1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // Conservatively require the attributes of the call to match those of 56 // the return. Ignore NoAlias and NonNull because they don't affect the 57 // call sequence. 58 AttributeList CallerAttrs = F.getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .removeAttribute(Attribute::NonNull) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 Register Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 102 unsigned ArgIdx) { 103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = Call->getParamAlignment(ArgIdx); 114 ByValType = nullptr; 115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 116 ByValType = Call->getParamByValType(ArgIdx); 117 } 118 119 /// Generate a libcall taking the given operands as arguments and returning a 120 /// result of type RetVT. 121 std::pair<SDValue, SDValue> 122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 123 ArrayRef<SDValue> Ops, bool isSigned, 124 const SDLoc &dl, bool doesNotReturn, 125 bool isReturnValueUsed, 126 bool isPostTypeLegalization) const { 127 TargetLowering::ArgListTy Args; 128 Args.reserve(Ops.size()); 129 130 TargetLowering::ArgListEntry Entry; 131 for (SDValue Op : Ops) { 132 Entry.Node = Op; 133 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 134 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 135 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 136 Args.push_back(Entry); 137 } 138 139 if (LC == RTLIB::UNKNOWN_LIBCALL) 140 report_fatal_error("Unsupported library call operation!"); 141 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 142 getPointerTy(DAG.getDataLayout())); 143 144 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 145 TargetLowering::CallLoweringInfo CLI(DAG); 146 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 147 CLI.setDebugLoc(dl) 148 .setChain(DAG.getEntryNode()) 149 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 150 .setNoReturn(doesNotReturn) 151 .setDiscardResult(!isReturnValueUsed) 152 .setIsPostTypeLegalization(isPostTypeLegalization) 153 .setSExtResult(signExtend) 154 .setZExtResult(!signExtend); 155 return LowerCallTo(CLI); 156 } 157 158 bool 159 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 160 unsigned Limit, uint64_t Size, 161 unsigned DstAlign, unsigned SrcAlign, 162 bool IsMemset, 163 bool ZeroMemset, 164 bool MemcpyStrSrc, 165 bool AllowOverlap, 166 unsigned DstAS, unsigned SrcAS, 167 const AttributeList &FuncAttributes) const { 168 // If 'SrcAlign' is zero, that means the memory operation does not need to 169 // load the value, i.e. memset or memcpy from constant string. Otherwise, 170 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 171 // is the specified alignment of the memory operation. If it is zero, that 172 // means it's possible to change the alignment of the destination. 173 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 174 // not need to be loaded. 175 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 176 return false; 177 178 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 179 IsMemset, ZeroMemset, MemcpyStrSrc, 180 FuncAttributes); 181 182 if (VT == MVT::Other) { 183 // Use the largest integer type whose alignment constraints are satisfied. 184 // We only need to check DstAlign here as SrcAlign is always greater or 185 // equal to DstAlign (or zero). 186 VT = MVT::i64; 187 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 188 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 189 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 190 assert(VT.isInteger()); 191 192 // Find the largest legal integer type. 193 MVT LVT = MVT::i64; 194 while (!isTypeLegal(LVT)) 195 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 196 assert(LVT.isInteger()); 197 198 // If the type we've chosen is larger than the largest legal integer type 199 // then use that instead. 200 if (VT.bitsGT(LVT)) 201 VT = LVT; 202 } 203 204 unsigned NumMemOps = 0; 205 while (Size != 0) { 206 unsigned VTSize = VT.getSizeInBits() / 8; 207 while (VTSize > Size) { 208 // For now, only use non-vector load / store's for the left-over pieces. 209 EVT NewVT = VT; 210 unsigned NewVTSize; 211 212 bool Found = false; 213 if (VT.isVector() || VT.isFloatingPoint()) { 214 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 215 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 216 isSafeMemOpType(NewVT.getSimpleVT())) 217 Found = true; 218 else if (NewVT == MVT::i64 && 219 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 220 isSafeMemOpType(MVT::f64)) { 221 // i64 is usually not legal on 32-bit targets, but f64 may be. 222 NewVT = MVT::f64; 223 Found = true; 224 } 225 } 226 227 if (!Found) { 228 do { 229 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 230 if (NewVT == MVT::i8) 231 break; 232 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 233 } 234 NewVTSize = NewVT.getSizeInBits() / 8; 235 236 // If the new VT cannot cover all of the remaining bits, then consider 237 // issuing a (or a pair of) unaligned and overlapping load / store. 238 bool Fast; 239 if (NumMemOps && AllowOverlap && NewVTSize < Size && 240 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 241 MachineMemOperand::MONone, &Fast) && 242 Fast) 243 VTSize = Size; 244 else { 245 VT = NewVT; 246 VTSize = NewVTSize; 247 } 248 } 249 250 if (++NumMemOps > Limit) 251 return false; 252 253 MemOps.push_back(VT); 254 Size -= VTSize; 255 } 256 257 return true; 258 } 259 260 /// Soften the operands of a comparison. This code is shared among BR_CC, 261 /// SELECT_CC, and SETCC handlers. 262 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 263 SDValue &NewLHS, SDValue &NewRHS, 264 ISD::CondCode &CCCode, 265 const SDLoc &dl) const { 266 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 267 && "Unsupported setcc type!"); 268 269 // Expand into one or more soft-fp libcall(s). 270 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 271 bool ShouldInvertCC = false; 272 switch (CCCode) { 273 case ISD::SETEQ: 274 case ISD::SETOEQ: 275 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 276 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 277 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 278 break; 279 case ISD::SETNE: 280 case ISD::SETUNE: 281 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 282 (VT == MVT::f64) ? RTLIB::UNE_F64 : 283 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 284 break; 285 case ISD::SETGE: 286 case ISD::SETOGE: 287 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 288 (VT == MVT::f64) ? RTLIB::OGE_F64 : 289 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 290 break; 291 case ISD::SETLT: 292 case ISD::SETOLT: 293 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 294 (VT == MVT::f64) ? RTLIB::OLT_F64 : 295 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 296 break; 297 case ISD::SETLE: 298 case ISD::SETOLE: 299 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 300 (VT == MVT::f64) ? RTLIB::OLE_F64 : 301 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 302 break; 303 case ISD::SETGT: 304 case ISD::SETOGT: 305 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 306 (VT == MVT::f64) ? RTLIB::OGT_F64 : 307 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 308 break; 309 case ISD::SETUO: 310 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 311 (VT == MVT::f64) ? RTLIB::UO_F64 : 312 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 313 break; 314 case ISD::SETO: 315 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 316 (VT == MVT::f64) ? RTLIB::O_F64 : 317 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 318 break; 319 case ISD::SETONE: 320 // SETONE = SETOLT | SETOGT 321 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 322 (VT == MVT::f64) ? RTLIB::OLT_F64 : 323 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 324 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 325 (VT == MVT::f64) ? RTLIB::OGT_F64 : 326 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 327 break; 328 case ISD::SETUEQ: 329 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 330 (VT == MVT::f64) ? RTLIB::UO_F64 : 331 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 332 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 333 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 334 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 335 break; 336 default: 337 // Invert CC for unordered comparisons 338 ShouldInvertCC = true; 339 switch (CCCode) { 340 case ISD::SETULT: 341 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 342 (VT == MVT::f64) ? RTLIB::OGE_F64 : 343 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 344 break; 345 case ISD::SETULE: 346 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 347 (VT == MVT::f64) ? RTLIB::OGT_F64 : 348 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 349 break; 350 case ISD::SETUGT: 351 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 352 (VT == MVT::f64) ? RTLIB::OLE_F64 : 353 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 354 break; 355 case ISD::SETUGE: 356 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 357 (VT == MVT::f64) ? RTLIB::OLT_F64 : 358 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 359 break; 360 default: llvm_unreachable("Do not know how to soften this setcc!"); 361 } 362 } 363 364 // Use the target specific return value for comparions lib calls. 365 EVT RetVT = getCmpLibcallReturnType(); 366 SDValue Ops[2] = {NewLHS, NewRHS}; 367 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 368 dl).first; 369 NewRHS = DAG.getConstant(0, dl, RetVT); 370 371 CCCode = getCmpLibcallCC(LC1); 372 if (ShouldInvertCC) 373 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 374 375 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 376 SDValue Tmp = DAG.getNode( 377 ISD::SETCC, dl, 378 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 379 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 380 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 381 dl).first; 382 NewLHS = DAG.getNode( 383 ISD::SETCC, dl, 384 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 385 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 386 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 387 NewRHS = SDValue(); 388 } 389 } 390 391 /// Return the entry encoding for a jump table in the current function. The 392 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 393 unsigned TargetLowering::getJumpTableEncoding() const { 394 // In non-pic modes, just use the address of a block. 395 if (!isPositionIndependent()) 396 return MachineJumpTableInfo::EK_BlockAddress; 397 398 // In PIC mode, if the target supports a GPRel32 directive, use it. 399 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 400 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 401 402 // Otherwise, use a label difference. 403 return MachineJumpTableInfo::EK_LabelDifference32; 404 } 405 406 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 407 SelectionDAG &DAG) const { 408 // If our PIC model is GP relative, use the global offset table as the base. 409 unsigned JTEncoding = getJumpTableEncoding(); 410 411 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 412 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 413 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 414 415 return Table; 416 } 417 418 /// This returns the relocation base for the given PIC jumptable, the same as 419 /// getPICJumpTableRelocBase, but as an MCExpr. 420 const MCExpr * 421 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 422 unsigned JTI,MCContext &Ctx) const{ 423 // The normal PIC reloc base is the label at the start of the jump table. 424 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 425 } 426 427 bool 428 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 429 const TargetMachine &TM = getTargetMachine(); 430 const GlobalValue *GV = GA->getGlobal(); 431 432 // If the address is not even local to this DSO we will have to load it from 433 // a got and then add the offset. 434 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 435 return false; 436 437 // If the code is position independent we will have to add a base register. 438 if (isPositionIndependent()) 439 return false; 440 441 // Otherwise we can do it. 442 return true; 443 } 444 445 //===----------------------------------------------------------------------===// 446 // Optimization Methods 447 //===----------------------------------------------------------------------===// 448 449 /// If the specified instruction has a constant integer operand and there are 450 /// bits set in that constant that are not demanded, then clear those bits and 451 /// return true. 452 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 453 TargetLoweringOpt &TLO) const { 454 SDLoc DL(Op); 455 unsigned Opcode = Op.getOpcode(); 456 457 // Do target-specific constant optimization. 458 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 459 return TLO.New.getNode(); 460 461 // FIXME: ISD::SELECT, ISD::SELECT_CC 462 switch (Opcode) { 463 default: 464 break; 465 case ISD::XOR: 466 case ISD::AND: 467 case ISD::OR: { 468 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 469 if (!Op1C) 470 return false; 471 472 // If this is a 'not' op, don't touch it because that's a canonical form. 473 const APInt &C = Op1C->getAPIntValue(); 474 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 475 return false; 476 477 if (!C.isSubsetOf(Demanded)) { 478 EVT VT = Op.getValueType(); 479 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 480 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 481 return TLO.CombineTo(Op, NewOp); 482 } 483 484 break; 485 } 486 } 487 488 return false; 489 } 490 491 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 492 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 493 /// generalized for targets with other types of implicit widening casts. 494 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 495 const APInt &Demanded, 496 TargetLoweringOpt &TLO) const { 497 assert(Op.getNumOperands() == 2 && 498 "ShrinkDemandedOp only supports binary operators!"); 499 assert(Op.getNode()->getNumValues() == 1 && 500 "ShrinkDemandedOp only supports nodes with one result!"); 501 502 SelectionDAG &DAG = TLO.DAG; 503 SDLoc dl(Op); 504 505 // Early return, as this function cannot handle vector types. 506 if (Op.getValueType().isVector()) 507 return false; 508 509 // Don't do this if the node has another user, which may require the 510 // full value. 511 if (!Op.getNode()->hasOneUse()) 512 return false; 513 514 // Search for the smallest integer type with free casts to and from 515 // Op's type. For expedience, just check power-of-2 integer types. 516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 517 unsigned DemandedSize = Demanded.getActiveBits(); 518 unsigned SmallVTBits = DemandedSize; 519 if (!isPowerOf2_32(SmallVTBits)) 520 SmallVTBits = NextPowerOf2(SmallVTBits); 521 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 522 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 523 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 524 TLI.isZExtFree(SmallVT, Op.getValueType())) { 525 // We found a type with free casts. 526 SDValue X = DAG.getNode( 527 Op.getOpcode(), dl, SmallVT, 528 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 529 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 530 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 531 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 532 return TLO.CombineTo(Op, Z); 533 } 534 } 535 return false; 536 } 537 538 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 539 DAGCombinerInfo &DCI) const { 540 SelectionDAG &DAG = DCI.DAG; 541 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 542 !DCI.isBeforeLegalizeOps()); 543 KnownBits Known; 544 545 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 546 if (Simplified) { 547 DCI.AddToWorklist(Op.getNode()); 548 DCI.CommitTargetLoweringOpt(TLO); 549 } 550 return Simplified; 551 } 552 553 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 554 KnownBits &Known, 555 TargetLoweringOpt &TLO, 556 unsigned Depth, 557 bool AssumeSingleUse) const { 558 EVT VT = Op.getValueType(); 559 APInt DemandedElts = VT.isVector() 560 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 561 : APInt(1, 1); 562 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 563 AssumeSingleUse); 564 } 565 566 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 567 // TODO: Under what circumstances can we create nodes? Constant folding? 568 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 569 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 570 SelectionDAG &DAG, unsigned Depth) const { 571 // Limit search depth. 572 if (Depth >= 6) 573 return SDValue(); 574 575 // Ignore UNDEFs. 576 if (Op.isUndef()) 577 return SDValue(); 578 579 // Not demanding any bits/elts from Op. 580 if (DemandedBits == 0 || DemandedElts == 0) 581 return DAG.getUNDEF(Op.getValueType()); 582 583 unsigned NumElts = DemandedElts.getBitWidth(); 584 KnownBits LHSKnown, RHSKnown; 585 switch (Op.getOpcode()) { 586 case ISD::BITCAST: { 587 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 588 EVT SrcVT = Src.getValueType(); 589 EVT DstVT = Op.getValueType(); 590 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 591 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 592 593 if (NumSrcEltBits == NumDstEltBits) 594 if (SDValue V = SimplifyMultipleUseDemandedBits( 595 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 596 return DAG.getBitcast(DstVT, V); 597 598 // TODO - bigendian once we have test coverage. 599 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 600 DAG.getDataLayout().isLittleEndian()) { 601 unsigned Scale = NumDstEltBits / NumSrcEltBits; 602 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 603 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 604 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 605 for (unsigned i = 0; i != Scale; ++i) { 606 unsigned Offset = i * NumSrcEltBits; 607 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 608 if (!Sub.isNullValue()) { 609 DemandedSrcBits |= Sub; 610 for (unsigned j = 0; j != NumElts; ++j) 611 if (DemandedElts[j]) 612 DemandedSrcElts.setBit((j * Scale) + i); 613 } 614 } 615 616 if (SDValue V = SimplifyMultipleUseDemandedBits( 617 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 618 return DAG.getBitcast(DstVT, V); 619 } 620 621 // TODO - bigendian once we have test coverage. 622 if ((NumSrcEltBits % NumDstEltBits) == 0 && 623 DAG.getDataLayout().isLittleEndian()) { 624 unsigned Scale = NumSrcEltBits / NumDstEltBits; 625 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 626 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 627 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 628 for (unsigned i = 0; i != NumElts; ++i) 629 if (DemandedElts[i]) { 630 unsigned Offset = (i % Scale) * NumDstEltBits; 631 DemandedSrcBits.insertBits(DemandedBits, Offset); 632 DemandedSrcElts.setBit(i / Scale); 633 } 634 635 if (SDValue V = SimplifyMultipleUseDemandedBits( 636 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 637 return DAG.getBitcast(DstVT, V); 638 } 639 640 break; 641 } 642 case ISD::AND: { 643 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 644 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 645 646 // If all of the demanded bits are known 1 on one side, return the other. 647 // These bits cannot contribute to the result of the 'and' in this 648 // context. 649 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 650 return Op.getOperand(0); 651 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 652 return Op.getOperand(1); 653 break; 654 } 655 case ISD::OR: { 656 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 657 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 658 659 // If all of the demanded bits are known zero on one side, return the 660 // other. These bits cannot contribute to the result of the 'or' in this 661 // context. 662 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 663 return Op.getOperand(0); 664 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 665 return Op.getOperand(1); 666 break; 667 } 668 case ISD::XOR: { 669 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 670 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 671 672 // If all of the demanded bits are known zero on one side, return the 673 // other. 674 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 675 return Op.getOperand(0); 676 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 677 return Op.getOperand(1); 678 break; 679 } 680 case ISD::SIGN_EXTEND_INREG: { 681 // If none of the extended bits are demanded, eliminate the sextinreg. 682 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 683 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 684 return Op.getOperand(0); 685 break; 686 } 687 case ISD::INSERT_VECTOR_ELT: { 688 // If we don't demand the inserted element, return the base vector. 689 SDValue Vec = Op.getOperand(0); 690 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 691 EVT VecVT = Vec.getValueType(); 692 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 693 !DemandedElts[CIdx->getZExtValue()]) 694 return Vec; 695 break; 696 } 697 case ISD::VECTOR_SHUFFLE: { 698 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 699 700 // If all the demanded elts are from one operand and are inline, 701 // then we can use the operand directly. 702 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 703 for (unsigned i = 0; i != NumElts; ++i) { 704 int M = ShuffleMask[i]; 705 if (M < 0 || !DemandedElts[i]) 706 continue; 707 AllUndef = false; 708 IdentityLHS &= (M == (int)i); 709 IdentityRHS &= ((M - NumElts) == i); 710 } 711 712 if (AllUndef) 713 return DAG.getUNDEF(Op.getValueType()); 714 if (IdentityLHS) 715 return Op.getOperand(0); 716 if (IdentityRHS) 717 return Op.getOperand(1); 718 break; 719 } 720 default: 721 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 722 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 723 Op, DemandedBits, DemandedElts, DAG, Depth)) 724 return V; 725 break; 726 } 727 return SDValue(); 728 } 729 730 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 731 /// result of Op are ever used downstream. If we can use this information to 732 /// simplify Op, create a new simplified DAG node and return true, returning the 733 /// original and new nodes in Old and New. Otherwise, analyze the expression and 734 /// return a mask of Known bits for the expression (used to simplify the 735 /// caller). The Known bits may only be accurate for those bits in the 736 /// OriginalDemandedBits and OriginalDemandedElts. 