1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function *F = DAG.getMachineFunction().getFunction(); 56 57 // Conservatively require the attributes of the call to match those of 58 // the return. Ignore noalias because it doesn't affect the call sequence. 59 AttributeList CallerAttrs = F->getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 unsigned Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 102 unsigned ArgIdx) { 103 IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = CS->getParamAlignment(ArgIdx); 114 } 115 116 /// Generate a libcall taking the given operands as arguments and returning a 117 /// result of type RetVT. 118 std::pair<SDValue, SDValue> 119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 120 ArrayRef<SDValue> Ops, bool isSigned, 121 const SDLoc &dl, bool doesNotReturn, 122 bool isReturnValueUsed) const { 123 TargetLowering::ArgListTy Args; 124 Args.reserve(Ops.size()); 125 126 TargetLowering::ArgListEntry Entry; 127 for (SDValue Op : Ops) { 128 Entry.Node = Op; 129 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 130 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 131 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 132 Args.push_back(Entry); 133 } 134 135 if (LC == RTLIB::UNKNOWN_LIBCALL) 136 report_fatal_error("Unsupported library call operation!"); 137 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 138 getPointerTy(DAG.getDataLayout())); 139 140 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 141 TargetLowering::CallLoweringInfo CLI(DAG); 142 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 143 CLI.setDebugLoc(dl) 144 .setChain(DAG.getEntryNode()) 145 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 146 .setNoReturn(doesNotReturn) 147 .setDiscardResult(!isReturnValueUsed) 148 .setSExtResult(signExtend) 149 .setZExtResult(!signExtend); 150 return LowerCallTo(CLI); 151 } 152 153 /// Soften the operands of a comparison. This code is shared among BR_CC, 154 /// SELECT_CC, and SETCC handlers. 155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 156 SDValue &NewLHS, SDValue &NewRHS, 157 ISD::CondCode &CCCode, 158 const SDLoc &dl) const { 159 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 160 && "Unsupported setcc type!"); 161 162 // Expand into one or more soft-fp libcall(s). 163 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 164 bool ShouldInvertCC = false; 165 switch (CCCode) { 166 case ISD::SETEQ: 167 case ISD::SETOEQ: 168 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 169 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 170 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 171 break; 172 case ISD::SETNE: 173 case ISD::SETUNE: 174 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 175 (VT == MVT::f64) ? RTLIB::UNE_F64 : 176 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 177 break; 178 case ISD::SETGE: 179 case ISD::SETOGE: 180 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 181 (VT == MVT::f64) ? RTLIB::OGE_F64 : 182 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 183 break; 184 case ISD::SETLT: 185 case ISD::SETOLT: 186 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 187 (VT == MVT::f64) ? RTLIB::OLT_F64 : 188 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 189 break; 190 case ISD::SETLE: 191 case ISD::SETOLE: 192 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 193 (VT == MVT::f64) ? RTLIB::OLE_F64 : 194 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 195 break; 196 case ISD::SETGT: 197 case ISD::SETOGT: 198 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 199 (VT == MVT::f64) ? RTLIB::OGT_F64 : 200 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 201 break; 202 case ISD::SETUO: 203 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 204 (VT == MVT::f64) ? RTLIB::UO_F64 : 205 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 206 break; 207 case ISD::SETO: 208 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 209 (VT == MVT::f64) ? RTLIB::O_F64 : 210 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 211 break; 212 case ISD::SETONE: 213 // SETONE = SETOLT | SETOGT 214 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 215 (VT == MVT::f64) ? RTLIB::OLT_F64 : 216 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 217 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 218 (VT == MVT::f64) ? RTLIB::OGT_F64 : 219 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 220 break; 221 case ISD::SETUEQ: 222 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 223 (VT == MVT::f64) ? RTLIB::UO_F64 : 224 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 225 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 226 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 227 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 228 break; 229 default: 230 // Invert CC for unordered comparisons 231 ShouldInvertCC = true; 232 switch (CCCode) { 233 case ISD::SETULT: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 235 (VT == MVT::f64) ? RTLIB::OGE_F64 : 236 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 237 break; 238 case ISD::SETULE: 239 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 240 (VT == MVT::f64) ? RTLIB::OGT_F64 : 241 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 242 break; 243 case ISD::SETUGT: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 245 (VT == MVT::f64) ? RTLIB::OLE_F64 : 246 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 247 break; 248 case ISD::SETUGE: 249 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 250 (VT == MVT::f64) ? RTLIB::OLT_F64 : 251 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 252 break; 253 default: llvm_unreachable("Do not know how to soften this setcc!"); 254 } 255 } 256 257 // Use the target specific return value for comparions lib calls. 258 EVT RetVT = getCmpLibcallReturnType(); 259 SDValue Ops[2] = {NewLHS, NewRHS}; 260 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 261 dl).first; 262 NewRHS = DAG.getConstant(0, dl, RetVT); 263 264 CCCode = getCmpLibcallCC(LC1); 265 if (ShouldInvertCC) 266 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 267 268 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 269 SDValue Tmp = DAG.getNode( 270 ISD::SETCC, dl, 271 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 272 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 273 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 274 dl).first; 275 NewLHS = DAG.getNode( 276 ISD::SETCC, dl, 277 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 278 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 279 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 280 NewRHS = SDValue(); 281 } 282 } 283 284 /// Return the entry encoding for a jump table in the current function. The 285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 286 unsigned TargetLowering::getJumpTableEncoding() const { 287 // In non-pic modes, just use the address of a block. 288 if (!isPositionIndependent()) 289 return MachineJumpTableInfo::EK_BlockAddress; 290 291 // In PIC mode, if the target supports a GPRel32 directive, use it. 292 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 293 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 294 295 // Otherwise, use a label difference. 296 return MachineJumpTableInfo::EK_LabelDifference32; 297 } 298 299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 300 SelectionDAG &DAG) const { 301 // If our PIC model is GP relative, use the global offset table as the base. 302 unsigned JTEncoding = getJumpTableEncoding(); 303 304 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 305 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 306 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 307 308 return Table; 309 } 310 311 /// This returns the relocation base for the given PIC jumptable, the same as 312 /// getPICJumpTableRelocBase, but as an MCExpr. 313 const MCExpr * 314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 315 unsigned JTI,MCContext &Ctx) const{ 316 // The normal PIC reloc base is the label at the start of the jump table. 317 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 318 } 319 320 bool 321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 322 const TargetMachine &TM = getTargetMachine(); 323 const GlobalValue *GV = GA->getGlobal(); 324 325 // If the address is not even local to this DSO we will have to load it from 326 // a got and then add the offset. 327 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 328 return false; 329 330 // If the code is position independent we will have to add a base register. 331 if (isPositionIndependent()) 332 return false; 333 334 // Otherwise we can do it. 335 return true; 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Optimization Methods 340 //===----------------------------------------------------------------------===// 341 342 /// If the specified instruction has a constant integer operand and there are 343 /// bits set in that constant that are not demanded, then clear those bits and 344 /// return true. 345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 346 TargetLoweringOpt &TLO) const { 347 SelectionDAG &DAG = TLO.DAG; 348 SDLoc DL(Op); 349 unsigned Opcode = Op.getOpcode(); 350 351 // Do target-specific constant optimization. 352 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 353 return TLO.New.getNode(); 354 355 // FIXME: ISD::SELECT, ISD::SELECT_CC 356 switch (Opcode) { 357 default: 358 break; 359 case ISD::XOR: 360 case ISD::AND: 361 case ISD::OR: { 362 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 363 if (!Op1C) 364 return false; 365 366 // If this is a 'not' op, don't touch it because that's a canonical form. 367 const APInt &C = Op1C->getAPIntValue(); 368 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 369 return false; 370 371 if (!C.isSubsetOf(Demanded)) { 372 EVT VT = Op.getValueType(); 373 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 374 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 375 return TLO.CombineTo(Op, NewOp); 376 } 377 378 break; 379 } 380 } 381 382 return false; 383 } 384 385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 387 /// generalized for targets with other types of implicit widening casts. 388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 389 const APInt &Demanded, 390 TargetLoweringOpt &TLO) const { 391 assert(Op.getNumOperands() == 2 && 392 "ShrinkDemandedOp only supports binary operators!"); 393 assert(Op.getNode()->getNumValues() == 1 && 394 "ShrinkDemandedOp only supports nodes with one result!"); 395 396 SelectionDAG &DAG = TLO.DAG; 397 SDLoc dl(Op); 398 399 // Early return, as this function cannot handle vector types. 400 if (Op.getValueType().isVector()) 401 return false; 402 403 // Don't do this if the node has another user, which may require the 404 // full value. 405 if (!Op.getNode()->hasOneUse()) 406 return false; 407 408 // Search for the smallest integer type with free casts to and from 409 // Op's type. For expedience, just check power-of-2 integer types. 410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 411 unsigned DemandedSize = Demanded.getActiveBits(); 412 unsigned SmallVTBits = DemandedSize; 413 if (!isPowerOf2_32(SmallVTBits)) 414 SmallVTBits = NextPowerOf2(SmallVTBits); 415 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 416 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 417 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 418 TLI.isZExtFree(SmallVT, Op.getValueType())) { 419 // We found a type with free casts. 420 SDValue X = DAG.getNode( 421 Op.getOpcode(), dl, SmallVT, 422 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 423 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 424 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 425 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 426 return TLO.CombineTo(Op, Z); 427 } 428 } 429 return false; 430 } 431 432 bool 433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, 434 const APInt &Demanded, 435 DAGCombinerInfo &DCI, 436 TargetLoweringOpt &TLO) const { 437 SDValue Op = User->getOperand(OpIdx); 438 KnownBits Known; 439 440 if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true)) 441 return false; 442 443 444 // Old will not always be the same as Op. For example: 445 // 446 // Demanded = 0xffffff 447 // Op = i64 truncate (i32 and x, 0xffffff) 448 // In this case simplify demand bits will want to replace the 'and' node 449 // with the value 'x', which will give us: 450 // Old = i32 and x, 0xffffff 451 // New = x 452 if (TLO.Old.hasOneUse()) { 453 // For the one use case, we just commit the change. 454 DCI.CommitTargetLoweringOpt(TLO); 455 return true; 456 } 457 458 // If Old has more than one use then it must be Op, because the 459 // AssumeSingleUse flag is not propogated to recursive calls of 460 // SimplifyDemanded bits, so the only node with multiple use that 461 // it will attempt to combine will be opt. 462 assert(TLO.Old == Op); 463 464 SmallVector <SDValue, 4> NewOps; 465 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 466 if (i == OpIdx) { 467 NewOps.push_back(TLO.New); 468 continue; 469 } 470 NewOps.push_back(User->getOperand(i)); 471 } 472 TLO.DAG.UpdateNodeOperands(User, NewOps); 473 // Op has less users now, so we may be able to perform additional combines 474 // with it. 475 DCI.AddToWorklist(Op.getNode()); 476 // User's operands have been updated, so we may be able to do new combines 477 // with it. 478 DCI.AddToWorklist(User); 479 return true; 480 } 481 482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask, 483 DAGCombinerInfo &DCI) const { 484 485 SelectionDAG &DAG = DCI.DAG; 486 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 487 !DCI.isBeforeLegalizeOps()); 488 KnownBits Known; 489 490 bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO); 491 if (Simplified) 492 DCI.CommitTargetLoweringOpt(TLO); 493 return Simplified; 494 } 495 496 /// Look at Op. At this point, we know that only the DemandedMask bits of the 497 /// result of Op are ever used downstream. If we can use this information to 498 /// simplify Op, create a new simplified DAG node and return true, returning the 499 /// original and new nodes in Old and New. Otherwise, analyze the expression and 500 /// return a mask of Known bits for the expression (used to simplify the 501 /// caller). The Known bits may only be accurate for those bits in the 502 /// DemandedMask. 503 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 504 const APInt &DemandedMask, 505 KnownBits &Known, 506 TargetLoweringOpt &TLO, 507 unsigned Depth, 508 bool AssumeSingleUse) const { 509 unsigned BitWidth = DemandedMask.getBitWidth(); 510 assert(Op.getScalarValueSizeInBits() == BitWidth && 511 "Mask size mismatches value type size!"); 512 APInt NewMask = DemandedMask; 513 SDLoc dl(Op); 514 auto &DL = TLO.DAG.getDataLayout(); 515 516 // Don't know anything. 517 Known = KnownBits(BitWidth); 518 519 // Other users may use these bits. 520 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 521 if (Depth != 0) { 522 // If not at the root, Just compute the Known bits to 523 // simplify things downstream. 524 TLO.DAG.computeKnownBits(Op, Known, Depth); 525 return false; 526 } 527 // If this is the root being simplified, allow it to have multiple uses, 528 // just set the NewMask to all bits. 529 NewMask = APInt::getAllOnesValue(BitWidth); 530 } else if (DemandedMask == 0) { 531 // Not demanding any bits from Op. 532 if (!Op.isUndef()) 533 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 534 return false; 535 } else if (Depth == 6) { // Limit search depth. 536 return false; 537 } 538 539 KnownBits Known2, KnownOut; 540 switch (Op.getOpcode()) { 541 case ISD::Constant: 542 // We know all of the bits for a constant! 543 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 544 Known.Zero = ~Known.One; 545 return false; // Don't fall through, will infinitely loop. 546 case ISD::BUILD_VECTOR: 547 // Collect the known bits that are shared by every constant vector element. 548 Known.Zero.setAllBits(); Known.One.setAllBits(); 549 for (SDValue SrcOp : Op->ops()) { 550 if (!isa<ConstantSDNode>(SrcOp)) { 551 // We can only handle all constant values - bail out with no known bits. 552 Known = KnownBits(BitWidth); 553 return false; 554 } 555 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 556 Known2.Zero = ~Known2.One; 557 558 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 559 if (Known2.One.getBitWidth() != BitWidth) { 560 assert(Known2.getBitWidth() > BitWidth && 561 "Expected BUILD_VECTOR implicit truncation"); 562 Known2 = Known2.trunc(BitWidth); 563 } 564 565 // Known bits are the values that are shared by every element. 566 // TODO: support per-element known bits. 567 Known.One &= Known2.One; 568 Known.Zero &= Known2.Zero; 569 } 570 return false; // Don't fall through, will infinitely loop. 571 case ISD::AND: 572 // If the RHS is a constant, check to see if the LHS would be zero without 573 // using the bits from the RHS. Below, we use knowledge about the RHS to 574 // simplify the LHS, here we're using information from the LHS to simplify 575 // the RHS. 576 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) { 577 SDValue Op0 = Op.getOperand(0); 578 KnownBits LHSKnown; 579 // Do not increment Depth here; that can cause an infinite loop. 580 TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); 581 // If the LHS already has zeros where RHSC does, this and is dead. 582 if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 583 return TLO.CombineTo(Op, Op0); 584 585 // If any of the set bits in the RHS are known zero on the LHS, shrink 586 // the constant. 