1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135 }
136 
137 /// Generate a libcall taking the given operands as arguments and returning a
138 /// result of type RetVT.
139 std::pair<SDValue, SDValue>
140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141                             ArrayRef<SDValue> Ops,
142                             MakeLibCallOptions CallOptions,
143                             const SDLoc &dl,
144                             SDValue InChain) const {
145   if (!InChain)
146     InChain = DAG.getEntryNode();
147 
148   TargetLowering::ArgListTy Args;
149   Args.reserve(Ops.size());
150 
151   TargetLowering::ArgListEntry Entry;
152   for (unsigned i = 0; i < Ops.size(); ++i) {
153     SDValue NewOp = Ops[i];
154     Entry.Node = NewOp;
155     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157                                                  CallOptions.IsSExt);
158     Entry.IsZExt = !Entry.IsSExt;
159 
160     if (CallOptions.IsSoften &&
161         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162       Entry.IsSExt = Entry.IsZExt = false;
163     }
164     Args.push_back(Entry);
165   }
166 
167   if (LC == RTLIB::UNKNOWN_LIBCALL)
168     report_fatal_error("Unsupported library call operation!");
169   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170                                          getPointerTy(DAG.getDataLayout()));
171 
172   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173   TargetLowering::CallLoweringInfo CLI(DAG);
174   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175   bool zeroExtend = !signExtend;
176 
177   if (CallOptions.IsSoften &&
178       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179     signExtend = zeroExtend = false;
180   }
181 
182   CLI.setDebugLoc(dl)
183       .setChain(InChain)
184       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185       .setNoReturn(CallOptions.DoesNotReturn)
186       .setDiscardResult(!CallOptions.IsReturnValueUsed)
187       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188       .setSExtResult(signExtend)
189       .setZExtResult(zeroExtend);
190   return LowerCallTo(CLI);
191 }
192 
193 bool TargetLowering::findOptimalMemOpLowering(
194     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195     unsigned SrcAS, const AttributeList &FuncAttributes) const {
196   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200 
201   if (VT == MVT::Other) {
202     // Use the largest integer type whose alignment constraints are satisfied.
203     // We only need to check DstAlign here as SrcAlign is always greater or
204     // equal to DstAlign (or zero).
205     VT = MVT::i64;
206     if (Op.isFixedDstAlign())
207       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210     assert(VT.isInteger());
211 
212     // Find the largest legal integer type.
213     MVT LVT = MVT::i64;
214     while (!isTypeLegal(LVT))
215       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216     assert(LVT.isInteger());
217 
218     // If the type we've chosen is larger than the largest legal integer type
219     // then use that instead.
220     if (VT.bitsGT(LVT))
221       VT = LVT;
222   }
223 
224   unsigned NumMemOps = 0;
225   uint64_t Size = Op.size();
226   while (Size) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(
262               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263               MachineMemOperand::MONone, &Fast) &&
264           Fast)
265         VTSize = Size;
266       else {
267         VT = NewVT;
268         VTSize = NewVTSize;
269       }
270     }
271 
272     if (++NumMemOps > Limit)
273       return false;
274 
275     MemOps.push_back(VT);
276     Size -= VTSize;
277   }
278 
279   return true;
280 }
281 
282 /// Soften the operands of a comparison. This code is shared among BR_CC,
283 /// SELECT_CC, and SETCC handlers.
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS) const {
289   SDValue Chain;
290   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291                              OldRHS, Chain);
292 }
293 
294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295                                          SDValue &NewLHS, SDValue &NewRHS,
296                                          ISD::CondCode &CCCode,
297                                          const SDLoc &dl, const SDValue OldLHS,
298                                          const SDValue OldRHS,
299                                          SDValue &Chain,
300                                          bool IsSignaling) const {
301   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302   // not supporting it. We can update this code when libgcc provides such
303   // functions.
304 
305   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
306          && "Unsupported setcc type!");
307 
308   // Expand into one or more soft-fp libcall(s).
309   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310   bool ShouldInvertCC = false;
311   switch (CCCode) {
312   case ISD::SETEQ:
313   case ISD::SETOEQ:
314     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317     break;
318   case ISD::SETNE:
319   case ISD::SETUNE:
320     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321           (VT == MVT::f64) ? RTLIB::UNE_F64 :
322           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323     break;
324   case ISD::SETGE:
325   case ISD::SETOGE:
326     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327           (VT == MVT::f64) ? RTLIB::OGE_F64 :
328           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329     break;
330   case ISD::SETLT:
331   case ISD::SETOLT:
332     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333           (VT == MVT::f64) ? RTLIB::OLT_F64 :
334           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335     break;
336   case ISD::SETLE:
337   case ISD::SETOLE:
338     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339           (VT == MVT::f64) ? RTLIB::OLE_F64 :
340           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341     break;
342   case ISD::SETGT:
343   case ISD::SETOGT:
344     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345           (VT == MVT::f64) ? RTLIB::OGT_F64 :
346           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347     break;
348   case ISD::SETO:
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUO:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     break;
356   case ISD::SETONE:
357     // SETONE = O && UNE
358     ShouldInvertCC = true;
359     LLVM_FALLTHROUGH;
360   case ISD::SETUEQ:
361     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362           (VT == MVT::f64) ? RTLIB::UO_F64 :
363           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367     break;
368   default:
369     // Invert CC for unordered comparisons
370     ShouldInvertCC = true;
371     switch (CCCode) {
372     case ISD::SETULT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374             (VT == MVT::f64) ? RTLIB::OGE_F64 :
375             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376       break;
377     case ISD::SETULE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379             (VT == MVT::f64) ? RTLIB::OGT_F64 :
380             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381       break;
382     case ISD::SETUGT:
383       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384             (VT == MVT::f64) ? RTLIB::OLE_F64 :
385             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386       break;
387     case ISD::SETUGE:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389             (VT == MVT::f64) ? RTLIB::OLT_F64 :
390             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391       break;
392     default: llvm_unreachable("Do not know how to soften this setcc!");
393     }
394   }
395 
396   // Use the target specific return value for comparions lib calls.
397   EVT RetVT = getCmpLibcallReturnType();
398   SDValue Ops[2] = {NewLHS, NewRHS};
399   TargetLowering::MakeLibCallOptions CallOptions;
400   EVT OpsVT[2] = { OldLHS.getValueType(),
401                    OldRHS.getValueType() };
402   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404   NewLHS = Call.first;
405   NewRHS = DAG.getConstant(0, dl, RetVT);
406 
407   CCCode = getCmpLibcallCC(LC1);
408   if (ShouldInvertCC) {
409     assert(RetVT.isInteger());
410     CCCode = getSetCCInverse(CCCode, RetVT);
411   }
412 
413   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414     // Update Chain.
415     Chain = Call.second;
416   } else {
417     EVT SetCCVT =
418         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421     CCCode = getCmpLibcallCC(LC2);
422     if (ShouldInvertCC)
423       CCCode = getSetCCInverse(CCCode, RetVT);
424     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425     if (Chain)
426       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427                           Call2.second);
428     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429                          Tmp.getValueType(), Tmp, NewLHS);
430     NewRHS = SDValue();
431   }
432 }
433 
434 /// Return the entry encoding for a jump table in the current function. The
435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436 unsigned TargetLowering::getJumpTableEncoding() const {
437   // In non-pic modes, just use the address of a block.
438   if (!isPositionIndependent())
439     return MachineJumpTableInfo::EK_BlockAddress;
440 
441   // In PIC mode, if the target supports a GPRel32 directive, use it.
442   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444 
445   // Otherwise, use a label difference.
446   return MachineJumpTableInfo::EK_LabelDifference32;
447 }
448 
449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450                                                  SelectionDAG &DAG) const {
451   // If our PIC model is GP relative, use the global offset table as the base.
452   unsigned JTEncoding = getJumpTableEncoding();
453 
454   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457 
458   return Table;
459 }
460 
461 /// This returns the relocation base for the given PIC jumptable, the same as
462 /// getPICJumpTableRelocBase, but as an MCExpr.
463 const MCExpr *
464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465                                              unsigned JTI,MCContext &Ctx) const{
466   // The normal PIC reloc base is the label at the start of the jump table.
467   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468 }
469 
470 bool
471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472   const TargetMachine &TM = getTargetMachine();
473   const GlobalValue *GV = GA->getGlobal();
474 
475   // If the address is not even local to this DSO we will have to load it from
476   // a got and then add the offset.
477   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478     return false;
479 
480   // If the code is position independent we will have to add a base register.
481   if (isPositionIndependent())
482     return false;
483 
484   // Otherwise we can do it.
485   return true;
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //  Optimization Methods
490 //===----------------------------------------------------------------------===//
491 
492 /// If the specified instruction has a constant integer operand and there are
493 /// bits set in that constant that are not demanded, then clear those bits and
494 /// return true.
495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496                                             const APInt &DemandedBits,
497                                             const APInt &DemandedElts,
498                                             TargetLoweringOpt &TLO) const {
499   SDLoc DL(Op);
500   unsigned Opcode = Op.getOpcode();
501 
502   // Do target-specific constant optimization.
503   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504     return TLO.New.getNode();
505 
506   // FIXME: ISD::SELECT, ISD::SELECT_CC
507   switch (Opcode) {
508   default:
509     break;
510   case ISD::XOR:
511   case ISD::AND:
512   case ISD::OR: {
513     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514     if (!Op1C || Op1C->isOpaque())
515       return false;
516 
517     // If this is a 'not' op, don't touch it because that's a canonical form.
518     const APInt &C = Op1C->getAPIntValue();
519     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520       return false;
521 
522     if (!C.isSubsetOf(DemandedBits)) {
523       EVT VT = Op.getValueType();
524       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526       return TLO.CombineTo(Op, NewOp);
527     }
528 
529     break;
530   }
531   }
532 
533   return false;
534 }
535 
536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537                                             const APInt &DemandedBits,
538                                             TargetLoweringOpt &TLO) const {
539   EVT VT = Op.getValueType();
540   APInt DemandedElts = VT.isVector()
541                            ? APInt::getAllOnes(VT.getVectorNumElements())
542                            : APInt(1, 1);
543   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544 }
545 
546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548 /// generalized for targets with other types of implicit widening casts.
549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550                                       const APInt &Demanded,
551                                       TargetLoweringOpt &TLO) const {
552   assert(Op.getNumOperands() == 2 &&
553          "ShrinkDemandedOp only supports binary operators!");
554   assert(Op.getNode()->getNumValues() == 1 &&
555          "ShrinkDemandedOp only supports nodes with one result!");
556 
557   SelectionDAG &DAG = TLO.DAG;
558   SDLoc dl(Op);
559 
560   // Early return, as this function cannot handle vector types.
561   if (Op.getValueType().isVector())
562     return false;
563 
564   // Don't do this if the node has another user, which may require the
565   // full value.
566   if (!Op.getNode()->hasOneUse())
567     return false;
568 
569   // Search for the smallest integer type with free casts to and from
570   // Op's type. For expedience, just check power-of-2 integer types.
571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572   unsigned DemandedSize = Demanded.getActiveBits();
573   unsigned SmallVTBits = DemandedSize;
574   if (!isPowerOf2_32(SmallVTBits))
575     SmallVTBits = NextPowerOf2(SmallVTBits);
576   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579         TLI.isZExtFree(SmallVT, Op.getValueType())) {
580       // We found a type with free casts.
581       SDValue X = DAG.getNode(
582           Op.getOpcode(), dl, SmallVT,
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
586       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587       return TLO.CombineTo(Op, Z);
588     }
589   }
590   return false;
591 }
592 
593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594                                           DAGCombinerInfo &DCI) const {
595   SelectionDAG &DAG = DCI.DAG;
596   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597                         !DCI.isBeforeLegalizeOps());
598   KnownBits Known;
599 
600   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601   if (Simplified) {
602     DCI.AddToWorklist(Op.getNode());
603     DCI.CommitTargetLoweringOpt(TLO);
604   }
605   return Simplified;
606 }
607 
608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609                                           KnownBits &Known,
610                                           TargetLoweringOpt &TLO,
611                                           unsigned Depth,
612                                           bool AssumeSingleUse) const {
613   EVT VT = Op.getValueType();
614 
615   // TODO: We can probably do more work on calculating the known bits and
616   // simplifying the operations for scalable vectors, but for now we just
617   // bail out.
618   if (VT.isScalableVector()) {
619     // Pretend we don't know anything for now.
620     Known = KnownBits(DemandedBits.getBitWidth());
621     return false;
622   }
623 
624   APInt DemandedElts = VT.isVector()
625                            ? APInt::getAllOnes(VT.getVectorNumElements())
626                            : APInt(1, 1);
627   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628                               AssumeSingleUse);
629 }
630 
631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632 // TODO: Under what circumstances can we create nodes? Constant folding?
633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635     SelectionDAG &DAG, unsigned Depth) const {
636   // Limit search depth.
637   if (Depth >= SelectionDAG::MaxRecursionDepth)
638     return SDValue();
639 
640   // Ignore UNDEFs.
641   if (Op.isUndef())
642     return SDValue();
643 
644   // Not demanding any bits/elts from Op.
645   if (DemandedBits == 0 || DemandedElts == 0)
646     return DAG.getUNDEF(Op.getValueType());
647 
648   bool IsLE = DAG.getDataLayout().isLittleEndian();
649   unsigned NumElts = DemandedElts.getBitWidth();
650   unsigned BitWidth = DemandedBits.getBitWidth();
651   KnownBits LHSKnown, RHSKnown;
652   switch (Op.getOpcode()) {
653   case ISD::BITCAST: {
654     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
655     EVT SrcVT = Src.getValueType();
656     EVT DstVT = Op.getValueType();
657     if (SrcVT == DstVT)
658       return Src;
659 
660     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
661     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
662     if (NumSrcEltBits == NumDstEltBits)
663       if (SDValue V = SimplifyMultipleUseDemandedBits(
664               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
665         return DAG.getBitcast(DstVT, V);
666 
667     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
674         unsigned BitOffset = EltOffset * NumSrcEltBits;
675         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
676         if (!Sub.isZero()) {
677           DemandedSrcBits |= Sub;
678           for (unsigned j = 0; j != NumElts; ++j)
679             if (DemandedElts[j])
680               DemandedSrcElts.setBit((j * Scale) + i);
681         }
682       }
683 
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687     }
688 
689     // TODO - bigendian once we have test coverage.
690     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (IsLE && DemandedElts == 1 &&
805         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnes(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnes(BitWidth);
955     DemandedElts = APInt::getAllOnes(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069         !DemandedSrcElts.isAllOnes()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnes())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOne())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1729 
1730     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1731     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1732       return TLO.CombineTo(Op, Op0);
1733 
1734     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1735       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1736       unsigned RevAmt = BitWidth - Amt;
1737 
1738       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1739       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1740       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1741       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1742                                Depth + 1))
1743         return true;
1744 
1745       // rot*(x, 0) --> x
1746       if (Amt == 0)
1747         return TLO.CombineTo(Op, Op0);
1748 
1749       // See if we don't demand either half of the rotated bits.
1750       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1751           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1752         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1753         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1754       }
1755       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1756           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1757         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1758         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1759       }
1760     }
1761 
1762     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1763     if (isPowerOf2_32(BitWidth)) {
1764       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1765       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1766                                Depth + 1))
1767         return true;
1768     }
1769     break;
1770   }
1771   case ISD::UMIN: {
1772     // Check if one arg is always less than (or equal) to the other arg.
1773     SDValue Op0 = Op.getOperand(0);
1774     SDValue Op1 = Op.getOperand(1);
1775     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1776     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1777     Known = KnownBits::umin(Known0, Known1);
1778     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1779       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1780     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1781       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1782     break;
1783   }
1784   case ISD::UMAX: {
1785     // Check if one arg is always greater than (or equal) to the other arg.
1786     SDValue Op0 = Op.getOperand(0);
1787     SDValue Op1 = Op.getOperand(1);
1788     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1789     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1790     Known = KnownBits::umax(Known0, Known1);
1791     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1792       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1793     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1794       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1795     break;
1796   }
1797   case ISD::BITREVERSE: {
1798     SDValue Src = Op.getOperand(0);
1799     APInt DemandedSrcBits = DemandedBits.reverseBits();
1800     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1801                              Depth + 1))
1802       return true;
1803     Known.One = Known2.One.reverseBits();
1804     Known.Zero = Known2.Zero.reverseBits();
1805     break;
1806   }
1807   case ISD::BSWAP: {
1808     SDValue Src = Op.getOperand(0);
1809 
1810     // If the only bits demanded come from one byte of the bswap result,
1811     // just shift the input byte into position to eliminate the bswap.
1812     unsigned NLZ = DemandedBits.countLeadingZeros();
1813     unsigned NTZ = DemandedBits.countTrailingZeros();
1814 
1815     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1816     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1817     // have 14 leading zeros, round to 8.
1818     NLZ = alignDown(NLZ, 8);
1819     NTZ = alignDown(NTZ, 8);
1820     // If we need exactly one byte, we can do this transformation.
1821     if (BitWidth - NLZ - NTZ == 8) {
1822       // Replace this with either a left or right shift to get the byte into
1823       // the right place.
1824       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1825       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1826         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1827         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1828         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1829         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1830         return TLO.CombineTo(Op, NewOp);
1831       }
1832     }
1833 
1834     APInt DemandedSrcBits = DemandedBits.byteSwap();
1835     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1836                              Depth + 1))
1837       return true;
1838     Known.One = Known2.One.byteSwap();
1839     Known.Zero = Known2.Zero.byteSwap();
1840     break;
1841   }
1842   case ISD::CTPOP: {
1843     // If only 1 bit is demanded, replace with PARITY as long as we're before
1844     // op legalization.
1845     // FIXME: Limit to scalars for now.
1846     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1847       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1848                                                Op.getOperand(0)));
1849 
1850     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1851     break;
1852   }
1853   case ISD::SIGN_EXTEND_INREG: {
1854     SDValue Op0 = Op.getOperand(0);
1855     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1856     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1857 
1858     // If we only care about the highest bit, don't bother shifting right.
1859     if (DemandedBits.isSignMask()) {
1860       unsigned MinSignedBits =
1861           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
1862       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1863       // However if the input is already sign extended we expect the sign
1864       // extension to be dropped altogether later and do not simplify.
1865       if (!AlreadySignExtended) {
1866         // Compute the correct shift amount type, which must be getShiftAmountTy
1867         // for scalar types after legalization.
1868         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
1869                                                getShiftAmountTy(VT, DL));
1870         return TLO.CombineTo(Op,
1871                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1872       }
1873     }
1874 
1875     // If none of the extended bits are demanded, eliminate the sextinreg.
1876     if (DemandedBits.getActiveBits() <= ExVTBits)
1877       return TLO.CombineTo(Op, Op0);
1878 
1879     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1880 
1881     // Since the sign extended bits are demanded, we know that the sign
1882     // bit is demanded.
1883     InputDemandedBits.setBit(ExVTBits - 1);
1884 
1885     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1886       return true;
1887     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1888 
1889     // If the sign bit of the input is known set or clear, then we know the
1890     // top bits of the result.
1891 
1892     // If the input sign bit is known zero, convert this into a zero extension.
1893     if (Known.Zero[ExVTBits - 1])
1894       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1895 
1896     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1897     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1898       Known.One.setBitsFrom(ExVTBits);
1899       Known.Zero &= Mask;
1900     } else { // Input sign bit unknown
1901       Known.Zero &= Mask;
1902       Known.One &= Mask;
1903     }
1904     break;
1905   }
1906   case ISD::BUILD_PAIR: {
1907     EVT HalfVT = Op.getOperand(0).getValueType();
1908     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1909 
1910     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1911     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1912 
1913     KnownBits KnownLo, KnownHi;
1914 
1915     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1916       return true;
1917 
1918     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1919       return true;
1920 
1921     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1922                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1923 
1924     Known.One = KnownLo.One.zext(BitWidth) |
1925                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1926     break;
1927   }
1928   case ISD::ZERO_EXTEND:
1929   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1930     SDValue Src = Op.getOperand(0);
1931     EVT SrcVT = Src.getValueType();
1932     unsigned InBits = SrcVT.getScalarSizeInBits();
1933     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1934     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1935 
1936     // If none of the top bits are demanded, convert this into an any_extend.
1937     if (DemandedBits.getActiveBits() <= InBits) {
1938       // If we only need the non-extended bits of the bottom element
1939       // then we can just bitcast to the result.
1940       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1941           VT.getSizeInBits() == SrcVT.getSizeInBits())
1942         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1943 
1944       unsigned Opc =
1945           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1946       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1947         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1948     }
1949 
1950     APInt InDemandedBits = DemandedBits.trunc(InBits);
1951     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1952     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1953                              Depth + 1))
1954       return true;
1955     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1956     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1957     Known = Known.zext(BitWidth);
1958 
1959     // Attempt to avoid multi-use ops if we don't need anything from them.
1960     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1961             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1962       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1963     break;
1964   }
1965   case ISD::SIGN_EXTEND:
1966   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1967     SDValue Src = Op.getOperand(0);
1968     EVT SrcVT = Src.getValueType();
1969     unsigned InBits = SrcVT.getScalarSizeInBits();
1970     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1971     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1972 
1973     // If none of the top bits are demanded, convert this into an any_extend.
1974     if (DemandedBits.getActiveBits() <= InBits) {
1975       // If we only need the non-extended bits of the bottom element
1976       // then we can just bitcast to the result.
1977       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1978           VT.getSizeInBits() == SrcVT.getSizeInBits())
1979         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1980 
1981       unsigned Opc =
1982           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1983       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1984         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1985     }
1986 
1987     APInt InDemandedBits = DemandedBits.trunc(InBits);
1988     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1989 
1990     // Since some of the sign extended bits are demanded, we know that the sign
1991     // bit is demanded.
1992     InDemandedBits.setBit(InBits - 1);
1993 
1994     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1995                              Depth + 1))
1996       return true;
1997     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1998     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1999 
2000     // If the sign bit is known one, the top bits match.
2001     Known = Known.sext(BitWidth);
2002 
2003     // If the sign bit is known zero, convert this to a zero extend.
2004     if (Known.isNonNegative()) {
2005       unsigned Opc =
2006           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2007       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2008         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2009     }
2010 
2011     // Attempt to avoid multi-use ops if we don't need anything from them.
2012     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2013             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2014       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2015     break;
2016   }
2017   case ISD::ANY_EXTEND:
2018   case ISD::ANY_EXTEND_VECTOR_INREG: {
2019     SDValue Src = Op.getOperand(0);
2020     EVT SrcVT = Src.getValueType();
2021     unsigned InBits = SrcVT.getScalarSizeInBits();
2022     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2023     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2024 
2025     // If we only need the bottom element then we can just bitcast.
2026     // TODO: Handle ANY_EXTEND?
2027     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2028         VT.getSizeInBits() == SrcVT.getSizeInBits())
2029       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2030 
2031     APInt InDemandedBits = DemandedBits.trunc(InBits);
2032     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2033     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2034                              Depth + 1))
2035       return true;
2036     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2037     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2038     Known = Known.anyext(BitWidth);
2039 
2040     // Attempt to avoid multi-use ops if we don't need anything from them.
2041     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2042             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2043       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2044     break;
2045   }
2046   case ISD::TRUNCATE: {
2047     SDValue Src = Op.getOperand(0);
2048 
2049     // Simplify the input, using demanded bit information, and compute the known
2050     // zero/one bits live out.
2051     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2052     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2053     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2054                              Depth + 1))
2055       return true;
2056     Known = Known.trunc(BitWidth);
2057 
2058     // Attempt to avoid multi-use ops if we don't need anything from them.
2059     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2060             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2061       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2062 
2063     // If the input is only used by this truncate, see if we can shrink it based
2064     // on the known demanded bits.
2065     if (Src.getNode()->hasOneUse()) {
2066       switch (Src.getOpcode()) {
2067       default:
2068         break;
2069       case ISD::SRL:
2070         // Shrink SRL by a constant if none of the high bits shifted in are
2071         // demanded.
2072         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2073           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2074           // undesirable.
2075           break;
2076 
2077         const APInt *ShAmtC =
2078             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2079         if (!ShAmtC || ShAmtC->uge(BitWidth))
2080           break;
2081         uint64_t ShVal = ShAmtC->getZExtValue();
2082 
2083         APInt HighBits =
2084             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2085         HighBits.lshrInPlace(ShVal);
2086         HighBits = HighBits.trunc(BitWidth);
2087 
2088         if (!(HighBits & DemandedBits)) {
2089           // None of the shifted in bits are needed.  Add a truncate of the
2090           // shift input, then shift it.
2091           SDValue NewShAmt = TLO.DAG.getConstant(
2092               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2093           SDValue NewTrunc =
2094               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2095           return TLO.CombineTo(
2096               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2097         }
2098         break;
2099       }
2100     }
2101 
2102     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2103     break;
2104   }
2105   case ISD::AssertZext: {
2106     // AssertZext demands all of the high bits, plus any of the low bits
2107     // demanded by its users.
2108     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2109     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2110     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2111                              TLO, Depth + 1))
2112       return true;
2113     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2114 
2115     Known.Zero |= ~InMask;
2116     break;
2117   }
2118   case ISD::EXTRACT_VECTOR_ELT: {
2119     SDValue Src = Op.getOperand(0);
2120     SDValue Idx = Op.getOperand(1);
2121     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2122     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2123 
2124     if (SrcEltCnt.isScalable())
2125       return false;
2126 
2127     // Demand the bits from every vector element without a constant index.
2128     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2129     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2130     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2131       if (CIdx->getAPIntValue().ult(NumSrcElts))
2132         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2133 
2134     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2135     // anything about the extended bits.
2136     APInt DemandedSrcBits = DemandedBits;
2137     if (BitWidth > EltBitWidth)
2138       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2139 
2140     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2141                              Depth + 1))
2142       return true;
2143 
2144     // Attempt to avoid multi-use ops if we don't need anything from them.
2145     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2146       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2147               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2148         SDValue NewOp =
2149             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2150         return TLO.CombineTo(Op, NewOp);
2151       }
2152     }
2153 
2154     Known = Known2;
2155     if (BitWidth > EltBitWidth)
2156       Known = Known.anyext(BitWidth);
2157     break;
2158   }
2159   case ISD::BITCAST: {
2160     SDValue Src = Op.getOperand(0);
2161     EVT SrcVT = Src.getValueType();
2162     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2163 
2164     // If this is an FP->Int bitcast and if the sign bit is the only
2165     // thing demanded, turn this into a FGETSIGN.
2166     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2167         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2168         SrcVT.isFloatingPoint()) {
2169       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2170       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2171       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2172           SrcVT != MVT::f128) {
2173         // Cannot eliminate/lower SHL for f128 yet.
2174         EVT Ty = OpVTLegal ? VT : MVT::i32;
2175         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2176         // place.  We expect the SHL to be eliminated by other optimizations.
2177         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2178         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2179         if (!OpVTLegal && OpVTSizeInBits > 32)
2180           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2181         unsigned ShVal = Op.getValueSizeInBits() - 1;
2182         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2183         return TLO.CombineTo(Op,
2184                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2185       }
2186     }
2187 
2188     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2189     // Demand the elt/bit if any of the original elts/bits are demanded.
2190     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2191       unsigned Scale = BitWidth / NumSrcEltBits;
2192       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2193       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2194       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2195       for (unsigned i = 0; i != Scale; ++i) {
2196         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2197         unsigned BitOffset = EltOffset * NumSrcEltBits;
2198         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2199         if (!Sub.isZero()) {
2200           DemandedSrcBits |= Sub;
2201           for (unsigned j = 0; j != NumElts; ++j)
2202             if (DemandedElts[j])
2203               DemandedSrcElts.setBit((j * Scale) + i);
2204         }
2205       }
2206 
2207       APInt KnownSrcUndef, KnownSrcZero;
2208       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2209                                      KnownSrcZero, TLO, Depth + 1))
2210         return true;
2211 
2212       KnownBits KnownSrcBits;
2213       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2214                                KnownSrcBits, TLO, Depth + 1))
2215         return true;
2216     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2217       // TODO - bigendian once we have test coverage.