737 bool TargetLowering::SimplifyDemandedBits( 738 SDValue Op, const APInt &OriginalDemandedBits, 739 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 740 unsigned Depth, bool AssumeSingleUse) const { 741 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 742 assert(Op.getScalarValueSizeInBits() == BitWidth && 743 "Mask size mismatches value type size!"); 744 745 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 746 assert((!Op.getValueType().isVector() || 747 NumElts == Op.getValueType().getVectorNumElements()) && 748 "Unexpected vector size"); 749 750 APInt DemandedBits = OriginalDemandedBits; 751 APInt DemandedElts = OriginalDemandedElts; 752 SDLoc dl(Op); 753 auto &DL = TLO.DAG.getDataLayout(); 754 755 // Don't know anything. 756 Known = KnownBits(BitWidth); 757 758 // Undef operand. 759 if (Op.isUndef()) 760 return false; 761 762 if (Op.getOpcode() == ISD::Constant) { 763 // We know all of the bits for a constant! 764 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 765 Known.Zero = ~Known.One; 766 return false; 767 } 768 769 // Other users may use these bits. 770 EVT VT = Op.getValueType(); 771 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 772 if (Depth != 0) { 773 // If not at the root, Just compute the Known bits to 774 // simplify things downstream. 775 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 776 return false; 777 } 778 // If this is the root being simplified, allow it to have multiple uses, 779 // just set the DemandedBits/Elts to all bits. 780 DemandedBits = APInt::getAllOnesValue(BitWidth); 781 DemandedElts = APInt::getAllOnesValue(NumElts); 782 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 783 // Not demanding any bits/elts from Op. 784 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 785 } else if (Depth >= 6) { // Limit search depth. 786 return false; 787 } 788 789 KnownBits Known2, KnownOut; 790 switch (Op.getOpcode()) { 791 case ISD::SCALAR_TO_VECTOR: { 792 if (!DemandedElts[0]) 793 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 794 795 KnownBits SrcKnown; 796 SDValue Src = Op.getOperand(0); 797 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 798 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 799 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 800 return true; 801 Known = SrcKnown.zextOrTrunc(BitWidth, false); 802 break; 803 } 804 case ISD::BUILD_VECTOR: 805 // Collect the known bits that are shared by every demanded element. 806 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 807 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 808 return false; // Don't fall through, will infinitely loop. 809 case ISD::LOAD: { 810 LoadSDNode *LD = cast<LoadSDNode>(Op); 811 if (getTargetConstantFromLoad(LD)) { 812 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 813 return false; // Don't fall through, will infinitely loop. 814 } 815 break; 816 } 817 case ISD::INSERT_VECTOR_ELT: { 818 SDValue Vec = Op.getOperand(0); 819 SDValue Scl = Op.getOperand(1); 820 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 821 EVT VecVT = Vec.getValueType(); 822 823 // If index isn't constant, assume we need all vector elements AND the 824 // inserted element. 825 APInt DemandedVecElts(DemandedElts); 826 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 827 unsigned Idx = CIdx->getZExtValue(); 828 DemandedVecElts.clearBit(Idx); 829 830 // Inserted element is not required. 831 if (!DemandedElts[Idx]) 832 return TLO.CombineTo(Op, Vec); 833 } 834 835 KnownBits KnownScl; 836 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 837 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 838 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 839 return true; 840 841 Known = KnownScl.zextOrTrunc(BitWidth, false); 842 843 KnownBits KnownVec; 844 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 845 Depth + 1)) 846 return true; 847 848 if (!!DemandedVecElts) { 849 Known.One &= KnownVec.One; 850 Known.Zero &= KnownVec.Zero; 851 } 852 853 return false; 854 } 855 case ISD::INSERT_SUBVECTOR: { 856 SDValue Base = Op.getOperand(0); 857 SDValue Sub = Op.getOperand(1); 858 EVT SubVT = Sub.getValueType(); 859 unsigned NumSubElts = SubVT.getVectorNumElements(); 860 861 // If index isn't constant, assume we need the original demanded base 862 // elements and ALL the inserted subvector elements. 863 APInt BaseElts = DemandedElts; 864 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 865 if (isa<ConstantSDNode>(Op.getOperand(2))) { 866 const APInt &Idx = Op.getConstantOperandAPInt(2); 867 if (Idx.ule(NumElts - NumSubElts)) { 868 unsigned SubIdx = Idx.getZExtValue(); 869 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 870 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 871 } 872 } 873 874 KnownBits KnownSub, KnownBase; 875 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 876 Depth + 1)) 877 return true; 878 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 879 Depth + 1)) 880 return true; 881 882 Known.Zero.setAllBits(); 883 Known.One.setAllBits(); 884 if (!!SubElts) { 885 Known.One &= KnownSub.One; 886 Known.Zero &= KnownSub.Zero; 887 } 888 if (!!BaseElts) { 889 Known.One &= KnownBase.One; 890 Known.Zero &= KnownBase.Zero; 891 } 892 break; 893 } 894 case ISD::CONCAT_VECTORS: { 895 Known.Zero.setAllBits(); 896 Known.One.setAllBits(); 897 EVT SubVT = Op.getOperand(0).getValueType(); 898 unsigned NumSubVecs = Op.getNumOperands(); 899 unsigned NumSubElts = SubVT.getVectorNumElements(); 900 for (unsigned i = 0; i != NumSubVecs; ++i) { 901 APInt DemandedSubElts = 902 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 903 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 904 Known2, TLO, Depth + 1)) 905 return true; 906 // Known bits are shared by every demanded subvector element. 907 if (!!DemandedSubElts) { 908 Known.One &= Known2.One; 909 Known.Zero &= Known2.Zero; 910 } 911 } 912 break; 913 } 914 case ISD::VECTOR_SHUFFLE: { 915 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 916 917 // Collect demanded elements from shuffle operands.. 918 APInt DemandedLHS(NumElts, 0); 919 APInt DemandedRHS(NumElts, 0); 920 for (unsigned i = 0; i != NumElts; ++i) { 921 if (!DemandedElts[i]) 922 continue; 923 int M = ShuffleMask[i]; 924 if (M < 0) { 925 // For UNDEF elements, we don't know anything about the common state of 926 // the shuffle result. 927 DemandedLHS.clearAllBits(); 928 DemandedRHS.clearAllBits(); 929 break; 930 } 931 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 932 if (M < (int)NumElts) 933 DemandedLHS.setBit(M); 934 else 935 DemandedRHS.setBit(M - NumElts); 936 } 937 938 if (!!DemandedLHS || !!DemandedRHS) { 939 SDValue Op0 = Op.getOperand(0); 940 SDValue Op1 = Op.getOperand(1); 941 942 Known.Zero.setAllBits(); 943 Known.One.setAllBits(); 944 if (!!DemandedLHS) { 945 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 946 Depth + 1)) 947 return true; 948 Known.One &= Known2.One; 949 Known.Zero &= Known2.Zero; 950 } 951 if (!!DemandedRHS) { 952 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 953 Depth + 1)) 954 return true; 955 Known.One &= Known2.One; 956 Known.Zero &= Known2.Zero; 957 } 958 959 // Attempt to avoid multi-use ops if we don't need anything from them. 960 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 961 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 962 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 963 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 964 if (DemandedOp0 || DemandedOp1) { 965 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 966 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 967 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 968 return TLO.CombineTo(Op, NewOp); 969 } 970 } 971 break; 972 } 973 case ISD::AND: { 974 SDValue Op0 = Op.getOperand(0); 975 SDValue Op1 = Op.getOperand(1); 976 977 // If the RHS is a constant, check to see if the LHS would be zero without 978 // using the bits from the RHS. Below, we use knowledge about the RHS to 979 // simplify the LHS, here we're using information from the LHS to simplify 980 // the RHS. 981 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 982 // Do not increment Depth here; that can cause an infinite loop. 983 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 984 // If the LHS already has zeros where RHSC does, this 'and' is dead. 985 if ((LHSKnown.Zero & DemandedBits) == 986 (~RHSC->getAPIntValue() & DemandedBits)) 987 return TLO.CombineTo(Op, Op0); 988 989 // If any of the set bits in the RHS are known zero on the LHS, shrink 990 // the constant. 991 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 992 return true; 993 994 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 995 // constant, but if this 'and' is only clearing bits that were just set by 996 // the xor, then this 'and' can be eliminated by shrinking the mask of 997 // the xor. For example, for a 32-bit X: 998 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 999 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1000 LHSKnown.One == ~RHSC->getAPIntValue()) { 1001 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1002 return TLO.CombineTo(Op, Xor); 1003 } 1004 } 1005 1006 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1007 Depth + 1)) 1008 return true; 1009 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1010 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1011 Known2, TLO, Depth + 1)) 1012 return true; 1013 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1014 1015 // Attempt to avoid multi-use ops if we don't need anything from them. 1016 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1017 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1018 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1019 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1020 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1021 if (DemandedOp0 || DemandedOp1) { 1022 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1023 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1024 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1025 return TLO.CombineTo(Op, NewOp); 1026 } 1027 } 1028 1029 // If all of the demanded bits are known one on one side, return the other. 1030 // These bits cannot contribute to the result of the 'and'. 1031 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1032 return TLO.CombineTo(Op, Op0); 1033 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1034 return TLO.CombineTo(Op, Op1); 1035 // If all of the demanded bits in the inputs are known zeros, return zero. 1036 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1037 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1038 // If the RHS is a constant, see if we can simplify it. 1039 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1040 return true; 1041 // If the operation can be done in a smaller type, do so. 1042 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1043 return true; 1044 1045 // Output known-1 bits are only known if set in both the LHS & RHS. 1046 Known.One &= Known2.One; 1047 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1048 Known.Zero |= Known2.Zero; 1049 break; 1050 } 1051 case ISD::OR: { 1052 SDValue Op0 = Op.getOperand(0); 1053 SDValue Op1 = Op.getOperand(1); 1054 1055 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1056 Depth + 1)) 1057 return true; 1058 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1059 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1060 Known2, TLO, Depth + 1)) 1061 return true; 1062 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1063 1064 // Attempt to avoid multi-use ops if we don't need anything from them. 1065 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1066 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1067 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1068 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1069 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1070 if (DemandedOp0 || DemandedOp1) { 1071 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1072 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1073 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1074 return TLO.CombineTo(Op, NewOp); 1075 } 1076 } 1077 1078 // If all of the demanded bits are known zero on one side, return the other. 1079 // These bits cannot contribute to the result of the 'or'. 1080 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1081 return TLO.CombineTo(Op, Op0); 1082 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1083 return TLO.CombineTo(Op, Op1); 1084 // If the RHS is a constant, see if we can simplify it. 1085 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1086 return true; 1087 // If the operation can be done in a smaller type, do so. 1088 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1089 return true; 1090 1091 // Output known-0 bits are only known if clear in both the LHS & RHS. 1092 Known.Zero &= Known2.Zero; 1093 // Output known-1 are known to be set if set in either the LHS | RHS. 1094 Known.One |= Known2.One; 1095 break; 1096 } 1097 case ISD::XOR: { 1098 SDValue Op0 = Op.getOperand(0); 1099 SDValue Op1 = Op.getOperand(1); 1100 1101 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1102 Depth + 1)) 1103 return true; 1104 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1105 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1106 Depth + 1)) 1107 return true; 1108 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1109 1110 // Attempt to avoid multi-use ops if we don't need anything from them. 1111 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1112 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1113 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1114 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1115 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1116 if (DemandedOp0 || DemandedOp1) { 1117 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1118 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1119 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1120 return TLO.CombineTo(Op, NewOp); 1121 } 1122 } 1123 1124 // If all of the demanded bits are known zero on one side, return the other. 1125 // These bits cannot contribute to the result of the 'xor'. 1126 if (DemandedBits.isSubsetOf(Known.Zero)) 1127 return TLO.CombineTo(Op, Op0); 1128 if (DemandedBits.isSubsetOf(Known2.Zero)) 1129 return TLO.CombineTo(Op, Op1); 1130 // If the operation can be done in a smaller type, do so. 1131 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1132 return true; 1133 1134 // If all of the unknown bits are known to be zero on one side or the other 1135 // (but not both) turn this into an *inclusive* or. 1136 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1137 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1138 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1139 1140 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1141 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1142 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1143 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1144 1145 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1146 // If one side is a constant, and all of the known set bits on the other 1147 // side are also set in the constant, turn this into an AND, as we know 1148 // the bits will be cleared. 1149 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1150 // NB: it is okay if more bits are known than are requested 1151 if (C->getAPIntValue() == Known2.One) { 1152 SDValue ANDC = 1153 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1154 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1155 } 1156 1157 // If the RHS is a constant, see if we can change it. Don't alter a -1 1158 // constant because that's a 'not' op, and that is better for combining 1159 // and codegen. 1160 if (!C->isAllOnesValue()) { 1161 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1162 // We're flipping all demanded bits. Flip the undemanded bits too. 1163 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1164 return TLO.CombineTo(Op, New); 1165 } 1166 // If we can't turn this into a 'not', try to shrink the constant. 1167 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1168 return true; 1169 } 1170 } 1171 1172 Known = std::move(KnownOut); 1173 break; 1174 } 1175 case ISD::SELECT: 1176 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1177 Depth + 1)) 1178 return true; 1179 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1180 Depth + 1)) 1181 return true; 1182 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1183 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1184 1185 // If the operands are constants, see if we can simplify them. 1186 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1187 return true; 1188 1189 // Only known if known in both the LHS and RHS. 1190 Known.One &= Known2.One; 1191 Known.Zero &= Known2.Zero; 1192 break; 1193 case ISD::SELECT_CC: 1194 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1195 Depth + 1)) 1196 return true; 1197 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1198 Depth + 1)) 1199 return true; 1200 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1201 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1202 1203 // If the operands are constants, see if we can simplify them. 1204 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1205 return true; 1206 1207 // Only known if known in both the LHS and RHS. 1208 Known.One &= Known2.One; 1209 Known.Zero &= Known2.Zero; 1210 break; 1211 case ISD::SETCC: { 1212 SDValue Op0 = Op.getOperand(0); 1213 SDValue Op1 = Op.getOperand(1); 1214 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1215 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1216 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1217 // -1, we may be able to bypass the setcc. 1218 if (DemandedBits.isSignMask() && 1219 Op0.getScalarValueSizeInBits() == BitWidth && 1220 getBooleanContents(VT) == 1221 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1222 // If we're testing X < 0, then this compare isn't needed - just use X! 1223 // FIXME: We're limiting to integer types here, but this should also work 1224 // if we don't care about FP signed-zero. The use of SETLT with FP means 1225 // that we don't care about NaNs. 1226 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1227 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1228 return TLO.CombineTo(Op, Op0); 1229 1230 // TODO: Should we check for other forms of sign-bit comparisons? 1231 // Examples: X <= -1, X >= 0 1232 } 1233 if (getBooleanContents(Op0.getValueType()) == 1234 TargetLowering::ZeroOrOneBooleanContent && 1235 BitWidth > 1) 1236 Known.Zero.setBitsFrom(1); 1237 break; 1238 } 1239 case ISD::SHL: { 1240 SDValue Op0 = Op.getOperand(0); 1241 SDValue Op1 = Op.getOperand(1); 1242 1243 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1244 // If the shift count is an invalid immediate, don't do anything. 1245 if (SA->getAPIntValue().uge(BitWidth)) 1246 break; 1247 1248 unsigned ShAmt = SA->getZExtValue(); 1249 if (ShAmt == 0) 1250 return TLO.CombineTo(Op, Op0); 1251 1252 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1253 // single shift. We can do this if the bottom bits (which are shifted 1254 // out) are never demanded. 1255 // TODO - support non-uniform vector amounts. 1256 if (Op0.getOpcode() == ISD::SRL) { 1257 if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 1258 if (ConstantSDNode *SA2 = 1259 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1260 if (SA2->getAPIntValue().ult(BitWidth)) { 1261 unsigned C1 = SA2->getZExtValue(); 1262 unsigned Opc = ISD::SHL; 1263 int Diff = ShAmt - C1; 1264 if (Diff < 0) { 1265 Diff = -Diff; 1266 Opc = ISD::SRL; 1267 } 1268 1269 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1270 return TLO.CombineTo( 1271 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1272 } 1273 } 1274 } 1275 } 1276 1277 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1278 Known, TLO, Depth + 1)) 1279 return true; 1280 1281 // Try shrinking the operation as long as the shift amount will still be 1282 // in range. 1283 if ((ShAmt < DemandedBits.getActiveBits()) && 1284 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1285 return true; 1286 1287 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1288 // are not demanded. This will likely allow the anyext to be folded away. 1289 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1290 SDValue InnerOp = Op0.getOperand(0); 1291 EVT InnerVT = InnerOp.getValueType(); 1292 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1293 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1294 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1295 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1296 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1297 ShTy = InnerVT; 1298 SDValue NarrowShl = 1299 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1300 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1301 return TLO.CombineTo( 1302 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1303 } 1304 // Repeat the SHL optimization above in cases where an extension 1305 // intervenes: (shl (anyext (shr x, c1)), c2) to 1306 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1307 // aren't demanded (as above) and that the shifted upper c1 bits of 1308 // x aren't demanded. 1309 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1310 InnerOp.hasOneUse()) { 1311 if (ConstantSDNode *SA2 = 1312 isConstOrConstSplat(InnerOp.getOperand(1))) { 1313 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1314 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1315 DemandedBits.getActiveBits() <= 1316 (InnerBits - InnerShAmt + ShAmt) && 1317 DemandedBits.countTrailingZeros() >= ShAmt) { 1318 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1319 Op1.getValueType()); 1320 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1321 InnerOp.getOperand(0)); 1322 return TLO.CombineTo( 1323 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1324 } 1325 } 1326 } 1327 } 1328 1329 Known.Zero <<= ShAmt; 1330 Known.One <<= ShAmt; 1331 // low bits known zero. 1332 Known.Zero.setLowBits(ShAmt); 1333 } 1334 break; 1335 } 1336 case ISD::SRL: { 1337 SDValue Op0 = Op.getOperand(0); 1338 SDValue Op1 = Op.getOperand(1); 1339 1340 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1341 // If the shift count is an invalid immediate, don't do anything. 