587 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO)) 588 return true; 589 590 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 591 // constant, but if this 'and' is only clearing bits that were just set by 592 // the xor, then this 'and' can be eliminated by shrinking the mask of 593 // the xor. For example, for a 32-bit X: 594 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 595 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 596 LHSKnown.One == ~RHSC->getAPIntValue()) { 597 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(), 598 Op0.getOperand(0), Op.getOperand(1)); 599 return TLO.CombineTo(Op, Xor); 600 } 601 } 602 603 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 604 return true; 605 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 606 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask, 607 Known2, TLO, Depth+1)) 608 return true; 609 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 610 611 // If all of the demanded bits are known one on one side, return the other. 612 // These bits cannot contribute to the result of the 'and'. 613 if (NewMask.isSubsetOf(Known2.Zero | Known.One)) 614 return TLO.CombineTo(Op, Op.getOperand(0)); 615 if (NewMask.isSubsetOf(Known.Zero | Known2.One)) 616 return TLO.CombineTo(Op, Op.getOperand(1)); 617 // If all of the demanded bits in the inputs are known zeros, return zero. 618 if (NewMask.isSubsetOf(Known.Zero | Known2.Zero)) 619 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 620 // If the RHS is a constant, see if we can simplify it. 621 if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO)) 622 return true; 623 // If the operation can be done in a smaller type, do so. 624 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 625 return true; 626 627 // Output known-1 bits are only known if set in both the LHS & RHS. 628 Known.One &= Known2.One; 629 // Output known-0 are known to be clear if zero in either the LHS | RHS. 630 Known.Zero |= Known2.Zero; 631 break; 632 case ISD::OR: 633 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 634 return true; 635 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 636 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask, 637 Known2, TLO, Depth+1)) 638 return true; 639 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 640 641 // If all of the demanded bits are known zero on one side, return the other. 642 // These bits cannot contribute to the result of the 'or'. 643 if (NewMask.isSubsetOf(Known2.One | Known.Zero)) 644 return TLO.CombineTo(Op, Op.getOperand(0)); 645 if (NewMask.isSubsetOf(Known.One | Known2.Zero)) 646 return TLO.CombineTo(Op, Op.getOperand(1)); 647 // If the RHS is a constant, see if we can simplify it. 648 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 649 return true; 650 // If the operation can be done in a smaller type, do so. 651 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 652 return true; 653 654 // Output known-0 bits are only known if clear in both the LHS & RHS. 655 Known.Zero &= Known2.Zero; 656 // Output known-1 are known to be set if set in either the LHS | RHS. 657 Known.One |= Known2.One; 658 break; 659 case ISD::XOR: { 660 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 661 return true; 662 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 663 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1)) 664 return true; 665 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 666 667 // If all of the demanded bits are known zero on one side, return the other. 668 // These bits cannot contribute to the result of the 'xor'. 669 if (NewMask.isSubsetOf(Known.Zero)) 670 return TLO.CombineTo(Op, Op.getOperand(0)); 671 if (NewMask.isSubsetOf(Known2.Zero)) 672 return TLO.CombineTo(Op, Op.getOperand(1)); 673 // If the operation can be done in a smaller type, do so. 674 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 675 return true; 676 677 // If all of the unknown bits are known to be zero on one side or the other 678 // (but not both) turn this into an *inclusive* or. 679 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 680 if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0) 681 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 682 Op.getOperand(0), 683 Op.getOperand(1))); 684 685 // Output known-0 bits are known if clear or set in both the LHS & RHS. 686 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 687 // Output known-1 are known to be set if set in only one of the LHS, RHS. 688 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 689 690 // If all of the demanded bits on one side are known, and all of the set 691 // bits on that side are also known to be set on the other side, turn this 692 // into an AND, as we know the bits will be cleared. 693 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 694 // NB: it is okay if more bits are known than are requested 695 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side 696 if (Known.One == Known2.One) { // set bits are the same on both sides 697 EVT VT = Op.getValueType(); 698 SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT); 699 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 700 Op.getOperand(0), ANDC)); 701 } 702 } 703 704 // If the RHS is a constant, see if we can change it. Don't alter a -1 705 // constant because that's a 'not' op, and that is better for combining and 706 // codegen. 707 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1)); 708 if (C && !C->isAllOnesValue()) { 709 if (NewMask.isSubsetOf(C->getAPIntValue())) { 710 // We're flipping all demanded bits. Flip the undemanded bits too. 711 SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), Op.getValueType()); 712 return TLO.CombineTo(Op, New); 713 } 714 // If we can't turn this into a 'not', try to shrink the constant. 715 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 716 return true; 717 } 718 719 Known = std::move(KnownOut); 720 break; 721 } 722 case ISD::SELECT: 723 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1)) 724 return true; 725 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1)) 726 return true; 727 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 728 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 729 730 // If the operands are constants, see if we can simplify them. 731 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 732 return true; 733 734 // Only known if known in both the LHS and RHS. 735 Known.One &= Known2.One; 736 Known.Zero &= Known2.Zero; 737 break; 738 case ISD::SELECT_CC: 739 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1)) 740 return true; 741 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1)) 742 return true; 743 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 744 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 745 746 // If the operands are constants, see if we can simplify them. 747 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 748 return true; 749 750 // Only known if known in both the LHS and RHS. 751 Known.One &= Known2.One; 752 Known.Zero &= Known2.Zero; 753 break; 754 case ISD::SETCC: { 755 SDValue Op0 = Op.getOperand(0); 756 SDValue Op1 = Op.getOperand(1); 757 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 758 // If (1) we only need the sign-bit, (2) the setcc operands are the same 759 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 760 // -1, we may be able to bypass the setcc. 761 if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth && 762 getBooleanContents(Op.getValueType()) == 763 BooleanContent::ZeroOrNegativeOneBooleanContent) { 764 // If we're testing X < 0, then this compare isn't needed - just use X! 765 // FIXME: We're limiting to integer types here, but this should also work 766 // if we don't care about FP signed-zero. The use of SETLT with FP means 767 // that we don't care about NaNs. 768 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 769 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 770 return TLO.CombineTo(Op, Op0); 771 772 // TODO: Should we check for other forms of sign-bit comparisons? 773 // Examples: X <= -1, X >= 0 774 } 775 if (getBooleanContents(Op0.getValueType()) == 776 TargetLowering::ZeroOrOneBooleanContent && 777 BitWidth > 1) 778 Known.Zero.setBitsFrom(1); 779 break; 780 } 781 case ISD::SHL: 782 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 783 SDValue InOp = Op.getOperand(0); 784 785 // If the shift count is an invalid immediate, don't do anything. 786 if (SA->getAPIntValue().uge(BitWidth)) 787 break; 788 789 unsigned ShAmt = SA->getZExtValue(); 790 791 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 792 // single shift. We can do this if the bottom bits (which are shifted 793 // out) are never demanded. 794 if (InOp.getOpcode() == ISD::SRL) { 795 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 796 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 797 if (SA2->getAPIntValue().ult(BitWidth)) { 798 unsigned C1 = SA2->getZExtValue(); 799 unsigned Opc = ISD::SHL; 800 int Diff = ShAmt-C1; 801 if (Diff < 0) { 802 Diff = -Diff; 803 Opc = ISD::SRL; 804 } 805 806 SDValue NewSA = 807 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 808 EVT VT = Op.getValueType(); 809 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 810 InOp.getOperand(0), 811 NewSA)); 812 } 813 } 814 } 815 } 816 817 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1)) 818 return true; 819 820 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 821 // are not demanded. This will likely allow the anyext to be folded away. 822 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 823 SDValue InnerOp = InOp.getOperand(0); 824 EVT InnerVT = InnerOp.getValueType(); 825 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 826 if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits && 827 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 828 EVT ShTy = getShiftAmountTy(InnerVT, DL); 829 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 830 ShTy = InnerVT; 831 SDValue NarrowShl = 832 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 833 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 834 return 835 TLO.CombineTo(Op, 836 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 837 NarrowShl)); 838 } 839 // Repeat the SHL optimization above in cases where an extension 840 // intervenes: (shl (anyext (shr x, c1)), c2) to 841 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 842 // aren't demanded (as above) and that the shifted upper c1 bits of 843 // x aren't demanded. 844 if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 845 InnerOp.hasOneUse()) { 846 if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) { 847 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 848 if (InnerShAmt < ShAmt && 849 InnerShAmt < InnerBits && 850 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) && 851 NewMask.countTrailingZeros() >= ShAmt) { 852 SDValue NewSA = 853 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 854 Op.getOperand(1).getValueType()); 855 EVT VT = Op.getValueType(); 856 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 857 InnerOp.getOperand(0)); 858 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 859 NewExt, NewSA)); 860 } 861 } 862 } 863 } 864 865 Known.Zero <<= ShAmt; 866 Known.One <<= ShAmt; 867 // low bits known zero. 868 Known.Zero.setLowBits(ShAmt); 869 } 870 break; 871 case ISD::SRL: 872 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 873 SDValue InOp = Op.getOperand(0); 874 875 // If the shift count is an invalid immediate, don't do anything. 876 if (SA->getAPIntValue().uge(BitWidth)) 877 break; 878 879 unsigned ShAmt = SA->getZExtValue(); 880 APInt InDemandedMask = (NewMask << ShAmt); 881 882 // If the shift is exact, then it does demand the low bits (and knows that 883 // they are zero). 884 if (Op->getFlags().hasExact()) 885 InDemandedMask.setLowBits(ShAmt); 886 887 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 888 // single shift. We can do this if the top bits (which are shifted out) 889 // are never demanded. 890 if (InOp.getOpcode() == ISD::SHL) { 891 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 892 if (ShAmt && 893 (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 894 if (SA2->getAPIntValue().ult(BitWidth)) { 895 unsigned C1 = SA2->getZExtValue(); 896 unsigned Opc = ISD::SRL; 897 int Diff = ShAmt-C1; 898 if (Diff < 0) { 899 Diff = -Diff; 900 Opc = ISD::SHL; 901 } 902 903 SDValue NewSA = 904 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 905 EVT VT = Op.getValueType(); 906 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 907 InOp.getOperand(0), 908 NewSA)); 909 } 910 } 911 } 912 } 913 914 // Compute the new bits that are at the top now. 915 if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1)) 916 return true; 917 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 918 Known.Zero.lshrInPlace(ShAmt); 919 Known.One.lshrInPlace(ShAmt); 920 921 Known.Zero.setHighBits(ShAmt); // High bits known zero. 922 } 923 break; 924 case ISD::SRA: 925 // If this is an arithmetic shift right and only the low-bit is set, we can 926 // always convert this into a logical shr, even if the shift amount is 927 // variable. The low bit of the shift cannot be an input sign bit unless 928 // the shift amount is >= the size of the datatype, which is undefined. 929 if (NewMask.isOneValue()) 930 return TLO.CombineTo(Op, 931 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 932 Op.getOperand(0), Op.getOperand(1))); 933 934 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 935 EVT VT = Op.getValueType(); 936 937 // If the shift count is an invalid immediate, don't do anything. 938 if (SA->getAPIntValue().uge(BitWidth)) 939 break; 940 941 unsigned ShAmt = SA->getZExtValue(); 942 APInt InDemandedMask = (NewMask << ShAmt); 943 944 // If the shift is exact, then it does demand the low bits (and knows that 945 // they are zero). 946 if (Op->getFlags().hasExact()) 947 InDemandedMask.setLowBits(ShAmt); 948 949 // If any of the demanded bits are produced by the sign extension, we also 950 // demand the input sign bit. 951 if (NewMask.countLeadingZeros() < ShAmt) 952 InDemandedMask.setSignBit(); 953 954 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO, 955 Depth+1)) 956 return true; 957 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 958 Known.Zero.lshrInPlace(ShAmt); 959 Known.One.lshrInPlace(ShAmt); 960 961 // If the input sign bit is known to be zero, or if none of the top bits 962 // are demanded, turn this into an unsigned shift right. 963 if (Known.Zero[BitWidth - ShAmt - 1] || 964 NewMask.countLeadingZeros() >= ShAmt) { 965 SDNodeFlags Flags; 966 Flags.setExact(Op->getFlags().hasExact()); 967 return TLO.CombineTo(Op, 968 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 969 Op.getOperand(1), Flags)); 970 } 971 972 int Log2 = NewMask.exactLogBase2(); 973 if (Log2 >= 0) { 974 // The bit must come from the sign. 975 SDValue NewSA = 976 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 977 Op.getOperand(1).getValueType()); 978 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 979 Op.getOperand(0), NewSA)); 980 } 981 982 if (Known.One[BitWidth - ShAmt - 1]) 983 // New bits are known one. 984 Known.One.setHighBits(ShAmt); 985 } 986 break; 987 case ISD::SIGN_EXTEND_INREG: { 988 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 989 990 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 991 // If we only care about the highest bit, don't bother shifting right. 992 if (MsbMask == NewMask) { 993 unsigned ShAmt = ExVT.getScalarSizeInBits(); 994 SDValue InOp = Op.getOperand(0); 995 unsigned VTBits = Op->getValueType(0).getScalarSizeInBits(); 996 bool AlreadySignExtended = 997 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 998 // However if the input is already sign extended we expect the sign 999 // extension to be dropped altogether later and do not simplify. 1000 if (!AlreadySignExtended) { 1001 // Compute the correct shift amount type, which must be getShiftAmountTy 1002 // for scalar types after legalization. 1003 EVT ShiftAmtTy = Op.getValueType(); 1004 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1005 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1006 1007 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 1008 ShiftAmtTy); 1009 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1010 Op.getValueType(), InOp, 1011 ShiftAmt)); 1012 } 1013 } 1014 1015 // Sign extension. Compute the demanded bits in the result that are not 1016 // present in the input. 1017 APInt NewBits = 1018 APInt::getHighBitsSet(BitWidth, 1019 BitWidth - ExVT.getScalarSizeInBits()); 1020 1021 // If none of the extended bits are demanded, eliminate the sextinreg. 1022 if ((NewBits & NewMask) == 0) 1023 return TLO.CombineTo(Op, Op.getOperand(0)); 1024 1025 APInt InSignBit = 1026 APInt::getSignMask(ExVT.getScalarSizeInBits()).zext(BitWidth); 1027 APInt InputDemandedBits = 1028 APInt::getLowBitsSet(BitWidth, 1029 ExVT.getScalarSizeInBits()) & 1030 NewMask; 1031 1032 // Since the sign extended bits are demanded, we know that the sign 1033 // bit is demanded. 1034 InputDemandedBits |= InSignBit; 1035 1036 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1037 Known, TLO, Depth+1)) 1038 return true; 1039 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1040 1041 // If the sign bit of the input is known set or clear, then we know the 1042 // top bits of the result. 1043 1044 // If the input sign bit is known zero, convert this into a zero extension. 