2218       unsigned Scale = NumSrcEltBits / BitWidth;
2219       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2220       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2221       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2222       for (unsigned i = 0; i != NumElts; ++i)
2223         if (DemandedElts[i]) {
2224           unsigned Offset = (i % Scale) * BitWidth;
2225           DemandedSrcBits.insertBits(DemandedBits, Offset);
2226           DemandedSrcElts.setBit(i / Scale);
2227         }
2228 
2229       if (SrcVT.isVector()) {
2230         APInt KnownSrcUndef, KnownSrcZero;
2231         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2232                                        KnownSrcZero, TLO, Depth + 1))
2233           return true;
2234       }
2235 
2236       KnownBits KnownSrcBits;
2237       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2238                                KnownSrcBits, TLO, Depth + 1))
2239         return true;
2240     }
2241 
2242     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2243     // recursive call where Known may be useful to the caller.
2244     if (Depth > 0) {
2245       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2246       return false;
2247     }
2248     break;
2249   }
2250   case ISD::ADD:
2251   case ISD::MUL:
2252   case ISD::SUB: {
2253     // Add, Sub, and Mul don't demand any bits in positions beyond that
2254     // of the highest bit demanded of them.
2255     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2256     SDNodeFlags Flags = Op.getNode()->getFlags();
2257     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2258     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2259     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2260                              Depth + 1) ||
2261         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2262                              Depth + 1) ||
2263         // See if the operation should be performed at a smaller bit width.
2264         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2265       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2266         // Disable the nsw and nuw flags. We can no longer guarantee that we
2267         // won't wrap after simplification.
2268         Flags.setNoSignedWrap(false);
2269         Flags.setNoUnsignedWrap(false);
2270         SDValue NewOp =
2271             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2272         return TLO.CombineTo(Op, NewOp);
2273       }
2274       return true;
2275     }
2276 
2277     // Attempt to avoid multi-use ops if we don't need anything from them.
2278     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2279       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2280           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2281       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2282           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2283       if (DemandedOp0 || DemandedOp1) {
2284         Flags.setNoSignedWrap(false);
2285         Flags.setNoUnsignedWrap(false);
2286         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2287         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2288         SDValue NewOp =
2289             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2290         return TLO.CombineTo(Op, NewOp);
2291       }
2292     }
2293 
2294     // If we have a constant operand, we may be able to turn it into -1 if we
2295     // do not demand the high bits. This can make the constant smaller to
2296     // encode, allow more general folding, or match specialized instruction
2297     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2298     // is probably not useful (and could be detrimental).
2299     ConstantSDNode *C = isConstOrConstSplat(Op1);
2300     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2301     if (C && !C->isAllOnes() && !C->isOne() &&
2302         (C->getAPIntValue() | HighMask).isAllOnes()) {
2303       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2304       // Disable the nsw and nuw flags. We can no longer guarantee that we
2305       // won't wrap after simplification.
2306       Flags.setNoSignedWrap(false);
2307       Flags.setNoUnsignedWrap(false);
2308       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2309       return TLO.CombineTo(Op, NewOp);
2310     }
2311 
2312     LLVM_FALLTHROUGH;
2313   }
2314   default:
2315     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2316       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2317                                             Known, TLO, Depth))
2318         return true;
2319       break;
2320     }
2321 
2322     // Just use computeKnownBits to compute output bits.
2323     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2324     break;
2325   }
2326 
2327   // If we know the value of all of the demanded bits, return this as a
2328   // constant.
2329   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2330     // Avoid folding to a constant if any OpaqueConstant is involved.
2331     const SDNode *N = Op.getNode();
2332     for (SDNode *Op :
2333          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2334       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2335         if (C->isOpaque())
2336           return false;
2337     }
2338     if (VT.isInteger())
2339       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2340     if (VT.isFloatingPoint())
2341       return TLO.CombineTo(
2342           Op,
2343           TLO.DAG.getConstantFP(
2344               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2345   }
2346 
2347   return false;
2348 }
2349 
2350 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2351                                                 const APInt &DemandedElts,
2352                                                 APInt &KnownUndef,
2353                                                 APInt &KnownZero,
2354                                                 DAGCombinerInfo &DCI) const {
2355   SelectionDAG &DAG = DCI.DAG;
2356   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2357                         !DCI.isBeforeLegalizeOps());
2358 
2359   bool Simplified =
2360       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2361   if (Simplified) {
2362     DCI.AddToWorklist(Op.getNode());
2363     DCI.CommitTargetLoweringOpt(TLO);
2364   }
2365 
2366   return Simplified;
2367 }
2368 
2369 /// Given a vector binary operation and known undefined elements for each input
2370 /// operand, compute whether each element of the output is undefined.
2371 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2372                                          const APInt &UndefOp0,
2373                                          const APInt &UndefOp1) {
2374   EVT VT = BO.getValueType();
2375   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2376          "Vector binop only");
2377 
2378   EVT EltVT = VT.getVectorElementType();
2379   unsigned NumElts = VT.getVectorNumElements();
2380   assert(UndefOp0.getBitWidth() == NumElts &&
2381          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2382 
2383   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2384                                    const APInt &UndefVals) {
2385     if (UndefVals[Index])
2386       return DAG.getUNDEF(EltVT);
2387 
2388     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2389       // Try hard to make sure that the getNode() call is not creating temporary
2390       // nodes. Ignore opaque integers because they do not constant fold.
2391       SDValue Elt = BV->getOperand(Index);
2392       auto *C = dyn_cast<ConstantSDNode>(Elt);
2393       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2394         return Elt;
2395     }
2396 
2397     return SDValue();
2398   };
2399 
2400   APInt KnownUndef = APInt::getZero(NumElts);
2401   for (unsigned i = 0; i != NumElts; ++i) {
2402     // If both inputs for this element are either constant or undef and match
2403     // the element type, compute the constant/undef result for this element of
2404     // the vector.
2405     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2406     // not handle FP constants. The code within getNode() should be refactored
2407     // to avoid the danger of creating a bogus temporary node here.
2408     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2409     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2410     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2411       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2412         KnownUndef.setBit(i);
2413   }
2414   return KnownUndef;
2415 }
2416 
2417 bool TargetLowering::SimplifyDemandedVectorElts(
2418     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2419     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2420     bool AssumeSingleUse) const {
2421   EVT VT = Op.getValueType();
2422   unsigned Opcode = Op.getOpcode();
2423   APInt DemandedElts = OriginalDemandedElts;
2424   unsigned NumElts = DemandedElts.getBitWidth();
2425   assert(VT.isVector() && "Expected vector op");
2426 
2427   KnownUndef = KnownZero = APInt::getZero(NumElts);
2428 
2429   // TODO: For now we assume we know nothing about scalable vectors.
2430   if (VT.isScalableVector())
2431     return false;
2432 
2433   assert(VT.getVectorNumElements() == NumElts &&
2434          "Mask size mismatches value type element count!");
2435 
2436   // Undef operand.
2437   if (Op.isUndef()) {
2438     KnownUndef.setAllBits();
2439     return false;
2440   }
2441 
2442   // If Op has other users, assume that all elements are needed.
2443   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2444     DemandedElts.setAllBits();
2445 
2446   // Not demanding any elements from Op.
2447   if (DemandedElts == 0) {
2448     KnownUndef.setAllBits();
2449     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2450   }
2451 
2452   // Limit search depth.
2453   if (Depth >= SelectionDAG::MaxRecursionDepth)
2454     return false;
2455 
2456   SDLoc DL(Op);
2457   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2458   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2459 
2460   // Helper for demanding the specified elements and all the bits of both binary
2461   // operands.
2462   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2463     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2464                                                            TLO.DAG, Depth + 1);
2465     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2466                                                            TLO.DAG, Depth + 1);
2467     if (NewOp0 || NewOp1) {
2468       SDValue NewOp = TLO.DAG.getNode(
2469           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2470       return TLO.CombineTo(Op, NewOp);
2471     }
2472     return false;
2473   };
2474 
2475   switch (Opcode) {
2476   case ISD::SCALAR_TO_VECTOR: {
2477     if (!DemandedElts[0]) {
2478       KnownUndef.setAllBits();
2479       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2480     }
2481     SDValue ScalarSrc = Op.getOperand(0);
2482     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2483       SDValue Src = ScalarSrc.getOperand(0);
2484       SDValue Idx = ScalarSrc.getOperand(1);
2485       EVT SrcVT = Src.getValueType();
2486 
2487       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2488 
2489       if (SrcEltCnt.isScalable())
2490         return false;
2491 
2492       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2493       if (isNullConstant(Idx)) {
2494         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2495         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2496         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2497         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2498                                        TLO, Depth + 1))
2499           return true;
2500       }
2501     }
2502     KnownUndef.setHighBits(NumElts - 1);
2503     break;
2504   }
2505   case ISD::BITCAST: {
2506     SDValue Src = Op.getOperand(0);
2507     EVT SrcVT = Src.getValueType();
2508 
2509     // We only handle vectors here.
2510     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2511     if (!SrcVT.isVector())
2512       break;
2513 
2514     // Fast handling of 'identity' bitcasts.
2515     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2516     if (NumSrcElts == NumElts)
2517       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2518                                         KnownZero, TLO, Depth + 1);
2519 
2520     APInt SrcDemandedElts, SrcZero, SrcUndef;
2521 
2522     // Bitcast from 'large element' src vector to 'small element' vector, we
2523     // must demand a source element if any DemandedElt maps to it.
2524     if ((NumElts % NumSrcElts) == 0) {
2525       unsigned Scale = NumElts / NumSrcElts;
2526       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2527       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2528                                      TLO, Depth + 1))
2529         return true;
2530 
2531       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2532       // of the large element.
2533       // TODO - bigendian once we have test coverage.
2534       if (IsLE) {
2535         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2536         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2537         for (unsigned i = 0; i != NumElts; ++i)
2538           if (DemandedElts[i]) {
2539             unsigned Ofs = (i % Scale) * EltSizeInBits;
2540             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2541           }
2542 
2543         KnownBits Known;
2544         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2545                                  TLO, Depth + 1))
2546           return true;
2547       }
2548 
2549       // If the src element is zero/undef then all the output elements will be -
2550       // only demanded elements are guaranteed to be correct.
2551       for (unsigned i = 0; i != NumSrcElts; ++i) {
2552         if (SrcDemandedElts[i]) {
2553           if (SrcZero[i])
2554             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2555           if (SrcUndef[i])
2556             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2557         }
2558       }
2559     }
2560 
2561     // Bitcast from 'small element' src vector to 'large element' vector, we
2562     // demand all smaller source elements covered by the larger demanded element
2563     // of this vector.
2564     if ((NumSrcElts % NumElts) == 0) {
2565       unsigned Scale = NumSrcElts / NumElts;
2566       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2567       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2568                                      TLO, Depth + 1))
2569         return true;
2570 
2571       // If all the src elements covering an output element are zero/undef, then
2572       // the output element will be as well, assuming it was demanded.
2573       for (unsigned i = 0; i != NumElts; ++i) {
2574         if (DemandedElts[i]) {
2575           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2576             KnownZero.setBit(i);
2577           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2578             KnownUndef.setBit(i);
2579         }
2580       }
2581     }
2582     break;
2583   }
2584   case ISD::BUILD_VECTOR: {
2585     // Check all elements and simplify any unused elements with UNDEF.
2586     if (!DemandedElts.isAllOnes()) {
2587       // Don't simplify BROADCASTS.
2588       if (llvm::any_of(Op->op_values(),
2589                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2590         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2591         bool Updated = false;
2592         for (unsigned i = 0; i != NumElts; ++i) {
2593           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2594             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2595             KnownUndef.setBit(i);
2596             Updated = true;
2597           }
2598         }
2599         if (Updated)
2600           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2601       }
2602     }
2603     for (unsigned i = 0; i != NumElts; ++i) {
2604       SDValue SrcOp = Op.getOperand(i);
2605       if (SrcOp.isUndef()) {
2606         KnownUndef.setBit(i);
2607       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2608                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2609         KnownZero.setBit(i);
2610       }
2611     }
2612     break;
2613   }
2614   case ISD::CONCAT_VECTORS: {
2615     EVT SubVT = Op.getOperand(0).getValueType();
2616     unsigned NumSubVecs = Op.getNumOperands();
2617     unsigned NumSubElts = SubVT.getVectorNumElements();
2618     for (unsigned i = 0; i != NumSubVecs; ++i) {
2619       SDValue SubOp = Op.getOperand(i);
2620       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2621       APInt SubUndef, SubZero;
2622       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2623                                      Depth + 1))
2624         return true;
2625       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2626       KnownZero.insertBits(SubZero, i * NumSubElts);
2627     }
2628     break;
2629   }
2630   case ISD::INSERT_SUBVECTOR: {
2631     // Demand any elements from the subvector and the remainder from the src its
2632     // inserted into.
2633     SDValue Src = Op.getOperand(0);
2634     SDValue Sub = Op.getOperand(1);
2635     uint64_t Idx = Op.getConstantOperandVal(2);
2636     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2637     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2638     APInt DemandedSrcElts = DemandedElts;
2639     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2640 
2641     APInt SubUndef, SubZero;
2642     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2643                                    Depth + 1))
2644       return true;
2645 
2646     // If none of the src operand elements are demanded, replace it with undef.
2647     if (!DemandedSrcElts && !Src.isUndef())
2648       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2649                                                TLO.DAG.getUNDEF(VT), Sub,
2650                                                Op.getOperand(2)));
2651 
2652     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2653                                    TLO, Depth + 1))
2654       return true;
2655     KnownUndef.insertBits(SubUndef, Idx);
2656     KnownZero.insertBits(SubZero, Idx);
2657 
2658     // Attempt to avoid multi-use ops if we don't need anything from them.
2659     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2660       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2661           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2662       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2663           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2664       if (NewSrc || NewSub) {
2665         NewSrc = NewSrc ? NewSrc : Src;
2666         NewSub = NewSub ? NewSub : Sub;
2667         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2668                                         NewSub, Op.getOperand(2));
2669         return TLO.CombineTo(Op, NewOp);
2670       }
2671     }
2672     break;
2673   }
2674   case ISD::EXTRACT_SUBVECTOR: {
2675     // Offset the demanded elts by the subvector index.
2676     SDValue Src = Op.getOperand(0);
2677     if (Src.getValueType().isScalableVector())
2678       break;
2679     uint64_t Idx = Op.getConstantOperandVal(1);
2680     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2681     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2682 
2683     APInt SrcUndef, SrcZero;
2684     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2685                                    Depth + 1))
2686       return true;
2687     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2688     KnownZero = SrcZero.extractBits(NumElts, Idx);
2689 
2690     // Attempt to avoid multi-use ops if we don't need anything from them.
2691     if (!DemandedElts.isAllOnes()) {
2692       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2693           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2694       if (NewSrc) {
2695         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2696                                         Op.getOperand(1));
2697         return TLO.CombineTo(Op, NewOp);
2698       }
2699     }
2700     break;
2701   }
2702   case ISD::INSERT_VECTOR_ELT: {
2703     SDValue Vec = Op.getOperand(0);
2704     SDValue Scl = Op.getOperand(1);
2705     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2706 
2707     // For a legal, constant insertion index, if we don't need this insertion
2708     // then strip it, else remove it from the demanded elts.
2709     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2710       unsigned Idx = CIdx->getZExtValue();
2711       if (!DemandedElts[Idx])
2712         return TLO.CombineTo(Op, Vec);
2713 
2714       APInt DemandedVecElts(DemandedElts);
2715       DemandedVecElts.clearBit(Idx);
2716       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2717                                      KnownZero, TLO, Depth + 1))
2718         return true;
2719 
2720       KnownUndef.setBitVal(Idx, Scl.isUndef());
2721 
2722       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2723       break;
2724     }
2725 
2726     APInt VecUndef, VecZero;
2727     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2728                                    Depth + 1))
2729       return true;
2730     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2731     break;
2732   }
2733   case ISD::VSELECT: {
2734     // Try to transform the select condition based on the current demanded
2735     // elements.
2736     // TODO: If a condition element is undef, we can choose from one arm of the
2737     //       select (and if one arm is undef, then we can propagate that to the
2738     //       result).
2739     // TODO - add support for constant vselect masks (see IR version of this).
2740     APInt UnusedUndef, UnusedZero;
2741     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2742                                    UnusedZero, TLO, Depth + 1))
2743       return true;
2744 
2745     // See if we can simplify either vselect operand.
2746     APInt DemandedLHS(DemandedElts);
2747     APInt DemandedRHS(DemandedElts);
2748     APInt UndefLHS, ZeroLHS;
2749     APInt UndefRHS, ZeroRHS;
2750     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2751                                    ZeroLHS, TLO, Depth + 1))
2752       return true;
2753     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2754                                    ZeroRHS, TLO, Depth + 1))
2755       return true;
2756 
2757     KnownUndef = UndefLHS & UndefRHS;
2758     KnownZero = ZeroLHS & ZeroRHS;
2759     break;
2760   }
2761   case ISD::VECTOR_SHUFFLE: {
2762     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2763 
2764     // Collect demanded elements from shuffle operands..
2765     APInt DemandedLHS(NumElts, 0);
2766     APInt DemandedRHS(NumElts, 0);
2767     for (unsigned i = 0; i != NumElts; ++i) {
2768       int M = ShuffleMask[i];
2769       if (M < 0 || !DemandedElts[i])
2770         continue;
2771       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2772       if (M < (int)NumElts)
2773         DemandedLHS.setBit(M);
2774       else
2775         DemandedRHS.setBit(M - NumElts);
2776     }
2777 
2778     // See if we can simplify either shuffle operand.
2779     APInt UndefLHS, ZeroLHS;
2780     APInt UndefRHS, ZeroRHS;
2781     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2782                                    ZeroLHS, TLO, Depth + 1))
2783       return true;
2784     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2785                                    ZeroRHS, TLO, Depth + 1))
2786       return true;
2787 
2788     // Simplify mask using undef elements from LHS/RHS.
2789     bool Updated = false;
2790     bool IdentityLHS = true, IdentityRHS = true;
2791     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2792     for (unsigned i = 0; i != NumElts; ++i) {
2793       int &M = NewMask[i];
2794       if (M < 0)
2795         continue;
2796       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2797           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2798         Updated = true;
2799         M = -1;
2800       }
2801       IdentityLHS &= (M < 0) || (M == (int)i);
2802       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2803     }
2804 
2805     // Update legal shuffle masks based on demanded elements if it won't reduce
2806     // to Identity which can cause premature removal of the shuffle mask.
2807     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2808       SDValue LegalShuffle =
2809           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2810                                   NewMask, TLO.DAG);
2811       if (LegalShuffle)
2812         return TLO.CombineTo(Op, LegalShuffle);
2813     }
2814 
2815     // Propagate undef/zero elements from LHS/RHS.
2816     for (unsigned i = 0; i != NumElts; ++i) {
2817       int M = ShuffleMask[i];
2818       if (M < 0) {
2819         KnownUndef.setBit(i);
2820       } else if (M < (int)NumElts) {
2821         if (UndefLHS[M])
2822           KnownUndef.setBit(i);
2823         if (ZeroLHS[M])
2824           KnownZero.setBit(i);
2825       } else {
2826         if (UndefRHS[M - NumElts])
2827           KnownUndef.setBit(i);
2828         if (ZeroRHS[M - NumElts])
2829           KnownZero.setBit(i);
2830       }
2831     }
2832     break;
2833   }
2834   case ISD::ANY_EXTEND_VECTOR_INREG:
2835   case ISD::SIGN_EXTEND_VECTOR_INREG:
2836   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2837     APInt SrcUndef, SrcZero;
2838     SDValue Src = Op.getOperand(0);
2839     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2840     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2841     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2842                                    Depth + 1))
2843       return true;
2844     KnownZero = SrcZero.zextOrTrunc(NumElts);
2845     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2846 
2847     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2848         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2849         DemandedSrcElts == 1) {
2850       // aext - if we just need the bottom element then we can bitcast.
2851       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2852     }
2853 
2854     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2855       // zext(undef) upper bits are guaranteed to be zero.
2856       if (DemandedElts.isSubsetOf(KnownUndef))
2857         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2858       KnownUndef.clearAllBits();
2859 
2860       // zext - if we just need the bottom element then we can mask:
2861       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
2862       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
2863           Op->isOnlyUserOf(Src.getNode()) &&
2864           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
2865         SDLoc DL(Op);
2866         EVT SrcVT = Src.getValueType();
2867         EVT SrcSVT = SrcVT.getScalarType();
2868         SmallVector<SDValue> MaskElts;
2869         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
2870         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
2871         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
2872         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
2873                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
2874           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
2875           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
2876         }
2877       }
2878     }
2879     break;
2880   }
2881 
2882   // TODO: There are more binop opcodes that could be handled here - MIN,
2883   // MAX, saturated math, etc.
2884   case ISD::ADD: {
2885     SDValue Op0 = Op.getOperand(0);
2886     SDValue Op1 = Op.getOperand(1);
2887     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
2888       APInt UndefLHS, ZeroLHS;
2889       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2890                                      Depth + 1, /*AssumeSingleUse*/ true))
2891         return true;
2892     }
2893     LLVM_FALLTHROUGH;
2894   }
2895   case ISD::OR:
2896   case ISD::XOR:
2897   case ISD::SUB:
2898   case ISD::FADD:
2899   case ISD::FSUB:
2900   case ISD::FMUL:
2901   case ISD::FDIV:
2902   case ISD::FREM: {
2903     SDValue Op0 = Op.getOperand(0);
2904     SDValue Op1 = Op.getOperand(1);
2905 
2906     APInt UndefRHS, ZeroRHS;
2907     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2908                                    Depth + 1))
2909       return true;
2910     APInt UndefLHS, ZeroLHS;
2911     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2912                                    Depth + 1))
2913       return true;
2914 
2915     KnownZero = ZeroLHS & ZeroRHS;
2916     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2917 
2918     // Attempt to avoid multi-use ops if we don't need anything from them.
2919     // TODO - use KnownUndef to relax the demandedelts?
2920     if (!DemandedElts.isAllOnes())
2921       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2922         return true;
2923     break;
2924   }
2925   case ISD::SHL:
2926   case ISD::SRL:
2927   case ISD::SRA:
2928   case ISD::ROTL:
2929   case ISD::ROTR: {
2930     SDValue Op0 = Op.getOperand(0);
2931     SDValue Op1 = Op.getOperand(1);
2932 
2933     APInt UndefRHS, ZeroRHS;
2934     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2935                                    Depth + 1))
2936       return true;
2937     APInt UndefLHS, ZeroLHS;
2938     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2939                                    Depth + 1))
2940       return true;
2941 
2942     KnownZero = ZeroLHS;
2943     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2944 
2945     // Attempt to avoid multi-use ops if we don't need anything from them.
2946     // TODO - use KnownUndef to relax the demandedelts?
2947     if (!DemandedElts.isAllOnes())
2948       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2949         return true;
2950     break;
2951   }
2952   case ISD::MUL:
2953   case ISD::AND: {
2954     SDValue Op0 = Op.getOperand(0);
2955     SDValue Op1 = Op.getOperand(1);
2956 
2957     APInt SrcUndef, SrcZero;
2958     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2959                                    Depth + 1))
2960       return true;
2961     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2962                                    TLO, Depth + 1))
2963       return true;
2964 
2965     // If either side has a zero element, then the result element is zero, even
2966     // if the other is an UNDEF.
2967     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2968     // and then handle 'and' nodes with the rest of the binop opcodes.
2969     KnownZero |= SrcZero;
2970     KnownUndef &= SrcUndef;
2971     KnownUndef &= ~KnownZero;
2972 
2973     // Attempt to avoid multi-use ops if we don't need anything from them.
2974     // TODO - use KnownUndef to relax the demandedelts?
2975     if (!DemandedElts.isAllOnes())
2976       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2977         return true;
2978     break;
2979   }
2980   case ISD::TRUNCATE:
2981   case ISD::SIGN_EXTEND:
2982   case ISD::ZERO_EXTEND:
2983     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2984                                    KnownZero, TLO, Depth + 1))
2985       return true;
2986 
2987     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2988       // zext(undef) upper bits are guaranteed to be zero.
2989       if (DemandedElts.isSubsetOf(KnownUndef))
2990         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2991       KnownUndef.clearAllBits();
2992     }
2993     break;
2994   default: {
2995     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2996       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2997                                                   KnownZero, TLO, Depth))
2998         return true;
2999     } else {
3000       KnownBits Known;
3001       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3002       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3003                                TLO, Depth, AssumeSingleUse))
3004         return true;
3005     }
3006     break;
3007   }
3008   }
3009   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3010 
3011   // Constant fold all undef cases.
3012   // TODO: Handle zero cases as well.
3013   if (DemandedElts.isSubsetOf(KnownUndef))
3014     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3015 
3016   return false;
3017 }
3018 
3019 /// Determine which of the bits specified in Mask are known to be either zero or
3020 /// one and return them in the Known.
3021 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3022                                                    KnownBits &Known,
3023                                                    const APInt &DemandedElts,
3024                                                    const SelectionDAG &DAG,
3025                                                    unsigned Depth) const {
3026   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3027           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3028           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3029           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3030          "Should use MaskedValueIsZero if you don't know whether Op"
3031          " is a target node!");
3032   Known.resetAll();
3033 }
3034 
3035 void TargetLowering::computeKnownBitsForTargetInstr(
3036     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3037     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3038     unsigned Depth) const {
3039   Known.resetAll();
3040 }
3041 
3042 void TargetLowering::computeKnownBitsForFrameIndex(
3043   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3044   // The low bits are known zero if the pointer is aligned.
3045   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3046 }
3047 
3048 Align TargetLowering::computeKnownAlignForTargetInstr(
3049   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3050   unsigned Depth) const {
3051   return Align(1);
3052 }
3053 
3054 /// This method can be implemented by targets that want to expose additional
3055 /// information about sign bits to the DAG Combiner.
3056 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3057                                                          const APInt &,
3058                                                          const SelectionDAG &,
3059                                                          unsigned Depth) const {
3060   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3061           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3062           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3063           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3064          "Should use ComputeNumSignBits if you don't know whether Op"
3065          " is a target node!");
3066   return 1;
3067 }
3068 
3069 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3070   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3071   const MachineRegisterInfo &MRI, unsigned Depth) const {
3072   return 1;
3073 }
3074 
3075 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3076     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3077     TargetLoweringOpt &TLO, unsigned Depth) const {
3078   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3079           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3080           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3081           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3082          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3083          " is a target node!");
3084   return false;
3085 }
3086 
3087 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3088     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3089     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3090   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3091           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3092           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3093           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3094          "Should use SimplifyDemandedBits if you don't know whether Op"
3095          " is a target node!");
3096   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3097   return false;
3098 }
3099 
3100 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3101     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3102     SelectionDAG &DAG, unsigned Depth) const {
3103   assert(
3104       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3105        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3106        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3107        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3108       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3109       " is a target node!");
3110   return SDValue();
3111 }
3112 
3113 SDValue
3114 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3115                                         SDValue N1, MutableArrayRef<int> Mask,
3116                                         SelectionDAG &DAG) const {
3117   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3118   if (!LegalMask) {
3119     std::swap(N0, N1);
3120     ShuffleVectorSDNode::commuteMask(Mask);
3121     LegalMask = isShuffleMaskLegal(Mask, VT);
3122   }
3123 
3124   if (!LegalMask)
3125     return SDValue();
3126 
3127   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3128 }
3129 
3130 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3131   return nullptr;
3132 }
3133 
3134 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3135     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3136     bool PoisonOnly, unsigned Depth) const {
3137   assert(
3138       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3139        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3140        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3141        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3142       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3143       " is a target node!");
3144   return false;
3145 }
3146 
3147 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3148                                                   const SelectionDAG &DAG,
3149                                                   bool SNaN,
3150                                                   unsigned Depth) const {
3151   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3152           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3153           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3154           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3155          "Should use isKnownNeverNaN if you don't know whether Op"
3156          " is a target node!");
3157   return false;
3158 }
3159 
3160 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3161                                                const APInt &DemandedElts,
3162                                                APInt &UndefElts,
3163                                                unsigned Depth) const {
3164   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3165           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3166           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3167           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3168          "Should use isSplatValue if you don't know whether Op"
3169          " is a target node!");
3170   return false;
3171 }
3172 
3173 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3174 // work with truncating build vectors and vectors with elements of less than
3175 // 8 bits.
