1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 KnownBits &Known, 610 TargetLoweringOpt &TLO, 611 unsigned Depth, 612 bool AssumeSingleUse) const { 613 EVT VT = Op.getValueType(); 614 615 // TODO: We can probably do more work on calculating the known bits and 616 // simplifying the operations for scalable vectors, but for now we just 617 // bail out. 618 if (VT.isScalableVector()) { 619 // Pretend we don't know anything for now. 620 Known = KnownBits(DemandedBits.getBitWidth()); 621 return false; 622 } 623 624 APInt DemandedElts = VT.isVector() 625 ? APInt::getAllOnes(VT.getVectorNumElements()) 626 : APInt(1, 1); 627 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 628 AssumeSingleUse); 629 } 630 631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 632 // TODO: Under what circumstances can we create nodes? Constant folding? 633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 635 SelectionDAG &DAG, unsigned Depth) const { 636 // Limit search depth. 637 if (Depth >= SelectionDAG::MaxRecursionDepth) 638 return SDValue(); 639 640 // Ignore UNDEFs. 641 if (Op.isUndef()) 642 return SDValue(); 643 644 // Not demanding any bits/elts from Op. 645 if (DemandedBits == 0 || DemandedElts == 0) 646 return DAG.getUNDEF(Op.getValueType()); 647 648 bool IsLE = DAG.getDataLayout().isLittleEndian(); 649 unsigned NumElts = DemandedElts.getBitWidth(); 650 unsigned BitWidth = DemandedBits.getBitWidth(); 651 KnownBits LHSKnown, RHSKnown; 652 switch (Op.getOpcode()) { 653 case ISD::BITCAST: { 654 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 655 EVT SrcVT = Src.getValueType(); 656 EVT DstVT = Op.getValueType(); 657 if (SrcVT == DstVT) 658 return Src; 659 660 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 661 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 662 if (NumSrcEltBits == NumDstEltBits) 663 if (SDValue V = SimplifyMultipleUseDemandedBits( 664 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 665 return DAG.getBitcast(DstVT, V); 666 667 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 674 unsigned BitOffset = EltOffset * NumSrcEltBits; 675 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 676 if (!Sub.isZero()) { 677 DemandedSrcBits |= Sub; 678 for (unsigned j = 0; j != NumElts; ++j) 679 if (DemandedElts[j]) 680 DemandedSrcElts.setBit((j * Scale) + i); 681 } 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 // TODO - bigendian once we have test coverage. 690 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (IsLE && DemandedElts == 1 && 805 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 SDValue Vec = Op.getOperand(0); 823 SDValue Sub = Op.getOperand(1); 824 uint64_t Idx = Op.getConstantOperandVal(2); 825 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 826 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 827 // If we don't demand the inserted subvector, return the base vector. 828 if (DemandedSubElts == 0) 829 return Vec; 830 // If this simply widens the lowest subvector, see if we can do it earlier. 831 if (Idx == 0 && Vec.isUndef()) { 832 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 833 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 834 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 835 Op.getOperand(0), NewSub, Op.getOperand(2)); 836 } 837 break; 838 } 839 case ISD::VECTOR_SHUFFLE: { 840 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 841 842 // If all the demanded elts are from one operand and are inline, 843 // then we can use the operand directly. 844 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 845 for (unsigned i = 0; i != NumElts; ++i) { 846 int M = ShuffleMask[i]; 847 if (M < 0 || !DemandedElts[i]) 848 continue; 849 AllUndef = false; 850 IdentityLHS &= (M == (int)i); 851 IdentityRHS &= ((M - NumElts) == i); 852 } 853 854 if (AllUndef) 855 return DAG.getUNDEF(Op.getValueType()); 856 if (IdentityLHS) 857 return Op.getOperand(0); 858 if (IdentityRHS) 859 return Op.getOperand(1); 860 break; 861 } 862 default: 863 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 864 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 865 Op, DemandedBits, DemandedElts, DAG, Depth)) 866 return V; 867 break; 868 } 869 return SDValue(); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 873 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 874 unsigned Depth) const { 875 EVT VT = Op.getValueType(); 876 APInt DemandedElts = VT.isVector() 877 ? APInt::getAllOnes(VT.getVectorNumElements()) 878 : APInt(1, 1); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 884 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 885 unsigned Depth) const { 886 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 887 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 888 Depth); 889 } 890 891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 892 /// result of Op are ever used downstream. If we can use this information to 893 /// simplify Op, create a new simplified DAG node and return true, returning the 894 /// original and new nodes in Old and New. Otherwise, analyze the expression and 895 /// return a mask of Known bits for the expression (used to simplify the 896 /// caller). The Known bits may only be accurate for those bits in the 897 /// OriginalDemandedBits and OriginalDemandedElts. 898 bool TargetLowering::SimplifyDemandedBits( 899 SDValue Op, const APInt &OriginalDemandedBits, 900 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 901 unsigned Depth, bool AssumeSingleUse) const { 902 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 903 assert(Op.getScalarValueSizeInBits() == BitWidth && 904 "Mask size mismatches value type size!"); 905 906 // Don't know anything. 907 Known = KnownBits(BitWidth); 908 909 // TODO: We can probably do more work on calculating the known bits and 910 // simplifying the operations for scalable vectors, but for now we just 911 // bail out. 912 if (Op.getValueType().isScalableVector()) 913 return false; 914 915 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 916 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 917 assert((!Op.getValueType().isVector() || 918 NumElts == Op.getValueType().getVectorNumElements()) && 919 "Unexpected vector size"); 920 921 APInt DemandedBits = OriginalDemandedBits; 922 APInt DemandedElts = OriginalDemandedElts; 923 SDLoc dl(Op); 924 auto &DL = TLO.DAG.getDataLayout(); 925 926 // Undef operand. 927 if (Op.isUndef()) 928 return false; 929 930 if (Op.getOpcode() == ISD::Constant) { 931 // We know all of the bits for a constant! 932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 933 return false; 934 } 935 936 if (Op.getOpcode() == ISD::ConstantFP) { 937 // We know all of the bits for a floating point constant! 938 Known = KnownBits::makeConstant( 939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 940 return false; 941 } 942 943 // Other users may use these bits. 944 EVT VT = Op.getValueType(); 945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 946 if (Depth != 0) { 947 // If not at the root, Just compute the Known bits to 948 // simplify things downstream. 949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 950 return false; 951 } 952 // If this is the root being simplified, allow it to have multiple uses, 953 // just set the DemandedBits/Elts to all bits. 954 DemandedBits = APInt::getAllOnes(BitWidth); 955 DemandedElts = APInt::getAllOnes(NumElts); 956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 957 // Not demanding any bits/elts from Op. 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 960 // Limit search depth. 961 return false; 962 } 963 964 KnownBits Known2; 965 switch (Op.getOpcode()) { 966 case ISD::TargetConstant: 967 llvm_unreachable("Can't simplify this node"); 968 case ISD::SCALAR_TO_VECTOR: { 969 if (!DemandedElts[0]) 970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 971 972 KnownBits SrcKnown; 973 SDValue Src = Op.getOperand(0); 974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 977 return true; 978 979 // Upper elements are undef, so only get the knownbits if we just demand 980 // the bottom element. 981 if (DemandedElts == 1) 982 Known = SrcKnown.anyextOrTrunc(BitWidth); 983 break; 984 } 985 case ISD::BUILD_VECTOR: 986 // Collect the known bits that are shared by every demanded element. 987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 989 return false; // Don't fall through, will infinitely loop. 990 case ISD::LOAD: { 991 auto *LD = cast<LoadSDNode>(Op); 992 if (getTargetConstantFromLoad(LD)) { 993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 994 return false; // Don't fall through, will infinitely loop. 995 } 996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 997 // If this is a ZEXTLoad and we are looking at the loaded value. 998 EVT MemVT = LD->getMemoryVT(); 999 unsigned MemBits = MemVT.getScalarSizeInBits(); 1000 Known.Zero.setBitsFrom(MemBits); 1001 return false; // Don't fall through, will infinitely loop. 1002 } 1003 break; 1004 } 1005 case ISD::INSERT_VECTOR_ELT: { 1006 SDValue Vec = Op.getOperand(0); 1007 SDValue Scl = Op.getOperand(1); 1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1009 EVT VecVT = Vec.getValueType(); 1010 1011 // If index isn't constant, assume we need all vector elements AND the 1012 // inserted element. 1013 APInt DemandedVecElts(DemandedElts); 1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1015 unsigned Idx = CIdx->getZExtValue(); 1016 DemandedVecElts.clearBit(Idx); 1017 1018 // Inserted element is not required. 1019 if (!DemandedElts[Idx]) 1020 return TLO.CombineTo(Op, Vec); 1021 } 1022 1023 KnownBits KnownScl; 1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1027 return true; 1028 1029 Known = KnownScl.anyextOrTrunc(BitWidth); 1030 1031 KnownBits KnownVec; 1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1033 Depth + 1)) 1034 return true; 1035 1036 if (!!DemandedVecElts) 1037 Known = KnownBits::commonBits(Known, KnownVec); 1038 1039 return false; 1040 } 1041 case ISD::INSERT_SUBVECTOR: { 1042 // Demand any elements from the subvector and the remainder from the src its 1043 // inserted into. 1044 SDValue Src = Op.getOperand(0); 1045 SDValue Sub = Op.getOperand(1); 1046 uint64_t Idx = Op.getConstantOperandVal(2); 1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1049 APInt DemandedSrcElts = DemandedElts; 1050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1051 1052 KnownBits KnownSub, KnownSrc; 1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1054 Depth + 1)) 1055 return true; 1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1057 Depth + 1)) 1058 return true; 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 if (!!DemandedSubElts) 1063 Known = KnownBits::commonBits(Known, KnownSub); 1064 if (!!DemandedSrcElts) 1065 Known = KnownBits::commonBits(Known, KnownSrc); 1066 1067 // Attempt to avoid multi-use src if we don't need anything from it. 1068 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1069 !DemandedSrcElts.isAllOnes()) { 1070 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1074 if (NewSub || NewSrc) { 1075 NewSub = NewSub ? NewSub : Sub; 1076 NewSrc = NewSrc ? NewSrc : Src; 1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1078 Op.getOperand(2)); 1079 return TLO.CombineTo(Op, NewOp); 1080 } 1081 } 1082 break; 1083 } 1084 case ISD::EXTRACT_SUBVECTOR: { 1085 // Offset the demanded elts by the subvector index. 1086 SDValue Src = Op.getOperand(0); 1087 if (Src.getValueType().isScalableVector()) 1088 break; 1089 uint64_t Idx = Op.getConstantOperandVal(1); 1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1092 1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 1097 // Attempt to avoid multi-use src if we don't need anything from it. 1098 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1101 if (DemandedSrc) { 1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1103 Op.getOperand(1)); 1104 return TLO.CombineTo(Op, NewOp); 1105 } 1106 } 1107 break; 1108 } 1109 case ISD::CONCAT_VECTORS: { 1110 Known.Zero.setAllBits(); 1111 Known.One.setAllBits(); 1112 EVT SubVT = Op.getOperand(0).getValueType(); 1113 unsigned NumSubVecs = Op.getNumOperands(); 1114 unsigned NumSubElts = SubVT.getVectorNumElements(); 1115 for (unsigned i = 0; i != NumSubVecs; ++i) { 1116 APInt DemandedSubElts = 1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1119 Known2, TLO, Depth + 1)) 1120 return true; 1121 // Known bits are shared by every demanded subvector element. 1122 if (!!DemandedSubElts) 1123 Known = KnownBits::commonBits(Known, Known2); 1124 } 1125 break; 1126 } 1127 case ISD::VECTOR_SHUFFLE: { 1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1129 1130 // Collect demanded elements from shuffle operands.. 1131 APInt DemandedLHS(NumElts, 0); 1132 APInt DemandedRHS(NumElts, 0); 1133 for (unsigned i = 0; i != NumElts; ++i) { 1134 if (!DemandedElts[i]) 1135 continue; 1136 int M = ShuffleMask[i]; 1137 if (M < 0) { 1138 // For UNDEF elements, we don't know anything about the common state of 1139 // the shuffle result. 1140 DemandedLHS.clearAllBits(); 1141 DemandedRHS.clearAllBits(); 1142 break; 1143 } 1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1145 if (M < (int)NumElts) 1146 DemandedLHS.setBit(M); 1147 else 1148 DemandedRHS.setBit(M - NumElts); 1149 } 1150 1151 if (!!DemandedLHS || !!DemandedRHS) { 1152 SDValue Op0 = Op.getOperand(0); 1153 SDValue Op1 = Op.getOperand(1); 1154 1155 Known.Zero.setAllBits(); 1156 Known.One.setAllBits(); 1157 if (!!DemandedLHS) { 1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1159 Depth + 1)) 1160 return true; 1161 Known = KnownBits::commonBits(Known, Known2); 1162 } 1163 if (!!DemandedRHS) { 1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1165 Depth + 1)) 1166 return true; 1167 Known = KnownBits::commonBits(Known, Known2); 1168 } 1169 1170 // Attempt to avoid multi-use ops if we don't need anything from them. 1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1175 if (DemandedOp0 || DemandedOp1) { 1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1179 return TLO.CombineTo(Op, NewOp); 1180 } 1181 } 1182 break; 1183 } 1184 case ISD::AND: { 1185 SDValue Op0 = Op.getOperand(0); 1186 SDValue Op1 = Op.getOperand(1); 1187 1188 // If the RHS is a constant, check to see if the LHS would be zero without 1189 // using the bits from the RHS. Below, we use knowledge about the RHS to 1190 // simplify the LHS, here we're using information from the LHS to simplify 1191 // the RHS. 1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1193 // Do not increment Depth here; that can cause an infinite loop. 1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1195 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1196 if ((LHSKnown.Zero & DemandedBits) == 1197 (~RHSC->getAPIntValue() & DemandedBits)) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 // If any of the set bits in the RHS are known zero on the LHS, shrink 1201 // the constant. 1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1203 DemandedElts, TLO)) 1204 return true; 1205 1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1207 // constant, but if this 'and' is only clearing bits that were just set by 1208 // the xor, then this 'and' can be eliminated by shrinking the mask of 1209 // the xor. For example, for a 32-bit X: 1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1212 LHSKnown.One == ~RHSC->getAPIntValue()) { 1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1214 return TLO.CombineTo(Op, Xor); 1215 } 1216 } 1217 1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1219 Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1223 Known2, TLO, Depth + 1)) 1224 return true; 1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1226 1227 // Attempt to avoid multi-use ops if we don't need anything from them. 1228 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1233 if (DemandedOp0 || DemandedOp1) { 1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1237 return TLO.CombineTo(Op, NewOp); 1238 } 1239 } 1240 1241 // If all of the demanded bits are known one on one side, return the other. 1242 // These bits cannot contribute to the result of the 'and'. 1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1244 return TLO.CombineTo(Op, Op0); 1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1246 return TLO.CombineTo(Op, Op1); 1247 // If all of the demanded bits in the inputs are known zeros, return zero. 1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1250 // If the RHS is a constant, see if we can simplify it. 1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1252 TLO)) 1253 return true; 1254 // If the operation can be done in a smaller type, do so. 1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1256 return true; 1257 1258 Known &= Known2; 1259 break; 1260 } 1261 case ISD::OR: { 1262 SDValue Op0 = Op.getOperand(0); 1263 SDValue Op1 = Op.getOperand(1); 1264 1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1270 Known2, TLO, Depth + 1)) 1271 return true; 1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1273 1274 // Attempt to avoid multi-use ops if we don't need anything from them. 1275 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1280 if (DemandedOp0 || DemandedOp1) { 1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1284 return TLO.CombineTo(Op, NewOp); 1285 } 1286 } 1287 1288 // If all of the demanded bits are known zero on one side, return the other. 1289 // These bits cannot contribute to the result of the 'or'. 1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1291 return TLO.CombineTo(Op, Op0); 1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1293 return TLO.CombineTo(Op, Op1); 1294 // If the RHS is a constant, see if we can simplify it. 1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1296 return true; 1297 // If the operation can be done in a smaller type, do so. 1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1299 return true; 1300 1301 Known |= Known2; 1302 break; 1303 } 1304 case ISD::XOR: { 1305 SDValue Op0 = Op.getOperand(0); 1306 SDValue Op1 = Op.getOperand(1); 1307 1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1313 Depth + 1)) 1314 return true; 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1323 if (DemandedOp0 || DemandedOp1) { 1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1327 return TLO.CombineTo(Op, NewOp); 1328 } 1329 } 1330 1331 // If all of the demanded bits are known zero on one side, return the other. 1332 // These bits cannot contribute to the result of the 'xor'. 1333 if (DemandedBits.isSubsetOf(Known.Zero)) 1334 return TLO.CombineTo(Op, Op0); 1335 if (DemandedBits.isSubsetOf(Known2.Zero)) 1336 return TLO.CombineTo(Op, Op1); 1337 // If the operation can be done in a smaller type, do so. 1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1339 return true; 1340 1341 // If all of the unknown bits are known to be zero on one side or the other 1342 // turn this into an *inclusive* or. 1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1346 1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1348 if (C) { 1349 // If one side is a constant, and all of the set bits in the constant are 1350 // also known set on the other side, turn this into an AND, as we know 1351 // the bits will be cleared. 1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1353 // NB: it is okay if more bits are known than are requested 1354 if (C->getAPIntValue() == Known2.One) { 1355 SDValue ANDC = 1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1358 } 1359 1360 // If the RHS is a constant, see if we can change it. Don't alter a -1 1361 // constant because that's a 'not' op, and that is better for combining 1362 // and codegen. 1363 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnes()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOne()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1729 1730 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1731 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1735 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1736 unsigned RevAmt = BitWidth - Amt; 1737 1738 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1739 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1740 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1741 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1742 Depth + 1)) 1743 return true; 1744 1745 // rot*(x, 0) --> x 1746 if (Amt == 0) 1747 return TLO.CombineTo(Op, Op0); 1748 1749 // See if we don't demand either half of the rotated bits. 1750 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1751 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1752 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1753 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1754 } 1755 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1756 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1757 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1758 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1759 } 1760 } 1761 1762 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1763 if (isPowerOf2_32(BitWidth)) { 1764 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1765 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1766 Depth + 1)) 1767 return true; 1768 } 1769 break; 1770 } 1771 case ISD::UMIN: { 1772 // Check if one arg is always less than (or equal) to the other arg. 1773 SDValue Op0 = Op.getOperand(0); 1774 SDValue Op1 = Op.getOperand(1); 1775 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1776 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1777 Known = KnownBits::umin(Known0, Known1); 1778 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1779 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1780 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1781 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1782 break; 1783 } 1784 case ISD::UMAX: { 1785 // Check if one arg is always greater than (or equal) to the other arg. 1786 SDValue Op0 = Op.getOperand(0); 1787 SDValue Op1 = Op.getOperand(1); 1788 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1789 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1790 Known = KnownBits::umax(Known0, Known1); 1791 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1792 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1793 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1794 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1795 break; 1796 } 1797 case ISD::BITREVERSE: { 1798 SDValue Src = Op.getOperand(0); 1799 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1800 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1801 Depth + 1)) 1802 return true; 1803 Known.One = Known2.One.reverseBits(); 1804 Known.Zero = Known2.Zero.reverseBits(); 1805 break; 1806 } 1807 case ISD::BSWAP: { 1808 SDValue Src = Op.getOperand(0); 1809 1810 // If the only bits demanded come from one byte of the bswap result, 1811 // just shift the input byte into position to eliminate the bswap. 1812 unsigned NLZ = DemandedBits.countLeadingZeros(); 1813 unsigned NTZ = DemandedBits.countTrailingZeros(); 1814 1815 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1816 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1817 // have 14 leading zeros, round to 8. 1818 NLZ = alignDown(NLZ, 8); 1819 NTZ = alignDown(NTZ, 8); 1820 // If we need exactly one byte, we can do this transformation. 1821 if (BitWidth - NLZ - NTZ == 8) { 1822 // Replace this with either a left or right shift to get the byte into 1823 // the right place. 1824 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1825 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1826 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1827 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1828 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1829 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1830 return TLO.CombineTo(Op, NewOp); 1831 } 1832 } 1833 1834 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1835 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1836 Depth + 1)) 1837 return true; 1838 Known.One = Known2.One.byteSwap(); 1839 Known.Zero = Known2.Zero.byteSwap(); 1840 break; 1841 } 1842 case ISD::CTPOP: { 1843 // If only 1 bit is demanded, replace with PARITY as long as we're before 1844 // op legalization. 1845 // FIXME: Limit to scalars for now. 1846 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1847 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1848 Op.getOperand(0))); 1849 1850 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1851 break; 1852 } 1853 case ISD::SIGN_EXTEND_INREG: { 1854 SDValue Op0 = Op.getOperand(0); 1855 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1856 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1857 1858 // If we only care about the highest bit, don't bother shifting right. 1859 if (DemandedBits.isSignMask()) { 1860 unsigned MinSignedBits = 1861 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 1862 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1863 // However if the input is already sign extended we expect the sign 1864 // extension to be dropped altogether later and do not simplify. 1865 if (!AlreadySignExtended) { 1866 // Compute the correct shift amount type, which must be getShiftAmountTy 1867 // for scalar types after legalization. 1868 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1869 getShiftAmountTy(VT, DL)); 1870 return TLO.CombineTo(Op, 1871 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1872 } 1873 } 1874 1875 // If none of the extended bits are demanded, eliminate the sextinreg. 1876 if (DemandedBits.getActiveBits() <= ExVTBits) 1877 return TLO.CombineTo(Op, Op0); 1878 1879 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1880 1881 // Since the sign extended bits are demanded, we know that the sign 1882 // bit is demanded. 1883 InputDemandedBits.setBit(ExVTBits - 1); 1884 1885 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1886 return true; 1887 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1888 1889 // If the sign bit of the input is known set or clear, then we know the 1890 // top bits of the result. 1891 1892 // If the input sign bit is known zero, convert this into a zero extension. 1893 if (Known.Zero[ExVTBits - 1]) 1894 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1895 1896 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1897 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1898 Known.One.setBitsFrom(ExVTBits); 1899 Known.Zero &= Mask; 1900 } else { // Input sign bit unknown 1901 Known.Zero &= Mask; 1902 Known.One &= Mask; 1903 } 1904 break; 1905 } 1906 case ISD::BUILD_PAIR: { 1907 EVT HalfVT = Op.getOperand(0).getValueType(); 1908 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1909 1910 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1911 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1912 1913 KnownBits KnownLo, KnownHi; 1914 1915 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1916 return true; 1917 1918 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1919 return true; 1920 1921 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1922 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1923 1924 Known.One = KnownLo.One.zext(BitWidth) | 1925 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1926 break; 1927 } 1928 case ISD::ZERO_EXTEND: 1929 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1930 SDValue Src = Op.getOperand(0); 1931 EVT SrcVT = Src.getValueType(); 1932 unsigned InBits = SrcVT.getScalarSizeInBits(); 1933 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1934 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1935 1936 // If none of the top bits are demanded, convert this into an any_extend. 1937 if (DemandedBits.getActiveBits() <= InBits) { 1938 // If we only need the non-extended bits of the bottom element 1939 // then we can just bitcast to the result. 1940 if (IsLE && IsVecInReg && DemandedElts == 1 && 1941 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1942 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1943 1944 unsigned Opc = 1945 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1946 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1947 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1948 } 1949 1950 APInt InDemandedBits = DemandedBits.trunc(InBits); 1951 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1952 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1953 Depth + 1)) 1954 return true; 1955 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1956 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1957 Known = Known.zext(BitWidth); 1958 1959 // Attempt to avoid multi-use ops if we don't need anything from them. 1960 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1961 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1962 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1963 break; 1964 } 1965 case ISD::SIGN_EXTEND: 1966 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1967 SDValue Src = Op.getOperand(0); 1968 EVT SrcVT = Src.getValueType(); 1969 unsigned InBits = SrcVT.getScalarSizeInBits(); 1970 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1971 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1972 1973 // If none of the top bits are demanded, convert this into an any_extend. 1974 if (DemandedBits.getActiveBits() <= InBits) { 1975 // If we only need the non-extended bits of the bottom element 1976 // then we can just bitcast to the result. 1977 if (IsLE && IsVecInReg && DemandedElts == 1 && 1978 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1979 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1980 1981 unsigned Opc = 1982 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1983 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1984 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1985 } 1986 1987 APInt InDemandedBits = DemandedBits.trunc(InBits); 1988 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1989 1990 // Since some of the sign extended bits are demanded, we know that the sign 1991 // bit is demanded. 1992 InDemandedBits.setBit(InBits - 1); 1993 1994 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1995 Depth + 1)) 1996 return true; 1997 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1998 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1999 2000 // If the sign bit is known one, the top bits match. 2001 Known = Known.sext(BitWidth); 2002 2003 // If the sign bit is known zero, convert this to a zero extend. 2004 if (Known.isNonNegative()) { 2005 unsigned Opc = 2006 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2007 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2008 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2009 } 2010 2011 // Attempt to avoid multi-use ops if we don't need anything from them. 2012 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2013 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2014 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2015 break; 2016 } 2017 case ISD::ANY_EXTEND: 2018 case ISD::ANY_EXTEND_VECTOR_INREG: { 2019 SDValue Src = Op.getOperand(0); 2020 EVT SrcVT = Src.getValueType(); 2021 unsigned InBits = SrcVT.getScalarSizeInBits(); 2022 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2023 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2024 2025 // If we only need the bottom element then we can just bitcast. 2026 // TODO: Handle ANY_EXTEND? 2027 if (IsLE && IsVecInReg && DemandedElts == 1 && 2028 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2029 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2030 2031 APInt InDemandedBits = DemandedBits.trunc(InBits); 2032 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2033 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2034 Depth + 1)) 2035 return true; 2036 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2037 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2038 Known = Known.anyext(BitWidth); 2039 2040 // Attempt to avoid multi-use ops if we don't need anything from them. 2041 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2042 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2043 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2044 break; 2045 } 2046 case ISD::TRUNCATE: { 2047 SDValue Src = Op.getOperand(0); 2048 2049 // Simplify the input, using demanded bit information, and compute the known 2050 // zero/one bits live out. 2051 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2052 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2053 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2054 Depth + 1)) 2055 return true; 2056 Known = Known.trunc(BitWidth); 2057 2058 // Attempt to avoid multi-use ops if we don't need anything from them. 2059 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2060 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2061 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2062 2063 // If the input is only used by this truncate, see if we can shrink it based 2064 // on the known demanded bits. 2065 if (Src.getNode()->hasOneUse()) { 2066 switch (Src.getOpcode()) { 2067 default: 2068 break; 2069 case ISD::SRL: 2070 // Shrink SRL by a constant if none of the high bits shifted in are 2071 // demanded. 2072 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2073 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2074 // undesirable. 2075 break; 2076 2077 const APInt *ShAmtC = 2078 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2079 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2080 break; 2081 uint64_t ShVal = ShAmtC->getZExtValue(); 2082 2083 APInt HighBits = 2084 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2085 HighBits.lshrInPlace(ShVal); 2086 HighBits = HighBits.trunc(BitWidth); 2087 2088 if (!(HighBits & DemandedBits)) { 2089 // None of the shifted in bits are needed. Add a truncate of the 2090 // shift input, then shift it. 2091 SDValue NewShAmt = TLO.DAG.getConstant( 2092 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2093 SDValue NewTrunc = 2094 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2095 return TLO.CombineTo( 2096 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2097 } 2098 break; 2099 } 2100 } 2101 2102 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2103 break; 2104 } 2105 case ISD::AssertZext: { 2106 // AssertZext demands all of the high bits, plus any of the low bits 2107 // demanded by its users. 2108 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2109 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2110 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2111 TLO, Depth + 1)) 2112 return true; 2113 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2114 2115 Known.Zero |= ~InMask; 2116 break; 2117 } 2118 case ISD::EXTRACT_VECTOR_ELT: { 2119 SDValue Src = Op.getOperand(0); 2120 SDValue Idx = Op.getOperand(1); 2121 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2122 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2123 2124 if (SrcEltCnt.isScalable()) 2125 return false; 2126 2127 // Demand the bits from every vector element without a constant index. 2128 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2129 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2130 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2131 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2132 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2133 2134 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2135 // anything about the extended bits. 2136 APInt DemandedSrcBits = DemandedBits; 2137 if (BitWidth > EltBitWidth) 2138 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2139 2140 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2141 Depth + 1)) 2142 return true; 2143 2144 // Attempt to avoid multi-use ops if we don't need anything from them. 2145 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2146 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2147 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2148 SDValue NewOp = 2149 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2150 return TLO.CombineTo(Op, NewOp); 2151 } 2152 } 2153 2154 Known = Known2; 2155 if (BitWidth > EltBitWidth) 2156 Known = Known.anyext(BitWidth); 2157 break; 2158 } 2159 case ISD::BITCAST: { 2160 SDValue Src = Op.getOperand(0); 2161 EVT SrcVT = Src.getValueType(); 2162 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2163 2164 // If this is an FP->Int bitcast and if the sign bit is the only 2165 // thing demanded, turn this into a FGETSIGN. 2166 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2167 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2168 SrcVT.isFloatingPoint()) { 2169 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2170 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2171 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2172 SrcVT != MVT::f128) { 2173 // Cannot eliminate/lower SHL for f128 yet. 2174 EVT Ty = OpVTLegal ? VT : MVT::i32; 2175 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2176 // place. We expect the SHL to be eliminated by other optimizations. 