1045 if (Known.Zero.intersects(InSignBit)) 1046 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1047 Op.getOperand(0), dl, ExVT.getScalarType())); 1048 1049 if (Known.One.intersects(InSignBit)) { // Input sign bit known set 1050 Known.One |= NewBits; 1051 Known.Zero &= ~NewBits; 1052 } else { // Input sign bit unknown 1053 Known.Zero &= ~NewBits; 1054 Known.One &= ~NewBits; 1055 } 1056 break; 1057 } 1058 case ISD::BUILD_PAIR: { 1059 EVT HalfVT = Op.getOperand(0).getValueType(); 1060 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1061 1062 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1063 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1064 1065 KnownBits KnownLo, KnownHi; 1066 1067 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1068 return true; 1069 1070 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1071 return true; 1072 1073 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1074 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1075 1076 Known.One = KnownLo.One.zext(BitWidth) | 1077 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1078 break; 1079 } 1080 case ISD::ZERO_EXTEND: { 1081 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1082 APInt InMask = NewMask.trunc(OperandBitWidth); 1083 1084 // If none of the top bits are demanded, convert this into an any_extend. 1085 APInt NewBits = 1086 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1087 if (!NewBits.intersects(NewMask)) 1088 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1089 Op.getValueType(), 1090 Op.getOperand(0))); 1091 1092 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1093 return true; 1094 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1095 Known = Known.zext(BitWidth); 1096 Known.Zero |= NewBits; 1097 break; 1098 } 1099 case ISD::SIGN_EXTEND: { 1100 EVT InVT = Op.getOperand(0).getValueType(); 1101 unsigned InBits = InVT.getScalarSizeInBits(); 1102 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1103 APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1); 1104 APInt NewBits = ~InMask & NewMask; 1105 1106 // If none of the top bits are demanded, convert this into an any_extend. 1107 if (NewBits == 0) 1108 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1109 Op.getValueType(), 1110 Op.getOperand(0))); 1111 1112 // Since some of the sign extended bits are demanded, we know that the sign 1113 // bit is demanded. 1114 APInt InDemandedBits = InMask & NewMask; 1115 InDemandedBits |= InSignBit; 1116 InDemandedBits = InDemandedBits.trunc(InBits); 1117 1118 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO, 1119 Depth+1)) 1120 return true; 1121 Known = Known.zext(BitWidth); 1122 1123 // If the sign bit is known zero, convert this to a zero extend. 1124 if (Known.Zero.intersects(InSignBit)) 1125 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1126 Op.getValueType(), 1127 Op.getOperand(0))); 1128 1129 // If the sign bit is known one, the top bits match. 1130 if (Known.One.intersects(InSignBit)) { 1131 Known.One |= NewBits; 1132 assert((Known.Zero & NewBits) == 0); 1133 } else { // Otherwise, top bits aren't known. 1134 assert((Known.One & NewBits) == 0); 1135 assert((Known.Zero & NewBits) == 0); 1136 } 1137 break; 1138 } 1139 case ISD::ANY_EXTEND: { 1140 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1141 APInt InMask = NewMask.trunc(OperandBitWidth); 1142 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1143 return true; 1144 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1145 Known = Known.zext(BitWidth); 1146 break; 1147 } 1148 case ISD::TRUNCATE: { 1149 // Simplify the input, using demanded bit information, and compute the known 1150 // zero/one bits live out. 1151 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1152 APInt TruncMask = NewMask.zext(OperandBitWidth); 1153 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1)) 1154 return true; 1155 Known = Known.trunc(BitWidth); 1156 1157 // If the input is only used by this truncate, see if we can shrink it based 1158 // on the known demanded bits. 1159 if (Op.getOperand(0).getNode()->hasOneUse()) { 1160 SDValue In = Op.getOperand(0); 1161 switch (In.getOpcode()) { 1162 default: break; 1163 case ISD::SRL: 1164 // Shrink SRL by a constant if none of the high bits shifted in are 1165 // demanded. 1166 if (TLO.LegalTypes() && 1167 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1168 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1169 // undesirable. 1170 break; 1171 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1172 if (!ShAmt) 1173 break; 1174 SDValue Shift = In.getOperand(1); 1175 if (TLO.LegalTypes()) { 1176 uint64_t ShVal = ShAmt->getZExtValue(); 1177 Shift = TLO.DAG.getConstant(ShVal, dl, 1178 getShiftAmountTy(Op.getValueType(), DL)); 1179 } 1180 1181 if (ShAmt->getZExtValue() < BitWidth) { 1182 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1183 OperandBitWidth - BitWidth); 1184 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1185 HighBits = HighBits.trunc(BitWidth); 1186 1187 if (!(HighBits & NewMask)) { 1188 // None of the shifted in bits are needed. Add a truncate of the 1189 // shift input, then shift it. 1190 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1191 Op.getValueType(), 1192 In.getOperand(0)); 1193 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1194 Op.getValueType(), 1195 NewTrunc, 1196 Shift)); 1197 } 1198 } 1199 break; 1200 } 1201 } 1202 1203 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1204 break; 1205 } 1206 case ISD::AssertZext: { 1207 // AssertZext demands all of the high bits, plus any of the low bits 1208 // demanded by its users. 1209 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1210 APInt InMask = APInt::getLowBitsSet(BitWidth, 1211 VT.getSizeInBits()); 1212 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1213 Known, TLO, Depth+1)) 1214 return true; 1215 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1216 1217 Known.Zero |= ~InMask; 1218 break; 1219 } 1220 case ISD::BITCAST: 1221 // If this is an FP->Int bitcast and if the sign bit is the only 1222 // thing demanded, turn this into a FGETSIGN. 1223 if (!TLO.LegalOperations() && 1224 !Op.getValueType().isVector() && 1225 !Op.getOperand(0).getValueType().isVector() && 1226 NewMask == APInt::getSignMask(Op.getValueSizeInBits()) && 1227 Op.getOperand(0).getValueType().isFloatingPoint()) { 1228 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1229 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1230 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1231 Op.getOperand(0).getValueType() != MVT::f128) { 1232 // Cannot eliminate/lower SHL for f128 yet. 1233 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1234 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1235 // place. We expect the SHL to be eliminated by other optimizations. 1236 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1237 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1238 if (!OpVTLegal && OpVTSizeInBits > 32) 1239 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1240 unsigned ShVal = Op.getValueSizeInBits() - 1; 1241 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1242 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1243 Op.getValueType(), 1244 Sign, ShAmt)); 1245 } 1246 } 1247 break; 1248 case ISD::ADD: 1249 case ISD::MUL: 1250 case ISD::SUB: { 1251 // Add, Sub, and Mul don't demand any bits in positions beyond that 1252 // of the highest bit demanded of them. 1253 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1254 BitWidth - NewMask.countLeadingZeros()); 1255 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, Known2, TLO, Depth+1) || 1256 SimplifyDemandedBits(Op.getOperand(1), LoMask, Known2, TLO, Depth+1) || 1257 // See if the operation should be performed at a smaller bit width. 1258 ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { 1259 SDNodeFlags Flags = Op.getNode()->getFlags(); 1260 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1261 // Disable the nsw and nuw flags. We can no longer guarantee that we 1262 // won't wrap after simplification. 1263 Flags.setNoSignedWrap(false); 1264 Flags.setNoUnsignedWrap(false); 1265 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), 1266 Op.getOperand(0), Op.getOperand(1), 1267 Flags); 1268 return TLO.CombineTo(Op, NewOp); 1269 } 1270 return true; 1271 } 1272 LLVM_FALLTHROUGH; 1273 } 1274 default: 1275 // Just use computeKnownBits to compute output bits. 1276 TLO.DAG.computeKnownBits(Op, Known, Depth); 1277 break; 1278 } 1279 1280 // If we know the value of all of the demanded bits, return this as a 1281 // constant. 1282 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { 1283 // Avoid folding to a constant if any OpaqueConstant is involved. 1284 const SDNode *N = Op.getNode(); 1285 for (SDNodeIterator I = SDNodeIterator::begin(N), 1286 E = SDNodeIterator::end(N); I != E; ++I) { 1287 SDNode *Op = *I; 1288 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1289 if (C->isOpaque()) 1290 return false; 1291 } 1292 return TLO.CombineTo(Op, 1293 TLO.DAG.getConstant(Known.One, dl, Op.getValueType())); 1294 } 1295 1296 return false; 1297 } 1298 1299 /// Determine which of the bits specified in Mask are known to be either zero or 1300 /// one and return them in the Known. 1301 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1302 KnownBits &Known, 1303 const APInt &DemandedElts, 1304 const SelectionDAG &DAG, 1305 unsigned Depth) const { 1306 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1307 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1308 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1309 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1310 "Should use MaskedValueIsZero if you don't know whether Op" 1311 " is a target node!"); 1312 Known.resetAll(); 1313 } 1314 1315 /// This method can be implemented by targets that want to expose additional 1316 /// information about sign bits to the DAG Combiner. 1317 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1318 const APInt &, 1319 const SelectionDAG &, 1320 unsigned Depth) const { 1321 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1322 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1323 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1324 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1325 "Should use ComputeNumSignBits if you don't know whether Op" 1326 " is a target node!"); 1327 return 1; 1328 } 1329 1330 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 1331 // work with truncating build vectors and vectors with elements of less than 1332 // 8 bits. 1333 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1334 if (!N) 1335 return false; 1336 1337 APInt CVal; 1338 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 1339 CVal = CN->getAPIntValue(); 1340 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 1341 auto *CN = BV->getConstantSplatNode(); 1342 if (!CN) 1343 return false; 1344 1345 // If this is a truncating build vector, truncate the splat value. 1346 // Otherwise, we may fail to match the expected values below. 1347 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 1348 CVal = CN->getAPIntValue(); 1349 if (BVEltWidth < CVal.getBitWidth()) 1350 CVal = CVal.trunc(BVEltWidth); 1351 } else { 1352 return false; 1353 } 1354 1355 switch (getBooleanContents(N->getValueType(0))) { 1356 case UndefinedBooleanContent: 1357 return CVal[0]; 1358 case ZeroOrOneBooleanContent: 1359 return CVal.isOneValue(); 1360 case ZeroOrNegativeOneBooleanContent: 1361 return CVal.isAllOnesValue(); 1362 } 1363 1364 llvm_unreachable("Invalid boolean contents"); 1365 } 1366 1367 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1368 const SDLoc &DL) const { 1369 unsigned ElementWidth = VT.getScalarSizeInBits(); 1370 APInt TrueInt = 1371 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1372 ? APInt(ElementWidth, 1) 1373 : APInt::getAllOnesValue(ElementWidth); 1374 return DAG.getConstant(TrueInt, DL, VT); 1375 } 1376 1377 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1378 if (!N) 1379 return false; 1380 1381 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1382 if (!CN) { 1383 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1384 if (!BV) 1385 return false; 1386 1387 // Only interested in constant splats, we don't care about undef 1388 // elements in identifying boolean constants and getConstantSplatNode 1389 // returns NULL if all ops are undef; 1390 CN = BV->getConstantSplatNode(); 1391 if (!CN) 1392 return false; 1393 } 1394 1395 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1396 return !CN->getAPIntValue()[0]; 1397 1398 return CN->isNullValue(); 1399 } 1400 1401 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1402 bool SExt) const { 1403 if (VT == MVT::i1) 1404 return N->isOne(); 1405 1406 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1407 switch (Cnt) { 1408 case TargetLowering::ZeroOrOneBooleanContent: 1409 // An extended value of 1 is always true, unless its original type is i1, 1410 // in which case it will be sign extended to -1. 1411 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1412 case TargetLowering::UndefinedBooleanContent: 1413 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1414 return N->isAllOnesValue() && SExt; 1415 } 1416 llvm_unreachable("Unexpected enumeration."); 1417 } 1418 1419 /// This helper function of SimplifySetCC tries to optimize the comparison when 1420 /// either operand of the SetCC node is a bitwise-and instruction. 1421 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1422 ISD::CondCode Cond, 1423 DAGCombinerInfo &DCI, 1424 const SDLoc &DL) const { 1425 // Match these patterns in any of their permutations: 1426 // (X & Y) == Y 1427 // (X & Y) != Y 1428 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1429 std::swap(N0, N1); 1430 1431 EVT OpVT = N0.getValueType(); 1432 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1433 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1434 return SDValue(); 1435 1436 SDValue X, Y; 1437 if (N0.getOperand(0) == N1) { 1438 X = N0.getOperand(1); 1439 Y = N0.getOperand(0); 1440 } else if (N0.getOperand(1) == N1) { 1441 X = N0.getOperand(0); 1442 Y = N0.getOperand(1); 1443 } else { 1444 return SDValue(); 1445 } 1446 1447 SelectionDAG &DAG = DCI.DAG; 1448 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1449 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1450 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1451 // Note that where Y is variable and is known to have at most one bit set 1452 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1453 // equivalent when Y == 0. 1454 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1455 if (DCI.isBeforeLegalizeOps() || 1456 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1457 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1458 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1459 // If the target supports an 'and-not' or 'and-complement' logic operation, 1460 // try to use that to make a comparison operation more efficient. 1461 // But don't do this transform if the mask is a single bit because there are 1462 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1463 // 'rlwinm' on PPC). 1464 1465 // Bail out if the compare operand that we want to turn into a zero is 1466 // already a zero (otherwise, infinite loop). 1467 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1468 if (YConst && YConst->isNullValue()) 1469 return SDValue(); 1470 1471 // Transform this into: ~X & Y == 0. 1472 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1473 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1474 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1475 } 1476 1477 return SDValue(); 1478 } 1479 1480 /// Try to simplify a setcc built with the specified operands and cc. If it is 1481 /// unable to simplify it, return a null SDValue. 1482 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1483 ISD::CondCode Cond, bool foldBooleans, 1484 DAGCombinerInfo &DCI, 1485 const SDLoc &dl) const { 1486 SelectionDAG &DAG = DCI.DAG; 1487 1488 // These setcc operations always fold. 1489 switch (Cond) { 1490 default: break; 1491 case ISD::SETFALSE: 1492 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1493 case ISD::SETTRUE: 1494 case ISD::SETTRUE2: { 1495 TargetLowering::BooleanContent Cnt = 1496 getBooleanContents(N0->getValueType(0)); 1497 return DAG.getConstant( 1498 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1499 VT); 1500 } 1501 } 1502 1503 // Ensure that the constant occurs on the RHS and fold constant comparisons. 1504 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1505 if (isa<ConstantSDNode>(N0.getNode()) && 1506 (DCI.isBeforeLegalizeOps() || 1507 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1508 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1509 1510 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1511 const APInt &C1 = N1C->getAPIntValue(); 1512 1513 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1514 // equality comparison, then we're just comparing whether X itself is 1515 // zero. 1516 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 1517 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1518 N0.getOperand(1).getOpcode() == ISD::Constant) { 1519 const APInt &ShAmt 1520 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1521 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1522 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1523 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1524 // (srl (ctlz x), 5) == 0 -> X != 0 1525 // (srl (ctlz x), 5) != 1 -> X != 0 1526 Cond = ISD::SETNE; 1527 } else { 1528 // (srl (ctlz x), 5) != 0 -> X == 0 1529 // (srl (ctlz x), 5) == 1 -> X == 0 1530 Cond = ISD::SETEQ; 1531 } 1532 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1533 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1534 Zero, Cond); 1535 } 1536 } 1537 1538 SDValue CTPOP = N0; 1539 // Look through truncs that don't change the value of a ctpop. 