3176 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3177   if (!N)
3178     return false;
3179 
3180   APInt CVal;
3181   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3182     CVal = CN->getAPIntValue();
3183   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3184     auto *CN = BV->getConstantSplatNode();
3185     if (!CN)
3186       return false;
3187 
3188     // If this is a truncating build vector, truncate the splat value.
3189     // Otherwise, we may fail to match the expected values below.
3190     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3191     CVal = CN->getAPIntValue();
3192     if (BVEltWidth < CVal.getBitWidth())
3193       CVal = CVal.trunc(BVEltWidth);
3194   } else {
3195     return false;
3196   }
3197 
3198   switch (getBooleanContents(N->getValueType(0))) {
3199   case UndefinedBooleanContent:
3200     return CVal[0];
3201   case ZeroOrOneBooleanContent:
3202     return CVal.isOne();
3203   case ZeroOrNegativeOneBooleanContent:
3204     return CVal.isAllOnes();
3205   }
3206 
3207   llvm_unreachable("Invalid boolean contents");
3208 }
3209 
3210 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3211   if (!N)
3212     return false;
3213 
3214   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3215   if (!CN) {
3216     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3217     if (!BV)
3218       return false;
3219 
3220     // Only interested in constant splats, we don't care about undef
3221     // elements in identifying boolean constants and getConstantSplatNode
3222     // returns NULL if all ops are undef;
3223     CN = BV->getConstantSplatNode();
3224     if (!CN)
3225       return false;
3226   }
3227 
3228   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3229     return !CN->getAPIntValue()[0];
3230 
3231   return CN->isZero();
3232 }
3233 
3234 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3235                                        bool SExt) const {
3236   if (VT == MVT::i1)
3237     return N->isOne();
3238 
3239   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3240   switch (Cnt) {
3241   case TargetLowering::ZeroOrOneBooleanContent:
3242     // An extended value of 1 is always true, unless its original type is i1,
3243     // in which case it will be sign extended to -1.
3244     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3245   case TargetLowering::UndefinedBooleanContent:
3246   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3247     return N->isAllOnes() && SExt;
3248   }
3249   llvm_unreachable("Unexpected enumeration.");
3250 }
3251 
3252 /// This helper function of SimplifySetCC tries to optimize the comparison when
3253 /// either operand of the SetCC node is a bitwise-and instruction.
3254 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3255                                          ISD::CondCode Cond, const SDLoc &DL,
3256                                          DAGCombinerInfo &DCI) const {
3257   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3258     std::swap(N0, N1);
3259 
3260   SelectionDAG &DAG = DCI.DAG;
3261   EVT OpVT = N0.getValueType();
3262   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3263       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3264     return SDValue();
3265 
3266   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3267   // iff everything but LSB is known zero:
3268   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3269       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3270        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3271     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3272     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3273     if (DAG.MaskedValueIsZero(N0, UpperBits))
3274       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3275   }
3276 
3277   // Match these patterns in any of their permutations:
3278   // (X & Y) == Y
3279   // (X & Y) != Y
3280   SDValue X, Y;
3281   if (N0.getOperand(0) == N1) {
3282     X = N0.getOperand(1);
3283     Y = N0.getOperand(0);
3284   } else if (N0.getOperand(1) == N1) {
3285     X = N0.getOperand(0);
3286     Y = N0.getOperand(1);
3287   } else {
3288     return SDValue();
3289   }
3290 
3291   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3292   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3293     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3294     // Note that where Y is variable and is known to have at most one bit set
3295     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3296     // equivalent when Y == 0.
3297     assert(OpVT.isInteger());
3298     Cond = ISD::getSetCCInverse(Cond, OpVT);
3299     if (DCI.isBeforeLegalizeOps() ||
3300         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3301       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3302   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3303     // If the target supports an 'and-not' or 'and-complement' logic operation,
3304     // try to use that to make a comparison operation more efficient.
3305     // But don't do this transform if the mask is a single bit because there are
3306     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3307     // 'rlwinm' on PPC).
3308 
3309     // Bail out if the compare operand that we want to turn into a zero is
3310     // already a zero (otherwise, infinite loop).
3311     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3312     if (YConst && YConst->isZero())
3313       return SDValue();
3314 
3315     // Transform this into: ~X & Y == 0.
3316     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3317     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3318     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3319   }
3320 
3321   return SDValue();
3322 }
3323 
3324 /// There are multiple IR patterns that could be checking whether certain
3325 /// truncation of a signed number would be lossy or not. The pattern which is
3326 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3327 /// We are looking for the following pattern: (KeptBits is a constant)
3328 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3329 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3330 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3331 /// We will unfold it into the natural trunc+sext pattern:
3332 ///   ((%x << C) a>> C) dstcond %x
3333 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3334 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3335     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3336     const SDLoc &DL) const {
3337   // We must be comparing with a constant.
3338   ConstantSDNode *C1;
3339   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3340     return SDValue();
3341 
3342   // N0 should be:  add %x, (1 << (KeptBits-1))
3343   if (N0->getOpcode() != ISD::ADD)
3344     return SDValue();
3345 
3346   // And we must be 'add'ing a constant.
3347   ConstantSDNode *C01;
3348   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3349     return SDValue();
3350 
3351   SDValue X = N0->getOperand(0);
3352   EVT XVT = X.getValueType();
3353 
3354   // Validate constants ...
3355 
3356   APInt I1 = C1->getAPIntValue();
3357 
3358   ISD::CondCode NewCond;
3359   if (Cond == ISD::CondCode::SETULT) {
3360     NewCond = ISD::CondCode::SETEQ;
3361   } else if (Cond == ISD::CondCode::SETULE) {
3362     NewCond = ISD::CondCode::SETEQ;
3363     // But need to 'canonicalize' the constant.
3364     I1 += 1;
3365   } else if (Cond == ISD::CondCode::SETUGT) {
3366     NewCond = ISD::CondCode::SETNE;
3367     // But need to 'canonicalize' the constant.
3368     I1 += 1;
3369   } else if (Cond == ISD::CondCode::SETUGE) {
3370     NewCond = ISD::CondCode::SETNE;
3371   } else
3372     return SDValue();
3373 
3374   APInt I01 = C01->getAPIntValue();
3375 
3376   auto checkConstants = [&I1, &I01]() -> bool {
3377     // Both of them must be power-of-two, and the constant from setcc is bigger.
3378     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3379   };
3380 
3381   if (checkConstants()) {
3382     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3383   } else {
3384     // What if we invert constants? (and the target predicate)
3385     I1.negate();
3386     I01.negate();
3387     assert(XVT.isInteger());
3388     NewCond = getSetCCInverse(NewCond, XVT);
3389     if (!checkConstants())
3390       return SDValue();
3391     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3392   }
3393 
3394   // They are power-of-two, so which bit is set?
3395   const unsigned KeptBits = I1.logBase2();
3396   const unsigned KeptBitsMinusOne = I01.logBase2();
3397 
3398   // Magic!
3399   if (KeptBits != (KeptBitsMinusOne + 1))
3400     return SDValue();
3401   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3402 
3403   // We don't want to do this in every single case.
3404   SelectionDAG &DAG = DCI.DAG;
3405   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3406           XVT, KeptBits))
3407     return SDValue();
3408 
3409   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3410   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3411 
3412   // Unfold into:  ((%x << C) a>> C) cond %x
3413   // Where 'cond' will be either 'eq' or 'ne'.
3414   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3415   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3416   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3417   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3418 
3419   return T2;
3420 }
3421 
3422 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3423 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3424     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3425     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3426   assert(isConstOrConstSplat(N1C) &&
3427          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3428          "Should be a comparison with 0.");
3429   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3430          "Valid only for [in]equality comparisons.");
3431 
3432   unsigned NewShiftOpcode;
3433   SDValue X, C, Y;
3434 
3435   SelectionDAG &DAG = DCI.DAG;
3436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3437 
3438   // Look for '(C l>>/<< Y)'.
3439   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3440     // The shift should be one-use.
3441     if (!V.hasOneUse())
3442       return false;
3443     unsigned OldShiftOpcode = V.getOpcode();
3444     switch (OldShiftOpcode) {
3445     case ISD::SHL:
3446       NewShiftOpcode = ISD::SRL;
3447       break;
3448     case ISD::SRL:
3449       NewShiftOpcode = ISD::SHL;
3450       break;
3451     default:
3452       return false; // must be a logical shift.
3453     }
3454     // We should be shifting a constant.
3455     // FIXME: best to use isConstantOrConstantVector().
3456     C = V.getOperand(0);
3457     ConstantSDNode *CC =
3458         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3459     if (!CC)
3460       return false;
3461     Y = V.getOperand(1);
3462 
3463     ConstantSDNode *XC =
3464         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3465     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3466         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3467   };
3468 
3469   // LHS of comparison should be an one-use 'and'.
3470   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3471     return SDValue();
3472 
3473   X = N0.getOperand(0);
3474   SDValue Mask = N0.getOperand(1);
3475 
3476   // 'and' is commutative!
3477   if (!Match(Mask)) {
3478     std::swap(X, Mask);
3479     if (!Match(Mask))
3480       return SDValue();
3481   }
3482 
3483   EVT VT = X.getValueType();
3484 
3485   // Produce:
3486   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3487   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3488   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3489   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3490   return T2;
3491 }
3492 
3493 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3494 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3495 /// handle the commuted versions of these patterns.
3496 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3497                                            ISD::CondCode Cond, const SDLoc &DL,
3498                                            DAGCombinerInfo &DCI) const {
3499   unsigned BOpcode = N0.getOpcode();
3500   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3501          "Unexpected binop");
3502   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3503 
3504   // (X + Y) == X --> Y == 0
3505   // (X - Y) == X --> Y == 0
3506   // (X ^ Y) == X --> Y == 0
3507   SelectionDAG &DAG = DCI.DAG;
3508   EVT OpVT = N0.getValueType();
3509   SDValue X = N0.getOperand(0);
3510   SDValue Y = N0.getOperand(1);
3511   if (X == N1)
3512     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3513 
3514   if (Y != N1)
3515     return SDValue();
3516 
3517   // (X + Y) == Y --> X == 0
3518   // (X ^ Y) == Y --> X == 0
3519   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3520     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3521 
3522   // The shift would not be valid if the operands are boolean (i1).
3523   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3524     return SDValue();
3525 
3526   // (X - Y) == Y --> X == Y << 1
3527   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3528                                  !DCI.isBeforeLegalize());
3529   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3530   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3531   if (!DCI.isCalledByLegalizer())
3532     DCI.AddToWorklist(YShl1.getNode());
3533   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3534 }
3535 
3536 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3537                                       SDValue N0, const APInt &C1,
3538                                       ISD::CondCode Cond, const SDLoc &dl,
3539                                       SelectionDAG &DAG) {
3540   // Look through truncs that don't change the value of a ctpop.
3541   // FIXME: Add vector support? Need to be careful with setcc result type below.
3542   SDValue CTPOP = N0;
3543   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3544       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3545     CTPOP = N0.getOperand(0);
3546 
3547   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3548     return SDValue();
3549 
3550   EVT CTVT = CTPOP.getValueType();
3551   SDValue CTOp = CTPOP.getOperand(0);
3552 
3553   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3554   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3555   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3556     return SDValue();
3557 
3558   // (ctpop x) u< 2 -> (x & x-1) == 0
3559   // (ctpop x) u> 1 -> (x & x-1) != 0
3560   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3561     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3562     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3563       return SDValue();
3564     if (C1 == 0 && (Cond == ISD::SETULT))
3565       return SDValue(); // This is handled elsewhere.
3566 
3567     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3568 
3569     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3570     SDValue Result = CTOp;
3571     for (unsigned i = 0; i < Passes; i++) {
3572       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3573       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3574     }
3575     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3576     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3577   }
3578 
3579   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3580   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3581     // For scalars, keep CTPOP if it is legal or custom.
3582     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3583       return SDValue();
3584     // This is based on X86's custom lowering for CTPOP which produces more
3585     // instructions than the expansion here.
3586 
3587     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3588     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3589     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3590     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3591     assert(CTVT.isInteger());
3592     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3593     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3594     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3595     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3596     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3597     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3598     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3599   }
3600 
3601   return SDValue();
3602 }
3603 
3604 /// Try to simplify a setcc built with the specified operands and cc. If it is
3605 /// unable to simplify it, return a null SDValue.
3606 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3607                                       ISD::CondCode Cond, bool foldBooleans,
3608                                       DAGCombinerInfo &DCI,
3609                                       const SDLoc &dl) const {
3610   SelectionDAG &DAG = DCI.DAG;
3611   const DataLayout &Layout = DAG.getDataLayout();
3612   EVT OpVT = N0.getValueType();
3613 
3614   // Constant fold or commute setcc.
3615   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3616     return Fold;
3617 
3618   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3619   // TODO: Handle non-splat vector constants. All undef causes trouble.
3620   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3621   // infinite loop here when we encounter one.
3622   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3623   if (isConstOrConstSplat(N0) &&
3624       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3625       (DCI.isBeforeLegalizeOps() ||
3626        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3627     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3628 
3629   // If we have a subtract with the same 2 non-constant operands as this setcc
3630   // -- but in reverse order -- then try to commute the operands of this setcc
3631   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3632   // instruction on some targets.
3633   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3634       (DCI.isBeforeLegalizeOps() ||
3635        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3636       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3637       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3638     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3639 
3640   if (auto *N1C = isConstOrConstSplat(N1)) {
3641     const APInt &C1 = N1C->getAPIntValue();
3642 
3643     // Optimize some CTPOP cases.
3644     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3645       return V;
3646 
3647     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3648     // equality comparison, then we're just comparing whether X itself is
3649     // zero.
3650     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3651         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3652         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3653       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3654         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3655             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3656           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3657             // (srl (ctlz x), 5) == 0  -> X != 0
3658             // (srl (ctlz x), 5) != 1  -> X != 0
3659             Cond = ISD::SETNE;
3660           } else {
3661             // (srl (ctlz x), 5) != 0  -> X == 0
3662             // (srl (ctlz x), 5) == 1  -> X == 0
3663             Cond = ISD::SETEQ;
3664           }
3665           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3666           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3667                               Cond);
3668         }
3669       }
3670     }
3671   }
3672 
3673   // FIXME: Support vectors.
3674   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3675     const APInt &C1 = N1C->getAPIntValue();
3676 
3677     // (zext x) == C --> x == (trunc C)
3678     // (sext x) == C --> x == (trunc C)
3679     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3680         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3681       unsigned MinBits = N0.getValueSizeInBits();
3682       SDValue PreExt;
3683       bool Signed = false;
3684       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3685         // ZExt
3686         MinBits = N0->getOperand(0).getValueSizeInBits();
3687         PreExt = N0->getOperand(0);
3688       } else if (N0->getOpcode() == ISD::AND) {
3689         // DAGCombine turns costly ZExts into ANDs
3690         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3691           if ((C->getAPIntValue()+1).isPowerOf2()) {
3692             MinBits = C->getAPIntValue().countTrailingOnes();
3693             PreExt = N0->getOperand(0);
3694           }
3695       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3696         // SExt
3697         MinBits = N0->getOperand(0).getValueSizeInBits();
3698         PreExt = N0->getOperand(0);
3699         Signed = true;
3700       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3701         // ZEXTLOAD / SEXTLOAD
3702         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3703           MinBits = LN0->getMemoryVT().getSizeInBits();
3704           PreExt = N0;
3705         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3706           Signed = true;
3707           MinBits = LN0->getMemoryVT().getSizeInBits();
3708           PreExt = N0;
3709         }
3710       }
3711 
3712       // Figure out how many bits we need to preserve this constant.
3713       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
3714 
3715       // Make sure we're not losing bits from the constant.
3716       if (MinBits > 0 &&
3717           MinBits < C1.getBitWidth() &&
3718           MinBits >= ReqdBits) {
3719         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3720         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3721           // Will get folded away.
3722           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3723           if (MinBits == 1 && C1 == 1)
3724             // Invert the condition.
3725             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3726                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3727           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3728           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3729         }
3730 
3731         // If truncating the setcc operands is not desirable, we can still
3732         // simplify the expression in some cases:
3733         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3734         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3735         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3736         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3737         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3738         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3739         SDValue TopSetCC = N0->getOperand(0);
3740         unsigned N0Opc = N0->getOpcode();
3741         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3742         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3743             TopSetCC.getOpcode() == ISD::SETCC &&
3744             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3745             (isConstFalseVal(N1C) ||
3746              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3747 
3748           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3749                          (!N1C->isZero() && Cond == ISD::SETNE);
3750 
3751           if (!Inverse)
3752             return TopSetCC;
3753 
3754           ISD::CondCode InvCond = ISD::getSetCCInverse(
3755               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3756               TopSetCC.getOperand(0).getValueType());
3757           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3758                                       TopSetCC.getOperand(1),
3759                                       InvCond);
3760         }
3761       }
3762     }
3763 
3764     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3765     // equality or unsigned, and all 1 bits of the const are in the same
3766     // partial word, see if we can shorten the load.
3767     if (DCI.isBeforeLegalize() &&
3768         !ISD::isSignedIntSetCC(Cond) &&
3769         N0.getOpcode() == ISD::AND && C1 == 0 &&
3770         N0.getNode()->hasOneUse() &&
3771         isa<LoadSDNode>(N0.getOperand(0)) &&
3772         N0.getOperand(0).getNode()->hasOneUse() &&
3773         isa<ConstantSDNode>(N0.getOperand(1))) {
3774       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3775       APInt bestMask;
3776       unsigned bestWidth = 0, bestOffset = 0;
3777       if (Lod->isSimple() && Lod->isUnindexed()) {
3778         unsigned origWidth = N0.getValueSizeInBits();
3779         unsigned maskWidth = origWidth;
3780         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3781         // 8 bits, but have to be careful...
3782         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3783           origWidth = Lod->getMemoryVT().getSizeInBits();
3784         const APInt &Mask = N0.getConstantOperandAPInt(1);
3785         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3786           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3787           for (unsigned offset=0; offset<origWidth/width; offset++) {
3788             if (Mask.isSubsetOf(newMask)) {
3789               if (Layout.isLittleEndian())
3790                 bestOffset = (uint64_t)offset * (width/8);
3791               else
3792                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3793               bestMask = Mask.lshr(offset * (width/8) * 8);
3794               bestWidth = width;
3795               break;
3796             }
3797             newMask <<= width;
3798           }
3799         }
3800       }
3801       if (bestWidth) {
3802         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3803         if (newVT.isRound() &&
3804             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3805           SDValue Ptr = Lod->getBasePtr();
3806           if (bestOffset != 0)
3807             Ptr =
3808                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3809           SDValue NewLoad =
3810               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3811                           Lod->getPointerInfo().getWithOffset(bestOffset),
3812                           Lod->getOriginalAlign());
3813           return DAG.getSetCC(dl, VT,
3814                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3815                                       DAG.getConstant(bestMask.trunc(bestWidth),
3816                                                       dl, newVT)),
3817                               DAG.getConstant(0LL, dl, newVT), Cond);
3818         }
3819       }
3820     }
3821 
3822     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3823     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3824       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3825 
3826       // If the comparison constant has bits in the upper part, the
3827       // zero-extended value could never match.
3828       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3829                                               C1.getBitWidth() - InSize))) {
3830         switch (Cond) {
3831         case ISD::SETUGT:
3832         case ISD::SETUGE:
3833         case ISD::SETEQ:
3834           return DAG.getConstant(0, dl, VT);
3835         case ISD::SETULT:
3836         case ISD::SETULE:
3837         case ISD::SETNE:
3838           return DAG.getConstant(1, dl, VT);
3839         case ISD::SETGT:
3840         case ISD::SETGE:
3841           // True if the sign bit of C1 is set.
3842           return DAG.getConstant(C1.isNegative(), dl, VT);
3843         case ISD::SETLT:
3844         case ISD::SETLE:
3845           // True if the sign bit of C1 isn't set.
3846           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3847         default:
3848           break;
3849         }
3850       }
3851 
3852       // Otherwise, we can perform the comparison with the low bits.
3853       switch (Cond) {
3854       case ISD::SETEQ:
3855       case ISD::SETNE:
3856       case ISD::SETUGT:
3857       case ISD::SETUGE:
3858       case ISD::SETULT:
3859       case ISD::SETULE: {
3860         EVT newVT = N0.getOperand(0).getValueType();
3861         if (DCI.isBeforeLegalizeOps() ||
3862             (isOperationLegal(ISD::SETCC, newVT) &&
3863              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3864           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3865           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3866 
3867           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3868                                           NewConst, Cond);
3869           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3870         }
3871         break;
3872       }
3873       default:
3874         break; // todo, be more careful with signed comparisons
3875       }
3876     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3877                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3878                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3879                                       OpVT)) {
3880       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3881       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3882       EVT ExtDstTy = N0.getValueType();
3883       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3884 
3885       // If the constant doesn't fit into the number of bits for the source of
3886       // the sign extension, it is impossible for both sides to be equal.
3887       if (C1.getMinSignedBits() > ExtSrcTyBits)
3888         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3889 
3890       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3891              ExtDstTy != ExtSrcTy && "Unexpected types!");
3892       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3893       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3894                                    DAG.getConstant(Imm, dl, ExtDstTy));
3895       if (!DCI.isCalledByLegalizer())
3896         DCI.AddToWorklist(ZextOp.getNode());
3897       // Otherwise, make this a use of a zext.
3898       return DAG.getSetCC(dl, VT, ZextOp,
3899                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3900     } else if ((N1C->isZero() || N1C->isOne()) &&
3901                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3902       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3903       if (N0.getOpcode() == ISD::SETCC &&
3904           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3905           (N0.getValueType() == MVT::i1 ||
3906            getBooleanContents(N0.getOperand(0).getValueType()) ==
3907                        ZeroOrOneBooleanContent)) {
3908         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3909         if (TrueWhenTrue)
3910           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3911         // Invert the condition.
3912         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3913         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3914         if (DCI.isBeforeLegalizeOps() ||
3915             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3916           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3917       }
3918 
3919       if ((N0.getOpcode() == ISD::XOR ||
3920            (N0.getOpcode() == ISD::AND &&
3921             N0.getOperand(0).getOpcode() == ISD::XOR &&
3922             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3923           isOneConstant(N0.getOperand(1))) {
3924         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3925         // can only do this if the top bits are known zero.
3926         unsigned BitWidth = N0.getValueSizeInBits();
3927         if (DAG.MaskedValueIsZero(N0,
3928                                   APInt::getHighBitsSet(BitWidth,
3929                                                         BitWidth-1))) {
3930           // Okay, get the un-inverted input value.
3931           SDValue Val;
3932           if (N0.getOpcode() == ISD::XOR) {
3933             Val = N0.getOperand(0);
3934           } else {
3935             assert(N0.getOpcode() == ISD::AND &&
3936                     N0.getOperand(0).getOpcode() == ISD::XOR);
3937             // ((X^1)&1)^1 -> X & 1
3938             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3939                               N0.getOperand(0).getOperand(0),
3940                               N0.getOperand(1));
3941           }
3942 
3943           return DAG.getSetCC(dl, VT, Val, N1,
3944                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3945         }
3946       } else if (N1C->isOne()) {
3947         SDValue Op0 = N0;
3948         if (Op0.getOpcode() == ISD::TRUNCATE)
3949           Op0 = Op0.getOperand(0);
3950 
3951         if ((Op0.getOpcode() == ISD::XOR) &&
3952             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3953             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3954           SDValue XorLHS = Op0.getOperand(0);
3955           SDValue XorRHS = Op0.getOperand(1);
3956           // Ensure that the input setccs return an i1 type or 0/1 value.
3957           if (Op0.getValueType() == MVT::i1 ||
3958               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3959                       ZeroOrOneBooleanContent &&
3960                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3961                         ZeroOrOneBooleanContent)) {
3962             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3963             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3964             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3965           }
3966         }
3967         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3968           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3969           if (Op0.getValueType().bitsGT(VT))
3970             Op0 = DAG.getNode(ISD::AND, dl, VT,
3971                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3972                           DAG.getConstant(1, dl, VT));
3973           else if (Op0.getValueType().bitsLT(VT))
3974             Op0 = DAG.getNode(ISD::AND, dl, VT,
3975                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3976                         DAG.getConstant(1, dl, VT));
3977 
3978           return DAG.getSetCC(dl, VT, Op0,
3979                               DAG.getConstant(0, dl, Op0.getValueType()),
3980                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3981         }
3982         if (Op0.getOpcode() == ISD::AssertZext &&
3983             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3984           return DAG.getSetCC(dl, VT, Op0,
3985                               DAG.getConstant(0, dl, Op0.getValueType()),
3986                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3987       }
3988     }
3989 
3990     // Given:
3991     //   icmp eq/ne (urem %x, %y), 0
3992     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3993     //   icmp eq/ne %x, 0
3994     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3995         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3996       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3997       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3998       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3999         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4000     }
4001 
4002     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4003     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4004     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4005         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4006         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4007         N1C && N1C->isAllOnes()) {
4008       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4009                           DAG.getConstant(0, dl, OpVT),
4010                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4011     }
4012 
4013     if (SDValue V =
4014             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4015       return V;
4016   }
4017 
4018   // These simplifications apply to splat vectors as well.
4019   // TODO: Handle more splat vector cases.
4020   if (auto *N1C = isConstOrConstSplat(N1)) {
4021     const APInt &C1 = N1C->getAPIntValue();
4022 
4023     APInt MinVal, MaxVal;
4024     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4025     if (ISD::isSignedIntSetCC(Cond)) {
4026       MinVal = APInt::getSignedMinValue(OperandBitSize);
4027       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4028     } else {
4029       MinVal = APInt::getMinValue(OperandBitSize);
4030       MaxVal = APInt::getMaxValue(OperandBitSize);
4031     }
4032 
4033     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4034     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4035       // X >= MIN --> true
4036       if (C1 == MinVal)
4037         return DAG.getBoolConstant(true, dl, VT, OpVT);
4038 
4039       if (!VT.isVector()) { // TODO: Support this for vectors.
4040         // X >= C0 --> X > (C0 - 1)
4041         APInt C = C1 - 1;
4042         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4043         if ((DCI.isBeforeLegalizeOps() ||
4044              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4045             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4046                                   isLegalICmpImmediate(C.getSExtValue())))) {
4047           return DAG.getSetCC(dl, VT, N0,
4048                               DAG.getConstant(C, dl, N1.getValueType()),
4049                               NewCC);
4050         }
4051       }
4052     }
4053 
4054     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4055       // X <= MAX --> true
4056       if (C1 == MaxVal)
4057         return DAG.getBoolConstant(true, dl, VT, OpVT);
4058 
4059       // X <= C0 --> X < (C0 + 1)
4060       if (!VT.isVector()) { // TODO: Support this for vectors.
4061         APInt C = C1 + 1;
4062         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4063         if ((DCI.isBeforeLegalizeOps() ||
4064              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4065             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4066                                   isLegalICmpImmediate(C.getSExtValue())))) {
4067           return DAG.getSetCC(dl, VT, N0,
4068                               DAG.getConstant(C, dl, N1.getValueType()),
4069                               NewCC);
4070         }
4071       }
4072     }
4073 
4074     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4075       if (C1 == MinVal)
4076         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4077 
4078       // TODO: Support this for vectors after legalize ops.
4079       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4080         // Canonicalize setlt X, Max --> setne X, Max
4081         if (C1 == MaxVal)
4082           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4083 
4084         // If we have setult X, 1, turn it into seteq X, 0
4085         if (C1 == MinVal+1)
4086           return DAG.getSetCC(dl, VT, N0,
4087                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4088                               ISD::SETEQ);
4089       }
4090     }
4091 
4092     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4093       if (C1 == MaxVal)
4094         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4095 
4096       // TODO: Support this for vectors after legalize ops.
4097       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4098         // Canonicalize setgt X, Min --> setne X, Min
4099         if (C1 == MinVal)
4100           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4101 
4102         // If we have setugt X, Max-1, turn it into seteq X, Max
4103         if (C1 == MaxVal-1)
4104           return DAG.getSetCC(dl, VT, N0,
4105                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4106                               ISD::SETEQ);
4107       }
4108     }
4109 
4110     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4111       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4112       if (C1.isZero())
4113         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4114                 VT, N0, N1, Cond, DCI, dl))
4115           return CC;
4116 
4117       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4118       // For example, when high 32-bits of i64 X are known clear:
4119       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4120       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4121       bool CmpZero = N1C->getAPIntValue().isZero();
4122       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4123       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4124         // Match or(lo,shl(hi,bw/2)) pattern.
