Methods
340 //===----------------------------------------------------------------------===//
341 
342 /// If the specified instruction has a constant integer operand and there are
343 /// bits set in that constant that are not demanded, then clear those bits and
344 /// return true.
345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
346                                             TargetLoweringOpt &TLO) const {
347   SelectionDAG &DAG = TLO.DAG;
348   SDLoc DL(Op);
349   unsigned Opcode = Op.getOpcode();
350 
351   // Do target-specific constant optimization.
352   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
353     return TLO.New.getNode();
354 
355   // FIXME: ISD::SELECT, ISD::SELECT_CC
356   switch (Opcode) {
357   default:
358     break;
359   case ISD::XOR:
360   case ISD::AND:
361   case ISD::OR: {
362     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
363     if (!Op1C)
364       return false;
365 
366     // If this is a 'not' op, don't touch it because that's a canonical form.
367     const APInt &C = Op1C->getAPIntValue();
368     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
369       return false;
370 
371     if (!C.isSubsetOf(Demanded)) {
372       EVT VT = Op.getValueType();
373       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
374       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
375       return TLO.CombineTo(Op, NewOp);
376     }
377 
378     break;
379   }
380   }
381 
382   return false;
383 }
384 
385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
387 /// generalized for targets with other types of implicit widening casts.
388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
389                                       const APInt &Demanded,
390                                       TargetLoweringOpt &TLO) const {
391   assert(Op.getNumOperands() == 2 &&
392          "ShrinkDemandedOp only supports binary operators!");
393   assert(Op.getNode()->getNumValues() == 1 &&
394          "ShrinkDemandedOp only supports nodes with one result!");
395 
396   SelectionDAG &DAG = TLO.DAG;
397   SDLoc dl(Op);
398 
399   // Early return, as this function cannot handle vector types.
400   if (Op.getValueType().isVector())
401     return false;
402 
403   // Don't do this if the node has another user, which may require the
404   // full value.
405   if (!Op.getNode()->hasOneUse())
406     return false;
407 
408   // Search for the smallest integer type with free casts to and from
409   // Op's type. For expedience, just check power-of-2 integer types.
410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
411   unsigned DemandedSize = Demanded.getActiveBits();
412   unsigned SmallVTBits = DemandedSize;
413   if (!isPowerOf2_32(SmallVTBits))
414     SmallVTBits = NextPowerOf2(SmallVTBits);
415   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
416     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
417     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
418         TLI.isZExtFree(SmallVT, Op.getValueType())) {
419       // We found a type with free casts.
420       SDValue X = DAG.getNode(
421           Op.getOpcode(), dl, SmallVT,
422           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
424       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
425       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
426       return TLO.CombineTo(Op, Z);
427     }
428   }
429   return false;
430 }
431 
432 bool
433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
434                                      const APInt &Demanded,
435                                      DAGCombinerInfo &DCI,
436                                      TargetLoweringOpt &TLO) const {
437   SDValue Op = User->getOperand(OpIdx);
438   KnownBits Known;
439 
440   if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true))
441     return false;
442 
443 
444   // Old will not always be the same as Op.  For example:
445   //
446   // Demanded = 0xffffff
447   // Op = i64 truncate (i32 and x, 0xffffff)
448   // In this case simplify demand bits will want to replace the 'and' node
449   // with the value 'x', which will give us:
450   // Old = i32 and x, 0xffffff
451   // New = x
452   if (TLO.Old.hasOneUse()) {
453     // For the one use case, we just commit the change.
454     DCI.CommitTargetLoweringOpt(TLO);
455     return true;
456   }
457 
458   // If Old has more than one use then it must be Op, because the
459   // AssumeSingleUse flag is not propogated to recursive calls of
460   // SimplifyDemanded bits, so the only node with multiple use that
461   // it will attempt to combine will be opt.
462   assert(TLO.Old == Op);
463 
464   SmallVector <SDValue, 4> NewOps;
465   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
466     if (i == OpIdx) {
467       NewOps.push_back(TLO.New);
468       continue;
469     }
470     NewOps.push_back(User->getOperand(i));
471   }
472   TLO.DAG.UpdateNodeOperands(User, NewOps);
473   // Op has less users now, so we may be able to perform additional combines
474   // with it.
475   DCI.AddToWorklist(Op.getNode());
476   // User's operands have been updated, so we may be able to do new combines
477   // with it.
478   DCI.AddToWorklist(User);
479   return true;
480 }
481 
482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask,
483                                           DAGCombinerInfo &DCI) const {
484 
485   SelectionDAG &DAG = DCI.DAG;
486   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
487                         !DCI.isBeforeLegalizeOps());
488   KnownBits Known;
489 
490   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO);
491   if (Simplified)
492     DCI.CommitTargetLoweringOpt(TLO);
493   return Simplified;
494 }
495 
496 /// Look at Op. At this point, we know that only the DemandedMask bits of the
497 /// result of Op are ever used downstream. If we can use this information to
498 /// simplify Op, create a new simplified DAG node and return true, returning the
499 /// original and new nodes in Old and New. Otherwise, analyze the expression and
500 /// return a mask of Known bits for the expression (used to simplify the
501 /// caller).  The Known bits may only be accurate for those bits in the
502 /// DemandedMask.
503 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
504                                           const APInt &DemandedMask,
505                                           KnownBits &Known,
506                                           TargetLoweringOpt &TLO,
507                                           unsigned Depth,
508                                           bool AssumeSingleUse) const {
509   unsigned BitWidth = DemandedMask.getBitWidth();
510   assert(Op.getScalarValueSizeInBits() == BitWidth &&
511          "Mask size mismatches value type size!");
512   APInt NewMask = DemandedMask;
513   SDLoc dl(Op);
514   auto &DL = TLO.DAG.getDataLayout();
515 
516   // Don't know anything.
517   Known = KnownBits(BitWidth);
518 
519   // Other users may use these bits.
520   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
521     if (Depth != 0) {
522       // If not at the root, Just compute the Known bits to
523       // simplify things downstream.
524       TLO.DAG.computeKnownBits(Op, Known, Depth);
525       return false;
526     }
527     // If this is the root being simplified, allow it to have multiple uses,
528     // just set the NewMask to all bits.
529     NewMask = APInt::getAllOnesValue(BitWidth);
530   } else if (DemandedMask == 0) {
531     // Not demanding any bits from Op.
532     if (!Op.isUndef())
533       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
534     return false;
535   } else if (Depth == 6) {        // Limit search depth.
536     return false;
537   }
538 
539   KnownBits Known2, KnownOut;
540   switch (Op.getOpcode()) {
541   case ISD::Constant:
542     // We know all of the bits for a constant!
543     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
544     Known.Zero = ~Known.One;
545     return false;   // Don't fall through, will infinitely loop.
546   case ISD::BUILD_VECTOR:
547     // Collect the known bits that are shared by every constant vector element.
548     Known.Zero.setAllBits(); Known.One.setAllBits();
549     for (SDValue SrcOp : Op->ops()) {
550       if (!isa<ConstantSDNode>(SrcOp)) {
551         // We can only handle all constant values - bail out with no known bits.
552         Known = KnownBits(BitWidth);
553         return false;
554       }
555       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
556       Known2.Zero = ~Known2.One;
557 
558       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
559       if (Known2.One.getBitWidth() != BitWidth) {
560         assert(Known2.getBitWidth() > BitWidth &&
561                "Expected BUILD_VECTOR implicit truncation");
562         Known2 = Known2.trunc(BitWidth);
563       }
564 
565       // Known bits are the values that are shared by every element.
566       // TODO: support per-element known bits.
567       Known.One &= Known2.One;
568       Known.Zero &= Known2.Zero;
569     }
570     return false;   // Don't fall through, will infinitely loop.
571   case ISD::AND:
572     // If the RHS is a constant, check to see if the LHS would be zero without
573     // using the bits from the RHS.  Below, we use knowledge about the RHS to
574     // simplify the LHS, here we're using information from the LHS to simplify
575     // the RHS.
576     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) {
577       SDValue Op0 = Op.getOperand(0);
578       KnownBits LHSKnown;
579       // Do not increment Depth here; that can cause an infinite loop.
580       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
581       // If the LHS already has zeros where RHSC does, this and is dead.
582       if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
583         return TLO.CombineTo(Op, Op0);
584 
585       // If any of the set bits in the RHS are known zero on the LHS, shrink
586       // the constant.
587       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO))
588         return true;
589 
590       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
591       // constant, but if this 'and' is only clearing bits that were just set by
592       // the xor, then this 'and' can be eliminated by shrinking the mask of
593       // the xor. For example, for a 32-bit X:
594       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
595       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
596           LHSKnown.One == ~RHSC->getAPIntValue()) {
597         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
598                                       Op0.getOperand(0), Op.getOperand(1));
599         return TLO.CombineTo(Op, Xor);
600       }
601     }
602 
603     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
604       return true;
605     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
606     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask,
607                              Known2, TLO, Depth+1))
608       return true;
609     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
610 
611     // If all of the demanded bits are known one on one side, return the other.
612     // These bits cannot contribute to the result of the 'and'.
613     if (NewMask.isSubsetOf(Known2.Zero | Known.One))
614       return TLO.CombineTo(Op, Op.getOperand(0));
615     if (NewMask.isSubsetOf(Known.Zero | Known2.One))
616       return TLO.CombineTo(Op, Op.getOperand(1));
617     // If all of the demanded bits in the inputs are known zeros, return zero.
618     if (NewMask.isSubsetOf(Known.Zero | Known2.Zero))
619       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
620     // If the RHS is a constant, see if we can simplify it.
621     if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO))
622       return true;
623     // If the operation can be done in a smaller type, do so.
624     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
625       return true;
626 
627     // Output known-1 bits are only known if set in both the LHS & RHS.
628     Known.One &= Known2.One;
629     // Output known-0 are known to be clear if zero in either the LHS | RHS.
630     Known.Zero |= Known2.Zero;
631     break;
632   case ISD::OR:
633     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
634       return true;
635     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
636     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask,
637                              Known2, TLO, Depth+1))
638       return true;
639     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
640 
641     // If all of the demanded bits are known zero on one side, return the other.
642     // These bits cannot contribute to the result of the 'or'.
643     if (NewMask.isSubsetOf(Known2.One | Known.Zero))
644       return TLO.CombineTo(Op, Op.getOperand(0));
645     if (NewMask.isSubsetOf(Known.One | Known2.Zero))
646       return TLO.CombineTo(Op, Op.getOperand(1));
647     // If the RHS is a constant, see if we can simplify it.
648     if (ShrinkDemandedConstant(Op, NewMask, TLO))
649       return true;
650     // If the operation can be done in a smaller type, do so.
651     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
652       return true;
653 
654     // Output known-0 bits are only known if clear in both the LHS & RHS.
655     Known.Zero &= Known2.Zero;
656     // Output known-1 are known to be set if set in either the LHS | RHS.
657     Known.One |= Known2.One;
658     break;
659   case ISD::XOR: {
660     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
661       return true;
662     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
663     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1))
664       return true;
665     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
666 
667     // If all of the demanded bits are known zero on one side, return the other.
668     // These bits cannot contribute to the result of the 'xor'.
669     if (NewMask.isSubsetOf(Known.Zero))
670       return TLO.CombineTo(Op, Op.getOperand(0));
671     if (NewMask.isSubsetOf(Known2.Zero))
672       return TLO.CombineTo(Op, Op.getOperand(1));
673     // If the operation can be done in a smaller type, do so.
674     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
675       return true;
676 
677     // If all of the unknown bits are known to be zero on one side or the other
678     // (but not both) turn this into an *inclusive* or.
679     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
680     if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0)
681       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
682                                                Op.getOperand(0),
683                                                Op.getOperand(1)));
684 
685     // Output known-0 bits are known if clear or set in both the LHS & RHS.
686     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
687     // Output known-1 are known to be set if set in only one of the LHS, RHS.
688     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
689 
690     // If all of the demanded bits on one side are known, and all of the set
691     // bits on that side are also known to be set on the other side, turn this
692     // into an AND, as we know the bits will be cleared.
693     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
694     // NB: it is okay if more bits are known than are requested
695     if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side
696       if (Known.One == Known2.One) { // set bits are the same on both sides
697         EVT VT = Op.getValueType();
698         SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT);
699         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
700                                                  Op.getOperand(0), ANDC));
701       }
702     }
703 
704     // If the RHS is a constant, see if we can change it. Don't alter a -1
705     // constant because that's a 'not' op, and that is better for combining and
706     // codegen.
707     ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1));
708     if (C && !C->isAllOnesValue()) {
709       if (NewMask.isSubsetOf(C->getAPIntValue())) {
710         // We're flipping all demanded bits. Flip the undemanded bits too.
711         SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), Op.getValueType());
712         return TLO.CombineTo(Op, New);
713       }
714       // If we can't turn this into a 'not', try to shrink the constant.
715       if (ShrinkDemandedConstant(Op, NewMask, TLO))
716         return true;
717     }
718 
719     Known = std::move(KnownOut);
720     break;
721   }
722   case ISD::SELECT:
723     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1))
724       return true;
725     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1))
726       return true;
727     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
728     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
729 
730     // If the operands are constants, see if we can simplify them.
731     if (ShrinkDemandedConstant(Op, NewMask, TLO))
732       return true;
733 
734     // Only known if known in both the LHS and RHS.
735     Known.One &= Known2.One;
736     Known.Zero &= Known2.Zero;
737     break;
738   case ISD::SELECT_CC:
739     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1))
740       return true;
741     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1))
742       return true;
743     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
744     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
745 
746     // If the operands are constants, see if we can simplify them.
747     if (ShrinkDemandedConstant(Op, NewMask, TLO))
748       return true;
749 
750     // Only known if known in both the LHS and RHS.
751     Known.One &= Known2.One;
752     Known.Zero &= Known2.Zero;
753     break;
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth &&
762         getBooleanContents(Op.getValueType()) ==
763             BooleanContent::ZeroOrNegativeOneBooleanContent) {
764       // If we're testing X < 0, then this compare isn't needed - just use X!