2177 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2178 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2179 if (!OpVTLegal && OpVTSizeInBits > 32) 2180 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2181 unsigned ShVal = Op.getValueSizeInBits() - 1; 2182 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2183 return TLO.CombineTo(Op, 2184 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2185 } 2186 } 2187 2188 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2189 // Demand the elt/bit if any of the original elts/bits are demanded. 2190 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2191 unsigned Scale = BitWidth / NumSrcEltBits; 2192 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2193 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2194 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2195 for (unsigned i = 0; i != Scale; ++i) { 2196 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2197 unsigned BitOffset = EltOffset * NumSrcEltBits; 2198 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2199 if (!Sub.isZero()) { 2200 DemandedSrcBits |= Sub; 2201 for (unsigned j = 0; j != NumElts; ++j) 2202 if (DemandedElts[j]) 2203 DemandedSrcElts.setBit((j * Scale) + i); 2204 } 2205 } 2206 2207 APInt KnownSrcUndef, KnownSrcZero; 2208 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2209 KnownSrcZero, TLO, Depth + 1)) 2210 return true; 2211 2212 KnownBits KnownSrcBits; 2213 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2214 KnownSrcBits, TLO, Depth + 1)) 2215 return true; 2216 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2217 // TODO - bigendian once we have test coverage. 2218 unsigned Scale = NumSrcEltBits / BitWidth; 2219 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2220 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2221 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2222 for (unsigned i = 0; i != NumElts; ++i) 2223 if (DemandedElts[i]) { 2224 unsigned Offset = (i % Scale) * BitWidth; 2225 DemandedSrcBits.insertBits(DemandedBits, Offset); 2226 DemandedSrcElts.setBit(i / Scale); 2227 } 2228 2229 if (SrcVT.isVector()) { 2230 APInt KnownSrcUndef, KnownSrcZero; 2231 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2232 KnownSrcZero, TLO, Depth + 1)) 2233 return true; 2234 } 2235 2236 KnownBits KnownSrcBits; 2237 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2238 KnownSrcBits, TLO, Depth + 1)) 2239 return true; 2240 } 2241 2242 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2243 // recursive call where Known may be useful to the caller. 2244 if (Depth > 0) { 2245 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2246 return false; 2247 } 2248 break; 2249 } 2250 case ISD::ADD: 2251 case ISD::MUL: 2252 case ISD::SUB: { 2253 // Add, Sub, and Mul don't demand any bits in positions beyond that 2254 // of the highest bit demanded of them. 2255 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2256 SDNodeFlags Flags = Op.getNode()->getFlags(); 2257 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2258 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2259 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2260 Depth + 1) || 2261 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2262 Depth + 1) || 2263 // See if the operation should be performed at a smaller bit width. 2264 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2265 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2266 // Disable the nsw and nuw flags. We can no longer guarantee that we 2267 // won't wrap after simplification. 2268 Flags.setNoSignedWrap(false); 2269 Flags.setNoUnsignedWrap(false); 2270 SDValue NewOp = 2271 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2272 return TLO.CombineTo(Op, NewOp); 2273 } 2274 return true; 2275 } 2276 2277 // Attempt to avoid multi-use ops if we don't need anything from them. 2278 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2279 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2280 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2281 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2282 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2283 if (DemandedOp0 || DemandedOp1) { 2284 Flags.setNoSignedWrap(false); 2285 Flags.setNoUnsignedWrap(false); 2286 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2287 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2288 SDValue NewOp = 2289 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2290 return TLO.CombineTo(Op, NewOp); 2291 } 2292 } 2293 2294 // If we have a constant operand, we may be able to turn it into -1 if we 2295 // do not demand the high bits. This can make the constant smaller to 2296 // encode, allow more general folding, or match specialized instruction 2297 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2298 // is probably not useful (and could be detrimental). 2299 ConstantSDNode *C = isConstOrConstSplat(Op1); 2300 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2301 if (C && !C->isAllOnes() && !C->isOne() && 2302 (C->getAPIntValue() | HighMask).isAllOnes()) { 2303 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2304 // Disable the nsw and nuw flags. We can no longer guarantee that we 2305 // won't wrap after simplification. 2306 Flags.setNoSignedWrap(false); 2307 Flags.setNoUnsignedWrap(false); 2308 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2309 return TLO.CombineTo(Op, NewOp); 2310 } 2311 2312 LLVM_FALLTHROUGH; 2313 } 2314 default: 2315 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2316 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2317 Known, TLO, Depth)) 2318 return true; 2319 break; 2320 } 2321 2322 // Just use computeKnownBits to compute output bits. 2323 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2324 break; 2325 } 2326 2327 // If we know the value of all of the demanded bits, return this as a 2328 // constant. 2329 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2330 // Avoid folding to a constant if any OpaqueConstant is involved. 2331 const SDNode *N = Op.getNode(); 2332 for (SDNode *Op : 2333 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2334 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2335 if (C->isOpaque()) 2336 return false; 2337 } 2338 if (VT.isInteger()) 2339 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2340 if (VT.isFloatingPoint()) 2341 return TLO.CombineTo( 2342 Op, 2343 TLO.DAG.getConstantFP( 2344 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2345 } 2346 2347 return false; 2348 } 2349 2350 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2351 const APInt &DemandedElts, 2352 APInt &KnownUndef, 2353 APInt &KnownZero, 2354 DAGCombinerInfo &DCI) const { 2355 SelectionDAG &DAG = DCI.DAG; 2356 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2357 !DCI.isBeforeLegalizeOps()); 2358 2359 bool Simplified = 2360 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2361 if (Simplified) { 2362 DCI.AddToWorklist(Op.getNode()); 2363 DCI.CommitTargetLoweringOpt(TLO); 2364 } 2365 2366 return Simplified; 2367 } 2368 2369 /// Given a vector binary operation and known undefined elements for each input 2370 /// operand, compute whether each element of the output is undefined. 2371 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2372 const APInt &UndefOp0, 2373 const APInt &UndefOp1) { 2374 EVT VT = BO.getValueType(); 2375 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2376 "Vector binop only"); 2377 2378 EVT EltVT = VT.getVectorElementType(); 2379 unsigned NumElts = VT.getVectorNumElements(); 2380 assert(UndefOp0.getBitWidth() == NumElts && 2381 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2382 2383 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2384 const APInt &UndefVals) { 2385 if (UndefVals[Index]) 2386 return DAG.getUNDEF(EltVT); 2387 2388 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2389 // Try hard to make sure that the getNode() call is not creating temporary 2390 // nodes. Ignore opaque integers because they do not constant fold. 2391 SDValue Elt = BV->getOperand(Index); 2392 auto *C = dyn_cast<ConstantSDNode>(Elt); 2393 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2394 return Elt; 2395 } 2396 2397 return SDValue(); 2398 }; 2399 2400 APInt KnownUndef = APInt::getZero(NumElts); 2401 for (unsigned i = 0; i != NumElts; ++i) { 2402 // If both inputs for this element are either constant or undef and match 2403 // the element type, compute the constant/undef result for this element of 2404 // the vector. 2405 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2406 // not handle FP constants. The code within getNode() should be refactored 2407 // to avoid the danger of creating a bogus temporary node here. 2408 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2409 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2410 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2411 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2412 KnownUndef.setBit(i); 2413 } 2414 return KnownUndef; 2415 } 2416 2417 bool TargetLowering::SimplifyDemandedVectorElts( 2418 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2419 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2420 bool AssumeSingleUse) const { 2421 EVT VT = Op.getValueType(); 2422 unsigned Opcode = Op.getOpcode(); 2423 APInt DemandedElts = OriginalDemandedElts; 2424 unsigned NumElts = DemandedElts.getBitWidth(); 2425 assert(VT.isVector() && "Expected vector op"); 2426 2427 KnownUndef = KnownZero = APInt::getZero(NumElts); 2428 2429 // TODO: For now we assume we know nothing about scalable vectors. 2430 if (VT.isScalableVector()) 2431 return false; 2432 2433 assert(VT.getVectorNumElements() == NumElts && 2434 "Mask size mismatches value type element count!"); 2435 2436 // Undef operand. 2437 if (Op.isUndef()) { 2438 KnownUndef.setAllBits(); 2439 return false; 2440 } 2441 2442 // If Op has other users, assume that all elements are needed. 2443 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2444 DemandedElts.setAllBits(); 2445 2446 // Not demanding any elements from Op. 2447 if (DemandedElts == 0) { 2448 KnownUndef.setAllBits(); 2449 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2450 } 2451 2452 // Limit search depth. 2453 if (Depth >= SelectionDAG::MaxRecursionDepth) 2454 return false; 2455 2456 SDLoc DL(Op); 2457 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2458 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2459 2460 // Helper for demanding the specified elements and all the bits of both binary 2461 // operands. 2462 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2463 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2464 TLO.DAG, Depth + 1); 2465 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2466 TLO.DAG, Depth + 1); 2467 if (NewOp0 || NewOp1) { 2468 SDValue NewOp = TLO.DAG.getNode( 2469 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2470 return TLO.CombineTo(Op, NewOp); 2471 } 2472 return false; 2473 }; 2474 2475 switch (Opcode) { 2476 case ISD::SCALAR_TO_VECTOR: { 2477 if (!DemandedElts[0]) { 2478 KnownUndef.setAllBits(); 2479 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2480 } 2481 SDValue ScalarSrc = Op.getOperand(0); 2482 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2483 SDValue Src = ScalarSrc.getOperand(0); 2484 SDValue Idx = ScalarSrc.getOperand(1); 2485 EVT SrcVT = Src.getValueType(); 2486 2487 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2488 2489 if (SrcEltCnt.isScalable()) 2490 return false; 2491 2492 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2493 if (isNullConstant(Idx)) { 2494 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2495 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2496 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2497 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2498 TLO, Depth + 1)) 2499 return true; 2500 } 2501 } 2502 KnownUndef.setHighBits(NumElts - 1); 2503 break; 2504 } 2505 case ISD::BITCAST: { 2506 SDValue Src = Op.getOperand(0); 2507 EVT SrcVT = Src.getValueType(); 2508 2509 // We only handle vectors here. 2510 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2511 if (!SrcVT.isVector()) 2512 break; 2513 2514 // Fast handling of 'identity' bitcasts. 2515 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2516 if (NumSrcElts == NumElts) 2517 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2518 KnownZero, TLO, Depth + 1); 2519 2520 APInt SrcDemandedElts, SrcZero, SrcUndef; 2521 2522 // Bitcast from 'large element' src vector to 'small element' vector, we 2523 // must demand a source element if any DemandedElt maps to it. 2524 if ((NumElts % NumSrcElts) == 0) { 2525 unsigned Scale = NumElts / NumSrcElts; 2526 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2527 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2528 TLO, Depth + 1)) 2529 return true; 2530 2531 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2532 // of the large element. 2533 // TODO - bigendian once we have test coverage. 2534 if (IsLE) { 2535 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2536 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2537 for (unsigned i = 0; i != NumElts; ++i) 2538 if (DemandedElts[i]) { 2539 unsigned Ofs = (i % Scale) * EltSizeInBits; 2540 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2541 } 2542 2543 KnownBits Known; 2544 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2545 TLO, Depth + 1)) 2546 return true; 2547 } 2548 2549 // If the src element is zero/undef then all the output elements will be - 2550 // only demanded elements are guaranteed to be correct. 2551 for (unsigned i = 0; i != NumSrcElts; ++i) { 2552 if (SrcDemandedElts[i]) { 2553 if (SrcZero[i]) 2554 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2555 if (SrcUndef[i]) 2556 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2557 } 2558 } 2559 } 2560 2561 // Bitcast from 'small element' src vector to 'large element' vector, we 2562 // demand all smaller source elements covered by the larger demanded element 2563 // of this vector. 2564 if ((NumSrcElts % NumElts) == 0) { 2565 unsigned Scale = NumSrcElts / NumElts; 2566 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2567 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2568 TLO, Depth + 1)) 2569 return true; 2570 2571 // If all the src elements covering an output element are zero/undef, then 2572 // the output element will be as well, assuming it was demanded. 2573 for (unsigned i = 0; i != NumElts; ++i) { 2574 if (DemandedElts[i]) { 2575 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2576 KnownZero.setBit(i); 2577 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2578 KnownUndef.setBit(i); 2579 } 2580 } 2581 } 2582 break; 2583 } 2584 case ISD::BUILD_VECTOR: { 2585 // Check all elements and simplify any unused elements with UNDEF. 2586 if (!DemandedElts.isAllOnes()) { 2587 // Don't simplify BROADCASTS. 2588 if (llvm::any_of(Op->op_values(), 2589 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2590 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2591 bool Updated = false; 2592 for (unsigned i = 0; i != NumElts; ++i) { 2593 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2594 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2595 KnownUndef.setBit(i); 2596 Updated = true; 2597 } 2598 } 2599 if (Updated) 2600 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2601 } 2602 } 2603 for (unsigned i = 0; i != NumElts; ++i) { 2604 SDValue SrcOp = Op.getOperand(i); 2605 if (SrcOp.isUndef()) { 2606 KnownUndef.setBit(i); 2607 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2608 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2609 KnownZero.setBit(i); 2610 } 2611 } 2612 break; 2613 } 2614 case ISD::CONCAT_VECTORS: { 2615 EVT SubVT = Op.getOperand(0).getValueType(); 2616 unsigned NumSubVecs = Op.getNumOperands(); 2617 unsigned NumSubElts = SubVT.getVectorNumElements(); 2618 for (unsigned i = 0; i != NumSubVecs; ++i) { 2619 SDValue SubOp = Op.getOperand(i); 2620 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2621 APInt SubUndef, SubZero; 2622 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2623 Depth + 1)) 2624 return true; 2625 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2626 KnownZero.insertBits(SubZero, i * NumSubElts); 2627 } 2628 break; 2629 } 2630 case ISD::INSERT_SUBVECTOR: { 2631 // Demand any elements from the subvector and the remainder from the src its 2632 // inserted into. 2633 SDValue Src = Op.getOperand(0); 2634 SDValue Sub = Op.getOperand(1); 2635 uint64_t Idx = Op.getConstantOperandVal(2); 2636 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2637 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2638 APInt DemandedSrcElts = DemandedElts; 2639 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2640 2641 APInt SubUndef, SubZero; 2642 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2643 Depth + 1)) 2644 return true; 2645 2646 // If none of the src operand elements are demanded, replace it with undef. 2647 if (!DemandedSrcElts && !Src.isUndef()) 2648 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2649 TLO.DAG.getUNDEF(VT), Sub, 2650 Op.getOperand(2))); 2651 2652 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2653 TLO, Depth + 1)) 2654 return true; 2655 KnownUndef.insertBits(SubUndef, Idx); 2656 KnownZero.insertBits(SubZero, Idx); 2657 2658 // Attempt to avoid multi-use ops if we don't need anything from them. 2659 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2660 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2661 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2662 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2663 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2664 if (NewSrc || NewSub) { 2665 NewSrc = NewSrc ? NewSrc : Src; 2666 NewSub = NewSub ? NewSub : Sub; 2667 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2668 NewSub, Op.getOperand(2)); 2669 return TLO.CombineTo(Op, NewOp); 2670 } 2671 } 2672 break; 2673 } 2674 case ISD::EXTRACT_SUBVECTOR: { 2675 // Offset the demanded elts by the subvector index. 2676 SDValue Src = Op.getOperand(0); 2677 if (Src.getValueType().isScalableVector()) 2678 break; 2679 uint64_t Idx = Op.getConstantOperandVal(1); 2680 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2681 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2682 2683 APInt SrcUndef, SrcZero; 2684 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2685 Depth + 1)) 2686 return true; 2687 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2688 KnownZero = SrcZero.extractBits(NumElts, Idx); 2689 2690 // Attempt to avoid multi-use ops if we don't need anything from them. 2691 if (!DemandedElts.isAllOnes()) { 2692 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2693 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2694 if (NewSrc) { 2695 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2696 Op.getOperand(1)); 2697 return TLO.CombineTo(Op, NewOp); 2698 } 2699 } 2700 break; 2701 } 2702 case ISD::INSERT_VECTOR_ELT: { 2703 SDValue Vec = Op.getOperand(0); 2704 SDValue Scl = Op.getOperand(1); 2705 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2706 2707 // For a legal, constant insertion index, if we don't need this insertion 2708 // then strip it, else remove it from the demanded elts. 2709 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2710 unsigned Idx = CIdx->getZExtValue(); 2711 if (!DemandedElts[Idx]) 2712 return TLO.CombineTo(Op, Vec); 2713 2714 APInt DemandedVecElts(DemandedElts); 2715 DemandedVecElts.clearBit(Idx); 2716 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2717 KnownZero, TLO, Depth + 1)) 2718 return true; 2719 2720 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2721 2722 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2723 break; 2724 } 2725 2726 APInt VecUndef, VecZero; 2727 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2728 Depth + 1)) 2729 return true; 2730 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2731 break; 2732 } 2733 case ISD::VSELECT: { 2734 // Try to transform the select condition based on the current demanded 2735 // elements. 2736 // TODO: If a condition element is undef, we can choose from one arm of the 2737 // select (and if one arm is undef, then we can propagate that to the 2738 // result). 2739 // TODO - add support for constant vselect masks (see IR version of this). 2740 APInt UnusedUndef, UnusedZero; 2741 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2742 UnusedZero, TLO, Depth + 1)) 2743 return true; 2744 2745 // See if we can simplify either vselect operand. 2746 APInt DemandedLHS(DemandedElts); 2747 APInt DemandedRHS(DemandedElts); 2748 APInt UndefLHS, ZeroLHS; 2749 APInt UndefRHS, ZeroRHS; 2750 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2751 ZeroLHS, TLO, Depth + 1)) 2752 return true; 2753 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2754 ZeroRHS, TLO, Depth + 1)) 2755 return true; 2756 2757 KnownUndef = UndefLHS & UndefRHS; 2758 KnownZero = ZeroLHS & ZeroRHS; 2759 break; 2760 } 2761 case ISD::VECTOR_SHUFFLE: { 2762 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2763 2764 // Collect demanded elements from shuffle operands.. 2765 APInt DemandedLHS(NumElts, 0); 2766 APInt DemandedRHS(NumElts, 0); 2767 for (unsigned i = 0; i != NumElts; ++i) { 2768 int M = ShuffleMask[i]; 2769 if (M < 0 || !DemandedElts[i]) 2770 continue; 2771 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2772 if (M < (int)NumElts) 2773 DemandedLHS.setBit(M); 2774 else 2775 DemandedRHS.setBit(M - NumElts); 2776 } 2777 2778 // See if we can simplify either shuffle operand. 2779 APInt UndefLHS, ZeroLHS; 2780 APInt UndefRHS, ZeroRHS; 2781 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2782 ZeroLHS, TLO, Depth + 1)) 2783 return true; 2784 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2785 ZeroRHS, TLO, Depth + 1)) 2786 return true; 2787 2788 // Simplify mask using undef elements from LHS/RHS. 2789 bool Updated = false; 2790 bool IdentityLHS = true, IdentityRHS = true; 2791 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2792 for (unsigned i = 0; i != NumElts; ++i) { 2793 int &M = NewMask[i]; 2794 if (M < 0) 2795 continue; 2796 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2797 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2798 Updated = true; 2799 M = -1; 2800 } 2801 IdentityLHS &= (M < 0) || (M == (int)i); 2802 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2803 } 2804 2805 // Update legal shuffle masks based on demanded elements if it won't reduce 2806 // to Identity which can cause premature removal of the shuffle mask. 2807 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2808 SDValue LegalShuffle = 2809 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2810 NewMask, TLO.DAG); 2811 if (LegalShuffle) 2812 return TLO.CombineTo(Op, LegalShuffle); 2813 } 2814 2815 // Propagate undef/zero elements from LHS/RHS. 2816 for (unsigned i = 0; i != NumElts; ++i) { 2817 int M = ShuffleMask[i]; 2818 if (M < 0) { 2819 KnownUndef.setBit(i); 2820 } else if (M < (int)NumElts) { 2821 if (UndefLHS[M]) 2822 KnownUndef.setBit(i); 2823 if (ZeroLHS[M]) 2824 KnownZero.setBit(i); 2825 } else { 2826 if (UndefRHS[M - NumElts]) 2827 KnownUndef.setBit(i); 2828 if (ZeroRHS[M - NumElts]) 2829 KnownZero.setBit(i); 2830 } 2831 } 2832 break; 2833 } 2834 case ISD::ANY_EXTEND_VECTOR_INREG: 2835 case ISD::SIGN_EXTEND_VECTOR_INREG: 2836 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2837 APInt SrcUndef, SrcZero; 2838 SDValue Src = Op.getOperand(0); 2839 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2840 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2841 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2842 Depth + 1)) 2843 return true; 2844 KnownZero = SrcZero.zextOrTrunc(NumElts); 2845 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2846 2847 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2848 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2849 DemandedSrcElts == 1) { 2850 // aext - if we just need the bottom element then we can bitcast. 2851 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2852 } 2853 2854 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2855 // zext(undef) upper bits are guaranteed to be zero. 2856 if (DemandedElts.isSubsetOf(KnownUndef)) 2857 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2858 KnownUndef.clearAllBits(); 2859 2860 // zext - if we just need the bottom element then we can mask: 2861 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2862 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 2863 Op->isOnlyUserOf(Src.getNode()) && 2864 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2865 SDLoc DL(Op); 2866 EVT SrcVT = Src.getValueType(); 2867 EVT SrcSVT = SrcVT.getScalarType(); 2868 SmallVector<SDValue> MaskElts; 2869 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2870 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2871 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2872 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2873 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2874 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2875 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2876 } 2877 } 2878 } 2879 break; 2880 } 2881 2882 // TODO: There are more binop opcodes that could be handled here - MIN, 2883 // MAX, saturated math, etc. 2884 case ISD::ADD: { 2885 SDValue Op0 = Op.getOperand(0); 2886 SDValue Op1 = Op.getOperand(1); 2887 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 2888 APInt UndefLHS, ZeroLHS; 2889 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2890 Depth + 1, /*AssumeSingleUse*/ true)) 2891 return true; 2892 } 2893 LLVM_FALLTHROUGH; 2894 } 2895 case ISD::OR: 2896 case ISD::XOR: 2897 case ISD::SUB: 2898 case ISD::FADD: 2899 case ISD::FSUB: 2900 case ISD::FMUL: 2901 case ISD::FDIV: 2902 case ISD::FREM: { 2903 SDValue Op0 = Op.getOperand(0); 2904 SDValue Op1 = Op.getOperand(1); 2905 2906 APInt UndefRHS, ZeroRHS; 2907 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2908 Depth + 1)) 2909 return true; 2910 APInt UndefLHS, ZeroLHS; 2911 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2912 Depth + 1)) 2913 return true; 2914 2915 KnownZero = ZeroLHS & ZeroRHS; 2916 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2917 2918 // Attempt to avoid multi-use ops if we don't need anything from them. 2919 // TODO - use KnownUndef to relax the demandedelts? 2920 if (!DemandedElts.isAllOnes()) 2921 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2922 return true; 2923 break; 2924 } 2925 case ISD::SHL: 2926 case ISD::SRL: 2927 case ISD::SRA: 2928 case ISD::ROTL: 2929 case ISD::ROTR: { 2930 SDValue Op0 = Op.getOperand(0); 2931 SDValue Op1 = Op.getOperand(1); 2932 2933 APInt UndefRHS, ZeroRHS; 2934 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2935 Depth + 1)) 2936 return true; 2937 APInt UndefLHS, ZeroLHS; 2938 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2939 Depth + 1)) 2940 return true; 2941 2942 KnownZero = ZeroLHS; 2943 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2944 2945 // Attempt to avoid multi-use ops if we don't need anything from them. 2946 // TODO - use KnownUndef to relax the demandedelts? 2947 if (!DemandedElts.isAllOnes()) 2948 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2949 return true; 2950 break; 2951 } 2952 case ISD::MUL: 2953 case ISD::AND: { 2954 SDValue Op0 = Op.getOperand(0); 2955 SDValue Op1 = Op.getOperand(1); 2956 2957 APInt SrcUndef, SrcZero; 2958 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2959 Depth + 1)) 2960 return true; 2961 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2962 TLO, Depth + 1)) 2963 return true; 2964 2965 // If either side has a zero element, then the result element is zero, even 2966 // if the other is an UNDEF. 2967 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2968 // and then handle 'and' nodes with the rest of the binop opcodes. 2969 KnownZero |= SrcZero; 2970 KnownUndef &= SrcUndef; 2971 KnownUndef &= ~KnownZero; 2972 2973 // Attempt to avoid multi-use ops if we don't need anything from them. 2974 // TODO - use KnownUndef to relax the demandedelts? 2975 if (!DemandedElts.isAllOnes()) 2976 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2977 return true; 2978 break; 2979 } 2980 case ISD::TRUNCATE: 2981 case ISD::SIGN_EXTEND: 2982 case ISD::ZERO_EXTEND: 2983 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2984 KnownZero, TLO, Depth + 1)) 2985 return true; 2986 2987 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2988 // zext(undef) upper bits are guaranteed to be zero. 2989 if (DemandedElts.isSubsetOf(KnownUndef)) 2990 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2991 KnownUndef.clearAllBits(); 2992 } 2993 break; 2994 default: { 2995 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2996 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2997 KnownZero, TLO, Depth)) 2998 return true; 2999 } else { 3000 KnownBits Known; 3001 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3002 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3003 TLO, Depth, AssumeSingleUse)) 3004 return true; 3005 } 3006 break; 3007 } 3008 } 3009 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3010 3011 // Constant fold all undef cases. 3012 // TODO: Handle zero cases as well. 3013 if (DemandedElts.isSubsetOf(KnownUndef)) 3014 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3015 3016 return false; 3017 } 3018 3019 /// Determine which of the bits specified in Mask are known to be either zero or 3020 /// one and return them in the Known. 3021 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3022 KnownBits &Known, 3023 const APInt &DemandedElts, 3024 const SelectionDAG &DAG, 3025 unsigned Depth) const { 3026 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3027 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3028 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3029 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3030 "Should use MaskedValueIsZero if you don't know whether Op" 3031 " is a target node!"); 3032 Known.resetAll(); 3033 } 3034 3035 void TargetLowering::computeKnownBitsForTargetInstr( 3036 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3037 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3038 unsigned Depth) const { 3039 Known.resetAll(); 3040 } 3041 3042 void TargetLowering::computeKnownBitsForFrameIndex( 3043 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3044 // The low bits are known zero if the pointer is aligned. 3045 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3046 } 3047 3048 Align TargetLowering::computeKnownAlignForTargetInstr( 3049 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3050 unsigned Depth) const { 3051 return Align(1); 3052 } 3053 3054 /// This method can be implemented by targets that want to expose additional 3055 /// information about sign bits to the DAG Combiner. 3056 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3057 const APInt &, 3058 const SelectionDAG &, 3059 unsigned Depth) const { 3060 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3061 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3062 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3063 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3064 "Should use ComputeNumSignBits if you don't know whether Op" 3065 " is a target node!"); 3066 return 1; 3067 } 3068 3069 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3070 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3071 const MachineRegisterInfo &MRI, unsigned Depth) const { 3072 return 1; 3073 } 3074 3075 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3076 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3077 TargetLoweringOpt &TLO, unsigned Depth) const { 3078 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3079 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3080 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3081 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3082 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3083 " is a target node!"); 3084 return false; 3085 } 3086 3087 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3088 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3089 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3090 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3091 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3092 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3093 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3094 "Should use SimplifyDemandedBits if you don't know whether Op" 3095 " is a target node!"); 3096 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3097 return false; 3098 } 3099 3100 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3101 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3102 SelectionDAG &DAG, unsigned Depth) const { 3103 assert( 3104 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3105 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3106 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3107 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3108 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3109 " is a target node!"); 3110 return SDValue(); 3111 } 3112 3113 SDValue 3114 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3115 SDValue N1, MutableArrayRef<int> Mask, 3116 SelectionDAG &DAG) const { 3117 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3118 if (!LegalMask) { 3119 std::swap(N0, N1); 3120 ShuffleVectorSDNode::commuteMask(Mask); 3121 LegalMask = isShuffleMaskLegal(Mask, VT); 3122 } 3123 3124 if (!LegalMask) 3125 return SDValue(); 3126 3127 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3128 } 3129 3130 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3131 return nullptr; 3132 } 3133 3134 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3135 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3136 bool PoisonOnly, unsigned Depth) const { 3137 assert( 3138 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3139 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3140 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3141 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3142 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3143 " is a target node!"); 3144 return false; 3145 } 3146 3147 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3148 const SelectionDAG &DAG, 3149 bool SNaN, 3150 unsigned Depth) const { 3151 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3152 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3153 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3154 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3155 "Should use isKnownNeverNaN if you don't know whether Op" 3156 " is a target node!"); 3157 return false; 3158 } 3159 3160 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3161 const APInt &DemandedElts, 3162 APInt &UndefElts, 3163 unsigned Depth) const { 3164 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3165 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3166 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3167 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3168 "Should use isSplatValue if you don't know whether Op" 3169 " is a target node!"); 3170 return false; 3171 } 3172 3173 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3174 // work with truncating build vectors and vectors with elements of less than 3175 // 8 bits. 3176 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3177 if (!N) 3178 return false; 3179 3180 APInt CVal; 3181 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3182 CVal = CN->getAPIntValue(); 3183 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3184 auto *CN = BV->getConstantSplatNode(); 3185 if (!CN) 3186 return false; 3187 3188 // If this is a truncating build vector, truncate the splat value. 3189 // Otherwise, we may fail to match the expected values below. 