4125         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4126           unsigned EltBits = V.getScalarValueSizeInBits();
4127           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4128             return false;
4129           SDValue LHS = V.getOperand(0);
4130           SDValue RHS = V.getOperand(1);
4131           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4132           // Unshifted element must have zero upperbits.
4133           if (RHS.getOpcode() == ISD::SHL &&
4134               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4135               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4136               DAG.MaskedValueIsZero(LHS, HiBits)) {
4137             Lo = LHS;
4138             Hi = RHS.getOperand(0);
4139             return true;
4140           }
4141           if (LHS.getOpcode() == ISD::SHL &&
4142               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4143               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4144               DAG.MaskedValueIsZero(RHS, HiBits)) {
4145             Lo = RHS;
4146             Hi = LHS.getOperand(0);
4147             return true;
4148           }
4149           return false;
4150         };
4151 
4152         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4153           unsigned EltBits = N0.getScalarValueSizeInBits();
4154           unsigned HalfBits = EltBits / 2;
4155           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4156           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4157           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4158           SDValue NewN0 =
4159               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4160           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4161           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4162         };
4163 
4164         SDValue Lo, Hi;
4165         if (IsConcat(N0, Lo, Hi))
4166           return MergeConcat(Lo, Hi);
4167 
4168         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4169           SDValue Lo0, Lo1, Hi0, Hi1;
4170           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4171               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4172             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4173                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4174           }
4175         }
4176       }
4177     }
4178 
4179     // If we have "setcc X, C0", check to see if we can shrink the immediate
4180     // by changing cc.
4181     // TODO: Support this for vectors after legalize ops.
4182     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4183       // SETUGT X, SINTMAX  -> SETLT X, 0
4184       // SETUGE X, SINTMIN -> SETLT X, 0
4185       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4186           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4187         return DAG.getSetCC(dl, VT, N0,
4188                             DAG.getConstant(0, dl, N1.getValueType()),
4189                             ISD::SETLT);
4190 
4191       // SETULT X, SINTMIN  -> SETGT X, -1
4192       // SETULE X, SINTMAX  -> SETGT X, -1
4193       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4194           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4195         return DAG.getSetCC(dl, VT, N0,
4196                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4197                             ISD::SETGT);
4198     }
4199   }
4200 
4201   // Back to non-vector simplifications.
4202   // TODO: Can we do these for vector splats?
4203   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4204     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4205     const APInt &C1 = N1C->getAPIntValue();
4206     EVT ShValTy = N0.getValueType();
4207 
4208     // Fold bit comparisons when we can. This will result in an
4209     // incorrect value when boolean false is negative one, unless
4210     // the bitsize is 1 in which case the false value is the same
4211     // in practice regardless of the representation.
4212     if ((VT.getSizeInBits() == 1 ||
4213          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4214         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4215         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4216         N0.getOpcode() == ISD::AND) {
4217       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4218         EVT ShiftTy =
4219             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4220         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4221           // Perform the xform if the AND RHS is a single bit.
4222           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4223           if (AndRHS->getAPIntValue().isPowerOf2() &&
4224               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4225             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4226                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4227                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4228           }
4229         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4230           // (X & 8) == 8  -->  (X & 8) >> 3
4231           // Perform the xform if C1 is a single bit.
4232           unsigned ShCt = C1.logBase2();
4233           if (C1.isPowerOf2() &&
4234               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4235             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4236                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4237                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4238           }
4239         }
4240       }
4241     }
4242 
4243     if (C1.getMinSignedBits() <= 64 &&
4244         !isLegalICmpImmediate(C1.getSExtValue())) {
4245       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4246       // (X & -256) == 256 -> (X >> 8) == 1
4247       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4248           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4249         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4250           const APInt &AndRHSC = AndRHS->getAPIntValue();
4251           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4252             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4253             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4254               SDValue Shift =
4255                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4256                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4257               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4258               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4259             }
4260           }
4261         }
4262       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4263                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4264         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4265         // X <  0x100000000 -> (X >> 32) <  1
4266         // X >= 0x100000000 -> (X >> 32) >= 1
4267         // X <= 0x0ffffffff -> (X >> 32) <  1
4268         // X >  0x0ffffffff -> (X >> 32) >= 1
4269         unsigned ShiftBits;
4270         APInt NewC = C1;
4271         ISD::CondCode NewCond = Cond;
4272         if (AdjOne) {
4273           ShiftBits = C1.countTrailingOnes();
4274           NewC = NewC + 1;
4275           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4276         } else {
4277           ShiftBits = C1.countTrailingZeros();
4278         }
4279         NewC.lshrInPlace(ShiftBits);
4280         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4281             isLegalICmpImmediate(NewC.getSExtValue()) &&
4282             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4283           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4284                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4285           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4286           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4287         }
4288       }
4289     }
4290   }
4291 
4292   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4293     auto *CFP = cast<ConstantFPSDNode>(N1);
4294     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4295 
4296     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4297     // constant if knowing that the operand is non-nan is enough.  We prefer to
4298     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4299     // materialize 0.0.
4300     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4301       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4302 
4303     // setcc (fneg x), C -> setcc swap(pred) x, -C
4304     if (N0.getOpcode() == ISD::FNEG) {
4305       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4306       if (DCI.isBeforeLegalizeOps() ||
4307           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4308         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4309         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4310       }
4311     }
4312 
4313     // If the condition is not legal, see if we can find an equivalent one
4314     // which is legal.
4315     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4316       // If the comparison was an awkward floating-point == or != and one of
4317       // the comparison operands is infinity or negative infinity, convert the
4318       // condition to a less-awkward <= or >=.
4319       if (CFP->getValueAPF().isInfinity()) {
4320         bool IsNegInf = CFP->getValueAPF().isNegative();
4321         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4322         switch (Cond) {
4323         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4324         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4325         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4326         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4327         default: break;
4328         }
4329         if (NewCond != ISD::SETCC_INVALID &&
4330             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4331           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4332       }
4333     }
4334   }
4335 
4336   if (N0 == N1) {
4337     // The sext(setcc()) => setcc() optimization relies on the appropriate
4338     // constant being emitted.
4339     assert(!N0.getValueType().isInteger() &&
4340            "Integer types should be handled by FoldSetCC");
4341 
4342     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4343     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4344     if (UOF == 2) // FP operators that are undefined on NaNs.
4345       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4346     if (UOF == unsigned(EqTrue))
4347       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4348     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4349     // if it is not already.
4350     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4351     if (NewCond != Cond &&
4352         (DCI.isBeforeLegalizeOps() ||
4353                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4354       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4355   }
4356 
4357   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4358       N0.getValueType().isInteger()) {
4359     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4360         N0.getOpcode() == ISD::XOR) {
4361       // Simplify (X+Y) == (X+Z) -->  Y == Z
4362       if (N0.getOpcode() == N1.getOpcode()) {
4363         if (N0.getOperand(0) == N1.getOperand(0))
4364           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4365         if (N0.getOperand(1) == N1.getOperand(1))
4366           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4367         if (isCommutativeBinOp(N0.getOpcode())) {
4368           // If X op Y == Y op X, try other combinations.
4369           if (N0.getOperand(0) == N1.getOperand(1))
4370             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4371                                 Cond);
4372           if (N0.getOperand(1) == N1.getOperand(0))
4373             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4374                                 Cond);
4375         }
4376       }
4377 
4378       // If RHS is a legal immediate value for a compare instruction, we need
4379       // to be careful about increasing register pressure needlessly.
4380       bool LegalRHSImm = false;
4381 
4382       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4383         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4384           // Turn (X+C1) == C2 --> X == C2-C1
4385           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4386             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4387                                 DAG.getConstant(RHSC->getAPIntValue()-
4388                                                 LHSR->getAPIntValue(),
4389                                 dl, N0.getValueType()), Cond);
4390           }
4391 
4392           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4393           if (N0.getOpcode() == ISD::XOR)
4394             // If we know that all of the inverted bits are zero, don't bother
4395             // performing the inversion.
4396             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4397               return
4398                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4399                              DAG.getConstant(LHSR->getAPIntValue() ^
4400                                                RHSC->getAPIntValue(),
4401                                              dl, N0.getValueType()),
4402                              Cond);
4403         }
4404 
4405         // Turn (C1-X) == C2 --> X == C1-C2
4406         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4407           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4408             return
4409               DAG.getSetCC(dl, VT, N0.getOperand(1),
4410                            DAG.getConstant(SUBC->getAPIntValue() -
4411                                              RHSC->getAPIntValue(),
4412                                            dl, N0.getValueType()),
4413                            Cond);
4414           }
4415         }
4416 
4417         // Could RHSC fold directly into a compare?
4418         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4419           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4420       }
4421 
4422       // (X+Y) == X --> Y == 0 and similar folds.
4423       // Don't do this if X is an immediate that can fold into a cmp
4424       // instruction and X+Y has other uses. It could be an induction variable
4425       // chain, and the transform would increase register pressure.
4426       if (!LegalRHSImm || N0.hasOneUse())
4427         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4428           return V;
4429     }
4430 
4431     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4432         N1.getOpcode() == ISD::XOR)
4433       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4434         return V;
4435 
4436     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4437       return V;
4438   }
4439 
4440   // Fold remainder of division by a constant.
4441   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4442       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4443     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4444 
4445     // When division is cheap or optimizing for minimum size,
4446     // fall through to DIVREM creation by skipping this fold.
4447     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4448       if (N0.getOpcode() == ISD::UREM) {
4449         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4450           return Folded;
4451       } else if (N0.getOpcode() == ISD::SREM) {
4452         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4453           return Folded;
4454       }
4455     }
4456   }
4457 
4458   // Fold away ALL boolean setcc's.
4459   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4460     SDValue Temp;
4461     switch (Cond) {
4462     default: llvm_unreachable("Unknown integer setcc!");
4463     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4464       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4465       N0 = DAG.getNOT(dl, Temp, OpVT);
4466       if (!DCI.isCalledByLegalizer())
4467         DCI.AddToWorklist(Temp.getNode());
4468       break;
4469     case ISD::SETNE:  // X != Y   -->  (X^Y)
4470       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4471       break;
4472     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4473     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4474       Temp = DAG.getNOT(dl, N0, OpVT);
4475       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4476       if (!DCI.isCalledByLegalizer())
4477         DCI.AddToWorklist(Temp.getNode());
4478       break;
4479     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4480     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4481       Temp = DAG.getNOT(dl, N1, OpVT);
4482       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4483       if (!DCI.isCalledByLegalizer())
4484         DCI.AddToWorklist(Temp.getNode());
4485       break;
4486     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4487     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4488       Temp = DAG.getNOT(dl, N0, OpVT);
4489       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4490       if (!DCI.isCalledByLegalizer())
4491         DCI.AddToWorklist(Temp.getNode());
4492       break;
4493     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4494     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4495       Temp = DAG.getNOT(dl, N1, OpVT);
4496       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4497       break;
4498     }
4499     if (VT.getScalarType() != MVT::i1) {
4500       if (!DCI.isCalledByLegalizer())
4501         DCI.AddToWorklist(N0.getNode());
4502       // FIXME: If running after legalize, we probably can't do this.
4503       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4504       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4505     }
4506     return N0;
4507   }
4508 
4509   // Could not fold it.
4510   return SDValue();
4511 }
4512 
4513 /// Returns true (and the GlobalValue and the offset) if the node is a
4514 /// GlobalAddress + offset.
4515 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4516                                     int64_t &Offset) const {
4517 
4518   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4519 
4520   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4521     GA = GASD->getGlobal();
4522     Offset += GASD->getOffset();
4523     return true;
4524   }
4525 
4526   if (N->getOpcode() == ISD::ADD) {
4527     SDValue N1 = N->getOperand(0);
4528     SDValue N2 = N->getOperand(1);
4529     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4530       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4531         Offset += V->getSExtValue();
4532         return true;
4533       }
4534     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4535       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4536         Offset += V->getSExtValue();
4537         return true;
4538       }
4539     }
4540   }
4541 
4542   return false;
4543 }
4544 
4545 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4546                                           DAGCombinerInfo &DCI) const {
4547   // Default implementation: no optimization.
4548   return SDValue();
4549 }
4550 
4551 //===----------------------------------------------------------------------===//
4552 //  Inline Assembler Implementation Methods
4553 //===----------------------------------------------------------------------===//
4554 
4555 TargetLowering::ConstraintType
4556 TargetLowering::getConstraintType(StringRef Constraint) const {
4557   unsigned S = Constraint.size();
4558 
4559   if (S == 1) {
4560     switch (Constraint[0]) {
4561     default: break;
4562     case 'r':
4563       return C_RegisterClass;
4564     case 'm': // memory
4565     case 'o': // offsetable
4566     case 'V': // not offsetable
4567       return C_Memory;
4568     case 'n': // Simple Integer
4569     case 'E': // Floating Point Constant
4570     case 'F': // Floating Point Constant
4571       return C_Immediate;
4572     case 'i': // Simple Integer or Relocatable Constant
4573     case 's': // Relocatable Constant
4574     case 'p': // Address.
4575     case 'X': // Allow ANY value.
4576     case 'I': // Target registers.
4577     case 'J':
4578     case 'K':
4579     case 'L':
4580     case 'M':
4581     case 'N':
4582     case 'O':
4583     case 'P':
4584     case '<':
4585     case '>':
4586       return C_Other;
4587     }
4588   }
4589 
4590   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4591     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4592       return C_Memory;
4593     return C_Register;
4594   }
4595   return C_Unknown;
4596 }
4597 
4598 /// Try to replace an X constraint, which matches anything, with another that
4599 /// has more specific requirements based on the type of the corresponding
4600 /// operand.
4601 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4602   if (ConstraintVT.isInteger())
4603     return "r";
4604   if (ConstraintVT.isFloatingPoint())
4605     return "f"; // works for many targets
4606   return nullptr;
4607 }
4608 
4609 SDValue TargetLowering::LowerAsmOutputForConstraint(
4610     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4611     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4612   return SDValue();
4613 }
4614 
4615 /// Lower the specified operand into the Ops vector.
4616 /// If it is invalid, don't add anything to Ops.
4617 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4618                                                   std::string &Constraint,
4619                                                   std::vector<SDValue> &Ops,
4620                                                   SelectionDAG &DAG) const {
4621 
4622   if (Constraint.length() > 1) return;
4623 
4624   char ConstraintLetter = Constraint[0];
4625   switch (ConstraintLetter) {
4626   default: break;
4627   case 'X':    // Allows any operand
4628   case 'i':    // Simple Integer or Relocatable Constant
4629   case 'n':    // Simple Integer
4630   case 's': {  // Relocatable Constant
4631 
4632     ConstantSDNode *C;
4633     uint64_t Offset = 0;
4634 
4635     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4636     // etc., since getelementpointer is variadic. We can't use
4637     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4638     // while in this case the GA may be furthest from the root node which is
4639     // likely an ISD::ADD.
4640     while (true) {
4641       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4642         // gcc prints these as sign extended.  Sign extend value to 64 bits
4643         // now; without this it would get ZExt'd later in
4644         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4645         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4646         BooleanContent BCont = getBooleanContents(MVT::i64);
4647         ISD::NodeType ExtOpc =
4648             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4649         int64_t ExtVal =
4650             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4651         Ops.push_back(
4652             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4653         return;
4654       }
4655       if (ConstraintLetter != 'n') {
4656         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4657           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4658                                                    GA->getValueType(0),
4659                                                    Offset + GA->getOffset()));
4660           return;
4661         }
4662         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
4663           Ops.push_back(DAG.getTargetBlockAddress(
4664               BA->getBlockAddress(), BA->getValueType(0),
4665               Offset + BA->getOffset(), BA->getTargetFlags()));
4666           return;
4667         }
4668         if (isa<BasicBlockSDNode>(Op)) {
4669           Ops.push_back(Op);
4670           return;
4671         }
4672       }
4673       const unsigned OpCode = Op.getOpcode();
4674       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4675         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4676           Op = Op.getOperand(1);
4677         // Subtraction is not commutative.
4678         else if (OpCode == ISD::ADD &&
4679                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4680           Op = Op.getOperand(0);
4681         else
4682           return;
4683         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4684         continue;
4685       }
4686       return;
4687     }
4688     break;
4689   }
4690   }
4691 }
4692 
4693 std::pair<unsigned, const TargetRegisterClass *>
4694 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4695                                              StringRef Constraint,
4696                                              MVT VT) const {
4697   if (Constraint.empty() || Constraint[0] != '{')
4698     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4699   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4700 
4701   // Remove the braces from around the name.
4702   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4703 
4704   std::pair<unsigned, const TargetRegisterClass *> R =
4705       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4706 
4707   // Figure out which register class contains this reg.
4708   for (const TargetRegisterClass *RC : RI->regclasses()) {
4709     // If none of the value types for this register class are valid, we
4710     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4711     if (!isLegalRC(*RI, *RC))
4712       continue;
4713 
4714     for (const MCPhysReg &PR : *RC) {
4715       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4716         std::pair<unsigned, const TargetRegisterClass *> S =
4717             std::make_pair(PR, RC);
4718 
4719         // If this register class has the requested value type, return it,
4720         // otherwise keep searching and return the first class found
4721         // if no other is found which explicitly has the requested type.
4722         if (RI->isTypeLegalForClass(*RC, VT))
4723           return S;
4724         if (!R.second)
4725           R = S;
4726       }
4727     }
4728   }
4729 
4730   return R;
4731 }
4732 
4733 //===----------------------------------------------------------------------===//
4734 // Constraint Selection.
4735 
4736 /// Return true of this is an input operand that is a matching constraint like
4737 /// "4".
4738 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4739   assert(!ConstraintCode.empty() && "No known constraint!");
4740   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4741 }
4742 
4743 /// If this is an input matching constraint, this method returns the output
4744 /// operand it matches.
4745 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4746   assert(!ConstraintCode.empty() && "No known constraint!");
4747   return atoi(ConstraintCode.c_str());
4748 }
4749 
4750 /// Split up the constraint string from the inline assembly value into the
4751 /// specific constraints and their prefixes, and also tie in the associated
4752 /// operand values.
4753 /// If this returns an empty vector, and if the constraint string itself
4754 /// isn't empty, there was an error parsing.
4755 TargetLowering::AsmOperandInfoVector
4756 TargetLowering::ParseConstraints(const DataLayout &DL,
4757                                  const TargetRegisterInfo *TRI,
4758                                  const CallBase &Call) const {
4759   /// Information about all of the constraints.
4760   AsmOperandInfoVector ConstraintOperands;
4761   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4762   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4763 
4764   // Do a prepass over the constraints, canonicalizing them, and building up the
4765   // ConstraintOperands list.
4766   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4767   unsigned ResNo = 0; // ResNo - The result number of the next output.
4768 
4769   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4770     ConstraintOperands.emplace_back(std::move(CI));
4771     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4772 
4773     // Update multiple alternative constraint count.
4774     if (OpInfo.multipleAlternatives.size() > maCount)
4775       maCount = OpInfo.multipleAlternatives.size();
4776 
4777     OpInfo.ConstraintVT = MVT::Other;
4778 
4779     // Compute the value type for each operand.
4780     switch (OpInfo.Type) {
4781     case InlineAsm::isOutput:
4782       // Indirect outputs just consume an argument.
4783       if (OpInfo.isIndirect) {
4784         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4785         break;
4786       }
4787 
4788       // The return value of the call is this value.  As such, there is no
4789       // corresponding argument.
4790       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4791       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4792         OpInfo.ConstraintVT =
4793             getSimpleValueType(DL, STy->getElementType(ResNo));
4794       } else {
4795         assert(ResNo == 0 && "Asm only has one result!");
4796         OpInfo.ConstraintVT =
4797             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4798       }
4799       ++ResNo;
4800       break;
4801     case InlineAsm::isInput:
4802       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4803       break;
4804     case InlineAsm::isClobber:
4805       // Nothing to do.
4806       break;
4807     }
4808 
4809     if (OpInfo.CallOperandVal) {
4810       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4811       if (OpInfo.isIndirect) {
4812         OpTy = Call.getAttributes().getParamElementType(ArgNo);
4813         assert(OpTy && "Indirect opernad must have elementtype attribute");
4814       }
4815 
4816       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4817       if (StructType *STy = dyn_cast<StructType>(OpTy))
4818         if (STy->getNumElements() == 1)
4819           OpTy = STy->getElementType(0);
4820 
4821       // If OpTy is not a single value, it may be a struct/union that we
4822       // can tile with integers.
4823       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4824         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4825         switch (BitSize) {
4826         default: break;
4827         case 1:
4828         case 8:
4829         case 16:
4830         case 32:
4831         case 64:
4832         case 128:
4833           OpInfo.ConstraintVT =
4834               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4835           break;
4836         }
4837       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4838         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4839         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4840       } else {
4841         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4842       }
4843 
4844       ArgNo++;
4845     }
4846   }
4847 
4848   // If we have multiple alternative constraints, select the best alternative.
4849   if (!ConstraintOperands.empty()) {
4850     if (maCount) {
4851       unsigned bestMAIndex = 0;
4852       int bestWeight = -1;
4853       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4854       int weight = -1;
4855       unsigned maIndex;
4856       // Compute the sums of the weights for each alternative, keeping track
4857       // of the best (highest weight) one so far.
4858       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4859         int weightSum = 0;
4860         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4861              cIndex != eIndex; ++cIndex) {
4862           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4863           if (OpInfo.Type == InlineAsm::isClobber)
4864             continue;
4865 
4866           // If this is an output operand with a matching input operand,
4867           // look up the matching input. If their types mismatch, e.g. one
4868           // is an integer, the other is floating point, or their sizes are
4869           // different, flag it as an maCantMatch.
4870           if (OpInfo.hasMatchingInput()) {
4871             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4872             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4873               if ((OpInfo.ConstraintVT.isInteger() !=
4874                    Input.ConstraintVT.isInteger()) ||
4875                   (OpInfo.ConstraintVT.getSizeInBits() !=
4876                    Input.ConstraintVT.getSizeInBits())) {
4877                 weightSum = -1; // Can't match.
4878                 break;
4879               }
4880             }
4881           }
4882           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4883           if (weight == -1) {
4884             weightSum = -1;
4885             break;
4886           }
4887           weightSum += weight;
4888         }
4889         // Update best.
4890         if (weightSum > bestWeight) {
4891           bestWeight = weightSum;
4892           bestMAIndex = maIndex;
4893         }
4894       }
4895 
4896       // Now select chosen alternative in each constraint.
4897       for (AsmOperandInfo &cInfo : ConstraintOperands)
4898         if (cInfo.Type != InlineAsm::isClobber)
4899           cInfo.selectAlternative(bestMAIndex);
4900     }
4901   }
4902 
4903   // Check and hook up tied operands, choose constraint code to use.
4904   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4905        cIndex != eIndex; ++cIndex) {
4906     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4907 
4908     // If this is an output operand with a matching input operand, look up the
4909     // matching input. If their types mismatch, e.g. one is an integer, the
4910     // other is floating point, or their sizes are different, flag it as an
4911     // error.
4912     if (OpInfo.hasMatchingInput()) {
4913       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4914 
4915       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4916         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4917             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4918                                          OpInfo.ConstraintVT);
4919         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4920             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4921                                          Input.ConstraintVT);
4922         if ((OpInfo.ConstraintVT.isInteger() !=
4923              Input.ConstraintVT.isInteger()) ||
4924             (MatchRC.second != InputRC.second)) {
4925           report_fatal_error("Unsupported asm: input constraint"
4926                              " with a matching output constraint of"
4927                              " incompatible type!");
4928         }
4929       }
4930     }
4931   }
4932 
4933   return ConstraintOperands;
4934 }
4935 
4936 /// Return an integer indicating how general CT is.
4937 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4938   switch (CT) {
4939   case TargetLowering::C_Immediate:
4940   case TargetLowering::C_Other:
4941   case TargetLowering::C_Unknown:
4942     return 0;
4943   case TargetLowering::C_Register:
4944     return 1;
4945   case TargetLowering::C_RegisterClass:
4946     return 2;
4947   case TargetLowering::C_Memory:
4948     return 3;
4949   }
4950   llvm_unreachable("Invalid constraint type");
4951 }
4952 
4953 /// Examine constraint type and operand type and determine a weight value.
4954 /// This object must already have been set up with the operand type
4955 /// and the current alternative constraint selected.
4956 TargetLowering::ConstraintWeight
4957   TargetLowering::getMultipleConstraintMatchWeight(
4958     AsmOperandInfo &info, int maIndex) const {
4959   InlineAsm::ConstraintCodeVector *rCodes;
4960   if (maIndex >= (int)info.multipleAlternatives.size())
4961     rCodes = &info.Codes;
4962   else
4963     rCodes = &info.multipleAlternatives[maIndex].Codes;
4964   ConstraintWeight BestWeight = CW_Invalid;
4965 
4966   // Loop over the options, keeping track of the most general one.
4967   for (const std::string &rCode : *rCodes) {
4968     ConstraintWeight weight =
4969         getSingleConstraintMatchWeight(info, rCode.c_str());
4970     if (weight > BestWeight)
4971       BestWeight = weight;
4972   }
4973 
4974   return BestWeight;
4975 }
4976 
4977 /// Examine constraint type and operand type and determine a weight value.
4978 /// This object must already have been set up with the operand type
4979 /// and the current alternative constraint selected.
4980 TargetLowering::ConstraintWeight
4981   TargetLowering::getSingleConstraintMatchWeight(
4982     AsmOperandInfo &info, const char *constraint) const {
4983   ConstraintWeight weight = CW_Invalid;
4984   Value *CallOperandVal = info.CallOperandVal;
4985     // If we don't have a value, we can't do a match,
4986     // but allow it at the lowest weight.
4987   if (!CallOperandVal)
4988     return CW_Default;
4989   // Look at the constraint type.
4990   switch (*constraint) {
4991     case 'i': // immediate integer.
4992     case 'n': // immediate integer with a known value.
4993       if (isa<ConstantInt>(CallOperandVal))
4994         weight = CW_Constant;
4995       break;
4996     case 's': // non-explicit intregal immediate.
4997       if (isa<GlobalValue>(CallOperandVal))
4998         weight = CW_Constant;
4999       break;
5000     case 'E': // immediate float if host format.
5001     case 'F': // immediate float.
5002       if (isa<ConstantFP>(CallOperandVal))
5003         weight = CW_Constant;
5004       break;
5005     case '<': // memory operand with autodecrement.
5006     case '>': // memory operand with autoincrement.
5007     case 'm': // memory operand.
5008     case 'o': // offsettable memory operand
5009     case 'V': // non-offsettable memory operand
5010       weight = CW_Memory;
5011       break;
5012     case 'r': // general register.
5013     case 'g': // general register, memory operand or immediate integer.
5014               // note: Clang converts "g" to "imr".
5015       if (CallOperandVal->getType()->isIntegerTy())
5016         weight = CW_Register;
5017       break;
5018     case 'X': // any operand.
5019   default:
5020     weight = CW_Default;
5021     break;
5022   }
5023   return weight;
5024 }
5025 
5026 /// If there are multiple different constraints that we could pick for this
5027 /// operand (e.g. "imr") try to pick the 'best' one.
5028 /// This is somewhat tricky: constraints fall into four classes:
5029 ///    Other         -> immediates and magic values
5030 ///    Register      -> one specific register
5031 ///    RegisterClass -> a group of regs
5032 ///    Memory        -> memory
5033 /// Ideally, we would pick the most specific constraint possible: if we have
5034 /// something that fits into a register, we would pick it.  The problem here
5035 /// is that if we have something that could either be in a register or in
5036 /// memory that use of the register could cause selection of *other*
5037 /// operands to fail: they might only succeed if we pick memory.  Because of
5038 /// this the heuristic we use is:
5039 ///
5040 ///  1) If there is an 'other' constraint, and if the operand is valid for
5041 ///     that constraint, use it.  This makes us take advantage of 'i'
5042 ///     constraints when available.
5043 ///  2) Otherwise, pick the most general constraint present.  This prefers
5044 ///     'm' over 'r', for example.