765       // FIXME: We're limiting to integer types here, but this should also work
766       // if we don't care about FP signed-zero. The use of SETLT with FP means
767       // that we don't care about NaNs.
768       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
769           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
770         return TLO.CombineTo(Op, Op0);
771 
772       // TODO: Should we check for other forms of sign-bit comparisons?
773       // Examples: X <= -1, X >= 0
774     }
775     if (getBooleanContents(Op0.getValueType()) ==
776             TargetLowering::ZeroOrOneBooleanContent &&
777         BitWidth > 1)
778       Known.Zero.setBitsFrom(1);
779     break;
780   }
781   case ISD::SHL:
782     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
783       SDValue InOp = Op.getOperand(0);
784 
785       // If the shift count is an invalid immediate, don't do anything.
786       if (SA->getAPIntValue().uge(BitWidth))
787         break;
788 
789       unsigned ShAmt = SA->getZExtValue();
790 
791       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
792       // single shift.  We can do this if the bottom bits (which are shifted
793       // out) are never demanded.
794       if (InOp.getOpcode() == ISD::SRL) {
795         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
796           if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
797             if (SA2->getAPIntValue().ult(BitWidth)) {
798               unsigned C1 = SA2->getZExtValue();
799               unsigned Opc = ISD::SHL;
800               int Diff = ShAmt-C1;
801               if (Diff < 0) {
802                 Diff = -Diff;
803                 Opc = ISD::SRL;
804               }
805 
806               SDValue NewSA =
807                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
808               EVT VT = Op.getValueType();
809               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
810                                                        InOp.getOperand(0),
811                                                        NewSA));
812             }
813           }
814         }
815       }
816 
817       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1))
818         return true;
819 
820       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
821       // are not demanded. This will likely allow the anyext to be folded away.
822       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
823         SDValue InnerOp = InOp.getOperand(0);
824         EVT InnerVT = InnerOp.getValueType();
825         unsigned InnerBits = InnerVT.getScalarSizeInBits();
826         if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits &&
827             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
828           EVT ShTy = getShiftAmountTy(InnerVT, DL);
829           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
830             ShTy = InnerVT;
831           SDValue NarrowShl =
832             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
833                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
834           return
835             TLO.CombineTo(Op,
836                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
837                                           NarrowShl));
838         }
839         // Repeat the SHL optimization above in cases where an extension
840         // intervenes: (shl (anyext (shr x, c1)), c2) to
841         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
842         // aren't demanded (as above) and that the shifted upper c1 bits of
843         // x aren't demanded.
844         if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
845             InnerOp.hasOneUse()) {
846           if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) {
847             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
848             if (InnerShAmt < ShAmt &&
849                 InnerShAmt < InnerBits &&
850                 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) &&
851                 NewMask.countTrailingZeros() >= ShAmt) {
852               SDValue NewSA =
853                 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
854                                     Op.getOperand(1).getValueType());
855               EVT VT = Op.getValueType();
856               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
857                                                InnerOp.getOperand(0));
858               return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
859                                                        NewExt, NewSA));
860             }
861           }
862         }
863       }
864 
865       Known.Zero <<= ShAmt;
866       Known.One  <<= ShAmt;
867       // low bits known zero.
868       Known.Zero.setLowBits(ShAmt);
869     }
870     break;
871   case ISD::SRL:
872     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
873       SDValue InOp = Op.getOperand(0);
874 
875       // If the shift count is an invalid immediate, don't do anything.
876       if (SA->getAPIntValue().uge(BitWidth))
877         break;
878 
879       unsigned ShAmt = SA->getZExtValue();
880       APInt InDemandedMask = (NewMask << ShAmt);
881 
882       // If the shift is exact, then it does demand the low bits (and knows that
883       // they are zero).
884       if (Op->getFlags().hasExact())
885         InDemandedMask.setLowBits(ShAmt);
886 
887       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
888       // single shift.  We can do this if the top bits (which are shifted out)
889       // are never demanded.
890       if (InOp.getOpcode() == ISD::SHL) {
891         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
892           if (ShAmt &&
893               (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
894             if (SA2->getAPIntValue().ult(BitWidth)) {
895               unsigned C1 = SA2->getZExtValue();
896               unsigned Opc = ISD::SRL;
897               int Diff = ShAmt-C1;
898               if (Diff < 0) {
899                 Diff = -Diff;
900                 Opc = ISD::SHL;
901               }
902 
903               SDValue NewSA =
904                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
905               EVT VT = Op.getValueType();
906               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
907                                                        InOp.getOperand(0),
908                                                        NewSA));
909             }
910           }
911         }
912       }
913 
914       // Compute the new bits that are at the top now.
915       if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1))
916         return true;
917       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
918       Known.Zero.lshrInPlace(ShAmt);
919       Known.One.lshrInPlace(ShAmt);
920 
921       Known.Zero.setHighBits(ShAmt);  // High bits known zero.
922     }
923     break;
924   case ISD::SRA:
925     // If this is an arithmetic shift right and only the low-bit is set, we can
926     // always convert this into a logical shr, even if the shift amount is
927     // variable.  The low bit of the shift cannot be an input sign bit unless
928     // the shift amount is >= the size of the datatype, which is undefined.
929     if (NewMask.isOneValue())
930       return TLO.CombineTo(Op,
931                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
932                                            Op.getOperand(0), Op.getOperand(1)));
933 
934     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
935       EVT VT = Op.getValueType();
936 
937       // If the shift count is an invalid immediate, don't do anything.
938       if (SA->getAPIntValue().uge(BitWidth))
939         break;
940 
941       unsigned ShAmt = SA->getZExtValue();
942       APInt InDemandedMask = (NewMask << ShAmt);
943 
944       // If the shift is exact, then it does demand the low bits (and knows that
945       // they are zero).
946       if (Op->getFlags().hasExact())
947         InDemandedMask.setLowBits(ShAmt);
948 
949       // If any of the demanded bits are produced by the sign extension, we also
950       // demand the input sign bit.
951       if (NewMask.countLeadingZeros() < ShAmt)
952         InDemandedMask.setSignBit();
953 
954       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO,
955                                Depth+1))
956         return true;
957       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
958       Known.Zero.lshrInPlace(ShAmt);
959       Known.One.lshrInPlace(ShAmt);
960 
961       // If the input sign bit is known to be zero, or if none of the top bits
962       // are demanded, turn this into an unsigned shift right.
963       if (Known.Zero[BitWidth - ShAmt - 1] ||
964           NewMask.countLeadingZeros() >= ShAmt) {
965         SDNodeFlags Flags;
966         Flags.setExact(Op->getFlags().hasExact());
967         return TLO.CombineTo(Op,
968                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
969                                              Op.getOperand(1), Flags));
970       }
971 
972       int Log2 = NewMask.exactLogBase2();
973       if (Log2 >= 0) {
974         // The bit must come from the sign.
975         SDValue NewSA =
976           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
977                               Op.getOperand(1).getValueType());
978         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
979                                                  Op.getOperand(0), NewSA));
980       }
981 
982       if (Known.One[BitWidth - ShAmt - 1])
983         // New bits are known one.
984         Known.One.setHighBits(ShAmt);
985     }
986     break;
987   case ISD::SIGN_EXTEND_INREG: {
988     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
989 
990     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
991     // If we only care about the highest bit, don't bother shifting right.
992     if (MsbMask == NewMask) {
993       unsigned ShAmt = ExVT.getScalarSizeInBits();
994       SDValue InOp = Op.getOperand(0);
995       unsigned VTBits = Op->getValueType(0).getScalarSizeInBits();
996       bool AlreadySignExtended =
997         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
998       // However if the input is already sign extended we expect the sign
999       // extension to be dropped altogether later and do not simplify.
1000       if (!AlreadySignExtended) {
1001         // Compute the correct shift amount type, which must be getShiftAmountTy
1002         // for scalar types after legalization.
1003         EVT ShiftAmtTy = Op.getValueType();
1004         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1005           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1006 
1007         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
1008                                                ShiftAmtTy);
1009         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1010                                                  Op.getValueType(), InOp,
1011                                                  ShiftAmt));
1012       }
1013     }
1014 
1015     // Sign extension.  Compute the demanded bits in the result that are not
1016     // present in the input.
1017     APInt NewBits =
1018       APInt::getHighBitsSet(BitWidth,
1019                             BitWidth - ExVT.getScalarSizeInBits());
1020 
1021     // If none of the extended bits are demanded, eliminate the sextinreg.
1022     if ((NewBits & NewMask) == 0)
1023       return TLO.CombineTo(Op, Op.getOperand(0));
1024 
1025     APInt InSignBit =
1026       APInt::getSignMask(ExVT.getScalarSizeInBits()).zext(BitWidth);
1027     APInt InputDemandedBits =
1028       APInt::getLowBitsSet(BitWidth,
1029                            ExVT.getScalarSizeInBits()) &
1030       NewMask;
1031 
1032     // Since the sign extended bits are demanded, we know that the sign
1033     // bit is demanded.
1034     InputDemandedBits |= InSignBit;
1035 
1036     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1037                              Known, TLO, Depth+1))
1038       return true;
1039     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1040 
1041     // If the sign bit of the input is known set or clear, then we know the
1042     // top bits of the result.
1043 
1044     // If the input sign bit is known zero, convert this into a zero extension.
1045     if (Known.Zero.intersects(InSignBit))
1046       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1047                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1048 
1049     if (Known.One.intersects(InSignBit)) {    // Input sign bit known set
1050       Known.One |= NewBits;
1051       Known.Zero &= ~NewBits;
1052     } else {                       // Input sign bit unknown
1053       Known.Zero &= ~NewBits;
1054       Known.One &= ~NewBits;
1055     }
1056     break;
1057   }
1058   case ISD::BUILD_PAIR: {
1059     EVT HalfVT = Op.getOperand(0).getValueType();
1060     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1061 
1062     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1063     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1064 
1065     KnownBits KnownLo, KnownHi;
1066 
1067     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1068       return true;
1069 
1070     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1071       return true;
1072 
1073     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1074                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1075 
1076     Known.One = KnownLo.One.zext(BitWidth) |
1077                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1078     break;
1079   }
1080   case ISD::ZERO_EXTEND: {
1081     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1082     APInt InMask = NewMask.trunc(OperandBitWidth);
1083 
1084     // If none of the top bits are demanded, convert this into an any_extend.
1085     APInt NewBits =
1086       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1087     if (!NewBits.intersects(NewMask))
1088       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1089                                                Op.getValueType(),
1090                                                Op.getOperand(0)));
1091 
1092     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1093       return true;
1094     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1095     Known = Known.zext(BitWidth);
1096     Known.Zero |= NewBits;
1097     break;
1098   }
1099   case ISD::SIGN_EXTEND: {
1100     EVT InVT = Op.getOperand(0).getValueType();
1101     unsigned InBits = InVT.getScalarSizeInBits();
1102     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1103     APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1);
1104     APInt NewBits   = ~InMask & NewMask;
1105 
1106     // If none of the top bits are demanded, convert this into an any_extend.
1107     if (NewBits == 0)
1108       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1109                                               Op.getValueType(),
1110                                               Op.getOperand(0)));
1111 
1112     // Since some of the sign extended bits are demanded, we know that the sign
1113     // bit is demanded.
1114     APInt InDemandedBits = InMask & NewMask;
1115     InDemandedBits |= InSignBit;
1116     InDemandedBits = InDemandedBits.trunc(InBits);
1117 
1118     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO,
1119                              Depth+1))
1120       return true;
1121     Known = Known.zext(BitWidth);
1122 
1123     // If the sign bit is known zero, convert this to a zero extend.
1124     if (Known.Zero.intersects(InSignBit))
1125       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1126                                                Op.getValueType(),
1127                                                Op.getOperand(0)));
1128 
1129     // If the sign bit is known one, the top bits match.
1130     if (Known.One.intersects(InSignBit)) {
1131       Known.One |= NewBits;
1132       assert((Known.Zero & NewBits) == 0);
1133     } else {   // Otherwise, top bits aren't known.
1134       assert((Known.One & NewBits) == 0);
1135       assert((Known.Zero & NewBits) == 0);
1136     }
1137     break;
1138   }
1139   case ISD::ANY_EXTEND: {
1140     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1141     APInt InMask = NewMask.trunc(OperandBitWidth);
1142     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1143       return true;
1144     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1145     Known = Known.zext(BitWidth);
1146     break;
1147   }
1148   case ISD::TRUNCATE: {
1149     // Simplify the input, using demanded bit information, and compute the known
1150     // zero/one bits live out.
1151     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1152     APInt TruncMask = NewMask.zext(OperandBitWidth);
1153     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1))
1154       return true;
1155     Known = Known.trunc(BitWidth);
1156 
1157     // If the input is only used by this truncate, see if we can shrink it based
1158     // on the known demanded bits.
1159     if (Op.getOperand(0).getNode()->hasOneUse()) {
1160       SDValue In = Op.getOperand(0);
1161       switch (In.getOpcode()) {
1162       default: break;
1163       case ISD::SRL:
1164         // Shrink SRL by a constant if none of the high bits shifted in are
1165         // demanded.
1166         if (TLO.LegalTypes() &&
1167             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1168           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1169           // undesirable.
1170           break;
1171         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1172         if (!ShAmt)
1173           break;
1174         SDValue Shift = In.getOperand(1);
1175         if (TLO.LegalTypes()) {
1176           uint64_t ShVal = ShAmt->getZExtValue();
1177           Shift = TLO.DAG.getConstant(ShVal, dl,
1178                                       getShiftAmountTy(Op.getValueType(), DL));
1179         }
1180 
1181         if (ShAmt->getZExtValue() < BitWidth) {
1182           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1183                                                  OperandBitWidth - BitWidth);
1184           HighBits.lshrInPlace(ShAmt->getZExtValue());
1185           HighBits = HighBits.trunc(BitWidth);
1186 
1187           if (!(HighBits & NewMask)) {
1188             // None of the shifted in bits are needed.  Add a truncate of the
1189             // shift input, then shift it.