1540 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1541 CTPOP = N0.getOperand(0); 1542 1543 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1544 (N0 == CTPOP || 1545 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1546 EVT CTVT = CTPOP.getValueType(); 1547 SDValue CTOp = CTPOP.getOperand(0); 1548 1549 // (ctpop x) u< 2 -> (x & x-1) == 0 1550 // (ctpop x) u> 1 -> (x & x-1) != 0 1551 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1552 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1553 DAG.getConstant(1, dl, CTVT)); 1554 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1555 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1556 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1557 } 1558 1559 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1560 } 1561 1562 // (zext x) == C --> x == (trunc C) 1563 // (sext x) == C --> x == (trunc C) 1564 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1565 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1566 unsigned MinBits = N0.getValueSizeInBits(); 1567 SDValue PreExt; 1568 bool Signed = false; 1569 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1570 // ZExt 1571 MinBits = N0->getOperand(0).getValueSizeInBits(); 1572 PreExt = N0->getOperand(0); 1573 } else if (N0->getOpcode() == ISD::AND) { 1574 // DAGCombine turns costly ZExts into ANDs 1575 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1576 if ((C->getAPIntValue()+1).isPowerOf2()) { 1577 MinBits = C->getAPIntValue().countTrailingOnes(); 1578 PreExt = N0->getOperand(0); 1579 } 1580 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1581 // SExt 1582 MinBits = N0->getOperand(0).getValueSizeInBits(); 1583 PreExt = N0->getOperand(0); 1584 Signed = true; 1585 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1586 // ZEXTLOAD / SEXTLOAD 1587 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1588 MinBits = LN0->getMemoryVT().getSizeInBits(); 1589 PreExt = N0; 1590 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1591 Signed = true; 1592 MinBits = LN0->getMemoryVT().getSizeInBits(); 1593 PreExt = N0; 1594 } 1595 } 1596 1597 // Figure out how many bits we need to preserve this constant. 1598 unsigned ReqdBits = Signed ? 1599 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1600 C1.getActiveBits(); 1601 1602 // Make sure we're not losing bits from the constant. 1603 if (MinBits > 0 && 1604 MinBits < C1.getBitWidth() && 1605 MinBits >= ReqdBits) { 1606 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1607 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1608 // Will get folded away. 1609 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1610 if (MinBits == 1 && C1 == 1) 1611 // Invert the condition. 1612 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1613 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1614 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1615 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1616 } 1617 1618 // If truncating the setcc operands is not desirable, we can still 1619 // simplify the expression in some cases: 1620 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1621 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1622 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1623 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1624 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1625 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1626 SDValue TopSetCC = N0->getOperand(0); 1627 unsigned N0Opc = N0->getOpcode(); 1628 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1629 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1630 TopSetCC.getOpcode() == ISD::SETCC && 1631 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1632 (isConstFalseVal(N1C) || 1633 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1634 1635 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1636 (!N1C->isNullValue() && Cond == ISD::SETNE); 1637 1638 if (!Inverse) 1639 return TopSetCC; 1640 1641 ISD::CondCode InvCond = ISD::getSetCCInverse( 1642 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1643 TopSetCC.getOperand(0).getValueType().isInteger()); 1644 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1645 TopSetCC.getOperand(1), 1646 InvCond); 1647 } 1648 } 1649 } 1650 1651 // If the LHS is '(and load, const)', the RHS is 0, the test is for 1652 // equality or unsigned, and all 1 bits of the const are in the same 1653 // partial word, see if we can shorten the load. 1654 if (DCI.isBeforeLegalize() && 1655 !ISD::isSignedIntSetCC(Cond) && 1656 N0.getOpcode() == ISD::AND && C1 == 0 && 1657 N0.getNode()->hasOneUse() && 1658 isa<LoadSDNode>(N0.getOperand(0)) && 1659 N0.getOperand(0).getNode()->hasOneUse() && 1660 isa<ConstantSDNode>(N0.getOperand(1))) { 1661 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1662 APInt bestMask; 1663 unsigned bestWidth = 0, bestOffset = 0; 1664 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1665 unsigned origWidth = N0.getValueSizeInBits(); 1666 unsigned maskWidth = origWidth; 1667 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1668 // 8 bits, but have to be careful... 1669 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1670 origWidth = Lod->getMemoryVT().getSizeInBits(); 1671 const APInt &Mask = 1672 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1673 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1674 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1675 for (unsigned offset=0; offset<origWidth/width; offset++) { 1676 if (Mask.isSubsetOf(newMask)) { 1677 if (DAG.getDataLayout().isLittleEndian()) 1678 bestOffset = (uint64_t)offset * (width/8); 1679 else 1680 bestOffset = (origWidth/width - offset - 1) * (width/8); 1681 bestMask = Mask.lshr(offset * (width/8) * 8); 1682 bestWidth = width; 1683 break; 1684 } 1685 newMask <<= width; 1686 } 1687 } 1688 } 1689 if (bestWidth) { 1690 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1691 if (newVT.isRound()) { 1692 EVT PtrType = Lod->getOperand(1).getValueType(); 1693 SDValue Ptr = Lod->getBasePtr(); 1694 if (bestOffset != 0) 1695 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1696 DAG.getConstant(bestOffset, dl, PtrType)); 1697 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1698 SDValue NewLoad = DAG.getLoad( 1699 newVT, dl, Lod->getChain(), Ptr, 1700 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1701 return DAG.getSetCC(dl, VT, 1702 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1703 DAG.getConstant(bestMask.trunc(bestWidth), 1704 dl, newVT)), 1705 DAG.getConstant(0LL, dl, newVT), Cond); 1706 } 1707 } 1708 } 1709 1710 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1711 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1712 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 1713 1714 // If the comparison constant has bits in the upper part, the 1715 // zero-extended value could never match. 1716 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1717 C1.getBitWidth() - InSize))) { 1718 switch (Cond) { 1719 case ISD::SETUGT: 1720 case ISD::SETUGE: 1721 case ISD::SETEQ: 1722 return DAG.getConstant(0, dl, VT); 1723 case ISD::SETULT: 1724 case ISD::SETULE: 1725 case ISD::SETNE: 1726 return DAG.getConstant(1, dl, VT); 1727 case ISD::SETGT: 1728 case ISD::SETGE: 1729 // True if the sign bit of C1 is set. 1730 return DAG.getConstant(C1.isNegative(), dl, VT); 1731 case ISD::SETLT: 1732 case ISD::SETLE: 1733 // True if the sign bit of C1 isn't set. 1734 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1735 default: 1736 break; 1737 } 1738 } 1739 1740 // Otherwise, we can perform the comparison with the low bits. 1741 switch (Cond) { 1742 case ISD::SETEQ: 1743 case ISD::SETNE: 1744 case ISD::SETUGT: 1745 case ISD::SETUGE: 1746 case ISD::SETULT: 1747 case ISD::SETULE: { 1748 EVT newVT = N0.getOperand(0).getValueType(); 1749 if (DCI.isBeforeLegalizeOps() || 1750 (isOperationLegal(ISD::SETCC, newVT) && 1751 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1752 EVT NewSetCCVT = 1753 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1754 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1755 1756 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1757 NewConst, Cond); 1758 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1759 } 1760 break; 1761 } 1762 default: 1763 break; // todo, be more careful with signed comparisons 1764 } 1765 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1766 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1767 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1768 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1769 EVT ExtDstTy = N0.getValueType(); 1770 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1771 1772 // If the constant doesn't fit into the number of bits for the source of 1773 // the sign extension, it is impossible for both sides to be equal. 1774 if (C1.getMinSignedBits() > ExtSrcTyBits) 1775 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1776 1777 SDValue ZextOp; 1778 EVT Op0Ty = N0.getOperand(0).getValueType(); 1779 if (Op0Ty == ExtSrcTy) { 1780 ZextOp = N0.getOperand(0); 1781 } else { 1782 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1783 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1784 DAG.getConstant(Imm, dl, Op0Ty)); 1785 } 1786 if (!DCI.isCalledByLegalizer()) 1787 DCI.AddToWorklist(ZextOp.getNode()); 1788 // Otherwise, make this a use of a zext. 1789 return DAG.getSetCC(dl, VT, ZextOp, 1790 DAG.getConstant(C1 & APInt::getLowBitsSet( 1791 ExtDstTyBits, 1792 ExtSrcTyBits), 1793 dl, ExtDstTy), 1794 Cond); 1795 } else if ((N1C->isNullValue() || N1C->isOne()) && 1796 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1797 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1798 if (N0.getOpcode() == ISD::SETCC && 1799 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1800 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 1801 if (TrueWhenTrue) 1802 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1803 // Invert the condition. 1804 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1805 CC = ISD::getSetCCInverse(CC, 1806 N0.getOperand(0).getValueType().isInteger()); 1807 if (DCI.isBeforeLegalizeOps() || 1808 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1809 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1810 } 1811 1812 if ((N0.getOpcode() == ISD::XOR || 1813 (N0.getOpcode() == ISD::AND && 1814 N0.getOperand(0).getOpcode() == ISD::XOR && 1815 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1816 isa<ConstantSDNode>(N0.getOperand(1)) && 1817 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 1818 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1819 // can only do this if the top bits are known zero. 1820 unsigned BitWidth = N0.getValueSizeInBits(); 1821 if (DAG.MaskedValueIsZero(N0, 1822 APInt::getHighBitsSet(BitWidth, 1823 BitWidth-1))) { 1824 // Okay, get the un-inverted input value. 1825 SDValue Val; 1826 if (N0.getOpcode() == ISD::XOR) { 1827 Val = N0.getOperand(0); 1828 } else { 1829 assert(N0.getOpcode() == ISD::AND && 1830 N0.getOperand(0).getOpcode() == ISD::XOR); 1831 // ((X^1)&1)^1 -> X & 1 1832 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1833 N0.getOperand(0).getOperand(0), 1834 N0.getOperand(1)); 1835 } 1836 1837 return DAG.getSetCC(dl, VT, Val, N1, 1838 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1839 } 1840 } else if (N1C->isOne() && 1841 (VT == MVT::i1 || 1842 getBooleanContents(N0->getValueType(0)) == 1843 ZeroOrOneBooleanContent)) { 1844 SDValue Op0 = N0; 1845 if (Op0.getOpcode() == ISD::TRUNCATE) 1846 Op0 = Op0.getOperand(0); 1847 1848 if ((Op0.getOpcode() == ISD::XOR) && 1849 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1850 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1851 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1852 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1853 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1854 Cond); 1855 } 1856 if (Op0.getOpcode() == ISD::AND && 1857 isa<ConstantSDNode>(Op0.getOperand(1)) && 1858 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 1859 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1860 if (Op0.getValueType().bitsGT(VT)) 1861 Op0 = DAG.getNode(ISD::AND, dl, VT, 1862 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1863 DAG.getConstant(1, dl, VT)); 1864 else if (Op0.getValueType().bitsLT(VT)) 1865 Op0 = DAG.getNode(ISD::AND, dl, VT, 1866 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1867 DAG.getConstant(1, dl, VT)); 1868 1869 return DAG.getSetCC(dl, VT, Op0, 1870 DAG.getConstant(0, dl, Op0.getValueType()), 1871 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1872 } 1873 if (Op0.getOpcode() == ISD::AssertZext && 1874 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1875 return DAG.getSetCC(dl, VT, Op0, 1876 DAG.getConstant(0, dl, Op0.getValueType()), 1877 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1878 } 1879 } 1880 1881 APInt MinVal, MaxVal; 1882 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1883 if (ISD::isSignedIntSetCC(Cond)) { 1884 MinVal = APInt::getSignedMinValue(OperandBitSize); 1885 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1886 } else { 1887 MinVal = APInt::getMinValue(OperandBitSize); 1888 MaxVal = APInt::getMaxValue(OperandBitSize); 1889 } 1890 1891 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1892 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1893 // X >= MIN --> true 1894 if (C1 == MinVal) 1895 return DAG.getConstant(1, dl, VT); 1896 1897 // X >= C0 --> X > (C0 - 1) 1898 APInt C = C1 - 1; 1899 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1900 if ((DCI.isBeforeLegalizeOps() || 1901 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1902 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1903 isLegalICmpImmediate(C.getSExtValue())))) { 1904 return DAG.getSetCC(dl, VT, N0, 1905 DAG.getConstant(C, dl, N1.getValueType()), 1906 NewCC); 1907 } 1908 } 1909 1910 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1911 // X <= MAX --> true 1912 if (C1 == MaxVal) 1913 return DAG.getConstant(1, dl, VT); 1914 1915 // X <= C0 --> X < (C0 + 1) 1916 APInt C = C1 + 1; 1917 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1918 if ((DCI.isBeforeLegalizeOps() || 1919 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1920 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1921 isLegalICmpImmediate(C.getSExtValue())))) { 1922 return DAG.getSetCC(dl, VT, N0, 1923 DAG.getConstant(C, dl, N1.getValueType()), 1924 NewCC); 1925 } 1926 } 1927 1928 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1929 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1930 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1931 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1932 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1933 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1934 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1935 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1936 1937 // Canonicalize setgt X, Min --> setne X, Min 1938 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1939 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1940 // Canonicalize setlt X, Max --> setne X, Max 1941 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1942 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1943 1944 // If we have setult X, 1, turn it into seteq X, 0 1945 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1946 return DAG.getSetCC(dl, VT, N0, 1947 DAG.getConstant(MinVal, dl, N0.getValueType()), 1948 ISD::SETEQ); 1949 // If we have setugt X, Max-1, turn it into seteq X, Max 1950 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1951 return DAG.getSetCC(dl, VT, N0, 1952 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1953 ISD::SETEQ); 1954 1955 // If we have "setcc X, C0", check to see if we can shrink the immediate 1956 // by changing cc. 1957 1958 // SETUGT X, SINTMAX -> SETLT X, 0 1959 if (Cond == ISD::SETUGT && 1960 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1961 return DAG.getSetCC(dl, VT, N0, 1962 DAG.getConstant(0, dl, N1.getValueType()), 1963 ISD::SETLT); 1964 1965 // SETULT X, SINTMIN -> SETGT X, -1 1966 if (Cond == ISD::SETULT && 1967 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1968 SDValue ConstMinusOne = 1969 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1970 N1.getValueType()); 1971 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1972 } 1973 1974 // Fold bit comparisons when we can. 1975 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1976 (VT == N0.getValueType() || 1977 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1978 N0.getOpcode() == ISD::AND) { 1979 auto &DL = DAG.getDataLayout(); 1980 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1981 EVT ShiftTy = DCI.isBeforeLegalize() 1982 ? getPointerTy(DL) 1983 : getShiftAmountTy(N0.getValueType(), DL); 1984 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1985 // Perform the xform if the AND RHS is a single bit. 1986 if (AndRHS->getAPIntValue().isPowerOf2()) { 1987 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1988 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1989 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1990 ShiftTy))); 1991 } 1992 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1993 // (X & 8) == 8 --> (X & 8) >> 3 1994 // Perform the xform if C1 is a single bit. 1995 if (C1.isPowerOf2()) { 1996 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1997 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1998 DAG.getConstant(C1.logBase2(), dl, 1999 ShiftTy))); 2000 } 2001 } 2002 } 2003 } 2004 2005 if (C1.getMinSignedBits() <= 64 && 2006 !isLegalICmpImmediate(C1.getSExtValue())) { 2007 // (X & -256) == 256 -> (X >> 8) == 1 2008 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2009 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2010 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2011 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2012 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2013 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2014 auto &DL = DAG.getDataLayout(); 2015 EVT ShiftTy = DCI.isBeforeLegalize() 2016 ? getPointerTy(DL) 2017 : getShiftAmountTy(N0.getValueType(), DL); 2018 EVT CmpTy = N0.getValueType(); 2019 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2020 DAG.getConstant(ShiftBits, dl, 2021 ShiftTy)); 2022 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2023 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2024 } 2025 } 2026 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2027 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2028 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2029 // X < 0x100000000 -> (X >> 32) < 1 2030 // X >= 0x100000000 -> (X >> 32) >= 1 2031 // X <= 0x0ffffffff -> (X >> 32) < 1 2032 // X > 0x0ffffffff -> (X >> 32) >= 1 2033 unsigned ShiftBits; 2034 APInt NewC = C1; 2035 ISD::CondCode NewCond = Cond; 2036 if (AdjOne) { 2037 ShiftBits = C1.countTrailingOnes(); 2038 NewC = NewC + 1; 2039 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2040 } else { 2041 ShiftBits = C1.countTrailingZeros(); 2042 } 2043 NewC.lshrInPlace(ShiftBits); 2044 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2045 isLegalICmpImmediate(NewC.getSExtValue())) { 2046 auto &DL = DAG.getDataLayout(); 2047 EVT ShiftTy = DCI.isBeforeLegalize() 2048 ? getPointerTy(DL) 2049 : getShiftAmountTy(N0.getValueType(), DL); 2050 EVT CmpTy = N0.getValueType(); 2051 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2052 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2053 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2054 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2055 } 2056 } 2057 } 2058 } 2059 2060 if (isa<ConstantFPSDNode>(N0.getNode())) { 2061 // Constant fold or commute setcc. 