5045 ///
5046 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5047                              const TargetLowering &TLI,
5048                              SDValue Op, SelectionDAG *DAG) {
5049   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5050   unsigned BestIdx = 0;
5051   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5052   int BestGenerality = -1;
5053 
5054   // Loop over the options, keeping track of the most general one.
5055   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5056     TargetLowering::ConstraintType CType =
5057       TLI.getConstraintType(OpInfo.Codes[i]);
5058 
5059     // Indirect 'other' or 'immediate' constraints are not allowed.
5060     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5061                                CType == TargetLowering::C_Register ||
5062                                CType == TargetLowering::C_RegisterClass))
5063       continue;
5064 
5065     // If this is an 'other' or 'immediate' constraint, see if the operand is
5066     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5067     // the operand is an integer in the range [0..31] we want to use I (saving a
5068     // load of a register), otherwise we must use 'r'.
5069     if ((CType == TargetLowering::C_Other ||
5070          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5071       assert(OpInfo.Codes[i].size() == 1 &&
5072              "Unhandled multi-letter 'other' constraint");
5073       std::vector<SDValue> ResultOps;
5074       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5075                                        ResultOps, *DAG);
5076       if (!ResultOps.empty()) {
5077         BestType = CType;
5078         BestIdx = i;
5079         break;
5080       }
5081     }
5082 
5083     // Things with matching constraints can only be registers, per gcc
5084     // documentation.  This mainly affects "g" constraints.
5085     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5086       continue;
5087 
5088     // This constraint letter is more general than the previous one, use it.
5089     int Generality = getConstraintGenerality(CType);
5090     if (Generality > BestGenerality) {
5091       BestType = CType;
5092       BestIdx = i;
5093       BestGenerality = Generality;
5094     }
5095   }
5096 
5097   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5098   OpInfo.ConstraintType = BestType;
5099 }
5100 
5101 /// Determines the constraint code and constraint type to use for the specific
5102 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5103 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5104                                             SDValue Op,
5105                                             SelectionDAG *DAG) const {
5106   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5107 
5108   // Single-letter constraints ('r') are very common.
5109   if (OpInfo.Codes.size() == 1) {
5110     OpInfo.ConstraintCode = OpInfo.Codes[0];
5111     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5112   } else {
5113     ChooseConstraint(OpInfo, *this, Op, DAG);
5114   }
5115 
5116   // 'X' matches anything.
5117   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5118     // Constants are handled elsewhere.  For Functions, the type here is the
5119     // type of the result, which is not what we want to look at; leave them
5120     // alone.
5121     Value *v = OpInfo.CallOperandVal;
5122     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5123       return;
5124     }
5125 
5126     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5127       OpInfo.ConstraintCode = "i";
5128       return;
5129     }
5130 
5131     // Otherwise, try to resolve it to something we know about by looking at
5132     // the actual operand type.
5133     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5134       OpInfo.ConstraintCode = Repl;
5135       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5136     }
5137   }
5138 }
5139 
5140 /// Given an exact SDIV by a constant, create a multiplication
5141 /// with the multiplicative inverse of the constant.
5142 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5143                               const SDLoc &dl, SelectionDAG &DAG,
5144                               SmallVectorImpl<SDNode *> &Created) {
5145   SDValue Op0 = N->getOperand(0);
5146   SDValue Op1 = N->getOperand(1);
5147   EVT VT = N->getValueType(0);
5148   EVT SVT = VT.getScalarType();
5149   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5150   EVT ShSVT = ShVT.getScalarType();
5151 
5152   bool UseSRA = false;
5153   SmallVector<SDValue, 16> Shifts, Factors;
5154 
5155   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5156     if (C->isZero())
5157       return false;
5158     APInt Divisor = C->getAPIntValue();
5159     unsigned Shift = Divisor.countTrailingZeros();
5160     if (Shift) {
5161       Divisor.ashrInPlace(Shift);
5162       UseSRA = true;
5163     }
5164     // Calculate the multiplicative inverse, using Newton's method.
5165     APInt t;
5166     APInt Factor = Divisor;
5167     while ((t = Divisor * Factor) != 1)
5168       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5169     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5170     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5171     return true;
5172   };
5173 
5174   // Collect all magic values from the build vector.
5175   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5176     return SDValue();
5177 
5178   SDValue Shift, Factor;
5179   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5180     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5181     Factor = DAG.getBuildVector(VT, dl, Factors);
5182   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5183     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5184            "Expected matchUnaryPredicate to return one element for scalable "
5185            "vectors");
5186     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5187     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5188   } else {
5189     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5190     Shift = Shifts[0];
5191     Factor = Factors[0];
5192   }
5193 
5194   SDValue Res = Op0;
5195 
5196   // Shift the value upfront if it is even, so the LSB is one.
5197   if (UseSRA) {
5198     // TODO: For UDIV use SRL instead of SRA.
5199     SDNodeFlags Flags;
5200     Flags.setExact(true);
5201     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5202     Created.push_back(Res.getNode());
5203   }
5204 
5205   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5206 }
5207 
5208 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5209                               SelectionDAG &DAG,
5210                               SmallVectorImpl<SDNode *> &Created) const {
5211   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5213   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5214     return SDValue(N, 0); // Lower SDIV as SDIV
5215   return SDValue();
5216 }
5217 
5218 /// Given an ISD::SDIV node expressing a divide by constant,
5219 /// return a DAG expression to select that will generate the same value by
5220 /// multiplying by a magic number.
5221 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5222 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5223                                   bool IsAfterLegalization,
5224                                   SmallVectorImpl<SDNode *> &Created) const {
5225   SDLoc dl(N);
5226   EVT VT = N->getValueType(0);
5227   EVT SVT = VT.getScalarType();
5228   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5229   EVT ShSVT = ShVT.getScalarType();
5230   unsigned EltBits = VT.getScalarSizeInBits();
5231   EVT MulVT;
5232 
5233   // Check to see if we can do this.
5234   // FIXME: We should be more aggressive here.
5235   if (!isTypeLegal(VT)) {
5236     // Limit this to simple scalars for now.
5237     if (VT.isVector() || !VT.isSimple())
5238       return SDValue();
5239 
5240     // If this type will be promoted to a large enough type with a legal
5241     // multiply operation, we can go ahead and do this transform.
5242     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5243       return SDValue();
5244 
5245     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5246     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5247         !isOperationLegal(ISD::MUL, MulVT))
5248       return SDValue();
5249   }
5250 
5251   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5252   if (N->getFlags().hasExact())
5253     return BuildExactSDIV(*this, N, dl, DAG, Created);
5254 
5255   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5256 
5257   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5258     if (C->isZero())
5259       return false;
5260 
5261     const APInt &Divisor = C->getAPIntValue();
5262     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5263     int NumeratorFactor = 0;
5264     int ShiftMask = -1;
5265 
5266     if (Divisor.isOne() || Divisor.isAllOnes()) {
5267       // If d is +1/-1, we just multiply the numerator by +1/-1.
5268       NumeratorFactor = Divisor.getSExtValue();
5269       magics.Magic = 0;
5270       magics.ShiftAmount = 0;
5271       ShiftMask = 0;
5272     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5273       // If d > 0 and m < 0, add the numerator.
5274       NumeratorFactor = 1;
5275     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5276       // If d < 0 and m > 0, subtract the numerator.
5277       NumeratorFactor = -1;
5278     }
5279 
5280     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5281     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5282     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5283     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5284     return true;
5285   };
5286 
5287   SDValue N0 = N->getOperand(0);
5288   SDValue N1 = N->getOperand(1);
5289 
5290   // Collect the shifts / magic values from each element.
5291   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5292     return SDValue();
5293 
5294   SDValue MagicFactor, Factor, Shift, ShiftMask;
5295   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5296     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5297     Factor = DAG.getBuildVector(VT, dl, Factors);
5298     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5299     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5300   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5301     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5302            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5303            "Expected matchUnaryPredicate to return one element for scalable "
5304            "vectors");
5305     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5306     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5307     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5308     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5309   } else {
5310     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5311     MagicFactor = MagicFactors[0];
5312     Factor = Factors[0];
5313     Shift = Shifts[0];
5314     ShiftMask = ShiftMasks[0];
5315   }
5316 
5317   // Multiply the numerator (operand 0) by the magic value.
5318   // FIXME: We should support doing a MUL in a wider type.
5319   auto GetMULHS = [&](SDValue X, SDValue Y) {
5320     // If the type isn't legal, use a wider mul of the the type calculated
5321     // earlier.
5322     if (!isTypeLegal(VT)) {
5323       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5324       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5325       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5326       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5327                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5328       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5329     }
5330 
5331     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5332       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5333     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5334       SDValue LoHi =
5335           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5336       return SDValue(LoHi.getNode(), 1);
5337     }
5338     return SDValue();
5339   };
5340 
5341   SDValue Q = GetMULHS(N0, MagicFactor);
5342   if (!Q)
5343     return SDValue();
5344 
5345   Created.push_back(Q.getNode());
5346 
5347   // (Optionally) Add/subtract the numerator using Factor.
5348   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5349   Created.push_back(Factor.getNode());
5350   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5351   Created.push_back(Q.getNode());
5352 
5353   // Shift right algebraic by shift value.
5354   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5355   Created.push_back(Q.getNode());
5356 
5357   // Extract the sign bit, mask it and add it to the quotient.
5358   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5359   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5360   Created.push_back(T.getNode());
5361   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5362   Created.push_back(T.getNode());
5363   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5364 }
5365 
5366 /// Given an ISD::UDIV node expressing a divide by constant,
5367 /// return a DAG expression to select that will generate the same value by
5368 /// multiplying by a magic number.
5369 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5370 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5371                                   bool IsAfterLegalization,
5372                                   SmallVectorImpl<SDNode *> &Created) const {
5373   SDLoc dl(N);
5374   EVT VT = N->getValueType(0);
5375   EVT SVT = VT.getScalarType();
5376   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5377   EVT ShSVT = ShVT.getScalarType();
5378   unsigned EltBits = VT.getScalarSizeInBits();
5379   EVT MulVT;
5380 
5381   // Check to see if we can do this.
5382   // FIXME: We should be more aggressive here.
5383   if (!isTypeLegal(VT)) {
5384     // Limit this to simple scalars for now.
5385     if (VT.isVector() || !VT.isSimple())
5386       return SDValue();
5387 
5388     // If this type will be promoted to a large enough type with a legal
5389     // multiply operation, we can go ahead and do this transform.
5390     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5391       return SDValue();
5392 
5393     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5394     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5395         !isOperationLegal(ISD::MUL, MulVT))
5396       return SDValue();
5397   }
5398 
5399   bool UseNPQ = false;
5400   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5401 
5402   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5403     if (C->isZero())
5404       return false;
5405     // FIXME: We should use a narrower constant when the upper
5406     // bits are known to be zero.
5407     const APInt& Divisor = C->getAPIntValue();
5408     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5409     unsigned PreShift = 0, PostShift = 0;
5410 
5411     // If the divisor is even, we can avoid using the expensive fixup by
5412     // shifting the divided value upfront.
5413     if (magics.IsAdd != 0 && !Divisor[0]) {
5414       PreShift = Divisor.countTrailingZeros();
5415       // Get magic number for the shifted divisor.
5416       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5417       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5418     }
5419 
5420     APInt Magic = magics.Magic;
5421 
5422     unsigned SelNPQ;
5423     if (magics.IsAdd == 0 || Divisor.isOne()) {
5424       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5425              "We shouldn't generate an undefined shift!");
5426       PostShift = magics.ShiftAmount;
5427       SelNPQ = false;
5428     } else {
5429       PostShift = magics.ShiftAmount - 1;
5430       SelNPQ = true;
5431     }
5432 
5433     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5434     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5435     NPQFactors.push_back(
5436         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5437                                : APInt::getZero(EltBits),
5438                         dl, SVT));
5439     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5440     UseNPQ |= SelNPQ;
5441     return true;
5442   };
5443 
5444   SDValue N0 = N->getOperand(0);
5445   SDValue N1 = N->getOperand(1);
5446 
5447   // Collect the shifts/magic values from each element.
5448   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5449     return SDValue();
5450 
5451   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5452   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5453     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5454     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5455     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5456     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5457   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5458     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5459            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5460            "Expected matchUnaryPredicate to return one for scalable vectors");
5461     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5462     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5463     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5464     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5465   } else {
5466     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5467     PreShift = PreShifts[0];
5468     MagicFactor = MagicFactors[0];
5469     PostShift = PostShifts[0];
5470   }
5471 
5472   SDValue Q = N0;
5473   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5474   Created.push_back(Q.getNode());
5475 
5476   // FIXME: We should support doing a MUL in a wider type.
5477   auto GetMULHU = [&](SDValue X, SDValue Y) {
5478     // If the type isn't legal, use a wider mul of the the type calculated
5479     // earlier.
5480     if (!isTypeLegal(VT)) {
5481       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5482       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5483       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5484       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5485                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5486       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5487     }
5488 
5489     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5490       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5491     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5492       SDValue LoHi =
5493           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5494       return SDValue(LoHi.getNode(), 1);
5495     }
5496     return SDValue(); // No mulhu or equivalent
5497   };
5498 
5499   // Multiply the numerator (operand 0) by the magic value.
5500   Q = GetMULHU(Q, MagicFactor);
5501   if (!Q)
5502     return SDValue();
5503 
5504   Created.push_back(Q.getNode());
5505 
5506   if (UseNPQ) {
5507     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5508     Created.push_back(NPQ.getNode());
5509 
5510     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5511     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5512     if (VT.isVector())
5513       NPQ = GetMULHU(NPQ, NPQFactor);
5514     else
5515       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5516 
5517     Created.push_back(NPQ.getNode());
5518 
5519     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5520     Created.push_back(Q.getNode());
5521   }
5522 
5523   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5524   Created.push_back(Q.getNode());
5525 
5526   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5527 
5528   SDValue One = DAG.getConstant(1, dl, VT);
5529   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5530   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5531 }
5532 
5533 /// If all values in Values that *don't* match the predicate are same 'splat'
5534 /// value, then replace all values with that splat value.
5535 /// Else, if AlternativeReplacement was provided, then replace all values that
5536 /// do match predicate with AlternativeReplacement value.
5537 static void
5538 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5539                           std::function<bool(SDValue)> Predicate,
5540                           SDValue AlternativeReplacement = SDValue()) {
5541   SDValue Replacement;
5542   // Is there a value for which the Predicate does *NOT* match? What is it?
5543   auto SplatValue = llvm::find_if_not(Values, Predicate);
5544   if (SplatValue != Values.end()) {
5545     // Does Values consist only of SplatValue's and values matching Predicate?
5546     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5547           return Value == *SplatValue || Predicate(Value);
5548         })) // Then we shall replace values matching predicate with SplatValue.
5549       Replacement = *SplatValue;
5550   }
5551   if (!Replacement) {
5552     // Oops, we did not find the "baseline" splat value.
5553     if (!AlternativeReplacement)
5554       return; // Nothing to do.
5555     // Let's replace with provided value then.
5556     Replacement = AlternativeReplacement;
5557   }
5558   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5559 }
5560 
5561 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5562 /// where the divisor is constant and the comparison target is zero,
5563 /// return a DAG expression that will generate the same comparison result
5564 /// using only multiplications, additions and shifts/rotations.
5565 /// Ref: "Hacker's Delight" 10-17.
5566 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5567                                         SDValue CompTargetNode,
5568                                         ISD::CondCode Cond,
5569                                         DAGCombinerInfo &DCI,
5570                                         const SDLoc &DL) const {
5571   SmallVector<SDNode *, 5> Built;
5572   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5573                                          DCI, DL, Built)) {
5574     for (SDNode *N : Built)
5575       DCI.AddToWorklist(N);
5576     return Folded;
5577   }
5578 
5579   return SDValue();
5580 }
5581 
5582 SDValue
5583 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5584                                   SDValue CompTargetNode, ISD::CondCode Cond,
5585                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5586                                   SmallVectorImpl<SDNode *> &Created) const {
5587   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5588   // - D must be constant, with D = D0 * 2^K where D0 is odd
5589   // - P is the multiplicative inverse of D0 modulo 2^W
5590   // - Q = floor(((2^W) - 1) / D)
5591   // where W is the width of the common type of N and D.
5592   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5593          "Only applicable for (in)equality comparisons.");
5594 
5595   SelectionDAG &DAG = DCI.DAG;
5596 
5597   EVT VT = REMNode.getValueType();
5598   EVT SVT = VT.getScalarType();
5599   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5600   EVT ShSVT = ShVT.getScalarType();
5601 
5602   // If MUL is unavailable, we cannot proceed in any case.
5603   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5604     return SDValue();
5605 
5606   bool ComparingWithAllZeros = true;
5607   bool AllComparisonsWithNonZerosAreTautological = true;
5608   bool HadTautologicalLanes = false;
5609   bool AllLanesAreTautological = true;
5610   bool HadEvenDivisor = false;
5611   bool AllDivisorsArePowerOfTwo = true;
5612   bool HadTautologicalInvertedLanes = false;
5613   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5614 
5615   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5616     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5617     if (CDiv->isZero())
5618       return false;
5619 
5620     const APInt &D = CDiv->getAPIntValue();
5621     const APInt &Cmp = CCmp->getAPIntValue();
5622 
5623     ComparingWithAllZeros &= Cmp.isZero();
5624 
5625     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5626     // if C2 is not less than C1, the comparison is always false.
5627     // But we will only be able to produce the comparison that will give the
5628     // opposive tautological answer. So this lane would need to be fixed up.
5629     bool TautologicalInvertedLane = D.ule(Cmp);
5630     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5631 
5632     // If all lanes are tautological (either all divisors are ones, or divisor
5633     // is not greater than the constant we are comparing with),
5634     // we will prefer to avoid the fold.
5635     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5636     HadTautologicalLanes |= TautologicalLane;
5637     AllLanesAreTautological &= TautologicalLane;
5638 
5639     // If we are comparing with non-zero, we need'll need  to subtract said
5640     // comparison value from the LHS. But there is no point in doing that if
5641     // every lane where we are comparing with non-zero is tautological..
5642     if (!Cmp.isZero())
5643       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5644 
5645     // Decompose D into D0 * 2^K
5646     unsigned K = D.countTrailingZeros();
5647     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5648     APInt D0 = D.lshr(K);
5649 
5650     // D is even if it has trailing zeros.
5651     HadEvenDivisor |= (K != 0);
5652     // D is a power-of-two if D0 is one.
5653     // If all divisors are power-of-two, we will prefer to avoid the fold.
5654     AllDivisorsArePowerOfTwo &= D0.isOne();
5655 
5656     // P = inv(D0, 2^W)
5657     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5658     unsigned W = D.getBitWidth();
5659     APInt P = D0.zext(W + 1)
5660                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5661                   .trunc(W);
5662     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5663     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5664 
5665     // Q = floor((2^W - 1) u/ D)
5666     // R = ((2^W - 1) u% D)
5667     APInt Q, R;
5668     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5669 
5670     // If we are comparing with zero, then that comparison constant is okay,
5671     // else it may need to be one less than that.
5672     if (Cmp.ugt(R))
5673       Q -= 1;
5674 
5675     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5676            "We are expecting that K is always less than all-ones for ShSVT");
5677 
5678     // If the lane is tautological the result can be constant-folded.
5679     if (TautologicalLane) {
5680       // Set P and K amount to a bogus values so we can try to splat them.
5681       P = 0;
5682       K = -1;
5683       // And ensure that comparison constant is tautological,
5684       // it will always compare true/false.
5685       Q = -1;
5686     }
5687 
5688     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5689     KAmts.push_back(
5690         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5691     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5692     return true;
5693   };
5694 
5695   SDValue N = REMNode.getOperand(0);
5696   SDValue D = REMNode.getOperand(1);
5697 
5698   // Collect the values from each element.
5699   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5700     return SDValue();
5701 
5702   // If all lanes are tautological, the result can be constant-folded.
5703   if (AllLanesAreTautological)
5704     return SDValue();
5705 
5706   // If this is a urem by a powers-of-two, avoid the fold since it can be
5707   // best implemented as a bit test.
5708   if (AllDivisorsArePowerOfTwo)
5709     return SDValue();
5710 
5711   SDValue PVal, KVal, QVal;
5712   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5713     if (HadTautologicalLanes) {
5714       // Try to turn PAmts into a splat, since we don't care about the values
5715       // that are currently '0'. If we can't, just keep '0'`s.
5716       turnVectorIntoSplatVector(PAmts, isNullConstant);
5717       // Try to turn KAmts into a splat, since we don't care about the values
5718       // that are currently '-1'. If we can't, change them to '0'`s.
5719       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5720                                 DAG.getConstant(0, DL, ShSVT));
5721     }
5722 
5723     PVal = DAG.getBuildVector(VT, DL, PAmts);
5724     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5725     QVal = DAG.getBuildVector(VT, DL, QAmts);
5726   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5727     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5728            "Expected matchBinaryPredicate to return one element for "
5729            "SPLAT_VECTORs");
5730     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5731     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5732     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5733   } else {
5734     PVal = PAmts[0];
5735     KVal = KAmts[0];
5736     QVal = QAmts[0];
5737   }
5738 
5739   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5740     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5741       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5742     assert(CompTargetNode.getValueType() == N.getValueType() &&
5743            "Expecting that the types on LHS and RHS of comparisons match.");
5744     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5745   }
5746 
5747   // (mul N, P)
5748   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5749   Created.push_back(Op0.getNode());
5750 
5751   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5752   // divisors as a performance improvement, since rotating by 0 is a no-op.
5753   if (HadEvenDivisor) {
5754     // We need ROTR to do this.
5755     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5756       return SDValue();
5757     // UREM: (rotr (mul N, P), K)
5758     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5759     Created.push_back(Op0.getNode());
5760   }
5761 
5762   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5763   SDValue NewCC =
5764       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5765                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5766   if (!HadTautologicalInvertedLanes)
5767     return NewCC;
5768 
5769   // If any lanes previously compared always-false, the NewCC will give
5770   // always-true result for them, so we need to fixup those lanes.
5771   // Or the other way around for inequality predicate.
5772   assert(VT.isVector() && "Can/should only get here for vectors.");
5773   Created.push_back(NewCC.getNode());
5774 
5775   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5776   // if C2 is not less than C1, the comparison is always false.
5777   // But we have produced the comparison that will give the
5778   // opposive tautological answer. So these lanes would need to be fixed up.
5779   SDValue TautologicalInvertedChannels =
5780       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5781   Created.push_back(TautologicalInvertedChannels.getNode());
5782 
5783   // NOTE: we avoid letting illegal types through even if we're before legalize
5784   // ops – legalization has a hard time producing good code for this.
5785   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5786     // If we have a vector select, let's replace the comparison results in the
5787     // affected lanes with the correct tautological result.
5788     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5789                                               DL, SETCCVT, SETCCVT);
5790     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5791                        Replacement, NewCC);
5792   }
5793 
5794   // Else, we can just invert the comparison result in the appropriate lanes.
5795   //
5796   // NOTE: see the note above VSELECT above.
5797   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5798     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5799                        TautologicalInvertedChannels);
5800 
5801   return SDValue(); // Don't know how to lower.
5802 }
5803 
5804 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5805 /// where the divisor is constant and the comparison target is zero,
5806 /// return a DAG expression that will generate the same comparison result
5807 /// using only multiplications, additions and shifts/rotations.
5808 /// Ref: "Hacker's Delight" 10-17.
5809 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5810                                         SDValue CompTargetNode,
5811                                         ISD::CondCode Cond,
5812                                         DAGCombinerInfo &DCI,
5813                                         const SDLoc &DL) const {
5814   SmallVector<SDNode *, 7> Built;
5815   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5816                                          DCI, DL, Built)) {
5817     assert(Built.size() <= 7 && "Max size prediction failed.");
5818     for (SDNode *N : Built)
5819       DCI.AddToWorklist(N);
5820     return Folded;
5821   }
5822 
5823   return SDValue();
5824 }
5825 
5826 SDValue
5827 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5828                                   SDValue CompTargetNode, ISD::CondCode Cond,
5829                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5830                                   SmallVectorImpl<SDNode *> &Created) const {
5831   // Fold:
5832   //   (seteq/ne (srem N, D), 0)
5833   // To:
5834   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5835   //
5836   // - D must be constant, with D = D0 * 2^K where D0 is odd
5837   // - P is the multiplicative inverse of D0 modulo 2^W
5838   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5839   // - Q = floor((2 * A) / (2^K))
5840   // where W is the width of the common type of N and D.
5841   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5842          "Only applicable for (in)equality comparisons.");
5843 
5844   SelectionDAG &DAG = DCI.DAG;
5845 
5846   EVT VT = REMNode.getValueType();
5847   EVT SVT = VT.getScalarType();
5848   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5849   EVT ShSVT = ShVT.getScalarType();
5850 
5851   // If we are after ops legalization, and MUL is unavailable, we can not
5852   // proceed.
5853   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5854     return SDValue();
5855 
5856   // TODO: Could support comparing with non-zero too.
5857   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5858   if (!CompTarget || !CompTarget->isZero())
5859     return SDValue();
5860 
5861   bool HadIntMinDivisor = false;
5862   bool HadOneDivisor = false;
5863   bool AllDivisorsAreOnes = true;
5864   bool HadEvenDivisor = false;
5865   bool NeedToApplyOffset = false;
5866   bool AllDivisorsArePowerOfTwo = true;
5867   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5868 
5869   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5870     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5871     if (C->isZero())
5872       return false;
5873 
5874     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5875 
5876     // WARNING: this fold is only valid for positive divisors!
5877     APInt D = C->getAPIntValue();
5878     if (D.isNegative())
5879       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5880 
5881     HadIntMinDivisor |= D.isMinSignedValue();
5882 
5883     // If all divisors are ones, we will prefer to avoid the fold.
5884     HadOneDivisor |= D.isOne();
5885     AllDivisorsAreOnes &= D.isOne();
5886 
5887     // Decompose D into D0 * 2^K
5888     unsigned K = D.countTrailingZeros();
5889     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5890     APInt D0 = D.lshr(K);
5891 
5892     if (!D.isMinSignedValue()) {
5893       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5894       // we don't care about this lane in this fold, we'll special-handle it.
5895       HadEvenDivisor |= (K != 0);
5896     }
5897 
5898     // D is a power-of-two if D0 is one. This includes INT_MIN.
5899     // If all divisors are power-of-two, we will prefer to avoid the fold.
5900     AllDivisorsArePowerOfTwo &= D0.isOne();
5901 
5902     // P = inv(D0, 2^W)
5903     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5904     unsigned W = D.getBitWidth();
5905     APInt P = D0.zext(W + 1)
5906                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5907                   .trunc(W);
5908     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5909     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5910 
5911     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5912     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5913     A.clearLowBits(K);
5914 
5915     if (!D.isMinSignedValue()) {
5916       // If divisor INT_MIN, then we don't care about this lane in this fold,
5917       // we'll special-handle it.
5918       NeedToApplyOffset |= A != 0;
5919     }
5920 
5921     // Q = floor((2 * A) / (2^K))
5922     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5923 
5924     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5925            "We are expecting that A is always less than all-ones for SVT");
5926     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5927            "We are expecting that K is always less than all-ones for ShSVT");
5928 
5929     // If the divisor is 1 the result can be constant-folded. Likewise, we
5930     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5931     if (D.isOne()) {
5932       // Set P, A and K to a bogus values so we can try to splat them.
5933       P = 0;
5934       A = -1;
5935       K = -1;
5936 
5937       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5938       Q = -1;
5939     }
5940 
5941     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5942     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5943     KAmts.push_back(
5944         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5945     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5946     return true;
5947   };
5948 
5949   SDValue N = REMNode.getOperand(0);
5950   SDValue D = REMNode.getOperand(1);
5951 
5952   // Collect the values from each element.
5953   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5954     return SDValue();
5955 
5956   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5957   if (AllDivisorsAreOnes)
5958     return SDValue();
5959 
5960   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5961   // since it can be best implemented as a bit test.
5962   if (AllDivisorsArePowerOfTwo)
5963     return SDValue();
5964 
5965   SDValue PVal, AVal, KVal, QVal;
5966   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5967     if (HadOneDivisor) {
5968       // Try to turn PAmts into a splat, since we don't care about the values
5969       // that are currently '0'. If we can't, just keep '0'`s.