1190             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1191                                                Op.getValueType(),
1192                                                In.getOperand(0));
1193             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1194                                                      Op.getValueType(),
1195                                                      NewTrunc,
1196                                                      Shift));
1197           }
1198         }
1199         break;
1200       }
1201     }
1202 
1203     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1204     break;
1205   }
1206   case ISD::AssertZext: {
1207     // AssertZext demands all of the high bits, plus any of the low bits
1208     // demanded by its users.
1209     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1210     APInt InMask = APInt::getLowBitsSet(BitWidth,
1211                                         VT.getSizeInBits());
1212     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1213                              Known, TLO, Depth+1))
1214       return true;
1215     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1216 
1217     Known.Zero |= ~InMask;
1218     break;
1219   }
1220   case ISD::BITCAST:
1221     // If this is an FP->Int bitcast and if the sign bit is the only
1222     // thing demanded, turn this into a FGETSIGN.
1223     if (!TLO.LegalOperations() &&
1224         !Op.getValueType().isVector() &&
1225         !Op.getOperand(0).getValueType().isVector() &&
1226         NewMask == APInt::getSignMask(Op.getValueSizeInBits()) &&
1227         Op.getOperand(0).getValueType().isFloatingPoint()) {
1228       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1229       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1230       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1231            Op.getOperand(0).getValueType() != MVT::f128) {
1232         // Cannot eliminate/lower SHL for f128 yet.
1233         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1234         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1235         // place.  We expect the SHL to be eliminated by other optimizations.
1236         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1237         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1238         if (!OpVTLegal && OpVTSizeInBits > 32)
1239           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1240         unsigned ShVal = Op.getValueSizeInBits() - 1;
1241         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1242         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1243                                                  Op.getValueType(),
1244                                                  Sign, ShAmt));
1245       }
1246     }
1247     break;
1248   case ISD::ADD:
1249   case ISD::MUL:
1250   case ISD::SUB: {
1251     // Add, Sub, and Mul don't demand any bits in positions beyond that
1252     // of the highest bit demanded of them.
1253     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1254                                         BitWidth - NewMask.countLeadingZeros());
1255     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, Known2, TLO, Depth+1) ||
1256         SimplifyDemandedBits(Op.getOperand(1), LoMask, Known2, TLO, Depth+1) ||
1257         // See if the operation should be performed at a smaller bit width.
1258         ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) {
1259       SDNodeFlags Flags = Op.getNode()->getFlags();
1260       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1261         // Disable the nsw and nuw flags. We can no longer guarantee that we
1262         // won't wrap after simplification.
1263         Flags.setNoSignedWrap(false);
1264         Flags.setNoUnsignedWrap(false);
1265         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
1266                                         Op.getOperand(0), Op.getOperand(1),
1267                                         Flags);
1268         return TLO.CombineTo(Op, NewOp);
1269       }
1270       return true;
1271     }
1272     LLVM_FALLTHROUGH;
1273   }
1274   default:
1275     // Just use computeKnownBits to compute output bits.
1276     TLO.DAG.computeKnownBits(Op, Known, Depth);
1277     break;
1278   }
1279 
1280   // If we know the value of all of the demanded bits, return this as a
1281   // constant.
1282   if (NewMask.isSubsetOf(Known.Zero|Known.One)) {
1283     // Avoid folding to a constant if any OpaqueConstant is involved.
1284     const SDNode *N = Op.getNode();
1285     for (SDNodeIterator I = SDNodeIterator::begin(N),
1286          E = SDNodeIterator::end(N); I != E; ++I) {
1287       SDNode *Op = *I;
1288       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1289         if (C->isOpaque())
1290           return false;
1291     }
1292     return TLO.CombineTo(Op,
1293                          TLO.DAG.getConstant(Known.One, dl, Op.getValueType()));
1294   }
1295 
1296   return false;
1297 }
1298 
1299 /// Determine which of the bits specified in Mask are known to be either zero or
1300 /// one and return them in the Known.
1301 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1302                                                    KnownBits &Known,
1303                                                    const APInt &DemandedElts,
1304                                                    const SelectionDAG &DAG,
1305                                                    unsigned Depth) const {
1306   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1307           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1308           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1309           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1310          "Should use MaskedValueIsZero if you don't know whether Op"
1311          " is a target node!");
1312   Known.resetAll();
1313 }
1314 
1315 /// This method can be implemented by targets that want to expose additional
1316 /// information about sign bits to the DAG Combiner.
1317 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1318                                                          const APInt &,
1319                                                          const SelectionDAG &,
1320                                                          unsigned Depth) const {
1321   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1322           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1323           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1324           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1325          "Should use ComputeNumSignBits if you don't know whether Op"
1326          " is a target node!");
1327   return 1;
1328 }
1329 
1330 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
1331 // work with truncating build vectors and vectors with elements of less than
1332 // 8 bits.
1333 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1334   if (!N)
1335     return false;
1336 
1337   APInt CVal;
1338   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
1339     CVal = CN->getAPIntValue();
1340   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
1341     auto *CN = BV->getConstantSplatNode();
1342     if (!CN)
1343       return false;
1344 
1345     // If this is a truncating build vector, truncate the splat value.
1346     // Otherwise, we may fail to match the expected values below.
1347     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
1348     CVal = CN->getAPIntValue();
1349     if (BVEltWidth < CVal.getBitWidth())
1350       CVal = CVal.trunc(BVEltWidth);
1351   } else {
1352     return false;
1353   }
1354 
1355   switch (getBooleanContents(N->getValueType(0))) {
1356   case UndefinedBooleanContent:
1357     return CVal[0];
1358   case ZeroOrOneBooleanContent:
1359     return CVal.isOneValue();
1360   case ZeroOrNegativeOneBooleanContent:
1361     return CVal.isAllOnesValue();
1362   }
1363 
1364   llvm_unreachable("Invalid boolean contents");
1365 }
1366 
1367 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
1368                                         const SDLoc &DL) const {
1369   unsigned ElementWidth = VT.getScalarSizeInBits();
1370   APInt TrueInt =
1371       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
1372           ? APInt(ElementWidth, 1)
1373           : APInt::getAllOnesValue(ElementWidth);
1374   return DAG.getConstant(TrueInt, DL, VT);
1375 }
1376 
1377 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1378   if (!N)
1379     return false;
1380 
1381   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1382   if (!CN) {
1383     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1384     if (!BV)
1385       return false;
1386 
1387     // Only interested in constant splats, we don't care about undef
1388     // elements in identifying boolean constants and getConstantSplatNode
1389     // returns NULL if all ops are undef;
1390     CN = BV->getConstantSplatNode();
1391     if (!CN)
1392       return false;
1393   }
1394 
1395   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1396     return !CN->getAPIntValue()[0];
1397 
1398   return CN->isNullValue();
1399 }
1400 
1401 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1402                                        bool SExt) const {
1403   if (VT == MVT::i1)
1404     return N->isOne();
1405 
1406   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1407   switch (Cnt) {
1408   case TargetLowering::ZeroOrOneBooleanContent:
1409     // An extended value of 1 is always true, unless its original type is i1,
1410     // in which case it will be sign extended to -1.
1411     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1412   case TargetLowering::UndefinedBooleanContent:
1413   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1414     return N->isAllOnesValue() && SExt;
1415   }
1416   llvm_unreachable("Unexpected enumeration.");
1417 }
1418 
1419 /// This helper function of SimplifySetCC tries to optimize the comparison when
1420 /// either operand of the SetCC node is a bitwise-and instruction.
1421 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1422                                              ISD::CondCode Cond,
1423                                              DAGCombinerInfo &DCI,
1424                                              const SDLoc &DL) const {
1425   // Match these patterns in any of their permutations:
1426   // (X & Y) == Y
1427   // (X & Y) != Y
1428   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1429     std::swap(N0, N1);
1430 
1431   EVT OpVT = N0.getValueType();
1432   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1433       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1434     return SDValue();
1435 
1436   SDValue X, Y;
1437   if (N0.getOperand(0) == N1) {
1438     X = N0.getOperand(1);
1439     Y = N0.getOperand(0);
1440   } else if (N0.getOperand(1) == N1) {
1441     X = N0.getOperand(0);
1442     Y = N0.getOperand(1);
1443   } else {
1444     return SDValue();
1445   }
1446 
1447   SelectionDAG &DAG = DCI.DAG;
1448   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1449   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1450     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1451     // Note that where Y is variable and is known to have at most one bit set
1452     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1453     // equivalent when Y == 0.
1454     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1455     if (DCI.isBeforeLegalizeOps() ||
1456         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1457       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1458   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1459     // If the target supports an 'and-not' or 'and-complement' logic operation,
1460     // try to use that to make a comparison operation more efficient.
1461     // But don't do this transform if the mask is a single bit because there are
1462     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1463     // 'rlwinm' on PPC).
1464 
1465     // Bail out if the compare operand that we want to turn into a zero is
1466     // already a zero (otherwise, infinite loop).
1467     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1468     if (YConst && YConst->isNullValue())
1469       return SDValue();
1470 
1471     // Transform this into: ~X & Y == 0.
1472     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1473     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1474     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1475   }
1476 
1477   return SDValue();
1478 }
1479 
1480 /// Try to simplify a setcc built with the specified operands and cc. If it is
1481 /// unable to simplify it, return a null SDValue.
1482 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1483                                       ISD::CondCode Cond, bool foldBooleans,
1484                                       DAGCombinerInfo &DCI,
1485                                       const SDLoc &dl) const {
1486   SelectionDAG &DAG = DCI.DAG;
1487 
1488   // These setcc operations always fold.
1489   switch (Cond) {
1490   default: break;
1491   case ISD::SETFALSE:
1492   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1493   case ISD::SETTRUE:
1494   case ISD::SETTRUE2: {
1495     TargetLowering::BooleanContent Cnt =
1496         getBooleanContents(N0->getValueType(0));
1497     return DAG.getConstant(
1498         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1499         VT);
1500   }
1501   }
1502 
1503   // Ensure that the constant occurs on the RHS and fold constant comparisons.
1504   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1505   if (isa<ConstantSDNode>(N0.getNode()) &&
1506       (DCI.isBeforeLegalizeOps() ||
1507        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1508     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1509 
1510   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1511     const APInt &C1 = N1C->getAPIntValue();
1512 
1513     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1514     // equality comparison, then we're just comparing whether X itself is
1515     // zero.
1516     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
1517         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1518         N0.getOperand(1).getOpcode() == ISD::Constant) {
1519       const APInt &ShAmt
1520         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1521       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1522           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1523         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1524           // (srl (ctlz x), 5) == 0  -> X != 0
1525           // (srl (ctlz x), 5) != 1  -> X != 0
1526           Cond = ISD::SETNE;
1527         } else {
1528           // (srl (ctlz x), 5) != 0  -> X == 0
1529           // (srl (ctlz x), 5) == 1  -> X == 0
1530           Cond = ISD::SETEQ;
1531         }
1532         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1533         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1534                             Zero, Cond);
1535       }
1536     }
1537 
1538     SDValue CTPOP = N0;
1539     // Look through truncs that don't change the value of a ctpop.
1540     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1541       CTPOP = N0.getOperand(0);
1542 
1543     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1544         (N0 == CTPOP ||
1545          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1546       EVT CTVT = CTPOP.getValueType();
1547       SDValue CTOp = CTPOP.getOperand(0);
1548 
1549       // (ctpop x) u< 2 -> (x & x-1) == 0
1550       // (ctpop x) u> 1 -> (x & x-1) != 0
1551       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1552         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1553                                   DAG.getConstant(1, dl, CTVT));
1554         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1555         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1556         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1557       }
1558 
1559       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1560     }
1561 
1562     // (zext x) == C --> x == (trunc C)
1563     // (sext x) == C --> x == (trunc C)
1564     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1565         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1566       unsigned MinBits = N0.getValueSizeInBits();
1567       SDValue PreExt;
1568       bool Signed = false;
1569       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1570         // ZExt
1571         MinBits = N0->getOperand(0).getValueSizeInBits();
1572         PreExt = N0->getOperand(0);
1573       } else if (N0->getOpcode() == ISD::AND) {
1574         // DAGCombine turns costly ZExts into ANDs
1575         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1576           if ((C->getAPIntValue()+1).isPowerOf2()) {
1577             MinBits = C->getAPIntValue().countTrailingOnes();
1578             PreExt = N0->getOperand(0);
1579           }
1580       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1581         // SExt
1582         MinBits = N0->getOperand(0).getValueSizeInBits();
1583         PreExt = N0->getOperand(0);
1584         Signed = true;
1585       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1586         // ZEXTLOAD / SEXTLOAD
1587         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1588           MinBits = LN0->getMemoryVT().getSizeInBits();
1589           PreExt = N0;
1590         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1591           Signed = true;
1592           MinBits = LN0->getMemoryVT().getSizeInBits();
1593           PreExt = N0;
1594         }
1595       }
1596 
1597       // Figure out how many bits we need to preserve this constant.
1598       unsigned ReqdBits = Signed ?
1599         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1600         C1.getActiveBits();
1601 
1602       // Make sure we're not losing bits from the constant.
1603       if (MinBits > 0 &&
1604           MinBits < C1.getBitWidth() &&
1605           MinBits >= ReqdBits) {
1606         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1607         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1608           // Will get folded away.
1609           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1610           if (MinBits == 1 && C1 == 1)
1611             // Invert the condition.
1612             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1613                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1614           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1615           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1616         }
1617 
1618         // If truncating the setcc operands is not desirable, we can still
1619         // simplify the expression in some cases:
1620         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1621         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1622         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1623         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1624         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1625         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1626         SDValue TopSetCC = N0->getOperand(0);
1627         unsigned N0Opc = N0->getOpcode();
1628         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1629         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1630             TopSetCC.getOpcode() == ISD::SETCC &&
1631             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1632             (isConstFalseVal(N1C) ||
1633              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1634 
1635           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1636                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1637 
1638           if (!Inverse)
1639             return TopSetCC;
1640 
1641           ISD::CondCode InvCond = ISD::getSetCCInverse(
1642               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1643               TopSetCC.getOperand(0).getValueType().isInteger());
1644           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1645                                       TopSetCC.getOperand(1),
1646                                       InvCond);
1647         }
1648       }
1649     }
1650 
1651     // If the LHS is '(and load, const)', the RHS is 0, the test is for
1652     // equality or unsigned, and all 1 bits of the const are in the same
1653     // partial word, see if we can shorten the load.