2062 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2063 if (O.getNode()) return O; 2064 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2065 // If the RHS of an FP comparison is a constant, simplify it away in 2066 // some cases. 2067 if (CFP->getValueAPF().isNaN()) { 2068 // If an operand is known to be a nan, we can fold it. 2069 switch (ISD::getUnorderedFlavor(Cond)) { 2070 default: llvm_unreachable("Unknown flavor!"); 2071 case 0: // Known false. 2072 return DAG.getConstant(0, dl, VT); 2073 case 1: // Known true. 2074 return DAG.getConstant(1, dl, VT); 2075 case 2: // Undefined. 2076 return DAG.getUNDEF(VT); 2077 } 2078 } 2079 2080 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2081 // constant if knowing that the operand is non-nan is enough. We prefer to 2082 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2083 // materialize 0.0. 2084 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2085 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2086 2087 // setcc (fneg x), C -> setcc swap(pred) x, -C 2088 if (N0.getOpcode() == ISD::FNEG) { 2089 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2090 if (DCI.isBeforeLegalizeOps() || 2091 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2092 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2093 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2094 } 2095 } 2096 2097 // If the condition is not legal, see if we can find an equivalent one 2098 // which is legal. 2099 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2100 // If the comparison was an awkward floating-point == or != and one of 2101 // the comparison operands is infinity or negative infinity, convert the 2102 // condition to a less-awkward <= or >=. 2103 if (CFP->getValueAPF().isInfinity()) { 2104 if (CFP->getValueAPF().isNegative()) { 2105 if (Cond == ISD::SETOEQ && 2106 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2107 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2108 if (Cond == ISD::SETUEQ && 2109 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2110 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2111 if (Cond == ISD::SETUNE && 2112 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2113 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2114 if (Cond == ISD::SETONE && 2115 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2116 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2117 } else { 2118 if (Cond == ISD::SETOEQ && 2119 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2120 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2121 if (Cond == ISD::SETUEQ && 2122 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2123 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2124 if (Cond == ISD::SETUNE && 2125 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2126 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2127 if (Cond == ISD::SETONE && 2128 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2129 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2130 } 2131 } 2132 } 2133 } 2134 2135 if (N0 == N1) { 2136 // The sext(setcc()) => setcc() optimization relies on the appropriate 2137 // constant being emitted. 2138 uint64_t EqVal = 0; 2139 switch (getBooleanContents(N0.getValueType())) { 2140 case UndefinedBooleanContent: 2141 case ZeroOrOneBooleanContent: 2142 EqVal = ISD::isTrueWhenEqual(Cond); 2143 break; 2144 case ZeroOrNegativeOneBooleanContent: 2145 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 2146 break; 2147 } 2148 2149 // We can always fold X == X for integer setcc's. 2150 if (N0.getValueType().isInteger()) { 2151 return DAG.getConstant(EqVal, dl, VT); 2152 } 2153 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2154 if (UOF == 2) // FP operators that are undefined on NaNs. 2155 return DAG.getConstant(EqVal, dl, VT); 2156 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2157 return DAG.getConstant(EqVal, dl, VT); 2158 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2159 // if it is not already. 2160 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2161 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2162 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2163 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2164 } 2165 2166 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2167 N0.getValueType().isInteger()) { 2168 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2169 N0.getOpcode() == ISD::XOR) { 2170 // Simplify (X+Y) == (X+Z) --> Y == Z 2171 if (N0.getOpcode() == N1.getOpcode()) { 2172 if (N0.getOperand(0) == N1.getOperand(0)) 2173 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2174 if (N0.getOperand(1) == N1.getOperand(1)) 2175 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2176 if (isCommutativeBinOp(N0.getOpcode())) { 2177 // If X op Y == Y op X, try other combinations. 2178 if (N0.getOperand(0) == N1.getOperand(1)) 2179 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2180 Cond); 2181 if (N0.getOperand(1) == N1.getOperand(0)) 2182 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2183 Cond); 2184 } 2185 } 2186 2187 // If RHS is a legal immediate value for a compare instruction, we need 2188 // to be careful about increasing register pressure needlessly. 2189 bool LegalRHSImm = false; 2190 2191 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2192 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2193 // Turn (X+C1) == C2 --> X == C2-C1 2194 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2195 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2196 DAG.getConstant(RHSC->getAPIntValue()- 2197 LHSR->getAPIntValue(), 2198 dl, N0.getValueType()), Cond); 2199 } 2200 2201 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2202 if (N0.getOpcode() == ISD::XOR) 2203 // If we know that all of the inverted bits are zero, don't bother 2204 // performing the inversion. 2205 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2206 return 2207 DAG.getSetCC(dl, VT, N0.getOperand(0), 2208 DAG.getConstant(LHSR->getAPIntValue() ^ 2209 RHSC->getAPIntValue(), 2210 dl, N0.getValueType()), 2211 Cond); 2212 } 2213 2214 // Turn (C1-X) == C2 --> X == C1-C2 2215 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2216 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2217 return 2218 DAG.getSetCC(dl, VT, N0.getOperand(1), 2219 DAG.getConstant(SUBC->getAPIntValue() - 2220 RHSC->getAPIntValue(), 2221 dl, N0.getValueType()), 2222 Cond); 2223 } 2224 } 2225 2226 // Could RHSC fold directly into a compare? 2227 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2228 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2229 } 2230 2231 // Simplify (X+Z) == X --> Z == 0 2232 // Don't do this if X is an immediate that can fold into a cmp 2233 // instruction and X+Z has other uses. It could be an induction variable 2234 // chain, and the transform would increase register pressure. 2235 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2236 if (N0.getOperand(0) == N1) 2237 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2238 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2239 if (N0.getOperand(1) == N1) { 2240 if (isCommutativeBinOp(N0.getOpcode())) 2241 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2242 DAG.getConstant(0, dl, N0.getValueType()), 2243 Cond); 2244 if (N0.getNode()->hasOneUse()) { 2245 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2246 auto &DL = DAG.getDataLayout(); 2247 // (Z-X) == X --> Z == X<<1 2248 SDValue SH = DAG.getNode( 2249 ISD::SHL, dl, N1.getValueType(), N1, 2250 DAG.getConstant(1, dl, 2251 getShiftAmountTy(N1.getValueType(), DL))); 2252 if (!DCI.isCalledByLegalizer()) 2253 DCI.AddToWorklist(SH.getNode()); 2254 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2255 } 2256 } 2257 } 2258 } 2259 2260 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2261 N1.getOpcode() == ISD::XOR) { 2262 // Simplify X == (X+Z) --> Z == 0 2263 if (N1.getOperand(0) == N0) 2264 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2265 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2266 if (N1.getOperand(1) == N0) { 2267 if (isCommutativeBinOp(N1.getOpcode())) 2268 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2269 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2270 if (N1.getNode()->hasOneUse()) { 2271 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2272 auto &DL = DAG.getDataLayout(); 2273 // X == (Z-X) --> X<<1 == Z 2274 SDValue SH = DAG.getNode( 2275 ISD::SHL, dl, N1.getValueType(), N0, 2276 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2277 if (!DCI.isCalledByLegalizer()) 2278 DCI.AddToWorklist(SH.getNode()); 2279 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2280 } 2281 } 2282 } 2283 2284 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2285 return V; 2286 } 2287 2288 // Fold away ALL boolean setcc's. 2289 SDValue Temp; 2290 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2291 switch (Cond) { 2292 default: llvm_unreachable("Unknown integer setcc!"); 2293 case ISD::SETEQ: // X == Y -> ~(X^Y) 2294 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2295 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2296 if (!DCI.isCalledByLegalizer()) 2297 DCI.AddToWorklist(Temp.getNode()); 2298 break; 2299 case ISD::SETNE: // X != Y --> (X^Y) 2300 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2301 break; 2302 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2303 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2304 Temp = DAG.getNOT(dl, N0, MVT::i1); 2305 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2306 if (!DCI.isCalledByLegalizer()) 2307 DCI.AddToWorklist(Temp.getNode()); 2308 break; 2309 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2310 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2311 Temp = DAG.getNOT(dl, N1, MVT::i1); 2312 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2313 if (!DCI.isCalledByLegalizer()) 2314 DCI.AddToWorklist(Temp.getNode()); 2315 break; 2316 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2317 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2318 Temp = DAG.getNOT(dl, N0, MVT::i1); 2319 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2320 if (!DCI.isCalledByLegalizer()) 2321 DCI.AddToWorklist(Temp.getNode()); 2322 break; 2323 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2324 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2325 Temp = DAG.getNOT(dl, N1, MVT::i1); 2326 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2327 break; 2328 } 2329 if (VT != MVT::i1) { 2330 if (!DCI.isCalledByLegalizer()) 2331 DCI.AddToWorklist(N0.getNode()); 2332 // FIXME: If running after legalize, we probably can't do this. 2333 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2334 } 2335 return N0; 2336 } 2337 2338 // Could not fold it. 2339 return SDValue(); 2340 } 2341 2342 /// Returns true (and the GlobalValue and the offset) if the node is a 2343 /// GlobalAddress + offset. 2344 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2345 int64_t &Offset) const { 2346 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2347 GA = GASD->getGlobal(); 2348 Offset += GASD->getOffset(); 2349 return true; 2350 } 2351 2352 if (N->getOpcode() == ISD::ADD) { 2353 SDValue N1 = N->getOperand(0); 2354 SDValue N2 = N->getOperand(1); 2355 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2356 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2357 Offset += V->getSExtValue(); 2358 return true; 2359 } 2360 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2361 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2362 Offset += V->getSExtValue(); 2363 return true; 2364 } 2365 } 2366 } 2367 2368 return false; 2369 } 2370 2371 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2372 DAGCombinerInfo &DCI) const { 2373 // Default implementation: no optimization. 2374 return SDValue(); 2375 } 2376 2377 //===----------------------------------------------------------------------===// 2378 // Inline Assembler Implementation Methods 2379 //===----------------------------------------------------------------------===// 2380 2381 TargetLowering::ConstraintType 2382 TargetLowering::getConstraintType(StringRef Constraint) const { 2383 unsigned S = Constraint.size(); 2384 2385 if (S == 1) { 2386 switch (Constraint[0]) { 2387 default: break; 2388 case 'r': return C_RegisterClass; 2389 case 'm': // memory 2390 case 'o': // offsetable 2391 case 'V': // not offsetable 2392 return C_Memory; 2393 case 'i': // Simple Integer or Relocatable Constant 2394 case 'n': // Simple Integer 2395 case 'E': // Floating Point Constant 2396 case 'F': // Floating Point Constant 2397 case 's': // Relocatable Constant 2398 case 'p': // Address. 2399 case 'X': // Allow ANY value. 2400 case 'I': // Target registers. 2401 case 'J': 2402 case 'K': 2403 case 'L': 2404 case 'M': 2405 case 'N': 2406 case 'O': 2407 case 'P': 2408 case '<': 2409 case '>': 2410 return C_Other; 2411 } 2412 } 2413 2414 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2415 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2416 return C_Memory; 2417 return C_Register; 2418 } 2419 return C_Unknown; 2420 } 2421 2422 /// Try to replace an X constraint, which matches anything, with another that 2423 /// has more specific requirements based on the type of the corresponding 2424 /// operand. 2425 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2426 if (ConstraintVT.isInteger()) 2427 return "r"; 2428 if (ConstraintVT.isFloatingPoint()) 2429 return "f"; // works for many targets 2430 return nullptr; 2431 } 2432 2433 /// Lower the specified operand into the Ops vector. 2434 /// If it is invalid, don't add anything to Ops. 2435 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2436 std::string &Constraint, 2437 std::vector<SDValue> &Ops, 2438 SelectionDAG &DAG) const { 2439 2440 if (Constraint.length() > 1) return; 2441 2442 char ConstraintLetter = Constraint[0]; 2443 switch (ConstraintLetter) { 2444 default: break; 2445 case 'X': // Allows any operand; labels (basic block) use this. 2446 if (Op.getOpcode() == ISD::BasicBlock) { 2447 Ops.push_back(Op); 2448 return; 2449 } 2450 LLVM_FALLTHROUGH; 2451 case 'i': // Simple Integer or Relocatable Constant 2452 case 'n': // Simple Integer 2453 case 's': { // Relocatable Constant 2454 // These operands are interested in values of the form (GV+C), where C may 2455 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2456 // is possible and fine if either GV or C are missing. 2457 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2458 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2459 2460 // If we have "(add GV, C)", pull out GV/C 2461 if (Op.getOpcode() == ISD::ADD) { 2462 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2463 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2464 if (!C || !GA) { 2465 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2466 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2467 } 2468 if (!C || !GA) { 2469 C = nullptr; 2470 GA = nullptr; 2471 } 2472 } 2473 2474 // If we find a valid operand, map to the TargetXXX version so that the 2475 // value itself doesn't get selected. 