5970       turnVectorIntoSplatVector(PAmts, isNullConstant);
5971       // Try to turn AAmts into a splat, since we don't care about the
5972       // values that are currently '-1'. If we can't, change them to '0'`s.
5973       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5974                                 DAG.getConstant(0, DL, SVT));
5975       // Try to turn KAmts into a splat, since we don't care about the values
5976       // that are currently '-1'. If we can't, change them to '0'`s.
5977       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5978                                 DAG.getConstant(0, DL, ShSVT));
5979     }
5980 
5981     PVal = DAG.getBuildVector(VT, DL, PAmts);
5982     AVal = DAG.getBuildVector(VT, DL, AAmts);
5983     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5984     QVal = DAG.getBuildVector(VT, DL, QAmts);
5985   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5986     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5987            QAmts.size() == 1 &&
5988            "Expected matchUnaryPredicate to return one element for scalable "
5989            "vectors");
5990     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5991     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5992     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5993     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5994   } else {
5995     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5996     PVal = PAmts[0];
5997     AVal = AAmts[0];
5998     KVal = KAmts[0];
5999     QVal = QAmts[0];
6000   }
6001 
6002   // (mul N, P)
6003   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6004   Created.push_back(Op0.getNode());
6005 
6006   if (NeedToApplyOffset) {
6007     // We need ADD to do this.
6008     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6009       return SDValue();
6010 
6011     // (add (mul N, P), A)
6012     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6013     Created.push_back(Op0.getNode());
6014   }
6015 
6016   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6017   // divisors as a performance improvement, since rotating by 0 is a no-op.
6018   if (HadEvenDivisor) {
6019     // We need ROTR to do this.
6020     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6021       return SDValue();
6022     // SREM: (rotr (add (mul N, P), A), K)
6023     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6024     Created.push_back(Op0.getNode());
6025   }
6026 
6027   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6028   SDValue Fold =
6029       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6030                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6031 
6032   // If we didn't have lanes with INT_MIN divisor, then we're done.
6033   if (!HadIntMinDivisor)
6034     return Fold;
6035 
6036   // That fold is only valid for positive divisors. Which effectively means,
6037   // it is invalid for INT_MIN divisors. So if we have such a lane,
6038   // we must fix-up results for said lanes.
6039   assert(VT.isVector() && "Can/should only get here for vectors.");
6040 
6041   // NOTE: we avoid letting illegal types through even if we're before legalize
6042   // ops – legalization has a hard time producing good code for the code that
6043   // follows.
6044   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6045       !isOperationLegalOrCustom(ISD::AND, VT) ||
6046       !isOperationLegalOrCustom(Cond, VT) ||
6047       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6048     return SDValue();
6049 
6050   Created.push_back(Fold.getNode());
6051 
6052   SDValue IntMin = DAG.getConstant(
6053       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6054   SDValue IntMax = DAG.getConstant(
6055       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6056   SDValue Zero =
6057       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6058 
6059   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6060   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6061   Created.push_back(DivisorIsIntMin.getNode());
6062 
6063   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6064   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6065   Created.push_back(Masked.getNode());
6066   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6067   Created.push_back(MaskedIsZero.getNode());
6068 
6069   // To produce final result we need to blend 2 vectors: 'SetCC' and
6070   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6071   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6072   // constant-folded, select can get lowered to a shuffle with constant mask.
6073   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6074                                 MaskedIsZero, Fold);
6075 
6076   return Blended;
6077 }
6078 
6079 bool TargetLowering::
6080 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6081   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6082     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6083                                 "be a constant integer");
6084     return true;
6085   }
6086 
6087   return false;
6088 }
6089 
6090 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6091                                          const DenormalMode &Mode) const {
6092   SDLoc DL(Op);
6093   EVT VT = Op.getValueType();
6094   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6095   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6096   // Testing it with denormal inputs to avoid wrong estimate.
6097   if (Mode.Input == DenormalMode::IEEE) {
6098     // This is specifically a check for the handling of denormal inputs,
6099     // not the result.
6100 
6101     // Test = fabs(X) < SmallestNormal
6102     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6103     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6104     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6105     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6106     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6107   }
6108   // Test = X == 0.0
6109   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6110 }
6111 
6112 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6113                                              bool LegalOps, bool OptForSize,
6114                                              NegatibleCost &Cost,
6115                                              unsigned Depth) const {
6116   // fneg is removable even if it has multiple uses.
6117   if (Op.getOpcode() == ISD::FNEG) {
6118     Cost = NegatibleCost::Cheaper;
6119     return Op.getOperand(0);
6120   }
6121 
6122   // Don't recurse exponentially.
6123   if (Depth > SelectionDAG::MaxRecursionDepth)
6124     return SDValue();
6125 
6126   // Pre-increment recursion depth for use in recursive calls.
6127   ++Depth;
6128   const SDNodeFlags Flags = Op->getFlags();
6129   const TargetOptions &Options = DAG.getTarget().Options;
6130   EVT VT = Op.getValueType();
6131   unsigned Opcode = Op.getOpcode();
6132 
6133   // Don't allow anything with multiple uses unless we know it is free.
6134   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6135     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6136                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6137     if (!IsFreeExtend)
6138       return SDValue();
6139   }
6140 
6141   auto RemoveDeadNode = [&](SDValue N) {
6142     if (N && N.getNode()->use_empty())
6143       DAG.RemoveDeadNode(N.getNode());
6144   };
6145 
6146   SDLoc DL(Op);
6147 
6148   // Because getNegatedExpression can delete nodes we need a handle to keep
6149   // temporary nodes alive in case the recursion manages to create an identical
6150   // node.
6151   std::list<HandleSDNode> Handles;
6152 
6153   switch (Opcode) {
6154   case ISD::ConstantFP: {
6155     // Don't invert constant FP values after legalization unless the target says
6156     // the negated constant is legal.
6157     bool IsOpLegal =
6158         isOperationLegal(ISD::ConstantFP, VT) ||
6159         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6160                      OptForSize);
6161 
6162     if (LegalOps && !IsOpLegal)
6163       break;
6164 
6165     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6166     V.changeSign();
6167     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6168 
6169     // If we already have the use of the negated floating constant, it is free
6170     // to negate it even it has multiple uses.
6171     if (!Op.hasOneUse() && CFP.use_empty())
6172       break;
6173     Cost = NegatibleCost::Neutral;
6174     return CFP;
6175   }
6176   case ISD::BUILD_VECTOR: {
6177     // Only permit BUILD_VECTOR of constants.
6178     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6179           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6180         }))
6181       break;
6182 
6183     bool IsOpLegal =
6184         (isOperationLegal(ISD::ConstantFP, VT) &&
6185          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6186         llvm::all_of(Op->op_values(), [&](SDValue N) {
6187           return N.isUndef() ||
6188                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6189                               OptForSize);
6190         });
6191 
6192     if (LegalOps && !IsOpLegal)
6193       break;
6194 
6195     SmallVector<SDValue, 4> Ops;
6196     for (SDValue C : Op->op_values()) {
6197       if (C.isUndef()) {
6198         Ops.push_back(C);
6199         continue;
6200       }
6201       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6202       V.changeSign();
6203       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6204     }
6205     Cost = NegatibleCost::Neutral;
6206     return DAG.getBuildVector(VT, DL, Ops);
6207   }
6208   case ISD::FADD: {
6209     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6210       break;
6211 
6212     // After operation legalization, it might not be legal to create new FSUBs.
6213     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6214       break;
6215     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6216 
6217     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6218     NegatibleCost CostX = NegatibleCost::Expensive;
6219     SDValue NegX =
6220         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6221     // Prevent this node from being deleted by the next call.
6222     if (NegX)
6223       Handles.emplace_back(NegX);
6224 
6225     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6226     NegatibleCost CostY = NegatibleCost::Expensive;
6227     SDValue NegY =
6228         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6229 
6230     // We're done with the handles.
6231     Handles.clear();
6232 
6233     // Negate the X if its cost is less or equal than Y.
6234     if (NegX && (CostX <= CostY)) {
6235       Cost = CostX;
6236       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6237       if (NegY != N)
6238         RemoveDeadNode(NegY);
6239       return N;
6240     }
6241 
6242     // Negate the Y if it is not expensive.
6243     if (NegY) {
6244       Cost = CostY;
6245       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6246       if (NegX != N)
6247         RemoveDeadNode(NegX);
6248       return N;
6249     }
6250     break;
6251   }
6252   case ISD::FSUB: {
6253     // We can't turn -(A-B) into B-A when we honor signed zeros.
6254     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6255       break;
6256 
6257     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6258     // fold (fneg (fsub 0, Y)) -> Y
6259     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6260       if (C->isZero()) {
6261         Cost = NegatibleCost::Cheaper;
6262         return Y;
6263       }
6264 
6265     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6266     Cost = NegatibleCost::Neutral;
6267     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6268   }
6269   case ISD::FMUL:
6270   case ISD::FDIV: {
6271     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6272 
6273     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6274     NegatibleCost CostX = NegatibleCost::Expensive;
6275     SDValue NegX =
6276         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6277     // Prevent this node from being deleted by the next call.
6278     if (NegX)
6279       Handles.emplace_back(NegX);
6280 
6281     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6282     NegatibleCost CostY = NegatibleCost::Expensive;
6283     SDValue NegY =
6284         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6285 
6286     // We're done with the handles.
6287     Handles.clear();
6288 
6289     // Negate the X if its cost is less or equal than Y.
6290     if (NegX && (CostX <= CostY)) {
6291       Cost = CostX;
6292       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6293       if (NegY != N)
6294         RemoveDeadNode(NegY);
6295       return N;
6296     }
6297 
6298     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6299     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6300       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6301         break;
6302 
6303     // Negate the Y if it is not expensive.
6304     if (NegY) {
6305       Cost = CostY;
6306       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6307       if (NegX != N)
6308         RemoveDeadNode(NegX);
6309       return N;
6310     }
6311     break;
6312   }
6313   case ISD::FMA:
6314   case ISD::FMAD: {
6315     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6316       break;
6317 
6318     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6319     NegatibleCost CostZ = NegatibleCost::Expensive;
6320     SDValue NegZ =
6321         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6322     // Give up if fail to negate the Z.
6323     if (!NegZ)
6324       break;
6325 
6326     // Prevent this node from being deleted by the next two calls.
6327     Handles.emplace_back(NegZ);
6328 
6329     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6330     NegatibleCost CostX = NegatibleCost::Expensive;
6331     SDValue NegX =
6332         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6333     // Prevent this node from being deleted by the next call.
6334     if (NegX)
6335       Handles.emplace_back(NegX);
6336 
6337     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6338     NegatibleCost CostY = NegatibleCost::Expensive;
6339     SDValue NegY =
6340         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6341 
6342     // We're done with the handles.
6343     Handles.clear();
6344 
6345     // Negate the X if its cost is less or equal than Y.
6346     if (NegX && (CostX <= CostY)) {
6347       Cost = std::min(CostX, CostZ);
6348       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6349       if (NegY != N)
6350         RemoveDeadNode(NegY);
6351       return N;
6352     }
6353 
6354     // Negate the Y if it is not expensive.
6355     if (NegY) {
6356       Cost = std::min(CostY, CostZ);
6357       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6358       if (NegX != N)
6359         RemoveDeadNode(NegX);
6360       return N;
6361     }
6362     break;
6363   }
6364 
6365   case ISD::FP_EXTEND:
6366   case ISD::FSIN:
6367     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6368                                             OptForSize, Cost, Depth))
6369       return DAG.getNode(Opcode, DL, VT, NegV);
6370     break;
6371   case ISD::FP_ROUND:
6372     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6373                                             OptForSize, Cost, Depth))
6374       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6375     break;
6376   }
6377 
6378   return SDValue();
6379 }
6380 
6381 //===----------------------------------------------------------------------===//
6382 // Legalization Utilities
6383 //===----------------------------------------------------------------------===//
6384 
6385 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6386                                     SDValue LHS, SDValue RHS,
6387                                     SmallVectorImpl<SDValue> &Result,
6388                                     EVT HiLoVT, SelectionDAG &DAG,
6389                                     MulExpansionKind Kind, SDValue LL,
6390                                     SDValue LH, SDValue RL, SDValue RH) const {
6391   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6392          Opcode == ISD::SMUL_LOHI);
6393 
6394   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6395                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6396   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6397                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6398   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6399                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6400   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6401                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6402 
6403   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6404     return false;
6405 
6406   unsigned OuterBitSize = VT.getScalarSizeInBits();
6407   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6408 
6409   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6410   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6411          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6412 
6413   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6414   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6415                           bool Signed) -> bool {
6416     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6417       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6418       Hi = SDValue(Lo.getNode(), 1);
6419       return true;
6420     }
6421     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6422       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6423       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6424       return true;
6425     }
6426     return false;
6427   };
6428 
6429   SDValue Lo, Hi;
6430 
6431   if (!LL.getNode() && !RL.getNode() &&
6432       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6433     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6434     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6435   }
6436 
6437   if (!LL.getNode())
6438     return false;
6439 
6440   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6441   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6442       DAG.MaskedValueIsZero(RHS, HighMask)) {
6443     // The inputs are both zero-extended.
6444     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6445       Result.push_back(Lo);
6446       Result.push_back(Hi);
6447       if (Opcode != ISD::MUL) {
6448         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6449         Result.push_back(Zero);
6450         Result.push_back(Zero);
6451       }
6452       return true;
6453     }
6454   }
6455 
6456   if (!VT.isVector() && Opcode == ISD::MUL &&
6457       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6458       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6459     // The input values are both sign-extended.
6460     // TODO non-MUL case?
6461     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6462       Result.push_back(Lo);
6463       Result.push_back(Hi);
6464       return true;
6465     }
6466   }
6467 
6468   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6469   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6470   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6471 
6472   if (!LH.getNode() && !RH.getNode() &&
6473       isOperationLegalOrCustom(ISD::SRL, VT) &&
6474       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6475     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6476     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6477     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6478     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6479   }
6480 
6481   if (!LH.getNode())
6482     return false;
6483 
6484   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6485     return false;
6486 
6487   Result.push_back(Lo);
6488 
6489   if (Opcode == ISD::MUL) {
6490     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6491     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6492     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6493     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6494     Result.push_back(Hi);
6495     return true;
6496   }
6497 
6498   // Compute the full width result.
6499   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6500     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6501     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6502     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6503     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6504   };
6505 
6506   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6507   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6508     return false;
6509 
6510   // This is effectively the add part of a multiply-add of half-sized operands,
6511   // so it cannot overflow.
6512   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6513 
6514   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6515     return false;
6516 
6517   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6518   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6519 
6520   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6521                   isOperationLegalOrCustom(ISD::ADDE, VT));
6522   if (UseGlue)
6523     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6524                        Merge(Lo, Hi));
6525   else
6526     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6527                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6528 
6529   SDValue Carry = Next.getValue(1);
6530   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6531   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6532 
6533   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6534     return false;
6535 
6536   if (UseGlue)
6537     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6538                      Carry);
6539   else
6540     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6541                      Zero, Carry);
6542 
6543   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6544 
6545   if (Opcode == ISD::SMUL_LOHI) {
6546     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6547                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6548     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6549 
6550     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6551                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6552     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6553   }
6554 
6555   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6556   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6557   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6558   return true;
6559 }
6560 
6561 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6562                                SelectionDAG &DAG, MulExpansionKind Kind,
6563                                SDValue LL, SDValue LH, SDValue RL,
6564                                SDValue RH) const {
6565   SmallVector<SDValue, 2> Result;
6566   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6567                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6568                            DAG, Kind, LL, LH, RL, RH);
6569   if (Ok) {
6570     assert(Result.size() == 2);
6571     Lo = Result[0];
6572     Hi = Result[1];
6573   }
6574   return Ok;
6575 }
6576 
6577 // Check that (every element of) Z is undef or not an exact multiple of BW.
6578 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6579   return ISD::matchUnaryPredicate(
6580       Z,
6581       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6582       true);
6583 }
6584 
6585 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6586                                           SelectionDAG &DAG) const {
6587   EVT VT = Node->getValueType(0);
6588 
6589   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6590                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6591                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6592                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6593     return SDValue();
6594 
6595   SDValue X = Node->getOperand(0);
6596   SDValue Y = Node->getOperand(1);
6597   SDValue Z = Node->getOperand(2);
6598 
6599   unsigned BW = VT.getScalarSizeInBits();
6600   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6601   SDLoc DL(SDValue(Node, 0));
6602 
6603   EVT ShVT = Z.getValueType();
6604 
6605   // If a funnel shift in the other direction is more supported, use it.
6606   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6607   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6608       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6609     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6610       // fshl X, Y, Z -> fshr X, Y, -Z
6611       // fshr X, Y, Z -> fshl X, Y, -Z
6612       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6613       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6614     } else {
6615       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6616       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6617       SDValue One = DAG.getConstant(1, DL, ShVT);
6618       if (IsFSHL) {
6619         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6620         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6621       } else {
6622         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6623         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6624       }
6625       Z = DAG.getNOT(DL, Z, ShVT);
6626     }
6627     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6628   }
6629 
6630   SDValue ShX, ShY;
6631   SDValue ShAmt, InvShAmt;
6632   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6633     // fshl: X << C | Y >> (BW - C)
6634     // fshr: X << (BW - C) | Y >> C
6635     // where C = Z % BW is not zero
6636     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6637     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6638     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6639     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6640     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6641   } else {
6642     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6643     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6644     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6645     if (isPowerOf2_32(BW)) {
6646       // Z % BW -> Z & (BW - 1)
6647       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6648       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6649       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6650     } else {
6651       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6652       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6653       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6654     }
6655 
6656     SDValue One = DAG.getConstant(1, DL, ShVT);
6657     if (IsFSHL) {
6658       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6659       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6660       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6661     } else {
6662       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6663       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6664       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6665     }
6666   }
6667   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6668 }
6669 
6670 // TODO: Merge with expandFunnelShift.
6671 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6672                                   SelectionDAG &DAG) const {
6673   EVT VT = Node->getValueType(0);
6674   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6675   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6676   SDValue Op0 = Node->getOperand(0);
6677   SDValue Op1 = Node->getOperand(1);
6678   SDLoc DL(SDValue(Node, 0));
6679 
6680   EVT ShVT = Op1.getValueType();
6681   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6682 
6683   // If a rotate in the other direction is more supported, use it.
6684   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6685   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6686       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6687     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6688     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6689   }
6690 
6691   if (!AllowVectorOps && VT.isVector() &&
6692       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6693        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6694        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6695        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6696        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6697     return SDValue();
6698 
6699   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6700   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6701   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6702   SDValue ShVal;
6703   SDValue HsVal;
6704   if (isPowerOf2_32(EltSizeInBits)) {
6705     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6706     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6707     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6708     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6709     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6710     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6711     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6712   } else {
6713     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6714     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6715     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6716     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6717     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6718     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6719     SDValue One = DAG.getConstant(1, DL, ShVT);
6720     HsVal =
6721         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6722   }
6723   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6724 }
6725 
6726 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6727                                       SelectionDAG &DAG) const {
6728   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6729   EVT VT = Node->getValueType(0);
6730   unsigned VTBits = VT.getScalarSizeInBits();
6731   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6732 
6733   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6734   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6735   SDValue ShOpLo = Node->getOperand(0);
6736   SDValue ShOpHi = Node->getOperand(1);
6737   SDValue ShAmt = Node->getOperand(2);
6738   EVT ShAmtVT = ShAmt.getValueType();
6739   EVT ShAmtCCVT =
6740       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6741   SDLoc dl(Node);
6742 
6743   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6744   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6745   // away during isel.
6746   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6747                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6748   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6749                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6750                        : DAG.getConstant(0, dl, VT);
6751 
6752   SDValue Tmp2, Tmp3;
6753   if (IsSHL) {
6754     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6755     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6756   } else {
6757     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6758     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6759   }
6760 
6761   // If the shift amount is larger or equal than the width of a part we don't
6762   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6763   // values for large shift amounts.
6764   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6765                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6766   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6767                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6768 
6769   if (IsSHL) {
6770     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6771     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6772   } else {
6773     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6774     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6775   }
6776 }
6777 
6778 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6779                                       SelectionDAG &DAG) const {
6780   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6781   SDValue Src = Node->getOperand(OpNo);
6782   EVT SrcVT = Src.getValueType();
6783   EVT DstVT = Node->getValueType(0);
6784   SDLoc dl(SDValue(Node, 0));
6785 
6786   // FIXME: Only f32 to i64 conversions are supported.
6787   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6788     return false;
6789 
6790   if (Node->isStrictFPOpcode())
6791     // When a NaN is converted to an integer a trap is allowed. We can't
6792     // use this expansion here because it would eliminate that trap. Other
6793     // traps are also allowed and cannot be eliminated. See
6794     // IEEE 754-2008 sec 5.8.
6795     return false;
6796 
6797   // Expand f32 -> i64 conversion
6798   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6799   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6800   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6801   EVT IntVT = SrcVT.changeTypeToInteger();
6802   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6803 
6804   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6805   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6806   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6807   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6808   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6809   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6810 
6811   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6812 
6813   SDValue ExponentBits = DAG.getNode(
6814       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6815       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6816   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6817 
6818   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6819                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6820                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6821   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6822 
6823   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6824                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6825                           DAG.getConstant(0x00800000, dl, IntVT));
6826 
6827   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6828 
6829   R = DAG.getSelectCC(
6830       dl, Exponent, ExponentLoBit,
6831       DAG.getNode(ISD::SHL, dl, DstVT, R,
6832                   DAG.getZExtOrTrunc(
6833                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6834                       dl, IntShVT)),
6835       DAG.getNode(ISD::SRL, dl, DstVT, R,
6836                   DAG.getZExtOrTrunc(
6837                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6838                       dl, IntShVT)),
6839       ISD::SETGT);
6840 
6841   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6842                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6843 
6844   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6845                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6846   return true;
6847 }
6848 
6849 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6850                                       SDValue &Chain,
6851                                       SelectionDAG &DAG) const {
6852   SDLoc dl(SDValue(Node, 0));
6853   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6854   SDValue Src = Node->getOperand(OpNo);
6855 
6856   EVT SrcVT = Src.getValueType();
6857   EVT DstVT = Node->getValueType(0);
6858   EVT SetCCVT =
6859       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6860   EVT DstSetCCVT =
6861       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6862 
6863   // Only expand vector types if we have the appropriate vector bit operations.
6864   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6865                                                    ISD::FP_TO_SINT;
6866   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6867                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6868     return false;
6869 
6870   // If the maximum float value is smaller then the signed integer range,
6871   // the destination signmask can't be represented by the float, so we can
6872   // just use FP_TO_SINT directly.
6873   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6874   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6875   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6876   if (APFloat::opOverflow &
6877       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6878     if (Node->isStrictFPOpcode()) {
6879       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6880                            { Node->getOperand(0), Src });
6881       Chain = Result.getValue(1);
6882     } else
6883       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6884     return true;
6885   }
6886 
6887   // Don't expand it if there isn't cheap fsub instruction.
6888   if (!isOperationLegalOrCustom(
6889           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6890     return false;
6891 
6892   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6893   SDValue Sel;
6894 
6895   if (Node->isStrictFPOpcode()) {
6896     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6897                        Node->getOperand(0), /*IsSignaling*/ true);
6898     Chain = Sel.getValue(1);
6899   } else {
6900     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6901   }
6902 
6903   bool Strict = Node->isStrictFPOpcode() ||
6904                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6905 
6906   if (Strict) {
6907     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6908     // signmask then offset (the result of which should be fully representable).
6909     // Sel = Src < 0x8000000000000000
6910     // FltOfs = select Sel, 0, 0x8000000000000000
6911     // IntOfs = select Sel, 0, 0x8000000000000000
6912     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6913 
6914     // TODO: Should any fast-math-flags be set for the FSUB?
6915     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6916                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6917     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6918     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6919                                    DAG.getConstant(0, dl, DstVT),
6920                                    DAG.getConstant(SignMask, dl, DstVT));
6921     SDValue SInt;
6922     if (Node->isStrictFPOpcode()) {
6923       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6924                                 { Chain, Src, FltOfs });
6925       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6926                          { Val.getValue(1), Val });
6927       Chain = SInt.getValue(1);
6928     } else {
6929       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6930       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6931     }
6932     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6933   } else {
6934     // Expand based on maximum range of FP_TO_SINT:
6935     // True = fp_to_sint(Src)
6936     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6937     // Result = select (Src < 0x8000000000000000), True, False
6938 
6939     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6940     // TODO: Should any fast-math-flags be set for the FSUB?
6941     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6942                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6943     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6944                         DAG.getConstant(SignMask, dl, DstVT));
6945     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6946     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6947   }
6948   return true;
6949 }
6950 
6951 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6952                                       SDValue &Chain,
6953                                       SelectionDAG &DAG) const {
6954   // This transform is not correct for converting 0 when rounding mode is set
6955   // to round toward negative infinity which will produce -0.0. So disable under
6956   // strictfp.
6957   if (Node->isStrictFPOpcode())
6958     return false;
6959 
6960   SDValue Src = Node->getOperand(0);
6961   EVT SrcVT = Src.getValueType();
6962   EVT DstVT = Node->getValueType(0);
6963 
6964   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6965     return false;
6966 
6967   // Only expand vector types if we have the appropriate vector bit operations.
6968   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6969                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6970                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6971                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6972                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6973     return false;
6974 
6975   SDLoc dl(SDValue(Node, 0));
6976   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6977 
6978   // Implementation of unsigned i64 to f64 following the algorithm in
6979   // __floatundidf in compiler_rt.  This implementation performs rounding
6980   // correctly in all rounding modes with the exception of converting 0
6981   // when rounding toward negative infinity. In that case the fsub will produce
6982   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6983   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6984   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6985       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6986   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6987   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6988   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6989 
6990   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6991   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6992   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6993   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6994   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6995   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6996   SDValue HiSub =
6997       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6998   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6999   return true;
7000 }
7001 
7002 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7003                                               SelectionDAG &DAG) const {
7004   SDLoc dl(Node);
7005   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7006     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7007   EVT VT = Node->getValueType(0);
7008 
7009   if (VT.isScalableVector())
7010     report_fatal_error(
7011         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7012 
7013   if (isOperationLegalOrCustom(NewOp, VT)) {
7014     SDValue Quiet0 = Node->getOperand(0);
7015     SDValue Quiet1 = Node->getOperand(1);
7016 
7017     if (!Node->getFlags().hasNoNaNs()) {
7018       // Insert canonicalizes if it's possible we need to quiet to get correct
7019       // sNaN behavior.
7020       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7021         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7022                              Node->getFlags());
7023       }
7024       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7025         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7026                              Node->getFlags());
7027       }
7028     }
7029 
7030     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7031   }
7032 
7033   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7034   // instead if there are no NaNs.
7035   if (Node->getFlags().hasNoNaNs()) {
7036     unsigned IEEE2018Op =
7037         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7038     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7039       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7040                          Node->getOperand(1), Node->getFlags());
7041     }
7042   }
7043 
7044   // If none of the above worked, but there are no NaNs, then expand to
7045   // a compare/select sequence.  This is required for correctness since
7046   // InstCombine might have canonicalized a fcmp+select sequence to a
7047   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7048   // expansion to libcall, we might introduce a link-time dependency
7049   // on libm into a file that originally did not have one.
7050   if (Node->getFlags().hasNoNaNs()) {
7051     ISD::CondCode Pred =
7052         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7053     SDValue Op1 = Node->getOperand(0);
7054     SDValue Op2 = Node->getOperand(1);
7055     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7056     // Copy FMF flags, but always set the no-signed-zeros flag
7057     // as this is implied by the FMINNUM/FMAXNUM semantics.
7058     SDNodeFlags Flags = Node->getFlags();
7059     Flags.setNoSignedZeros(true);
7060     SelCC->setFlags(Flags);
7061     return SelCC;
7062   }
7063 
7064   return SDValue();
7065 }
7066 
7067 // Only expand vector types if we have the appropriate vector bit operations.