3190 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3191 CVal = CN->getAPIntValue(); 3192 if (BVEltWidth < CVal.getBitWidth()) 3193 CVal = CVal.trunc(BVEltWidth); 3194 } else { 3195 return false; 3196 } 3197 3198 switch (getBooleanContents(N->getValueType(0))) { 3199 case UndefinedBooleanContent: 3200 return CVal[0]; 3201 case ZeroOrOneBooleanContent: 3202 return CVal.isOne(); 3203 case ZeroOrNegativeOneBooleanContent: 3204 return CVal.isAllOnes(); 3205 } 3206 3207 llvm_unreachable("Invalid boolean contents"); 3208 } 3209 3210 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3211 if (!N) 3212 return false; 3213 3214 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3215 if (!CN) { 3216 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3217 if (!BV) 3218 return false; 3219 3220 // Only interested in constant splats, we don't care about undef 3221 // elements in identifying boolean constants and getConstantSplatNode 3222 // returns NULL if all ops are undef; 3223 CN = BV->getConstantSplatNode(); 3224 if (!CN) 3225 return false; 3226 } 3227 3228 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3229 return !CN->getAPIntValue()[0]; 3230 3231 return CN->isZero(); 3232 } 3233 3234 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3235 bool SExt) const { 3236 if (VT == MVT::i1) 3237 return N->isOne(); 3238 3239 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3240 switch (Cnt) { 3241 case TargetLowering::ZeroOrOneBooleanContent: 3242 // An extended value of 1 is always true, unless its original type is i1, 3243 // in which case it will be sign extended to -1. 3244 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3245 case TargetLowering::UndefinedBooleanContent: 3246 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3247 return N->isAllOnes() && SExt; 3248 } 3249 llvm_unreachable("Unexpected enumeration."); 3250 } 3251 3252 /// This helper function of SimplifySetCC tries to optimize the comparison when 3253 /// either operand of the SetCC node is a bitwise-and instruction. 3254 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3255 ISD::CondCode Cond, const SDLoc &DL, 3256 DAGCombinerInfo &DCI) const { 3257 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3258 std::swap(N0, N1); 3259 3260 SelectionDAG &DAG = DCI.DAG; 3261 EVT OpVT = N0.getValueType(); 3262 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3263 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3264 return SDValue(); 3265 3266 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3267 // iff everything but LSB is known zero: 3268 if (Cond == ISD::SETNE && isNullConstant(N1) && 3269 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3270 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3271 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3272 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3273 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3274 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3275 } 3276 3277 // Match these patterns in any of their permutations: 3278 // (X & Y) == Y 3279 // (X & Y) != Y 3280 SDValue X, Y; 3281 if (N0.getOperand(0) == N1) { 3282 X = N0.getOperand(1); 3283 Y = N0.getOperand(0); 3284 } else if (N0.getOperand(1) == N1) { 3285 X = N0.getOperand(0); 3286 Y = N0.getOperand(1); 3287 } else { 3288 return SDValue(); 3289 } 3290 3291 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3292 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3293 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3294 // Note that where Y is variable and is known to have at most one bit set 3295 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3296 // equivalent when Y == 0. 3297 assert(OpVT.isInteger()); 3298 Cond = ISD::getSetCCInverse(Cond, OpVT); 3299 if (DCI.isBeforeLegalizeOps() || 3300 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3301 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3302 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3303 // If the target supports an 'and-not' or 'and-complement' logic operation, 3304 // try to use that to make a comparison operation more efficient. 3305 // But don't do this transform if the mask is a single bit because there are 3306 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3307 // 'rlwinm' on PPC). 3308 3309 // Bail out if the compare operand that we want to turn into a zero is 3310 // already a zero (otherwise, infinite loop). 3311 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3312 if (YConst && YConst->isZero()) 3313 return SDValue(); 3314 3315 // Transform this into: ~X & Y == 0. 3316 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3317 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3318 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3319 } 3320 3321 return SDValue(); 3322 } 3323 3324 /// There are multiple IR patterns that could be checking whether certain 3325 /// truncation of a signed number would be lossy or not. The pattern which is 3326 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3327 /// We are looking for the following pattern: (KeptBits is a constant) 3328 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3329 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3330 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3331 /// We will unfold it into the natural trunc+sext pattern: 3332 /// ((%x << C) a>> C) dstcond %x 3333 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3334 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3335 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3336 const SDLoc &DL) const { 3337 // We must be comparing with a constant. 3338 ConstantSDNode *C1; 3339 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3340 return SDValue(); 3341 3342 // N0 should be: add %x, (1 << (KeptBits-1)) 3343 if (N0->getOpcode() != ISD::ADD) 3344 return SDValue(); 3345 3346 // And we must be 'add'ing a constant. 3347 ConstantSDNode *C01; 3348 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3349 return SDValue(); 3350 3351 SDValue X = N0->getOperand(0); 3352 EVT XVT = X.getValueType(); 3353 3354 // Validate constants ... 3355 3356 APInt I1 = C1->getAPIntValue(); 3357 3358 ISD::CondCode NewCond; 3359 if (Cond == ISD::CondCode::SETULT) { 3360 NewCond = ISD::CondCode::SETEQ; 3361 } else if (Cond == ISD::CondCode::SETULE) { 3362 NewCond = ISD::CondCode::SETEQ; 3363 // But need to 'canonicalize' the constant. 3364 I1 += 1; 3365 } else if (Cond == ISD::CondCode::SETUGT) { 3366 NewCond = ISD::CondCode::SETNE; 3367 // But need to 'canonicalize' the constant. 3368 I1 += 1; 3369 } else if (Cond == ISD::CondCode::SETUGE) { 3370 NewCond = ISD::CondCode::SETNE; 3371 } else 3372 return SDValue(); 3373 3374 APInt I01 = C01->getAPIntValue(); 3375 3376 auto checkConstants = [&I1, &I01]() -> bool { 3377 // Both of them must be power-of-two, and the constant from setcc is bigger. 3378 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3379 }; 3380 3381 if (checkConstants()) { 3382 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3383 } else { 3384 // What if we invert constants? (and the target predicate) 3385 I1.negate(); 3386 I01.negate(); 3387 assert(XVT.isInteger()); 3388 NewCond = getSetCCInverse(NewCond, XVT); 3389 if (!checkConstants()) 3390 return SDValue(); 3391 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3392 } 3393 3394 // They are power-of-two, so which bit is set? 3395 const unsigned KeptBits = I1.logBase2(); 3396 const unsigned KeptBitsMinusOne = I01.logBase2(); 3397 3398 // Magic! 3399 if (KeptBits != (KeptBitsMinusOne + 1)) 3400 return SDValue(); 3401 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3402 3403 // We don't want to do this in every single case. 3404 SelectionDAG &DAG = DCI.DAG; 3405 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3406 XVT, KeptBits)) 3407 return SDValue(); 3408 3409 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3410 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3411 3412 // Unfold into: ((%x << C) a>> C) cond %x 3413 // Where 'cond' will be either 'eq' or 'ne'. 3414 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3415 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3416 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3417 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3418 3419 return T2; 3420 } 3421 3422 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3423 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3424 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3425 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3426 assert(isConstOrConstSplat(N1C) && 3427 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3428 "Should be a comparison with 0."); 3429 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3430 "Valid only for [in]equality comparisons."); 3431 3432 unsigned NewShiftOpcode; 3433 SDValue X, C, Y; 3434 3435 SelectionDAG &DAG = DCI.DAG; 3436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3437 3438 // Look for '(C l>>/<< Y)'. 3439 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3440 // The shift should be one-use. 3441 if (!V.hasOneUse()) 3442 return false; 3443 unsigned OldShiftOpcode = V.getOpcode(); 3444 switch (OldShiftOpcode) { 3445 case ISD::SHL: 3446 NewShiftOpcode = ISD::SRL; 3447 break; 3448 case ISD::SRL: 3449 NewShiftOpcode = ISD::SHL; 3450 break; 3451 default: 3452 return false; // must be a logical shift. 3453 } 3454 // We should be shifting a constant. 3455 // FIXME: best to use isConstantOrConstantVector(). 3456 C = V.getOperand(0); 3457 ConstantSDNode *CC = 3458 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3459 if (!CC) 3460 return false; 3461 Y = V.getOperand(1); 3462 3463 ConstantSDNode *XC = 3464 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3465 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3466 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3467 }; 3468 3469 // LHS of comparison should be an one-use 'and'. 3470 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3471 return SDValue(); 3472 3473 X = N0.getOperand(0); 3474 SDValue Mask = N0.getOperand(1); 3475 3476 // 'and' is commutative! 3477 if (!Match(Mask)) { 3478 std::swap(X, Mask); 3479 if (!Match(Mask)) 3480 return SDValue(); 3481 } 3482 3483 EVT VT = X.getValueType(); 3484 3485 // Produce: 3486 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3487 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3488 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3489 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3490 return T2; 3491 } 3492 3493 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3494 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3495 /// handle the commuted versions of these patterns. 3496 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3497 ISD::CondCode Cond, const SDLoc &DL, 3498 DAGCombinerInfo &DCI) const { 3499 unsigned BOpcode = N0.getOpcode(); 3500 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3501 "Unexpected binop"); 3502 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3503 3504 // (X + Y) == X --> Y == 0 3505 // (X - Y) == X --> Y == 0 3506 // (X ^ Y) == X --> Y == 0 3507 SelectionDAG &DAG = DCI.DAG; 3508 EVT OpVT = N0.getValueType(); 3509 SDValue X = N0.getOperand(0); 3510 SDValue Y = N0.getOperand(1); 3511 if (X == N1) 3512 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3513 3514 if (Y != N1) 3515 return SDValue(); 3516 3517 // (X + Y) == Y --> X == 0 3518 // (X ^ Y) == Y --> X == 0 3519 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3520 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3521 3522 // The shift would not be valid if the operands are boolean (i1). 3523 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3524 return SDValue(); 3525 3526 // (X - Y) == Y --> X == Y << 1 3527 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3528 !DCI.isBeforeLegalize()); 3529 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3530 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3531 if (!DCI.isCalledByLegalizer()) 3532 DCI.AddToWorklist(YShl1.getNode()); 3533 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3534 } 3535 3536 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3537 SDValue N0, const APInt &C1, 3538 ISD::CondCode Cond, const SDLoc &dl, 3539 SelectionDAG &DAG) { 3540 // Look through truncs that don't change the value of a ctpop. 3541 // FIXME: Add vector support? Need to be careful with setcc result type below. 3542 SDValue CTPOP = N0; 3543 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3544 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3545 CTPOP = N0.getOperand(0); 3546 3547 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3548 return SDValue(); 3549 3550 EVT CTVT = CTPOP.getValueType(); 3551 SDValue CTOp = CTPOP.getOperand(0); 3552 3553 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3554 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3555 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3556 return SDValue(); 3557 3558 // (ctpop x) u< 2 -> (x & x-1) == 0 3559 // (ctpop x) u> 1 -> (x & x-1) != 0 3560 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3561 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3562 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3563 return SDValue(); 3564 if (C1 == 0 && (Cond == ISD::SETULT)) 3565 return SDValue(); // This is handled elsewhere. 3566 3567 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3568 3569 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3570 SDValue Result = CTOp; 3571 for (unsigned i = 0; i < Passes; i++) { 3572 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3573 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3574 } 3575 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3576 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3577 } 3578 3579 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3580 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3581 // For scalars, keep CTPOP if it is legal or custom. 3582 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3583 return SDValue(); 3584 // This is based on X86's custom lowering for CTPOP which produces more 3585 // instructions than the expansion here. 3586 3587 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3588 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3589 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3590 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3591 assert(CTVT.isInteger()); 3592 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3593 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3594 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3595 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3596 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3597 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3598 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3599 } 3600 3601 return SDValue(); 3602 } 3603 3604 /// Try to simplify a setcc built with the specified operands and cc. If it is 3605 /// unable to simplify it, return a null SDValue. 3606 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3607 ISD::CondCode Cond, bool foldBooleans, 3608 DAGCombinerInfo &DCI, 3609 const SDLoc &dl) const { 3610 SelectionDAG &DAG = DCI.DAG; 3611 const DataLayout &Layout = DAG.getDataLayout(); 3612 EVT OpVT = N0.getValueType(); 3613 3614 // Constant fold or commute setcc. 3615 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3616 return Fold; 3617 3618 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3619 // TODO: Handle non-splat vector constants. All undef causes trouble. 3620 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3621 // infinite loop here when we encounter one. 3622 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3623 if (isConstOrConstSplat(N0) && 3624 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3625 (DCI.isBeforeLegalizeOps() || 3626 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3627 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3628 3629 // If we have a subtract with the same 2 non-constant operands as this setcc 3630 // -- but in reverse order -- then try to commute the operands of this setcc 3631 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3632 // instruction on some targets. 3633 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3634 (DCI.isBeforeLegalizeOps() || 3635 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3636 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3637 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3638 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3639 3640 if (auto *N1C = isConstOrConstSplat(N1)) { 3641 const APInt &C1 = N1C->getAPIntValue(); 3642 3643 // Optimize some CTPOP cases. 3644 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3645 return V; 3646 3647 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3648 // equality comparison, then we're just comparing whether X itself is 3649 // zero. 3650 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3651 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3652 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3653 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3654 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3655 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3656 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3657 // (srl (ctlz x), 5) == 0 -> X != 0 3658 // (srl (ctlz x), 5) != 1 -> X != 0 3659 Cond = ISD::SETNE; 3660 } else { 3661 // (srl (ctlz x), 5) != 0 -> X == 0 3662 // (srl (ctlz x), 5) == 1 -> X == 0 3663 Cond = ISD::SETEQ; 3664 } 3665 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3666 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3667 Cond); 3668 } 3669 } 3670 } 3671 } 3672 3673 // FIXME: Support vectors. 3674 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3675 const APInt &C1 = N1C->getAPIntValue(); 3676 3677 // (zext x) == C --> x == (trunc C) 3678 // (sext x) == C --> x == (trunc C) 3679 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3680 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3681 unsigned MinBits = N0.getValueSizeInBits(); 3682 SDValue PreExt; 3683 bool Signed = false; 3684 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3685 // ZExt 3686 MinBits = N0->getOperand(0).getValueSizeInBits(); 3687 PreExt = N0->getOperand(0); 3688 } else if (N0->getOpcode() == ISD::AND) { 3689 // DAGCombine turns costly ZExts into ANDs 3690 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3691 if ((C->getAPIntValue()+1).isPowerOf2()) { 3692 MinBits = C->getAPIntValue().countTrailingOnes(); 3693 PreExt = N0->getOperand(0); 3694 } 3695 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3696 // SExt 3697 MinBits = N0->getOperand(0).getValueSizeInBits(); 3698 PreExt = N0->getOperand(0); 3699 Signed = true; 3700 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3701 // ZEXTLOAD / SEXTLOAD 3702 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3703 MinBits = LN0->getMemoryVT().getSizeInBits(); 3704 PreExt = N0; 3705 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3706 Signed = true; 3707 MinBits = LN0->getMemoryVT().getSizeInBits(); 3708 PreExt = N0; 3709 } 3710 } 3711 3712 // Figure out how many bits we need to preserve this constant. 3713 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3714 3715 // Make sure we're not losing bits from the constant. 3716 if (MinBits > 0 && 3717 MinBits < C1.getBitWidth() && 3718 MinBits >= ReqdBits) { 3719 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3720 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3721 // Will get folded away. 3722 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3723 if (MinBits == 1 && C1 == 1) 3724 // Invert the condition. 3725 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3726 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3727 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3728 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3729 } 3730 3731 // If truncating the setcc operands is not desirable, we can still 3732 // simplify the expression in some cases: 3733 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3734 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3735 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3736 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3737 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3738 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3739 SDValue TopSetCC = N0->getOperand(0); 3740 unsigned N0Opc = N0->getOpcode(); 3741 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3742 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3743 TopSetCC.getOpcode() == ISD::SETCC && 3744 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3745 (isConstFalseVal(N1C) || 3746 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3747 3748 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3749 (!N1C->isZero() && Cond == ISD::SETNE); 3750 3751 if (!Inverse) 3752 return TopSetCC; 3753 3754 ISD::CondCode InvCond = ISD::getSetCCInverse( 3755 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3756 TopSetCC.getOperand(0).getValueType()); 3757 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3758 TopSetCC.getOperand(1), 3759 InvCond); 3760 } 3761 } 3762 } 3763 3764 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3765 // equality or unsigned, and all 1 bits of the const are in the same 3766 // partial word, see if we can shorten the load. 3767 if (DCI.isBeforeLegalize() && 3768 !ISD::isSignedIntSetCC(Cond) && 3769 N0.getOpcode() == ISD::AND && C1 == 0 && 3770 N0.getNode()->hasOneUse() && 3771 isa<LoadSDNode>(N0.getOperand(0)) && 3772 N0.getOperand(0).getNode()->hasOneUse() && 3773 isa<ConstantSDNode>(N0.getOperand(1))) { 3774 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3775 APInt bestMask; 3776 unsigned bestWidth = 0, bestOffset = 0; 3777 if (Lod->isSimple() && Lod->isUnindexed()) { 3778 unsigned origWidth = N0.getValueSizeInBits(); 3779 unsigned maskWidth = origWidth; 3780 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3781 // 8 bits, but have to be careful... 3782 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3783 origWidth = Lod->getMemoryVT().getSizeInBits(); 3784 const APInt &Mask = N0.getConstantOperandAPInt(1); 3785 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3786 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3787 for (unsigned offset=0; offset<origWidth/width; offset++) { 3788 if (Mask.isSubsetOf(newMask)) { 3789 if (Layout.isLittleEndian()) 3790 bestOffset = (uint64_t)offset * (width/8); 3791 else 3792 bestOffset = (origWidth/width - offset - 1) * (width/8); 3793 bestMask = Mask.lshr(offset * (width/8) * 8); 3794 bestWidth = width; 3795 break; 3796 } 3797 newMask <<= width; 3798 } 3799 } 3800 } 3801 if (bestWidth) { 3802 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3803 if (newVT.isRound() && 3804 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3805 SDValue Ptr = Lod->getBasePtr(); 3806 if (bestOffset != 0) 3807 Ptr = 3808 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3809 SDValue NewLoad = 3810 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3811 Lod->getPointerInfo().getWithOffset(bestOffset), 3812 Lod->getOriginalAlign()); 3813 return DAG.getSetCC(dl, VT, 3814 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3815 DAG.getConstant(bestMask.trunc(bestWidth), 3816 dl, newVT)), 3817 DAG.getConstant(0LL, dl, newVT), Cond); 3818 } 3819 } 3820 } 3821 3822 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3823 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3824 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3825 3826 // If the comparison constant has bits in the upper part, the 3827 // zero-extended value could never match. 3828 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3829 C1.getBitWidth() - InSize))) { 3830 switch (Cond) { 3831 case ISD::SETUGT: 3832 case ISD::SETUGE: 3833 case ISD::SETEQ: 3834 return DAG.getConstant(0, dl, VT); 3835 case ISD::SETULT: 3836 case ISD::SETULE: 3837 case ISD::SETNE: 3838 return DAG.getConstant(1, dl, VT); 3839 case ISD::SETGT: 3840 case ISD::SETGE: 3841 // True if the sign bit of C1 is set. 3842 return DAG.getConstant(C1.isNegative(), dl, VT); 3843 case ISD::SETLT: 3844 case ISD::SETLE: 3845 // True if the sign bit of C1 isn't set. 3846 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3847 default: 3848 break; 3849 } 3850 } 3851 3852 // Otherwise, we can perform the comparison with the low bits. 3853 switch (Cond) { 3854 case ISD::SETEQ: 3855 case ISD::SETNE: 3856 case ISD::SETUGT: 3857 case ISD::SETUGE: 3858 case ISD::SETULT: 3859 case ISD::SETULE: { 3860 EVT newVT = N0.getOperand(0).getValueType(); 3861 if (DCI.isBeforeLegalizeOps() || 3862 (isOperationLegal(ISD::SETCC, newVT) && 3863 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3864 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3865 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3866 3867 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3868 NewConst, Cond); 3869 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3870 } 3871 break; 3872 } 3873 default: 3874 break; // todo, be more careful with signed comparisons 3875 } 3876 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3877 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3878 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3879 OpVT)) { 3880 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3881 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3882 EVT ExtDstTy = N0.getValueType(); 3883 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3884 3885 // If the constant doesn't fit into the number of bits for the source of 3886 // the sign extension, it is impossible for both sides to be equal. 3887 if (C1.getMinSignedBits() > ExtSrcTyBits) 3888 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3889 3890 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3891 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3892 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3893 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3894 DAG.getConstant(Imm, dl, ExtDstTy)); 3895 if (!DCI.isCalledByLegalizer()) 3896 DCI.AddToWorklist(ZextOp.getNode()); 3897 // Otherwise, make this a use of a zext. 3898 return DAG.getSetCC(dl, VT, ZextOp, 3899 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3900 } else if ((N1C->isZero() || N1C->isOne()) && 3901 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3902 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3903 if (N0.getOpcode() == ISD::SETCC && 3904 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3905 (N0.getValueType() == MVT::i1 || 3906 getBooleanContents(N0.getOperand(0).getValueType()) == 3907 ZeroOrOneBooleanContent)) { 3908 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3909 if (TrueWhenTrue) 3910 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3911 // Invert the condition. 3912 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3913 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3914 if (DCI.isBeforeLegalizeOps() || 3915 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3916 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3917 } 3918 3919 if ((N0.getOpcode() == ISD::XOR || 3920 (N0.getOpcode() == ISD::AND && 3921 N0.getOperand(0).getOpcode() == ISD::XOR && 3922 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3923 isOneConstant(N0.getOperand(1))) { 3924 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3925 // can only do this if the top bits are known zero. 3926 unsigned BitWidth = N0.getValueSizeInBits(); 3927 if (DAG.MaskedValueIsZero(N0, 3928 APInt::getHighBitsSet(BitWidth, 3929 BitWidth-1))) { 3930 // Okay, get the un-inverted input value. 3931 SDValue Val; 3932 if (N0.getOpcode() == ISD::XOR) { 3933 Val = N0.getOperand(0); 3934 } else { 3935 assert(N0.getOpcode() == ISD::AND && 3936 N0.getOperand(0).getOpcode() == ISD::XOR); 3937 // ((X^1)&1)^1 -> X & 1 3938 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3939 N0.getOperand(0).getOperand(0), 3940 N0.getOperand(1)); 3941 } 3942 3943 return DAG.getSetCC(dl, VT, Val, N1, 3944 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3945 } 3946 } else if (N1C->isOne()) { 3947 SDValue Op0 = N0; 3948 if (Op0.getOpcode() == ISD::TRUNCATE) 3949 Op0 = Op0.getOperand(0); 3950 3951 if ((Op0.getOpcode() == ISD::XOR) && 3952 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3953 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3954 SDValue XorLHS = Op0.getOperand(0); 3955 SDValue XorRHS = Op0.getOperand(1); 3956 // Ensure that the input setccs return an i1 type or 0/1 value. 3957 if (Op0.getValueType() == MVT::i1 || 3958 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3959 ZeroOrOneBooleanContent && 3960 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3961 ZeroOrOneBooleanContent)) { 3962 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3963 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3964 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3965 } 3966 } 3967 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3968 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3969 if (Op0.getValueType().bitsGT(VT)) 3970 Op0 = DAG.getNode(ISD::AND, dl, VT, 3971 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3972 DAG.getConstant(1, dl, VT)); 3973 else if (Op0.getValueType().bitsLT(VT)) 3974 Op0 = DAG.getNode(ISD::AND, dl, VT, 3975 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3976 DAG.getConstant(1, dl, VT)); 3977 3978 return DAG.getSetCC(dl, VT, Op0, 3979 DAG.getConstant(0, dl, Op0.getValueType()), 3980 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3981 } 3982 if (Op0.getOpcode() == ISD::AssertZext && 3983 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3984 return DAG.getSetCC(dl, VT, Op0, 3985 DAG.getConstant(0, dl, Op0.getValueType()), 3986 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3987 } 3988 } 3989 3990 // Given: 3991 // icmp eq/ne (urem %x, %y), 0 3992 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3993 // icmp eq/ne %x, 0 3994 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 3995 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3996 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3997 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3998 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3999 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4000 } 4001 4002 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4003 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4004 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4005 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4006 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4007 N1C && N1C->isAllOnes()) { 4008 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4009 DAG.getConstant(0, dl, OpVT), 4010 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4011 } 4012 4013 if (SDValue V = 4014 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4015 return V; 4016 } 4017 4018 // These simplifications apply to splat vectors as well. 4019 // TODO: Handle more splat vector cases. 4020 if (auto *N1C = isConstOrConstSplat(N1)) { 4021 const APInt &C1 = N1C->getAPIntValue(); 4022 4023 APInt MinVal, MaxVal; 4024 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4025 if (ISD::isSignedIntSetCC(Cond)) { 4026 MinVal = APInt::getSignedMinValue(OperandBitSize); 4027 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4028 } else { 4029 MinVal = APInt::getMinValue(OperandBitSize); 4030 MaxVal = APInt::getMaxValue(OperandBitSize); 4031 } 4032 4033 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4034 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4035 // X >= MIN --> true 4036 if (C1 == MinVal) 4037 return DAG.getBoolConstant(true, dl, VT, OpVT); 4038 4039 if (!VT.isVector()) { // TODO: Support this for vectors. 4040 // X >= C0 --> X > (C0 - 1) 4041 APInt C = C1 - 1; 4042 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4043 if ((DCI.isBeforeLegalizeOps() || 4044 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4045 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4046 isLegalICmpImmediate(C.getSExtValue())))) { 4047 return DAG.getSetCC(dl, VT, N0, 4048 DAG.getConstant(C, dl, N1.getValueType()), 4049 NewCC); 4050 } 4051 } 4052 } 4053 4054 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4055 // X <= MAX --> true 4056 if (C1 == MaxVal) 4057 return DAG.getBoolConstant(true, dl, VT, OpVT); 4058 4059 // X <= C0 --> X < (C0 + 1) 4060 if (!VT.isVector()) { // TODO: Support this for vectors. 4061 APInt C = C1 + 1; 4062 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4063 if ((DCI.isBeforeLegalizeOps() || 4064 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4065 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4066 isLegalICmpImmediate(C.getSExtValue())))) { 4067 return DAG.getSetCC(dl, VT, N0, 4068 DAG.getConstant(C, dl, N1.getValueType()), 4069 NewCC); 4070 } 4071 } 4072 } 4073 4074 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4075 if (C1 == MinVal) 4076 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4077 4078 // TODO: Support this for vectors after legalize ops. 4079 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4080 // Canonicalize setlt X, Max --> setne X, Max 4081 if (C1 == MaxVal) 4082 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4083 4084 // If we have setult X, 1, turn it into seteq X, 0 4085 if (C1 == MinVal+1) 4086 return DAG.getSetCC(dl, VT, N0, 4087 DAG.getConstant(MinVal, dl, N0.getValueType()), 4088 ISD::SETEQ); 4089 } 4090 } 4091 4092 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4093 if (C1 == MaxVal) 4094 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4095 4096 // TODO: Support this for vectors after legalize ops. 4097 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4098 // Canonicalize setgt X, Min --> setne X, Min 4099 if (C1 == MinVal) 4100 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4101 4102 // If we have setugt X, Max-1, turn it into seteq X, Max 4103 if (C1 == MaxVal-1) 4104 return DAG.getSetCC(dl, VT, N0, 4105 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4106 ISD::SETEQ); 4107 } 4108 } 4109 4110 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4111 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4112 if (C1.isZero()) 4113 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4114 VT, N0, N1, Cond, DCI, dl)) 4115 return CC; 4116 4117 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4118 // For example, when high 32-bits of i64 X are known clear: 4119 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4120 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4121 bool CmpZero = N1C->getAPIntValue().isZero(); 4122 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4123 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4124 // Match or(lo,shl(hi,bw/2)) pattern. 4125 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4126 unsigned EltBits = V.getScalarValueSizeInBits(); 4127 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4128 return false; 4129 SDValue LHS = V.getOperand(0); 4130 SDValue RHS = V.getOperand(1); 4131 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4132 // Unshifted element must have zero upperbits. 4133 if (RHS.getOpcode() == ISD::SHL && 4134 isa<ConstantSDNode>(RHS.getOperand(1)) && 4135 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4136 DAG.MaskedValueIsZero(LHS, HiBits)) { 4137 Lo = LHS; 4138 Hi = RHS.getOperand(0); 4139 return true; 4140 } 4141 if (LHS.getOpcode() == ISD::SHL && 4142 isa<ConstantSDNode>(LHS.getOperand(1)) && 4143 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4144 DAG.MaskedValueIsZero(RHS, HiBits)) { 4145 Lo = RHS; 4146 Hi = LHS.getOperand(0); 4147 return true; 4148 } 4149 return false; 4150 }; 4151 4152 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4153 unsigned EltBits = N0.getScalarValueSizeInBits(); 4154 unsigned HalfBits = EltBits / 2; 4155 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4156 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4157 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4158 SDValue NewN0 = 4159 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4160 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4161 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4162 }; 4163 4164 SDValue Lo, Hi; 4165 if (IsConcat(N0, Lo, Hi)) 4166 return MergeConcat(Lo, Hi); 4167 4168 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4169 SDValue Lo0, Lo1, Hi0, Hi1; 4170 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4171 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4172 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4173 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4174 } 4175 } 4176 } 4177 } 4178 4179 // If we have "setcc X, C0", check to see if we can shrink the immediate 4180 // by changing cc. 4181 // TODO: Support this for vectors after legalize ops. 4182 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4183 // SETUGT X, SINTMAX -> SETLT X, 0 4184 // SETUGE X, SINTMIN -> SETLT X, 0 4185 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4186 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4187 return DAG.getSetCC(dl, VT, N0, 4188 DAG.getConstant(0, dl, N1.getValueType()), 4189 ISD::SETLT); 4190 4191 // SETULT X, SINTMIN -> SETGT X, -1 4192 // SETULE X, SINTMAX -> SETGT X, -1 4193 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4194 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4195 return DAG.getSetCC(dl, VT, N0, 4196 DAG.getAllOnesConstant(dl, N1.getValueType()), 4197 ISD::SETGT); 4198 } 4199 } 4200 4201 // Back to non-vector simplifications. 