2476 if (GA) { // Either &GV or &GV+C 2477 if (ConstraintLetter != 'n') { 2478 int64_t Offs = GA->getOffset(); 2479 if (C) Offs += C->getZExtValue(); 2480 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2481 C ? SDLoc(C) : SDLoc(), 2482 Op.getValueType(), Offs)); 2483 } 2484 return; 2485 } 2486 if (C) { // just C, no GV. 2487 // Simple constants are not allowed for 's'. 2488 if (ConstraintLetter != 's') { 2489 // gcc prints these as sign extended. Sign extend value to 64 bits 2490 // now; without this it would get ZExt'd later in 2491 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2492 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 2493 SDLoc(C), MVT::i64)); 2494 } 2495 return; 2496 } 2497 break; 2498 } 2499 } 2500 } 2501 2502 std::pair<unsigned, const TargetRegisterClass *> 2503 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2504 StringRef Constraint, 2505 MVT VT) const { 2506 if (Constraint.empty() || Constraint[0] != '{') 2507 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2508 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2509 2510 // Remove the braces from around the name. 2511 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2512 2513 std::pair<unsigned, const TargetRegisterClass*> R = 2514 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2515 2516 // Figure out which register class contains this reg. 2517 for (const TargetRegisterClass *RC : RI->regclasses()) { 2518 // If none of the value types for this register class are valid, we 2519 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2520 if (!isLegalRC(*RI, *RC)) 2521 continue; 2522 2523 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2524 I != E; ++I) { 2525 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2526 std::pair<unsigned, const TargetRegisterClass*> S = 2527 std::make_pair(*I, RC); 2528 2529 // If this register class has the requested value type, return it, 2530 // otherwise keep searching and return the first class found 2531 // if no other is found which explicitly has the requested type. 2532 if (RI->isTypeLegalForClass(*RC, VT)) 2533 return S; 2534 if (!R.second) 2535 R = S; 2536 } 2537 } 2538 } 2539 2540 return R; 2541 } 2542 2543 //===----------------------------------------------------------------------===// 2544 // Constraint Selection. 2545 2546 /// Return true of this is an input operand that is a matching constraint like 2547 /// "4". 2548 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2549 assert(!ConstraintCode.empty() && "No known constraint!"); 2550 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2551 } 2552 2553 /// If this is an input matching constraint, this method returns the output 2554 /// operand it matches. 2555 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2556 assert(!ConstraintCode.empty() && "No known constraint!"); 2557 return atoi(ConstraintCode.c_str()); 2558 } 2559 2560 /// Split up the constraint string from the inline assembly value into the 2561 /// specific constraints and their prefixes, and also tie in the associated 2562 /// operand values. 2563 /// If this returns an empty vector, and if the constraint string itself 2564 /// isn't empty, there was an error parsing. 2565 TargetLowering::AsmOperandInfoVector 2566 TargetLowering::ParseConstraints(const DataLayout &DL, 2567 const TargetRegisterInfo *TRI, 2568 ImmutableCallSite CS) const { 2569 /// Information about all of the constraints. 2570 AsmOperandInfoVector ConstraintOperands; 2571 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2572 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2573 2574 // Do a prepass over the constraints, canonicalizing them, and building up the 2575 // ConstraintOperands list. 2576 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2577 unsigned ResNo = 0; // ResNo - The result number of the next output. 2578 2579 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2580 ConstraintOperands.emplace_back(std::move(CI)); 2581 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2582 2583 // Update multiple alternative constraint count. 2584 if (OpInfo.multipleAlternatives.size() > maCount) 2585 maCount = OpInfo.multipleAlternatives.size(); 2586 2587 OpInfo.ConstraintVT = MVT::Other; 2588 2589 // Compute the value type for each operand. 2590 switch (OpInfo.Type) { 2591 case InlineAsm::isOutput: 2592 // Indirect outputs just consume an argument. 2593 if (OpInfo.isIndirect) { 2594 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2595 break; 2596 } 2597 2598 // The return value of the call is this value. As such, there is no 2599 // corresponding argument. 2600 assert(!CS.getType()->isVoidTy() && 2601 "Bad inline asm!"); 2602 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2603 OpInfo.ConstraintVT = 2604 getSimpleValueType(DL, STy->getElementType(ResNo)); 2605 } else { 2606 assert(ResNo == 0 && "Asm only has one result!"); 2607 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2608 } 2609 ++ResNo; 2610 break; 2611 case InlineAsm::isInput: 2612 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2613 break; 2614 case InlineAsm::isClobber: 2615 // Nothing to do. 2616 break; 2617 } 2618 2619 if (OpInfo.CallOperandVal) { 2620 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2621 if (OpInfo.isIndirect) { 2622 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2623 if (!PtrTy) 2624 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2625 OpTy = PtrTy->getElementType(); 2626 } 2627 2628 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2629 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2630 if (STy->getNumElements() == 1) 2631 OpTy = STy->getElementType(0); 2632 2633 // If OpTy is not a single value, it may be a struct/union that we 2634 // can tile with integers. 2635 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2636 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2637 switch (BitSize) { 2638 default: break; 2639 case 1: 2640 case 8: 2641 case 16: 2642 case 32: 2643 case 64: 2644 case 128: 2645 OpInfo.ConstraintVT = 2646 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2647 break; 2648 } 2649 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2650 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2651 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2652 } else { 2653 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2654 } 2655 } 2656 } 2657 2658 // If we have multiple alternative constraints, select the best alternative. 2659 if (!ConstraintOperands.empty()) { 2660 if (maCount) { 2661 unsigned bestMAIndex = 0; 2662 int bestWeight = -1; 2663 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2664 int weight = -1; 2665 unsigned maIndex; 2666 // Compute the sums of the weights for each alternative, keeping track 2667 // of the best (highest weight) one so far. 2668 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2669 int weightSum = 0; 2670 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2671 cIndex != eIndex; ++cIndex) { 2672 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2673 if (OpInfo.Type == InlineAsm::isClobber) 2674 continue; 2675 2676 // If this is an output operand with a matching input operand, 2677 // look up the matching input. If their types mismatch, e.g. one 2678 // is an integer, the other is floating point, or their sizes are 2679 // different, flag it as an maCantMatch. 2680 if (OpInfo.hasMatchingInput()) { 2681 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2682 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2683 if ((OpInfo.ConstraintVT.isInteger() != 2684 Input.ConstraintVT.isInteger()) || 2685 (OpInfo.ConstraintVT.getSizeInBits() != 2686 Input.ConstraintVT.getSizeInBits())) { 2687 weightSum = -1; // Can't match. 2688 break; 2689 } 2690 } 2691 } 2692 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2693 if (weight == -1) { 2694 weightSum = -1; 2695 break; 2696 } 2697 weightSum += weight; 2698 } 2699 // Update best. 2700 if (weightSum > bestWeight) { 2701 bestWeight = weightSum; 2702 bestMAIndex = maIndex; 2703 } 2704 } 2705 2706 // Now select chosen alternative in each constraint. 2707 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2708 cIndex != eIndex; ++cIndex) { 2709 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2710 if (cInfo.Type == InlineAsm::isClobber) 2711 continue; 2712 cInfo.selectAlternative(bestMAIndex); 2713 } 2714 } 2715 } 2716 2717 // Check and hook up tied operands, choose constraint code to use. 2718 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2719 cIndex != eIndex; ++cIndex) { 2720 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2721 2722 // If this is an output operand with a matching input operand, look up the 2723 // matching input. If their types mismatch, e.g. one is an integer, the 2724 // other is floating point, or their sizes are different, flag it as an 2725 // error. 2726 if (OpInfo.hasMatchingInput()) { 2727 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2728 2729 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2730 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2731 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2732 OpInfo.ConstraintVT); 2733 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2734 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2735 Input.ConstraintVT); 2736 if ((OpInfo.ConstraintVT.isInteger() != 2737 Input.ConstraintVT.isInteger()) || 2738 (MatchRC.second != InputRC.second)) { 2739 report_fatal_error("Unsupported asm: input constraint" 2740 " with a matching output constraint of" 2741 " incompatible type!"); 2742 } 2743 } 2744 } 2745 } 2746 2747 return ConstraintOperands; 2748 } 2749 2750 /// Return an integer indicating how general CT is. 2751 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2752 switch (CT) { 2753 case TargetLowering::C_Other: 2754 case TargetLowering::C_Unknown: 2755 return 0; 2756 case TargetLowering::C_Register: 2757 return 1; 2758 case TargetLowering::C_RegisterClass: 2759 return 2; 2760 case TargetLowering::C_Memory: 2761 return 3; 2762 } 2763 llvm_unreachable("Invalid constraint type"); 2764 } 2765 2766 /// Examine constraint type and operand type and determine a weight value. 2767 /// This object must already have been set up with the operand type 2768 /// and the current alternative constraint selected. 2769 TargetLowering::ConstraintWeight 2770 TargetLowering::getMultipleConstraintMatchWeight( 2771 AsmOperandInfo &info, int maIndex) const { 2772 InlineAsm::ConstraintCodeVector *rCodes; 2773 if (maIndex >= (int)info.multipleAlternatives.size()) 2774 rCodes = &info.Codes; 2775 else 2776 rCodes = &info.multipleAlternatives[maIndex].Codes; 2777 ConstraintWeight BestWeight = CW_Invalid; 2778 2779 // Loop over the options, keeping track of the most general one. 2780 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2781 ConstraintWeight weight = 2782 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2783 if (weight > BestWeight) 2784 BestWeight = weight; 2785 } 2786 2787 return BestWeight; 2788 } 2789 2790 /// Examine constraint type and operand type and determine a weight value. 2791 /// This object must already have been set up with the operand type 2792 /// and the current alternative constraint selected. 2793 TargetLowering::ConstraintWeight 2794 TargetLowering::getSingleConstraintMatchWeight( 2795 AsmOperandInfo &info, const char *constraint) const { 2796 ConstraintWeight weight = CW_Invalid; 2797 Value *CallOperandVal = info.CallOperandVal; 2798 // If we don't have a value, we can't do a match, 2799 // but allow it at the lowest weight. 2800 if (!CallOperandVal) 2801 return CW_Default; 2802 // Look at the constraint type. 2803 switch (*constraint) { 2804 case 'i': // immediate integer. 2805 case 'n': // immediate integer with a known value. 2806 if (isa<ConstantInt>(CallOperandVal)) 2807 weight = CW_Constant; 2808 break; 2809 case 's': // non-explicit intregal immediate. 2810 if (isa<GlobalValue>(CallOperandVal)) 2811 weight = CW_Constant; 2812 break; 2813 case 'E': // immediate float if host format. 2814 case 'F': // immediate float. 2815 if (isa<ConstantFP>(CallOperandVal)) 2816 weight = CW_Constant; 2817 break; 2818 case '<': // memory operand with autodecrement. 2819 case '>': // memory operand with autoincrement. 2820 case 'm': // memory operand. 2821 case 'o': // offsettable memory operand 2822 case 'V': // non-offsettable memory operand 2823 weight = CW_Memory; 2824 break; 2825 case 'r': // general register. 2826 case 'g': // general register, memory operand or immediate integer. 2827 // note: Clang converts "g" to "imr". 2828 if (CallOperandVal->getType()->isIntegerTy()) 2829 weight = CW_Register; 2830 break; 2831 case 'X': // any operand. 2832 default: 2833 weight = CW_Default; 2834 break; 2835 } 2836 return weight; 2837 } 2838 2839 /// If there are multiple different constraints that we could pick for this 2840 /// operand (e.g. "imr") try to pick the 'best' one. 2841 /// This is somewhat tricky: constraints fall into four classes: 2842 /// Other -> immediates and magic values 2843 /// Register -> one specific register 2844 /// RegisterClass -> a group of regs 2845 /// Memory -> memory 2846 /// Ideally, we would pick the most specific constraint possible: if we have 2847 /// something that fits into a register, we would pick it. The problem here 2848 /// is that if we have something that could either be in a register or in 2849 /// memory that use of the register could cause selection of *other* 2850 /// operands to fail: they might only succeed if we pick memory. Because of 2851 /// this the heuristic we use is: 2852 /// 2853 /// 1) If there is an 'other' constraint, and if the operand is valid for 2854 /// that constraint, use it. This makes us take advantage of 'i' 2855 /// constraints when available. 2856 /// 2) Otherwise, pick the most general constraint present. This prefers 2857 /// 'm' over 'r', for example. 2858 /// 2859 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2860 const TargetLowering &TLI, 2861 SDValue Op, SelectionDAG *DAG) { 2862 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2863 unsigned BestIdx = 0; 2864 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2865 int BestGenerality = -1; 2866 2867 // Loop over the options, keeping track of the most general one. 2868 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2869 TargetLowering::ConstraintType CType = 2870 TLI.getConstraintType(OpInfo.Codes[i]); 2871 2872 // If this is an 'other' constraint, see if the operand is valid for it. 2873 // For example, on X86 we might have an 'rI' constraint. If the operand 2874 // is an integer in the range [0..31] we want to use I (saving a load 2875 // of a register), otherwise we must use 'r'. 2876 if (CType == TargetLowering::C_Other && Op.getNode()) { 2877 assert(OpInfo.Codes[i].size() == 1 && 2878 "Unhandled multi-letter 'other' constraint"); 2879 std::vector<SDValue> ResultOps; 2880 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2881 ResultOps, *DAG); 2882 if (!ResultOps.empty()) { 2883 BestType = CType; 2884 BestIdx = i; 2885 break; 2886 } 2887 } 2888 2889 // Things with matching constraints can only be registers, per gcc 2890 // documentation. This mainly affects "g" constraints. 2891 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2892 continue; 2893 2894 // This constraint letter is more general than the previous one, use it. 2895 int Generality = getConstraintGenerality(CType); 2896 if (Generality > BestGenerality) { 2897 BestType = CType; 2898 BestIdx = i; 2899 BestGenerality = Generality; 2900 } 2901 } 2902 2903 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2904 OpInfo.ConstraintType = BestType; 2905 } 2906 2907 /// Determines the constraint code and constraint type to use for the specific 2908 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2909 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2910 SDValue Op, 2911 SelectionDAG *DAG) const { 2912 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2913 2914 // Single-letter constraints ('r') are very common. 2915 if (OpInfo.Codes.size() == 1) { 2916 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2917 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2918 } else { 2919 ChooseConstraint(OpInfo, *this, Op, DAG); 2920 } 2921 2922 // 'X' matches anything. 2923 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2924 // Labels and constants are handled elsewhere ('X' is the only thing 2925 // that matches labels). For Functions, the type here is the type of 2926 // the result, which is not what we want to look at; leave them alone. 2927 Value *v = OpInfo.CallOperandVal; 2928 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2929 OpInfo.CallOperandVal = v; 2930 return; 2931 } 2932 2933 // Otherwise, try to resolve it to something we know about by looking at 2934 // the actual operand type. 2935 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2936 OpInfo.ConstraintCode = Repl; 2937 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2938 } 2939 } 2940 } 2941 2942 /// \brief Given an exact SDIV by a constant, create a multiplication 2943 /// with the multiplicative inverse of the constant. 2944 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2945 const SDLoc &dl, SelectionDAG &DAG, 2946 std::vector<SDNode *> &Created) { 2947 assert(d != 0 && "Division by zero!"); 2948 2949 // Shift the value upfront if it is even, so the LSB is one. 2950 unsigned ShAmt = d.countTrailingZeros(); 2951 if (ShAmt) { 2952 // TODO: For UDIV use SRL instead of SRA. 2953 SDValue Amt = 2954 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2955 DAG.getDataLayout())); 2956 SDNodeFlags Flags; 2957 Flags.setExact(true); 2958 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags); 2959 Created.push_back(Op1.getNode()); 2960 d.ashrInPlace(ShAmt); 2961 } 2962 2963 // Calculate the multiplicative inverse, using Newton's method. 