7068 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7069   assert(VT.isVector() && "Expected vector type");
7070   unsigned Len = VT.getScalarSizeInBits();
7071   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7072          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7073          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7074          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7075          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7076 }
7077 
7078 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7079   SDLoc dl(Node);
7080   EVT VT = Node->getValueType(0);
7081   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7082   SDValue Op = Node->getOperand(0);
7083   unsigned Len = VT.getScalarSizeInBits();
7084   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7085 
7086   // TODO: Add support for irregular type lengths.
7087   if (!(Len <= 128 && Len % 8 == 0))
7088     return SDValue();
7089 
7090   // Only expand vector types if we have the appropriate vector bit operations.
7091   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7092     return SDValue();
7093 
7094   // This is the "best" algorithm from
7095   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7096   SDValue Mask55 =
7097       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7098   SDValue Mask33 =
7099       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7100   SDValue Mask0F =
7101       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7102   SDValue Mask01 =
7103       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7104 
7105   // v = v - ((v >> 1) & 0x55555555...)
7106   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7107                    DAG.getNode(ISD::AND, dl, VT,
7108                                DAG.getNode(ISD::SRL, dl, VT, Op,
7109                                            DAG.getConstant(1, dl, ShVT)),
7110                                Mask55));
7111   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7112   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7113                    DAG.getNode(ISD::AND, dl, VT,
7114                                DAG.getNode(ISD::SRL, dl, VT, Op,
7115                                            DAG.getConstant(2, dl, ShVT)),
7116                                Mask33));
7117   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7118   Op = DAG.getNode(ISD::AND, dl, VT,
7119                    DAG.getNode(ISD::ADD, dl, VT, Op,
7120                                DAG.getNode(ISD::SRL, dl, VT, Op,
7121                                            DAG.getConstant(4, dl, ShVT))),
7122                    Mask0F);
7123   // v = (v * 0x01010101...) >> (Len - 8)
7124   if (Len > 8)
7125     Op =
7126         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7127                     DAG.getConstant(Len - 8, dl, ShVT));
7128 
7129   return Op;
7130 }
7131 
7132 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7133   SDLoc dl(Node);
7134   EVT VT = Node->getValueType(0);
7135   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7136   SDValue Op = Node->getOperand(0);
7137   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7138 
7139   // If the non-ZERO_UNDEF version is supported we can use that instead.
7140   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7141       isOperationLegalOrCustom(ISD::CTLZ, VT))
7142     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7143 
7144   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7145   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7146     EVT SetCCVT =
7147         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7148     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7149     SDValue Zero = DAG.getConstant(0, dl, VT);
7150     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7151     return DAG.getSelect(dl, VT, SrcIsZero,
7152                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7153   }
7154 
7155   // Only expand vector types if we have the appropriate vector bit operations.
7156   // This includes the operations needed to expand CTPOP if it isn't supported.
7157   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7158                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7159                          !canExpandVectorCTPOP(*this, VT)) ||
7160                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7161                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7162     return SDValue();
7163 
7164   // for now, we do this:
7165   // x = x | (x >> 1);
7166   // x = x | (x >> 2);
7167   // ...
7168   // x = x | (x >>16);
7169   // x = x | (x >>32); // for 64-bit input
7170   // return popcount(~x);
7171   //
7172   // Ref: "Hacker's Delight" by Henry Warren
7173   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7174     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7175     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7176                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7177   }
7178   Op = DAG.getNOT(dl, Op, VT);
7179   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7180 }
7181 
7182 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7183   SDLoc dl(Node);
7184   EVT VT = Node->getValueType(0);
7185   SDValue Op = Node->getOperand(0);
7186   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7187 
7188   // If the non-ZERO_UNDEF version is supported we can use that instead.
7189   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7190       isOperationLegalOrCustom(ISD::CTTZ, VT))
7191     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7192 
7193   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7194   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7195     EVT SetCCVT =
7196         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7197     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7198     SDValue Zero = DAG.getConstant(0, dl, VT);
7199     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7200     return DAG.getSelect(dl, VT, SrcIsZero,
7201                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7202   }
7203 
7204   // Only expand vector types if we have the appropriate vector bit operations.
7205   // This includes the operations needed to expand CTPOP if it isn't supported.
7206   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7207                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7208                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7209                          !canExpandVectorCTPOP(*this, VT)) ||
7210                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7211                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7212                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7213     return SDValue();
7214 
7215   // for now, we use: { return popcount(~x & (x - 1)); }
7216   // unless the target has ctlz but not ctpop, in which case we use:
7217   // { return 32 - nlz(~x & (x-1)); }
7218   // Ref: "Hacker's Delight" by Henry Warren
7219   SDValue Tmp = DAG.getNode(
7220       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7221       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7222 
7223   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7224   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7225     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7226                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7227   }
7228 
7229   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7230 }
7231 
7232 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7233                                   bool IsNegative) const {
7234   SDLoc dl(N);
7235   EVT VT = N->getValueType(0);
7236   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7237   SDValue Op = N->getOperand(0);
7238 
7239   // abs(x) -> smax(x,sub(0,x))
7240   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7241       isOperationLegal(ISD::SMAX, VT)) {
7242     SDValue Zero = DAG.getConstant(0, dl, VT);
7243     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7244                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7245   }
7246 
7247   // abs(x) -> umin(x,sub(0,x))
7248   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7249       isOperationLegal(ISD::UMIN, VT)) {
7250     SDValue Zero = DAG.getConstant(0, dl, VT);
7251     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7252                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7253   }
7254 
7255   // 0 - abs(x) -> smin(x, sub(0,x))
7256   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7257       isOperationLegal(ISD::SMIN, VT)) {
7258     SDValue Zero = DAG.getConstant(0, dl, VT);
7259     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7260                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7261   }
7262 
7263   // Only expand vector types if we have the appropriate vector operations.
7264   if (VT.isVector() &&
7265       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7266        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7267        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7268        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7269     return SDValue();
7270 
7271   SDValue Shift =
7272       DAG.getNode(ISD::SRA, dl, VT, Op,
7273                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7274   if (!IsNegative) {
7275     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7276     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7277   }
7278 
7279   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7280   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7281   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7282 }
7283 
7284 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7285   SDLoc dl(N);
7286   EVT VT = N->getValueType(0);
7287   SDValue Op = N->getOperand(0);
7288 
7289   if (!VT.isSimple())
7290     return SDValue();
7291 
7292   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7293   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7294   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7295   default:
7296     return SDValue();
7297   case MVT::i16:
7298     // Use a rotate by 8. This can be further expanded if necessary.
7299     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7300   case MVT::i32:
7301     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7302     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7303     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7304     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7305     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7306                        DAG.getConstant(0xFF0000, dl, VT));
7307     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7308     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7309     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7310     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7311   case MVT::i64:
7312     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7313     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7314     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7315     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7316     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7317     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7318     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7319     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7320     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7321                        DAG.getConstant(255ULL<<48, dl, VT));
7322     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7323                        DAG.getConstant(255ULL<<40, dl, VT));
7324     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7325                        DAG.getConstant(255ULL<<32, dl, VT));
7326     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7327                        DAG.getConstant(255ULL<<24, dl, VT));
7328     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7329                        DAG.getConstant(255ULL<<16, dl, VT));
7330     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7331                        DAG.getConstant(255ULL<<8 , dl, VT));
7332     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7333     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7334     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7335     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7336     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7337     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7338     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7339   }
7340 }
7341 
7342 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7343   SDLoc dl(N);
7344   EVT VT = N->getValueType(0);
7345   SDValue Op = N->getOperand(0);
7346   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7347   unsigned Sz = VT.getScalarSizeInBits();
7348 
7349   SDValue Tmp, Tmp2, Tmp3;
7350 
7351   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7352   // and finally the i1 pairs.
7353   // TODO: We can easily support i4/i2 legal types if any target ever does.
7354   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7355     // Create the masks - repeating the pattern every byte.
7356     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7357     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7358     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7359 
7360     // BSWAP if the type is wider than a single byte.
7361     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7362 
7363     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7364     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7365     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7366     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7367     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7368     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7369 
7370     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7371     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7372     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7373     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7374     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7375     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7376 
7377     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7378     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7379     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7380     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7381     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7382     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7383     return Tmp;
7384   }
7385 
7386   Tmp = DAG.getConstant(0, dl, VT);
7387   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7388     if (I < J)
7389       Tmp2 =
7390           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7391     else
7392       Tmp2 =
7393           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7394 
7395     APInt Shift(Sz, 1);
7396     Shift <<= J;
7397     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7398     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7399   }
7400 
7401   return Tmp;
7402 }
7403 
7404 std::pair<SDValue, SDValue>
7405 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7406                                     SelectionDAG &DAG) const {
7407   SDLoc SL(LD);
7408   SDValue Chain = LD->getChain();
7409   SDValue BasePTR = LD->getBasePtr();
7410   EVT SrcVT = LD->getMemoryVT();
7411   EVT DstVT = LD->getValueType(0);
7412   ISD::LoadExtType ExtType = LD->getExtensionType();
7413 
7414   if (SrcVT.isScalableVector())
7415     report_fatal_error("Cannot scalarize scalable vector loads");
7416 
7417   unsigned NumElem = SrcVT.getVectorNumElements();
7418 
7419   EVT SrcEltVT = SrcVT.getScalarType();
7420   EVT DstEltVT = DstVT.getScalarType();
7421 
7422   // A vector must always be stored in memory as-is, i.e. without any padding
7423   // between the elements, since various code depend on it, e.g. in the
7424   // handling of a bitcast of a vector type to int, which may be done with a
7425   // vector store followed by an integer load. A vector that does not have
7426   // elements that are byte-sized must therefore be stored as an integer
7427   // built out of the extracted vector elements.
7428   if (!SrcEltVT.isByteSized()) {
7429     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7430     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7431 
7432     unsigned NumSrcBits = SrcVT.getSizeInBits();
7433     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7434 
7435     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7436     SDValue SrcEltBitMask = DAG.getConstant(
7437         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7438 
7439     // Load the whole vector and avoid masking off the top bits as it makes
7440     // the codegen worse.
7441     SDValue Load =
7442         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7443                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7444                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7445 
7446     SmallVector<SDValue, 8> Vals;
7447     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7448       unsigned ShiftIntoIdx =
7449           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7450       SDValue ShiftAmount =
7451           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7452                                      LoadVT, SL, /*LegalTypes=*/false);
7453       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7454       SDValue Elt =
7455           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7456       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7457 
7458       if (ExtType != ISD::NON_EXTLOAD) {
7459         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7460         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7461       }
7462 
7463       Vals.push_back(Scalar);
7464     }
7465 
7466     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7467     return std::make_pair(Value, Load.getValue(1));
7468   }
7469 
7470   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7471   assert(SrcEltVT.isByteSized());
7472 
7473   SmallVector<SDValue, 8> Vals;
7474   SmallVector<SDValue, 8> LoadChains;
7475 
7476   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7477     SDValue ScalarLoad =
7478         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7479                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7480                        SrcEltVT, LD->getOriginalAlign(),
7481                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7482 
7483     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7484 
7485     Vals.push_back(ScalarLoad.getValue(0));
7486     LoadChains.push_back(ScalarLoad.getValue(1));
7487   }
7488 
7489   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7490   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7491 
7492   return std::make_pair(Value, NewChain);
7493 }
7494 
7495 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7496                                              SelectionDAG &DAG) const {
7497   SDLoc SL(ST);
7498 
7499   SDValue Chain = ST->getChain();
7500   SDValue BasePtr = ST->getBasePtr();
7501   SDValue Value = ST->getValue();
7502   EVT StVT = ST->getMemoryVT();
7503 
7504   if (StVT.isScalableVector())
7505     report_fatal_error("Cannot scalarize scalable vector stores");
7506 
7507   // The type of the data we want to save
7508   EVT RegVT = Value.getValueType();
7509   EVT RegSclVT = RegVT.getScalarType();
7510 
7511   // The type of data as saved in memory.
7512   EVT MemSclVT = StVT.getScalarType();
7513 
7514   unsigned NumElem = StVT.getVectorNumElements();
7515 
7516   // A vector must always be stored in memory as-is, i.e. without any padding
7517   // between the elements, since various code depend on it, e.g. in the
7518   // handling of a bitcast of a vector type to int, which may be done with a
7519   // vector store followed by an integer load. A vector that does not have
7520   // elements that are byte-sized must therefore be stored as an integer
7521   // built out of the extracted vector elements.
7522   if (!MemSclVT.isByteSized()) {
7523     unsigned NumBits = StVT.getSizeInBits();
7524     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7525 
7526     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7527 
7528     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7529       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7530                                 DAG.getVectorIdxConstant(Idx, SL));
7531       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7532       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7533       unsigned ShiftIntoIdx =
7534           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7535       SDValue ShiftAmount =
7536           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7537       SDValue ShiftedElt =
7538           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7539       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7540     }
7541 
7542     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7543                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7544                         ST->getAAInfo());
7545   }
7546 
7547   // Store Stride in bytes
7548   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7549   assert(Stride && "Zero stride!");
7550   // Extract each of the elements from the original vector and save them into
7551   // memory individually.
7552   SmallVector<SDValue, 8> Stores;
7553   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7554     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7555                               DAG.getVectorIdxConstant(Idx, SL));
7556 
7557     SDValue Ptr =
7558         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7559 
7560     // This scalar TruncStore may be illegal, but we legalize it later.
7561     SDValue Store = DAG.getTruncStore(
7562         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7563         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7564         ST->getAAInfo());
7565 
7566     Stores.push_back(Store);
7567   }
7568 
7569   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7570 }
7571 
7572 std::pair<SDValue, SDValue>
7573 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7574   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7575          "unaligned indexed loads not implemented!");
7576   SDValue Chain = LD->getChain();
7577   SDValue Ptr = LD->getBasePtr();
7578   EVT VT = LD->getValueType(0);
7579   EVT LoadedVT = LD->getMemoryVT();
7580   SDLoc dl(LD);
7581   auto &MF = DAG.getMachineFunction();
7582 
7583   if (VT.isFloatingPoint() || VT.isVector()) {
7584     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7585     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7586       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7587           LoadedVT.isVector()) {
7588         // Scalarize the load and let the individual components be handled.
7589         return scalarizeVectorLoad(LD, DAG);
7590       }
7591 
7592       // Expand to a (misaligned) integer load of the same size,
7593       // then bitconvert to floating point or vector.
7594       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7595                                     LD->getMemOperand());
7596       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7597       if (LoadedVT != VT)
7598         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7599                              ISD::ANY_EXTEND, dl, VT, Result);
7600 
7601       return std::make_pair(Result, newLoad.getValue(1));
7602     }
7603 
7604     // Copy the value to a (aligned) stack slot using (unaligned) integer
7605     // loads and stores, then do a (aligned) load from the stack slot.
7606     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7607     unsigned LoadedBytes = LoadedVT.getStoreSize();
7608     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7609     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7610 
7611     // Make sure the stack slot is also aligned for the register type.
7612     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7613     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7614     SmallVector<SDValue, 8> Stores;
7615     SDValue StackPtr = StackBase;
7616     unsigned Offset = 0;
7617 
7618     EVT PtrVT = Ptr.getValueType();
7619     EVT StackPtrVT = StackPtr.getValueType();
7620 
7621     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7622     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7623 
7624     // Do all but one copies using the full register width.
7625     for (unsigned i = 1; i < NumRegs; i++) {
7626       // Load one integer register's worth from the original location.
7627       SDValue Load = DAG.getLoad(
7628           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7629           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7630           LD->getAAInfo());
7631       // Follow the load with a store to the stack slot.  Remember the store.
7632       Stores.push_back(DAG.getStore(
7633           Load.getValue(1), dl, Load, StackPtr,
7634           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7635       // Increment the pointers.
7636       Offset += RegBytes;
7637 
7638       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7639       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7640     }
7641 
7642     // The last copy may be partial.  Do an extending load.
7643     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7644                                   8 * (LoadedBytes - Offset));
7645     SDValue Load =
7646         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7647                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7648                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7649                        LD->getAAInfo());
7650     // Follow the load with a store to the stack slot.  Remember the store.
7651     // On big-endian machines this requires a truncating store to ensure
7652     // that the bits end up in the right place.
7653     Stores.push_back(DAG.getTruncStore(
7654         Load.getValue(1), dl, Load, StackPtr,
7655         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7656 
7657     // The order of the stores doesn't matter - say it with a TokenFactor.
7658     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7659 
7660     // Finally, perform the original load only redirected to the stack slot.
7661     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7662                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7663                           LoadedVT);
7664 
7665     // Callers expect a MERGE_VALUES node.
7666     return std::make_pair(Load, TF);
7667   }
7668 
7669   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7670          "Unaligned load of unsupported type.");
7671 
7672   // Compute the new VT that is half the size of the old one.  This is an
7673   // integer MVT.
7674   unsigned NumBits = LoadedVT.getSizeInBits();
7675   EVT NewLoadedVT;
7676   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7677   NumBits >>= 1;
7678 
7679   Align Alignment = LD->getOriginalAlign();
7680   unsigned IncrementSize = NumBits / 8;
7681   ISD::LoadExtType HiExtType = LD->getExtensionType();
7682 
7683   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7684   if (HiExtType == ISD::NON_EXTLOAD)
7685     HiExtType = ISD::ZEXTLOAD;
7686 
7687   // Load the value in two parts
7688   SDValue Lo, Hi;
7689   if (DAG.getDataLayout().isLittleEndian()) {
7690     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7691                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7692                         LD->getAAInfo());
7693 
7694     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7695     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7696                         LD->getPointerInfo().getWithOffset(IncrementSize),
7697                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7698                         LD->getAAInfo());
7699   } else {
7700     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7701                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7702                         LD->getAAInfo());
7703 
7704     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7705     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7706                         LD->getPointerInfo().getWithOffset(IncrementSize),
7707                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7708                         LD->getAAInfo());
7709   }
7710 
7711   // aggregate the two parts
7712   SDValue ShiftAmount =
7713       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7714                                                     DAG.getDataLayout()));
7715   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7716   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7717 
7718   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7719                              Hi.getValue(1));
7720 
7721   return std::make_pair(Result, TF);
7722 }
7723 
7724 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7725                                              SelectionDAG &DAG) const {
7726   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7727          "unaligned indexed stores not implemented!");
7728   SDValue Chain = ST->getChain();
7729   SDValue Ptr = ST->getBasePtr();
7730   SDValue Val = ST->getValue();
7731   EVT VT = Val.getValueType();
7732   Align Alignment = ST->getOriginalAlign();
7733   auto &MF = DAG.getMachineFunction();
7734   EVT StoreMemVT = ST->getMemoryVT();
7735 
7736   SDLoc dl(ST);
7737   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7738     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7739     if (isTypeLegal(intVT)) {
7740       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7741           StoreMemVT.isVector()) {
7742         // Scalarize the store and let the individual components be handled.
7743         SDValue Result = scalarizeVectorStore(ST, DAG);
7744         return Result;
7745       }
7746       // Expand to a bitconvert of the value to the integer type of the
7747       // same size, then a (misaligned) int store.
7748       // FIXME: Does not handle truncating floating point stores!
7749       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7750       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7751                             Alignment, ST->getMemOperand()->getFlags());
7752       return Result;
7753     }
7754     // Do a (aligned) store to a stack slot, then copy from the stack slot
7755     // to the final destination using (unaligned) integer loads and stores.
7756     MVT RegVT = getRegisterType(
7757         *DAG.getContext(),
7758         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7759     EVT PtrVT = Ptr.getValueType();
7760     unsigned StoredBytes = StoreMemVT.getStoreSize();
7761     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7762     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7763 
7764     // Make sure the stack slot is also aligned for the register type.
7765     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7766     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7767 
7768     // Perform the original store, only redirected to the stack slot.
7769     SDValue Store = DAG.getTruncStore(
7770         Chain, dl, Val, StackPtr,
7771         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7772 
7773     EVT StackPtrVT = StackPtr.getValueType();
7774 
7775     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7776     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7777     SmallVector<SDValue, 8> Stores;
7778     unsigned Offset = 0;
7779 
7780     // Do all but one copies using the full register width.
7781     for (unsigned i = 1; i < NumRegs; i++) {
7782       // Load one integer register's worth from the stack slot.
7783       SDValue Load = DAG.getLoad(
7784           RegVT, dl, Store, StackPtr,
7785           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7786       // Store it to the final location.  Remember the store.
7787       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7788                                     ST->getPointerInfo().getWithOffset(Offset),
7789                                     ST->getOriginalAlign(),
7790                                     ST->getMemOperand()->getFlags()));
7791       // Increment the pointers.
7792       Offset += RegBytes;
7793       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7794       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7795     }
7796 
7797     // The last store may be partial.  Do a truncating store.  On big-endian
7798     // machines this requires an extending load from the stack slot to ensure
7799     // that the bits are in the right place.
7800     EVT LoadMemVT =
7801         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7802 
7803     // Load from the stack slot.
7804     SDValue Load = DAG.getExtLoad(
7805         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7806         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7807 
7808     Stores.push_back(
7809         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7810                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7811                           ST->getOriginalAlign(),
7812                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7813     // The order of the stores doesn't matter - say it with a TokenFactor.
7814     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7815     return Result;
7816   }
7817 
7818   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7819          "Unaligned store of unknown type.");
7820   // Get the half-size VT
7821   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7822   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7823   unsigned IncrementSize = NumBits / 8;
7824 
7825   // Divide the stored value in two parts.
7826   SDValue ShiftAmount = DAG.getConstant(
7827       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7828   SDValue Lo = Val;
7829   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7830 
7831   // Store the two parts
7832   SDValue Store1, Store2;
7833   Store1 = DAG.getTruncStore(Chain, dl,
7834                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7835                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7836                              ST->getMemOperand()->getFlags());
7837 
7838   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7839   Store2 = DAG.getTruncStore(
7840       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7841       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7842       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7843 
7844   SDValue Result =
7845       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7846   return Result;
7847 }
7848 
7849 SDValue
7850 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7851                                        const SDLoc &DL, EVT DataVT,
7852                                        SelectionDAG &DAG,
7853                                        bool IsCompressedMemory) const {
7854   SDValue Increment;
7855   EVT AddrVT = Addr.getValueType();
7856   EVT MaskVT = Mask.getValueType();
7857   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7858          "Incompatible types of Data and Mask");
7859   if (IsCompressedMemory) {
7860     if (DataVT.isScalableVector())
7861       report_fatal_error(
7862           "Cannot currently handle compressed memory with scalable vectors");
7863     // Incrementing the pointer according to number of '1's in the mask.
7864     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7865     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7866     if (MaskIntVT.getSizeInBits() < 32) {
7867       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7868       MaskIntVT = MVT::i32;
7869     }
7870 
7871     // Count '1's with POPCNT.
7872     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7873     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7874     // Scale is an element size in bytes.
7875     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7876                                     AddrVT);
7877     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7878   } else if (DataVT.isScalableVector()) {
7879     Increment = DAG.getVScale(DL, AddrVT,
7880                               APInt(AddrVT.getFixedSizeInBits(),
7881                                     DataVT.getStoreSize().getKnownMinSize()));
7882   } else
7883     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7884 
7885   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7886 }
7887 
7888 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7889                                        EVT VecVT, const SDLoc &dl,
7890                                        ElementCount SubEC) {
7891   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7892          "Cannot index a scalable vector within a fixed-width vector");
7893 
7894   unsigned NElts = VecVT.getVectorMinNumElements();
7895   unsigned NumSubElts = SubEC.getKnownMinValue();
7896   EVT IdxVT = Idx.getValueType();
7897 
7898   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7899     // If this is a constant index and we know the value plus the number of the
7900     // elements in the subvector minus one is less than the minimum number of
7901     // elements then it's safe to return Idx.
7902     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7903       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7904         return Idx;
7905     SDValue VS =
7906         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7907     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7908     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7909                               DAG.getConstant(NumSubElts, dl, IdxVT));
7910     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7911   }
7912   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7913     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7914     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7915                        DAG.getConstant(Imm, dl, IdxVT));
7916   }
7917   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7918   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7919                      DAG.getConstant(MaxIndex, dl, IdxVT));
7920 }
7921 
7922 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7923                                                 SDValue VecPtr, EVT VecVT,
7924                                                 SDValue Index) const {
7925   return getVectorSubVecPointer(
7926       DAG, VecPtr, VecVT,
7927       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7928       Index);
7929 }
7930 
7931 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7932                                                SDValue VecPtr, EVT VecVT,
7933                                                EVT SubVecVT,
7934                                                SDValue Index) const {
7935   SDLoc dl(Index);
7936   // Make sure the index type is big enough to compute in.
7937   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7938 
7939   EVT EltVT = VecVT.getVectorElementType();
7940 
7941   // Calculate the element offset and add it to the pointer.
7942   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7943   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7944          "Converting bits to bytes lost precision");
7945   assert(SubVecVT.getVectorElementType() == EltVT &&
7946          "Sub-vector must be a vector with matching element type");
7947   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7948                                   SubVecVT.getVectorElementCount());
7949 
7950   EVT IdxVT = Index.getValueType();
7951   if (SubVecVT.isScalableVector())
7952     Index =
7953         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7954                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7955 
7956   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7957                       DAG.getConstant(EltSize, dl, IdxVT));
7958   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7959 }
7960 
7961 //===----------------------------------------------------------------------===//
7962 // Implementation of Emulated TLS Model
7963 //===----------------------------------------------------------------------===//
7964 
7965 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7966                                                 SelectionDAG &DAG) const {
7967   // Access to address of TLS varialbe xyz is lowered to a function call:
7968   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7969   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7970   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7971   SDLoc dl(GA);
7972 
7973   ArgListTy Args;
7974   ArgListEntry Entry;
7975   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7976   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7977   StringRef EmuTlsVarName(NameString);
7978   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7979   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7980   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7981   Entry.Ty = VoidPtrType;
7982   Args.push_back(Entry);
7983 
7984   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7985 
7986   TargetLowering::CallLoweringInfo CLI(DAG);
7987   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7988   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7989   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7990 
7991   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7992   // At last for X86 targets, maybe good for other targets too?
7993   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7994   MFI.setAdjustsStack(true); // Is this only for X86 target?
7995   MFI.setHasCalls(true);
7996 
7997   assert((GA->getOffset() == 0) &&
7998          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7999   return CallResult.first;
8000 }
8001 
8002 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8003                                                 SelectionDAG &DAG) const {
8004   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8005   if (!isCtlzFast())
8006     return SDValue();
8007   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8008   SDLoc dl(Op);
8009   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8010     if (C->isZero() && CC == ISD::SETEQ) {
8011       EVT VT = Op.getOperand(0).getValueType();
8012       SDValue Zext = Op.getOperand(0);
8013       if (VT.bitsLT(MVT::i32)) {
8014         VT = MVT::i32;
8015         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8016       }
8017       unsigned Log2b = Log2_32(VT.getSizeInBits());
8018       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8019       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8020                                 DAG.getConstant(Log2b, dl, MVT::i32));
8021       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8022     }
8023   }
8024   return SDValue();
8025 }
8026 
8027 // Convert redundant addressing modes (e.g. scaling is redundant
8028 // when accessing bytes).
8029 ISD::MemIndexType
8030 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8031                                       SDValue Offsets) const {
8032   bool IsScaledIndex =
8033       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8034   bool IsSignedIndex =
8035       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8036 
8037   // Scaling is unimportant for bytes, canonicalize to unscaled.
8038   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8039     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8040 
8041   return IndexType;
8042 }
8043 
8044 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8045   SDValue Op0 = Node->getOperand(0);
8046   SDValue Op1 = Node->getOperand(1);
8047   EVT VT = Op0.getValueType();
8048   unsigned Opcode = Node->getOpcode();
8049   SDLoc DL(Node);
8050 
8051   // umin(x,y) -> sub(x,usubsat(x,y))
8052   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8053       isOperationLegal(ISD::USUBSAT, VT)) {
8054     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8055                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8056   }
8057 
8058   // umax(x,y) -> add(x,usubsat(y,x))
8059   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8060       isOperationLegal(ISD::USUBSAT, VT)) {
8061     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8062                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8063   }
8064 
8065   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8066   ISD::CondCode CC;
8067   switch (Opcode) {
8068   default: llvm_unreachable("How did we get here?");
8069   case ISD::SMAX: CC = ISD::SETGT; break;
8070   case ISD::SMIN: CC = ISD::SETLT; break;
8071   case ISD::UMAX: CC = ISD::SETUGT; break;
8072   case ISD::UMIN: CC = ISD::SETULT; break;
8073   }
8074 
8075   // FIXME: Should really try to split the vector in case it's legal on a
8076   // subvector.