1654     if (DCI.isBeforeLegalize() &&
1655         !ISD::isSignedIntSetCC(Cond) &&
1656         N0.getOpcode() == ISD::AND && C1 == 0 &&
1657         N0.getNode()->hasOneUse() &&
1658         isa<LoadSDNode>(N0.getOperand(0)) &&
1659         N0.getOperand(0).getNode()->hasOneUse() &&
1660         isa<ConstantSDNode>(N0.getOperand(1))) {
1661       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1662       APInt bestMask;
1663       unsigned bestWidth = 0, bestOffset = 0;
1664       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1665         unsigned origWidth = N0.getValueSizeInBits();
1666         unsigned maskWidth = origWidth;
1667         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1668         // 8 bits, but have to be careful...
1669         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1670           origWidth = Lod->getMemoryVT().getSizeInBits();
1671         const APInt &Mask =
1672           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1673         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1674           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1675           for (unsigned offset=0; offset<origWidth/width; offset++) {
1676             if (Mask.isSubsetOf(newMask)) {
1677               if (DAG.getDataLayout().isLittleEndian())
1678                 bestOffset = (uint64_t)offset * (width/8);
1679               else
1680                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1681               bestMask = Mask.lshr(offset * (width/8) * 8);
1682               bestWidth = width;
1683               break;
1684             }
1685             newMask <<= width;
1686           }
1687         }
1688       }
1689       if (bestWidth) {
1690         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1691         if (newVT.isRound()) {
1692           EVT PtrType = Lod->getOperand(1).getValueType();
1693           SDValue Ptr = Lod->getBasePtr();
1694           if (bestOffset != 0)
1695             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1696                               DAG.getConstant(bestOffset, dl, PtrType));
1697           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1698           SDValue NewLoad = DAG.getLoad(
1699               newVT, dl, Lod->getChain(), Ptr,
1700               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1701           return DAG.getSetCC(dl, VT,
1702                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1703                                       DAG.getConstant(bestMask.trunc(bestWidth),
1704                                                       dl, newVT)),
1705                               DAG.getConstant(0LL, dl, newVT), Cond);
1706         }
1707       }
1708     }
1709 
1710     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1711     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1712       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
1713 
1714       // If the comparison constant has bits in the upper part, the
1715       // zero-extended value could never match.
1716       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1717                                               C1.getBitWidth() - InSize))) {
1718         switch (Cond) {
1719         case ISD::SETUGT:
1720         case ISD::SETUGE:
1721         case ISD::SETEQ:
1722           return DAG.getConstant(0, dl, VT);
1723         case ISD::SETULT:
1724         case ISD::SETULE:
1725         case ISD::SETNE:
1726           return DAG.getConstant(1, dl, VT);
1727         case ISD::SETGT:
1728         case ISD::SETGE:
1729           // True if the sign bit of C1 is set.
1730           return DAG.getConstant(C1.isNegative(), dl, VT);
1731         case ISD::SETLT:
1732         case ISD::SETLE:
1733           // True if the sign bit of C1 isn't set.
1734           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1735         default:
1736           break;
1737         }
1738       }
1739 
1740       // Otherwise, we can perform the comparison with the low bits.
1741       switch (Cond) {
1742       case ISD::SETEQ:
1743       case ISD::SETNE:
1744       case ISD::SETUGT:
1745       case ISD::SETUGE:
1746       case ISD::SETULT:
1747       case ISD::SETULE: {
1748         EVT newVT = N0.getOperand(0).getValueType();
1749         if (DCI.isBeforeLegalizeOps() ||
1750             (isOperationLegal(ISD::SETCC, newVT) &&
1751              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1752           EVT NewSetCCVT =
1753               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1754           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1755 
1756           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1757                                           NewConst, Cond);
1758           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1759         }
1760         break;
1761       }
1762       default:
1763         break;   // todo, be more careful with signed comparisons
1764       }
1765     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1766                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1767       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1768       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1769       EVT ExtDstTy = N0.getValueType();
1770       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1771 
1772       // If the constant doesn't fit into the number of bits for the source of
1773       // the sign extension, it is impossible for both sides to be equal.
1774       if (C1.getMinSignedBits() > ExtSrcTyBits)
1775         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1776 
1777       SDValue ZextOp;
1778       EVT Op0Ty = N0.getOperand(0).getValueType();
1779       if (Op0Ty == ExtSrcTy) {
1780         ZextOp = N0.getOperand(0);
1781       } else {
1782         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1783         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1784                               DAG.getConstant(Imm, dl, Op0Ty));
1785       }
1786       if (!DCI.isCalledByLegalizer())
1787         DCI.AddToWorklist(ZextOp.getNode());
1788       // Otherwise, make this a use of a zext.
1789       return DAG.getSetCC(dl, VT, ZextOp,
1790                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1791                                                               ExtDstTyBits,
1792                                                               ExtSrcTyBits),
1793                                           dl, ExtDstTy),
1794                           Cond);
1795     } else if ((N1C->isNullValue() || N1C->isOne()) &&
1796                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1797       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1798       if (N0.getOpcode() == ISD::SETCC &&
1799           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1800         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
1801         if (TrueWhenTrue)
1802           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1803         // Invert the condition.
1804         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1805         CC = ISD::getSetCCInverse(CC,
1806                                   N0.getOperand(0).getValueType().isInteger());
1807         if (DCI.isBeforeLegalizeOps() ||
1808             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1809           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1810       }
1811 
1812       if ((N0.getOpcode() == ISD::XOR ||
1813            (N0.getOpcode() == ISD::AND &&
1814             N0.getOperand(0).getOpcode() == ISD::XOR &&
1815             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1816           isa<ConstantSDNode>(N0.getOperand(1)) &&
1817           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
1818         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1819         // can only do this if the top bits are known zero.
1820         unsigned BitWidth = N0.getValueSizeInBits();
1821         if (DAG.MaskedValueIsZero(N0,
1822                                   APInt::getHighBitsSet(BitWidth,
1823                                                         BitWidth-1))) {
1824           // Okay, get the un-inverted input value.
1825           SDValue Val;
1826           if (N0.getOpcode() == ISD::XOR) {
1827             Val = N0.getOperand(0);
1828           } else {
1829             assert(N0.getOpcode() == ISD::AND &&
1830                     N0.getOperand(0).getOpcode() == ISD::XOR);
1831             // ((X^1)&1)^1 -> X & 1
1832             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1833                               N0.getOperand(0).getOperand(0),
1834                               N0.getOperand(1));
1835           }
1836 
1837           return DAG.getSetCC(dl, VT, Val, N1,
1838                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1839         }
1840       } else if (N1C->isOne() &&
1841                  (VT == MVT::i1 ||
1842                   getBooleanContents(N0->getValueType(0)) ==
1843                       ZeroOrOneBooleanContent)) {
1844         SDValue Op0 = N0;
1845         if (Op0.getOpcode() == ISD::TRUNCATE)
1846           Op0 = Op0.getOperand(0);
1847 
1848         if ((Op0.getOpcode() == ISD::XOR) &&
1849             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1850             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1851           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1852           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1853           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1854                               Cond);
1855         }
1856         if (Op0.getOpcode() == ISD::AND &&
1857             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1858             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
1859           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1860           if (Op0.getValueType().bitsGT(VT))
1861             Op0 = DAG.getNode(ISD::AND, dl, VT,
1862                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1863                           DAG.getConstant(1, dl, VT));
1864           else if (Op0.getValueType().bitsLT(VT))
1865             Op0 = DAG.getNode(ISD::AND, dl, VT,
1866                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1867                         DAG.getConstant(1, dl, VT));
1868 
1869           return DAG.getSetCC(dl, VT, Op0,
1870                               DAG.getConstant(0, dl, Op0.getValueType()),
1871                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1872         }
1873         if (Op0.getOpcode() == ISD::AssertZext &&
1874             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1875           return DAG.getSetCC(dl, VT, Op0,
1876                               DAG.getConstant(0, dl, Op0.getValueType()),
1877                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1878       }
1879     }
1880 
1881     APInt MinVal, MaxVal;
1882     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1883     if (ISD::isSignedIntSetCC(Cond)) {
1884       MinVal = APInt::getSignedMinValue(OperandBitSize);
1885       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1886     } else {
1887       MinVal = APInt::getMinValue(OperandBitSize);
1888       MaxVal = APInt::getMaxValue(OperandBitSize);
1889     }
1890 
1891     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1892     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1893       // X >= MIN --> true
1894       if (C1 == MinVal)
1895         return DAG.getConstant(1, dl, VT);
1896 
1897       // X >= C0 --> X > (C0 - 1)
1898       APInt C = C1 - 1;
1899       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1900       if ((DCI.isBeforeLegalizeOps() ||
1901            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1902           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1903                                 isLegalICmpImmediate(C.getSExtValue())))) {
1904         return DAG.getSetCC(dl, VT, N0,
1905                             DAG.getConstant(C, dl, N1.getValueType()),
1906                             NewCC);
1907       }
1908     }
1909 
1910     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1911       // X <= MAX --> true
1912       if (C1 == MaxVal)
1913           return DAG.getConstant(1, dl, VT);
1914 
1915       // X <= C0 --> X < (C0 + 1)
1916       APInt C = C1 + 1;
1917       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1918       if ((DCI.isBeforeLegalizeOps() ||
1919            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1920           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1921                                 isLegalICmpImmediate(C.getSExtValue())))) {
1922         return DAG.getSetCC(dl, VT, N0,
1923                             DAG.getConstant(C, dl, N1.getValueType()),
1924                             NewCC);
1925       }
1926     }
1927 
1928     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1929       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1930     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1931       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1932     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1933       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1934     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1935       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1936 
1937     // Canonicalize setgt X, Min --> setne X, Min
1938     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1939       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1940     // Canonicalize setlt X, Max --> setne X, Max
1941     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1942       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1943 
1944     // If we have setult X, 1, turn it into seteq X, 0
1945     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1946       return DAG.getSetCC(dl, VT, N0,
1947                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1948                           ISD::SETEQ);
1949     // If we have setugt X, Max-1, turn it into seteq X, Max
1950     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1951       return DAG.getSetCC(dl, VT, N0,
1952                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1953                           ISD::SETEQ);
1954 
1955     // If we have "setcc X, C0", check to see if we can shrink the immediate
1956     // by changing cc.
1957 
1958     // SETUGT X, SINTMAX  -> SETLT X, 0
1959     if (Cond == ISD::SETUGT &&
1960         C1 == APInt::getSignedMaxValue(OperandBitSize))
1961       return DAG.getSetCC(dl, VT, N0,
1962                           DAG.getConstant(0, dl, N1.getValueType()),
1963                           ISD::SETLT);
1964 
1965     // SETULT X, SINTMIN  -> SETGT X, -1
1966     if (Cond == ISD::SETULT &&
1967         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1968       SDValue ConstMinusOne =
1969           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1970                           N1.getValueType());
1971       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1972     }
1973 
1974     // Fold bit comparisons when we can.
1975     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1976         (VT == N0.getValueType() ||
1977          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1978         N0.getOpcode() == ISD::AND) {
1979       auto &DL = DAG.getDataLayout();
1980       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1981         EVT ShiftTy = DCI.isBeforeLegalize()
1982                           ? getPointerTy(DL)
1983                           : getShiftAmountTy(N0.getValueType(), DL);
1984         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1985           // Perform the xform if the AND RHS is a single bit.
1986           if (AndRHS->getAPIntValue().isPowerOf2()) {
1987             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1988                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1989                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1990                                    ShiftTy)));
1991           }
1992         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1993           // (X & 8) == 8  -->  (X & 8) >> 3
1994           // Perform the xform if C1 is a single bit.
1995           if (C1.isPowerOf2()) {
1996             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1997                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1998                                       DAG.getConstant(C1.logBase2(), dl,
1999                                                       ShiftTy)));
2000           }
2001         }
2002       }
2003     }
2004 
2005     if (C1.getMinSignedBits() <= 64 &&
2006         !isLegalICmpImmediate(C1.getSExtValue())) {
2007       // (X & -256) == 256 -> (X >> 8) == 1
2008       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2009           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2010         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2011           const APInt &AndRHSC = AndRHS->getAPIntValue();
2012           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2013             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2014             auto &DL = DAG.getDataLayout();
2015             EVT ShiftTy = DCI.isBeforeLegalize()
2016                               ? getPointerTy(DL)
2017                               : getShiftAmountTy(N0.getValueType(), DL);
2018             EVT CmpTy = N0.getValueType();
2019             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2020                                         DAG.getConstant(ShiftBits, dl,
2021                                                         ShiftTy));
2022             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2023             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2024           }
2025         }
2026       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2027                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2028         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2029         // X <  0x100000000 -> (X >> 32) <  1
2030         // X >= 0x100000000 -> (X >> 32) >= 1
2031         // X <= 0x0ffffffff -> (X >> 32) <  1
2032         // X >  0x0ffffffff -> (X >> 32) >= 1
2033         unsigned ShiftBits;
2034         APInt NewC = C1;
2035         ISD::CondCode NewCond = Cond;
2036         if (AdjOne) {
2037           ShiftBits = C1.countTrailingOnes();
2038           NewC = NewC + 1;
2039           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2040         } else {
2041           ShiftBits = C1.countTrailingZeros();
2042         }
2043         NewC.lshrInPlace(ShiftBits);
2044         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2045           isLegalICmpImmediate(NewC.getSExtValue())) {
2046           auto &DL = DAG.getDataLayout();
2047           EVT ShiftTy = DCI.isBeforeLegalize()
2048                             ? getPointerTy(DL)
2049                             : getShiftAmountTy(N0.getValueType(), DL);
2050           EVT CmpTy = N0.getValueType();
2051           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2052                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2053           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2054           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2055         }
2056       }
2057     }
2058   }
2059 
2060   if (isa<ConstantFPSDNode>(N0.getNode())) {
2061     // Constant fold or commute setcc.