4202 // TODO: Can we do these for vector splats? 4203 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4204 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4205 const APInt &C1 = N1C->getAPIntValue(); 4206 EVT ShValTy = N0.getValueType(); 4207 4208 // Fold bit comparisons when we can. This will result in an 4209 // incorrect value when boolean false is negative one, unless 4210 // the bitsize is 1 in which case the false value is the same 4211 // in practice regardless of the representation. 4212 if ((VT.getSizeInBits() == 1 || 4213 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4214 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4215 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4216 N0.getOpcode() == ISD::AND) { 4217 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4218 EVT ShiftTy = 4219 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4220 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4221 // Perform the xform if the AND RHS is a single bit. 4222 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4223 if (AndRHS->getAPIntValue().isPowerOf2() && 4224 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4225 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4226 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4227 DAG.getConstant(ShCt, dl, ShiftTy))); 4228 } 4229 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4230 // (X & 8) == 8 --> (X & 8) >> 3 4231 // Perform the xform if C1 is a single bit. 4232 unsigned ShCt = C1.logBase2(); 4233 if (C1.isPowerOf2() && 4234 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4235 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4236 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4237 DAG.getConstant(ShCt, dl, ShiftTy))); 4238 } 4239 } 4240 } 4241 } 4242 4243 if (C1.getMinSignedBits() <= 64 && 4244 !isLegalICmpImmediate(C1.getSExtValue())) { 4245 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4246 // (X & -256) == 256 -> (X >> 8) == 1 4247 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4248 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4249 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4250 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4251 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4252 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4253 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4254 SDValue Shift = 4255 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4256 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4257 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4258 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4259 } 4260 } 4261 } 4262 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4263 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4264 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4265 // X < 0x100000000 -> (X >> 32) < 1 4266 // X >= 0x100000000 -> (X >> 32) >= 1 4267 // X <= 0x0ffffffff -> (X >> 32) < 1 4268 // X > 0x0ffffffff -> (X >> 32) >= 1 4269 unsigned ShiftBits; 4270 APInt NewC = C1; 4271 ISD::CondCode NewCond = Cond; 4272 if (AdjOne) { 4273 ShiftBits = C1.countTrailingOnes(); 4274 NewC = NewC + 1; 4275 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4276 } else { 4277 ShiftBits = C1.countTrailingZeros(); 4278 } 4279 NewC.lshrInPlace(ShiftBits); 4280 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4281 isLegalICmpImmediate(NewC.getSExtValue()) && 4282 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4283 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4284 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4285 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4286 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4287 } 4288 } 4289 } 4290 } 4291 4292 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4293 auto *CFP = cast<ConstantFPSDNode>(N1); 4294 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4295 4296 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4297 // constant if knowing that the operand is non-nan is enough. We prefer to 4298 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4299 // materialize 0.0. 4300 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4301 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4302 4303 // setcc (fneg x), C -> setcc swap(pred) x, -C 4304 if (N0.getOpcode() == ISD::FNEG) { 4305 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4306 if (DCI.isBeforeLegalizeOps() || 4307 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4308 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4309 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4310 } 4311 } 4312 4313 // If the condition is not legal, see if we can find an equivalent one 4314 // which is legal. 4315 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4316 // If the comparison was an awkward floating-point == or != and one of 4317 // the comparison operands is infinity or negative infinity, convert the 4318 // condition to a less-awkward <= or >=. 4319 if (CFP->getValueAPF().isInfinity()) { 4320 bool IsNegInf = CFP->getValueAPF().isNegative(); 4321 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4322 switch (Cond) { 4323 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4324 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4325 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4326 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4327 default: break; 4328 } 4329 if (NewCond != ISD::SETCC_INVALID && 4330 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4331 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4332 } 4333 } 4334 } 4335 4336 if (N0 == N1) { 4337 // The sext(setcc()) => setcc() optimization relies on the appropriate 4338 // constant being emitted. 4339 assert(!N0.getValueType().isInteger() && 4340 "Integer types should be handled by FoldSetCC"); 4341 4342 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4343 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4344 if (UOF == 2) // FP operators that are undefined on NaNs. 4345 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4346 if (UOF == unsigned(EqTrue)) 4347 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4348 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4349 // if it is not already. 4350 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4351 if (NewCond != Cond && 4352 (DCI.isBeforeLegalizeOps() || 4353 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4354 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4355 } 4356 4357 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4358 N0.getValueType().isInteger()) { 4359 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4360 N0.getOpcode() == ISD::XOR) { 4361 // Simplify (X+Y) == (X+Z) --> Y == Z 4362 if (N0.getOpcode() == N1.getOpcode()) { 4363 if (N0.getOperand(0) == N1.getOperand(0)) 4364 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4365 if (N0.getOperand(1) == N1.getOperand(1)) 4366 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4367 if (isCommutativeBinOp(N0.getOpcode())) { 4368 // If X op Y == Y op X, try other combinations. 4369 if (N0.getOperand(0) == N1.getOperand(1)) 4370 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4371 Cond); 4372 if (N0.getOperand(1) == N1.getOperand(0)) 4373 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4374 Cond); 4375 } 4376 } 4377 4378 // If RHS is a legal immediate value for a compare instruction, we need 4379 // to be careful about increasing register pressure needlessly. 4380 bool LegalRHSImm = false; 4381 4382 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4383 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4384 // Turn (X+C1) == C2 --> X == C2-C1 4385 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4386 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4387 DAG.getConstant(RHSC->getAPIntValue()- 4388 LHSR->getAPIntValue(), 4389 dl, N0.getValueType()), Cond); 4390 } 4391 4392 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4393 if (N0.getOpcode() == ISD::XOR) 4394 // If we know that all of the inverted bits are zero, don't bother 4395 // performing the inversion. 4396 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4397 return 4398 DAG.getSetCC(dl, VT, N0.getOperand(0), 4399 DAG.getConstant(LHSR->getAPIntValue() ^ 4400 RHSC->getAPIntValue(), 4401 dl, N0.getValueType()), 4402 Cond); 4403 } 4404 4405 // Turn (C1-X) == C2 --> X == C1-C2 4406 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4407 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4408 return 4409 DAG.getSetCC(dl, VT, N0.getOperand(1), 4410 DAG.getConstant(SUBC->getAPIntValue() - 4411 RHSC->getAPIntValue(), 4412 dl, N0.getValueType()), 4413 Cond); 4414 } 4415 } 4416 4417 // Could RHSC fold directly into a compare? 4418 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4419 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4420 } 4421 4422 // (X+Y) == X --> Y == 0 and similar folds. 4423 // Don't do this if X is an immediate that can fold into a cmp 4424 // instruction and X+Y has other uses. It could be an induction variable 4425 // chain, and the transform would increase register pressure. 4426 if (!LegalRHSImm || N0.hasOneUse()) 4427 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4428 return V; 4429 } 4430 4431 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4432 N1.getOpcode() == ISD::XOR) 4433 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4434 return V; 4435 4436 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4437 return V; 4438 } 4439 4440 // Fold remainder of division by a constant. 4441 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4442 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4443 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4444 4445 // When division is cheap or optimizing for minimum size, 4446 // fall through to DIVREM creation by skipping this fold. 4447 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4448 if (N0.getOpcode() == ISD::UREM) { 4449 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4450 return Folded; 4451 } else if (N0.getOpcode() == ISD::SREM) { 4452 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4453 return Folded; 4454 } 4455 } 4456 } 4457 4458 // Fold away ALL boolean setcc's. 4459 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4460 SDValue Temp; 4461 switch (Cond) { 4462 default: llvm_unreachable("Unknown integer setcc!"); 4463 case ISD::SETEQ: // X == Y -> ~(X^Y) 4464 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4465 N0 = DAG.getNOT(dl, Temp, OpVT); 4466 if (!DCI.isCalledByLegalizer()) 4467 DCI.AddToWorklist(Temp.getNode()); 4468 break; 4469 case ISD::SETNE: // X != Y --> (X^Y) 4470 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4471 break; 4472 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4473 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4474 Temp = DAG.getNOT(dl, N0, OpVT); 4475 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4476 if (!DCI.isCalledByLegalizer()) 4477 DCI.AddToWorklist(Temp.getNode()); 4478 break; 4479 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4480 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4481 Temp = DAG.getNOT(dl, N1, OpVT); 4482 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4483 if (!DCI.isCalledByLegalizer()) 4484 DCI.AddToWorklist(Temp.getNode()); 4485 break; 4486 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4487 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4488 Temp = DAG.getNOT(dl, N0, OpVT); 4489 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4490 if (!DCI.isCalledByLegalizer()) 4491 DCI.AddToWorklist(Temp.getNode()); 4492 break; 4493 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4494 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4495 Temp = DAG.getNOT(dl, N1, OpVT); 4496 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4497 break; 4498 } 4499 if (VT.getScalarType() != MVT::i1) { 4500 if (!DCI.isCalledByLegalizer()) 4501 DCI.AddToWorklist(N0.getNode()); 4502 // FIXME: If running after legalize, we probably can't do this. 4503 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4504 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4505 } 4506 return N0; 4507 } 4508 4509 // Could not fold it. 4510 return SDValue(); 4511 } 4512 4513 /// Returns true (and the GlobalValue and the offset) if the node is a 4514 /// GlobalAddress + offset. 4515 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4516 int64_t &Offset) const { 4517 4518 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4519 4520 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4521 GA = GASD->getGlobal(); 4522 Offset += GASD->getOffset(); 4523 return true; 4524 } 4525 4526 if (N->getOpcode() == ISD::ADD) { 4527 SDValue N1 = N->getOperand(0); 4528 SDValue N2 = N->getOperand(1); 4529 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4530 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4531 Offset += V->getSExtValue(); 4532 return true; 4533 } 4534 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4535 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4536 Offset += V->getSExtValue(); 4537 return true; 4538 } 4539 } 4540 } 4541 4542 return false; 4543 } 4544 4545 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4546 DAGCombinerInfo &DCI) const { 4547 // Default implementation: no optimization. 4548 return SDValue(); 4549 } 4550 4551 //===----------------------------------------------------------------------===// 4552 // Inline Assembler Implementation Methods 4553 //===----------------------------------------------------------------------===// 4554 4555 TargetLowering::ConstraintType 4556 TargetLowering::getConstraintType(StringRef Constraint) const { 4557 unsigned S = Constraint.size(); 4558 4559 if (S == 1) { 4560 switch (Constraint[0]) { 4561 default: break; 4562 case 'r': 4563 return C_RegisterClass; 4564 case 'm': // memory 4565 case 'o': // offsetable 4566 case 'V': // not offsetable 4567 return C_Memory; 4568 case 'n': // Simple Integer 4569 case 'E': // Floating Point Constant 4570 case 'F': // Floating Point Constant 4571 return C_Immediate; 4572 case 'i': // Simple Integer or Relocatable Constant 4573 case 's': // Relocatable Constant 4574 case 'p': // Address. 4575 case 'X': // Allow ANY value. 4576 case 'I': // Target registers. 4577 case 'J': 4578 case 'K': 4579 case 'L': 4580 case 'M': 4581 case 'N': 4582 case 'O': 4583 case 'P': 4584 case '<': 4585 case '>': 4586 return C_Other; 4587 } 4588 } 4589 4590 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4591 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4592 return C_Memory; 4593 return C_Register; 4594 } 4595 return C_Unknown; 4596 } 4597 4598 /// Try to replace an X constraint, which matches anything, with another that 4599 /// has more specific requirements based on the type of the corresponding 4600 /// operand. 4601 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4602 if (ConstraintVT.isInteger()) 4603 return "r"; 4604 if (ConstraintVT.isFloatingPoint()) 4605 return "f"; // works for many targets 4606 return nullptr; 4607 } 4608 4609 SDValue TargetLowering::LowerAsmOutputForConstraint( 4610 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4611 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4612 return SDValue(); 4613 } 4614 4615 /// Lower the specified operand into the Ops vector. 4616 /// If it is invalid, don't add anything to Ops. 4617 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4618 std::string &Constraint, 4619 std::vector<SDValue> &Ops, 4620 SelectionDAG &DAG) const { 4621 4622 if (Constraint.length() > 1) return; 4623 4624 char ConstraintLetter = Constraint[0]; 4625 switch (ConstraintLetter) { 4626 default: break; 4627 case 'X': // Allows any operand 4628 case 'i': // Simple Integer or Relocatable Constant 4629 case 'n': // Simple Integer 4630 case 's': { // Relocatable Constant 4631 4632 ConstantSDNode *C; 4633 uint64_t Offset = 0; 4634 4635 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4636 // etc., since getelementpointer is variadic. We can't use 4637 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4638 // while in this case the GA may be furthest from the root node which is 4639 // likely an ISD::ADD. 4640 while (true) { 4641 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4642 // gcc prints these as sign extended. Sign extend value to 64 bits 4643 // now; without this it would get ZExt'd later in 4644 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4645 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4646 BooleanContent BCont = getBooleanContents(MVT::i64); 4647 ISD::NodeType ExtOpc = 4648 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4649 int64_t ExtVal = 4650 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4651 Ops.push_back( 4652 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4653 return; 4654 } 4655 if (ConstraintLetter != 'n') { 4656 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4657 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4658 GA->getValueType(0), 4659 Offset + GA->getOffset())); 4660 return; 4661 } 4662 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4663 Ops.push_back(DAG.getTargetBlockAddress( 4664 BA->getBlockAddress(), BA->getValueType(0), 4665 Offset + BA->getOffset(), BA->getTargetFlags())); 4666 return; 4667 } 4668 if (isa<BasicBlockSDNode>(Op)) { 4669 Ops.push_back(Op); 4670 return; 4671 } 4672 } 4673 const unsigned OpCode = Op.getOpcode(); 4674 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4675 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4676 Op = Op.getOperand(1); 4677 // Subtraction is not commutative. 4678 else if (OpCode == ISD::ADD && 4679 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4680 Op = Op.getOperand(0); 4681 else 4682 return; 4683 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4684 continue; 4685 } 4686 return; 4687 } 4688 break; 4689 } 4690 } 4691 } 4692 4693 std::pair<unsigned, const TargetRegisterClass *> 4694 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4695 StringRef Constraint, 4696 MVT VT) const { 4697 if (Constraint.empty() || Constraint[0] != '{') 4698 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4699 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4700 4701 // Remove the braces from around the name. 4702 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4703 4704 std::pair<unsigned, const TargetRegisterClass *> R = 4705 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4706 4707 // Figure out which register class contains this reg. 4708 for (const TargetRegisterClass *RC : RI->regclasses()) { 4709 // If none of the value types for this register class are valid, we 4710 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4711 if (!isLegalRC(*RI, *RC)) 4712 continue; 4713 4714 for (const MCPhysReg &PR : *RC) { 4715 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4716 std::pair<unsigned, const TargetRegisterClass *> S = 4717 std::make_pair(PR, RC); 4718 4719 // If this register class has the requested value type, return it, 4720 // otherwise keep searching and return the first class found 4721 // if no other is found which explicitly has the requested type. 4722 if (RI->isTypeLegalForClass(*RC, VT)) 4723 return S; 4724 if (!R.second) 4725 R = S; 4726 } 4727 } 4728 } 4729 4730 return R; 4731 } 4732 4733 //===----------------------------------------------------------------------===// 4734 // Constraint Selection. 4735 4736 /// Return true of this is an input operand that is a matching constraint like 4737 /// "4". 4738 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4739 assert(!ConstraintCode.empty() && "No known constraint!"); 4740 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4741 } 4742 4743 /// If this is an input matching constraint, this method returns the output 4744 /// operand it matches. 4745 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4746 assert(!ConstraintCode.empty() && "No known constraint!"); 4747 return atoi(ConstraintCode.c_str()); 4748 } 4749 4750 /// Split up the constraint string from the inline assembly value into the 4751 /// specific constraints and their prefixes, and also tie in the associated 4752 /// operand values. 4753 /// If this returns an empty vector, and if the constraint string itself 4754 /// isn't empty, there was an error parsing. 4755 TargetLowering::AsmOperandInfoVector 4756 TargetLowering::ParseConstraints(const DataLayout &DL, 4757 const TargetRegisterInfo *TRI, 4758 const CallBase &Call) const { 4759 /// Information about all of the constraints. 4760 AsmOperandInfoVector ConstraintOperands; 4761 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4762 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4763 4764 // Do a prepass over the constraints, canonicalizing them, and building up the 4765 // ConstraintOperands list. 4766 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4767 unsigned ResNo = 0; // ResNo - The result number of the next output. 4768 4769 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4770 ConstraintOperands.emplace_back(std::move(CI)); 4771 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4772 4773 // Update multiple alternative constraint count. 4774 if (OpInfo.multipleAlternatives.size() > maCount) 4775 maCount = OpInfo.multipleAlternatives.size(); 4776 4777 OpInfo.ConstraintVT = MVT::Other; 4778 4779 // Compute the value type for each operand. 4780 switch (OpInfo.Type) { 4781 case InlineAsm::isOutput: 4782 // Indirect outputs just consume an argument. 4783 if (OpInfo.isIndirect) { 4784 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4785 break; 4786 } 4787 4788 // The return value of the call is this value. As such, there is no 4789 // corresponding argument. 4790 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4791 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4792 OpInfo.ConstraintVT = 4793 getSimpleValueType(DL, STy->getElementType(ResNo)); 4794 } else { 4795 assert(ResNo == 0 && "Asm only has one result!"); 4796 OpInfo.ConstraintVT = 4797 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4798 } 4799 ++ResNo; 4800 break; 4801 case InlineAsm::isInput: 4802 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4803 break; 4804 case InlineAsm::isClobber: 4805 // Nothing to do. 4806 break; 4807 } 4808 4809 if (OpInfo.CallOperandVal) { 4810 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4811 if (OpInfo.isIndirect) { 4812 OpTy = Call.getAttributes().getParamElementType(ArgNo); 4813 assert(OpTy && "Indirect opernad must have elementtype attribute"); 4814 } 4815 4816 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4817 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4818 if (STy->getNumElements() == 1) 4819 OpTy = STy->getElementType(0); 4820 4821 // If OpTy is not a single value, it may be a struct/union that we 4822 // can tile with integers. 4823 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4824 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4825 switch (BitSize) { 4826 default: break; 4827 case 1: 4828 case 8: 4829 case 16: 4830 case 32: 4831 case 64: 4832 case 128: 4833 OpInfo.ConstraintVT = 4834 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4835 break; 4836 } 4837 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4838 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4839 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4840 } else { 4841 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4842 } 4843 4844 ArgNo++; 4845 } 4846 } 4847 4848 // If we have multiple alternative constraints, select the best alternative. 4849 if (!ConstraintOperands.empty()) { 4850 if (maCount) { 4851 unsigned bestMAIndex = 0; 4852 int bestWeight = -1; 4853 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4854 int weight = -1; 4855 unsigned maIndex; 4856 // Compute the sums of the weights for each alternative, keeping track 4857 // of the best (highest weight) one so far. 4858 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4859 int weightSum = 0; 4860 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4861 cIndex != eIndex; ++cIndex) { 4862 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4863 if (OpInfo.Type == InlineAsm::isClobber) 4864 continue; 4865 4866 // If this is an output operand with a matching input operand, 4867 // look up the matching input. If their types mismatch, e.g. one 4868 // is an integer, the other is floating point, or their sizes are 4869 // different, flag it as an maCantMatch. 4870 if (OpInfo.hasMatchingInput()) { 4871 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4872 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4873 if ((OpInfo.ConstraintVT.isInteger() != 4874 Input.ConstraintVT.isInteger()) || 4875 (OpInfo.ConstraintVT.getSizeInBits() != 4876 Input.ConstraintVT.getSizeInBits())) { 4877 weightSum = -1; // Can't match. 4878 break; 4879 } 4880 } 4881 } 4882 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4883 if (weight == -1) { 4884 weightSum = -1; 4885 break; 4886 } 4887 weightSum += weight; 4888 } 4889 // Update best. 4890 if (weightSum > bestWeight) { 4891 bestWeight = weightSum; 4892 bestMAIndex = maIndex; 4893 } 4894 } 4895 4896 // Now select chosen alternative in each constraint. 4897 for (AsmOperandInfo &cInfo : ConstraintOperands) 4898 if (cInfo.Type != InlineAsm::isClobber) 4899 cInfo.selectAlternative(bestMAIndex); 4900 } 4901 } 4902 4903 // Check and hook up tied operands, choose constraint code to use. 4904 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4905 cIndex != eIndex; ++cIndex) { 4906 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4907 4908 // If this is an output operand with a matching input operand, look up the 4909 // matching input. If their types mismatch, e.g. one is an integer, the 4910 // other is floating point, or their sizes are different, flag it as an 4911 // error. 4912 if (OpInfo.hasMatchingInput()) { 4913 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4914 4915 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4916 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4917 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4918 OpInfo.ConstraintVT); 4919 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4920 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4921 Input.ConstraintVT); 4922 if ((OpInfo.ConstraintVT.isInteger() != 4923 Input.ConstraintVT.isInteger()) || 4924 (MatchRC.second != InputRC.second)) { 4925 report_fatal_error("Unsupported asm: input constraint" 4926 " with a matching output constraint of" 4927 " incompatible type!"); 4928 } 4929 } 4930 } 4931 } 4932 4933 return ConstraintOperands; 4934 } 4935 4936 /// Return an integer indicating how general CT is. 4937 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4938 switch (CT) { 4939 case TargetLowering::C_Immediate: 4940 case TargetLowering::C_Other: 4941 case TargetLowering::C_Unknown: 4942 return 0; 4943 case TargetLowering::C_Register: 4944 return 1; 4945 case TargetLowering::C_RegisterClass: 4946 return 2; 4947 case TargetLowering::C_Memory: 4948 return 3; 4949 } 4950 llvm_unreachable("Invalid constraint type"); 4951 } 4952 4953 /// Examine constraint type and operand type and determine a weight value. 4954 /// This object must already have been set up with the operand type 4955 /// and the current alternative constraint selected. 4956 TargetLowering::ConstraintWeight 4957 TargetLowering::getMultipleConstraintMatchWeight( 4958 AsmOperandInfo &info, int maIndex) const { 4959 InlineAsm::ConstraintCodeVector *rCodes; 4960 if (maIndex >= (int)info.multipleAlternatives.size()) 4961 rCodes = &info.Codes; 4962 else 4963 rCodes = &info.multipleAlternatives[maIndex].Codes; 4964 ConstraintWeight BestWeight = CW_Invalid; 4965 4966 // Loop over the options, keeping track of the most general one. 4967 for (const std::string &rCode : *rCodes) { 4968 ConstraintWeight weight = 4969 getSingleConstraintMatchWeight(info, rCode.c_str()); 4970 if (weight > BestWeight) 4971 BestWeight = weight; 4972 } 4973 4974 return BestWeight; 4975 } 4976 4977 /// Examine constraint type and operand type and determine a weight value. 4978 /// This object must already have been set up with the operand type 4979 /// and the current alternative constraint selected. 4980 TargetLowering::ConstraintWeight 4981 TargetLowering::getSingleConstraintMatchWeight( 4982 AsmOperandInfo &info, const char *constraint) const { 4983 ConstraintWeight weight = CW_Invalid; 4984 Value *CallOperandVal = info.CallOperandVal; 4985 // If we don't have a value, we can't do a match, 4986 // but allow it at the lowest weight. 4987 if (!CallOperandVal) 4988 return CW_Default; 4989 // Look at the constraint type. 4990 switch (*constraint) { 4991 case 'i': // immediate integer. 4992 case 'n': // immediate integer with a known value. 4993 if (isa<ConstantInt>(CallOperandVal)) 4994 weight = CW_Constant; 4995 break; 4996 case 's': // non-explicit intregal immediate. 4997 if (isa<GlobalValue>(CallOperandVal)) 4998 weight = CW_Constant; 4999 break; 5000 case 'E': // immediate float if host format. 5001 case 'F': // immediate float. 5002 if (isa<ConstantFP>(CallOperandVal)) 5003 weight = CW_Constant; 5004 break; 5005 case '<': // memory operand with autodecrement. 5006 case '>': // memory operand with autoincrement. 5007 case 'm': // memory operand. 5008 case 'o': // offsettable memory operand 5009 case 'V': // non-offsettable memory operand 5010 weight = CW_Memory; 5011 break; 5012 case 'r': // general register. 5013 case 'g': // general register, memory operand or immediate integer. 5014 // note: Clang converts "g" to "imr". 5015 if (CallOperandVal->getType()->isIntegerTy()) 5016 weight = CW_Register; 5017 break; 5018 case 'X': // any operand. 5019 default: 5020 weight = CW_Default; 5021 break; 5022 } 5023 return weight; 5024 } 5025 5026 /// If there are multiple different constraints that we could pick for this 5027 /// operand (e.g. "imr") try to pick the 'best' one. 5028 /// This is somewhat tricky: constraints fall into four classes: 5029 /// Other -> immediates and magic values 5030 /// Register -> one specific register 5031 /// RegisterClass -> a group of regs 5032 /// Memory -> memory 5033 /// Ideally, we would pick the most specific constraint possible: if we have 5034 /// something that fits into a register, we would pick it. The problem here 5035 /// is that if we have something that could either be in a register or in 5036 /// memory that use of the register could cause selection of *other* 5037 /// operands to fail: they might only succeed if we pick memory. Because of 5038 /// this the heuristic we use is: 5039 /// 5040 /// 1) If there is an 'other' constraint, and if the operand is valid for 5041 /// that constraint, use it. This makes us take advantage of 'i' 5042 /// constraints when available. 5043 /// 2) Otherwise, pick the most general constraint present. This prefers 5044 /// 'm' over 'r', for example. 5045 /// 5046 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5047 const TargetLowering &TLI, 5048 SDValue Op, SelectionDAG *DAG) { 5049 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5050 unsigned BestIdx = 0; 5051 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5052 int BestGenerality = -1; 5053 5054 // Loop over the options, keeping track of the most general one. 5055 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5056 TargetLowering::ConstraintType CType = 5057 TLI.getConstraintType(OpInfo.Codes[i]); 5058 5059 // Indirect 'other' or 'immediate' constraints are not allowed. 5060 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5061 CType == TargetLowering::C_Register || 5062 CType == TargetLowering::C_RegisterClass)) 5063 continue; 5064 5065 // If this is an 'other' or 'immediate' constraint, see if the operand is 5066 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5067 // the operand is an integer in the range [0..31] we want to use I (saving a 5068 // load of a register), otherwise we must use 'r'. 5069 if ((CType == TargetLowering::C_Other || 5070 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5071 assert(OpInfo.Codes[i].size() == 1 && 5072 "Unhandled multi-letter 'other' constraint"); 5073 std::vector<SDValue> ResultOps; 5074 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5075 ResultOps, *DAG); 5076 if (!ResultOps.empty()) { 5077 BestType = CType; 5078 BestIdx = i; 5079 break; 5080 } 5081 } 5082 5083 // Things with matching constraints can only be registers, per gcc 5084 // documentation. This mainly affects "g" constraints. 5085 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5086 continue; 5087 5088 // This constraint letter is more general than the previous one, use it. 5089 int Generality = getConstraintGenerality(CType); 5090 if (Generality > BestGenerality) { 5091 BestType = CType; 5092 BestIdx = i; 5093 BestGenerality = Generality; 5094 } 5095 } 5096 5097 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5098 OpInfo.ConstraintType = BestType; 5099 } 5100 5101 /// Determines the constraint code and constraint type to use for the specific 5102 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5103 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5104 SDValue Op, 5105 SelectionDAG *DAG) const { 5106 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5107 5108 // Single-letter constraints ('r') are very common. 5109 if (OpInfo.Codes.size() == 1) { 5110 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5111 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5112 } else { 5113 ChooseConstraint(OpInfo, *this, Op, DAG); 5114 } 5115 5116 // 'X' matches anything. 5117 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5118 // Constants are handled elsewhere. For Functions, the type here is the 5119 // type of the result, which is not what we want to look at; leave them 5120 // alone. 5121 Value *v = OpInfo.CallOperandVal; 5122 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5123 return; 5124 } 5125 5126 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5127 OpInfo.ConstraintCode = "i"; 5128 return; 5129 } 5130 5131 // Otherwise, try to resolve it to something we know about by looking at 5132 // the actual operand type. 5133 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5134 OpInfo.ConstraintCode = Repl; 5135 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5136 } 5137 } 5138 } 5139 5140 /// Given an exact SDIV by a constant, create a multiplication 5141 /// with the multiplicative inverse of the constant. 5142 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5143 const SDLoc &dl, SelectionDAG &DAG, 5144 SmallVectorImpl<SDNode *> &Created) { 5145 SDValue Op0 = N->getOperand(0); 5146 SDValue Op1 = N->getOperand(1); 5147 EVT VT = N->getValueType(0); 5148 EVT SVT = VT.getScalarType(); 5149 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5150 EVT ShSVT = ShVT.getScalarType(); 5151 5152 bool UseSRA = false; 5153 SmallVector<SDValue, 16> Shifts, Factors; 5154 5155 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5156 if (C->isZero()) 5157 return false; 5158 APInt Divisor = C->getAPIntValue(); 5159 unsigned Shift = Divisor.countTrailingZeros(); 5160 if (Shift) { 5161 Divisor.ashrInPlace(Shift); 5162 UseSRA = true; 5163 } 5164 // Calculate the multiplicative inverse, using Newton's method. 5165 APInt t; 5166 APInt Factor = Divisor; 5167 while ((t = Divisor * Factor) != 1) 5168 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5169 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5170 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5171 return true; 5172 }; 5173 5174 // Collect all magic values from the build vector. 