1342 if (SA->getAPIntValue().uge(BitWidth)) 1343 break; 1344 1345 unsigned ShAmt = SA->getZExtValue(); 1346 if (ShAmt == 0) 1347 return TLO.CombineTo(Op, Op0); 1348 1349 EVT ShiftVT = Op1.getValueType(); 1350 APInt InDemandedMask = (DemandedBits << ShAmt); 1351 1352 // If the shift is exact, then it does demand the low bits (and knows that 1353 // they are zero). 1354 if (Op->getFlags().hasExact()) 1355 InDemandedMask.setLowBits(ShAmt); 1356 1357 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1358 // single shift. We can do this if the top bits (which are shifted out) 1359 // are never demanded. 1360 // TODO - support non-uniform vector amounts. 1361 if (Op0.getOpcode() == ISD::SHL) { 1362 if (ConstantSDNode *SA2 = 1363 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1364 if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 1365 if (SA2->getAPIntValue().ult(BitWidth)) { 1366 unsigned C1 = SA2->getZExtValue(); 1367 unsigned Opc = ISD::SRL; 1368 int Diff = ShAmt - C1; 1369 if (Diff < 0) { 1370 Diff = -Diff; 1371 Opc = ISD::SHL; 1372 } 1373 1374 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1375 return TLO.CombineTo( 1376 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1377 } 1378 } 1379 } 1380 } 1381 1382 // Compute the new bits that are at the top now. 1383 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1384 Depth + 1)) 1385 return true; 1386 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1387 Known.Zero.lshrInPlace(ShAmt); 1388 Known.One.lshrInPlace(ShAmt); 1389 1390 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1391 } 1392 break; 1393 } 1394 case ISD::SRA: { 1395 SDValue Op0 = Op.getOperand(0); 1396 SDValue Op1 = Op.getOperand(1); 1397 1398 // If this is an arithmetic shift right and only the low-bit is set, we can 1399 // always convert this into a logical shr, even if the shift amount is 1400 // variable. The low bit of the shift cannot be an input sign bit unless 1401 // the shift amount is >= the size of the datatype, which is undefined. 1402 if (DemandedBits.isOneValue()) 1403 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1404 1405 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1406 // If the shift count is an invalid immediate, don't do anything. 1407 if (SA->getAPIntValue().uge(BitWidth)) 1408 break; 1409 1410 unsigned ShAmt = SA->getZExtValue(); 1411 if (ShAmt == 0) 1412 return TLO.CombineTo(Op, Op0); 1413 1414 APInt InDemandedMask = (DemandedBits << ShAmt); 1415 1416 // If the shift is exact, then it does demand the low bits (and knows that 1417 // they are zero). 1418 if (Op->getFlags().hasExact()) 1419 InDemandedMask.setLowBits(ShAmt); 1420 1421 // If any of the demanded bits are produced by the sign extension, we also 1422 // demand the input sign bit. 1423 if (DemandedBits.countLeadingZeros() < ShAmt) 1424 InDemandedMask.setSignBit(); 1425 1426 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1427 Depth + 1)) 1428 return true; 1429 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1430 Known.Zero.lshrInPlace(ShAmt); 1431 Known.One.lshrInPlace(ShAmt); 1432 1433 // If the input sign bit is known to be zero, or if none of the top bits 1434 // are demanded, turn this into an unsigned shift right. 1435 if (Known.Zero[BitWidth - ShAmt - 1] || 1436 DemandedBits.countLeadingZeros() >= ShAmt) { 1437 SDNodeFlags Flags; 1438 Flags.setExact(Op->getFlags().hasExact()); 1439 return TLO.CombineTo( 1440 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1441 } 1442 1443 int Log2 = DemandedBits.exactLogBase2(); 1444 if (Log2 >= 0) { 1445 // The bit must come from the sign. 1446 SDValue NewSA = 1447 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1448 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1449 } 1450 1451 if (Known.One[BitWidth - ShAmt - 1]) 1452 // New bits are known one. 1453 Known.One.setHighBits(ShAmt); 1454 } 1455 break; 1456 } 1457 case ISD::FSHL: 1458 case ISD::FSHR: { 1459 SDValue Op0 = Op.getOperand(0); 1460 SDValue Op1 = Op.getOperand(1); 1461 SDValue Op2 = Op.getOperand(2); 1462 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1463 1464 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1465 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1466 1467 // For fshl, 0-shift returns the 1st arg. 1468 // For fshr, 0-shift returns the 2nd arg. 1469 if (Amt == 0) { 1470 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1471 Known, TLO, Depth + 1)) 1472 return true; 1473 break; 1474 } 1475 1476 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1477 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1478 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1479 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1480 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1481 Depth + 1)) 1482 return true; 1483 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1484 Depth + 1)) 1485 return true; 1486 1487 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1488 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1489 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1490 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1491 Known.One |= Known2.One; 1492 Known.Zero |= Known2.Zero; 1493 } 1494 break; 1495 } 1496 case ISD::BITREVERSE: { 1497 SDValue Src = Op.getOperand(0); 1498 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1499 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1500 Depth + 1)) 1501 return true; 1502 Known.One = Known2.One.reverseBits(); 1503 Known.Zero = Known2.Zero.reverseBits(); 1504 break; 1505 } 1506 case ISD::SIGN_EXTEND_INREG: { 1507 SDValue Op0 = Op.getOperand(0); 1508 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1509 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1510 1511 // If we only care about the highest bit, don't bother shifting right. 1512 if (DemandedBits.isSignMask()) { 1513 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1514 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1515 // However if the input is already sign extended we expect the sign 1516 // extension to be dropped altogether later and do not simplify. 1517 if (!AlreadySignExtended) { 1518 // Compute the correct shift amount type, which must be getShiftAmountTy 1519 // for scalar types after legalization. 1520 EVT ShiftAmtTy = VT; 1521 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1522 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1523 1524 SDValue ShiftAmt = 1525 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1526 return TLO.CombineTo(Op, 1527 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1528 } 1529 } 1530 1531 // If none of the extended bits are demanded, eliminate the sextinreg. 1532 if (DemandedBits.getActiveBits() <= ExVTBits) 1533 return TLO.CombineTo(Op, Op0); 1534 1535 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1536 1537 // Since the sign extended bits are demanded, we know that the sign 1538 // bit is demanded. 1539 InputDemandedBits.setBit(ExVTBits - 1); 1540 1541 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1542 return true; 1543 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1544 1545 // If the sign bit of the input is known set or clear, then we know the 1546 // top bits of the result. 1547 1548 // If the input sign bit is known zero, convert this into a zero extension. 1549 if (Known.Zero[ExVTBits - 1]) 1550 return TLO.CombineTo( 1551 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1552 1553 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1554 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1555 Known.One.setBitsFrom(ExVTBits); 1556 Known.Zero &= Mask; 1557 } else { // Input sign bit unknown 1558 Known.Zero &= Mask; 1559 Known.One &= Mask; 1560 } 1561 break; 1562 } 1563 case ISD::BUILD_PAIR: { 1564 EVT HalfVT = Op.getOperand(0).getValueType(); 1565 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1566 1567 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1568 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1569 1570 KnownBits KnownLo, KnownHi; 1571 1572 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1573 return true; 1574 1575 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1576 return true; 1577 1578 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1579 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1580 1581 Known.One = KnownLo.One.zext(BitWidth) | 1582 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1583 break; 1584 } 1585 case ISD::ZERO_EXTEND: 1586 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1587 SDValue Src = Op.getOperand(0); 1588 EVT SrcVT = Src.getValueType(); 1589 unsigned InBits = SrcVT.getScalarSizeInBits(); 1590 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1591 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1592 1593 // If none of the top bits are demanded, convert this into an any_extend. 1594 if (DemandedBits.getActiveBits() <= InBits) { 1595 // If we only need the non-extended bits of the bottom element 1596 // then we can just bitcast to the result. 1597 if (IsVecInReg && DemandedElts == 1 && 1598 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1599 TLO.DAG.getDataLayout().isLittleEndian()) 1600 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1601 1602 unsigned Opc = 1603 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1604 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1605 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1606 } 1607 1608 APInt InDemandedBits = DemandedBits.trunc(InBits); 1609 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1610 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1611 Depth + 1)) 1612 return true; 1613 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1614 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1615 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1616 break; 1617 } 1618 case ISD::SIGN_EXTEND: 1619 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1620 SDValue Src = Op.getOperand(0); 1621 EVT SrcVT = Src.getValueType(); 1622 unsigned InBits = SrcVT.getScalarSizeInBits(); 1623 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1624 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1625 1626 // If none of the top bits are demanded, convert this into an any_extend. 1627 if (DemandedBits.getActiveBits() <= InBits) { 1628 // If we only need the non-extended bits of the bottom element 1629 // then we can just bitcast to the result. 1630 if (IsVecInReg && DemandedElts == 1 && 1631 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1632 TLO.DAG.getDataLayout().isLittleEndian()) 1633 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1634 1635 unsigned Opc = 1636 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1637 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1638 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1639 } 1640 1641 APInt InDemandedBits = DemandedBits.trunc(InBits); 1642 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1643 1644 // Since some of the sign extended bits are demanded, we know that the sign 1645 // bit is demanded. 1646 InDemandedBits.setBit(InBits - 1); 1647 1648 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1649 Depth + 1)) 1650 return true; 1651 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1652 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1653 1654 // If the sign bit is known one, the top bits match. 1655 Known = Known.sext(BitWidth); 1656 1657 // If the sign bit is known zero, convert this to a zero extend. 1658 if (Known.isNonNegative()) { 1659 unsigned Opc = 1660 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1661 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1662 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1663 } 1664 break; 1665 } 1666 case ISD::ANY_EXTEND: 1667 case ISD::ANY_EXTEND_VECTOR_INREG: { 1668 SDValue Src = Op.getOperand(0); 1669 EVT SrcVT = Src.getValueType(); 1670 unsigned InBits = SrcVT.getScalarSizeInBits(); 1671 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1672 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1673 1674 // If we only need the bottom element then we can just bitcast. 1675 // TODO: Handle ANY_EXTEND? 1676 if (IsVecInReg && DemandedElts == 1 && 1677 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1678 TLO.DAG.getDataLayout().isLittleEndian()) 1679 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1680 1681 APInt InDemandedBits = DemandedBits.trunc(InBits); 1682 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1683 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1684 Depth + 1)) 1685 return true; 1686 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1687 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1688 Known = Known.zext(BitWidth, false /* => any extend */); 1689 break; 1690 } 1691 case ISD::TRUNCATE: { 1692 SDValue Src = Op.getOperand(0); 1693 1694 // Simplify the input, using demanded bit information, and compute the known 1695 // zero/one bits live out. 1696 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1697 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1698 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1699 return true; 1700 Known = Known.trunc(BitWidth); 1701 1702 // Attempt to avoid multi-use ops if we don't need anything from them. 1703 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1704 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1705 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1706 1707 // If the input is only used by this truncate, see if we can shrink it based 1708 // on the known demanded bits. 1709 if (Src.getNode()->hasOneUse()) { 1710 switch (Src.getOpcode()) { 1711 default: 1712 break; 1713 case ISD::SRL: 1714 // Shrink SRL by a constant if none of the high bits shifted in are 1715 // demanded. 1716 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1717 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1718 // undesirable. 1719 break; 1720 1721 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1722 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1723 break; 1724 1725 SDValue Shift = Src.getOperand(1); 1726 uint64_t ShVal = ShAmt->getZExtValue(); 1727 1728 if (TLO.LegalTypes()) 1729 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1730 1731 APInt HighBits = 1732 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1733 HighBits.lshrInPlace(ShVal); 1734 HighBits = HighBits.trunc(BitWidth); 1735 1736 if (!(HighBits & DemandedBits)) { 1737 // None of the shifted in bits are needed. Add a truncate of the 1738 // shift input, then shift it. 1739 SDValue NewTrunc = 1740 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1741 return TLO.CombineTo( 1742 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1743 } 1744 break; 1745 } 1746 } 1747 1748 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1749 break; 1750 } 1751 case ISD::AssertZext: { 1752 // AssertZext demands all of the high bits, plus any of the low bits 1753 // demanded by its users. 1754 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1755 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1756 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1757 TLO, Depth + 1)) 1758 return true; 1759 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1760 1761 Known.Zero |= ~InMask; 1762 break; 1763 } 1764 case ISD::EXTRACT_VECTOR_ELT: { 1765 SDValue Src = Op.getOperand(0); 1766 SDValue Idx = Op.getOperand(1); 1767 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1768 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1769 1770 // Demand the bits from every vector element without a constant index. 1771 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1772 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1773 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1774 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1775 1776 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1777 // anything about the extended bits. 1778 APInt DemandedSrcBits = DemandedBits; 1779 if (BitWidth > EltBitWidth) 1780 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1781 1782 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1783 Depth + 1)) 1784 return true; 1785 1786 Known = Known2; 1787 if (BitWidth > EltBitWidth) 1788 Known = Known.zext(BitWidth, false /* => any extend */); 1789 break; 1790 } 1791 case ISD::BITCAST: { 1792 SDValue Src = Op.getOperand(0); 1793 EVT SrcVT = Src.getValueType(); 1794 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1795 1796 // If this is an FP->Int bitcast and if the sign bit is the only 1797 // thing demanded, turn this into a FGETSIGN. 1798 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1799 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1800 SrcVT.isFloatingPoint()) { 1801 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1802 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1803 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1804 SrcVT != MVT::f128) { 1805 // Cannot eliminate/lower SHL for f128 yet. 1806 EVT Ty = OpVTLegal ? VT : MVT::i32; 1807 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1808 // place. We expect the SHL to be eliminated by other optimizations. 1809 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1810 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1811 if (!OpVTLegal && OpVTSizeInBits > 32) 1812 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1813 unsigned ShVal = Op.getValueSizeInBits() - 1; 1814 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1815 return TLO.CombineTo(Op, 1816 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1817 } 1818 } 1819 1820 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1821 // Demand the elt/bit if any of the original elts/bits are demanded. 1822 // TODO - bigendian once we have test coverage. 1823 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1824 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1825 (BitWidth % NumSrcEltBits) == 0 && 1826 TLO.DAG.getDataLayout().isLittleEndian()) { 1827 unsigned Scale = BitWidth / NumSrcEltBits; 1828 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1829 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1830 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1831 for (unsigned i = 0; i != Scale; ++i) { 1832 unsigned Offset = i * NumSrcEltBits; 1833 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1834 if (!Sub.isNullValue()) { 1835 DemandedSrcBits |= Sub; 1836 for (unsigned j = 0; j != NumElts; ++j) 1837 if (DemandedElts[j]) 1838 DemandedSrcElts.setBit((j * Scale) + i); 1839 } 1840 } 1841 1842 APInt KnownSrcUndef, KnownSrcZero; 1843 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1844 KnownSrcZero, TLO, Depth + 1)) 1845 return true; 1846 1847 KnownBits KnownSrcBits; 1848 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1849 KnownSrcBits, TLO, Depth + 1)) 1850 return true; 1851 } else if ((NumSrcEltBits % BitWidth) == 0 && 1852 TLO.DAG.getDataLayout().isLittleEndian()) { 1853 unsigned Scale = NumSrcEltBits / BitWidth; 1854 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1855 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1856 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1857 for (unsigned i = 0; i != NumElts; ++i) 1858 if (DemandedElts[i]) { 1859 unsigned Offset = (i % Scale) * BitWidth; 1860 DemandedSrcBits.insertBits(DemandedBits, Offset); 1861 DemandedSrcElts.setBit(i / Scale); 1862 } 1863 1864 if (SrcVT.isVector()) { 1865 APInt KnownSrcUndef, KnownSrcZero; 1866 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1867 KnownSrcZero, TLO, Depth + 1)) 1868 return true; 1869 } 1870 1871 KnownBits KnownSrcBits; 1872 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1873 KnownSrcBits, TLO, Depth + 1)) 1874 return true; 1875 } 1876 1877 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1878 // recursive call where Known may be useful to the caller. 1879 if (Depth > 0) { 1880 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1881 return false; 1882 } 1883 break; 1884 } 1885 case ISD::ADD: 1886 case ISD::MUL: 1887 case ISD::SUB: { 1888 // Add, Sub, and Mul don't demand any bits in positions beyond that 1889 // of the highest bit demanded of them. 1890 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1891 SDNodeFlags Flags = Op.getNode()->getFlags(); 1892 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1893 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1894 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1895 Depth + 1) || 1896 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1897 Depth + 1) || 1898 // See if the operation should be performed at a smaller bit width. 1899 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1900 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1901 // Disable the nsw and nuw flags. We can no longer guarantee that we 1902 // won't wrap after simplification. 1903 Flags.setNoSignedWrap(false); 1904 Flags.setNoUnsignedWrap(false); 1905 SDValue NewOp = 1906 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1907 return TLO.CombineTo(Op, NewOp); 1908 } 1909 return true; 1910 } 1911 1912 // Attempt to avoid multi-use ops if we don't need anything from them. 1913 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1914 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1915 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1916 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1917 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1918 if (DemandedOp0 || DemandedOp1) { 1919 Flags.setNoSignedWrap(false); 1920 Flags.setNoUnsignedWrap(false); 1921 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1922 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1923 SDValue NewOp = 1924 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1925 return TLO.CombineTo(Op, NewOp); 1926 } 1927 } 1928 1929 // If we have a constant operand, we may be able to turn it into -1 if we 1930 // do not demand the high bits. This can make the constant smaller to 1931 // encode, allow more general folding, or match specialized instruction 1932 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1933 // is probably not useful (and could be detrimental). 