2062     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2063     if (O.getNode()) return O;
2064   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2065     // If the RHS of an FP comparison is a constant, simplify it away in
2066     // some cases.
2067     if (CFP->getValueAPF().isNaN()) {
2068       // If an operand is known to be a nan, we can fold it.
2069       switch (ISD::getUnorderedFlavor(Cond)) {
2070       default: llvm_unreachable("Unknown flavor!");
2071       case 0:  // Known false.
2072         return DAG.getConstant(0, dl, VT);
2073       case 1:  // Known true.
2074         return DAG.getConstant(1, dl, VT);
2075       case 2:  // Undefined.
2076         return DAG.getUNDEF(VT);
2077       }
2078     }
2079 
2080     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2081     // constant if knowing that the operand is non-nan is enough.  We prefer to
2082     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2083     // materialize 0.0.
2084     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2085       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2086 
2087     // setcc (fneg x), C -> setcc swap(pred) x, -C
2088     if (N0.getOpcode() == ISD::FNEG) {
2089       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2090       if (DCI.isBeforeLegalizeOps() ||
2091           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2092         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2093         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2094       }
2095     }
2096 
2097     // If the condition is not legal, see if we can find an equivalent one
2098     // which is legal.
2099     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2100       // If the comparison was an awkward floating-point == or != and one of
2101       // the comparison operands is infinity or negative infinity, convert the
2102       // condition to a less-awkward <= or >=.
2103       if (CFP->getValueAPF().isInfinity()) {
2104         if (CFP->getValueAPF().isNegative()) {
2105           if (Cond == ISD::SETOEQ &&
2106               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2107             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2108           if (Cond == ISD::SETUEQ &&
2109               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2110             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2111           if (Cond == ISD::SETUNE &&
2112               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2113             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2114           if (Cond == ISD::SETONE &&
2115               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2116             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2117         } else {
2118           if (Cond == ISD::SETOEQ &&
2119               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2120             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2121           if (Cond == ISD::SETUEQ &&
2122               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2123             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2124           if (Cond == ISD::SETUNE &&
2125               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2126             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2127           if (Cond == ISD::SETONE &&
2128               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2129             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2130         }
2131       }
2132     }
2133   }
2134 
2135   if (N0 == N1) {
2136     // The sext(setcc()) => setcc() optimization relies on the appropriate
2137     // constant being emitted.
2138     uint64_t EqVal = 0;
2139     switch (getBooleanContents(N0.getValueType())) {
2140     case UndefinedBooleanContent:
2141     case ZeroOrOneBooleanContent:
2142       EqVal = ISD::isTrueWhenEqual(Cond);
2143       break;
2144     case ZeroOrNegativeOneBooleanContent:
2145       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2146       break;
2147     }
2148 
2149     // We can always fold X == X for integer setcc's.
2150     if (N0.getValueType().isInteger()) {
2151       return DAG.getConstant(EqVal, dl, VT);
2152     }
2153     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2154     if (UOF == 2)   // FP operators that are undefined on NaNs.
2155       return DAG.getConstant(EqVal, dl, VT);
2156     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2157       return DAG.getConstant(EqVal, dl, VT);
2158     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2159     // if it is not already.
2160     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2161     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2162           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2163       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2164   }
2165 
2166   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2167       N0.getValueType().isInteger()) {
2168     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2169         N0.getOpcode() == ISD::XOR) {
2170       // Simplify (X+Y) == (X+Z) -->  Y == Z
2171       if (N0.getOpcode() == N1.getOpcode()) {
2172         if (N0.getOperand(0) == N1.getOperand(0))
2173           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2174         if (N0.getOperand(1) == N1.getOperand(1))
2175           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2176         if (isCommutativeBinOp(N0.getOpcode())) {
2177           // If X op Y == Y op X, try other combinations.
2178           if (N0.getOperand(0) == N1.getOperand(1))
2179             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2180                                 Cond);
2181           if (N0.getOperand(1) == N1.getOperand(0))
2182             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2183                                 Cond);
2184         }
2185       }
2186 
2187       // If RHS is a legal immediate value for a compare instruction, we need
2188       // to be careful about increasing register pressure needlessly.
2189       bool LegalRHSImm = false;
2190 
2191       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2192         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2193           // Turn (X+C1) == C2 --> X == C2-C1
2194           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2195             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2196                                 DAG.getConstant(RHSC->getAPIntValue()-
2197                                                 LHSR->getAPIntValue(),
2198                                 dl, N0.getValueType()), Cond);
2199           }
2200 
2201           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2202           if (N0.getOpcode() == ISD::XOR)
2203             // If we know that all of the inverted bits are zero, don't bother
2204             // performing the inversion.
2205             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2206               return
2207                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2208                              DAG.getConstant(LHSR->getAPIntValue() ^
2209                                                RHSC->getAPIntValue(),
2210                                              dl, N0.getValueType()),
2211                              Cond);
2212         }
2213 
2214         // Turn (C1-X) == C2 --> X == C1-C2
2215         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2216           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2217             return
2218               DAG.getSetCC(dl, VT, N0.getOperand(1),
2219                            DAG.getConstant(SUBC->getAPIntValue() -
2220                                              RHSC->getAPIntValue(),
2221                                            dl, N0.getValueType()),
2222                            Cond);
2223           }
2224         }
2225 
2226         // Could RHSC fold directly into a compare?
2227         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2228           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2229       }
2230 
2231       // Simplify (X+Z) == X -->  Z == 0
2232       // Don't do this if X is an immediate that can fold into a cmp
2233       // instruction and X+Z has other uses. It could be an induction variable
2234       // chain, and the transform would increase register pressure.
2235       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2236         if (N0.getOperand(0) == N1)
2237           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2238                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2239         if (N0.getOperand(1) == N1) {
2240           if (isCommutativeBinOp(N0.getOpcode()))
2241             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2242                                 DAG.getConstant(0, dl, N0.getValueType()),
2243                                 Cond);
2244           if (N0.getNode()->hasOneUse()) {
2245             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2246             auto &DL = DAG.getDataLayout();
2247             // (Z-X) == X  --> Z == X<<1
2248             SDValue SH = DAG.getNode(
2249                 ISD::SHL, dl, N1.getValueType(), N1,
2250                 DAG.getConstant(1, dl,
2251                                 getShiftAmountTy(N1.getValueType(), DL)));
2252             if (!DCI.isCalledByLegalizer())
2253               DCI.AddToWorklist(SH.getNode());
2254             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2255           }
2256         }
2257       }
2258     }
2259 
2260     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2261         N1.getOpcode() == ISD::XOR) {
2262       // Simplify  X == (X+Z) -->  Z == 0
2263       if (N1.getOperand(0) == N0)
2264         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2265                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2266       if (N1.getOperand(1) == N0) {
2267         if (isCommutativeBinOp(N1.getOpcode()))
2268           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2269                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2270         if (N1.getNode()->hasOneUse()) {
2271           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2272           auto &DL = DAG.getDataLayout();
2273           // X == (Z-X)  --> X<<1 == Z
2274           SDValue SH = DAG.getNode(
2275               ISD::SHL, dl, N1.getValueType(), N0,
2276               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2277           if (!DCI.isCalledByLegalizer())
2278             DCI.AddToWorklist(SH.getNode());
2279           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2280         }
2281       }
2282     }
2283 
2284     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2285       return V;
2286   }
2287 
2288   // Fold away ALL boolean setcc's.
2289   SDValue Temp;
2290   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2291     switch (Cond) {
2292     default: llvm_unreachable("Unknown integer setcc!");
2293     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2294       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2295       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2296       if (!DCI.isCalledByLegalizer())
2297         DCI.AddToWorklist(Temp.getNode());
2298       break;
2299     case ISD::SETNE:  // X != Y   -->  (X^Y)
2300       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2301       break;
2302     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2303     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2304       Temp = DAG.getNOT(dl, N0, MVT::i1);
2305       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2306       if (!DCI.isCalledByLegalizer())
2307         DCI.AddToWorklist(Temp.getNode());
2308       break;
2309     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2310     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2311       Temp = DAG.getNOT(dl, N1, MVT::i1);
2312       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2313       if (!DCI.isCalledByLegalizer())
2314         DCI.AddToWorklist(Temp.getNode());
2315       break;
2316     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2317     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2318       Temp = DAG.getNOT(dl, N0, MVT::i1);
2319       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2320       if (!DCI.isCalledByLegalizer())
2321         DCI.AddToWorklist(Temp.getNode());
2322       break;
2323     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2324     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2325       Temp = DAG.getNOT(dl, N1, MVT::i1);
2326       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2327       break;
2328     }
2329     if (VT != MVT::i1) {
2330       if (!DCI.isCalledByLegalizer())
2331         DCI.AddToWorklist(N0.getNode());
2332       // FIXME: If running after legalize, we probably can't do this.
2333       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2334     }
2335     return N0;
2336   }
2337 
2338   // Could not fold it.
2339   return SDValue();
2340 }
2341 
2342 /// Returns true (and the GlobalValue and the offset) if the node is a
2343 /// GlobalAddress + offset.
2344 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2345                                     int64_t &Offset) const {
2346   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2347     GA = GASD->getGlobal();
2348     Offset += GASD->getOffset();
2349     return true;
2350   }
2351 
2352   if (N->getOpcode() == ISD::ADD) {
2353     SDValue N1 = N->getOperand(0);
2354     SDValue N2 = N->getOperand(1);
2355     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2356       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2357         Offset += V->getSExtValue();
2358         return true;
2359       }
2360     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2361       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2362         Offset += V->getSExtValue();
2363         return true;
2364       }
2365     }
2366   }
2367 
2368   return false;
2369 }
2370 
2371 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2372                                           DAGCombinerInfo &DCI) const {
2373   // Default implementation: no optimization.
2374   return SDValue();
2375 }
2376 
2377 //===----------------------------------------------------------------------===//
2378 //  Inline Assembler Implementation Methods
2379 //===----------------------------------------------------------------------===//
2380 
2381 TargetLowering::ConstraintType
2382 TargetLowering::getConstraintType(StringRef Constraint) const {
2383   unsigned S = Constraint.size();
2384 
2385   if (S == 1) {
2386     switch (Constraint[0]) {
2387     default: break;
2388     case 'r': return C_RegisterClass;
2389     case 'm':    // memory
2390     case 'o':    // offsetable
2391     case 'V':    // not offsetable
2392       return C_Memory;
2393     case 'i':    // Simple Integer or Relocatable Constant
2394     case 'n':    // Simple Integer
2395     case 'E':    // Floating Point Constant
2396     case 'F':    // Floating Point Constant
2397     case 's':    // Relocatable Constant
2398     case 'p':    // Address.
2399     case 'X':    // Allow ANY value.
2400     case 'I':    // Target registers.
2401     case 'J':
2402     case 'K':
2403     case 'L':
2404     case 'M':
2405     case 'N':
2406     case 'O':
2407     case 'P':
2408     case '<':
2409     case '>':
2410       return C_Other;
2411     }
2412   }
2413 
2414   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2415     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2416       return C_Memory;
2417     return C_Register;
2418   }
2419   return C_Unknown;
2420 }
2421 
2422 /// Try to replace an X constraint, which matches anything, with another that
2423 /// has more specific requirements based on the type of the corresponding
2424 /// operand.
2425 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2426   if (ConstraintVT.isInteger())
2427     return "r";
2428   if (ConstraintVT.isFloatingPoint())
2429     return "f";      // works for many targets
2430   return nullptr;
2431 }
2432 
2433 /// Lower the specified operand into the Ops vector.
2434 /// If it is invalid, don't add anything to Ops.
2435 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2436                                                   std::string &Constraint,
2437                                                   std::vector<SDValue> &Ops,
2438                                                   SelectionDAG &DAG) const {
2439 
2440   if (Constraint.length() > 1) return;
2441 
2442   char ConstraintLetter = Constraint[0];
2443   switch (ConstraintLetter) {
2444   default: break;
2445   case 'X':     // Allows any operand; labels (basic block) use this.
2446     if (Op.getOpcode() == ISD::BasicBlock) {
2447       Ops.push_back(Op);
2448       return;
2449     }
2450     LLVM_FALLTHROUGH;
2451   case 'i':    // Simple Integer or Relocatable Constant
2452   case 'n':    // Simple Integer
2453   case 's': {  // Relocatable Constant
2454     // These operands are interested in values of the form (GV+C), where C may
2455     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2456     // is possible and fine if either GV or C are missing.
2457     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2458     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2459 
2460     // If we have "(add GV, C)", pull out GV/C
2461     if (Op.getOpcode() == ISD::ADD) {
2462       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2463       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2464       if (!C || !GA) {
2465         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2466         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2467       }
2468       if (!C || !GA) {
2469         C = nullptr;
2470         GA = nullptr;
2471       }
2472     }
2473 
2474     // If we find a valid operand, map to the TargetXXX version so that the
2475     // value itself doesn't get selected.
2476     if (GA) {   // Either &GV   or   &GV+C
2477       if (ConstraintLetter != 'n') {
2478         int64_t Offs = GA->getOffset();
2479         if (C) Offs += C->getZExtValue();
2480         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2481                                                  C ? SDLoc(C) : SDLoc(),
2482                                                  Op.getValueType(), Offs));
2483       }
2484       return;
2485     }
2486     if (C) {   // just C, no GV.
2487       // Simple constants are not allowed for 's'.