5175 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5176 return SDValue(); 5177 5178 SDValue Shift, Factor; 5179 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5180 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5181 Factor = DAG.getBuildVector(VT, dl, Factors); 5182 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5183 assert(Shifts.size() == 1 && Factors.size() == 1 && 5184 "Expected matchUnaryPredicate to return one element for scalable " 5185 "vectors"); 5186 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5187 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5188 } else { 5189 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5190 Shift = Shifts[0]; 5191 Factor = Factors[0]; 5192 } 5193 5194 SDValue Res = Op0; 5195 5196 // Shift the value upfront if it is even, so the LSB is one. 5197 if (UseSRA) { 5198 // TODO: For UDIV use SRL instead of SRA. 5199 SDNodeFlags Flags; 5200 Flags.setExact(true); 5201 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5202 Created.push_back(Res.getNode()); 5203 } 5204 5205 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5206 } 5207 5208 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5209 SelectionDAG &DAG, 5210 SmallVectorImpl<SDNode *> &Created) const { 5211 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5213 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5214 return SDValue(N, 0); // Lower SDIV as SDIV 5215 return SDValue(); 5216 } 5217 5218 /// Given an ISD::SDIV node expressing a divide by constant, 5219 /// return a DAG expression to select that will generate the same value by 5220 /// multiplying by a magic number. 5221 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5222 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5223 bool IsAfterLegalization, 5224 SmallVectorImpl<SDNode *> &Created) const { 5225 SDLoc dl(N); 5226 EVT VT = N->getValueType(0); 5227 EVT SVT = VT.getScalarType(); 5228 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5229 EVT ShSVT = ShVT.getScalarType(); 5230 unsigned EltBits = VT.getScalarSizeInBits(); 5231 EVT MulVT; 5232 5233 // Check to see if we can do this. 5234 // FIXME: We should be more aggressive here. 5235 if (!isTypeLegal(VT)) { 5236 // Limit this to simple scalars for now. 5237 if (VT.isVector() || !VT.isSimple()) 5238 return SDValue(); 5239 5240 // If this type will be promoted to a large enough type with a legal 5241 // multiply operation, we can go ahead and do this transform. 5242 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5243 return SDValue(); 5244 5245 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5246 if (MulVT.getSizeInBits() < (2 * EltBits) || 5247 !isOperationLegal(ISD::MUL, MulVT)) 5248 return SDValue(); 5249 } 5250 5251 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5252 if (N->getFlags().hasExact()) 5253 return BuildExactSDIV(*this, N, dl, DAG, Created); 5254 5255 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5256 5257 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5258 if (C->isZero()) 5259 return false; 5260 5261 const APInt &Divisor = C->getAPIntValue(); 5262 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5263 int NumeratorFactor = 0; 5264 int ShiftMask = -1; 5265 5266 if (Divisor.isOne() || Divisor.isAllOnes()) { 5267 // If d is +1/-1, we just multiply the numerator by +1/-1. 5268 NumeratorFactor = Divisor.getSExtValue(); 5269 magics.Magic = 0; 5270 magics.ShiftAmount = 0; 5271 ShiftMask = 0; 5272 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5273 // If d > 0 and m < 0, add the numerator. 5274 NumeratorFactor = 1; 5275 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5276 // If d < 0 and m > 0, subtract the numerator. 5277 NumeratorFactor = -1; 5278 } 5279 5280 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5281 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5282 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5283 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5284 return true; 5285 }; 5286 5287 SDValue N0 = N->getOperand(0); 5288 SDValue N1 = N->getOperand(1); 5289 5290 // Collect the shifts / magic values from each element. 5291 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5292 return SDValue(); 5293 5294 SDValue MagicFactor, Factor, Shift, ShiftMask; 5295 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5296 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5297 Factor = DAG.getBuildVector(VT, dl, Factors); 5298 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5299 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5300 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5301 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5302 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5303 "Expected matchUnaryPredicate to return one element for scalable " 5304 "vectors"); 5305 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5306 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5307 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5308 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5309 } else { 5310 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5311 MagicFactor = MagicFactors[0]; 5312 Factor = Factors[0]; 5313 Shift = Shifts[0]; 5314 ShiftMask = ShiftMasks[0]; 5315 } 5316 5317 // Multiply the numerator (operand 0) by the magic value. 5318 // FIXME: We should support doing a MUL in a wider type. 5319 auto GetMULHS = [&](SDValue X, SDValue Y) { 5320 // If the type isn't legal, use a wider mul of the the type calculated 5321 // earlier. 5322 if (!isTypeLegal(VT)) { 5323 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5324 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5325 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5326 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5327 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5328 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5329 } 5330 5331 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5332 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5333 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5334 SDValue LoHi = 5335 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5336 return SDValue(LoHi.getNode(), 1); 5337 } 5338 return SDValue(); 5339 }; 5340 5341 SDValue Q = GetMULHS(N0, MagicFactor); 5342 if (!Q) 5343 return SDValue(); 5344 5345 Created.push_back(Q.getNode()); 5346 5347 // (Optionally) Add/subtract the numerator using Factor. 5348 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5349 Created.push_back(Factor.getNode()); 5350 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5351 Created.push_back(Q.getNode()); 5352 5353 // Shift right algebraic by shift value. 5354 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5355 Created.push_back(Q.getNode()); 5356 5357 // Extract the sign bit, mask it and add it to the quotient. 5358 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5359 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5360 Created.push_back(T.getNode()); 5361 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5362 Created.push_back(T.getNode()); 5363 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5364 } 5365 5366 /// Given an ISD::UDIV node expressing a divide by constant, 5367 /// return a DAG expression to select that will generate the same value by 5368 /// multiplying by a magic number. 5369 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5370 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5371 bool IsAfterLegalization, 5372 SmallVectorImpl<SDNode *> &Created) const { 5373 SDLoc dl(N); 5374 EVT VT = N->getValueType(0); 5375 EVT SVT = VT.getScalarType(); 5376 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5377 EVT ShSVT = ShVT.getScalarType(); 5378 unsigned EltBits = VT.getScalarSizeInBits(); 5379 EVT MulVT; 5380 5381 // Check to see if we can do this. 5382 // FIXME: We should be more aggressive here. 5383 if (!isTypeLegal(VT)) { 5384 // Limit this to simple scalars for now. 5385 if (VT.isVector() || !VT.isSimple()) 5386 return SDValue(); 5387 5388 // If this type will be promoted to a large enough type with a legal 5389 // multiply operation, we can go ahead and do this transform. 5390 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5391 return SDValue(); 5392 5393 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5394 if (MulVT.getSizeInBits() < (2 * EltBits) || 5395 !isOperationLegal(ISD::MUL, MulVT)) 5396 return SDValue(); 5397 } 5398 5399 bool UseNPQ = false; 5400 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5401 5402 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5403 if (C->isZero()) 5404 return false; 5405 // FIXME: We should use a narrower constant when the upper 5406 // bits are known to be zero. 5407 const APInt& Divisor = C->getAPIntValue(); 5408 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5409 unsigned PreShift = 0, PostShift = 0; 5410 5411 // If the divisor is even, we can avoid using the expensive fixup by 5412 // shifting the divided value upfront. 5413 if (magics.IsAdd != 0 && !Divisor[0]) { 5414 PreShift = Divisor.countTrailingZeros(); 5415 // Get magic number for the shifted divisor. 5416 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5417 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5418 } 5419 5420 APInt Magic = magics.Magic; 5421 5422 unsigned SelNPQ; 5423 if (magics.IsAdd == 0 || Divisor.isOne()) { 5424 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5425 "We shouldn't generate an undefined shift!"); 5426 PostShift = magics.ShiftAmount; 5427 SelNPQ = false; 5428 } else { 5429 PostShift = magics.ShiftAmount - 1; 5430 SelNPQ = true; 5431 } 5432 5433 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5434 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5435 NPQFactors.push_back( 5436 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5437 : APInt::getZero(EltBits), 5438 dl, SVT)); 5439 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5440 UseNPQ |= SelNPQ; 5441 return true; 5442 }; 5443 5444 SDValue N0 = N->getOperand(0); 5445 SDValue N1 = N->getOperand(1); 5446 5447 // Collect the shifts/magic values from each element. 5448 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5449 return SDValue(); 5450 5451 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5452 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5453 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5454 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5455 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5456 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5457 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5458 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5459 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5460 "Expected matchUnaryPredicate to return one for scalable vectors"); 5461 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5462 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5463 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5464 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5465 } else { 5466 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5467 PreShift = PreShifts[0]; 5468 MagicFactor = MagicFactors[0]; 5469 PostShift = PostShifts[0]; 5470 } 5471 5472 SDValue Q = N0; 5473 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5474 Created.push_back(Q.getNode()); 5475 5476 // FIXME: We should support doing a MUL in a wider type. 5477 auto GetMULHU = [&](SDValue X, SDValue Y) { 5478 // If the type isn't legal, use a wider mul of the the type calculated 5479 // earlier. 5480 if (!isTypeLegal(VT)) { 5481 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5482 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5483 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5484 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5485 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5486 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5487 } 5488 5489 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5490 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5491 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5492 SDValue LoHi = 5493 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5494 return SDValue(LoHi.getNode(), 1); 5495 } 5496 return SDValue(); // No mulhu or equivalent 5497 }; 5498 5499 // Multiply the numerator (operand 0) by the magic value. 5500 Q = GetMULHU(Q, MagicFactor); 5501 if (!Q) 5502 return SDValue(); 5503 5504 Created.push_back(Q.getNode()); 5505 5506 if (UseNPQ) { 5507 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5508 Created.push_back(NPQ.getNode()); 5509 5510 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5511 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5512 if (VT.isVector()) 5513 NPQ = GetMULHU(NPQ, NPQFactor); 5514 else 5515 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5516 5517 Created.push_back(NPQ.getNode()); 5518 5519 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5520 Created.push_back(Q.getNode()); 5521 } 5522 5523 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5524 Created.push_back(Q.getNode()); 5525 5526 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5527 5528 SDValue One = DAG.getConstant(1, dl, VT); 5529 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5530 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5531 } 5532 5533 /// If all values in Values that *don't* match the predicate are same 'splat' 5534 /// value, then replace all values with that splat value. 5535 /// Else, if AlternativeReplacement was provided, then replace all values that 5536 /// do match predicate with AlternativeReplacement value. 5537 static void 5538 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5539 std::function<bool(SDValue)> Predicate, 5540 SDValue AlternativeReplacement = SDValue()) { 5541 SDValue Replacement; 5542 // Is there a value for which the Predicate does *NOT* match? What is it? 5543 auto SplatValue = llvm::find_if_not(Values, Predicate); 5544 if (SplatValue != Values.end()) { 5545 // Does Values consist only of SplatValue's and values matching Predicate? 5546 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5547 return Value == *SplatValue || Predicate(Value); 5548 })) // Then we shall replace values matching predicate with SplatValue. 5549 Replacement = *SplatValue; 5550 } 5551 if (!Replacement) { 5552 // Oops, we did not find the "baseline" splat value. 5553 if (!AlternativeReplacement) 5554 return; // Nothing to do. 5555 // Let's replace with provided value then. 5556 Replacement = AlternativeReplacement; 5557 } 5558 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5559 } 5560 5561 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5562 /// where the divisor is constant and the comparison target is zero, 5563 /// return a DAG expression that will generate the same comparison result 5564 /// using only multiplications, additions and shifts/rotations. 5565 /// Ref: "Hacker's Delight" 10-17. 5566 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5567 SDValue CompTargetNode, 5568 ISD::CondCode Cond, 5569 DAGCombinerInfo &DCI, 5570 const SDLoc &DL) const { 5571 SmallVector<SDNode *, 5> Built; 5572 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5573 DCI, DL, Built)) { 5574 for (SDNode *N : Built) 5575 DCI.AddToWorklist(N); 5576 return Folded; 5577 } 5578 5579 return SDValue(); 5580 } 5581 5582 SDValue 5583 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5584 SDValue CompTargetNode, ISD::CondCode Cond, 5585 DAGCombinerInfo &DCI, const SDLoc &DL, 5586 SmallVectorImpl<SDNode *> &Created) const { 5587 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5588 // - D must be constant, with D = D0 * 2^K where D0 is odd 5589 // - P is the multiplicative inverse of D0 modulo 2^W 5590 // - Q = floor(((2^W) - 1) / D) 5591 // where W is the width of the common type of N and D. 5592 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5593 "Only applicable for (in)equality comparisons."); 5594 5595 SelectionDAG &DAG = DCI.DAG; 5596 5597 EVT VT = REMNode.getValueType(); 5598 EVT SVT = VT.getScalarType(); 5599 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5600 EVT ShSVT = ShVT.getScalarType(); 5601 5602 // If MUL is unavailable, we cannot proceed in any case. 5603 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5604 return SDValue(); 5605 5606 bool ComparingWithAllZeros = true; 5607 bool AllComparisonsWithNonZerosAreTautological = true; 5608 bool HadTautologicalLanes = false; 5609 bool AllLanesAreTautological = true; 5610 bool HadEvenDivisor = false; 5611 bool AllDivisorsArePowerOfTwo = true; 5612 bool HadTautologicalInvertedLanes = false; 5613 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5614 5615 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5616 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5617 if (CDiv->isZero()) 5618 return false; 5619 5620 const APInt &D = CDiv->getAPIntValue(); 5621 const APInt &Cmp = CCmp->getAPIntValue(); 5622 5623 ComparingWithAllZeros &= Cmp.isZero(); 5624 5625 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5626 // if C2 is not less than C1, the comparison is always false. 5627 // But we will only be able to produce the comparison that will give the 5628 // opposive tautological answer. So this lane would need to be fixed up. 5629 bool TautologicalInvertedLane = D.ule(Cmp); 5630 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5631 5632 // If all lanes are tautological (either all divisors are ones, or divisor 5633 // is not greater than the constant we are comparing with), 5634 // we will prefer to avoid the fold. 5635 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5636 HadTautologicalLanes |= TautologicalLane; 5637 AllLanesAreTautological &= TautologicalLane; 5638 5639 // If we are comparing with non-zero, we need'll need to subtract said 5640 // comparison value from the LHS. But there is no point in doing that if 5641 // every lane where we are comparing with non-zero is tautological.. 5642 if (!Cmp.isZero()) 5643 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5644 5645 // Decompose D into D0 * 2^K 5646 unsigned K = D.countTrailingZeros(); 5647 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5648 APInt D0 = D.lshr(K); 5649 5650 // D is even if it has trailing zeros. 5651 HadEvenDivisor |= (K != 0); 5652 // D is a power-of-two if D0 is one. 5653 // If all divisors are power-of-two, we will prefer to avoid the fold. 5654 AllDivisorsArePowerOfTwo &= D0.isOne(); 5655 5656 // P = inv(D0, 2^W) 5657 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5658 unsigned W = D.getBitWidth(); 5659 APInt P = D0.zext(W + 1) 5660 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5661 .trunc(W); 5662 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5663 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5664 5665 // Q = floor((2^W - 1) u/ D) 5666 // R = ((2^W - 1) u% D) 5667 APInt Q, R; 5668 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5669 5670 // If we are comparing with zero, then that comparison constant is okay, 5671 // else it may need to be one less than that. 5672 if (Cmp.ugt(R)) 5673 Q -= 1; 5674 5675 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5676 "We are expecting that K is always less than all-ones for ShSVT"); 5677 5678 // If the lane is tautological the result can be constant-folded. 5679 if (TautologicalLane) { 5680 // Set P and K amount to a bogus values so we can try to splat them. 5681 P = 0; 5682 K = -1; 5683 // And ensure that comparison constant is tautological, 5684 // it will always compare true/false. 5685 Q = -1; 5686 } 5687 5688 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5689 KAmts.push_back( 5690 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5691 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5692 return true; 5693 }; 5694 5695 SDValue N = REMNode.getOperand(0); 5696 SDValue D = REMNode.getOperand(1); 5697 5698 // Collect the values from each element. 5699 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5700 return SDValue(); 5701 5702 // If all lanes are tautological, the result can be constant-folded. 5703 if (AllLanesAreTautological) 5704 return SDValue(); 5705 5706 // If this is a urem by a powers-of-two, avoid the fold since it can be 5707 // best implemented as a bit test. 5708 if (AllDivisorsArePowerOfTwo) 5709 return SDValue(); 5710 5711 SDValue PVal, KVal, QVal; 5712 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5713 if (HadTautologicalLanes) { 5714 // Try to turn PAmts into a splat, since we don't care about the values 5715 // that are currently '0'. If we can't, just keep '0'`s. 5716 turnVectorIntoSplatVector(PAmts, isNullConstant); 5717 // Try to turn KAmts into a splat, since we don't care about the values 5718 // that are currently '-1'. If we can't, change them to '0'`s. 5719 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5720 DAG.getConstant(0, DL, ShSVT)); 5721 } 5722 5723 PVal = DAG.getBuildVector(VT, DL, PAmts); 5724 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5725 QVal = DAG.getBuildVector(VT, DL, QAmts); 5726 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5727 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5728 "Expected matchBinaryPredicate to return one element for " 5729 "SPLAT_VECTORs"); 5730 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5731 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5732 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5733 } else { 5734 PVal = PAmts[0]; 5735 KVal = KAmts[0]; 5736 QVal = QAmts[0]; 5737 } 5738 5739 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5740 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5741 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5742 assert(CompTargetNode.getValueType() == N.getValueType() && 5743 "Expecting that the types on LHS and RHS of comparisons match."); 5744 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5745 } 5746 5747 // (mul N, P) 5748 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5749 Created.push_back(Op0.getNode()); 5750 5751 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5752 // divisors as a performance improvement, since rotating by 0 is a no-op. 5753 if (HadEvenDivisor) { 5754 // We need ROTR to do this. 5755 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5756 return SDValue(); 5757 // UREM: (rotr (mul N, P), K) 5758 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5759 Created.push_back(Op0.getNode()); 5760 } 5761 5762 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5763 SDValue NewCC = 5764 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5765 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5766 if (!HadTautologicalInvertedLanes) 5767 return NewCC; 5768 5769 // If any lanes previously compared always-false, the NewCC will give 5770 // always-true result for them, so we need to fixup those lanes. 5771 // Or the other way around for inequality predicate. 5772 assert(VT.isVector() && "Can/should only get here for vectors."); 5773 Created.push_back(NewCC.getNode()); 5774 5775 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5776 // if C2 is not less than C1, the comparison is always false. 5777 // But we have produced the comparison that will give the 5778 // opposive tautological answer. So these lanes would need to be fixed up. 5779 SDValue TautologicalInvertedChannels = 5780 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5781 Created.push_back(TautologicalInvertedChannels.getNode()); 5782 5783 // NOTE: we avoid letting illegal types through even if we're before legalize 5784 // ops – legalization has a hard time producing good code for this. 5785 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5786 // If we have a vector select, let's replace the comparison results in the 5787 // affected lanes with the correct tautological result. 5788 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5789 DL, SETCCVT, SETCCVT); 5790 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5791 Replacement, NewCC); 5792 } 5793 5794 // Else, we can just invert the comparison result in the appropriate lanes. 5795 // 5796 // NOTE: see the note above VSELECT above. 5797 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5798 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5799 TautologicalInvertedChannels); 5800 5801 return SDValue(); // Don't know how to lower. 5802 } 5803 5804 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5805 /// where the divisor is constant and the comparison target is zero, 5806 /// return a DAG expression that will generate the same comparison result 5807 /// using only multiplications, additions and shifts/rotations. 5808 /// Ref: "Hacker's Delight" 10-17. 5809 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5810 SDValue CompTargetNode, 5811 ISD::CondCode Cond, 5812 DAGCombinerInfo &DCI, 5813 const SDLoc &DL) const { 5814 SmallVector<SDNode *, 7> Built; 5815 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5816 DCI, DL, Built)) { 5817 assert(Built.size() <= 7 && "Max size prediction failed."); 5818 for (SDNode *N : Built) 5819 DCI.AddToWorklist(N); 5820 return Folded; 5821 } 5822 5823 return SDValue(); 5824 } 5825 5826 SDValue 5827 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5828 SDValue CompTargetNode, ISD::CondCode Cond, 5829 DAGCombinerInfo &DCI, const SDLoc &DL, 5830 SmallVectorImpl<SDNode *> &Created) const { 5831 // Fold: 5832 // (seteq/ne (srem N, D), 0) 5833 // To: 5834 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5835 // 5836 // - D must be constant, with D = D0 * 2^K where D0 is odd 5837 // - P is the multiplicative inverse of D0 modulo 2^W 5838 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5839 // - Q = floor((2 * A) / (2^K)) 5840 // where W is the width of the common type of N and D. 5841 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5842 "Only applicable for (in)equality comparisons."); 5843 5844 SelectionDAG &DAG = DCI.DAG; 5845 5846 EVT VT = REMNode.getValueType(); 5847 EVT SVT = VT.getScalarType(); 5848 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5849 EVT ShSVT = ShVT.getScalarType(); 5850 5851 // If we are after ops legalization, and MUL is unavailable, we can not 5852 // proceed. 5853 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5854 return SDValue(); 5855 5856 // TODO: Could support comparing with non-zero too. 5857 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5858 if (!CompTarget || !CompTarget->isZero()) 5859 return SDValue(); 5860 5861 bool HadIntMinDivisor = false; 5862 bool HadOneDivisor = false; 5863 bool AllDivisorsAreOnes = true; 5864 bool HadEvenDivisor = false; 5865 bool NeedToApplyOffset = false; 5866 bool AllDivisorsArePowerOfTwo = true; 5867 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5868 5869 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5870 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5871 if (C->isZero()) 5872 return false; 5873 5874 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5875 5876 // WARNING: this fold is only valid for positive divisors! 5877 APInt D = C->getAPIntValue(); 5878 if (D.isNegative()) 5879 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5880 5881 HadIntMinDivisor |= D.isMinSignedValue(); 5882 5883 // If all divisors are ones, we will prefer to avoid the fold. 5884 HadOneDivisor |= D.isOne(); 5885 AllDivisorsAreOnes &= D.isOne(); 5886 5887 // Decompose D into D0 * 2^K 5888 unsigned K = D.countTrailingZeros(); 5889 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5890 APInt D0 = D.lshr(K); 5891 5892 if (!D.isMinSignedValue()) { 5893 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5894 // we don't care about this lane in this fold, we'll special-handle it. 5895 HadEvenDivisor |= (K != 0); 5896 } 5897 5898 // D is a power-of-two if D0 is one. This includes INT_MIN. 5899 // If all divisors are power-of-two, we will prefer to avoid the fold. 5900 AllDivisorsArePowerOfTwo &= D0.isOne(); 5901 5902 // P = inv(D0, 2^W) 5903 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5904 unsigned W = D.getBitWidth(); 5905 APInt P = D0.zext(W + 1) 5906 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5907 .trunc(W); 5908 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5909 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5910 5911 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5912 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5913 A.clearLowBits(K); 5914 5915 if (!D.isMinSignedValue()) { 5916 // If divisor INT_MIN, then we don't care about this lane in this fold, 5917 // we'll special-handle it. 5918 NeedToApplyOffset |= A != 0; 5919 } 5920 5921 // Q = floor((2 * A) / (2^K)) 5922 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5923 5924 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5925 "We are expecting that A is always less than all-ones for SVT"); 5926 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5927 "We are expecting that K is always less than all-ones for ShSVT"); 5928 5929 // If the divisor is 1 the result can be constant-folded. Likewise, we 5930 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5931 if (D.isOne()) { 5932 // Set P, A and K to a bogus values so we can try to splat them. 5933 P = 0; 5934 A = -1; 5935 K = -1; 5936 5937 // x ?% 1 == 0 <--> true <--> x u<= -1 5938 Q = -1; 5939 } 5940 5941 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5942 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5943 KAmts.push_back( 5944 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5945 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5946 return true; 5947 }; 5948 5949 SDValue N = REMNode.getOperand(0); 5950 SDValue D = REMNode.getOperand(1); 5951 5952 // Collect the values from each element. 5953 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5954 return SDValue(); 5955 5956 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5957 if (AllDivisorsAreOnes) 5958 return SDValue(); 5959 5960 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5961 // since it can be best implemented as a bit test. 5962 if (AllDivisorsArePowerOfTwo) 5963 return SDValue(); 5964 5965 SDValue PVal, AVal, KVal, QVal; 5966 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5967 if (HadOneDivisor) { 5968 // Try to turn PAmts into a splat, since we don't care about the values 5969 // that are currently '0'. If we can't, just keep '0'`s. 5970 turnVectorIntoSplatVector(PAmts, isNullConstant); 5971 // Try to turn AAmts into a splat, since we don't care about the 5972 // values that are currently '-1'. If we can't, change them to '0'`s. 5973 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5974 DAG.getConstant(0, DL, SVT)); 5975 // Try to turn KAmts into a splat, since we don't care about the values 5976 // that are currently '-1'. If we can't, change them to '0'`s. 5977 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5978 DAG.getConstant(0, DL, ShSVT)); 5979 } 5980 5981 PVal = DAG.getBuildVector(VT, DL, PAmts); 5982 AVal = DAG.getBuildVector(VT, DL, AAmts); 5983 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5984 QVal = DAG.getBuildVector(VT, DL, QAmts); 5985 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5986 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5987 QAmts.size() == 1 && 5988 "Expected matchUnaryPredicate to return one element for scalable " 5989 "vectors"); 5990 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5991 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5992 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5993 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5994 } else { 5995 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5996 PVal = PAmts[0]; 5997 AVal = AAmts[0]; 5998 KVal = KAmts[0]; 5999 QVal = QAmts[0]; 6000 } 6001 6002 // (mul N, P) 6003 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6004 Created.push_back(Op0.getNode()); 6005 6006 if (NeedToApplyOffset) { 6007 // We need ADD to do this. 6008 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6009 return SDValue(); 6010 6011 // (add (mul N, P), A) 6012 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6013 Created.push_back(Op0.getNode()); 6014 } 6015 6016 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6017 // divisors as a performance improvement, since rotating by 0 is a no-op. 6018 if (HadEvenDivisor) { 6019 // We need ROTR to do this. 6020 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6021 return SDValue(); 6022 // SREM: (rotr (add (mul N, P), A), K) 6023 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6024 Created.push_back(Op0.getNode()); 6025 } 6026 6027 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6028 SDValue Fold = 6029 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6030 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6031 6032 // If we didn't have lanes with INT_MIN divisor, then we're done. 6033 if (!HadIntMinDivisor) 6034 return Fold; 6035 6036 // That fold is only valid for positive divisors. Which effectively means, 6037 // it is invalid for INT_MIN divisors. So if we have such a lane, 6038 // we must fix-up results for said lanes. 6039 assert(VT.isVector() && "Can/should only get here for vectors."); 6040 6041 // NOTE: we avoid letting illegal types through even if we're before legalize 6042 // ops – legalization has a hard time producing good code for the code that 6043 // follows. 6044 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6045 !isOperationLegalOrCustom(ISD::AND, VT) || 6046 !isOperationLegalOrCustom(Cond, VT) || 6047 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6048 return SDValue(); 6049 6050 Created.push_back(Fold.getNode()); 6051 6052 SDValue IntMin = DAG.getConstant( 6053 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6054 SDValue IntMax = DAG.getConstant( 6055 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6056 SDValue Zero = 6057 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6058 6059 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6060 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6061 Created.push_back(DivisorIsIntMin.getNode()); 6062 6063 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6064 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6065 Created.push_back(Masked.getNode()); 6066 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6067 Created.push_back(MaskedIsZero.getNode()); 6068 6069 // To produce final result we need to blend 2 vectors: 'SetCC' and 6070 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6071 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6072 // constant-folded, select can get lowered to a shuffle with constant mask. 6073 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6074 MaskedIsZero, Fold); 6075 6076 return Blended; 6077 } 6078 6079 bool TargetLowering:: 6080 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6081 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6082 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6083 "be a constant integer"); 6084 return true; 6085 } 6086 6087 return false; 6088 } 6089 6090 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6091 const DenormalMode &Mode) const { 6092 SDLoc DL(Op); 6093 EVT VT = Op.getValueType(); 6094 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6095 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6096 // Testing it with denormal inputs to avoid wrong estimate. 6097 if (Mode.Input == DenormalMode::IEEE) { 6098 // This is specifically a check for the handling of denormal inputs, 6099 // not the result. 6100 6101 // Test = fabs(X) < SmallestNormal 6102 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6103 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6104 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6105 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6106 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6107 } 6108 // Test = X == 0.0 6109 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6110 } 6111 6112 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6113 bool LegalOps, bool OptForSize, 6114 NegatibleCost &Cost, 6115 unsigned Depth) const { 6116 // fneg is removable even if it has multiple uses. 6117 if (Op.getOpcode() == ISD::FNEG) { 6118 Cost = NegatibleCost::Cheaper; 6119 return Op.getOperand(0); 6120 } 6121 6122 // Don't recurse exponentially. 6123 if (Depth > SelectionDAG::MaxRecursionDepth) 6124 return SDValue(); 6125 6126 // Pre-increment recursion depth for use in recursive calls. 6127 ++Depth; 6128 const SDNodeFlags Flags = Op->getFlags(); 6129 const TargetOptions &Options = DAG.getTarget().Options; 6130 EVT VT = Op.getValueType(); 6131 unsigned Opcode = Op.getOpcode(); 6132 6133 // Don't allow anything with multiple uses unless we know it is free. 6134 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6135 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6136 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6137 if (!IsFreeExtend) 6138 return SDValue(); 6139 } 6140 6141 auto RemoveDeadNode = [&](SDValue N) { 6142 if (N && N.getNode()->use_empty()) 6143 DAG.RemoveDeadNode(N.getNode()); 6144 }; 6145 6146 SDLoc DL(Op); 6147 6148 // Because getNegatedExpression can delete nodes we need a handle to keep 6149 // temporary nodes alive in case the recursion manages to create an identical 6150 // node. 6151 std::list<HandleSDNode> Handles; 6152 6153 switch (Opcode) { 6154 case ISD::ConstantFP: { 6155 // Don't invert constant FP values after legalization unless the target says 6156 // the negated constant is legal. 