2964 APInt t, xn = d; 2965 while ((t = d*xn) != 1) 2966 xn *= APInt(d.getBitWidth(), 2) - t; 2967 2968 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2969 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2970 Created.push_back(Mul.getNode()); 2971 return Mul; 2972 } 2973 2974 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2975 SelectionDAG &DAG, 2976 std::vector<SDNode *> *Created) const { 2977 AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2979 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2980 return SDValue(N,0); // Lower SDIV as SDIV 2981 return SDValue(); 2982 } 2983 2984 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2985 /// return a DAG expression to select that will generate the same value by 2986 /// multiplying by a magic number. 2987 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2988 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2989 SelectionDAG &DAG, bool IsAfterLegalization, 2990 std::vector<SDNode *> *Created) const { 2991 assert(Created && "No vector to hold sdiv ops."); 2992 2993 EVT VT = N->getValueType(0); 2994 SDLoc dl(N); 2995 2996 // Check to see if we can do this. 2997 // FIXME: We should be more aggressive here. 2998 if (!isTypeLegal(VT)) 2999 return SDValue(); 3000 3001 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3002 if (N->getFlags().hasExact()) 3003 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 3004 3005 APInt::ms magics = Divisor.magic(); 3006 3007 // Multiply the numerator (operand 0) by the magic value 3008 // FIXME: We should support doing a MUL in a wider type 3009 SDValue Q; 3010 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 3011 isOperationLegalOrCustom(ISD::MULHS, VT)) 3012 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3013 DAG.getConstant(magics.m, dl, VT)); 3014 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3015 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3016 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3017 N->getOperand(0), 3018 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3019 else 3020 return SDValue(); // No mulhs or equvialent 3021 // If d > 0 and m < 0, add the numerator 3022 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3023 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3024 Created->push_back(Q.getNode()); 3025 } 3026 // If d < 0 and m > 0, subtract the numerator. 3027 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3028 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3029 Created->push_back(Q.getNode()); 3030 } 3031 auto &DL = DAG.getDataLayout(); 3032 // Shift right algebraic if shift value is nonzero 3033 if (magics.s > 0) { 3034 Q = DAG.getNode( 3035 ISD::SRA, dl, VT, Q, 3036 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3037 Created->push_back(Q.getNode()); 3038 } 3039 // Extract the sign bit and add it to the quotient 3040 SDValue T = 3041 DAG.getNode(ISD::SRL, dl, VT, Q, 3042 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 3043 getShiftAmountTy(Q.getValueType(), DL))); 3044 Created->push_back(T.getNode()); 3045 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3046 } 3047 3048 /// \brief Given an ISD::UDIV node expressing a divide by constant, 3049 /// return a DAG expression to select that will generate the same value by 3050 /// multiplying by a magic number. 3051 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3052 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 3053 SelectionDAG &DAG, bool IsAfterLegalization, 3054 std::vector<SDNode *> *Created) const { 3055 assert(Created && "No vector to hold udiv ops."); 3056 3057 EVT VT = N->getValueType(0); 3058 SDLoc dl(N); 3059 auto &DL = DAG.getDataLayout(); 3060 3061 // Check to see if we can do this. 3062 // FIXME: We should be more aggressive here. 3063 if (!isTypeLegal(VT)) 3064 return SDValue(); 3065 3066 // FIXME: We should use a narrower constant when the upper 3067 // bits are known to be zero. 3068 APInt::mu magics = Divisor.magicu(); 3069 3070 SDValue Q = N->getOperand(0); 3071 3072 // If the divisor is even, we can avoid using the expensive fixup by shifting 3073 // the divided value upfront. 3074 if (magics.a != 0 && !Divisor[0]) { 3075 unsigned Shift = Divisor.countTrailingZeros(); 3076 Q = DAG.getNode( 3077 ISD::SRL, dl, VT, Q, 3078 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3079 Created->push_back(Q.getNode()); 3080 3081 // Get magic number for the shifted divisor. 3082 magics = Divisor.lshr(Shift).magicu(Shift); 3083 assert(magics.a == 0 && "Should use cheap fixup now"); 3084 } 3085 3086 // Multiply the numerator (operand 0) by the magic value 3087 // FIXME: We should support doing a MUL in a wider type 3088 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3089 isOperationLegalOrCustom(ISD::MULHU, VT)) 3090 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3091 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3092 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3093 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3094 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3095 else 3096 return SDValue(); // No mulhu or equivalent 3097 3098 Created->push_back(Q.getNode()); 3099 3100 if (magics.a == 0) { 3101 assert(magics.s < Divisor.getBitWidth() && 3102 "We shouldn't generate an undefined shift!"); 3103 return DAG.getNode( 3104 ISD::SRL, dl, VT, Q, 3105 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3106 } else { 3107 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3108 Created->push_back(NPQ.getNode()); 3109 NPQ = DAG.getNode( 3110 ISD::SRL, dl, VT, NPQ, 3111 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3112 Created->push_back(NPQ.getNode()); 3113 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3114 Created->push_back(NPQ.getNode()); 3115 return DAG.getNode( 3116 ISD::SRL, dl, VT, NPQ, 3117 DAG.getConstant(magics.s - 1, dl, 3118 getShiftAmountTy(NPQ.getValueType(), DL))); 3119 } 3120 } 3121 3122 bool TargetLowering:: 3123 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3124 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3125 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3126 "be a constant integer"); 3127 return true; 3128 } 3129 3130 return false; 3131 } 3132 3133 //===----------------------------------------------------------------------===// 3134 // Legalization Utilities 3135 //===----------------------------------------------------------------------===// 3136 3137 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3138 SDValue LHS, SDValue RHS, 3139 SmallVectorImpl<SDValue> &Result, 3140 EVT HiLoVT, SelectionDAG &DAG, 3141 MulExpansionKind Kind, SDValue LL, 3142 SDValue LH, SDValue RL, SDValue RH) const { 3143 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3144 Opcode == ISD::SMUL_LOHI); 3145 3146 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3147 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3148 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3149 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3150 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3151 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3152 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3153 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3154 3155 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3156 return false; 3157 3158 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3159 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3160 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3161 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3162 3163 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3164 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3165 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3166 3167 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3168 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3169 bool Signed) -> bool { 3170 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3171 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3172 Hi = SDValue(Lo.getNode(), 1); 3173 return true; 3174 } 3175 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3176 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3177 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3178 return true; 3179 } 3180 return false; 3181 }; 3182 3183 SDValue Lo, Hi; 3184 3185 if (!LL.getNode() && !RL.getNode() && 3186 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3187 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3188 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3189 } 3190 3191 if (!LL.getNode()) 3192 return false; 3193 3194 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3195 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3196 DAG.MaskedValueIsZero(RHS, HighMask)) { 3197 // The inputs are both zero-extended. 3198 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3199 Result.push_back(Lo); 3200 Result.push_back(Hi); 3201 if (Opcode != ISD::MUL) { 3202 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3203 Result.push_back(Zero); 3204 Result.push_back(Zero); 3205 } 3206 return true; 3207 } 3208 } 3209 3210 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3211 RHSSB > InnerBitSize) { 3212 // The input values are both sign-extended. 3213 // TODO non-MUL case? 3214 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3215 Result.push_back(Lo); 3216 Result.push_back(Hi); 3217 return true; 3218 } 3219 } 3220 3221 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3222 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3223 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3224 // FIXME getShiftAmountTy does not always return a sensible result when VT 3225 // is an illegal type, and so the type may be too small to fit the shift 3226 // amount. Override it with i32. The shift will have to be legalized. 3227 ShiftAmountTy = MVT::i32; 3228 } 3229 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3230 3231 if (!LH.getNode() && !RH.getNode() && 3232 isOperationLegalOrCustom(ISD::SRL, VT) && 3233 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3234 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3235 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3236 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3237 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3238 } 3239 3240 if (!LH.getNode()) 3241 return false; 3242 3243 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3244 return false; 3245 3246 Result.push_back(Lo); 3247 3248 if (Opcode == ISD::MUL) { 3249 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3250 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3251 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3252 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3253 Result.push_back(Hi); 3254 return true; 3255 } 3256 3257 // Compute the full width result. 3258 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 3259 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3260 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3261 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3262 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 3263 }; 3264 3265 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3266 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 3267 return false; 3268 3269 // This is effectively the add part of a multiply-add of half-sized operands, 3270 // so it cannot overflow. 3271 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3272 3273 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 3274 return false; 3275 3276 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 3277 Merge(Lo, Hi)); 3278 3279 SDValue Carry = Next.getValue(1); 3280 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3281 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3282 3283 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 3284 return false; 3285 3286 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3287 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 3288 Carry); 3289 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3290 3291 if (Opcode == ISD::SMUL_LOHI) { 3292 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3293 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 3294 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 3295 3296 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3297 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 3298 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 3299 } 3300 3301 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3302 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3303 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3304 return true; 3305 } 3306 3307 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3308 SelectionDAG &DAG, MulExpansionKind Kind, 3309 SDValue LL, SDValue LH, SDValue RL, 3310 SDValue RH) const { 3311 SmallVector<SDValue, 2> Result; 3312 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 3313 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 3314 DAG, Kind, LL, LH, RL, RH); 3315 if (Ok) { 3316 assert(Result.size() == 2); 3317 Lo = Result[0]; 3318 Hi = Result[1]; 3319 } 3320 return Ok; 3321 } 3322 3323 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3324 SelectionDAG &DAG) const { 3325 EVT VT = Node->getOperand(0).getValueType(); 3326 EVT NVT = Node->getValueType(0); 3327 SDLoc dl(SDValue(Node, 0)); 3328 3329 // FIXME: Only f32 to i64 conversions are supported. 3330 if (VT != MVT::f32 || NVT != MVT::i64) 3331 return false; 3332 3333 // Expand f32 -> i64 conversion 3334 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3335 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3336 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3337 VT.getSizeInBits()); 3338 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3339 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3340 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3341 SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl, 3342 IntVT); 3343 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3344 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3345 3346 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3347 3348 auto &DL = DAG.getDataLayout(); 3349 SDValue ExponentBits = DAG.getNode( 3350 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3351 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3352 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3353 3354 SDValue Sign = DAG.getNode( 3355 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3356 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3357 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3358 3359 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3360 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3361 DAG.getConstant(0x00800000, dl, IntVT)); 3362 3363 R = DAG.getZExtOrTrunc(R, dl, NVT); 3364 3365 R = DAG.getSelectCC( 3366 dl, Exponent, ExponentLoBit, 3367 DAG.getNode(ISD::SHL, dl, NVT, R, 3368 DAG.getZExtOrTrunc( 3369 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3370 dl, getShiftAmountTy(IntVT, DL))), 3371 DAG.getNode(ISD::SRL, dl, NVT, R, 3372 DAG.getZExtOrTrunc( 3373 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3374 dl, getShiftAmountTy(IntVT, DL))), 3375 ISD::SETGT); 3376 3377 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3378 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3379 Sign); 3380 3381 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3382 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3383 return true; 3384 } 3385 3386 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3387 SelectionDAG &DAG) const { 3388 SDLoc SL(LD); 3389 SDValue Chain = LD->getChain(); 3390 SDValue BasePTR = LD->getBasePtr(); 3391 EVT SrcVT = LD->getMemoryVT(); 3392 ISD::LoadExtType ExtType = LD->getExtensionType(); 3393 3394 unsigned NumElem = SrcVT.getVectorNumElements(); 3395 3396 EVT SrcEltVT = SrcVT.getScalarType(); 3397 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3398 3399 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3400 assert(SrcEltVT.isByteSized()); 3401 3402 EVT PtrVT = BasePTR.getValueType(); 3403 3404 SmallVector<SDValue, 8> Vals; 3405 SmallVector<SDValue, 8> LoadChains; 3406 3407 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3408 SDValue ScalarLoad = 3409 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3410 LD->getPointerInfo().getWithOffset(Idx * Stride), 3411 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3412 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3413 3414 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3415 DAG.getConstant(Stride, SL, PtrVT)); 3416 3417 Vals.push_back(ScalarLoad.getValue(0)); 3418 LoadChains.push_back(ScalarLoad.getValue(1)); 3419 } 3420 3421 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3422 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 3423 3424 return DAG.getMergeValues({ Value, NewChain }, SL); 3425 } 3426 3427 // FIXME: This relies on each element having a byte size, otherwise the stride 3428 // is 0 and just overwrites the same location. ExpandStore currently expects 3429 // this broken behavior. 3430 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3431 SelectionDAG &DAG) const { 3432 SDLoc SL(ST); 3433 3434 SDValue Chain = ST->getChain(); 3435 SDValue BasePtr = ST->getBasePtr(); 3436 SDValue Value = ST->getValue(); 3437 EVT StVT = ST->getMemoryVT(); 3438 3439 // The type of the data we want to save 3440 EVT RegVT = Value.getValueType(); 3441 EVT RegSclVT = RegVT.getScalarType(); 3442 3443 // The type of data as saved in memory. 