8077   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8078     return DAG.UnrollVectorOp(Node);
8079 
8080   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8081   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8082   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8083 }
8084 
8085 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8086   unsigned Opcode = Node->getOpcode();
8087   SDValue LHS = Node->getOperand(0);
8088   SDValue RHS = Node->getOperand(1);
8089   EVT VT = LHS.getValueType();
8090   SDLoc dl(Node);
8091 
8092   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8093   assert(VT.isInteger() && "Expected operands to be integers");
8094 
8095   // usub.sat(a, b) -> umax(a, b) - b
8096   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8097     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8098     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8099   }
8100 
8101   // uadd.sat(a, b) -> umin(a, ~b) + b
8102   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8103     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8104     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8105     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8106   }
8107 
8108   unsigned OverflowOp;
8109   switch (Opcode) {
8110   case ISD::SADDSAT:
8111     OverflowOp = ISD::SADDO;
8112     break;
8113   case ISD::UADDSAT:
8114     OverflowOp = ISD::UADDO;
8115     break;
8116   case ISD::SSUBSAT:
8117     OverflowOp = ISD::SSUBO;
8118     break;
8119   case ISD::USUBSAT:
8120     OverflowOp = ISD::USUBO;
8121     break;
8122   default:
8123     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8124                      "addition or subtraction node.");
8125   }
8126 
8127   // FIXME: Should really try to split the vector in case it's legal on a
8128   // subvector.
8129   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8130     return DAG.UnrollVectorOp(Node);
8131 
8132   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8133   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8134   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8135   SDValue SumDiff = Result.getValue(0);
8136   SDValue Overflow = Result.getValue(1);
8137   SDValue Zero = DAG.getConstant(0, dl, VT);
8138   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8139 
8140   if (Opcode == ISD::UADDSAT) {
8141     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8142       // (LHS + RHS) | OverflowMask
8143       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8144       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8145     }
8146     // Overflow ? 0xffff.... : (LHS + RHS)
8147     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8148   }
8149 
8150   if (Opcode == ISD::USUBSAT) {
8151     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8152       // (LHS - RHS) & ~OverflowMask
8153       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8154       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8155       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8156     }
8157     // Overflow ? 0 : (LHS - RHS)
8158     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8159   }
8160 
8161   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8162   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8163   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8164   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8165                               DAG.getConstant(BitWidth - 1, dl, VT));
8166   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8167   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8168 }
8169 
8170 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8171   unsigned Opcode = Node->getOpcode();
8172   bool IsSigned = Opcode == ISD::SSHLSAT;
8173   SDValue LHS = Node->getOperand(0);
8174   SDValue RHS = Node->getOperand(1);
8175   EVT VT = LHS.getValueType();
8176   SDLoc dl(Node);
8177 
8178   assert((Node->getOpcode() == ISD::SSHLSAT ||
8179           Node->getOpcode() == ISD::USHLSAT) &&
8180           "Expected a SHLSAT opcode");
8181   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8182   assert(VT.isInteger() && "Expected operands to be integers");
8183 
8184   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8185 
8186   unsigned BW = VT.getScalarSizeInBits();
8187   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8188   SDValue Orig =
8189       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8190 
8191   SDValue SatVal;
8192   if (IsSigned) {
8193     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8194     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8195     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8196                              SatMin, SatMax, ISD::SETLT);
8197   } else {
8198     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8199   }
8200   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8201 
8202   return Result;
8203 }
8204 
8205 SDValue
8206 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8207   assert((Node->getOpcode() == ISD::SMULFIX ||
8208           Node->getOpcode() == ISD::UMULFIX ||
8209           Node->getOpcode() == ISD::SMULFIXSAT ||
8210           Node->getOpcode() == ISD::UMULFIXSAT) &&
8211          "Expected a fixed point multiplication opcode");
8212 
8213   SDLoc dl(Node);
8214   SDValue LHS = Node->getOperand(0);
8215   SDValue RHS = Node->getOperand(1);
8216   EVT VT = LHS.getValueType();
8217   unsigned Scale = Node->getConstantOperandVal(2);
8218   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8219                      Node->getOpcode() == ISD::UMULFIXSAT);
8220   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8221                  Node->getOpcode() == ISD::SMULFIXSAT);
8222   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8223   unsigned VTSize = VT.getScalarSizeInBits();
8224 
8225   if (!Scale) {
8226     // [us]mul.fix(a, b, 0) -> mul(a, b)
8227     if (!Saturating) {
8228       if (isOperationLegalOrCustom(ISD::MUL, VT))
8229         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8230     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8231       SDValue Result =
8232           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8233       SDValue Product = Result.getValue(0);
8234       SDValue Overflow = Result.getValue(1);
8235       SDValue Zero = DAG.getConstant(0, dl, VT);
8236 
8237       APInt MinVal = APInt::getSignedMinValue(VTSize);
8238       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8239       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8240       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8241       // Xor the inputs, if resulting sign bit is 0 the product will be
8242       // positive, else negative.
8243       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8244       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8245       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8246       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8247     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8248       SDValue Result =
8249           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8250       SDValue Product = Result.getValue(0);
8251       SDValue Overflow = Result.getValue(1);
8252 
8253       APInt MaxVal = APInt::getMaxValue(VTSize);
8254       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8255       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8256     }
8257   }
8258 
8259   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8260          "Expected scale to be less than the number of bits if signed or at "
8261          "most the number of bits if unsigned.");
8262   assert(LHS.getValueType() == RHS.getValueType() &&
8263          "Expected both operands to be the same type");
8264 
8265   // Get the upper and lower bits of the result.
8266   SDValue Lo, Hi;
8267   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8268   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8269   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8270     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8271     Lo = Result.getValue(0);
8272     Hi = Result.getValue(1);
8273   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8274     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8275     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8276   } else if (VT.isVector()) {
8277     return SDValue();
8278   } else {
8279     report_fatal_error("Unable to expand fixed point multiplication.");
8280   }
8281 
8282   if (Scale == VTSize)
8283     // Result is just the top half since we'd be shifting by the width of the
8284     // operand. Overflow impossible so this works for both UMULFIX and
8285     // UMULFIXSAT.
8286     return Hi;
8287 
8288   // The result will need to be shifted right by the scale since both operands
8289   // are scaled. The result is given to us in 2 halves, so we only want part of
8290   // both in the result.
8291   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8292   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8293                                DAG.getConstant(Scale, dl, ShiftTy));
8294   if (!Saturating)
8295     return Result;
8296 
8297   if (!Signed) {
8298     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8299     // widened multiplication) aren't all zeroes.
8300 
8301     // Saturate to max if ((Hi >> Scale) != 0),
8302     // which is the same as if (Hi > ((1 << Scale) - 1))
8303     APInt MaxVal = APInt::getMaxValue(VTSize);
8304     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8305                                       dl, VT);
8306     Result = DAG.getSelectCC(dl, Hi, LowMask,
8307                              DAG.getConstant(MaxVal, dl, VT), Result,
8308                              ISD::SETUGT);
8309 
8310     return Result;
8311   }
8312 
8313   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8314   // widened multiplication) aren't all ones or all zeroes.
8315 
8316   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8317   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8318 
8319   if (Scale == 0) {
8320     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8321                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8322     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8323     // Saturated to SatMin if wide product is negative, and SatMax if wide
8324     // product is positive ...
8325     SDValue Zero = DAG.getConstant(0, dl, VT);
8326     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8327                                                ISD::SETLT);
8328     // ... but only if we overflowed.
8329     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8330   }
8331 
8332   //  We handled Scale==0 above so all the bits to examine is in Hi.
8333 
8334   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8335   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8336   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8337                                     dl, VT);
8338   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8339   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8340   // which is the same as if (HI < (-1 << (Scale - 1))
8341   SDValue HighMask =
8342       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8343                       dl, VT);
8344   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8345   return Result;
8346 }
8347 
8348 SDValue
8349 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8350                                     SDValue LHS, SDValue RHS,
8351                                     unsigned Scale, SelectionDAG &DAG) const {
8352   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8353           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8354          "Expected a fixed point division opcode");
8355 
8356   EVT VT = LHS.getValueType();
8357   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8358   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8359   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8360 
8361   // If there is enough room in the type to upscale the LHS or downscale the
8362   // RHS before the division, we can perform it in this type without having to
8363   // resize. For signed operations, the LHS headroom is the number of
8364   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8365   // The headroom for the RHS is the number of trailing zeroes.
8366   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8367                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8368   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8369 
8370   // For signed saturating operations, we need to be able to detect true integer
8371   // division overflow; that is, when you have MIN / -EPS. However, this
8372   // is undefined behavior and if we emit divisions that could take such
8373   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8374   // example).
8375   // Avoid this by requiring an extra bit so that we never get this case.
8376   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8377   // signed saturating division, we need to emit a whopping 32-bit division.
8378   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8379     return SDValue();
8380 
8381   unsigned LHSShift = std::min(LHSLead, Scale);
8382   unsigned RHSShift = Scale - LHSShift;
8383 
8384   // At this point, we know that if we shift the LHS up by LHSShift and the
8385   // RHS down by RHSShift, we can emit a regular division with a final scaling
8386   // factor of Scale.
8387 
8388   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8389   if (LHSShift)
8390     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8391                       DAG.getConstant(LHSShift, dl, ShiftTy));
8392   if (RHSShift)
8393     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8394                       DAG.getConstant(RHSShift, dl, ShiftTy));
8395 
8396   SDValue Quot;
8397   if (Signed) {
8398     // For signed operations, if the resulting quotient is negative and the
8399     // remainder is nonzero, subtract 1 from the quotient to round towards
8400     // negative infinity.
8401     SDValue Rem;
8402     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8403     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8404     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8405     if (isTypeLegal(VT) &&
8406         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8407       Quot = DAG.getNode(ISD::SDIVREM, dl,
8408                          DAG.getVTList(VT, VT),
8409                          LHS, RHS);
8410       Rem = Quot.getValue(1);
8411       Quot = Quot.getValue(0);
8412     } else {
8413       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8414                          LHS, RHS);
8415       Rem = DAG.getNode(ISD::SREM, dl, VT,
8416                         LHS, RHS);
8417     }
8418     SDValue Zero = DAG.getConstant(0, dl, VT);
8419     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8420     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8421     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8422     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8423     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8424                                DAG.getConstant(1, dl, VT));
8425     Quot = DAG.getSelect(dl, VT,
8426                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8427                          Sub1, Quot);
8428   } else
8429     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8430                        LHS, RHS);
8431 
8432   return Quot;
8433 }
8434 
8435 void TargetLowering::expandUADDSUBO(
8436     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8437   SDLoc dl(Node);
8438   SDValue LHS = Node->getOperand(0);
8439   SDValue RHS = Node->getOperand(1);
8440   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8441 
8442   // If ADD/SUBCARRY is legal, use that instead.
8443   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8444   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8445     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8446     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8447                                     { LHS, RHS, CarryIn });
8448     Result = SDValue(NodeCarry.getNode(), 0);
8449     Overflow = SDValue(NodeCarry.getNode(), 1);
8450     return;
8451   }
8452 
8453   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8454                             LHS.getValueType(), LHS, RHS);
8455 
8456   EVT ResultType = Node->getValueType(1);
8457   EVT SetCCType = getSetCCResultType(
8458       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8459   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8460   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8461   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8462 }
8463 
8464 void TargetLowering::expandSADDSUBO(
8465     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8466   SDLoc dl(Node);
8467   SDValue LHS = Node->getOperand(0);
8468   SDValue RHS = Node->getOperand(1);
8469   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8470 
8471   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8472                             LHS.getValueType(), LHS, RHS);
8473 
8474   EVT ResultType = Node->getValueType(1);
8475   EVT OType = getSetCCResultType(
8476       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8477 
8478   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8479   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8480   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8481     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8482     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8483     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8484     return;
8485   }
8486 
8487   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8488 
8489   // For an addition, the result should be less than one of the operands (LHS)
8490   // if and only if the other operand (RHS) is negative, otherwise there will
8491   // be overflow.
8492   // For a subtraction, the result should be less than one of the operands
8493   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8494   // otherwise there will be overflow.
8495   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8496   SDValue ConditionRHS =
8497       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8498 
8499   Overflow = DAG.getBoolExtOrTrunc(
8500       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8501       ResultType, ResultType);
8502 }
8503 
8504 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8505                                 SDValue &Overflow, SelectionDAG &DAG) const {
8506   SDLoc dl(Node);
8507   EVT VT = Node->getValueType(0);
8508   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8509   SDValue LHS = Node->getOperand(0);
8510   SDValue RHS = Node->getOperand(1);
8511   bool isSigned = Node->getOpcode() == ISD::SMULO;
8512 
8513   // For power-of-two multiplications we can use a simpler shift expansion.
8514   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8515     const APInt &C = RHSC->getAPIntValue();
8516     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8517     if (C.isPowerOf2()) {
8518       // smulo(x, signed_min) is same as umulo(x, signed_min).
8519       bool UseArithShift = isSigned && !C.isMinSignedValue();
8520       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8521       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8522       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8523       Overflow = DAG.getSetCC(dl, SetCCVT,
8524           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8525                       dl, VT, Result, ShiftAmt),
8526           LHS, ISD::SETNE);
8527       return true;
8528     }
8529   }
8530 
8531   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8532   if (VT.isVector())
8533     WideVT =
8534         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8535 
8536   SDValue BottomHalf;
8537   SDValue TopHalf;
8538   static const unsigned Ops[2][3] =
8539       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8540         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8541   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8542     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8543     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8544   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8545     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8546                              RHS);
8547     TopHalf = BottomHalf.getValue(1);
8548   } else if (isTypeLegal(WideVT)) {
8549     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8550     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8551     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8552     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8553     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8554         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8555     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8556                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8557   } else {
8558     if (VT.isVector())
8559       return false;
8560 
8561     // We can fall back to a libcall with an illegal type for the MUL if we
8562     // have a libcall big enough.
8563     // Also, we can fall back to a division in some cases, but that's a big
8564     // performance hit in the general case.
8565     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8566     if (WideVT == MVT::i16)
8567       LC = RTLIB::MUL_I16;
8568     else if (WideVT == MVT::i32)
8569       LC = RTLIB::MUL_I32;
8570     else if (WideVT == MVT::i64)
8571       LC = RTLIB::MUL_I64;
8572     else if (WideVT == MVT::i128)
8573       LC = RTLIB::MUL_I128;
8574     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8575 
8576     SDValue HiLHS;
8577     SDValue HiRHS;
8578     if (isSigned) {
8579       // The high part is obtained by SRA'ing all but one of the bits of low
8580       // part.
8581       unsigned LoSize = VT.getFixedSizeInBits();
8582       HiLHS =
8583           DAG.getNode(ISD::SRA, dl, VT, LHS,
8584                       DAG.getConstant(LoSize - 1, dl,
8585                                       getPointerTy(DAG.getDataLayout())));
8586       HiRHS =
8587           DAG.getNode(ISD::SRA, dl, VT, RHS,
8588                       DAG.getConstant(LoSize - 1, dl,
8589                                       getPointerTy(DAG.getDataLayout())));
8590     } else {
8591         HiLHS = DAG.getConstant(0, dl, VT);
8592         HiRHS = DAG.getConstant(0, dl, VT);
8593     }
8594 
8595     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8596     // pre-lowered to the correct types. This all depends upon WideVT not
8597     // being a legal type for the architecture and thus has to be split to
8598     // two arguments.
8599     SDValue Ret;
8600     TargetLowering::MakeLibCallOptions CallOptions;
8601     CallOptions.setSExt(isSigned);
8602     CallOptions.setIsPostTypeLegalization(true);
8603     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8604       // Halves of WideVT are packed into registers in different order
8605       // depending on platform endianness. This is usually handled by
8606       // the C calling convention, but we can't defer to it in
8607       // the legalizer.
8608       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8609       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8610     } else {
8611       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8612       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8613     }
8614     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8615            "Ret value is a collection of constituent nodes holding result.");
8616     if (DAG.getDataLayout().isLittleEndian()) {
8617       // Same as above.
8618       BottomHalf = Ret.getOperand(0);
8619       TopHalf = Ret.getOperand(1);
8620     } else {
8621       BottomHalf = Ret.getOperand(1);
8622       TopHalf = Ret.getOperand(0);
8623     }
8624   }
8625 
8626   Result = BottomHalf;
8627   if (isSigned) {
8628     SDValue ShiftAmt = DAG.getConstant(
8629         VT.getScalarSizeInBits() - 1, dl,
8630         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8631     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8632     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8633   } else {
8634     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8635                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8636   }
8637 
8638   // Truncate the result if SetCC returns a larger type than needed.
8639   EVT RType = Node->getValueType(1);
8640   if (RType.bitsLT(Overflow.getValueType()))
8641     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8642 
8643   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8644          "Unexpected result type for S/UMULO legalization");
8645   return true;
8646 }
8647 
8648 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8649   SDLoc dl(Node);
8650   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8651   SDValue Op = Node->getOperand(0);
8652   EVT VT = Op.getValueType();
8653 
8654   if (VT.isScalableVector())
8655     report_fatal_error(
8656         "Expanding reductions for scalable vectors is undefined.");
8657 
8658   // Try to use a shuffle reduction for power of two vectors.
8659   if (VT.isPow2VectorType()) {
8660     while (VT.getVectorNumElements() > 1) {
8661       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8662       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8663         break;
8664 
8665       SDValue Lo, Hi;
8666       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8667       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8668       VT = HalfVT;
8669     }
8670   }
8671 
8672   EVT EltVT = VT.getVectorElementType();
8673   unsigned NumElts = VT.getVectorNumElements();
8674 
8675   SmallVector<SDValue, 8> Ops;
8676   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8677 
8678   SDValue Res = Ops[0];
8679   for (unsigned i = 1; i < NumElts; i++)
8680     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8681 
8682   // Result type may be wider than element type.
8683   if (EltVT != Node->getValueType(0))
8684     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8685   return Res;
8686 }
8687 
8688 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8689   SDLoc dl(Node);
8690   SDValue AccOp = Node->getOperand(0);
8691   SDValue VecOp = Node->getOperand(1);
8692   SDNodeFlags Flags = Node->getFlags();
8693 
8694   EVT VT = VecOp.getValueType();
8695   EVT EltVT = VT.getVectorElementType();
8696 
8697   if (VT.isScalableVector())
8698     report_fatal_error(
8699         "Expanding reductions for scalable vectors is undefined.");
8700 
8701   unsigned NumElts = VT.getVectorNumElements();
8702 
8703   SmallVector<SDValue, 8> Ops;
8704   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8705 
8706   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8707 
8708   SDValue Res = AccOp;
8709   for (unsigned i = 0; i < NumElts; i++)
8710     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8711 
8712   return Res;
8713 }
8714 
8715 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8716                                SelectionDAG &DAG) const {
8717   EVT VT = Node->getValueType(0);
8718   SDLoc dl(Node);
8719   bool isSigned = Node->getOpcode() == ISD::SREM;
8720   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8721   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8722   SDValue Dividend = Node->getOperand(0);
8723   SDValue Divisor = Node->getOperand(1);
8724   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8725     SDVTList VTs = DAG.getVTList(VT, VT);
8726     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8727     return true;
8728   }
8729   if (isOperationLegalOrCustom(DivOpc, VT)) {
8730     // X % Y -> X-X/Y*Y
8731     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8732     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8733     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8734     return true;
8735   }
8736   return false;
8737 }
8738 
8739 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8740                                             SelectionDAG &DAG) const {
8741   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8742   SDLoc dl(SDValue(Node, 0));
8743   SDValue Src = Node->getOperand(0);
8744 
8745   // DstVT is the result type, while SatVT is the size to which we saturate
8746   EVT SrcVT = Src.getValueType();
8747   EVT DstVT = Node->getValueType(0);
8748 
8749   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8750   unsigned SatWidth = SatVT.getScalarSizeInBits();
8751   unsigned DstWidth = DstVT.getScalarSizeInBits();
8752   assert(SatWidth <= DstWidth &&
8753          "Expected saturation width smaller than result width");
8754 
8755   // Determine minimum and maximum integer values and their corresponding
8756   // floating-point values.
8757   APInt MinInt, MaxInt;
8758   if (IsSigned) {
8759     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8760     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8761   } else {
8762     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8763     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8764   }
8765 
8766   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8767   // libcall emission cannot handle this. Large result types will fail.
8768   if (SrcVT == MVT::f16) {
8769     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8770     SrcVT = Src.getValueType();
8771   }
8772 
8773   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8774   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8775 
8776   APFloat::opStatus MinStatus =
8777       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8778   APFloat::opStatus MaxStatus =
8779       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8780   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8781                              !(MaxStatus & APFloat::opStatus::opInexact);
8782 
8783   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8784   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8785 
8786   // If the integer bounds are exactly representable as floats and min/max are
8787   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8788   // of comparisons and selects.
8789   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8790                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8791   if (AreExactFloatBounds && MinMaxLegal) {
8792     SDValue Clamped = Src;
8793 
8794     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8795     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8796     // Clamp by MaxFloat from above. NaN cannot occur.
8797     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8798     // Convert clamped value to integer.
8799     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8800                                   dl, DstVT, Clamped);
8801 
8802     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8803     // which will cast to zero.
8804     if (!IsSigned)
8805       return FpToInt;
8806 
8807     // Otherwise, select 0 if Src is NaN.
8808     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8809     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8810                            ISD::CondCode::SETUO);
8811   }
8812 
8813   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8814   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8815 
8816   // Result of direct conversion. The assumption here is that the operation is
8817   // non-trapping and it's fine to apply it to an out-of-range value if we
8818   // select it away later.
8819   SDValue FpToInt =
8820       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8821 
8822   SDValue Select = FpToInt;
8823 
8824   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8825   // MinInt if Src is NaN.
8826   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8827                            ISD::CondCode::SETULT);
8828   // If Src OGT MaxFloat, select MaxInt.
8829   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8830                            ISD::CondCode::SETOGT);
8831 
8832   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8833   // is already zero.
8834   if (!IsSigned)
8835     return Select;
8836 
8837   // Otherwise, select 0 if Src is NaN.
8838   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8839   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8840 }
8841 
8842 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8843                                            SelectionDAG &DAG) const {
8844   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8845   assert(Node->getValueType(0).isScalableVector() &&
8846          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8847 
8848   EVT VT = Node->getValueType(0);
8849   SDValue V1 = Node->getOperand(0);
8850   SDValue V2 = Node->getOperand(1);
8851   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8852   SDLoc DL(Node);
8853 
8854   // Expand through memory thusly:
8855   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8856   //  Store V1, Ptr
8857   //  Store V2, Ptr + sizeof(V1)
8858   //  If (Imm < 0)
8859   //    TrailingElts = -Imm
8860   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8861   //  else
8862   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8863   //  Res = Load Ptr
8864 
8865   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8866 
8867   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8868                                VT.getVectorElementCount() * 2);
8869   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8870   EVT PtrVT = StackPtr.getValueType();
8871   auto &MF = DAG.getMachineFunction();
8872   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8873   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8874 
8875   // Store the lo part of CONCAT_VECTORS(V1, V2)
8876   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8877   // Store the hi part of CONCAT_VECTORS(V1, V2)
8878   SDValue OffsetToV2 = DAG.getVScale(
8879       DL, PtrVT,
8880       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8881   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8882   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8883 
8884   if (Imm >= 0) {
8885     // Load back the required element. getVectorElementPointer takes care of
8886     // clamping the index if it's out-of-bounds.
8887     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8888     // Load the spliced result
8889     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8890                        MachinePointerInfo::getUnknownStack(MF));
8891   }
8892 
8893   uint64_t TrailingElts = -Imm;
8894 
8895   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8896   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8897   SDValue TrailingBytes =
8898       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8899 
8900   if (TrailingElts > VT.getVectorMinNumElements()) {
8901     SDValue VLBytes = DAG.getVScale(
8902         DL, PtrVT,
8903         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8904     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8905   }
8906 
8907   // Calculate the start address of the spliced result.
8908   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8909 
8910   // Load the spliced result
8911   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8912                      MachinePointerInfo::getUnknownStack(MF));
8913 }
8914 
8915 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8916                                            SDValue &LHS, SDValue &RHS,
8917                                            SDValue &CC, bool &NeedInvert,
8918                                            const SDLoc &dl, SDValue &Chain,
8919                                            bool IsSignaling) const {
8920   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8921   MVT OpVT = LHS.getSimpleValueType();
8922   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8923   NeedInvert = false;
8924   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8925   default:
8926     llvm_unreachable("Unknown condition code action!");
8927   case TargetLowering::Legal:
8928     // Nothing to do.
8929     break;
8930   case TargetLowering::Expand: {
8931     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8932     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8933       std::swap(LHS, RHS);
8934       CC = DAG.getCondCode(InvCC);
8935       return true;
8936     }
8937     // Swapping operands didn't work. Try inverting the condition.
8938     bool NeedSwap = false;
8939     InvCC = getSetCCInverse(CCCode, OpVT);
8940     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8941       // If inverting the condition is not enough, try swapping operands
8942       // on top of it.
8943       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8944       NeedSwap = true;
8945     }
8946     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8947       CC = DAG.getCondCode(InvCC);
8948       NeedInvert = true;
8949       if (NeedSwap)
8950         std::swap(LHS, RHS);
8951       return true;
8952     }
8953 
8954     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8955     unsigned Opc = 0;
8956     switch (CCCode) {
8957     default:
8958       llvm_unreachable("Don't know how to expand this condition!");
8959     case ISD::SETUO:
8960       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8961         CC1 = ISD::SETUNE;
8962         CC2 = ISD::SETUNE;
8963         Opc = ISD::OR;
8964         break;
8965       }
8966       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8967              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8968       NeedInvert = true;
8969       LLVM_FALLTHROUGH;
8970     case ISD::SETO:
8971       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8972              "If SETO is expanded, SETOEQ must be legal!");
8973       CC1 = ISD::SETOEQ;
8974       CC2 = ISD::SETOEQ;
8975       Opc = ISD::AND;
8976       break;
8977     case ISD::SETONE:
8978     case ISD::SETUEQ:
8979       // If the SETUO or SETO CC isn't legal, we might be able to use
8980       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8981       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8982       // the operands.
8983       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8984       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8985           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8986            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8987         CC1 = ISD::SETOGT;
8988         CC2 = ISD::SETOLT;
8989         Opc = ISD::OR;
8990         NeedInvert = ((unsigned)CCCode & 0x8U);
8991         break;
8992       }
8993       LLVM_FALLTHROUGH;
8994     case ISD::SETOEQ:
8995     case ISD::SETOGT:
8996     case ISD::SETOGE:
8997     case ISD::SETOLT:
8998     case ISD::SETOLE:
8999     case ISD::SETUNE:
9000     case ISD::SETUGT:
9001     case ISD::SETUGE:
9002     case ISD::SETULT:
9003     case ISD::SETULE:
9004       // If we are floating point, assign and break, otherwise fall through.
9005       if (!OpVT.isInteger()) {
9006         // We can use the 4th bit to tell if we are the unordered
9007         // or ordered version of the opcode.
9008         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9009         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9010         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9011         break;
9012       }
9013       // Fallthrough if we are unsigned integer.
9014       LLVM_FALLTHROUGH;
9015     case ISD::SETLE:
9016     case ISD::SETGT:
9017     case ISD::SETGE:
9018     case ISD::SETLT:
9019     case ISD::SETNE:
9020     case ISD::SETEQ:
9021       // If all combinations of inverting the condition and swapping operands
9022       // didn't work then we have no means to expand the condition.
9023       llvm_unreachable("Don't know how to expand this condition!");
9024     }
9025 
9026     SDValue SetCC1, SetCC2;
9027     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9028       // If we aren't the ordered or unorder operation,
9029       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9030       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9031       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9032     } else {
9033       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9034       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9035       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9036     }
9037     if (Chain)
9038       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9039                           SetCC2.getValue(1));
9040     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9041     RHS = SDValue();
9042     CC = SDValue();
9043     return true;
9044   }
9045   }
9046   return false;
9047 }
9048