1934 ConstantSDNode *C = isConstOrConstSplat(Op1); 1935 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1936 if (C && !C->isAllOnesValue() && !C->isOne() && 1937 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1938 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1939 // We can't guarantee that the new math op doesn't wrap, so explicitly 1940 // clear those flags to prevent folding with a potential existing node 1941 // that has those flags set. 1942 SDNodeFlags Flags; 1943 Flags.setNoSignedWrap(false); 1944 Flags.setNoUnsignedWrap(false); 1945 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1946 return TLO.CombineTo(Op, NewOp); 1947 } 1948 1949 LLVM_FALLTHROUGH; 1950 } 1951 default: 1952 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1953 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1954 Known, TLO, Depth)) 1955 return true; 1956 break; 1957 } 1958 1959 // Just use computeKnownBits to compute output bits. 1960 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1961 break; 1962 } 1963 1964 // If we know the value of all of the demanded bits, return this as a 1965 // constant. 1966 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1967 // Avoid folding to a constant if any OpaqueConstant is involved. 1968 const SDNode *N = Op.getNode(); 1969 for (SDNodeIterator I = SDNodeIterator::begin(N), 1970 E = SDNodeIterator::end(N); 1971 I != E; ++I) { 1972 SDNode *Op = *I; 1973 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1974 if (C->isOpaque()) 1975 return false; 1976 } 1977 // TODO: Handle float bits as well. 1978 if (VT.isInteger()) 1979 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1980 } 1981 1982 return false; 1983 } 1984 1985 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1986 const APInt &DemandedElts, 1987 APInt &KnownUndef, 1988 APInt &KnownZero, 1989 DAGCombinerInfo &DCI) const { 1990 SelectionDAG &DAG = DCI.DAG; 1991 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1992 !DCI.isBeforeLegalizeOps()); 1993 1994 bool Simplified = 1995 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1996 if (Simplified) { 1997 DCI.AddToWorklist(Op.getNode()); 1998 DCI.CommitTargetLoweringOpt(TLO); 1999 } 2000 2001 return Simplified; 2002 } 2003 2004 /// Given a vector binary operation and known undefined elements for each input 2005 /// operand, compute whether each element of the output is undefined. 2006 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2007 const APInt &UndefOp0, 2008 const APInt &UndefOp1) { 2009 EVT VT = BO.getValueType(); 2010 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2011 "Vector binop only"); 2012 2013 EVT EltVT = VT.getVectorElementType(); 2014 unsigned NumElts = VT.getVectorNumElements(); 2015 assert(UndefOp0.getBitWidth() == NumElts && 2016 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2017 2018 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2019 const APInt &UndefVals) { 2020 if (UndefVals[Index]) 2021 return DAG.getUNDEF(EltVT); 2022 2023 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2024 // Try hard to make sure that the getNode() call is not creating temporary 2025 // nodes. Ignore opaque integers because they do not constant fold. 2026 SDValue Elt = BV->getOperand(Index); 2027 auto *C = dyn_cast<ConstantSDNode>(Elt); 2028 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2029 return Elt; 2030 } 2031 2032 return SDValue(); 2033 }; 2034 2035 APInt KnownUndef = APInt::getNullValue(NumElts); 2036 for (unsigned i = 0; i != NumElts; ++i) { 2037 // If both inputs for this element are either constant or undef and match 2038 // the element type, compute the constant/undef result for this element of 2039 // the vector. 2040 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2041 // not handle FP constants. The code within getNode() should be refactored 2042 // to avoid the danger of creating a bogus temporary node here. 2043 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2044 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2045 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2046 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2047 KnownUndef.setBit(i); 2048 } 2049 return KnownUndef; 2050 } 2051 2052 bool TargetLowering::SimplifyDemandedVectorElts( 2053 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2054 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2055 bool AssumeSingleUse) const { 2056 EVT VT = Op.getValueType(); 2057 APInt DemandedElts = OriginalDemandedElts; 2058 unsigned NumElts = DemandedElts.getBitWidth(); 2059 assert(VT.isVector() && "Expected vector op"); 2060 assert(VT.getVectorNumElements() == NumElts && 2061 "Mask size mismatches value type element count!"); 2062 2063 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2064 2065 // Undef operand. 2066 if (Op.isUndef()) { 2067 KnownUndef.setAllBits(); 2068 return false; 2069 } 2070 2071 // If Op has other users, assume that all elements are needed. 2072 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2073 DemandedElts.setAllBits(); 2074 2075 // Not demanding any elements from Op. 2076 if (DemandedElts == 0) { 2077 KnownUndef.setAllBits(); 2078 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2079 } 2080 2081 // Limit search depth. 2082 if (Depth >= 6) 2083 return false; 2084 2085 SDLoc DL(Op); 2086 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2087 2088 switch (Op.getOpcode()) { 2089 case ISD::SCALAR_TO_VECTOR: { 2090 if (!DemandedElts[0]) { 2091 KnownUndef.setAllBits(); 2092 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2093 } 2094 KnownUndef.setHighBits(NumElts - 1); 2095 break; 2096 } 2097 case ISD::BITCAST: { 2098 SDValue Src = Op.getOperand(0); 2099 EVT SrcVT = Src.getValueType(); 2100 2101 // We only handle vectors here. 2102 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2103 if (!SrcVT.isVector()) 2104 break; 2105 2106 // Fast handling of 'identity' bitcasts. 2107 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2108 if (NumSrcElts == NumElts) 2109 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2110 KnownZero, TLO, Depth + 1); 2111 2112 APInt SrcZero, SrcUndef; 2113 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2114 2115 // Bitcast from 'large element' src vector to 'small element' vector, we 2116 // must demand a source element if any DemandedElt maps to it. 2117 if ((NumElts % NumSrcElts) == 0) { 2118 unsigned Scale = NumElts / NumSrcElts; 2119 for (unsigned i = 0; i != NumElts; ++i) 2120 if (DemandedElts[i]) 2121 SrcDemandedElts.setBit(i / Scale); 2122 2123 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2124 TLO, Depth + 1)) 2125 return true; 2126 2127 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2128 // of the large element. 2129 // TODO - bigendian once we have test coverage. 2130 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2131 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2132 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2133 for (unsigned i = 0; i != NumElts; ++i) 2134 if (DemandedElts[i]) { 2135 unsigned Ofs = (i % Scale) * EltSizeInBits; 2136 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2137 } 2138 2139 KnownBits Known; 2140 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2141 return true; 2142 } 2143 2144 // If the src element is zero/undef then all the output elements will be - 2145 // only demanded elements are guaranteed to be correct. 2146 for (unsigned i = 0; i != NumSrcElts; ++i) { 2147 if (SrcDemandedElts[i]) { 2148 if (SrcZero[i]) 2149 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2150 if (SrcUndef[i]) 2151 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2152 } 2153 } 2154 } 2155 2156 // Bitcast from 'small element' src vector to 'large element' vector, we 2157 // demand all smaller source elements covered by the larger demanded element 2158 // of this vector. 2159 if ((NumSrcElts % NumElts) == 0) { 2160 unsigned Scale = NumSrcElts / NumElts; 2161 for (unsigned i = 0; i != NumElts; ++i) 2162 if (DemandedElts[i]) 2163 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2164 2165 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2166 TLO, Depth + 1)) 2167 return true; 2168 2169 // If all the src elements covering an output element are zero/undef, then 2170 // the output element will be as well, assuming it was demanded. 2171 for (unsigned i = 0; i != NumElts; ++i) { 2172 if (DemandedElts[i]) { 2173 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2174 KnownZero.setBit(i); 2175 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2176 KnownUndef.setBit(i); 2177 } 2178 } 2179 } 2180 break; 2181 } 2182 case ISD::BUILD_VECTOR: { 2183 // Check all elements and simplify any unused elements with UNDEF. 2184 if (!DemandedElts.isAllOnesValue()) { 2185 // Don't simplify BROADCASTS. 2186 if (llvm::any_of(Op->op_values(), 2187 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2188 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2189 bool Updated = false; 2190 for (unsigned i = 0; i != NumElts; ++i) { 2191 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2192 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2193 KnownUndef.setBit(i); 2194 Updated = true; 2195 } 2196 } 2197 if (Updated) 2198 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2199 } 2200 } 2201 for (unsigned i = 0; i != NumElts; ++i) { 2202 SDValue SrcOp = Op.getOperand(i); 2203 if (SrcOp.isUndef()) { 2204 KnownUndef.setBit(i); 2205 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2206 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2207 KnownZero.setBit(i); 2208 } 2209 } 2210 break; 2211 } 2212 case ISD::CONCAT_VECTORS: { 2213 EVT SubVT = Op.getOperand(0).getValueType(); 2214 unsigned NumSubVecs = Op.getNumOperands(); 2215 unsigned NumSubElts = SubVT.getVectorNumElements(); 2216 for (unsigned i = 0; i != NumSubVecs; ++i) { 2217 SDValue SubOp = Op.getOperand(i); 2218 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2219 APInt SubUndef, SubZero; 2220 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2221 Depth + 1)) 2222 return true; 2223 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2224 KnownZero.insertBits(SubZero, i * NumSubElts); 2225 } 2226 break; 2227 } 2228 case ISD::INSERT_SUBVECTOR: { 2229 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2230 break; 2231 SDValue Base = Op.getOperand(0); 2232 SDValue Sub = Op.getOperand(1); 2233 EVT SubVT = Sub.getValueType(); 2234 unsigned NumSubElts = SubVT.getVectorNumElements(); 2235 const APInt &Idx = Op.getConstantOperandAPInt(2); 2236 if (Idx.ugt(NumElts - NumSubElts)) 2237 break; 2238 unsigned SubIdx = Idx.getZExtValue(); 2239 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2240 APInt SubUndef, SubZero; 2241 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2242 Depth + 1)) 2243 return true; 2244 APInt BaseElts = DemandedElts; 2245 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2246 2247 // If none of the base operand elements are demanded, replace it with undef. 2248 if (!BaseElts && !Base.isUndef()) 2249 return TLO.CombineTo(Op, 2250 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2251 TLO.DAG.getUNDEF(VT), 2252 Op.getOperand(1), 2253 Op.getOperand(2))); 2254 2255 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2256 Depth + 1)) 2257 return true; 2258 KnownUndef.insertBits(SubUndef, SubIdx); 2259 KnownZero.insertBits(SubZero, SubIdx); 2260 break; 2261 } 2262 case ISD::EXTRACT_SUBVECTOR: { 2263 SDValue Src = Op.getOperand(0); 2264 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2265 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2266 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2267 // Offset the demanded elts by the subvector index. 2268 uint64_t Idx = SubIdx->getZExtValue(); 2269 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2270 APInt SrcUndef, SrcZero; 2271 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2272 Depth + 1)) 2273 return true; 2274 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2275 KnownZero = SrcZero.extractBits(NumElts, Idx); 2276 } 2277 break; 2278 } 2279 case ISD::INSERT_VECTOR_ELT: { 2280 SDValue Vec = Op.getOperand(0); 2281 SDValue Scl = Op.getOperand(1); 2282 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2283 2284 // For a legal, constant insertion index, if we don't need this insertion 2285 // then strip it, else remove it from the demanded elts. 2286 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2287 unsigned Idx = CIdx->getZExtValue(); 2288 if (!DemandedElts[Idx]) 2289 return TLO.CombineTo(Op, Vec); 2290 2291 APInt DemandedVecElts(DemandedElts); 2292 DemandedVecElts.clearBit(Idx); 2293 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2294 KnownZero, TLO, Depth + 1)) 2295 return true; 2296 2297 KnownUndef.clearBit(Idx); 2298 if (Scl.isUndef()) 2299 KnownUndef.setBit(Idx); 2300 2301 KnownZero.clearBit(Idx); 2302 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2303 KnownZero.setBit(Idx); 2304 break; 2305 } 2306 2307 APInt VecUndef, VecZero; 2308 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2309 Depth + 1)) 2310 return true; 2311 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2312 break; 2313 } 2314 case ISD::VSELECT: { 2315 // Try to transform the select condition based on the current demanded 2316 // elements. 2317 // TODO: If a condition element is undef, we can choose from one arm of the 2318 // select (and if one arm is undef, then we can propagate that to the 2319 // result). 2320 // TODO - add support for constant vselect masks (see IR version of this). 2321 APInt UnusedUndef, UnusedZero; 2322 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2323 UnusedZero, TLO, Depth + 1)) 2324 return true; 2325 2326 // See if we can simplify either vselect operand. 2327 APInt DemandedLHS(DemandedElts); 2328 APInt DemandedRHS(DemandedElts); 2329 APInt UndefLHS, ZeroLHS; 2330 APInt UndefRHS, ZeroRHS; 2331 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2332 ZeroLHS, TLO, Depth + 1)) 2333 return true; 2334 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2335 ZeroRHS, TLO, Depth + 1)) 2336 return true; 2337 2338 KnownUndef = UndefLHS & UndefRHS; 2339 KnownZero = ZeroLHS & ZeroRHS; 2340 break; 2341 } 2342 case ISD::VECTOR_SHUFFLE: { 2343 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2344 2345 // Collect demanded elements from shuffle operands.. 2346 APInt DemandedLHS(NumElts, 0); 2347 APInt DemandedRHS(NumElts, 0); 2348 for (unsigned i = 0; i != NumElts; ++i) { 2349 int M = ShuffleMask[i]; 2350 if (M < 0 || !DemandedElts[i]) 2351 continue; 2352 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2353 if (M < (int)NumElts) 2354 DemandedLHS.setBit(M); 2355 else 2356 DemandedRHS.setBit(M - NumElts); 2357 } 2358 2359 // See if we can simplify either shuffle operand. 2360 APInt UndefLHS, ZeroLHS; 2361 APInt UndefRHS, ZeroRHS; 2362 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2363 ZeroLHS, TLO, Depth + 1)) 2364 return true; 2365 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2366 ZeroRHS, TLO, Depth + 1)) 2367 return true; 2368 2369 // Simplify mask using undef elements from LHS/RHS. 2370 bool Updated = false; 2371 bool IdentityLHS = true, IdentityRHS = true; 2372 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2373 for (unsigned i = 0; i != NumElts; ++i) { 2374 int &M = NewMask[i]; 2375 if (M < 0) 2376 continue; 2377 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2378 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2379 Updated = true; 2380 M = -1; 2381 } 2382 IdentityLHS &= (M < 0) || (M == (int)i); 2383 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2384 } 2385 2386 // Update legal shuffle masks based on demanded elements if it won't reduce 2387 // to Identity which can cause premature removal of the shuffle mask. 2388 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 2389 isShuffleMaskLegal(NewMask, VT)) 2390 return TLO.CombineTo(Op, 2391 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 2392 Op.getOperand(1), NewMask)); 2393 2394 // Propagate undef/zero elements from LHS/RHS. 2395 for (unsigned i = 0; i != NumElts; ++i) { 2396 int M = ShuffleMask[i]; 2397 if (M < 0) { 2398 KnownUndef.setBit(i); 2399 } else if (M < (int)NumElts) { 2400 if (UndefLHS[M]) 2401 KnownUndef.setBit(i); 2402 if (ZeroLHS[M]) 2403 KnownZero.setBit(i); 2404 } else { 2405 if (UndefRHS[M - NumElts]) 2406 KnownUndef.setBit(i); 2407 if (ZeroRHS[M - NumElts]) 2408 KnownZero.setBit(i); 2409 } 2410 } 2411 break; 2412 } 2413 case ISD::ANY_EXTEND_VECTOR_INREG: 2414 case ISD::SIGN_EXTEND_VECTOR_INREG: 2415 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2416 APInt SrcUndef, SrcZero; 2417 SDValue Src = Op.getOperand(0); 2418 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2419 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2420 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2421 Depth + 1)) 2422 return true; 2423 KnownZero = SrcZero.zextOrTrunc(NumElts); 2424 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2425 2426 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2427 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2428 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2429 // aext - if we just need the bottom element then we can bitcast. 2430 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2431 } 2432 2433 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2434 // zext(undef) upper bits are guaranteed to be zero. 2435 if (DemandedElts.isSubsetOf(KnownUndef)) 2436 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2437 KnownUndef.clearAllBits(); 2438 } 2439 break; 2440 } 2441 2442 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2443 // MAX, saturated math, etc. 2444 case ISD::OR: 2445 case ISD::XOR: 2446 case ISD::ADD: 2447 case ISD::SUB: 2448 case ISD::FADD: 2449 case ISD::FSUB: 2450 case ISD::FMUL: 2451 case ISD::FDIV: 2452 case ISD::FREM: { 2453 APInt UndefRHS, ZeroRHS; 2454 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2455 ZeroRHS, TLO, Depth + 1)) 2456 return true; 2457 APInt UndefLHS, ZeroLHS; 2458 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2459 ZeroLHS, TLO, Depth + 1)) 2460 return true; 2461 2462 KnownZero = ZeroLHS & ZeroRHS; 2463 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2464 break; 2465 } 2466 case ISD::SHL: 2467 case ISD::SRL: 2468 case ISD::SRA: 2469 case ISD::ROTL: 2470 case ISD::ROTR: { 2471 APInt UndefRHS, ZeroRHS; 2472 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2473 ZeroRHS, TLO, Depth + 1)) 2474 return true; 2475 APInt UndefLHS, ZeroLHS; 2476 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2477 ZeroLHS, TLO, Depth + 1)) 2478 return true; 2479 2480 KnownZero = ZeroLHS; 2481 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2482 break; 2483 } 2484 case ISD::MUL: 2485 case ISD::AND: { 2486 APInt SrcUndef, SrcZero; 2487 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2488 SrcZero, TLO, Depth + 1)) 2489 return true; 2490 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2491 KnownZero, TLO, Depth + 1)) 2492 return true; 2493 2494 // If either side has a zero element, then the result element is zero, even 2495 // if the other is an UNDEF. 2496 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2497 // and then handle 'and' nodes with the rest of the binop opcodes. 2498 KnownZero |= SrcZero; 2499 KnownUndef &= SrcUndef; 2500 KnownUndef &= ~KnownZero; 2501 break; 2502 } 2503 case ISD::TRUNCATE: 2504 case ISD::SIGN_EXTEND: 2505 case ISD::ZERO_EXTEND: 2506 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2507 KnownZero, TLO, Depth + 1)) 2508 return true; 2509 2510 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2511 // zext(undef) upper bits are guaranteed to be zero. 2512 if (DemandedElts.isSubsetOf(KnownUndef)) 2513 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2514 KnownUndef.clearAllBits(); 2515 } 2516 break; 2517 default: { 2518 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2519 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2520 KnownZero, TLO, Depth)) 2521 return true; 2522 } else { 2523 KnownBits Known; 2524 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2525 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2526 TLO, Depth, AssumeSingleUse)) 2527 return true; 2528 } 2529 break; 2530 } 2531 } 2532 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2533 2534 // Constant fold all undef cases. 2535 // TODO: Handle zero cases as well. 2536 if (DemandedElts.isSubsetOf(KnownUndef)) 2537 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2538 2539 return false; 2540 } 2541 2542 /// Determine which of the bits specified in Mask are known to be either zero or 2543 /// one and return them in the Known. 2544 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2545 KnownBits &Known, 2546 const APInt &DemandedElts, 2547 const SelectionDAG &DAG, 2548 unsigned Depth) const { 2549 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2550 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2551 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2552 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2553 "Should use MaskedValueIsZero if you don't know whether Op" 2554 " is a target node!"); 2555 Known.resetAll(); 2556 } 2557 2558 void TargetLowering::computeKnownBitsForTargetInstr( 2559 Register R, KnownBits &Known, const APInt &DemandedElts, 2560 const MachineRegisterInfo &MRI, unsigned Depth) const { 2561 Known.resetAll(); 2562 } 2563 2564 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2565 KnownBits &Known, 2566 const APInt &DemandedElts, 2567 const SelectionDAG &DAG, 2568 unsigned Depth) const { 2569 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2570 2571 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2572 // The low bits are known zero if the pointer is aligned. 2573 Known.Zero.setLowBits(Log2_32(Align)); 2574 } 2575 } 2576 2577 /// This method can be implemented by targets that want to expose additional 2578 /// information about sign bits to the DAG Combiner. 