2488       if (ConstraintLetter != 's') {
2489         // gcc prints these as sign extended.  Sign extend value to 64 bits
2490         // now; without this it would get ZExt'd later in
2491         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2492         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
2493                                             SDLoc(C), MVT::i64));
2494       }
2495       return;
2496     }
2497     break;
2498   }
2499   }
2500 }
2501 
2502 std::pair<unsigned, const TargetRegisterClass *>
2503 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2504                                              StringRef Constraint,
2505                                              MVT VT) const {
2506   if (Constraint.empty() || Constraint[0] != '{')
2507     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2508   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2509 
2510   // Remove the braces from around the name.
2511   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2512 
2513   std::pair<unsigned, const TargetRegisterClass*> R =
2514     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2515 
2516   // Figure out which register class contains this reg.
2517   for (const TargetRegisterClass *RC : RI->regclasses()) {
2518     // If none of the value types for this register class are valid, we
2519     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2520     if (!isLegalRC(*RI, *RC))
2521       continue;
2522 
2523     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2524          I != E; ++I) {
2525       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2526         std::pair<unsigned, const TargetRegisterClass*> S =
2527           std::make_pair(*I, RC);
2528 
2529         // If this register class has the requested value type, return it,
2530         // otherwise keep searching and return the first class found
2531         // if no other is found which explicitly has the requested type.
2532         if (RI->isTypeLegalForClass(*RC, VT))
2533           return S;
2534         if (!R.second)
2535           R = S;
2536       }
2537     }
2538   }
2539 
2540   return R;
2541 }
2542 
2543 //===----------------------------------------------------------------------===//
2544 // Constraint Selection.
2545 
2546 /// Return true of this is an input operand that is a matching constraint like
2547 /// "4".
2548 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2549   assert(!ConstraintCode.empty() && "No known constraint!");
2550   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2551 }
2552 
2553 /// If this is an input matching constraint, this method returns the output
2554 /// operand it matches.
2555 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2556   assert(!ConstraintCode.empty() && "No known constraint!");
2557   return atoi(ConstraintCode.c_str());
2558 }
2559 
2560 /// Split up the constraint string from the inline assembly value into the
2561 /// specific constraints and their prefixes, and also tie in the associated
2562 /// operand values.
2563 /// If this returns an empty vector, and if the constraint string itself
2564 /// isn't empty, there was an error parsing.
2565 TargetLowering::AsmOperandInfoVector
2566 TargetLowering::ParseConstraints(const DataLayout &DL,
2567                                  const TargetRegisterInfo *TRI,
2568                                  ImmutableCallSite CS) const {
2569   /// Information about all of the constraints.
2570   AsmOperandInfoVector ConstraintOperands;
2571   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2572   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2573 
2574   // Do a prepass over the constraints, canonicalizing them, and building up the
2575   // ConstraintOperands list.
2576   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2577   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2578 
2579   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2580     ConstraintOperands.emplace_back(std::move(CI));
2581     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2582 
2583     // Update multiple alternative constraint count.
2584     if (OpInfo.multipleAlternatives.size() > maCount)
2585       maCount = OpInfo.multipleAlternatives.size();
2586 
2587     OpInfo.ConstraintVT = MVT::Other;
2588 
2589     // Compute the value type for each operand.
2590     switch (OpInfo.Type) {
2591     case InlineAsm::isOutput:
2592       // Indirect outputs just consume an argument.
2593       if (OpInfo.isIndirect) {
2594         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2595         break;
2596       }
2597 
2598       // The return value of the call is this value.  As such, there is no
2599       // corresponding argument.
2600       assert(!CS.getType()->isVoidTy() &&
2601              "Bad inline asm!");
2602       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2603         OpInfo.ConstraintVT =
2604             getSimpleValueType(DL, STy->getElementType(ResNo));
2605       } else {
2606         assert(ResNo == 0 && "Asm only has one result!");
2607         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2608       }
2609       ++ResNo;
2610       break;
2611     case InlineAsm::isInput:
2612       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2613       break;
2614     case InlineAsm::isClobber:
2615       // Nothing to do.
2616       break;
2617     }
2618 
2619     if (OpInfo.CallOperandVal) {
2620       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2621       if (OpInfo.isIndirect) {
2622         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2623         if (!PtrTy)
2624           report_fatal_error("Indirect operand for inline asm not a pointer!");
2625         OpTy = PtrTy->getElementType();
2626       }
2627 
2628       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2629       if (StructType *STy = dyn_cast<StructType>(OpTy))
2630         if (STy->getNumElements() == 1)
2631           OpTy = STy->getElementType(0);
2632 
2633       // If OpTy is not a single value, it may be a struct/union that we
2634       // can tile with integers.
2635       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2636         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2637         switch (BitSize) {
2638         default: break;
2639         case 1:
2640         case 8:
2641         case 16:
2642         case 32:
2643         case 64:
2644         case 128:
2645           OpInfo.ConstraintVT =
2646             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2647           break;
2648         }
2649       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2650         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2651         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2652       } else {
2653         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2654       }
2655     }
2656   }
2657 
2658   // If we have multiple alternative constraints, select the best alternative.
2659   if (!ConstraintOperands.empty()) {
2660     if (maCount) {
2661       unsigned bestMAIndex = 0;
2662       int bestWeight = -1;
2663       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2664       int weight = -1;
2665       unsigned maIndex;
2666       // Compute the sums of the weights for each alternative, keeping track
2667       // of the best (highest weight) one so far.
2668       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2669         int weightSum = 0;
2670         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2671             cIndex != eIndex; ++cIndex) {
2672           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2673           if (OpInfo.Type == InlineAsm::isClobber)
2674             continue;
2675 
2676           // If this is an output operand with a matching input operand,
2677           // look up the matching input. If their types mismatch, e.g. one
2678           // is an integer, the other is floating point, or their sizes are
2679           // different, flag it as an maCantMatch.
2680           if (OpInfo.hasMatchingInput()) {
2681             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2682             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2683               if ((OpInfo.ConstraintVT.isInteger() !=
2684                    Input.ConstraintVT.isInteger()) ||
2685                   (OpInfo.ConstraintVT.getSizeInBits() !=
2686                    Input.ConstraintVT.getSizeInBits())) {
2687                 weightSum = -1;  // Can't match.
2688                 break;
2689               }
2690             }
2691           }
2692           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2693           if (weight == -1) {
2694             weightSum = -1;
2695             break;
2696           }
2697           weightSum += weight;
2698         }
2699         // Update best.
2700         if (weightSum > bestWeight) {
2701           bestWeight = weightSum;
2702           bestMAIndex = maIndex;
2703         }
2704       }
2705 
2706       // Now select chosen alternative in each constraint.
2707       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2708           cIndex != eIndex; ++cIndex) {
2709         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2710         if (cInfo.Type == InlineAsm::isClobber)
2711           continue;
2712         cInfo.selectAlternative(bestMAIndex);
2713       }
2714     }
2715   }
2716 
2717   // Check and hook up tied operands, choose constraint code to use.
2718   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2719       cIndex != eIndex; ++cIndex) {
2720     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2721 
2722     // If this is an output operand with a matching input operand, look up the
2723     // matching input. If their types mismatch, e.g. one is an integer, the
2724     // other is floating point, or their sizes are different, flag it as an
2725     // error.
2726     if (OpInfo.hasMatchingInput()) {
2727       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2728 
2729       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2730         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2731             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2732                                          OpInfo.ConstraintVT);
2733         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2734             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2735                                          Input.ConstraintVT);
2736         if ((OpInfo.ConstraintVT.isInteger() !=
2737              Input.ConstraintVT.isInteger()) ||
2738             (MatchRC.second != InputRC.second)) {
2739           report_fatal_error("Unsupported asm: input constraint"
2740                              " with a matching output constraint of"
2741                              " incompatible type!");
2742         }
2743       }
2744     }
2745   }
2746 
2747   return ConstraintOperands;
2748 }
2749 
2750 /// Return an integer indicating how general CT is.
2751 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2752   switch (CT) {
2753   case TargetLowering::C_Other:
2754   case TargetLowering::C_Unknown:
2755     return 0;
2756   case TargetLowering::C_Register:
2757     return 1;
2758   case TargetLowering::C_RegisterClass:
2759     return 2;
2760   case TargetLowering::C_Memory:
2761     return 3;
2762   }
2763   llvm_unreachable("Invalid constraint type");
2764 }
2765 
2766 /// Examine constraint type and operand type and determine a weight value.
2767 /// This object must already have been set up with the operand type
2768 /// and the current alternative constraint selected.
2769 TargetLowering::ConstraintWeight
2770   TargetLowering::getMultipleConstraintMatchWeight(
2771     AsmOperandInfo &info, int maIndex) const {
2772   InlineAsm::ConstraintCodeVector *rCodes;
2773   if (maIndex >= (int)info.multipleAlternatives.size())
2774     rCodes = &info.Codes;
2775   else
2776     rCodes = &info.multipleAlternatives[maIndex].Codes;
2777   ConstraintWeight BestWeight = CW_Invalid;
2778 
2779   // Loop over the options, keeping track of the most general one.
2780   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2781     ConstraintWeight weight =
2782       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2783     if (weight > BestWeight)
2784       BestWeight = weight;
2785   }
2786 
2787   return BestWeight;
2788 }
2789 
2790 /// Examine constraint type and operand type and determine a weight value.
2791 /// This object must already have been set up with the operand type
2792 /// and the current alternative constraint selected.
2793 TargetLowering::ConstraintWeight
2794   TargetLowering::getSingleConstraintMatchWeight(
2795     AsmOperandInfo &info, const char *constraint) const {
2796   ConstraintWeight weight = CW_Invalid;
2797   Value *CallOperandVal = info.CallOperandVal;
2798     // If we don't have a value, we can't do a match,
2799     // but allow it at the lowest weight.
2800   if (!CallOperandVal)
2801     return CW_Default;
2802   // Look at the constraint type.
2803   switch (*constraint) {
2804     case 'i': // immediate integer.
2805     case 'n': // immediate integer with a known value.
2806       if (isa<ConstantInt>(CallOperandVal))
2807         weight = CW_Constant;
2808       break;
2809     case 's': // non-explicit intregal immediate.
2810       if (isa<GlobalValue>(CallOperandVal))
2811         weight = CW_Constant;
2812       break;
2813     case 'E': // immediate float if host format.
2814     case 'F': // immediate float.
2815       if (isa<ConstantFP>(CallOperandVal))
2816         weight = CW_Constant;
2817       break;
2818     case '<': // memory operand with autodecrement.
2819     case '>': // memory operand with autoincrement.
2820     case 'm': // memory operand.
2821     case 'o': // offsettable memory operand
2822     case 'V': // non-offsettable memory operand
2823       weight = CW_Memory;
2824       break;
2825     case 'r': // general register.
2826     case 'g': // general register, memory operand or immediate integer.
2827               // note: Clang converts "g" to "imr".
2828       if (CallOperandVal->getType()->isIntegerTy())
2829         weight = CW_Register;
2830       break;
2831     case 'X': // any operand.
2832     default:
2833       weight = CW_Default;
2834       break;
2835   }
2836   return weight;
2837 }
2838 
2839 /// If there are multiple different constraints that we could pick for this
2840 /// operand (e.g. "imr") try to pick the 'best' one.
2841 /// This is somewhat tricky: constraints fall into four classes:
2842 ///    Other         -> immediates and magic values
2843 ///    Register      -> one specific register
2844 ///    RegisterClass -> a group of regs
2845 ///    Memory        -> memory
2846 /// Ideally, we would pick the most specific constraint possible: if we have
2847 /// something that fits into a register, we would pick it.  The problem here
2848 /// is that if we have something that could either be in a register or in
2849 /// memory that use of the register could cause selection of *other*
2850 /// operands to fail: they might only succeed if we pick memory.  Because of
2851 /// this the heuristic we use is:
2852 ///
2853 ///  1) If there is an 'other' constraint, and if the operand is valid for
2854 ///     that constraint, use it.  This makes us take advantage of 'i'
2855 ///     constraints when available.
2856 ///  2) Otherwise, pick the most general constraint present.  This prefers
2857 ///     'm' over 'r', for example.
2858 ///
2859 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2860                              const TargetLowering &TLI,
2861                              SDValue Op, SelectionDAG *DAG) {
2862   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2863   unsigned BestIdx = 0;
2864   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2865   int BestGenerality = -1;
2866 
2867   // Loop over the options, keeping track of the most general one.
2868   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2869     TargetLowering::ConstraintType CType =
2870       TLI.getConstraintType(OpInfo.Codes[i]);
2871 
2872     // If this is an 'other' constraint, see if the operand is valid for it.
2873     // For example, on X86 we might have an 'rI' constraint.  If the operand
2874     // is an integer in the range [0..31] we want to use I (saving a load
2875     // of a register), otherwise we must use 'r'.
2876     if (CType == TargetLowering::C_Other && Op.getNode()) {
2877       assert(OpInfo.Codes[i].size() == 1 &&
2878              "Unhandled multi-letter 'other' constraint");
2879       std::vector<SDValue> ResultOps;
2880       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2881                                        ResultOps, *DAG);
2882       if (!ResultOps.empty()) {
2883         BestType = CType;
2884         BestIdx = i;
2885         break;
2886       }
2887     }
2888 
2889     // Things with matching constraints can only be registers, per gcc
2890     // documentation.  This mainly affects "g" constraints.
2891     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2892       continue;
2893 
2894     // This constraint letter is more general than the previous one, use it.
2895     int Generality = getConstraintGenerality(CType);
2896     if (Generality > BestGenerality) {
2897       BestType = CType;
2898       BestIdx = i;
2899       BestGenerality = Generality;
2900     }
2901   }
2902 
2903   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2904   OpInfo.ConstraintType = BestType;
2905 }
2906 
2907 /// Determines the constraint code and constraint type to use for the specific
2908 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2909 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2910                                             SDValue Op,
2911                                             SelectionDAG *DAG) const {
2912   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2913 
2914   // Single-letter constraints ('r') are very common.
2915   if (OpInfo.Codes.size() == 1) {
2916     OpInfo.ConstraintCode = OpInfo.Codes[0];
2917     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2918   } else {
2919     ChooseConstraint(OpInfo, *this, Op, DAG);
2920   }
2921 
2922   // 'X' matches anything.