3444 EVT MemSclVT = StVT.getScalarType(); 3445 3446 EVT PtrVT = BasePtr.getValueType(); 3447 3448 // Store Stride in bytes 3449 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3450 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3451 unsigned NumElem = StVT.getVectorNumElements(); 3452 3453 // Extract each of the elements from the original vector and save them into 3454 // memory individually. 3455 SmallVector<SDValue, 8> Stores; 3456 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3457 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3458 DAG.getConstant(Idx, SL, IdxVT)); 3459 3460 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3461 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3462 3463 // This scalar TruncStore may be illegal, but we legalize it later. 3464 SDValue Store = DAG.getTruncStore( 3465 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3466 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3467 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3468 3469 Stores.push_back(Store); 3470 } 3471 3472 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3473 } 3474 3475 std::pair<SDValue, SDValue> 3476 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3477 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3478 "unaligned indexed loads not implemented!"); 3479 SDValue Chain = LD->getChain(); 3480 SDValue Ptr = LD->getBasePtr(); 3481 EVT VT = LD->getValueType(0); 3482 EVT LoadedVT = LD->getMemoryVT(); 3483 SDLoc dl(LD); 3484 if (VT.isFloatingPoint() || VT.isVector()) { 3485 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3486 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3487 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3488 // Scalarize the load and let the individual components be handled. 3489 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3490 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3491 } 3492 3493 // Expand to a (misaligned) integer load of the same size, 3494 // then bitconvert to floating point or vector. 3495 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3496 LD->getMemOperand()); 3497 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3498 if (LoadedVT != VT) 3499 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3500 ISD::ANY_EXTEND, dl, VT, Result); 3501 3502 return std::make_pair(Result, newLoad.getValue(1)); 3503 } 3504 3505 // Copy the value to a (aligned) stack slot using (unaligned) integer 3506 // loads and stores, then do a (aligned) load from the stack slot. 3507 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3508 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3509 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3510 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3511 3512 // Make sure the stack slot is also aligned for the register type. 3513 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3514 3515 SmallVector<SDValue, 8> Stores; 3516 SDValue StackPtr = StackBase; 3517 unsigned Offset = 0; 3518 3519 EVT PtrVT = Ptr.getValueType(); 3520 EVT StackPtrVT = StackPtr.getValueType(); 3521 3522 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3523 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3524 3525 // Do all but one copies using the full register width. 3526 for (unsigned i = 1; i < NumRegs; i++) { 3527 // Load one integer register's worth from the original location. 3528 SDValue Load = DAG.getLoad( 3529 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3530 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3531 LD->getAAInfo()); 3532 // Follow the load with a store to the stack slot. Remember the store. 3533 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3534 MachinePointerInfo())); 3535 // Increment the pointers. 3536 Offset += RegBytes; 3537 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3538 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3539 StackPtrIncrement); 3540 } 3541 3542 // The last copy may be partial. Do an extending load. 3543 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3544 8 * (LoadedBytes - Offset)); 3545 SDValue Load = 3546 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3547 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3548 MinAlign(LD->getAlignment(), Offset), 3549 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3550 // Follow the load with a store to the stack slot. Remember the store. 3551 // On big-endian machines this requires a truncating store to ensure 3552 // that the bits end up in the right place. 3553 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3554 MachinePointerInfo(), MemVT)); 3555 3556 // The order of the stores doesn't matter - say it with a TokenFactor. 3557 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3558 3559 // Finally, perform the original load only redirected to the stack slot. 3560 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3561 MachinePointerInfo(), LoadedVT); 3562 3563 // Callers expect a MERGE_VALUES node. 3564 return std::make_pair(Load, TF); 3565 } 3566 3567 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3568 "Unaligned load of unsupported type."); 3569 3570 // Compute the new VT that is half the size of the old one. This is an 3571 // integer MVT. 3572 unsigned NumBits = LoadedVT.getSizeInBits(); 3573 EVT NewLoadedVT; 3574 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3575 NumBits >>= 1; 3576 3577 unsigned Alignment = LD->getAlignment(); 3578 unsigned IncrementSize = NumBits / 8; 3579 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3580 3581 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3582 if (HiExtType == ISD::NON_EXTLOAD) 3583 HiExtType = ISD::ZEXTLOAD; 3584 3585 // Load the value in two parts 3586 SDValue Lo, Hi; 3587 if (DAG.getDataLayout().isLittleEndian()) { 3588 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3589 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3590 LD->getAAInfo()); 3591 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3592 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3593 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3594 LD->getPointerInfo().getWithOffset(IncrementSize), 3595 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3596 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3597 } else { 3598 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3599 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3600 LD->getAAInfo()); 3601 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3602 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3603 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3604 LD->getPointerInfo().getWithOffset(IncrementSize), 3605 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3606 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3607 } 3608 3609 // aggregate the two parts 3610 SDValue ShiftAmount = 3611 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3612 DAG.getDataLayout())); 3613 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3614 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3615 3616 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3617 Hi.getValue(1)); 3618 3619 return std::make_pair(Result, TF); 3620 } 3621 3622 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3623 SelectionDAG &DAG) const { 3624 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3625 "unaligned indexed stores not implemented!"); 3626 SDValue Chain = ST->getChain(); 3627 SDValue Ptr = ST->getBasePtr(); 3628 SDValue Val = ST->getValue(); 3629 EVT VT = Val.getValueType(); 3630 int Alignment = ST->getAlignment(); 3631 3632 SDLoc dl(ST); 3633 if (ST->getMemoryVT().isFloatingPoint() || 3634 ST->getMemoryVT().isVector()) { 3635 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3636 if (isTypeLegal(intVT)) { 3637 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3638 // Scalarize the store and let the individual components be handled. 3639 SDValue Result = scalarizeVectorStore(ST, DAG); 3640 3641 return Result; 3642 } 3643 // Expand to a bitconvert of the value to the integer type of the 3644 // same size, then a (misaligned) int store. 3645 // FIXME: Does not handle truncating floating point stores! 3646 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3647 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3648 Alignment, ST->getMemOperand()->getFlags()); 3649 return Result; 3650 } 3651 // Do a (aligned) store to a stack slot, then copy from the stack slot 3652 // to the final destination using (unaligned) integer loads and stores. 3653 EVT StoredVT = ST->getMemoryVT(); 3654 MVT RegVT = 3655 getRegisterType(*DAG.getContext(), 3656 EVT::getIntegerVT(*DAG.getContext(), 3657 StoredVT.getSizeInBits())); 3658 EVT PtrVT = Ptr.getValueType(); 3659 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3660 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3661 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3662 3663 // Make sure the stack slot is also aligned for the register type. 3664 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3665 3666 // Perform the original store, only redirected to the stack slot. 3667 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3668 MachinePointerInfo(), StoredVT); 3669 3670 EVT StackPtrVT = StackPtr.getValueType(); 3671 3672 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3673 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3674 SmallVector<SDValue, 8> Stores; 3675 unsigned Offset = 0; 3676 3677 // Do all but one copies using the full register width. 3678 for (unsigned i = 1; i < NumRegs; i++) { 3679 // Load one integer register's worth from the stack slot. 3680 SDValue Load = 3681 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3682 // Store it to the final location. Remember the store. 3683 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3684 ST->getPointerInfo().getWithOffset(Offset), 3685 MinAlign(ST->getAlignment(), Offset), 3686 ST->getMemOperand()->getFlags())); 3687 // Increment the pointers. 3688 Offset += RegBytes; 3689 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3690 StackPtr, StackPtrIncrement); 3691 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3692 } 3693 3694 // The last store may be partial. Do a truncating store. On big-endian 3695 // machines this requires an extending load from the stack slot to ensure 3696 // that the bits are in the right place. 3697 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3698 8 * (StoredBytes - Offset)); 3699 3700 // Load from the stack slot. 3701 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3702 MachinePointerInfo(), MemVT); 3703 3704 Stores.push_back( 3705 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3706 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3707 MinAlign(ST->getAlignment(), Offset), 3708 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3709 // The order of the stores doesn't matter - say it with a TokenFactor. 3710 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3711 return Result; 3712 } 3713 3714 assert(ST->getMemoryVT().isInteger() && 3715 !ST->getMemoryVT().isVector() && 3716 "Unaligned store of unknown type."); 3717 // Get the half-size VT 3718 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3719 int NumBits = NewStoredVT.getSizeInBits(); 3720 int IncrementSize = NumBits / 8; 3721 3722 // Divide the stored value in two parts. 3723 SDValue ShiftAmount = 3724 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3725 DAG.getDataLayout())); 3726 SDValue Lo = Val; 3727 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3728 3729 // Store the two parts 3730 SDValue Store1, Store2; 3731 Store1 = DAG.getTruncStore(Chain, dl, 3732 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3733 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3734 ST->getMemOperand()->getFlags()); 3735 3736 EVT PtrVT = Ptr.getValueType(); 3737 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3738 DAG.getConstant(IncrementSize, dl, PtrVT)); 3739 Alignment = MinAlign(Alignment, IncrementSize); 3740 Store2 = DAG.getTruncStore( 3741 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3742 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3743 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3744 3745 SDValue Result = 3746 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3747 return Result; 3748 } 3749 3750 SDValue 3751 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 3752 const SDLoc &DL, EVT DataVT, 3753 SelectionDAG &DAG, 3754 bool IsCompressedMemory) const { 3755 SDValue Increment; 3756 EVT AddrVT = Addr.getValueType(); 3757 EVT MaskVT = Mask.getValueType(); 3758 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 3759 "Incompatible types of Data and Mask"); 3760 if (IsCompressedMemory) { 3761 // Incrementing the pointer according to number of '1's in the mask. 3762 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 3763 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 3764 if (MaskIntVT.getSizeInBits() < 32) { 3765 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 3766 MaskIntVT = MVT::i32; 3767 } 3768 3769 // Count '1's with POPCNT. 3770 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 3771 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 3772 // Scale is an element size in bytes. 3773 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 3774 AddrVT); 3775 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 3776 } else 3777 Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT); 3778 3779 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 3780 } 3781 3782 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 3783 SDValue Idx, 3784 EVT VecVT, 3785 const SDLoc &dl) { 3786 if (isa<ConstantSDNode>(Idx)) 3787 return Idx; 3788 3789 EVT IdxVT = Idx.getValueType(); 3790 unsigned NElts = VecVT.getVectorNumElements(); 3791 if (isPowerOf2_32(NElts)) { 3792 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 3793 Log2_32(NElts)); 3794 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 3795 DAG.getConstant(Imm, dl, IdxVT)); 3796 } 3797 3798 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 3799 DAG.getConstant(NElts - 1, dl, IdxVT)); 3800 } 3801 3802 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 3803 SDValue VecPtr, EVT VecVT, 3804 SDValue Index) const { 3805 SDLoc dl(Index); 3806 // Make sure the index type is big enough to compute in. 3807 Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout())); 3808 3809 EVT EltVT = VecVT.getVectorElementType(); 3810 3811 // Calculate the element offset and add it to the pointer. 3812 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 3813 assert(EltSize * 8 == EltVT.getSizeInBits() && 3814 "Converting bits to bytes lost precision"); 3815 3816 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 3817 3818 EVT IdxVT = Index.getValueType(); 3819 3820 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 3821 DAG.getConstant(EltSize, dl, IdxVT)); 3822 return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr); 3823 } 3824 3825 //===----------------------------------------------------------------------===// 3826 // Implementation of Emulated TLS Model 3827 //===----------------------------------------------------------------------===// 3828 3829 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3830 SelectionDAG &DAG) const { 3831 // Access to address of TLS varialbe xyz is lowered to a function call: 3832 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3833 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3834 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3835 SDLoc dl(GA); 3836 3837 ArgListTy Args; 3838 ArgListEntry Entry; 3839 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3840 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3841 StringRef EmuTlsVarName(NameString); 3842 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3843 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3844 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3845 Entry.Ty = VoidPtrType; 3846 Args.push_back(Entry); 3847 3848 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3849 3850 TargetLowering::CallLoweringInfo CLI(DAG); 3851 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3852 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3853 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3854 3855 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3856 // At last for X86 targets, maybe good for other targets too? 3857 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3858 MFI.setAdjustsStack(true); // Is this only for X86 target? 3859 MFI.setHasCalls(true); 3860 3861 assert((GA->getOffset() == 0) && 3862 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3863 return CallResult.first; 3864 } 3865 3866 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 3867 SelectionDAG &DAG) const { 3868 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 3869 if (!isCtlzFast()) 3870 return SDValue(); 3871 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3872 SDLoc dl(Op); 3873 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3874 if (C->isNullValue() && CC == ISD::SETEQ) { 3875 EVT VT = Op.getOperand(0).getValueType(); 3876 SDValue Zext = Op.getOperand(0); 3877 if (VT.bitsLT(MVT::i32)) { 3878 VT = MVT::i32; 3879 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 3880 } 3881 unsigned Log2b = Log2_32(VT.getSizeInBits()); 3882 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 3883 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 3884 DAG.getConstant(Log2b, dl, MVT::i32)); 3885 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 3886 } 3887 } 3888 return SDValue(); 3889 } 3890