2579 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2580 const APInt &, 2581 const SelectionDAG &, 2582 unsigned Depth) const { 2583 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2584 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2585 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2586 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2587 "Should use ComputeNumSignBits if you don't know whether Op" 2588 " is a target node!"); 2589 return 1; 2590 } 2591 2592 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2593 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2594 TargetLoweringOpt &TLO, unsigned Depth) const { 2595 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2596 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2597 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2598 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2599 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2600 " is a target node!"); 2601 return false; 2602 } 2603 2604 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2605 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2606 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2607 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2608 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2609 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2610 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2611 "Should use SimplifyDemandedBits if you don't know whether Op" 2612 " is a target node!"); 2613 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2614 return false; 2615 } 2616 2617 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2618 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2619 SelectionDAG &DAG, unsigned Depth) const { 2620 assert( 2621 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2622 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2623 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2624 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2625 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2626 " is a target node!"); 2627 return SDValue(); 2628 } 2629 2630 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2631 return nullptr; 2632 } 2633 2634 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2635 const SelectionDAG &DAG, 2636 bool SNaN, 2637 unsigned Depth) const { 2638 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2639 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2640 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2641 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2642 "Should use isKnownNeverNaN if you don't know whether Op" 2643 " is a target node!"); 2644 return false; 2645 } 2646 2647 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2648 // work with truncating build vectors and vectors with elements of less than 2649 // 8 bits. 2650 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2651 if (!N) 2652 return false; 2653 2654 APInt CVal; 2655 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2656 CVal = CN->getAPIntValue(); 2657 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2658 auto *CN = BV->getConstantSplatNode(); 2659 if (!CN) 2660 return false; 2661 2662 // If this is a truncating build vector, truncate the splat value. 2663 // Otherwise, we may fail to match the expected values below. 2664 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2665 CVal = CN->getAPIntValue(); 2666 if (BVEltWidth < CVal.getBitWidth()) 2667 CVal = CVal.trunc(BVEltWidth); 2668 } else { 2669 return false; 2670 } 2671 2672 switch (getBooleanContents(N->getValueType(0))) { 2673 case UndefinedBooleanContent: 2674 return CVal[0]; 2675 case ZeroOrOneBooleanContent: 2676 return CVal.isOneValue(); 2677 case ZeroOrNegativeOneBooleanContent: 2678 return CVal.isAllOnesValue(); 2679 } 2680 2681 llvm_unreachable("Invalid boolean contents"); 2682 } 2683 2684 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2685 if (!N) 2686 return false; 2687 2688 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2689 if (!CN) { 2690 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2691 if (!BV) 2692 return false; 2693 2694 // Only interested in constant splats, we don't care about undef 2695 // elements in identifying boolean constants and getConstantSplatNode 2696 // returns NULL if all ops are undef; 2697 CN = BV->getConstantSplatNode(); 2698 if (!CN) 2699 return false; 2700 } 2701 2702 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2703 return !CN->getAPIntValue()[0]; 2704 2705 return CN->isNullValue(); 2706 } 2707 2708 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2709 bool SExt) const { 2710 if (VT == MVT::i1) 2711 return N->isOne(); 2712 2713 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2714 switch (Cnt) { 2715 case TargetLowering::ZeroOrOneBooleanContent: 2716 // An extended value of 1 is always true, unless its original type is i1, 2717 // in which case it will be sign extended to -1. 2718 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2719 case TargetLowering::UndefinedBooleanContent: 2720 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2721 return N->isAllOnesValue() && SExt; 2722 } 2723 llvm_unreachable("Unexpected enumeration."); 2724 } 2725 2726 /// This helper function of SimplifySetCC tries to optimize the comparison when 2727 /// either operand of the SetCC node is a bitwise-and instruction. 2728 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2729 ISD::CondCode Cond, const SDLoc &DL, 2730 DAGCombinerInfo &DCI) const { 2731 // Match these patterns in any of their permutations: 2732 // (X & Y) == Y 2733 // (X & Y) != Y 2734 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2735 std::swap(N0, N1); 2736 2737 EVT OpVT = N0.getValueType(); 2738 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2739 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2740 return SDValue(); 2741 2742 SDValue X, Y; 2743 if (N0.getOperand(0) == N1) { 2744 X = N0.getOperand(1); 2745 Y = N0.getOperand(0); 2746 } else if (N0.getOperand(1) == N1) { 2747 X = N0.getOperand(0); 2748 Y = N0.getOperand(1); 2749 } else { 2750 return SDValue(); 2751 } 2752 2753 SelectionDAG &DAG = DCI.DAG; 2754 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2755 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2756 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2757 // Note that where Y is variable and is known to have at most one bit set 2758 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2759 // equivalent when Y == 0. 2760 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2761 if (DCI.isBeforeLegalizeOps() || 2762 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2763 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2764 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2765 // If the target supports an 'and-not' or 'and-complement' logic operation, 2766 // try to use that to make a comparison operation more efficient. 2767 // But don't do this transform if the mask is a single bit because there are 2768 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2769 // 'rlwinm' on PPC). 2770 2771 // Bail out if the compare operand that we want to turn into a zero is 2772 // already a zero (otherwise, infinite loop). 2773 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2774 if (YConst && YConst->isNullValue()) 2775 return SDValue(); 2776 2777 // Transform this into: ~X & Y == 0. 2778 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2779 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2780 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2781 } 2782 2783 return SDValue(); 2784 } 2785 2786 /// There are multiple IR patterns that could be checking whether certain 2787 /// truncation of a signed number would be lossy or not. The pattern which is 2788 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2789 /// We are looking for the following pattern: (KeptBits is a constant) 2790 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2791 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2792 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2793 /// We will unfold it into the natural trunc+sext pattern: 2794 /// ((%x << C) a>> C) dstcond %x 2795 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2796 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2797 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2798 const SDLoc &DL) const { 2799 // We must be comparing with a constant. 2800 ConstantSDNode *C1; 2801 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2802 return SDValue(); 2803 2804 // N0 should be: add %x, (1 << (KeptBits-1)) 2805 if (N0->getOpcode() != ISD::ADD) 2806 return SDValue(); 2807 2808 // And we must be 'add'ing a constant. 2809 ConstantSDNode *C01; 2810 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2811 return SDValue(); 2812 2813 SDValue X = N0->getOperand(0); 2814 EVT XVT = X.getValueType(); 2815 2816 // Validate constants ... 2817 2818 APInt I1 = C1->getAPIntValue(); 2819 2820 ISD::CondCode NewCond; 2821 if (Cond == ISD::CondCode::SETULT) { 2822 NewCond = ISD::CondCode::SETEQ; 2823 } else if (Cond == ISD::CondCode::SETULE) { 2824 NewCond = ISD::CondCode::SETEQ; 2825 // But need to 'canonicalize' the constant. 2826 I1 += 1; 2827 } else if (Cond == ISD::CondCode::SETUGT) { 2828 NewCond = ISD::CondCode::SETNE; 2829 // But need to 'canonicalize' the constant. 2830 I1 += 1; 2831 } else if (Cond == ISD::CondCode::SETUGE) { 2832 NewCond = ISD::CondCode::SETNE; 2833 } else 2834 return SDValue(); 2835 2836 APInt I01 = C01->getAPIntValue(); 2837 2838 auto checkConstants = [&I1, &I01]() -> bool { 2839 // Both of them must be power-of-two, and the constant from setcc is bigger. 2840 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2841 }; 2842 2843 if (checkConstants()) { 2844 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2845 } else { 2846 // What if we invert constants? (and the target predicate) 2847 I1.negate(); 2848 I01.negate(); 2849 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2850 if (!checkConstants()) 2851 return SDValue(); 2852 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2853 } 2854 2855 // They are power-of-two, so which bit is set? 2856 const unsigned KeptBits = I1.logBase2(); 2857 const unsigned KeptBitsMinusOne = I01.logBase2(); 2858 2859 // Magic! 2860 if (KeptBits != (KeptBitsMinusOne + 1)) 2861 return SDValue(); 2862 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2863 2864 // We don't want to do this in every single case. 2865 SelectionDAG &DAG = DCI.DAG; 2866 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2867 XVT, KeptBits)) 2868 return SDValue(); 2869 2870 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2871 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2872 2873 // Unfold into: ((%x << C) a>> C) cond %x 2874 // Where 'cond' will be either 'eq' or 'ne'. 2875 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2876 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2877 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2878 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2879 2880 return T2; 2881 } 2882 2883 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 2884 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 2885 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 2886 DAGCombinerInfo &DCI, const SDLoc &DL) const { 2887 assert(isConstOrConstSplat(N1C) && 2888 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 2889 "Should be a comparison with 0."); 2890 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2891 "Valid only for [in]equality comparisons."); 2892 2893 unsigned NewShiftOpcode; 2894 SDValue X, C, Y; 2895 2896 SelectionDAG &DAG = DCI.DAG; 2897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2898 2899 // Look for '(C l>>/<< Y)'. 2900 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 2901 // The shift should be one-use. 2902 if (!V.hasOneUse()) 2903 return false; 2904 unsigned OldShiftOpcode = V.getOpcode(); 2905 switch (OldShiftOpcode) { 2906 case ISD::SHL: 2907 NewShiftOpcode = ISD::SRL; 2908 break; 2909 case ISD::SRL: 2910 NewShiftOpcode = ISD::SHL; 2911 break; 2912 default: 2913 return false; // must be a logical shift. 2914 } 2915 // We should be shifting a constant. 2916 // FIXME: best to use isConstantOrConstantVector(). 2917 C = V.getOperand(0); 2918 ConstantSDNode *CC = 2919 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2920 if (!CC) 2921 return false; 2922 Y = V.getOperand(1); 2923 2924 ConstantSDNode *XC = 2925 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2926 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 2927 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 2928 }; 2929 2930 // LHS of comparison should be an one-use 'and'. 2931 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 2932 return SDValue(); 2933 2934 X = N0.getOperand(0); 2935 SDValue Mask = N0.getOperand(1); 2936 2937 // 'and' is commutative! 2938 if (!Match(Mask)) { 2939 std::swap(X, Mask); 2940 if (!Match(Mask)) 2941 return SDValue(); 2942 } 2943 2944 EVT VT = X.getValueType(); 2945 2946 // Produce: 2947 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 2948 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 2949 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 2950 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 2951 return T2; 2952 } 2953 2954 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2955 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2956 /// handle the commuted versions of these patterns. 2957 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2958 ISD::CondCode Cond, const SDLoc &DL, 2959 DAGCombinerInfo &DCI) const { 2960 unsigned BOpcode = N0.getOpcode(); 2961 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2962 "Unexpected binop"); 2963 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2964 2965 // (X + Y) == X --> Y == 0 2966 // (X - Y) == X --> Y == 0 2967 // (X ^ Y) == X --> Y == 0 2968 SelectionDAG &DAG = DCI.DAG; 2969 EVT OpVT = N0.getValueType(); 2970 SDValue X = N0.getOperand(0); 2971 SDValue Y = N0.getOperand(1); 2972 if (X == N1) 2973 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2974 2975 if (Y != N1) 2976 return SDValue(); 2977 2978 // (X + Y) == Y --> X == 0 2979 // (X ^ Y) == Y --> X == 0 2980 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2981 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2982 2983 // The shift would not be valid if the operands are boolean (i1). 2984 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2985 return SDValue(); 2986 2987 // (X - Y) == Y --> X == Y << 1 2988 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2989 !DCI.isBeforeLegalize()); 2990 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2991 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2992 if (!DCI.isCalledByLegalizer()) 2993 DCI.AddToWorklist(YShl1.getNode()); 2994 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2995 } 2996 2997 /// Try to simplify a setcc built with the specified operands and cc. If it is 2998 /// unable to simplify it, return a null SDValue. 2999 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3000 ISD::CondCode Cond, bool foldBooleans, 3001 DAGCombinerInfo &DCI, 3002 const SDLoc &dl) const { 3003 SelectionDAG &DAG = DCI.DAG; 3004 EVT OpVT = N0.getValueType(); 3005 3006 // Constant fold or commute setcc. 3007 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3008 return Fold; 3009 3010 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3011 // TODO: Handle non-splat vector constants. All undef causes trouble. 3012 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3013 if (isConstOrConstSplat(N0) && 3014 (DCI.isBeforeLegalizeOps() || 3015 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3016 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3017 3018 // If we have a subtract with the same 2 non-constant operands as this setcc 3019 // -- but in reverse order -- then try to commute the operands of this setcc 3020 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3021 // instruction on some targets. 3022 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3023 (DCI.isBeforeLegalizeOps() || 3024 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3025 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3026 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3027 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3028 3029 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3030 const APInt &C1 = N1C->getAPIntValue(); 3031 3032 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3033 // equality comparison, then we're just comparing whether X itself is 3034 // zero. 3035 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3036 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3037 N0.getOperand(1).getOpcode() == ISD::Constant) { 3038 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3039 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3040 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3041 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3042 // (srl (ctlz x), 5) == 0 -> X != 0 3043 // (srl (ctlz x), 5) != 1 -> X != 0 3044 Cond = ISD::SETNE; 3045 } else { 3046 // (srl (ctlz x), 5) != 0 -> X == 0 3047 // (srl (ctlz x), 5) == 1 -> X == 0 3048 Cond = ISD::SETEQ; 3049 } 3050 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3051 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3052 Zero, Cond); 3053 } 3054 } 3055 3056 SDValue CTPOP = N0; 3057 // Look through truncs that don't change the value of a ctpop. 3058 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3059 CTPOP = N0.getOperand(0); 3060 3061 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3062 (N0 == CTPOP || 3063 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3064 EVT CTVT = CTPOP.getValueType(); 3065 SDValue CTOp = CTPOP.getOperand(0); 3066 3067 // (ctpop x) u< 2 -> (x & x-1) == 0 3068 // (ctpop x) u> 1 -> (x & x-1) != 0 3069 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3070 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3071 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3072 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3073 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3074 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3075 } 3076 3077 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3078 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3079 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3080 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3081 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3082 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3083 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3084 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true); 3085 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3086 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3087 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3088 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3089 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3090 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3091 } 3092 } 3093 3094 // (zext x) == C --> x == (trunc C) 3095 // (sext x) == C --> x == (trunc C) 3096 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3097 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3098 unsigned MinBits = N0.getValueSizeInBits(); 3099 SDValue PreExt; 3100 bool Signed = false; 3101 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3102 // ZExt 3103 MinBits = N0->getOperand(0).getValueSizeInBits(); 3104 PreExt = N0->getOperand(0); 3105 } else if (N0->getOpcode() == ISD::AND) { 3106 // DAGCombine turns costly ZExts into ANDs 3107 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3108 if ((C->getAPIntValue()+1).isPowerOf2()) { 3109 MinBits = C->getAPIntValue().countTrailingOnes(); 3110 PreExt = N0->getOperand(0); 3111 } 3112 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3113 // SExt 3114 MinBits = N0->getOperand(0).getValueSizeInBits(); 3115 PreExt = N0->getOperand(0); 3116 Signed = true; 3117 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3118 // ZEXTLOAD / SEXTLOAD 3119 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3120 MinBits = LN0->getMemoryVT().getSizeInBits(); 3121 PreExt = N0; 3122 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3123 Signed = true; 3124 MinBits = LN0->getMemoryVT().getSizeInBits(); 3125 PreExt = N0; 3126 } 3127 } 3128 3129 // Figure out how many bits we need to preserve this constant. 3130 unsigned ReqdBits = Signed ? 3131 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3132 C1.getActiveBits(); 3133 3134 // Make sure we're not losing bits from the constant. 3135 if (MinBits > 0 && 3136 MinBits < C1.getBitWidth() && 3137 MinBits >= ReqdBits) { 3138 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3139 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3140 // Will get folded away. 3141 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3142 if (MinBits == 1 && C1 == 1) 3143 // Invert the condition. 3144 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3145 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3146 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3147 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3148 } 3149 3150 // If truncating the setcc operands is not desirable, we can still 3151 // simplify the expression in some cases: 3152 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3153 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3154 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3155 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3156 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3157 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3158 SDValue TopSetCC = N0->getOperand(0); 3159 unsigned N0Opc = N0->getOpcode(); 3160 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3161 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3162 TopSetCC.getOpcode() == ISD::SETCC && 3163 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3164 (isConstFalseVal(N1C) || 3165 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3166 3167 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3168 (!N1C->isNullValue() && Cond == ISD::SETNE); 3169 3170 if (!Inverse) 3171 return TopSetCC; 3172 3173 ISD::CondCode InvCond = ISD::getSetCCInverse( 3174 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3175 TopSetCC.getOperand(0).getValueType().isInteger()); 3176 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3177 TopSetCC.getOperand(1), 3178 InvCond); 3179 } 3180 } 3181 } 3182 3183 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3184 // equality or unsigned, and all 1 bits of the const are in the same 3185 // partial word, see if we can shorten the load. 3186 if (DCI.isBeforeLegalize() && 3187 !ISD::isSignedIntSetCC(Cond) && 3188 N0.getOpcode() == ISD::AND && C1 == 0 && 3189 N0.getNode()->hasOneUse() && 3190 isa<LoadSDNode>(N0.getOperand(0)) && 3191 N0.getOperand(0).getNode()->hasOneUse() && 3192 isa<ConstantSDNode>(N0.getOperand(1))) { 3193 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3194 APInt bestMask; 3195 unsigned bestWidth = 0, bestOffset = 0; 3196 if (!Lod->isVolatile() && Lod->isUnindexed()) { 3197 unsigned origWidth = N0.getValueSizeInBits(); 3198 unsigned maskWidth = origWidth; 3199 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3200 // 8 bits, but have to be careful... 