6157 bool IsOpLegal = 6158 isOperationLegal(ISD::ConstantFP, VT) || 6159 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6160 OptForSize); 6161 6162 if (LegalOps && !IsOpLegal) 6163 break; 6164 6165 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6166 V.changeSign(); 6167 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6168 6169 // If we already have the use of the negated floating constant, it is free 6170 // to negate it even it has multiple uses. 6171 if (!Op.hasOneUse() && CFP.use_empty()) 6172 break; 6173 Cost = NegatibleCost::Neutral; 6174 return CFP; 6175 } 6176 case ISD::BUILD_VECTOR: { 6177 // Only permit BUILD_VECTOR of constants. 6178 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6179 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6180 })) 6181 break; 6182 6183 bool IsOpLegal = 6184 (isOperationLegal(ISD::ConstantFP, VT) && 6185 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6186 llvm::all_of(Op->op_values(), [&](SDValue N) { 6187 return N.isUndef() || 6188 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6189 OptForSize); 6190 }); 6191 6192 if (LegalOps && !IsOpLegal) 6193 break; 6194 6195 SmallVector<SDValue, 4> Ops; 6196 for (SDValue C : Op->op_values()) { 6197 if (C.isUndef()) { 6198 Ops.push_back(C); 6199 continue; 6200 } 6201 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6202 V.changeSign(); 6203 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6204 } 6205 Cost = NegatibleCost::Neutral; 6206 return DAG.getBuildVector(VT, DL, Ops); 6207 } 6208 case ISD::FADD: { 6209 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6210 break; 6211 6212 // After operation legalization, it might not be legal to create new FSUBs. 6213 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6214 break; 6215 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6216 6217 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6218 NegatibleCost CostX = NegatibleCost::Expensive; 6219 SDValue NegX = 6220 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6221 // Prevent this node from being deleted by the next call. 6222 if (NegX) 6223 Handles.emplace_back(NegX); 6224 6225 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6226 NegatibleCost CostY = NegatibleCost::Expensive; 6227 SDValue NegY = 6228 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6229 6230 // We're done with the handles. 6231 Handles.clear(); 6232 6233 // Negate the X if its cost is less or equal than Y. 6234 if (NegX && (CostX <= CostY)) { 6235 Cost = CostX; 6236 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6237 if (NegY != N) 6238 RemoveDeadNode(NegY); 6239 return N; 6240 } 6241 6242 // Negate the Y if it is not expensive. 6243 if (NegY) { 6244 Cost = CostY; 6245 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6246 if (NegX != N) 6247 RemoveDeadNode(NegX); 6248 return N; 6249 } 6250 break; 6251 } 6252 case ISD::FSUB: { 6253 // We can't turn -(A-B) into B-A when we honor signed zeros. 6254 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6255 break; 6256 6257 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6258 // fold (fneg (fsub 0, Y)) -> Y 6259 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6260 if (C->isZero()) { 6261 Cost = NegatibleCost::Cheaper; 6262 return Y; 6263 } 6264 6265 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6266 Cost = NegatibleCost::Neutral; 6267 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6268 } 6269 case ISD::FMUL: 6270 case ISD::FDIV: { 6271 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6272 6273 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6274 NegatibleCost CostX = NegatibleCost::Expensive; 6275 SDValue NegX = 6276 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6277 // Prevent this node from being deleted by the next call. 6278 if (NegX) 6279 Handles.emplace_back(NegX); 6280 6281 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6282 NegatibleCost CostY = NegatibleCost::Expensive; 6283 SDValue NegY = 6284 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6285 6286 // We're done with the handles. 6287 Handles.clear(); 6288 6289 // Negate the X if its cost is less or equal than Y. 6290 if (NegX && (CostX <= CostY)) { 6291 Cost = CostX; 6292 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6293 if (NegY != N) 6294 RemoveDeadNode(NegY); 6295 return N; 6296 } 6297 6298 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6299 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6300 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6301 break; 6302 6303 // Negate the Y if it is not expensive. 6304 if (NegY) { 6305 Cost = CostY; 6306 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6307 if (NegX != N) 6308 RemoveDeadNode(NegX); 6309 return N; 6310 } 6311 break; 6312 } 6313 case ISD::FMA: 6314 case ISD::FMAD: { 6315 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6316 break; 6317 6318 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6319 NegatibleCost CostZ = NegatibleCost::Expensive; 6320 SDValue NegZ = 6321 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6322 // Give up if fail to negate the Z. 6323 if (!NegZ) 6324 break; 6325 6326 // Prevent this node from being deleted by the next two calls. 6327 Handles.emplace_back(NegZ); 6328 6329 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6330 NegatibleCost CostX = NegatibleCost::Expensive; 6331 SDValue NegX = 6332 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6333 // Prevent this node from being deleted by the next call. 6334 if (NegX) 6335 Handles.emplace_back(NegX); 6336 6337 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6338 NegatibleCost CostY = NegatibleCost::Expensive; 6339 SDValue NegY = 6340 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6341 6342 // We're done with the handles. 6343 Handles.clear(); 6344 6345 // Negate the X if its cost is less or equal than Y. 6346 if (NegX && (CostX <= CostY)) { 6347 Cost = std::min(CostX, CostZ); 6348 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6349 if (NegY != N) 6350 RemoveDeadNode(NegY); 6351 return N; 6352 } 6353 6354 // Negate the Y if it is not expensive. 6355 if (NegY) { 6356 Cost = std::min(CostY, CostZ); 6357 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6358 if (NegX != N) 6359 RemoveDeadNode(NegX); 6360 return N; 6361 } 6362 break; 6363 } 6364 6365 case ISD::FP_EXTEND: 6366 case ISD::FSIN: 6367 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6368 OptForSize, Cost, Depth)) 6369 return DAG.getNode(Opcode, DL, VT, NegV); 6370 break; 6371 case ISD::FP_ROUND: 6372 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6373 OptForSize, Cost, Depth)) 6374 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6375 break; 6376 } 6377 6378 return SDValue(); 6379 } 6380 6381 //===----------------------------------------------------------------------===// 6382 // Legalization Utilities 6383 //===----------------------------------------------------------------------===// 6384 6385 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6386 SDValue LHS, SDValue RHS, 6387 SmallVectorImpl<SDValue> &Result, 6388 EVT HiLoVT, SelectionDAG &DAG, 6389 MulExpansionKind Kind, SDValue LL, 6390 SDValue LH, SDValue RL, SDValue RH) const { 6391 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6392 Opcode == ISD::SMUL_LOHI); 6393 6394 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6395 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6396 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6397 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6398 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6399 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6400 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6401 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6402 6403 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6404 return false; 6405 6406 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6407 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6408 6409 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6410 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6411 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6412 6413 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6414 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6415 bool Signed) -> bool { 6416 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6417 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6418 Hi = SDValue(Lo.getNode(), 1); 6419 return true; 6420 } 6421 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6422 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6423 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6424 return true; 6425 } 6426 return false; 6427 }; 6428 6429 SDValue Lo, Hi; 6430 6431 if (!LL.getNode() && !RL.getNode() && 6432 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6433 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6434 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6435 } 6436 6437 if (!LL.getNode()) 6438 return false; 6439 6440 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6441 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6442 DAG.MaskedValueIsZero(RHS, HighMask)) { 6443 // The inputs are both zero-extended. 6444 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6445 Result.push_back(Lo); 6446 Result.push_back(Hi); 6447 if (Opcode != ISD::MUL) { 6448 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6449 Result.push_back(Zero); 6450 Result.push_back(Zero); 6451 } 6452 return true; 6453 } 6454 } 6455 6456 if (!VT.isVector() && Opcode == ISD::MUL && 6457 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6458 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6459 // The input values are both sign-extended. 6460 // TODO non-MUL case? 6461 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6462 Result.push_back(Lo); 6463 Result.push_back(Hi); 6464 return true; 6465 } 6466 } 6467 6468 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6469 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6470 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6471 6472 if (!LH.getNode() && !RH.getNode() && 6473 isOperationLegalOrCustom(ISD::SRL, VT) && 6474 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6475 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6476 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6477 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6478 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6479 } 6480 6481 if (!LH.getNode()) 6482 return false; 6483 6484 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6485 return false; 6486 6487 Result.push_back(Lo); 6488 6489 if (Opcode == ISD::MUL) { 6490 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6491 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6492 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6493 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6494 Result.push_back(Hi); 6495 return true; 6496 } 6497 6498 // Compute the full width result. 6499 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6500 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6501 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6502 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6503 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6504 }; 6505 6506 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6507 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6508 return false; 6509 6510 // This is effectively the add part of a multiply-add of half-sized operands, 6511 // so it cannot overflow. 6512 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6513 6514 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6515 return false; 6516 6517 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6518 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6519 6520 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6521 isOperationLegalOrCustom(ISD::ADDE, VT)); 6522 if (UseGlue) 6523 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6524 Merge(Lo, Hi)); 6525 else 6526 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6527 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6528 6529 SDValue Carry = Next.getValue(1); 6530 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6531 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6532 6533 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6534 return false; 6535 6536 if (UseGlue) 6537 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6538 Carry); 6539 else 6540 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6541 Zero, Carry); 6542 6543 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6544 6545 if (Opcode == ISD::SMUL_LOHI) { 6546 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6547 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6548 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6549 6550 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6551 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6552 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6553 } 6554 6555 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6556 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6557 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6558 return true; 6559 } 6560 6561 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6562 SelectionDAG &DAG, MulExpansionKind Kind, 6563 SDValue LL, SDValue LH, SDValue RL, 6564 SDValue RH) const { 6565 SmallVector<SDValue, 2> Result; 6566 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6567 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6568 DAG, Kind, LL, LH, RL, RH); 6569 if (Ok) { 6570 assert(Result.size() == 2); 6571 Lo = Result[0]; 6572 Hi = Result[1]; 6573 } 6574 return Ok; 6575 } 6576 6577 // Check that (every element of) Z is undef or not an exact multiple of BW. 6578 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6579 return ISD::matchUnaryPredicate( 6580 Z, 6581 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6582 true); 6583 } 6584 6585 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6586 SelectionDAG &DAG) const { 6587 EVT VT = Node->getValueType(0); 6588 6589 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6590 !isOperationLegalOrCustom(ISD::SRL, VT) || 6591 !isOperationLegalOrCustom(ISD::SUB, VT) || 6592 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6593 return SDValue(); 6594 6595 SDValue X = Node->getOperand(0); 6596 SDValue Y = Node->getOperand(1); 6597 SDValue Z = Node->getOperand(2); 6598 6599 unsigned BW = VT.getScalarSizeInBits(); 6600 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6601 SDLoc DL(SDValue(Node, 0)); 6602 6603 EVT ShVT = Z.getValueType(); 6604 6605 // If a funnel shift in the other direction is more supported, use it. 6606 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6607 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6608 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6609 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6610 // fshl X, Y, Z -> fshr X, Y, -Z 6611 // fshr X, Y, Z -> fshl X, Y, -Z 6612 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6613 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6614 } else { 6615 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6616 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6617 SDValue One = DAG.getConstant(1, DL, ShVT); 6618 if (IsFSHL) { 6619 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6620 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6621 } else { 6622 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6623 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6624 } 6625 Z = DAG.getNOT(DL, Z, ShVT); 6626 } 6627 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6628 } 6629 6630 SDValue ShX, ShY; 6631 SDValue ShAmt, InvShAmt; 6632 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6633 // fshl: X << C | Y >> (BW - C) 6634 // fshr: X << (BW - C) | Y >> C 6635 // where C = Z % BW is not zero 6636 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6637 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6638 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6639 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6640 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6641 } else { 6642 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6643 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6644 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6645 if (isPowerOf2_32(BW)) { 6646 // Z % BW -> Z & (BW - 1) 6647 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6648 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6649 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6650 } else { 6651 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6652 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6653 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6654 } 6655 6656 SDValue One = DAG.getConstant(1, DL, ShVT); 6657 if (IsFSHL) { 6658 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6659 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6660 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6661 } else { 6662 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6663 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6664 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6665 } 6666 } 6667 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6668 } 6669 6670 // TODO: Merge with expandFunnelShift. 6671 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6672 SelectionDAG &DAG) const { 6673 EVT VT = Node->getValueType(0); 6674 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6675 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6676 SDValue Op0 = Node->getOperand(0); 6677 SDValue Op1 = Node->getOperand(1); 6678 SDLoc DL(SDValue(Node, 0)); 6679 6680 EVT ShVT = Op1.getValueType(); 6681 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6682 6683 // If a rotate in the other direction is more supported, use it. 6684 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6685 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6686 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6687 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6688 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6689 } 6690 6691 if (!AllowVectorOps && VT.isVector() && 6692 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6693 !isOperationLegalOrCustom(ISD::SRL, VT) || 6694 !isOperationLegalOrCustom(ISD::SUB, VT) || 6695 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6696 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6697 return SDValue(); 6698 6699 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6700 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6701 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6702 SDValue ShVal; 6703 SDValue HsVal; 6704 if (isPowerOf2_32(EltSizeInBits)) { 6705 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6706 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6707 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6708 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6709 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6710 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6711 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6712 } else { 6713 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6714 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6715 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6716 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6717 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6718 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6719 SDValue One = DAG.getConstant(1, DL, ShVT); 6720 HsVal = 6721 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6722 } 6723 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6724 } 6725 6726 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6727 SelectionDAG &DAG) const { 6728 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6729 EVT VT = Node->getValueType(0); 6730 unsigned VTBits = VT.getScalarSizeInBits(); 6731 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6732 6733 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6734 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6735 SDValue ShOpLo = Node->getOperand(0); 6736 SDValue ShOpHi = Node->getOperand(1); 6737 SDValue ShAmt = Node->getOperand(2); 6738 EVT ShAmtVT = ShAmt.getValueType(); 6739 EVT ShAmtCCVT = 6740 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6741 SDLoc dl(Node); 6742 6743 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6744 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6745 // away during isel. 6746 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6747 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6748 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6749 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6750 : DAG.getConstant(0, dl, VT); 6751 6752 SDValue Tmp2, Tmp3; 6753 if (IsSHL) { 6754 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6755 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6756 } else { 6757 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6758 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6759 } 6760 6761 // If the shift amount is larger or equal than the width of a part we don't 6762 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6763 // values for large shift amounts. 6764 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6765 DAG.getConstant(VTBits, dl, ShAmtVT)); 6766 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6767 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6768 6769 if (IsSHL) { 6770 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6771 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6772 } else { 6773 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6774 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6775 } 6776 } 6777 6778 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6779 SelectionDAG &DAG) const { 6780 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6781 SDValue Src = Node->getOperand(OpNo); 6782 EVT SrcVT = Src.getValueType(); 6783 EVT DstVT = Node->getValueType(0); 6784 SDLoc dl(SDValue(Node, 0)); 6785 6786 // FIXME: Only f32 to i64 conversions are supported. 6787 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6788 return false; 6789 6790 if (Node->isStrictFPOpcode()) 6791 // When a NaN is converted to an integer a trap is allowed. We can't 6792 // use this expansion here because it would eliminate that trap. Other 6793 // traps are also allowed and cannot be eliminated. See 6794 // IEEE 754-2008 sec 5.8. 6795 return false; 6796 6797 // Expand f32 -> i64 conversion 6798 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6799 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6800 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6801 EVT IntVT = SrcVT.changeTypeToInteger(); 6802 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6803 6804 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6805 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6806 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6807 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6808 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6809 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6810 6811 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6812 6813 SDValue ExponentBits = DAG.getNode( 6814 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6815 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6816 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6817 6818 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6819 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6820 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6821 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6822 6823 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6824 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6825 DAG.getConstant(0x00800000, dl, IntVT)); 6826 6827 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6828 6829 R = DAG.getSelectCC( 6830 dl, Exponent, ExponentLoBit, 6831 DAG.getNode(ISD::SHL, dl, DstVT, R, 6832 DAG.getZExtOrTrunc( 6833 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6834 dl, IntShVT)), 6835 DAG.getNode(ISD::SRL, dl, DstVT, R, 6836 DAG.getZExtOrTrunc( 6837 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6838 dl, IntShVT)), 6839 ISD::SETGT); 6840 6841 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6842 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6843 6844 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6845 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6846 return true; 6847 } 6848 6849 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6850 SDValue &Chain, 6851 SelectionDAG &DAG) const { 6852 SDLoc dl(SDValue(Node, 0)); 6853 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6854 SDValue Src = Node->getOperand(OpNo); 6855 6856 EVT SrcVT = Src.getValueType(); 6857 EVT DstVT = Node->getValueType(0); 6858 EVT SetCCVT = 6859 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6860 EVT DstSetCCVT = 6861 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6862 6863 // Only expand vector types if we have the appropriate vector bit operations. 6864 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6865 ISD::FP_TO_SINT; 6866 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6867 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6868 return false; 6869 6870 // If the maximum float value is smaller then the signed integer range, 6871 // the destination signmask can't be represented by the float, so we can 6872 // just use FP_TO_SINT directly. 6873 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6874 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6875 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6876 if (APFloat::opOverflow & 6877 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6878 if (Node->isStrictFPOpcode()) { 6879 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6880 { Node->getOperand(0), Src }); 6881 Chain = Result.getValue(1); 6882 } else 6883 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6884 return true; 6885 } 6886 6887 // Don't expand it if there isn't cheap fsub instruction. 6888 if (!isOperationLegalOrCustom( 6889 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6890 return false; 6891 6892 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6893 SDValue Sel; 6894 6895 if (Node->isStrictFPOpcode()) { 6896 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6897 Node->getOperand(0), /*IsSignaling*/ true); 6898 Chain = Sel.getValue(1); 6899 } else { 6900 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6901 } 6902 6903 bool Strict = Node->isStrictFPOpcode() || 6904 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6905 6906 if (Strict) { 6907 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6908 // signmask then offset (the result of which should be fully representable). 6909 // Sel = Src < 0x8000000000000000 6910 // FltOfs = select Sel, 0, 0x8000000000000000 6911 // IntOfs = select Sel, 0, 0x8000000000000000 6912 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6913 6914 // TODO: Should any fast-math-flags be set for the FSUB? 6915 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6916 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6917 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6918 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6919 DAG.getConstant(0, dl, DstVT), 6920 DAG.getConstant(SignMask, dl, DstVT)); 6921 SDValue SInt; 6922 if (Node->isStrictFPOpcode()) { 6923 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6924 { Chain, Src, FltOfs }); 6925 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6926 { Val.getValue(1), Val }); 6927 Chain = SInt.getValue(1); 6928 } else { 6929 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6930 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6931 } 6932 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6933 } else { 6934 // Expand based on maximum range of FP_TO_SINT: 6935 // True = fp_to_sint(Src) 6936 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6937 // Result = select (Src < 0x8000000000000000), True, False 6938 6939 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6940 // TODO: Should any fast-math-flags be set for the FSUB? 6941 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6942 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6943 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6944 DAG.getConstant(SignMask, dl, DstVT)); 6945 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6946 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6947 } 6948 return true; 6949 } 6950 6951 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6952 SDValue &Chain, 6953 SelectionDAG &DAG) const { 6954 // This transform is not correct for converting 0 when rounding mode is set 6955 // to round toward negative infinity which will produce -0.0. So disable under 6956 // strictfp. 6957 if (Node->isStrictFPOpcode()) 6958 return false; 6959 6960 SDValue Src = Node->getOperand(0); 6961 EVT SrcVT = Src.getValueType(); 6962 EVT DstVT = Node->getValueType(0); 6963 6964 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6965 return false; 6966 6967 // Only expand vector types if we have the appropriate vector bit operations. 6968 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6969 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6970 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6971 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6972 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6973 return false; 6974 6975 SDLoc dl(SDValue(Node, 0)); 6976 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6977 6978 // Implementation of unsigned i64 to f64 following the algorithm in 6979 // __floatundidf in compiler_rt. This implementation performs rounding 6980 // correctly in all rounding modes with the exception of converting 0 6981 // when rounding toward negative infinity. In that case the fsub will produce 6982 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6983 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6984 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6985 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6986 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6987 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6988 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6989 6990 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6991 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6992 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6993 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6994 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6995 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6996 SDValue HiSub = 6997 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6998 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6999 return true; 7000 } 7001 7002 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7003 SelectionDAG &DAG) const { 7004 SDLoc dl(Node); 7005 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7006 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7007 EVT VT = Node->getValueType(0); 7008 7009 if (VT.isScalableVector()) 7010 report_fatal_error( 7011 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7012 7013 if (isOperationLegalOrCustom(NewOp, VT)) { 7014 SDValue Quiet0 = Node->getOperand(0); 7015 SDValue Quiet1 = Node->getOperand(1); 7016 7017 if (!Node->getFlags().hasNoNaNs()) { 7018 // Insert canonicalizes if it's possible we need to quiet to get correct 7019 // sNaN behavior. 7020 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7021 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7022 Node->getFlags()); 7023 } 7024 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7025 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7026 Node->getFlags()); 7027 } 7028 } 7029 7030 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7031 } 7032 7033 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7034 // instead if there are no NaNs. 7035 if (Node->getFlags().hasNoNaNs()) { 7036 unsigned IEEE2018Op = 7037 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7038 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7039 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7040 Node->getOperand(1), Node->getFlags()); 7041 } 7042 } 7043 7044 // If none of the above worked, but there are no NaNs, then expand to 7045 // a compare/select sequence. This is required for correctness since 7046 // InstCombine might have canonicalized a fcmp+select sequence to a 7047 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7048 // expansion to libcall, we might introduce a link-time dependency 7049 // on libm into a file that originally did not have one. 7050 if (Node->getFlags().hasNoNaNs()) { 7051 ISD::CondCode Pred = 7052 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7053 SDValue Op1 = Node->getOperand(0); 7054 SDValue Op2 = Node->getOperand(1); 7055 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7056 // Copy FMF flags, but always set the no-signed-zeros flag 7057 // as this is implied by the FMINNUM/FMAXNUM semantics. 7058 SDNodeFlags Flags = Node->getFlags(); 7059 Flags.setNoSignedZeros(true); 7060 SelCC->setFlags(Flags); 7061 return SelCC; 7062 } 7063 7064 return SDValue(); 7065 } 7066 7067 // Only expand vector types if we have the appropriate vector bit operations. 7068 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7069 assert(VT.isVector() && "Expected vector type"); 7070 unsigned Len = VT.getScalarSizeInBits(); 7071 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7072 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7073 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7074 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7075 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7076 } 7077 7078 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7079 SDLoc dl(Node); 7080 EVT VT = Node->getValueType(0); 7081 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7082 SDValue Op = Node->getOperand(0); 7083 unsigned Len = VT.getScalarSizeInBits(); 7084 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7085 7086 // TODO: Add support for irregular type lengths. 7087 if (!(Len <= 128 && Len % 8 == 0)) 7088 return SDValue(); 7089 7090 // Only expand vector types if we have the appropriate vector bit operations. 7091 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7092 return SDValue(); 7093 7094 // This is the "best" algorithm from 7095 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7096 SDValue Mask55 = 7097 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7098 SDValue Mask33 = 7099 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7100 SDValue Mask0F = 7101 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7102 SDValue Mask01 = 7103 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7104 7105 // v = v - ((v >> 1) & 0x55555555...) 7106 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7107 DAG.getNode(ISD::AND, dl, VT, 7108 DAG.getNode(ISD::SRL, dl, VT, Op, 7109 DAG.getConstant(1, dl, ShVT)), 7110 Mask55)); 7111 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7112 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7113 DAG.getNode(ISD::AND, dl, VT, 7114 DAG.getNode(ISD::SRL, dl, VT, Op, 7115 DAG.getConstant(2, dl, ShVT)), 7116 Mask33)); 7117 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7118 Op = DAG.getNode(ISD::AND, dl, VT, 7119 DAG.getNode(ISD::ADD, dl, VT, Op, 7120 DAG.getNode(ISD::SRL, dl, VT, Op, 7121 DAG.getConstant(4, dl, ShVT))), 7122 Mask0F); 7123 // v = (v * 0x01010101...) >> (Len - 8) 7124 if (Len > 8) 7125 Op = 7126 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7127 DAG.getConstant(Len - 8, dl, ShVT)); 7128 7129 return Op; 7130 } 7131 7132 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7133 SDLoc dl(Node); 7134 EVT VT = Node->getValueType(0); 7135 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7136 SDValue Op = Node->getOperand(0); 7137 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7138 7139 // If the non-ZERO_UNDEF version is supported we can use that instead. 7140 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7141 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7142 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7143 7144 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7145 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7146 EVT SetCCVT = 7147 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7148 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7149 SDValue Zero = DAG.getConstant(0, dl, VT); 7150 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7151 return DAG.getSelect(dl, VT, SrcIsZero, 7152 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7153 } 7154 7155 // Only expand vector types if we have the appropriate vector bit operations. 