2923   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2924     // Labels and constants are handled elsewhere ('X' is the only thing
2925     // that matches labels).  For Functions, the type here is the type of
2926     // the result, which is not what we want to look at; leave them alone.
2927     Value *v = OpInfo.CallOperandVal;
2928     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2929       OpInfo.CallOperandVal = v;
2930       return;
2931     }
2932 
2933     // Otherwise, try to resolve it to something we know about by looking at
2934     // the actual operand type.
2935     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2936       OpInfo.ConstraintCode = Repl;
2937       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2938     }
2939   }
2940 }
2941 
2942 /// \brief Given an exact SDIV by a constant, create a multiplication
2943 /// with the multiplicative inverse of the constant.
2944 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2945                               const SDLoc &dl, SelectionDAG &DAG,
2946                               std::vector<SDNode *> &Created) {
2947   assert(d != 0 && "Division by zero!");
2948 
2949   // Shift the value upfront if it is even, so the LSB is one.
2950   unsigned ShAmt = d.countTrailingZeros();
2951   if (ShAmt) {
2952     // TODO: For UDIV use SRL instead of SRA.
2953     SDValue Amt =
2954         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2955                                                         DAG.getDataLayout()));
2956     SDNodeFlags Flags;
2957     Flags.setExact(true);
2958     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags);
2959     Created.push_back(Op1.getNode());
2960     d.ashrInPlace(ShAmt);
2961   }
2962 
2963   // Calculate the multiplicative inverse, using Newton's method.
2964   APInt t, xn = d;
2965   while ((t = d*xn) != 1)
2966     xn *= APInt(d.getBitWidth(), 2) - t;
2967 
2968   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2969   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2970   Created.push_back(Mul.getNode());
2971   return Mul;
2972 }
2973 
2974 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2975                                       SelectionDAG &DAG,
2976                                       std::vector<SDNode *> *Created) const {
2977   AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2978   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2979   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2980     return SDValue(N,0); // Lower SDIV as SDIV
2981   return SDValue();
2982 }
2983 
2984 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2985 /// return a DAG expression to select that will generate the same value by
2986 /// multiplying by a magic number.
2987 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2988 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2989                                   SelectionDAG &DAG, bool IsAfterLegalization,
2990                                   std::vector<SDNode *> *Created) const {
2991   assert(Created && "No vector to hold sdiv ops.");
2992 
2993   EVT VT = N->getValueType(0);
2994   SDLoc dl(N);
2995 
2996   // Check to see if we can do this.
2997   // FIXME: We should be more aggressive here.
2998   if (!isTypeLegal(VT))
2999     return SDValue();
3000 
3001   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3002   if (N->getFlags().hasExact())
3003     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
3004 
3005   APInt::ms magics = Divisor.magic();
3006 
3007   // Multiply the numerator (operand 0) by the magic value
3008   // FIXME: We should support doing a MUL in a wider type
3009   SDValue Q;
3010   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3011                             isOperationLegalOrCustom(ISD::MULHS, VT))
3012     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3013                     DAG.getConstant(magics.m, dl, VT));
3014   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3015                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3016     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3017                               N->getOperand(0),
3018                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3019   else
3020     return SDValue();       // No mulhs or equvialent
3021   // If d > 0 and m < 0, add the numerator
3022   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3023     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3024     Created->push_back(Q.getNode());
3025   }
3026   // If d < 0 and m > 0, subtract the numerator.
3027   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3028     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3029     Created->push_back(Q.getNode());
3030   }
3031   auto &DL = DAG.getDataLayout();
3032   // Shift right algebraic if shift value is nonzero
3033   if (magics.s > 0) {
3034     Q = DAG.getNode(
3035         ISD::SRA, dl, VT, Q,
3036         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3037     Created->push_back(Q.getNode());
3038   }
3039   // Extract the sign bit and add it to the quotient
3040   SDValue T =
3041       DAG.getNode(ISD::SRL, dl, VT, Q,
3042                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3043                                   getShiftAmountTy(Q.getValueType(), DL)));
3044   Created->push_back(T.getNode());
3045   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3046 }
3047 
3048 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3049 /// return a DAG expression to select that will generate the same value by
3050 /// multiplying by a magic number.
3051 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3052 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3053                                   SelectionDAG &DAG, bool IsAfterLegalization,
3054                                   std::vector<SDNode *> *Created) const {
3055   assert(Created && "No vector to hold udiv ops.");
3056 
3057   EVT VT = N->getValueType(0);
3058   SDLoc dl(N);
3059   auto &DL = DAG.getDataLayout();
3060 
3061   // Check to see if we can do this.
3062   // FIXME: We should be more aggressive here.
3063   if (!isTypeLegal(VT))
3064     return SDValue();
3065 
3066   // FIXME: We should use a narrower constant when the upper
3067   // bits are known to be zero.
3068   APInt::mu magics = Divisor.magicu();
3069 
3070   SDValue Q = N->getOperand(0);
3071 
3072   // If the divisor is even, we can avoid using the expensive fixup by shifting
3073   // the divided value upfront.
3074   if (magics.a != 0 && !Divisor[0]) {
3075     unsigned Shift = Divisor.countTrailingZeros();
3076     Q = DAG.getNode(
3077         ISD::SRL, dl, VT, Q,
3078         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3079     Created->push_back(Q.getNode());
3080 
3081     // Get magic number for the shifted divisor.
3082     magics = Divisor.lshr(Shift).magicu(Shift);
3083     assert(magics.a == 0 && "Should use cheap fixup now");
3084   }
3085 
3086   // Multiply the numerator (operand 0) by the magic value
3087   // FIXME: We should support doing a MUL in a wider type
3088   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3089                             isOperationLegalOrCustom(ISD::MULHU, VT))
3090     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3091   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3092                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3093     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3094                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3095   else
3096     return SDValue();       // No mulhu or equivalent
3097 
3098   Created->push_back(Q.getNode());
3099 
3100   if (magics.a == 0) {
3101     assert(magics.s < Divisor.getBitWidth() &&
3102            "We shouldn't generate an undefined shift!");
3103     return DAG.getNode(
3104         ISD::SRL, dl, VT, Q,
3105         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3106   } else {
3107     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3108     Created->push_back(NPQ.getNode());
3109     NPQ = DAG.getNode(
3110         ISD::SRL, dl, VT, NPQ,
3111         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3112     Created->push_back(NPQ.getNode());
3113     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3114     Created->push_back(NPQ.getNode());
3115     return DAG.getNode(
3116         ISD::SRL, dl, VT, NPQ,
3117         DAG.getConstant(magics.s - 1, dl,
3118                         getShiftAmountTy(NPQ.getValueType(), DL)));
3119   }
3120 }
3121 
3122 bool TargetLowering::
3123 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3124   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3125     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3126                                 "be a constant integer");
3127     return true;
3128   }
3129 
3130   return false;
3131 }
3132 
3133 //===----------------------------------------------------------------------===//
3134 // Legalization Utilities
3135 //===----------------------------------------------------------------------===//
3136 
3137 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3138                                     SDValue LHS, SDValue RHS,
3139                                     SmallVectorImpl<SDValue> &Result,
3140                                     EVT HiLoVT, SelectionDAG &DAG,
3141                                     MulExpansionKind Kind, SDValue LL,
3142                                     SDValue LH, SDValue RL, SDValue RH) const {
3143   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3144          Opcode == ISD::SMUL_LOHI);
3145 
3146   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3147                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3148   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3149                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3150   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3151                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3152   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3153                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3154 
3155   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3156     return false;
3157 
3158   unsigned OuterBitSize = VT.getScalarSizeInBits();
3159   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3160   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3161   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3162 
3163   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3164   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3165          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3166 
3167   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3168   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3169                           bool Signed) -> bool {
3170     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3171       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3172       Hi = SDValue(Lo.getNode(), 1);
3173       return true;
3174     }
3175     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3176       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3177       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3178       return true;
3179     }
3180     return false;
3181   };
3182 
3183   SDValue Lo, Hi;
3184 
3185   if (!LL.getNode() && !RL.getNode() &&
3186       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3187     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3188     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3189   }
3190 
3191   if (!LL.getNode())
3192     return false;
3193 
3194   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3195   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3196       DAG.MaskedValueIsZero(RHS, HighMask)) {
3197     // The inputs are both zero-extended.
3198     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3199       Result.push_back(Lo);
3200       Result.push_back(Hi);
3201       if (Opcode != ISD::MUL) {
3202         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3203         Result.push_back(Zero);
3204         Result.push_back(Zero);
3205       }
3206       return true;
3207     }
3208   }
3209 
3210   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3211       RHSSB > InnerBitSize) {
3212     // The input values are both sign-extended.
3213     // TODO non-MUL case?
3214     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3215       Result.push_back(Lo);
3216       Result.push_back(Hi);
3217       return true;
3218     }
3219   }
3220 
3221   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3222   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3223   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3224     // FIXME getShiftAmountTy does not always return a sensible result when VT
3225     // is an illegal type, and so the type may be too small to fit the shift
3226     // amount. Override it with i32. The shift will have to be legalized.
3227     ShiftAmountTy = MVT::i32;
3228   }
3229   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3230 
3231   if (!LH.getNode() && !RH.getNode() &&
3232       isOperationLegalOrCustom(ISD::SRL, VT) &&
3233       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3234     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3235     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3236     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3237     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3238   }
3239 
3240   if (!LH.getNode())
3241     return false;
3242 
3243   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3244     return false;
3245 
3246   Result.push_back(Lo);
3247 
3248   if (Opcode == ISD::MUL) {
3249     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3250     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3251     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3252     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3253     Result.push_back(Hi);
3254     return true;
3255   }
3256 
3257   // Compute the full width result.
3258   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3259     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3260     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3261     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3262     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3263   };
3264 
3265   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3266   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3267     return false;
3268 
3269   // This is effectively the add part of a multiply-add of half-sized operands,
3270   // so it cannot overflow.
3271   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3272 
3273   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3274     return false;
3275 
3276   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3277                      Merge(Lo, Hi));
3278 
3279   SDValue Carry = Next.getValue(1);
3280   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3281   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3282 
3283   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3284     return false;
3285 
3286   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3287   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3288                    Carry);
3289   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3290 
3291   if (Opcode == ISD::SMUL_LOHI) {
3292     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3293                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3294     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3295 
3296     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3297                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3298     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3299   }
3300 
3301   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3302   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3303   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3304   return true;
3305 }
3306 
3307 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3308                                SelectionDAG &DAG, MulExpansionKind Kind,
3309                                SDValue LL, SDValue LH, SDValue RL,
3310                                SDValue RH) const {
3311   SmallVector<SDValue, 2> Result;
3312   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3313                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3314                            DAG, Kind, LL, LH, RL, RH);
3315   if (Ok) {
3316     assert(Result.size() == 2);
3317     Lo = Result[0];
3318     Hi = Result[1];
3319   }
3320   return Ok;
3321 }
3322 
3323 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3324                                SelectionDAG &DAG) const {
3325   EVT VT = Node->getOperand(0).getValueType();
3326   EVT NVT = Node->getValueType(0);
3327   SDLoc dl(SDValue(Node, 0));
3328 
3329   // FIXME: Only f32 to i64 conversions are supported.
3330   if (VT != MVT::f32 || NVT != MVT::i64)
3331     return false;
3332 
3333   // Expand f32 -> i64 conversion
3334   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3335   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3336   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3337                                 VT.getSizeInBits());
3338   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3339   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3340   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3341   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
3342                                      IntVT);
3343   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3344   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3345 
3346   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3347 
3348   auto &DL = DAG.getDataLayout();
3349   SDValue ExponentBits = DAG.getNode(
3350       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3351       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3352   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3353 
3354   SDValue Sign = DAG.getNode(
3355       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3356       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3357   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3358 
3359   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3360       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3361       DAG.getConstant(0x00800000, dl, IntVT));
3362 
3363   R = DAG.getZExtOrTrunc(R, dl, NVT);
3364 
3365   R = DAG.getSelectCC(
3366       dl, Exponent, ExponentLoBit,
3367       DAG.getNode(ISD::SHL, dl, NVT, R,
3368                   DAG.getZExtOrTrunc(
3369                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3370                       dl, getShiftAmountTy(IntVT, DL))),
3371       DAG.getNode(ISD::SRL, dl, NVT, R,
3372                   DAG.getZExtOrTrunc(
3373                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3374                       dl, getShiftAmountTy(IntVT, DL))),
3375       ISD::SETGT);
3376 
3377   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3378       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3379       Sign);
3380 
3381   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3382       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3383   return true;
3384 }
3385 
3386 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3387                                             SelectionDAG &DAG) const {
3388   SDLoc SL(LD);
3389   SDValue Chain = LD->getChain();
3390   SDValue BasePTR = LD->getBasePtr();
3391   EVT SrcVT = LD->getMemoryVT();
3392   ISD::LoadExtType ExtType = LD->getExtensionType();
3393 
3394   unsigned NumElem = SrcVT.getVectorNumElements();
3395 
3396   EVT SrcEltVT = SrcVT.getScalarType();
3397   EVT DstEltVT = LD->getValueType(0).getScalarType();
3398 
3399   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3400   assert(SrcEltVT.isByteSized());
3401 
3402   EVT PtrVT = BasePTR.getValueType();
3403 
3404   SmallVector<SDValue, 8> Vals;
3405   SmallVector<SDValue, 8> LoadChains;
3406 
3407   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3408     SDValue ScalarLoad =
3409         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3410                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3411                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3412                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3413 
3414     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3415                           DAG.getConstant(Stride, SL, PtrVT));
3416 
3417     Vals.push_back(ScalarLoad.getValue(0));
3418     LoadChains.push_back(ScalarLoad.getValue(1));
3419   }
3420 
3421   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3422   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3423 
3424   return DAG.getMergeValues({ Value, NewChain }, SL);
3425 }
3426 
3427 // FIXME: This relies on each element having a byte size, otherwise the stride
3428 // is 0 and just overwrites the same location. ExpandStore currently expects
3429 // this broken behavior.