3201 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3202 origWidth = Lod->getMemoryVT().getSizeInBits(); 3203 const APInt &Mask = N0.getConstantOperandAPInt(1); 3204 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3205 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3206 for (unsigned offset=0; offset<origWidth/width; offset++) { 3207 if (Mask.isSubsetOf(newMask)) { 3208 if (DAG.getDataLayout().isLittleEndian()) 3209 bestOffset = (uint64_t)offset * (width/8); 3210 else 3211 bestOffset = (origWidth/width - offset - 1) * (width/8); 3212 bestMask = Mask.lshr(offset * (width/8) * 8); 3213 bestWidth = width; 3214 break; 3215 } 3216 newMask <<= width; 3217 } 3218 } 3219 } 3220 if (bestWidth) { 3221 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3222 if (newVT.isRound() && 3223 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3224 EVT PtrType = Lod->getOperand(1).getValueType(); 3225 SDValue Ptr = Lod->getBasePtr(); 3226 if (bestOffset != 0) 3227 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 3228 DAG.getConstant(bestOffset, dl, PtrType)); 3229 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3230 SDValue NewLoad = DAG.getLoad( 3231 newVT, dl, Lod->getChain(), Ptr, 3232 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3233 return DAG.getSetCC(dl, VT, 3234 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3235 DAG.getConstant(bestMask.trunc(bestWidth), 3236 dl, newVT)), 3237 DAG.getConstant(0LL, dl, newVT), Cond); 3238 } 3239 } 3240 } 3241 3242 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3243 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3244 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3245 3246 // If the comparison constant has bits in the upper part, the 3247 // zero-extended value could never match. 3248 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3249 C1.getBitWidth() - InSize))) { 3250 switch (Cond) { 3251 case ISD::SETUGT: 3252 case ISD::SETUGE: 3253 case ISD::SETEQ: 3254 return DAG.getConstant(0, dl, VT); 3255 case ISD::SETULT: 3256 case ISD::SETULE: 3257 case ISD::SETNE: 3258 return DAG.getConstant(1, dl, VT); 3259 case ISD::SETGT: 3260 case ISD::SETGE: 3261 // True if the sign bit of C1 is set. 3262 return DAG.getConstant(C1.isNegative(), dl, VT); 3263 case ISD::SETLT: 3264 case ISD::SETLE: 3265 // True if the sign bit of C1 isn't set. 3266 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3267 default: 3268 break; 3269 } 3270 } 3271 3272 // Otherwise, we can perform the comparison with the low bits. 3273 switch (Cond) { 3274 case ISD::SETEQ: 3275 case ISD::SETNE: 3276 case ISD::SETUGT: 3277 case ISD::SETUGE: 3278 case ISD::SETULT: 3279 case ISD::SETULE: { 3280 EVT newVT = N0.getOperand(0).getValueType(); 3281 if (DCI.isBeforeLegalizeOps() || 3282 (isOperationLegal(ISD::SETCC, newVT) && 3283 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3284 EVT NewSetCCVT = 3285 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 3286 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3287 3288 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3289 NewConst, Cond); 3290 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3291 } 3292 break; 3293 } 3294 default: 3295 break; // todo, be more careful with signed comparisons 3296 } 3297 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3298 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3299 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3300 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3301 EVT ExtDstTy = N0.getValueType(); 3302 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3303 3304 // If the constant doesn't fit into the number of bits for the source of 3305 // the sign extension, it is impossible for both sides to be equal. 3306 if (C1.getMinSignedBits() > ExtSrcTyBits) 3307 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3308 3309 SDValue ZextOp; 3310 EVT Op0Ty = N0.getOperand(0).getValueType(); 3311 if (Op0Ty == ExtSrcTy) { 3312 ZextOp = N0.getOperand(0); 3313 } else { 3314 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3315 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3316 DAG.getConstant(Imm, dl, Op0Ty)); 3317 } 3318 if (!DCI.isCalledByLegalizer()) 3319 DCI.AddToWorklist(ZextOp.getNode()); 3320 // Otherwise, make this a use of a zext. 3321 return DAG.getSetCC(dl, VT, ZextOp, 3322 DAG.getConstant(C1 & APInt::getLowBitsSet( 3323 ExtDstTyBits, 3324 ExtSrcTyBits), 3325 dl, ExtDstTy), 3326 Cond); 3327 } else if ((N1C->isNullValue() || N1C->isOne()) && 3328 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3329 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3330 if (N0.getOpcode() == ISD::SETCC && 3331 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 3332 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3333 if (TrueWhenTrue) 3334 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3335 // Invert the condition. 3336 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3337 CC = ISD::getSetCCInverse(CC, 3338 N0.getOperand(0).getValueType().isInteger()); 3339 if (DCI.isBeforeLegalizeOps() || 3340 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3341 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3342 } 3343 3344 if ((N0.getOpcode() == ISD::XOR || 3345 (N0.getOpcode() == ISD::AND && 3346 N0.getOperand(0).getOpcode() == ISD::XOR && 3347 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3348 isa<ConstantSDNode>(N0.getOperand(1)) && 3349 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3350 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3351 // can only do this if the top bits are known zero. 3352 unsigned BitWidth = N0.getValueSizeInBits(); 3353 if (DAG.MaskedValueIsZero(N0, 3354 APInt::getHighBitsSet(BitWidth, 3355 BitWidth-1))) { 3356 // Okay, get the un-inverted input value. 3357 SDValue Val; 3358 if (N0.getOpcode() == ISD::XOR) { 3359 Val = N0.getOperand(0); 3360 } else { 3361 assert(N0.getOpcode() == ISD::AND && 3362 N0.getOperand(0).getOpcode() == ISD::XOR); 3363 // ((X^1)&1)^1 -> X & 1 3364 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3365 N0.getOperand(0).getOperand(0), 3366 N0.getOperand(1)); 3367 } 3368 3369 return DAG.getSetCC(dl, VT, Val, N1, 3370 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3371 } 3372 } else if (N1C->isOne() && 3373 (VT == MVT::i1 || 3374 getBooleanContents(N0->getValueType(0)) == 3375 ZeroOrOneBooleanContent)) { 3376 SDValue Op0 = N0; 3377 if (Op0.getOpcode() == ISD::TRUNCATE) 3378 Op0 = Op0.getOperand(0); 3379 3380 if ((Op0.getOpcode() == ISD::XOR) && 3381 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3382 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3383 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3384 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3385 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 3386 Cond); 3387 } 3388 if (Op0.getOpcode() == ISD::AND && 3389 isa<ConstantSDNode>(Op0.getOperand(1)) && 3390 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3391 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3392 if (Op0.getValueType().bitsGT(VT)) 3393 Op0 = DAG.getNode(ISD::AND, dl, VT, 3394 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3395 DAG.getConstant(1, dl, VT)); 3396 else if (Op0.getValueType().bitsLT(VT)) 3397 Op0 = DAG.getNode(ISD::AND, dl, VT, 3398 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3399 DAG.getConstant(1, dl, VT)); 3400 3401 return DAG.getSetCC(dl, VT, Op0, 3402 DAG.getConstant(0, dl, Op0.getValueType()), 3403 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3404 } 3405 if (Op0.getOpcode() == ISD::AssertZext && 3406 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3407 return DAG.getSetCC(dl, VT, Op0, 3408 DAG.getConstant(0, dl, Op0.getValueType()), 3409 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3410 } 3411 } 3412 3413 // Given: 3414 // icmp eq/ne (urem %x, %y), 0 3415 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3416 // icmp eq/ne %x, 0 3417 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3418 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3419 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3420 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3421 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3422 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3423 } 3424 3425 if (SDValue V = 3426 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3427 return V; 3428 } 3429 3430 // These simplifications apply to splat vectors as well. 3431 // TODO: Handle more splat vector cases. 3432 if (auto *N1C = isConstOrConstSplat(N1)) { 3433 const APInt &C1 = N1C->getAPIntValue(); 3434 3435 APInt MinVal, MaxVal; 3436 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3437 if (ISD::isSignedIntSetCC(Cond)) { 3438 MinVal = APInt::getSignedMinValue(OperandBitSize); 3439 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3440 } else { 3441 MinVal = APInt::getMinValue(OperandBitSize); 3442 MaxVal = APInt::getMaxValue(OperandBitSize); 3443 } 3444 3445 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3446 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3447 // X >= MIN --> true 3448 if (C1 == MinVal) 3449 return DAG.getBoolConstant(true, dl, VT, OpVT); 3450 3451 if (!VT.isVector()) { // TODO: Support this for vectors. 3452 // X >= C0 --> X > (C0 - 1) 3453 APInt C = C1 - 1; 3454 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3455 if ((DCI.isBeforeLegalizeOps() || 3456 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3457 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3458 isLegalICmpImmediate(C.getSExtValue())))) { 3459 return DAG.getSetCC(dl, VT, N0, 3460 DAG.getConstant(C, dl, N1.getValueType()), 3461 NewCC); 3462 } 3463 } 3464 } 3465 3466 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3467 // X <= MAX --> true 3468 if (C1 == MaxVal) 3469 return DAG.getBoolConstant(true, dl, VT, OpVT); 3470 3471 // X <= C0 --> X < (C0 + 1) 3472 if (!VT.isVector()) { // TODO: Support this for vectors. 3473 APInt C = C1 + 1; 3474 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3475 if ((DCI.isBeforeLegalizeOps() || 3476 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3477 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3478 isLegalICmpImmediate(C.getSExtValue())))) { 3479 return DAG.getSetCC(dl, VT, N0, 3480 DAG.getConstant(C, dl, N1.getValueType()), 3481 NewCC); 3482 } 3483 } 3484 } 3485 3486 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3487 if (C1 == MinVal) 3488 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3489 3490 // TODO: Support this for vectors after legalize ops. 3491 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3492 // Canonicalize setlt X, Max --> setne X, Max 3493 if (C1 == MaxVal) 3494 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3495 3496 // If we have setult X, 1, turn it into seteq X, 0 3497 if (C1 == MinVal+1) 3498 return DAG.getSetCC(dl, VT, N0, 3499 DAG.getConstant(MinVal, dl, N0.getValueType()), 3500 ISD::SETEQ); 3501 } 3502 } 3503 3504 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3505 if (C1 == MaxVal) 3506 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3507 3508 // TODO: Support this for vectors after legalize ops. 3509 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3510 // Canonicalize setgt X, Min --> setne X, Min 3511 if (C1 == MinVal) 3512 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3513 3514 // If we have setugt X, Max-1, turn it into seteq X, Max 3515 if (C1 == MaxVal-1) 3516 return DAG.getSetCC(dl, VT, N0, 3517 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3518 ISD::SETEQ); 3519 } 3520 } 3521 3522 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3523 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3524 if (C1.isNullValue()) 3525 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3526 VT, N0, N1, Cond, DCI, dl)) 3527 return CC; 3528 } 3529 3530 // If we have "setcc X, C0", check to see if we can shrink the immediate 3531 // by changing cc. 3532 // TODO: Support this for vectors after legalize ops. 3533 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3534 // SETUGT X, SINTMAX -> SETLT X, 0 3535 if (Cond == ISD::SETUGT && 3536 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3537 return DAG.getSetCC(dl, VT, N0, 3538 DAG.getConstant(0, dl, N1.getValueType()), 3539 ISD::SETLT); 3540 3541 // SETULT X, SINTMIN -> SETGT X, -1 3542 if (Cond == ISD::SETULT && 3543 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3544 SDValue ConstMinusOne = 3545 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3546 N1.getValueType()); 3547 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3548 } 3549 } 3550 } 3551 3552 // Back to non-vector simplifications. 3553 // TODO: Can we do these for vector splats? 3554 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3555 const APInt &C1 = N1C->getAPIntValue(); 3556 3557 // Fold bit comparisons when we can. 3558 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3559 (VT == N0.getValueType() || 3560 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 3561 N0.getOpcode() == ISD::AND) { 3562 auto &DL = DAG.getDataLayout(); 3563 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3564 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3565 !DCI.isBeforeLegalize()); 3566 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3567 // Perform the xform if the AND RHS is a single bit. 3568 if (AndRHS->getAPIntValue().isPowerOf2()) { 3569 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3570 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3571 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 3572 ShiftTy))); 3573 } 3574 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3575 // (X & 8) == 8 --> (X & 8) >> 3 3576 // Perform the xform if C1 is a single bit. 3577 if (C1.isPowerOf2()) { 3578 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3579 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3580 DAG.getConstant(C1.logBase2(), dl, 3581 ShiftTy))); 3582 } 3583 } 3584 } 3585 } 3586 3587 if (C1.getMinSignedBits() <= 64 && 3588 !isLegalICmpImmediate(C1.getSExtValue())) { 3589 // (X & -256) == 256 -> (X >> 8) == 1 3590 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3591 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3592 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3593 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3594 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3595 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3596 auto &DL = DAG.getDataLayout(); 3597 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3598 !DCI.isBeforeLegalize()); 3599 EVT CmpTy = N0.getValueType(); 3600 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 3601 DAG.getConstant(ShiftBits, dl, 3602 ShiftTy)); 3603 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 3604 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3605 } 3606 } 3607 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3608 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3609 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3610 // X < 0x100000000 -> (X >> 32) < 1 3611 // X >= 0x100000000 -> (X >> 32) >= 1 3612 // X <= 0x0ffffffff -> (X >> 32) < 1 3613 // X > 0x0ffffffff -> (X >> 32) >= 1 3614 unsigned ShiftBits; 3615 APInt NewC = C1; 3616 ISD::CondCode NewCond = Cond; 3617 if (AdjOne) { 3618 ShiftBits = C1.countTrailingOnes(); 3619 NewC = NewC + 1; 3620 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3621 } else { 3622 ShiftBits = C1.countTrailingZeros(); 3623 } 3624 NewC.lshrInPlace(ShiftBits); 3625 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3626 isLegalICmpImmediate(NewC.getSExtValue())) { 3627 auto &DL = DAG.getDataLayout(); 3628 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3629 !DCI.isBeforeLegalize()); 3630 EVT CmpTy = N0.getValueType(); 3631 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 3632 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3633 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 3634 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3635 } 3636 } 3637 } 3638 } 3639 3640 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3641 auto *CFP = cast<ConstantFPSDNode>(N1); 3642 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3643 3644 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3645 // constant if knowing that the operand is non-nan is enough. We prefer to 3646 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3647 // materialize 0.0. 3648 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3649 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3650 3651 // setcc (fneg x), C -> setcc swap(pred) x, -C 3652 if (N0.getOpcode() == ISD::FNEG) { 3653 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3654 if (DCI.isBeforeLegalizeOps() || 3655 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3656 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3657 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3658 } 3659 } 3660 3661 // If the condition is not legal, see if we can find an equivalent one 3662 // which is legal. 3663 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3664 // If the comparison was an awkward floating-point == or != and one of 3665 // the comparison operands is infinity or negative infinity, convert the 3666 // condition to a less-awkward <= or >=. 3667 if (CFP->getValueAPF().isInfinity()) { 3668 if (CFP->getValueAPF().isNegative()) { 3669 if (Cond == ISD::SETOEQ && 3670 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3671 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3672 if (Cond == ISD::SETUEQ && 3673 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3674 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3675 if (Cond == ISD::SETUNE && 3676 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3677 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3678 if (Cond == ISD::SETONE && 3679 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3680 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3681 } else { 3682 if (Cond == ISD::SETOEQ && 3683 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3684 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3685 if (Cond == ISD::SETUEQ && 3686 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3687 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3688 if (Cond == ISD::SETUNE && 3689 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3690 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3691 if (Cond == ISD::SETONE && 3692 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3693 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3694 } 3695 } 3696 } 3697 } 3698 3699 if (N0 == N1) { 3700 // The sext(setcc()) => setcc() optimization relies on the appropriate 3701 // constant being emitted. 3702 assert(!N0.getValueType().isInteger() && 3703 "Integer types should be handled by FoldSetCC"); 3704 3705 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3706 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3707 if (UOF == 2) // FP operators that are undefined on NaNs. 3708 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3709 if (UOF == unsigned(EqTrue)) 3710 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3711 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3712 // if it is not already. 3713 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3714 if (NewCond != Cond && 3715 (DCI.isBeforeLegalizeOps() || 3716 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3717 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3718 } 3719 3720 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3721 N0.getValueType().isInteger()) { 3722 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3723 N0.getOpcode() == ISD::XOR) { 3724 // Simplify (X+Y) == (X+Z) --> Y == Z 3725 if (N0.getOpcode() == N1.getOpcode()) { 3726 if (N0.getOperand(0) == N1.getOperand(0)) 3727 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3728 if (N0.getOperand(1) == N1.getOperand(1)) 3729 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3730 if (isCommutativeBinOp(N0.getOpcode())) { 3731 // If X op Y == Y op X, try other combinations. 3732 if (N0.getOperand(0) == N1.getOperand(1)) 3733 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3734 Cond); 3735 if (N0.getOperand(1) == N1.getOperand(0)) 3736 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3737 Cond); 3738 } 3739 } 3740 3741 // If RHS is a legal immediate value for a compare instruction, we need 3742 // to be careful about increasing register pressure needlessly. 3743 bool LegalRHSImm = false; 3744 3745 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3746 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3747 // Turn (X+C1) == C2 --> X == C2-C1 3748 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3749 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3750 DAG.getConstant(RHSC->getAPIntValue()- 3751 LHSR->getAPIntValue(), 3752 dl, N0.getValueType()), Cond); 3753 } 3754 3755 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3756 if (N0.getOpcode() == ISD::XOR) 3757 // If we know that all of the inverted bits are zero, don't bother 3758 // performing the inversion. 