7156 // This includes the operations needed to expand CTPOP if it isn't supported. 7157 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7158 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7159 !canExpandVectorCTPOP(*this, VT)) || 7160 !isOperationLegalOrCustom(ISD::SRL, VT) || 7161 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7162 return SDValue(); 7163 7164 // for now, we do this: 7165 // x = x | (x >> 1); 7166 // x = x | (x >> 2); 7167 // ... 7168 // x = x | (x >>16); 7169 // x = x | (x >>32); // for 64-bit input 7170 // return popcount(~x); 7171 // 7172 // Ref: "Hacker's Delight" by Henry Warren 7173 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7174 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7175 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7176 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7177 } 7178 Op = DAG.getNOT(dl, Op, VT); 7179 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7180 } 7181 7182 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7183 SDLoc dl(Node); 7184 EVT VT = Node->getValueType(0); 7185 SDValue Op = Node->getOperand(0); 7186 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7187 7188 // If the non-ZERO_UNDEF version is supported we can use that instead. 7189 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7190 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7191 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7192 7193 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7194 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7195 EVT SetCCVT = 7196 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7197 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7198 SDValue Zero = DAG.getConstant(0, dl, VT); 7199 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7200 return DAG.getSelect(dl, VT, SrcIsZero, 7201 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7202 } 7203 7204 // Only expand vector types if we have the appropriate vector bit operations. 7205 // This includes the operations needed to expand CTPOP if it isn't supported. 7206 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7207 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7208 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7209 !canExpandVectorCTPOP(*this, VT)) || 7210 !isOperationLegalOrCustom(ISD::SUB, VT) || 7211 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7212 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7213 return SDValue(); 7214 7215 // for now, we use: { return popcount(~x & (x - 1)); } 7216 // unless the target has ctlz but not ctpop, in which case we use: 7217 // { return 32 - nlz(~x & (x-1)); } 7218 // Ref: "Hacker's Delight" by Henry Warren 7219 SDValue Tmp = DAG.getNode( 7220 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7221 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7222 7223 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7224 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7225 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7226 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7227 } 7228 7229 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7230 } 7231 7232 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7233 bool IsNegative) const { 7234 SDLoc dl(N); 7235 EVT VT = N->getValueType(0); 7236 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7237 SDValue Op = N->getOperand(0); 7238 7239 // abs(x) -> smax(x,sub(0,x)) 7240 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7241 isOperationLegal(ISD::SMAX, VT)) { 7242 SDValue Zero = DAG.getConstant(0, dl, VT); 7243 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7244 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7245 } 7246 7247 // abs(x) -> umin(x,sub(0,x)) 7248 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7249 isOperationLegal(ISD::UMIN, VT)) { 7250 SDValue Zero = DAG.getConstant(0, dl, VT); 7251 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7252 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7253 } 7254 7255 // 0 - abs(x) -> smin(x, sub(0,x)) 7256 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7257 isOperationLegal(ISD::SMIN, VT)) { 7258 SDValue Zero = DAG.getConstant(0, dl, VT); 7259 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7260 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7261 } 7262 7263 // Only expand vector types if we have the appropriate vector operations. 7264 if (VT.isVector() && 7265 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7266 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7267 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7268 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7269 return SDValue(); 7270 7271 SDValue Shift = 7272 DAG.getNode(ISD::SRA, dl, VT, Op, 7273 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7274 if (!IsNegative) { 7275 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7276 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7277 } 7278 7279 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7280 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7281 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7282 } 7283 7284 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7285 SDLoc dl(N); 7286 EVT VT = N->getValueType(0); 7287 SDValue Op = N->getOperand(0); 7288 7289 if (!VT.isSimple()) 7290 return SDValue(); 7291 7292 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7293 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7294 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7295 default: 7296 return SDValue(); 7297 case MVT::i16: 7298 // Use a rotate by 8. This can be further expanded if necessary. 7299 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7300 case MVT::i32: 7301 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7302 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7303 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7304 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7305 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7306 DAG.getConstant(0xFF0000, dl, VT)); 7307 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7308 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7309 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7310 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7311 case MVT::i64: 7312 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7313 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7314 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7315 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7316 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7317 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7318 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7319 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7320 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7321 DAG.getConstant(255ULL<<48, dl, VT)); 7322 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7323 DAG.getConstant(255ULL<<40, dl, VT)); 7324 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7325 DAG.getConstant(255ULL<<32, dl, VT)); 7326 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7327 DAG.getConstant(255ULL<<24, dl, VT)); 7328 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7329 DAG.getConstant(255ULL<<16, dl, VT)); 7330 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7331 DAG.getConstant(255ULL<<8 , dl, VT)); 7332 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7333 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7334 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7335 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7336 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7337 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7338 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7339 } 7340 } 7341 7342 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7343 SDLoc dl(N); 7344 EVT VT = N->getValueType(0); 7345 SDValue Op = N->getOperand(0); 7346 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7347 unsigned Sz = VT.getScalarSizeInBits(); 7348 7349 SDValue Tmp, Tmp2, Tmp3; 7350 7351 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7352 // and finally the i1 pairs. 7353 // TODO: We can easily support i4/i2 legal types if any target ever does. 7354 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7355 // Create the masks - repeating the pattern every byte. 7356 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7357 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7358 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7359 7360 // BSWAP if the type is wider than a single byte. 7361 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7362 7363 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7364 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7365 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7366 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7367 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7368 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7369 7370 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7371 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7372 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7373 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7374 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7375 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7376 7377 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7378 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7379 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7380 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7381 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7382 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7383 return Tmp; 7384 } 7385 7386 Tmp = DAG.getConstant(0, dl, VT); 7387 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7388 if (I < J) 7389 Tmp2 = 7390 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7391 else 7392 Tmp2 = 7393 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7394 7395 APInt Shift(Sz, 1); 7396 Shift <<= J; 7397 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7398 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7399 } 7400 7401 return Tmp; 7402 } 7403 7404 std::pair<SDValue, SDValue> 7405 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7406 SelectionDAG &DAG) const { 7407 SDLoc SL(LD); 7408 SDValue Chain = LD->getChain(); 7409 SDValue BasePTR = LD->getBasePtr(); 7410 EVT SrcVT = LD->getMemoryVT(); 7411 EVT DstVT = LD->getValueType(0); 7412 ISD::LoadExtType ExtType = LD->getExtensionType(); 7413 7414 if (SrcVT.isScalableVector()) 7415 report_fatal_error("Cannot scalarize scalable vector loads"); 7416 7417 unsigned NumElem = SrcVT.getVectorNumElements(); 7418 7419 EVT SrcEltVT = SrcVT.getScalarType(); 7420 EVT DstEltVT = DstVT.getScalarType(); 7421 7422 // A vector must always be stored in memory as-is, i.e. without any padding 7423 // between the elements, since various code depend on it, e.g. in the 7424 // handling of a bitcast of a vector type to int, which may be done with a 7425 // vector store followed by an integer load. A vector that does not have 7426 // elements that are byte-sized must therefore be stored as an integer 7427 // built out of the extracted vector elements. 7428 if (!SrcEltVT.isByteSized()) { 7429 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7430 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7431 7432 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7433 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7434 7435 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7436 SDValue SrcEltBitMask = DAG.getConstant( 7437 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7438 7439 // Load the whole vector and avoid masking off the top bits as it makes 7440 // the codegen worse. 7441 SDValue Load = 7442 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7443 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7444 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7445 7446 SmallVector<SDValue, 8> Vals; 7447 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7448 unsigned ShiftIntoIdx = 7449 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7450 SDValue ShiftAmount = 7451 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7452 LoadVT, SL, /*LegalTypes=*/false); 7453 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7454 SDValue Elt = 7455 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7456 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7457 7458 if (ExtType != ISD::NON_EXTLOAD) { 7459 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7460 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7461 } 7462 7463 Vals.push_back(Scalar); 7464 } 7465 7466 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7467 return std::make_pair(Value, Load.getValue(1)); 7468 } 7469 7470 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7471 assert(SrcEltVT.isByteSized()); 7472 7473 SmallVector<SDValue, 8> Vals; 7474 SmallVector<SDValue, 8> LoadChains; 7475 7476 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7477 SDValue ScalarLoad = 7478 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7479 LD->getPointerInfo().getWithOffset(Idx * Stride), 7480 SrcEltVT, LD->getOriginalAlign(), 7481 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7482 7483 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7484 7485 Vals.push_back(ScalarLoad.getValue(0)); 7486 LoadChains.push_back(ScalarLoad.getValue(1)); 7487 } 7488 7489 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7490 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7491 7492 return std::make_pair(Value, NewChain); 7493 } 7494 7495 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7496 SelectionDAG &DAG) const { 7497 SDLoc SL(ST); 7498 7499 SDValue Chain = ST->getChain(); 7500 SDValue BasePtr = ST->getBasePtr(); 7501 SDValue Value = ST->getValue(); 7502 EVT StVT = ST->getMemoryVT(); 7503 7504 if (StVT.isScalableVector()) 7505 report_fatal_error("Cannot scalarize scalable vector stores"); 7506 7507 // The type of the data we want to save 7508 EVT RegVT = Value.getValueType(); 7509 EVT RegSclVT = RegVT.getScalarType(); 7510 7511 // The type of data as saved in memory. 7512 EVT MemSclVT = StVT.getScalarType(); 7513 7514 unsigned NumElem = StVT.getVectorNumElements(); 7515 7516 // A vector must always be stored in memory as-is, i.e. without any padding 7517 // between the elements, since various code depend on it, e.g. in the 7518 // handling of a bitcast of a vector type to int, which may be done with a 7519 // vector store followed by an integer load. A vector that does not have 7520 // elements that are byte-sized must therefore be stored as an integer 7521 // built out of the extracted vector elements. 7522 if (!MemSclVT.isByteSized()) { 7523 unsigned NumBits = StVT.getSizeInBits(); 7524 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7525 7526 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7527 7528 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7529 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7530 DAG.getVectorIdxConstant(Idx, SL)); 7531 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7532 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7533 unsigned ShiftIntoIdx = 7534 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7535 SDValue ShiftAmount = 7536 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7537 SDValue ShiftedElt = 7538 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7539 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7540 } 7541 7542 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7543 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7544 ST->getAAInfo()); 7545 } 7546 7547 // Store Stride in bytes 7548 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7549 assert(Stride && "Zero stride!"); 7550 // Extract each of the elements from the original vector and save them into 7551 // memory individually. 7552 SmallVector<SDValue, 8> Stores; 7553 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7554 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7555 DAG.getVectorIdxConstant(Idx, SL)); 7556 7557 SDValue Ptr = 7558 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7559 7560 // This scalar TruncStore may be illegal, but we legalize it later. 7561 SDValue Store = DAG.getTruncStore( 7562 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7563 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7564 ST->getAAInfo()); 7565 7566 Stores.push_back(Store); 7567 } 7568 7569 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7570 } 7571 7572 std::pair<SDValue, SDValue> 7573 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7574 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7575 "unaligned indexed loads not implemented!"); 7576 SDValue Chain = LD->getChain(); 7577 SDValue Ptr = LD->getBasePtr(); 7578 EVT VT = LD->getValueType(0); 7579 EVT LoadedVT = LD->getMemoryVT(); 7580 SDLoc dl(LD); 7581 auto &MF = DAG.getMachineFunction(); 7582 7583 if (VT.isFloatingPoint() || VT.isVector()) { 7584 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7585 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7586 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7587 LoadedVT.isVector()) { 7588 // Scalarize the load and let the individual components be handled. 7589 return scalarizeVectorLoad(LD, DAG); 7590 } 7591 7592 // Expand to a (misaligned) integer load of the same size, 7593 // then bitconvert to floating point or vector. 7594 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7595 LD->getMemOperand()); 7596 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7597 if (LoadedVT != VT) 7598 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7599 ISD::ANY_EXTEND, dl, VT, Result); 7600 7601 return std::make_pair(Result, newLoad.getValue(1)); 7602 } 7603 7604 // Copy the value to a (aligned) stack slot using (unaligned) integer 7605 // loads and stores, then do a (aligned) load from the stack slot. 7606 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7607 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7608 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7609 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7610 7611 // Make sure the stack slot is also aligned for the register type. 7612 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7613 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7614 SmallVector<SDValue, 8> Stores; 7615 SDValue StackPtr = StackBase; 7616 unsigned Offset = 0; 7617 7618 EVT PtrVT = Ptr.getValueType(); 7619 EVT StackPtrVT = StackPtr.getValueType(); 7620 7621 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7622 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7623 7624 // Do all but one copies using the full register width. 7625 for (unsigned i = 1; i < NumRegs; i++) { 7626 // Load one integer register's worth from the original location. 7627 SDValue Load = DAG.getLoad( 7628 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7629 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7630 LD->getAAInfo()); 7631 // Follow the load with a store to the stack slot. Remember the store. 7632 Stores.push_back(DAG.getStore( 7633 Load.getValue(1), dl, Load, StackPtr, 7634 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7635 // Increment the pointers. 7636 Offset += RegBytes; 7637 7638 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7639 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7640 } 7641 7642 // The last copy may be partial. Do an extending load. 7643 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7644 8 * (LoadedBytes - Offset)); 7645 SDValue Load = 7646 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7647 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7648 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7649 LD->getAAInfo()); 7650 // Follow the load with a store to the stack slot. Remember the store. 7651 // On big-endian machines this requires a truncating store to ensure 7652 // that the bits end up in the right place. 7653 Stores.push_back(DAG.getTruncStore( 7654 Load.getValue(1), dl, Load, StackPtr, 7655 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7656 7657 // The order of the stores doesn't matter - say it with a TokenFactor. 7658 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7659 7660 // Finally, perform the original load only redirected to the stack slot. 7661 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7662 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7663 LoadedVT); 7664 7665 // Callers expect a MERGE_VALUES node. 7666 return std::make_pair(Load, TF); 7667 } 7668 7669 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7670 "Unaligned load of unsupported type."); 7671 7672 // Compute the new VT that is half the size of the old one. This is an 7673 // integer MVT. 7674 unsigned NumBits = LoadedVT.getSizeInBits(); 7675 EVT NewLoadedVT; 7676 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7677 NumBits >>= 1; 7678 7679 Align Alignment = LD->getOriginalAlign(); 7680 unsigned IncrementSize = NumBits / 8; 7681 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7682 7683 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7684 if (HiExtType == ISD::NON_EXTLOAD) 7685 HiExtType = ISD::ZEXTLOAD; 7686 7687 // Load the value in two parts 7688 SDValue Lo, Hi; 7689 if (DAG.getDataLayout().isLittleEndian()) { 7690 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7691 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7692 LD->getAAInfo()); 7693 7694 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7695 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7696 LD->getPointerInfo().getWithOffset(IncrementSize), 7697 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7698 LD->getAAInfo()); 7699 } else { 7700 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7701 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7702 LD->getAAInfo()); 7703 7704 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7705 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7706 LD->getPointerInfo().getWithOffset(IncrementSize), 7707 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7708 LD->getAAInfo()); 7709 } 7710 7711 // aggregate the two parts 7712 SDValue ShiftAmount = 7713 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7714 DAG.getDataLayout())); 7715 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7716 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7717 7718 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7719 Hi.getValue(1)); 7720 7721 return std::make_pair(Result, TF); 7722 } 7723 7724 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7725 SelectionDAG &DAG) const { 7726 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7727 "unaligned indexed stores not implemented!"); 7728 SDValue Chain = ST->getChain(); 7729 SDValue Ptr = ST->getBasePtr(); 7730 SDValue Val = ST->getValue(); 7731 EVT VT = Val.getValueType(); 7732 Align Alignment = ST->getOriginalAlign(); 7733 auto &MF = DAG.getMachineFunction(); 7734 EVT StoreMemVT = ST->getMemoryVT(); 7735 7736 SDLoc dl(ST); 7737 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7738 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7739 if (isTypeLegal(intVT)) { 7740 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7741 StoreMemVT.isVector()) { 7742 // Scalarize the store and let the individual components be handled. 7743 SDValue Result = scalarizeVectorStore(ST, DAG); 7744 return Result; 7745 } 7746 // Expand to a bitconvert of the value to the integer type of the 7747 // same size, then a (misaligned) int store. 7748 // FIXME: Does not handle truncating floating point stores! 7749 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7750 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7751 Alignment, ST->getMemOperand()->getFlags()); 7752 return Result; 7753 } 7754 // Do a (aligned) store to a stack slot, then copy from the stack slot 7755 // to the final destination using (unaligned) integer loads and stores. 7756 MVT RegVT = getRegisterType( 7757 *DAG.getContext(), 7758 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7759 EVT PtrVT = Ptr.getValueType(); 7760 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7761 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7762 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7763 7764 // Make sure the stack slot is also aligned for the register type. 7765 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7766 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7767 7768 // Perform the original store, only redirected to the stack slot. 7769 SDValue Store = DAG.getTruncStore( 7770 Chain, dl, Val, StackPtr, 7771 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7772 7773 EVT StackPtrVT = StackPtr.getValueType(); 7774 7775 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7776 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7777 SmallVector<SDValue, 8> Stores; 7778 unsigned Offset = 0; 7779 7780 // Do all but one copies using the full register width. 7781 for (unsigned i = 1; i < NumRegs; i++) { 7782 // Load one integer register's worth from the stack slot. 7783 SDValue Load = DAG.getLoad( 7784 RegVT, dl, Store, StackPtr, 7785 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7786 // Store it to the final location. Remember the store. 7787 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7788 ST->getPointerInfo().getWithOffset(Offset), 7789 ST->getOriginalAlign(), 7790 ST->getMemOperand()->getFlags())); 7791 // Increment the pointers. 7792 Offset += RegBytes; 7793 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7794 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7795 } 7796 7797 // The last store may be partial. Do a truncating store. On big-endian 7798 // machines this requires an extending load from the stack slot to ensure 7799 // that the bits are in the right place. 7800 EVT LoadMemVT = 7801 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7802 7803 // Load from the stack slot. 7804 SDValue Load = DAG.getExtLoad( 7805 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7806 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7807 7808 Stores.push_back( 7809 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7810 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7811 ST->getOriginalAlign(), 7812 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7813 // The order of the stores doesn't matter - say it with a TokenFactor. 7814 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7815 return Result; 7816 } 7817 7818 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7819 "Unaligned store of unknown type."); 7820 // Get the half-size VT 7821 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7822 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7823 unsigned IncrementSize = NumBits / 8; 7824 7825 // Divide the stored value in two parts. 7826 SDValue ShiftAmount = DAG.getConstant( 7827 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7828 SDValue Lo = Val; 7829 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7830 7831 // Store the two parts 7832 SDValue Store1, Store2; 7833 Store1 = DAG.getTruncStore(Chain, dl, 7834 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7835 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7836 ST->getMemOperand()->getFlags()); 7837 7838 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7839 Store2 = DAG.getTruncStore( 7840 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7841 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7842 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7843 7844 SDValue Result = 7845 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7846 return Result; 7847 } 7848 7849 SDValue 7850 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7851 const SDLoc &DL, EVT DataVT, 7852 SelectionDAG &DAG, 7853 bool IsCompressedMemory) const { 7854 SDValue Increment; 7855 EVT AddrVT = Addr.getValueType(); 7856 EVT MaskVT = Mask.getValueType(); 7857 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7858 "Incompatible types of Data and Mask"); 7859 if (IsCompressedMemory) { 7860 if (DataVT.isScalableVector()) 7861 report_fatal_error( 7862 "Cannot currently handle compressed memory with scalable vectors"); 7863 // Incrementing the pointer according to number of '1's in the mask. 7864 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7865 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7866 if (MaskIntVT.getSizeInBits() < 32) { 7867 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7868 MaskIntVT = MVT::i32; 7869 } 7870 7871 // Count '1's with POPCNT. 7872 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7873 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7874 // Scale is an element size in bytes. 7875 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7876 AddrVT); 7877 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7878 } else if (DataVT.isScalableVector()) { 7879 Increment = DAG.getVScale(DL, AddrVT, 7880 APInt(AddrVT.getFixedSizeInBits(), 7881 DataVT.getStoreSize().getKnownMinSize())); 7882 } else 7883 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7884 7885 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7886 } 7887 7888 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7889 EVT VecVT, const SDLoc &dl, 7890 ElementCount SubEC) { 7891 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7892 "Cannot index a scalable vector within a fixed-width vector"); 7893 7894 unsigned NElts = VecVT.getVectorMinNumElements(); 7895 unsigned NumSubElts = SubEC.getKnownMinValue(); 7896 EVT IdxVT = Idx.getValueType(); 7897 7898 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7899 // If this is a constant index and we know the value plus the number of the 7900 // elements in the subvector minus one is less than the minimum number of 7901 // elements then it's safe to return Idx. 7902 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7903 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7904 return Idx; 7905 SDValue VS = 7906 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7907 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7908 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7909 DAG.getConstant(NumSubElts, dl, IdxVT)); 7910 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7911 } 7912 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7913 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7914 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7915 DAG.getConstant(Imm, dl, IdxVT)); 7916 } 7917 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7918 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7919 DAG.getConstant(MaxIndex, dl, IdxVT)); 7920 } 7921 7922 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7923 SDValue VecPtr, EVT VecVT, 7924 SDValue Index) const { 7925 return getVectorSubVecPointer( 7926 DAG, VecPtr, VecVT, 7927 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7928 Index); 7929 } 7930 7931 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7932 SDValue VecPtr, EVT VecVT, 7933 EVT SubVecVT, 7934 SDValue Index) const { 7935 SDLoc dl(Index); 7936 // Make sure the index type is big enough to compute in. 7937 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7938 7939 EVT EltVT = VecVT.getVectorElementType(); 7940 7941 // Calculate the element offset and add it to the pointer. 7942 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7943 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7944 "Converting bits to bytes lost precision"); 7945 assert(SubVecVT.getVectorElementType() == EltVT && 7946 "Sub-vector must be a vector with matching element type"); 7947 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7948 SubVecVT.getVectorElementCount()); 7949 7950 EVT IdxVT = Index.getValueType(); 7951 if (SubVecVT.isScalableVector()) 7952 Index = 7953 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7954 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7955 7956 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7957 DAG.getConstant(EltSize, dl, IdxVT)); 7958 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7959 } 7960 7961 //===----------------------------------------------------------------------===// 7962 // Implementation of Emulated TLS Model 7963 //===----------------------------------------------------------------------===// 7964 7965 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7966 SelectionDAG &DAG) const { 7967 // Access to address of TLS varialbe xyz is lowered to a function call: 7968 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7969 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7970 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7971 SDLoc dl(GA); 7972 7973 ArgListTy Args; 7974 ArgListEntry Entry; 7975 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7976 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7977 StringRef EmuTlsVarName(NameString); 7978 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7979 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7980 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7981 Entry.Ty = VoidPtrType; 7982 Args.push_back(Entry); 7983 7984 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7985 7986 TargetLowering::CallLoweringInfo CLI(DAG); 7987 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7988 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7989 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7990 7991 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7992 // At last for X86 targets, maybe good for other targets too? 7993 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7994 MFI.setAdjustsStack(true); // Is this only for X86 target? 7995 MFI.setHasCalls(true); 7996 7997 assert((GA->getOffset() == 0) && 7998 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7999 return CallResult.first; 8000 } 8001 8002 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8003 SelectionDAG &DAG) const { 8004 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8005 if (!isCtlzFast()) 8006 return SDValue(); 8007 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8008 SDLoc dl(Op); 8009 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8010 if (C->isZero() && CC == ISD::SETEQ) { 8011 EVT VT = Op.getOperand(0).getValueType(); 8012 SDValue Zext = Op.getOperand(0); 8013 if (VT.bitsLT(MVT::i32)) { 8014 VT = MVT::i32; 8015 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8016 } 8017 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8018 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8019 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8020 DAG.getConstant(Log2b, dl, MVT::i32)); 8021 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8022 } 8023 } 8024 return SDValue(); 8025 } 8026 8027 // Convert redundant addressing modes (e.g. scaling is redundant 8028 // when accessing bytes). 8029 ISD::MemIndexType 8030 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8031 SDValue Offsets) const { 8032 bool IsScaledIndex = 8033 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8034 bool IsSignedIndex = 8035 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8036 8037 // Scaling is unimportant for bytes, canonicalize to unscaled. 8038 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8039 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8040 8041 return IndexType; 8042 } 8043 8044 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8045 SDValue Op0 = Node->getOperand(0); 8046 SDValue Op1 = Node->getOperand(1); 8047 EVT VT = Op0.getValueType(); 8048 unsigned Opcode = Node->getOpcode(); 8049 SDLoc DL(Node); 8050 8051 // umin(x,y) -> sub(x,usubsat(x,y)) 8052 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8053 isOperationLegal(ISD::USUBSAT, VT)) { 8054 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8055 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8056 } 8057 8058 // umax(x,y) -> add(x,usubsat(y,x)) 8059 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8060 isOperationLegal(ISD::USUBSAT, VT)) { 8061 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8062 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8063 } 8064 8065 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8066 ISD::CondCode CC; 8067 switch (Opcode) { 8068 default: llvm_unreachable("How did we get here?"); 8069 case ISD::SMAX: CC = ISD::SETGT; break; 8070 case ISD::SMIN: CC = ISD::SETLT; break; 8071 case ISD::UMAX: CC = ISD::SETUGT; break; 8072 case ISD::UMIN: CC = ISD::SETULT; break; 8073 } 8074 8075 // FIXME: Should really try to split the vector in case it's legal on a 8076 // subvector. 