3430 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3431                                              SelectionDAG &DAG) const {
3432   SDLoc SL(ST);
3433 
3434   SDValue Chain = ST->getChain();
3435   SDValue BasePtr = ST->getBasePtr();
3436   SDValue Value = ST->getValue();
3437   EVT StVT = ST->getMemoryVT();
3438 
3439   // The type of the data we want to save
3440   EVT RegVT = Value.getValueType();
3441   EVT RegSclVT = RegVT.getScalarType();
3442 
3443   // The type of data as saved in memory.
3444   EVT MemSclVT = StVT.getScalarType();
3445 
3446   EVT PtrVT = BasePtr.getValueType();
3447 
3448   // Store Stride in bytes
3449   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3450   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3451   unsigned NumElem = StVT.getVectorNumElements();
3452 
3453   // Extract each of the elements from the original vector and save them into
3454   // memory individually.
3455   SmallVector<SDValue, 8> Stores;
3456   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3457     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3458                               DAG.getConstant(Idx, SL, IdxVT));
3459 
3460     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3461                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3462 
3463     // This scalar TruncStore may be illegal, but we legalize it later.
3464     SDValue Store = DAG.getTruncStore(
3465         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3466         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3467         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3468 
3469     Stores.push_back(Store);
3470   }
3471 
3472   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3473 }
3474 
3475 std::pair<SDValue, SDValue>
3476 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3477   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3478          "unaligned indexed loads not implemented!");
3479   SDValue Chain = LD->getChain();
3480   SDValue Ptr = LD->getBasePtr();
3481   EVT VT = LD->getValueType(0);
3482   EVT LoadedVT = LD->getMemoryVT();
3483   SDLoc dl(LD);
3484   if (VT.isFloatingPoint() || VT.isVector()) {
3485     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3486     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3487       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3488         // Scalarize the load and let the individual components be handled.
3489         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3490         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3491       }
3492 
3493       // Expand to a (misaligned) integer load of the same size,
3494       // then bitconvert to floating point or vector.
3495       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3496                                     LD->getMemOperand());
3497       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3498       if (LoadedVT != VT)
3499         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3500                              ISD::ANY_EXTEND, dl, VT, Result);
3501 
3502       return std::make_pair(Result, newLoad.getValue(1));
3503     }
3504 
3505     // Copy the value to a (aligned) stack slot using (unaligned) integer
3506     // loads and stores, then do a (aligned) load from the stack slot.
3507     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3508     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3509     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3510     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3511 
3512     // Make sure the stack slot is also aligned for the register type.
3513     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3514 
3515     SmallVector<SDValue, 8> Stores;
3516     SDValue StackPtr = StackBase;
3517     unsigned Offset = 0;
3518 
3519     EVT PtrVT = Ptr.getValueType();
3520     EVT StackPtrVT = StackPtr.getValueType();
3521 
3522     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3523     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3524 
3525     // Do all but one copies using the full register width.
3526     for (unsigned i = 1; i < NumRegs; i++) {
3527       // Load one integer register's worth from the original location.
3528       SDValue Load = DAG.getLoad(
3529           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3530           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3531           LD->getAAInfo());
3532       // Follow the load with a store to the stack slot.  Remember the store.
3533       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3534                                     MachinePointerInfo()));
3535       // Increment the pointers.
3536       Offset += RegBytes;
3537       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3538       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3539                              StackPtrIncrement);
3540     }
3541 
3542     // The last copy may be partial.  Do an extending load.
3543     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3544                                   8 * (LoadedBytes - Offset));
3545     SDValue Load =
3546         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3547                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3548                        MinAlign(LD->getAlignment(), Offset),
3549                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3550     // Follow the load with a store to the stack slot.  Remember the store.
3551     // On big-endian machines this requires a truncating store to ensure
3552     // that the bits end up in the right place.
3553     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3554                                        MachinePointerInfo(), MemVT));
3555 
3556     // The order of the stores doesn't matter - say it with a TokenFactor.
3557     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3558 
3559     // Finally, perform the original load only redirected to the stack slot.
3560     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3561                           MachinePointerInfo(), LoadedVT);
3562 
3563     // Callers expect a MERGE_VALUES node.
3564     return std::make_pair(Load, TF);
3565   }
3566 
3567   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3568          "Unaligned load of unsupported type.");
3569 
3570   // Compute the new VT that is half the size of the old one.  This is an
3571   // integer MVT.
3572   unsigned NumBits = LoadedVT.getSizeInBits();
3573   EVT NewLoadedVT;
3574   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3575   NumBits >>= 1;
3576 
3577   unsigned Alignment = LD->getAlignment();
3578   unsigned IncrementSize = NumBits / 8;
3579   ISD::LoadExtType HiExtType = LD->getExtensionType();
3580 
3581   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3582   if (HiExtType == ISD::NON_EXTLOAD)
3583     HiExtType = ISD::ZEXTLOAD;
3584 
3585   // Load the value in two parts
3586   SDValue Lo, Hi;
3587   if (DAG.getDataLayout().isLittleEndian()) {
3588     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3589                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3590                         LD->getAAInfo());
3591     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3592                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3593     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3594                         LD->getPointerInfo().getWithOffset(IncrementSize),
3595                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3596                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3597   } else {
3598     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3599                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3600                         LD->getAAInfo());
3601     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3602                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3603     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3604                         LD->getPointerInfo().getWithOffset(IncrementSize),
3605                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3606                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3607   }
3608 
3609   // aggregate the two parts
3610   SDValue ShiftAmount =
3611       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3612                                                     DAG.getDataLayout()));
3613   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3614   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3615 
3616   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3617                              Hi.getValue(1));
3618 
3619   return std::make_pair(Result, TF);
3620 }
3621 
3622 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3623                                              SelectionDAG &DAG) const {
3624   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3625          "unaligned indexed stores not implemented!");
3626   SDValue Chain = ST->getChain();
3627   SDValue Ptr = ST->getBasePtr();
3628   SDValue Val = ST->getValue();
3629   EVT VT = Val.getValueType();
3630   int Alignment = ST->getAlignment();
3631 
3632   SDLoc dl(ST);
3633   if (ST->getMemoryVT().isFloatingPoint() ||
3634       ST->getMemoryVT().isVector()) {
3635     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3636     if (isTypeLegal(intVT)) {
3637       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3638         // Scalarize the store and let the individual components be handled.
3639         SDValue Result = scalarizeVectorStore(ST, DAG);
3640 
3641         return Result;
3642       }
3643       // Expand to a bitconvert of the value to the integer type of the
3644       // same size, then a (misaligned) int store.
3645       // FIXME: Does not handle truncating floating point stores!
3646       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3647       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3648                             Alignment, ST->getMemOperand()->getFlags());
3649       return Result;
3650     }
3651     // Do a (aligned) store to a stack slot, then copy from the stack slot
3652     // to the final destination using (unaligned) integer loads and stores.
3653     EVT StoredVT = ST->getMemoryVT();
3654     MVT RegVT =
3655       getRegisterType(*DAG.getContext(),
3656                       EVT::getIntegerVT(*DAG.getContext(),
3657                                         StoredVT.getSizeInBits()));
3658     EVT PtrVT = Ptr.getValueType();
3659     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3660     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3661     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3662 
3663     // Make sure the stack slot is also aligned for the register type.
3664     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3665 
3666     // Perform the original store, only redirected to the stack slot.
3667     SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr,
3668                                       MachinePointerInfo(), StoredVT);
3669 
3670     EVT StackPtrVT = StackPtr.getValueType();
3671 
3672     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3673     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3674     SmallVector<SDValue, 8> Stores;
3675     unsigned Offset = 0;
3676 
3677     // Do all but one copies using the full register width.
3678     for (unsigned i = 1; i < NumRegs; i++) {
3679       // Load one integer register's worth from the stack slot.
3680       SDValue Load =
3681           DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo());
3682       // Store it to the final location.  Remember the store.
3683       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3684                                     ST->getPointerInfo().getWithOffset(Offset),
3685                                     MinAlign(ST->getAlignment(), Offset),
3686                                     ST->getMemOperand()->getFlags()));
3687       // Increment the pointers.
3688       Offset += RegBytes;
3689       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3690                              StackPtr, StackPtrIncrement);
3691       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3692     }
3693 
3694     // The last store may be partial.  Do a truncating store.  On big-endian
3695     // machines this requires an extending load from the stack slot to ensure
3696     // that the bits are in the right place.
3697     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3698                                   8 * (StoredBytes - Offset));
3699 
3700     // Load from the stack slot.
3701     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3702                                   MachinePointerInfo(), MemVT);
3703 
3704     Stores.push_back(
3705         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3706                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3707                           MinAlign(ST->getAlignment(), Offset),
3708                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3709     // The order of the stores doesn't matter - say it with a TokenFactor.
3710     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3711     return Result;
3712   }
3713 
3714   assert(ST->getMemoryVT().isInteger() &&
3715          !ST->getMemoryVT().isVector() &&
3716          "Unaligned store of unknown type.");
3717   // Get the half-size VT
3718   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3719   int NumBits = NewStoredVT.getSizeInBits();
3720   int IncrementSize = NumBits / 8;
3721 
3722   // Divide the stored value in two parts.
3723   SDValue ShiftAmount =
3724       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3725                                                     DAG.getDataLayout()));
3726   SDValue Lo = Val;
3727   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3728 
3729   // Store the two parts
3730   SDValue Store1, Store2;
3731   Store1 = DAG.getTruncStore(Chain, dl,
3732                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3733                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3734                              ST->getMemOperand()->getFlags());
3735 
3736   EVT PtrVT = Ptr.getValueType();
3737   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3738                     DAG.getConstant(IncrementSize, dl, PtrVT));
3739   Alignment = MinAlign(Alignment, IncrementSize);
3740   Store2 = DAG.getTruncStore(
3741       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3742       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3743       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3744 
3745   SDValue Result =
3746     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3747   return Result;
3748 }
3749 
3750 SDValue
3751 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
3752                                        const SDLoc &DL, EVT DataVT,
3753                                        SelectionDAG &DAG,
3754                                        bool IsCompressedMemory) const {
3755   SDValue Increment;
3756   EVT AddrVT = Addr.getValueType();
3757   EVT MaskVT = Mask.getValueType();
3758   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
3759          "Incompatible types of Data and Mask");
3760   if (IsCompressedMemory) {
3761     // Incrementing the pointer according to number of '1's in the mask.
3762     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
3763     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
3764     if (MaskIntVT.getSizeInBits() < 32) {
3765       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
3766       MaskIntVT = MVT::i32;
3767     }
3768 
3769     // Count '1's with POPCNT.
3770     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
3771     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
3772     // Scale is an element size in bytes.
3773     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
3774                                     AddrVT);
3775     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
3776   } else
3777     Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT);
3778 
3779   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
3780 }
3781 
3782 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
3783                                        SDValue Idx,
3784                                        EVT VecVT,
3785                                        const SDLoc &dl) {
3786   if (isa<ConstantSDNode>(Idx))
3787     return Idx;
3788 
3789   EVT IdxVT = Idx.getValueType();
3790   unsigned NElts = VecVT.getVectorNumElements();
3791   if (isPowerOf2_32(NElts)) {
3792     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
3793                                      Log2_32(NElts));
3794     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
3795                        DAG.getConstant(Imm, dl, IdxVT));
3796   }
3797 
3798   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
3799                      DAG.getConstant(NElts - 1, dl, IdxVT));
3800 }
3801 
3802 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
3803                                                 SDValue VecPtr, EVT VecVT,
3804                                                 SDValue Index) const {
3805   SDLoc dl(Index);
3806   // Make sure the index type is big enough to compute in.
3807   Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout()));
3808 
3809   EVT EltVT = VecVT.getVectorElementType();
3810 
3811   // Calculate the element offset and add it to the pointer.
3812   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
3813   assert(EltSize * 8 == EltVT.getSizeInBits() &&
3814          "Converting bits to bytes lost precision");
3815 
3816   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
3817 
3818   EVT IdxVT = Index.getValueType();
3819 
3820   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
3821                       DAG.getConstant(EltSize, dl, IdxVT));
3822   return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr);
3823 }
3824 
3825 //===----------------------------------------------------------------------===//
3826 // Implementation of Emulated TLS Model
3827 //===----------------------------------------------------------------------===//
3828 
3829 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3830                                                 SelectionDAG &DAG) const {
3831   // Access to address of TLS varialbe xyz is lowered to a function call:
3832   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3833   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3834   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3835   SDLoc dl(GA);
3836 
3837   ArgListTy Args;
3838   ArgListEntry Entry;
3839   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3840   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3841   StringRef EmuTlsVarName(NameString);
3842   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3843   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3844   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3845   Entry.Ty = VoidPtrType;
3846   Args.push_back(Entry);
3847 
3848   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3849 
3850   TargetLowering::CallLoweringInfo CLI(DAG);
3851   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3852   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3853   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3854 
3855   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3856   // At last for X86 targets, maybe good for other targets too?
3857   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3858   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3859   MFI.setHasCalls(true);
3860 
3861   assert((GA->getOffset() == 0) &&
3862          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3863   return CallResult.first;
3864 }
3865 
3866 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3867                                                 SelectionDAG &DAG) const {
3868   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3869   if (!isCtlzFast())
3870     return SDValue();
3871   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3872   SDLoc dl(Op);
3873   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3874     if (C->isNullValue() && CC == ISD::SETEQ) {
3875       EVT VT = Op.getOperand(0).getValueType();
3876       SDValue Zext = Op.getOperand(0);
3877       if (VT.bitsLT(MVT::i32)) {
3878         VT = MVT::i32;
3879         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3880       }
3881       unsigned Log2b = Log2_32(VT.getSizeInBits());
3882       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3883       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3884                                 DAG.getConstant(Log2b, dl, MVT::i32));
3885       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3886     }
3887   }
3888   return SDValue();
3889 }
3890