3759 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3760 return 3761 DAG.getSetCC(dl, VT, N0.getOperand(0), 3762 DAG.getConstant(LHSR->getAPIntValue() ^ 3763 RHSC->getAPIntValue(), 3764 dl, N0.getValueType()), 3765 Cond); 3766 } 3767 3768 // Turn (C1-X) == C2 --> X == C1-C2 3769 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3770 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3771 return 3772 DAG.getSetCC(dl, VT, N0.getOperand(1), 3773 DAG.getConstant(SUBC->getAPIntValue() - 3774 RHSC->getAPIntValue(), 3775 dl, N0.getValueType()), 3776 Cond); 3777 } 3778 } 3779 3780 // Could RHSC fold directly into a compare? 3781 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3782 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3783 } 3784 3785 // (X+Y) == X --> Y == 0 and similar folds. 3786 // Don't do this if X is an immediate that can fold into a cmp 3787 // instruction and X+Y has other uses. It could be an induction variable 3788 // chain, and the transform would increase register pressure. 3789 if (!LegalRHSImm || N0.hasOneUse()) 3790 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3791 return V; 3792 } 3793 3794 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3795 N1.getOpcode() == ISD::XOR) 3796 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3797 return V; 3798 3799 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3800 return V; 3801 } 3802 3803 // Fold remainder of division by a constant. 3804 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3805 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3806 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3807 3808 // When division is cheap or optimizing for minimum size, 3809 // fall through to DIVREM creation by skipping this fold. 3810 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3811 if (N0.getOpcode() == ISD::UREM) { 3812 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3813 return Folded; 3814 } else if (N0.getOpcode() == ISD::SREM) { 3815 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3816 return Folded; 3817 } 3818 } 3819 } 3820 3821 // Fold away ALL boolean setcc's. 3822 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3823 SDValue Temp; 3824 switch (Cond) { 3825 default: llvm_unreachable("Unknown integer setcc!"); 3826 case ISD::SETEQ: // X == Y -> ~(X^Y) 3827 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3828 N0 = DAG.getNOT(dl, Temp, OpVT); 3829 if (!DCI.isCalledByLegalizer()) 3830 DCI.AddToWorklist(Temp.getNode()); 3831 break; 3832 case ISD::SETNE: // X != Y --> (X^Y) 3833 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3834 break; 3835 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3836 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3837 Temp = DAG.getNOT(dl, N0, OpVT); 3838 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3839 if (!DCI.isCalledByLegalizer()) 3840 DCI.AddToWorklist(Temp.getNode()); 3841 break; 3842 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3843 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3844 Temp = DAG.getNOT(dl, N1, OpVT); 3845 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3846 if (!DCI.isCalledByLegalizer()) 3847 DCI.AddToWorklist(Temp.getNode()); 3848 break; 3849 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3850 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3851 Temp = DAG.getNOT(dl, N0, OpVT); 3852 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3853 if (!DCI.isCalledByLegalizer()) 3854 DCI.AddToWorklist(Temp.getNode()); 3855 break; 3856 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3857 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3858 Temp = DAG.getNOT(dl, N1, OpVT); 3859 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3860 break; 3861 } 3862 if (VT.getScalarType() != MVT::i1) { 3863 if (!DCI.isCalledByLegalizer()) 3864 DCI.AddToWorklist(N0.getNode()); 3865 // FIXME: If running after legalize, we probably can't do this. 3866 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3867 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3868 } 3869 return N0; 3870 } 3871 3872 // Could not fold it. 3873 return SDValue(); 3874 } 3875 3876 /// Returns true (and the GlobalValue and the offset) if the node is a 3877 /// GlobalAddress + offset. 3878 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3879 int64_t &Offset) const { 3880 3881 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3882 3883 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3884 GA = GASD->getGlobal(); 3885 Offset += GASD->getOffset(); 3886 return true; 3887 } 3888 3889 if (N->getOpcode() == ISD::ADD) { 3890 SDValue N1 = N->getOperand(0); 3891 SDValue N2 = N->getOperand(1); 3892 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3893 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3894 Offset += V->getSExtValue(); 3895 return true; 3896 } 3897 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3898 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3899 Offset += V->getSExtValue(); 3900 return true; 3901 } 3902 } 3903 } 3904 3905 return false; 3906 } 3907 3908 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3909 DAGCombinerInfo &DCI) const { 3910 // Default implementation: no optimization. 3911 return SDValue(); 3912 } 3913 3914 //===----------------------------------------------------------------------===// 3915 // Inline Assembler Implementation Methods 3916 //===----------------------------------------------------------------------===// 3917 3918 TargetLowering::ConstraintType 3919 TargetLowering::getConstraintType(StringRef Constraint) const { 3920 unsigned S = Constraint.size(); 3921 3922 if (S == 1) { 3923 switch (Constraint[0]) { 3924 default: break; 3925 case 'r': 3926 return C_RegisterClass; 3927 case 'm': // memory 3928 case 'o': // offsetable 3929 case 'V': // not offsetable 3930 return C_Memory; 3931 case 'n': // Simple Integer 3932 case 'E': // Floating Point Constant 3933 case 'F': // Floating Point Constant 3934 return C_Immediate; 3935 case 'i': // Simple Integer or Relocatable Constant 3936 case 's': // Relocatable Constant 3937 case 'p': // Address. 3938 case 'X': // Allow ANY value. 3939 case 'I': // Target registers. 3940 case 'J': 3941 case 'K': 3942 case 'L': 3943 case 'M': 3944 case 'N': 3945 case 'O': 3946 case 'P': 3947 case '<': 3948 case '>': 3949 return C_Other; 3950 } 3951 } 3952 3953 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3954 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3955 return C_Memory; 3956 return C_Register; 3957 } 3958 return C_Unknown; 3959 } 3960 3961 /// Try to replace an X constraint, which matches anything, with another that 3962 /// has more specific requirements based on the type of the corresponding 3963 /// operand. 3964 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3965 if (ConstraintVT.isInteger()) 3966 return "r"; 3967 if (ConstraintVT.isFloatingPoint()) 3968 return "f"; // works for many targets 3969 return nullptr; 3970 } 3971 3972 SDValue TargetLowering::LowerAsmOutputForConstraint( 3973 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3974 SelectionDAG &DAG) const { 3975 return SDValue(); 3976 } 3977 3978 /// Lower the specified operand into the Ops vector. 3979 /// If it is invalid, don't add anything to Ops. 3980 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3981 std::string &Constraint, 3982 std::vector<SDValue> &Ops, 3983 SelectionDAG &DAG) const { 3984 3985 if (Constraint.length() > 1) return; 3986 3987 char ConstraintLetter = Constraint[0]; 3988 switch (ConstraintLetter) { 3989 default: break; 3990 case 'X': // Allows any operand; labels (basic block) use this. 3991 if (Op.getOpcode() == ISD::BasicBlock || 3992 Op.getOpcode() == ISD::TargetBlockAddress) { 3993 Ops.push_back(Op); 3994 return; 3995 } 3996 LLVM_FALLTHROUGH; 3997 case 'i': // Simple Integer or Relocatable Constant 3998 case 'n': // Simple Integer 3999 case 's': { // Relocatable Constant 4000 4001 GlobalAddressSDNode *GA; 4002 ConstantSDNode *C; 4003 BlockAddressSDNode *BA; 4004 uint64_t Offset = 0; 4005 4006 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4007 // etc., since getelementpointer is variadic. We can't use 4008 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4009 // while in this case the GA may be furthest from the root node which is 4010 // likely an ISD::ADD. 4011 while (1) { 4012 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4013 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4014 GA->getValueType(0), 4015 Offset + GA->getOffset())); 4016 return; 4017 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4018 ConstraintLetter != 's') { 4019 // gcc prints these as sign extended. Sign extend value to 64 bits 4020 // now; without this it would get ZExt'd later in 4021 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4022 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4023 BooleanContent BCont = getBooleanContents(MVT::i64); 4024 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4025 : ISD::SIGN_EXTEND; 4026 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4027 : C->getSExtValue(); 4028 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4029 SDLoc(C), MVT::i64)); 4030 return; 4031 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4032 ConstraintLetter != 'n') { 4033 Ops.push_back(DAG.getTargetBlockAddress( 4034 BA->getBlockAddress(), BA->getValueType(0), 4035 Offset + BA->getOffset(), BA->getTargetFlags())); 4036 return; 4037 } else { 4038 const unsigned OpCode = Op.getOpcode(); 4039 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4040 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4041 Op = Op.getOperand(1); 4042 // Subtraction is not commutative. 4043 else if (OpCode == ISD::ADD && 4044 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4045 Op = Op.getOperand(0); 4046 else 4047 return; 4048 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4049 continue; 4050 } 4051 } 4052 return; 4053 } 4054 break; 4055 } 4056 } 4057 } 4058 4059 std::pair<unsigned, const TargetRegisterClass *> 4060 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4061 StringRef Constraint, 4062 MVT VT) const { 4063 if (Constraint.empty() || Constraint[0] != '{') 4064 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4065 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4066 4067 // Remove the braces from around the name. 4068 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4069 4070 std::pair<unsigned, const TargetRegisterClass *> R = 4071 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4072 4073 // Figure out which register class contains this reg. 4074 for (const TargetRegisterClass *RC : RI->regclasses()) { 4075 // If none of the value types for this register class are valid, we 4076 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4077 if (!isLegalRC(*RI, *RC)) 4078 continue; 4079 4080 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4081 I != E; ++I) { 4082 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4083 std::pair<unsigned, const TargetRegisterClass *> S = 4084 std::make_pair(*I, RC); 4085 4086 // If this register class has the requested value type, return it, 4087 // otherwise keep searching and return the first class found 4088 // if no other is found which explicitly has the requested type. 4089 if (RI->isTypeLegalForClass(*RC, VT)) 4090 return S; 4091 if (!R.second) 4092 R = S; 4093 } 4094 } 4095 } 4096 4097 return R; 4098 } 4099 4100 //===----------------------------------------------------------------------===// 4101 // Constraint Selection. 4102 4103 /// Return true of this is an input operand that is a matching constraint like 4104 /// "4". 4105 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4106 assert(!ConstraintCode.empty() && "No known constraint!"); 4107 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4108 } 4109 4110 /// If this is an input matching constraint, this method returns the output 4111 /// operand it matches. 4112 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4113 assert(!ConstraintCode.empty() && "No known constraint!"); 4114 return atoi(ConstraintCode.c_str()); 4115 } 4116 4117 /// Split up the constraint string from the inline assembly value into the 4118 /// specific constraints and their prefixes, and also tie in the associated 4119 /// operand values. 4120 /// If this returns an empty vector, and if the constraint string itself 4121 /// isn't empty, there was an error parsing. 4122 TargetLowering::AsmOperandInfoVector 4123 TargetLowering::ParseConstraints(const DataLayout &DL, 4124 const TargetRegisterInfo *TRI, 4125 ImmutableCallSite CS) const { 4126 /// Information about all of the constraints. 4127 AsmOperandInfoVector ConstraintOperands; 4128 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4129 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4130 4131 // Do a prepass over the constraints, canonicalizing them, and building up the 4132 // ConstraintOperands list. 4133 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4134 unsigned ResNo = 0; // ResNo - The result number of the next output. 4135 4136 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4137 ConstraintOperands.emplace_back(std::move(CI)); 4138 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4139 4140 // Update multiple alternative constraint count. 4141 if (OpInfo.multipleAlternatives.size() > maCount) 4142 maCount = OpInfo.multipleAlternatives.size(); 4143 4144 OpInfo.ConstraintVT = MVT::Other; 4145 4146 // Compute the value type for each operand. 4147 switch (OpInfo.Type) { 4148 case InlineAsm::isOutput: 4149 // Indirect outputs just consume an argument. 4150 if (OpInfo.isIndirect) { 4151 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4152 break; 4153 } 4154 4155 // The return value of the call is this value. As such, there is no 4156 // corresponding argument. 4157 assert(!CS.getType()->isVoidTy() && 4158 "Bad inline asm!"); 4159 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4160 OpInfo.ConstraintVT = 4161 getSimpleValueType(DL, STy->getElementType(ResNo)); 4162 } else { 4163 assert(ResNo == 0 && "Asm only has one result!"); 4164 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4165 } 4166 ++ResNo; 4167 break; 4168 case InlineAsm::isInput: 4169 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4170 break; 4171 case InlineAsm::isClobber: 4172 // Nothing to do. 4173 break; 4174 } 4175 4176 if (OpInfo.CallOperandVal) { 4177 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4178 if (OpInfo.isIndirect) { 4179 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4180 if (!PtrTy) 4181 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4182 OpTy = PtrTy->getElementType(); 4183 } 4184 4185 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4186 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4187 if (STy->getNumElements() == 1) 4188 OpTy = STy->getElementType(0); 4189 4190 // If OpTy is not a single value, it may be a struct/union that we 4191 // can tile with integers. 4192 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4193 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4194 switch (BitSize) { 4195 default: break; 4196 case 1: 4197 case 8: 4198 case 16: 4199 case 32: 4200 case 64: 4201 case 128: 4202 OpInfo.ConstraintVT = 4203 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4204 break; 4205 } 4206 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4207 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4208 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4209 } else { 4210 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4211 } 4212 } 4213 } 4214 4215 // If we have multiple alternative constraints, select the best alternative. 4216 if (!ConstraintOperands.empty()) { 4217 if (maCount) { 4218 unsigned bestMAIndex = 0; 4219 int bestWeight = -1; 4220 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4221 int weight = -1; 4222 unsigned maIndex; 4223 // Compute the sums of the weights for each alternative, keeping track 4224 // of the best (highest weight) one so far. 4225 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4226 int weightSum = 0; 4227 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4228 cIndex != eIndex; ++cIndex) { 4229 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4230 if (OpInfo.Type == InlineAsm::isClobber) 4231 continue; 4232 4233 // If this is an output operand with a matching input operand, 4234 // look up the matching input. If their types mismatch, e.g. one 4235 // is an integer, the other is floating point, or their sizes are 4236 // different, flag it as an maCantMatch. 4237 if (OpInfo.hasMatchingInput()) { 4238 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4239 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4240 if ((OpInfo.ConstraintVT.isInteger() != 4241 Input.ConstraintVT.isInteger()) || 4242 (OpInfo.ConstraintVT.getSizeInBits() != 4243 Input.ConstraintVT.getSizeInBits())) { 4244 weightSum = -1; // Can't match. 4245 break; 4246 } 4247 } 4248 } 4249 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4250 if (weight == -1) { 4251 weightSum = -1; 4252 break; 4253 } 4254 weightSum += weight; 4255 } 4256 // Update best. 4257 if (weightSum > bestWeight) { 4258 bestWeight = weightSum; 4259 bestMAIndex = maIndex; 4260 } 4261 } 4262 4263 // Now select chosen alternative in each constraint. 4264 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4265 cIndex != eIndex; ++cIndex) { 4266 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4267 if (cInfo.Type == InlineAsm::isClobber) 4268 continue; 4269 cInfo.selectAlternative(bestMAIndex); 4270 } 4271 } 4272 } 4273 4274 // Check and hook up tied operands, choose constraint code to use. 4275 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4276 cIndex != eIndex; ++cIndex) { 4277 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4278 4279 // If this is an output operand with a matching input operand, look up the 4280 // matching input. If their types mismatch, e.g. one is an integer, the 4281 // other is floating point, or their sizes are different, flag it as an 4282 // error. 4283 if (OpInfo.hasMatchingInput()) { 4284 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4285 4286 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4287 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4288 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4289 OpInfo.ConstraintVT); 4290 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4291 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4292 Input.ConstraintVT); 4293 if ((OpInfo.ConstraintVT.isInteger() != 4294 Input.ConstraintVT.isInteger()) || 4295 (MatchRC.second != InputRC.second)) { 4296 report_fatal_error("Unsupported asm: input constraint" 4297 " with a matching output constraint of" 4298 " incompatible type!"); 4299 } 4300 } 4301 } 4302 } 4303 4304 return ConstraintOperands; 4305 } 4306 4307 /// Return an integer indicating how general CT is. 4308 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4309 switch (CT) { 4310 case TargetLowering::C_Immediate: 4311 case TargetLowering::C_Other: 4312 case TargetLowering::C_Unknown: 4313 return 0; 4314 case TargetLowering::C_Register: 4315 return 1; 4316 case TargetLowering::C_RegisterClass: 4317 return 2; 4318 case TargetLowering::C_Memory: 4319 return 3; 4320 } 4321 llvm_unreachable("Invalid constraint type"); 4322 } 4323 4324 /// Examine constraint type and operand type and determine a weight value. 4325 /// This object must already have been set up with the operand type 4326 /// and the current alternative constraint selected. 4327 TargetLowering::ConstraintWeight 4328 TargetLowering::getMultipleConstraintMatchWeight( 4329 AsmOperandInfo &info, int maIndex) const { 4330 InlineAsm::ConstraintCodeVector *rCodes; 4331 if (maIndex >= (int)info.multipleAlternatives.size()) 4332 rCodes = &info.Codes; 4333 else 4334 rCodes = &info.multipleAlternatives[maIndex].Codes; 4335 ConstraintWeight BestWeight = CW_Invalid; 4336 4337 // Loop over the options, keeping track of the most general one. 4338 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4339 ConstraintWeight weight = 4340 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4341 if (weight > BestWeight) 4342 BestWeight = weight; 4343 } 4344 4345 return BestWeight; 4346 } 4347 4348 /// Examine constraint type and operand type and determine a weight value. 4349 /// This object must already have been set up with the operand type 4350 /// and the current alternative constraint selected. 4351 TargetLowering::ConstraintWeight 4352 TargetLowering::getSingleConstraintMatchWeight( 4353 AsmOperandInfo &info, const char *constraint) const { 4354 ConstraintWeight weight = CW_Invalid; 4355 Value *CallOperandVal = info.CallOperandVal; 4356 // If we don't have a value, we can't do a match, 4357 // but allow it at the lowest weight. 4358 if (!CallOperandVal) 4359 return CW_Default; 4360 // Look at the constraint type. 4361 switch (*constraint) { 4362 case 'i': // immediate integer. 4363 case 'n': // immediate integer with a known value. 4364 if (isa<ConstantInt>(CallOperandVal)) 4365 weight = CW_Constant; 4366 break; 4367 case 's': // non-explicit intregal immediate. 4368 if (isa<GlobalValue>(CallOperandVal)) 4369 weight = CW_Constant; 4370 break; 4371 case 'E': // immediate float if host format. 4372 case 'F': // immediate float. 4373 if (isa<ConstantFP>(CallOperandVal)) 4374 weight = CW_Constant; 4375 break; 4376 case '<': // memory operand with autodecrement. 4377 case '>': // memory operand with autoincrement. 4378 case 'm': // memory operand. 4379 case 'o': // offsettable memory operand 4380 case 'V': // non-offsettable memory operand 4381 weight = CW_Memory; 4382 break; 4383 case 'r': // general register. 4384 case 'g': // general register, memory operand or immediate integer. 4385 // note: Clang converts "g" to "imr". 4386 if (CallOperandVal->getType()->isIntegerTy()) 4387 weight = CW_Register; 4388 break; 4389 case 'X': // any operand. 