8077 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8078 return DAG.UnrollVectorOp(Node); 8079 8080 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8081 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8082 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8083 } 8084 8085 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8086 unsigned Opcode = Node->getOpcode(); 8087 SDValue LHS = Node->getOperand(0); 8088 SDValue RHS = Node->getOperand(1); 8089 EVT VT = LHS.getValueType(); 8090 SDLoc dl(Node); 8091 8092 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8093 assert(VT.isInteger() && "Expected operands to be integers"); 8094 8095 // usub.sat(a, b) -> umax(a, b) - b 8096 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8097 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8098 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8099 } 8100 8101 // uadd.sat(a, b) -> umin(a, ~b) + b 8102 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8103 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8104 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8105 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8106 } 8107 8108 unsigned OverflowOp; 8109 switch (Opcode) { 8110 case ISD::SADDSAT: 8111 OverflowOp = ISD::SADDO; 8112 break; 8113 case ISD::UADDSAT: 8114 OverflowOp = ISD::UADDO; 8115 break; 8116 case ISD::SSUBSAT: 8117 OverflowOp = ISD::SSUBO; 8118 break; 8119 case ISD::USUBSAT: 8120 OverflowOp = ISD::USUBO; 8121 break; 8122 default: 8123 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8124 "addition or subtraction node."); 8125 } 8126 8127 // FIXME: Should really try to split the vector in case it's legal on a 8128 // subvector. 8129 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8130 return DAG.UnrollVectorOp(Node); 8131 8132 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8133 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8134 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8135 SDValue SumDiff = Result.getValue(0); 8136 SDValue Overflow = Result.getValue(1); 8137 SDValue Zero = DAG.getConstant(0, dl, VT); 8138 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8139 8140 if (Opcode == ISD::UADDSAT) { 8141 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8142 // (LHS + RHS) | OverflowMask 8143 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8144 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8145 } 8146 // Overflow ? 0xffff.... : (LHS + RHS) 8147 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8148 } 8149 8150 if (Opcode == ISD::USUBSAT) { 8151 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8152 // (LHS - RHS) & ~OverflowMask 8153 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8154 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8155 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8156 } 8157 // Overflow ? 0 : (LHS - RHS) 8158 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8159 } 8160 8161 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8162 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8163 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8164 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8165 DAG.getConstant(BitWidth - 1, dl, VT)); 8166 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8167 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8168 } 8169 8170 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8171 unsigned Opcode = Node->getOpcode(); 8172 bool IsSigned = Opcode == ISD::SSHLSAT; 8173 SDValue LHS = Node->getOperand(0); 8174 SDValue RHS = Node->getOperand(1); 8175 EVT VT = LHS.getValueType(); 8176 SDLoc dl(Node); 8177 8178 assert((Node->getOpcode() == ISD::SSHLSAT || 8179 Node->getOpcode() == ISD::USHLSAT) && 8180 "Expected a SHLSAT opcode"); 8181 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8182 assert(VT.isInteger() && "Expected operands to be integers"); 8183 8184 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8185 8186 unsigned BW = VT.getScalarSizeInBits(); 8187 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8188 SDValue Orig = 8189 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8190 8191 SDValue SatVal; 8192 if (IsSigned) { 8193 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8194 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8195 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8196 SatMin, SatMax, ISD::SETLT); 8197 } else { 8198 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8199 } 8200 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8201 8202 return Result; 8203 } 8204 8205 SDValue 8206 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8207 assert((Node->getOpcode() == ISD::SMULFIX || 8208 Node->getOpcode() == ISD::UMULFIX || 8209 Node->getOpcode() == ISD::SMULFIXSAT || 8210 Node->getOpcode() == ISD::UMULFIXSAT) && 8211 "Expected a fixed point multiplication opcode"); 8212 8213 SDLoc dl(Node); 8214 SDValue LHS = Node->getOperand(0); 8215 SDValue RHS = Node->getOperand(1); 8216 EVT VT = LHS.getValueType(); 8217 unsigned Scale = Node->getConstantOperandVal(2); 8218 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8219 Node->getOpcode() == ISD::UMULFIXSAT); 8220 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8221 Node->getOpcode() == ISD::SMULFIXSAT); 8222 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8223 unsigned VTSize = VT.getScalarSizeInBits(); 8224 8225 if (!Scale) { 8226 // [us]mul.fix(a, b, 0) -> mul(a, b) 8227 if (!Saturating) { 8228 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8229 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8230 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8231 SDValue Result = 8232 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8233 SDValue Product = Result.getValue(0); 8234 SDValue Overflow = Result.getValue(1); 8235 SDValue Zero = DAG.getConstant(0, dl, VT); 8236 8237 APInt MinVal = APInt::getSignedMinValue(VTSize); 8238 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8239 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8240 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8241 // Xor the inputs, if resulting sign bit is 0 the product will be 8242 // positive, else negative. 8243 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8244 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8245 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8246 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8247 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8248 SDValue Result = 8249 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8250 SDValue Product = Result.getValue(0); 8251 SDValue Overflow = Result.getValue(1); 8252 8253 APInt MaxVal = APInt::getMaxValue(VTSize); 8254 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8255 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8256 } 8257 } 8258 8259 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8260 "Expected scale to be less than the number of bits if signed or at " 8261 "most the number of bits if unsigned."); 8262 assert(LHS.getValueType() == RHS.getValueType() && 8263 "Expected both operands to be the same type"); 8264 8265 // Get the upper and lower bits of the result. 8266 SDValue Lo, Hi; 8267 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8268 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8269 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8270 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8271 Lo = Result.getValue(0); 8272 Hi = Result.getValue(1); 8273 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8274 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8275 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8276 } else if (VT.isVector()) { 8277 return SDValue(); 8278 } else { 8279 report_fatal_error("Unable to expand fixed point multiplication."); 8280 } 8281 8282 if (Scale == VTSize) 8283 // Result is just the top half since we'd be shifting by the width of the 8284 // operand. Overflow impossible so this works for both UMULFIX and 8285 // UMULFIXSAT. 8286 return Hi; 8287 8288 // The result will need to be shifted right by the scale since both operands 8289 // are scaled. The result is given to us in 2 halves, so we only want part of 8290 // both in the result. 8291 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8292 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8293 DAG.getConstant(Scale, dl, ShiftTy)); 8294 if (!Saturating) 8295 return Result; 8296 8297 if (!Signed) { 8298 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8299 // widened multiplication) aren't all zeroes. 8300 8301 // Saturate to max if ((Hi >> Scale) != 0), 8302 // which is the same as if (Hi > ((1 << Scale) - 1)) 8303 APInt MaxVal = APInt::getMaxValue(VTSize); 8304 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8305 dl, VT); 8306 Result = DAG.getSelectCC(dl, Hi, LowMask, 8307 DAG.getConstant(MaxVal, dl, VT), Result, 8308 ISD::SETUGT); 8309 8310 return Result; 8311 } 8312 8313 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8314 // widened multiplication) aren't all ones or all zeroes. 8315 8316 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8317 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8318 8319 if (Scale == 0) { 8320 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8321 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8322 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8323 // Saturated to SatMin if wide product is negative, and SatMax if wide 8324 // product is positive ... 8325 SDValue Zero = DAG.getConstant(0, dl, VT); 8326 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8327 ISD::SETLT); 8328 // ... but only if we overflowed. 8329 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8330 } 8331 8332 // We handled Scale==0 above so all the bits to examine is in Hi. 8333 8334 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8335 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8336 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8337 dl, VT); 8338 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8339 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8340 // which is the same as if (HI < (-1 << (Scale - 1)) 8341 SDValue HighMask = 8342 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8343 dl, VT); 8344 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8345 return Result; 8346 } 8347 8348 SDValue 8349 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8350 SDValue LHS, SDValue RHS, 8351 unsigned Scale, SelectionDAG &DAG) const { 8352 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8353 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8354 "Expected a fixed point division opcode"); 8355 8356 EVT VT = LHS.getValueType(); 8357 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8358 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8359 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8360 8361 // If there is enough room in the type to upscale the LHS or downscale the 8362 // RHS before the division, we can perform it in this type without having to 8363 // resize. For signed operations, the LHS headroom is the number of 8364 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8365 // The headroom for the RHS is the number of trailing zeroes. 8366 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8367 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8368 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8369 8370 // For signed saturating operations, we need to be able to detect true integer 8371 // division overflow; that is, when you have MIN / -EPS. However, this 8372 // is undefined behavior and if we emit divisions that could take such 8373 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8374 // example). 8375 // Avoid this by requiring an extra bit so that we never get this case. 8376 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8377 // signed saturating division, we need to emit a whopping 32-bit division. 8378 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8379 return SDValue(); 8380 8381 unsigned LHSShift = std::min(LHSLead, Scale); 8382 unsigned RHSShift = Scale - LHSShift; 8383 8384 // At this point, we know that if we shift the LHS up by LHSShift and the 8385 // RHS down by RHSShift, we can emit a regular division with a final scaling 8386 // factor of Scale. 8387 8388 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8389 if (LHSShift) 8390 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8391 DAG.getConstant(LHSShift, dl, ShiftTy)); 8392 if (RHSShift) 8393 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8394 DAG.getConstant(RHSShift, dl, ShiftTy)); 8395 8396 SDValue Quot; 8397 if (Signed) { 8398 // For signed operations, if the resulting quotient is negative and the 8399 // remainder is nonzero, subtract 1 from the quotient to round towards 8400 // negative infinity. 8401 SDValue Rem; 8402 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8403 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8404 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8405 if (isTypeLegal(VT) && 8406 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8407 Quot = DAG.getNode(ISD::SDIVREM, dl, 8408 DAG.getVTList(VT, VT), 8409 LHS, RHS); 8410 Rem = Quot.getValue(1); 8411 Quot = Quot.getValue(0); 8412 } else { 8413 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8414 LHS, RHS); 8415 Rem = DAG.getNode(ISD::SREM, dl, VT, 8416 LHS, RHS); 8417 } 8418 SDValue Zero = DAG.getConstant(0, dl, VT); 8419 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8420 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8421 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8422 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8423 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8424 DAG.getConstant(1, dl, VT)); 8425 Quot = DAG.getSelect(dl, VT, 8426 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8427 Sub1, Quot); 8428 } else 8429 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8430 LHS, RHS); 8431 8432 return Quot; 8433 } 8434 8435 void TargetLowering::expandUADDSUBO( 8436 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8437 SDLoc dl(Node); 8438 SDValue LHS = Node->getOperand(0); 8439 SDValue RHS = Node->getOperand(1); 8440 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8441 8442 // If ADD/SUBCARRY is legal, use that instead. 8443 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8444 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8445 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8446 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8447 { LHS, RHS, CarryIn }); 8448 Result = SDValue(NodeCarry.getNode(), 0); 8449 Overflow = SDValue(NodeCarry.getNode(), 1); 8450 return; 8451 } 8452 8453 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8454 LHS.getValueType(), LHS, RHS); 8455 8456 EVT ResultType = Node->getValueType(1); 8457 EVT SetCCType = getSetCCResultType( 8458 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8459 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8460 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8461 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8462 } 8463 8464 void TargetLowering::expandSADDSUBO( 8465 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8466 SDLoc dl(Node); 8467 SDValue LHS = Node->getOperand(0); 8468 SDValue RHS = Node->getOperand(1); 8469 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8470 8471 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8472 LHS.getValueType(), LHS, RHS); 8473 8474 EVT ResultType = Node->getValueType(1); 8475 EVT OType = getSetCCResultType( 8476 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8477 8478 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8479 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8480 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8481 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8482 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8483 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8484 return; 8485 } 8486 8487 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8488 8489 // For an addition, the result should be less than one of the operands (LHS) 8490 // if and only if the other operand (RHS) is negative, otherwise there will 8491 // be overflow. 8492 // For a subtraction, the result should be less than one of the operands 8493 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8494 // otherwise there will be overflow. 8495 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8496 SDValue ConditionRHS = 8497 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8498 8499 Overflow = DAG.getBoolExtOrTrunc( 8500 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8501 ResultType, ResultType); 8502 } 8503 8504 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8505 SDValue &Overflow, SelectionDAG &DAG) const { 8506 SDLoc dl(Node); 8507 EVT VT = Node->getValueType(0); 8508 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8509 SDValue LHS = Node->getOperand(0); 8510 SDValue RHS = Node->getOperand(1); 8511 bool isSigned = Node->getOpcode() == ISD::SMULO; 8512 8513 // For power-of-two multiplications we can use a simpler shift expansion. 8514 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8515 const APInt &C = RHSC->getAPIntValue(); 8516 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8517 if (C.isPowerOf2()) { 8518 // smulo(x, signed_min) is same as umulo(x, signed_min). 8519 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8520 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8521 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8522 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8523 Overflow = DAG.getSetCC(dl, SetCCVT, 8524 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8525 dl, VT, Result, ShiftAmt), 8526 LHS, ISD::SETNE); 8527 return true; 8528 } 8529 } 8530 8531 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8532 if (VT.isVector()) 8533 WideVT = 8534 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8535 8536 SDValue BottomHalf; 8537 SDValue TopHalf; 8538 static const unsigned Ops[2][3] = 8539 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8540 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8541 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8542 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8543 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8544 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8545 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8546 RHS); 8547 TopHalf = BottomHalf.getValue(1); 8548 } else if (isTypeLegal(WideVT)) { 8549 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8550 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8551 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8552 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8553 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8554 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8555 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8556 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8557 } else { 8558 if (VT.isVector()) 8559 return false; 8560 8561 // We can fall back to a libcall with an illegal type for the MUL if we 8562 // have a libcall big enough. 8563 // Also, we can fall back to a division in some cases, but that's a big 8564 // performance hit in the general case. 8565 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8566 if (WideVT == MVT::i16) 8567 LC = RTLIB::MUL_I16; 8568 else if (WideVT == MVT::i32) 8569 LC = RTLIB::MUL_I32; 8570 else if (WideVT == MVT::i64) 8571 LC = RTLIB::MUL_I64; 8572 else if (WideVT == MVT::i128) 8573 LC = RTLIB::MUL_I128; 8574 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8575 8576 SDValue HiLHS; 8577 SDValue HiRHS; 8578 if (isSigned) { 8579 // The high part is obtained by SRA'ing all but one of the bits of low 8580 // part. 8581 unsigned LoSize = VT.getFixedSizeInBits(); 8582 HiLHS = 8583 DAG.getNode(ISD::SRA, dl, VT, LHS, 8584 DAG.getConstant(LoSize - 1, dl, 8585 getPointerTy(DAG.getDataLayout()))); 8586 HiRHS = 8587 DAG.getNode(ISD::SRA, dl, VT, RHS, 8588 DAG.getConstant(LoSize - 1, dl, 8589 getPointerTy(DAG.getDataLayout()))); 8590 } else { 8591 HiLHS = DAG.getConstant(0, dl, VT); 8592 HiRHS = DAG.getConstant(0, dl, VT); 8593 } 8594 8595 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8596 // pre-lowered to the correct types. This all depends upon WideVT not 8597 // being a legal type for the architecture and thus has to be split to 8598 // two arguments. 8599 SDValue Ret; 8600 TargetLowering::MakeLibCallOptions CallOptions; 8601 CallOptions.setSExt(isSigned); 8602 CallOptions.setIsPostTypeLegalization(true); 8603 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8604 // Halves of WideVT are packed into registers in different order 8605 // depending on platform endianness. This is usually handled by 8606 // the C calling convention, but we can't defer to it in 8607 // the legalizer. 8608 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8609 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8610 } else { 8611 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8612 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8613 } 8614 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8615 "Ret value is a collection of constituent nodes holding result."); 8616 if (DAG.getDataLayout().isLittleEndian()) { 8617 // Same as above. 8618 BottomHalf = Ret.getOperand(0); 8619 TopHalf = Ret.getOperand(1); 8620 } else { 8621 BottomHalf = Ret.getOperand(1); 8622 TopHalf = Ret.getOperand(0); 8623 } 8624 } 8625 8626 Result = BottomHalf; 8627 if (isSigned) { 8628 SDValue ShiftAmt = DAG.getConstant( 8629 VT.getScalarSizeInBits() - 1, dl, 8630 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8631 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8632 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8633 } else { 8634 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8635 DAG.getConstant(0, dl, VT), ISD::SETNE); 8636 } 8637 8638 // Truncate the result if SetCC returns a larger type than needed. 8639 EVT RType = Node->getValueType(1); 8640 if (RType.bitsLT(Overflow.getValueType())) 8641 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8642 8643 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8644 "Unexpected result type for S/UMULO legalization"); 8645 return true; 8646 } 8647 8648 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8649 SDLoc dl(Node); 8650 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8651 SDValue Op = Node->getOperand(0); 8652 EVT VT = Op.getValueType(); 8653 8654 if (VT.isScalableVector()) 8655 report_fatal_error( 8656 "Expanding reductions for scalable vectors is undefined."); 8657 8658 // Try to use a shuffle reduction for power of two vectors. 8659 if (VT.isPow2VectorType()) { 8660 while (VT.getVectorNumElements() > 1) { 8661 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8662 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8663 break; 8664 8665 SDValue Lo, Hi; 8666 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8667 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8668 VT = HalfVT; 8669 } 8670 } 8671 8672 EVT EltVT = VT.getVectorElementType(); 8673 unsigned NumElts = VT.getVectorNumElements(); 8674 8675 SmallVector<SDValue, 8> Ops; 8676 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8677 8678 SDValue Res = Ops[0]; 8679 for (unsigned i = 1; i < NumElts; i++) 8680 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8681 8682 // Result type may be wider than element type. 8683 if (EltVT != Node->getValueType(0)) 8684 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8685 return Res; 8686 } 8687 8688 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8689 SDLoc dl(Node); 8690 SDValue AccOp = Node->getOperand(0); 8691 SDValue VecOp = Node->getOperand(1); 8692 SDNodeFlags Flags = Node->getFlags(); 8693 8694 EVT VT = VecOp.getValueType(); 8695 EVT EltVT = VT.getVectorElementType(); 8696 8697 if (VT.isScalableVector()) 8698 report_fatal_error( 8699 "Expanding reductions for scalable vectors is undefined."); 8700 8701 unsigned NumElts = VT.getVectorNumElements(); 8702 8703 SmallVector<SDValue, 8> Ops; 8704 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8705 8706 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8707 8708 SDValue Res = AccOp; 8709 for (unsigned i = 0; i < NumElts; i++) 8710 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8711 8712 return Res; 8713 } 8714 8715 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8716 SelectionDAG &DAG) const { 8717 EVT VT = Node->getValueType(0); 8718 SDLoc dl(Node); 8719 bool isSigned = Node->getOpcode() == ISD::SREM; 8720 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8721 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8722 SDValue Dividend = Node->getOperand(0); 8723 SDValue Divisor = Node->getOperand(1); 8724 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8725 SDVTList VTs = DAG.getVTList(VT, VT); 8726 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8727 return true; 8728 } 8729 if (isOperationLegalOrCustom(DivOpc, VT)) { 8730 // X % Y -> X-X/Y*Y 8731 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8732 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8733 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8734 return true; 8735 } 8736 return false; 8737 } 8738 8739 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8740 SelectionDAG &DAG) const { 8741 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8742 SDLoc dl(SDValue(Node, 0)); 8743 SDValue Src = Node->getOperand(0); 8744 8745 // DstVT is the result type, while SatVT is the size to which we saturate 8746 EVT SrcVT = Src.getValueType(); 8747 EVT DstVT = Node->getValueType(0); 8748 8749 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8750 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8751 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8752 assert(SatWidth <= DstWidth && 8753 "Expected saturation width smaller than result width"); 8754 8755 // Determine minimum and maximum integer values and their corresponding 8756 // floating-point values. 8757 APInt MinInt, MaxInt; 8758 if (IsSigned) { 8759 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8760 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8761 } else { 8762 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8763 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8764 } 8765 8766 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8767 // libcall emission cannot handle this. Large result types will fail. 8768 if (SrcVT == MVT::f16) { 8769 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8770 SrcVT = Src.getValueType(); 8771 } 8772 8773 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8774 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8775 8776 APFloat::opStatus MinStatus = 8777 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8778 APFloat::opStatus MaxStatus = 8779 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8780 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8781 !(MaxStatus & APFloat::opStatus::opInexact); 8782 8783 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8784 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8785 8786 // If the integer bounds are exactly representable as floats and min/max are 8787 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8788 // of comparisons and selects. 8789 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8790 isOperationLegal(ISD::FMAXNUM, SrcVT); 8791 if (AreExactFloatBounds && MinMaxLegal) { 8792 SDValue Clamped = Src; 8793 8794 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8795 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8796 // Clamp by MaxFloat from above. NaN cannot occur. 8797 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8798 // Convert clamped value to integer. 8799 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8800 dl, DstVT, Clamped); 8801 8802 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8803 // which will cast to zero. 8804 if (!IsSigned) 8805 return FpToInt; 8806 8807 // Otherwise, select 0 if Src is NaN. 8808 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8809 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8810 ISD::CondCode::SETUO); 8811 } 8812 8813 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8814 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8815 8816 // Result of direct conversion. The assumption here is that the operation is 8817 // non-trapping and it's fine to apply it to an out-of-range value if we 8818 // select it away later. 8819 SDValue FpToInt = 8820 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8821 8822 SDValue Select = FpToInt; 8823 8824 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8825 // MinInt if Src is NaN. 8826 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8827 ISD::CondCode::SETULT); 8828 // If Src OGT MaxFloat, select MaxInt. 8829 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8830 ISD::CondCode::SETOGT); 8831 8832 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8833 // is already zero. 8834 if (!IsSigned) 8835 return Select; 8836 8837 // Otherwise, select 0 if Src is NaN. 8838 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8839 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8840 } 8841 8842 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8843 SelectionDAG &DAG) const { 8844 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8845 assert(Node->getValueType(0).isScalableVector() && 8846 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8847 8848 EVT VT = Node->getValueType(0); 8849 SDValue V1 = Node->getOperand(0); 8850 SDValue V2 = Node->getOperand(1); 8851 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8852 SDLoc DL(Node); 8853 8854 // Expand through memory thusly: 8855 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8856 // Store V1, Ptr 8857 // Store V2, Ptr + sizeof(V1) 8858 // If (Imm < 0) 8859 // TrailingElts = -Imm 8860 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8861 // else 8862 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8863 // Res = Load Ptr 8864 8865 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8866 8867 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8868 VT.getVectorElementCount() * 2); 8869 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8870 EVT PtrVT = StackPtr.getValueType(); 8871 auto &MF = DAG.getMachineFunction(); 8872 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8873 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8874 8875 // Store the lo part of CONCAT_VECTORS(V1, V2) 8876 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8877 // Store the hi part of CONCAT_VECTORS(V1, V2) 8878 SDValue OffsetToV2 = DAG.getVScale( 8879 DL, PtrVT, 8880 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8881 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8882 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8883 8884 if (Imm >= 0) { 8885 // Load back the required element. getVectorElementPointer takes care of 8886 // clamping the index if it's out-of-bounds. 8887 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8888 // Load the spliced result 8889 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8890 MachinePointerInfo::getUnknownStack(MF)); 8891 } 8892 8893 uint64_t TrailingElts = -Imm; 8894 8895 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8896 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8897 SDValue TrailingBytes = 8898 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8899 8900 if (TrailingElts > VT.getVectorMinNumElements()) { 8901 SDValue VLBytes = DAG.getVScale( 8902 DL, PtrVT, 8903 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8904 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8905 } 8906 8907 // Calculate the start address of the spliced result. 8908 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8909 8910 // Load the spliced result 8911 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8912 MachinePointerInfo::getUnknownStack(MF)); 8913 } 8914 8915 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8916 SDValue &LHS, SDValue &RHS, 8917 SDValue &CC, bool &NeedInvert, 8918 const SDLoc &dl, SDValue &Chain, 8919 bool IsSignaling) const { 8920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8921 MVT OpVT = LHS.getSimpleValueType(); 8922 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8923 NeedInvert = false; 8924 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8925 default: 8926 llvm_unreachable("Unknown condition code action!"); 8927 case TargetLowering::Legal: 8928 // Nothing to do. 8929 break; 8930 case TargetLowering::Expand: { 8931 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8932 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8933 std::swap(LHS, RHS); 8934 CC = DAG.getCondCode(InvCC); 8935 return true; 8936 } 8937 // Swapping operands didn't work. Try inverting the condition. 8938 bool NeedSwap = false; 8939 InvCC = getSetCCInverse(CCCode, OpVT); 8940 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8941 // If inverting the condition is not enough, try swapping operands 8942 // on top of it. 8943 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8944 NeedSwap = true; 8945 } 8946 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8947 CC = DAG.getCondCode(InvCC); 8948 NeedInvert = true; 8949 if (NeedSwap) 8950 std::swap(LHS, RHS); 8951 return true; 8952 } 8953 8954 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8955 unsigned Opc = 0; 8956 switch (CCCode) { 8957 default: 8958 llvm_unreachable("Don't know how to expand this condition!"); 8959 case ISD::SETUO: 8960 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8961 CC1 = ISD::SETUNE; 8962 CC2 = ISD::SETUNE; 8963 Opc = ISD::OR; 8964 break; 8965 } 8966 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8967 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8968 NeedInvert = true; 8969 LLVM_FALLTHROUGH; 8970 case ISD::SETO: 8971 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8972 "If SETO is expanded, SETOEQ must be legal!"); 8973 CC1 = ISD::SETOEQ; 8974 CC2 = ISD::SETOEQ; 8975 Opc = ISD::AND; 8976 break; 8977 case ISD::SETONE: 8978 case ISD::SETUEQ: 8979 // If the SETUO or SETO CC isn't legal, we might be able to use 8980 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8981 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8982 // the operands. 8983 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8984 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8985 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8986 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8987 CC1 = ISD::SETOGT; 8988 CC2 = ISD::SETOLT; 8989 Opc = ISD::OR; 8990 NeedInvert = ((unsigned)CCCode & 0x8U); 8991 break; 8992 } 8993 LLVM_FALLTHROUGH; 8994 case ISD::SETOEQ: 8995 case ISD::SETOGT: 8996 case ISD::SETOGE: 8997 case ISD::SETOLT: 8998 case ISD::SETOLE: 8999 case ISD::SETUNE: 9000 case ISD::SETUGT: 9001 case ISD::SETUGE: 9002 case ISD::SETULT: 9003 case ISD::SETULE: 9004 // If we are floating point, assign and break, otherwise fall through. 9005 if (!OpVT.isInteger()) { 9006 // We can use the 4th bit to tell if we are the unordered 9007 // or ordered version of the opcode. 9008 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9009 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9010 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9011 break; 9012 } 9013 // Fallthrough if we are unsigned integer. 9014 LLVM_FALLTHROUGH; 9015 case ISD::SETLE: 9016 case ISD::SETGT: 9017 case ISD::SETGE: 9018 case ISD::SETLT: 9019 case ISD::SETNE: 9020 case ISD::SETEQ: 9021 // If all combinations of inverting the condition and swapping operands 9022 // didn't work then we have no means to expand the condition. 9023 llvm_unreachable("Don't know how to expand this condition!"); 9024 } 9025 9026 SDValue SetCC1, SetCC2; 9027 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9028 // If we aren't the ordered or unorder operation, 9029 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9030 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9031 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9032 } else { 9033 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9034 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9035 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9036 } 9037 if (Chain) 9038 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9039 SetCC2.getValue(1)); 9040 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9041 RHS = SDValue(); 9042 CC = SDValue(); 9043 return true; 9044 } 9045 } 9046 return false; 9047 } 9048