4390 default: 4391 weight = CW_Default; 4392 break; 4393 } 4394 return weight; 4395 } 4396 4397 /// If there are multiple different constraints that we could pick for this 4398 /// operand (e.g. "imr") try to pick the 'best' one. 4399 /// This is somewhat tricky: constraints fall into four classes: 4400 /// Other -> immediates and magic values 4401 /// Register -> one specific register 4402 /// RegisterClass -> a group of regs 4403 /// Memory -> memory 4404 /// Ideally, we would pick the most specific constraint possible: if we have 4405 /// something that fits into a register, we would pick it. The problem here 4406 /// is that if we have something that could either be in a register or in 4407 /// memory that use of the register could cause selection of *other* 4408 /// operands to fail: they might only succeed if we pick memory. Because of 4409 /// this the heuristic we use is: 4410 /// 4411 /// 1) If there is an 'other' constraint, and if the operand is valid for 4412 /// that constraint, use it. This makes us take advantage of 'i' 4413 /// constraints when available. 4414 /// 2) Otherwise, pick the most general constraint present. This prefers 4415 /// 'm' over 'r', for example. 4416 /// 4417 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4418 const TargetLowering &TLI, 4419 SDValue Op, SelectionDAG *DAG) { 4420 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4421 unsigned BestIdx = 0; 4422 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4423 int BestGenerality = -1; 4424 4425 // Loop over the options, keeping track of the most general one. 4426 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4427 TargetLowering::ConstraintType CType = 4428 TLI.getConstraintType(OpInfo.Codes[i]); 4429 4430 // If this is an 'other' or 'immediate' constraint, see if the operand is 4431 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4432 // the operand is an integer in the range [0..31] we want to use I (saving a 4433 // load of a register), otherwise we must use 'r'. 4434 if ((CType == TargetLowering::C_Other || 4435 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4436 assert(OpInfo.Codes[i].size() == 1 && 4437 "Unhandled multi-letter 'other' constraint"); 4438 std::vector<SDValue> ResultOps; 4439 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4440 ResultOps, *DAG); 4441 if (!ResultOps.empty()) { 4442 BestType = CType; 4443 BestIdx = i; 4444 break; 4445 } 4446 } 4447 4448 // Things with matching constraints can only be registers, per gcc 4449 // documentation. This mainly affects "g" constraints. 4450 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4451 continue; 4452 4453 // This constraint letter is more general than the previous one, use it. 4454 int Generality = getConstraintGenerality(CType); 4455 if (Generality > BestGenerality) { 4456 BestType = CType; 4457 BestIdx = i; 4458 BestGenerality = Generality; 4459 } 4460 } 4461 4462 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4463 OpInfo.ConstraintType = BestType; 4464 } 4465 4466 /// Determines the constraint code and constraint type to use for the specific 4467 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4468 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4469 SDValue Op, 4470 SelectionDAG *DAG) const { 4471 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4472 4473 // Single-letter constraints ('r') are very common. 4474 if (OpInfo.Codes.size() == 1) { 4475 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4476 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4477 } else { 4478 ChooseConstraint(OpInfo, *this, Op, DAG); 4479 } 4480 4481 // 'X' matches anything. 4482 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4483 // Labels and constants are handled elsewhere ('X' is the only thing 4484 // that matches labels). For Functions, the type here is the type of 4485 // the result, which is not what we want to look at; leave them alone. 4486 Value *v = OpInfo.CallOperandVal; 4487 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4488 OpInfo.CallOperandVal = v; 4489 return; 4490 } 4491 4492 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4493 return; 4494 4495 // Otherwise, try to resolve it to something we know about by looking at 4496 // the actual operand type. 4497 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4498 OpInfo.ConstraintCode = Repl; 4499 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4500 } 4501 } 4502 } 4503 4504 /// Given an exact SDIV by a constant, create a multiplication 4505 /// with the multiplicative inverse of the constant. 4506 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4507 const SDLoc &dl, SelectionDAG &DAG, 4508 SmallVectorImpl<SDNode *> &Created) { 4509 SDValue Op0 = N->getOperand(0); 4510 SDValue Op1 = N->getOperand(1); 4511 EVT VT = N->getValueType(0); 4512 EVT SVT = VT.getScalarType(); 4513 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4514 EVT ShSVT = ShVT.getScalarType(); 4515 4516 bool UseSRA = false; 4517 SmallVector<SDValue, 16> Shifts, Factors; 4518 4519 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4520 if (C->isNullValue()) 4521 return false; 4522 APInt Divisor = C->getAPIntValue(); 4523 unsigned Shift = Divisor.countTrailingZeros(); 4524 if (Shift) { 4525 Divisor.ashrInPlace(Shift); 4526 UseSRA = true; 4527 } 4528 // Calculate the multiplicative inverse, using Newton's method. 4529 APInt t; 4530 APInt Factor = Divisor; 4531 while ((t = Divisor * Factor) != 1) 4532 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4533 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4534 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4535 return true; 4536 }; 4537 4538 // Collect all magic values from the build vector. 4539 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4540 return SDValue(); 4541 4542 SDValue Shift, Factor; 4543 if (VT.isVector()) { 4544 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4545 Factor = DAG.getBuildVector(VT, dl, Factors); 4546 } else { 4547 Shift = Shifts[0]; 4548 Factor = Factors[0]; 4549 } 4550 4551 SDValue Res = Op0; 4552 4553 // Shift the value upfront if it is even, so the LSB is one. 4554 if (UseSRA) { 4555 // TODO: For UDIV use SRL instead of SRA. 4556 SDNodeFlags Flags; 4557 Flags.setExact(true); 4558 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4559 Created.push_back(Res.getNode()); 4560 } 4561 4562 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4563 } 4564 4565 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4566 SelectionDAG &DAG, 4567 SmallVectorImpl<SDNode *> &Created) const { 4568 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4570 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4571 return SDValue(N, 0); // Lower SDIV as SDIV 4572 return SDValue(); 4573 } 4574 4575 /// Given an ISD::SDIV node expressing a divide by constant, 4576 /// return a DAG expression to select that will generate the same value by 4577 /// multiplying by a magic number. 4578 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4579 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4580 bool IsAfterLegalization, 4581 SmallVectorImpl<SDNode *> &Created) const { 4582 SDLoc dl(N); 4583 EVT VT = N->getValueType(0); 4584 EVT SVT = VT.getScalarType(); 4585 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4586 EVT ShSVT = ShVT.getScalarType(); 4587 unsigned EltBits = VT.getScalarSizeInBits(); 4588 4589 // Check to see if we can do this. 4590 // FIXME: We should be more aggressive here. 4591 if (!isTypeLegal(VT)) 4592 return SDValue(); 4593 4594 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4595 if (N->getFlags().hasExact()) 4596 return BuildExactSDIV(*this, N, dl, DAG, Created); 4597 4598 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4599 4600 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4601 if (C->isNullValue()) 4602 return false; 4603 4604 const APInt &Divisor = C->getAPIntValue(); 4605 APInt::ms magics = Divisor.magic(); 4606 int NumeratorFactor = 0; 4607 int ShiftMask = -1; 4608 4609 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4610 // If d is +1/-1, we just multiply the numerator by +1/-1. 4611 NumeratorFactor = Divisor.getSExtValue(); 4612 magics.m = 0; 4613 magics.s = 0; 4614 ShiftMask = 0; 4615 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4616 // If d > 0 and m < 0, add the numerator. 4617 NumeratorFactor = 1; 4618 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4619 // If d < 0 and m > 0, subtract the numerator. 4620 NumeratorFactor = -1; 4621 } 4622 4623 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4624 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4625 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4626 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4627 return true; 4628 }; 4629 4630 SDValue N0 = N->getOperand(0); 4631 SDValue N1 = N->getOperand(1); 4632 4633 // Collect the shifts / magic values from each element. 4634 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4635 return SDValue(); 4636 4637 SDValue MagicFactor, Factor, Shift, ShiftMask; 4638 if (VT.isVector()) { 4639 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4640 Factor = DAG.getBuildVector(VT, dl, Factors); 4641 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4642 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4643 } else { 4644 MagicFactor = MagicFactors[0]; 4645 Factor = Factors[0]; 4646 Shift = Shifts[0]; 4647 ShiftMask = ShiftMasks[0]; 4648 } 4649 4650 // Multiply the numerator (operand 0) by the magic value. 4651 // FIXME: We should support doing a MUL in a wider type. 4652 SDValue Q; 4653 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4654 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4655 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4656 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4657 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4658 SDValue LoHi = 4659 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4660 Q = SDValue(LoHi.getNode(), 1); 4661 } else 4662 return SDValue(); // No mulhs or equivalent. 4663 Created.push_back(Q.getNode()); 4664 4665 // (Optionally) Add/subtract the numerator using Factor. 4666 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4667 Created.push_back(Factor.getNode()); 4668 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4669 Created.push_back(Q.getNode()); 4670 4671 // Shift right algebraic by shift value. 4672 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4673 Created.push_back(Q.getNode()); 4674 4675 // Extract the sign bit, mask it and add it to the quotient. 4676 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4677 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4678 Created.push_back(T.getNode()); 4679 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4680 Created.push_back(T.getNode()); 4681 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4682 } 4683 4684 /// Given an ISD::UDIV node expressing a divide by constant, 4685 /// return a DAG expression to select that will generate the same value by 4686 /// multiplying by a magic number. 4687 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4688 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4689 bool IsAfterLegalization, 4690 SmallVectorImpl<SDNode *> &Created) const { 4691 SDLoc dl(N); 4692 EVT VT = N->getValueType(0); 4693 EVT SVT = VT.getScalarType(); 4694 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4695 EVT ShSVT = ShVT.getScalarType(); 4696 unsigned EltBits = VT.getScalarSizeInBits(); 4697 4698 // Check to see if we can do this. 4699 // FIXME: We should be more aggressive here. 4700 if (!isTypeLegal(VT)) 4701 return SDValue(); 4702 4703 bool UseNPQ = false; 4704 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4705 4706 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4707 if (C->isNullValue()) 4708 return false; 4709 // FIXME: We should use a narrower constant when the upper 4710 // bits are known to be zero. 4711 APInt Divisor = C->getAPIntValue(); 4712 APInt::mu magics = Divisor.magicu(); 4713 unsigned PreShift = 0, PostShift = 0; 4714 4715 // If the divisor is even, we can avoid using the expensive fixup by 4716 // shifting the divided value upfront. 4717 if (magics.a != 0 && !Divisor[0]) { 4718 PreShift = Divisor.countTrailingZeros(); 4719 // Get magic number for the shifted divisor. 4720 magics = Divisor.lshr(PreShift).magicu(PreShift); 4721 assert(magics.a == 0 && "Should use cheap fixup now"); 4722 } 4723 4724 APInt Magic = magics.m; 4725 4726 unsigned SelNPQ; 4727 if (magics.a == 0 || Divisor.isOneValue()) { 4728 assert(magics.s < Divisor.getBitWidth() && 4729 "We shouldn't generate an undefined shift!"); 4730 PostShift = magics.s; 4731 SelNPQ = false; 4732 } else { 4733 PostShift = magics.s - 1; 4734 SelNPQ = true; 4735 } 4736 4737 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4738 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4739 NPQFactors.push_back( 4740 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4741 : APInt::getNullValue(EltBits), 4742 dl, SVT)); 4743 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4744 UseNPQ |= SelNPQ; 4745 return true; 4746 }; 4747 4748 SDValue N0 = N->getOperand(0); 4749 SDValue N1 = N->getOperand(1); 4750 4751 // Collect the shifts/magic values from each element. 4752 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4753 return SDValue(); 4754 4755 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4756 if (VT.isVector()) { 4757 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4758 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4759 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4760 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4761 } else { 4762 PreShift = PreShifts[0]; 4763 MagicFactor = MagicFactors[0]; 4764 PostShift = PostShifts[0]; 4765 } 4766 4767 SDValue Q = N0; 4768 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4769 Created.push_back(Q.getNode()); 4770 4771 // FIXME: We should support doing a MUL in a wider type. 4772 auto GetMULHU = [&](SDValue X, SDValue Y) { 4773 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4774 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4775 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4776 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4777 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4778 SDValue LoHi = 4779 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4780 return SDValue(LoHi.getNode(), 1); 4781 } 4782 return SDValue(); // No mulhu or equivalent 4783 }; 4784 4785 // Multiply the numerator (operand 0) by the magic value. 4786 Q = GetMULHU(Q, MagicFactor); 4787 if (!Q) 4788 return SDValue(); 4789 4790 Created.push_back(Q.getNode()); 4791 4792 if (UseNPQ) { 4793 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4794 Created.push_back(NPQ.getNode()); 4795 4796 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4797 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4798 if (VT.isVector()) 4799 NPQ = GetMULHU(NPQ, NPQFactor); 4800 else 4801 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4802 4803 Created.push_back(NPQ.getNode()); 4804 4805 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4806 Created.push_back(Q.getNode()); 4807 } 4808 4809 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4810 Created.push_back(Q.getNode()); 4811 4812 SDValue One = DAG.getConstant(1, dl, VT); 4813 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4814 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4815 } 4816 4817 /// If all values in Values that *don't* match the predicate are same 'splat' 4818 /// value, then replace all values with that splat value. 4819 /// Else, if AlternativeReplacement was provided, then replace all values that 4820 /// do match predicate with AlternativeReplacement value. 4821 static void 4822 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4823 std::function<bool(SDValue)> Predicate, 4824 SDValue AlternativeReplacement = SDValue()) { 4825 SDValue Replacement; 4826 // Is there a value for which the Predicate does *NOT* match? What is it? 4827 auto SplatValue = llvm::find_if_not(Values, Predicate); 4828 if (SplatValue != Values.end()) { 4829 // Does Values consist only of SplatValue's and values matching Predicate? 4830 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4831 return Value == *SplatValue || Predicate(Value); 4832 })) // Then we shall replace values matching predicate with SplatValue. 4833 Replacement = *SplatValue; 4834 } 4835 if (!Replacement) { 4836 // Oops, we did not find the "baseline" splat value. 4837 if (!AlternativeReplacement) 4838 return; // Nothing to do. 4839 // Let's replace with provided value then. 4840 Replacement = AlternativeReplacement; 4841 } 4842 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4843 } 4844 4845 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4846 /// where the divisor is constant and the comparison target is zero, 4847 /// return a DAG expression that will generate the same comparison result 4848 /// using only multiplications, additions and shifts/rotations. 4849 /// Ref: "Hacker's Delight" 10-17. 4850 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4851 SDValue CompTargetNode, 4852 ISD::CondCode Cond, 4853 DAGCombinerInfo &DCI, 4854 const SDLoc &DL) const { 4855 SmallVector<SDNode *, 2> Built; 4856 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4857 DCI, DL, Built)) { 4858 for (SDNode *N : Built) 4859 DCI.AddToWorklist(N); 4860 return Folded; 4861 } 4862 4863 return SDValue(); 4864 } 4865 4866 SDValue 4867 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4868 SDValue CompTargetNode, ISD::CondCode Cond, 4869 DAGCombinerInfo &DCI, const SDLoc &DL, 4870 SmallVectorImpl<SDNode *> &Created) const { 4871 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4872 // - D must be constant, with D = D0 * 2^K where D0 is odd 4873 // - P is the multiplicative inverse of D0 modulo 2^W 4874 // - Q = floor(((2^W) - 1) / D) 4875 // where W is the width of the common type of N and D. 4876 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4877 "Only applicable for (in)equality comparisons."); 4878 4879 SelectionDAG &DAG = DCI.DAG; 4880 4881 EVT VT = REMNode.getValueType(); 4882 EVT SVT = VT.getScalarType(); 4883 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4884 EVT ShSVT = ShVT.getScalarType(); 4885 4886 // If MUL is unavailable, we cannot proceed in any case. 4887 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 4888 return SDValue(); 4889 4890 // TODO: Could support comparing with non-zero too. 4891 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 4892 if (!CompTarget || !CompTarget->isNullValue()) 4893 return SDValue(); 4894 4895 bool HadOneDivisor = false; 4896 bool AllDivisorsAreOnes = true; 4897 bool HadEvenDivisor = false; 4898 bool AllDivisorsArePowerOfTwo = true; 4899 SmallVector<SDValue, 16> PAmts, KAmts, QAmts; 4900 4901 auto BuildUREMPattern = [&](ConstantSDNode *C) { 4902 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 4903 if (C->isNullValue()) 4904 return false; 4905 4906 const APInt &D = C->getAPIntValue(); 4907 // If all divisors are ones, we will prefer to avoid the fold. 4908 HadOneDivisor |= D.isOneValue(); 4909 AllDivisorsAreOnes &= D.isOneValue(); 4910 4911 // Decompose D into D0 * 2^K 4912 unsigned K = D.countTrailingZeros(); 4913 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 4914 APInt D0 = D.lshr(K); 4915 4916 // D is even if it has trailing zeros. 4917 HadEvenDivisor |= (K != 0); 4918 // D is a power-of-two if D0 is one. 4919 // If all divisors are power-of-two, we will prefer to avoid the fold. 4920 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 4921 4922 // P = inv(D0, 2^W) 4923 // 2^W requires W + 1 bits, so we have to extend and then truncate. 4924 unsigned W = D.getBitWidth(); 4925 APInt P = D0.zext(W + 1) 4926 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 4927 .trunc(W); 4928 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 4929 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 4930 4931 // Q = floor((2^W - 1) / D) 4932 APInt Q = APInt::getAllOnesValue(W).udiv(D); 4933 4934 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 4935 "We are expecting that K is always less than all-ones for ShSVT"); 4936 4937 // If the divisor is 1 the result can be constant-folded. 4938 if (D.isOneValue()) { 4939 // Set P and K amount to a bogus values so we can try to splat them. 4940 P = 0; 4941 K = -1; 4942 assert(Q.isAllOnesValue() && 4943 "Expecting all-ones comparison for one divisor"); 4944 } 4945 4946 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 4947 KAmts.push_back( 4948 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 4949 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 4950 return true; 4951 }; 4952 4953 SDValue N = REMNode.getOperand(0); 4954 SDValue D = REMNode.getOperand(1); 4955 4956 // Collect the values from each element. 4957 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern)) 4958 return SDValue(); 4959 4960 // If this is a urem by a one, avoid the fold since it can be constant-folded. 4961 if (AllDivisorsAreOnes) 4962 return SDValue(); 4963 4964 // If this is a urem by a powers-of-two, avoid the fold since it can be 4965 // best implemented as a bit test. 4966 if (AllDivisorsArePowerOfTwo) 4967 return SDValue(); 4968 4969 SDValue PVal, KVal, QVal; 4970 if (VT.isVector()) { 4971 if (HadOneDivisor) { 4972 // Try to turn PAmts into a splat, since we don't care about the values 4973 // that are currently '0'. If we can't, just keep '0'`s. 4974 turnVectorIntoSplatVector(PAmts, isNullConstant); 4975 // Try to turn KAmts into a splat, since we don't care about the values 4976 // that are currently '-1'. If we can't, change them to '0'`s. 4977 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 4978 DAG.getConstant(0, DL, ShSVT)); 4979 } 4980 4981 PVal = DAG.getBuildVector(VT, DL, PAmts); 4982 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 4983 QVal = DAG.getBuildVector(VT, DL, QAmts); 4984 } else { 4985 PVal = PAmts[0]; 4986 KVal = KAmts[0]; 4987 QVal = QAmts[0]; 4988 } 4989 4990 // (mul N, P) 4991 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 4992 Created.push_back(Op0.getNode()); 4993 4994 // Rotate right only if any divisor was even. We avoid rotates for all-odd 4995 // divisors as a performance improvement, since rotating by 0 is a no-op. 4996 if (HadEvenDivisor) { 4997 // We need ROTR to do this. 4998 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 4999 return SDValue(); 5000 SDNodeFlags Flags; 5001 Flags.setExact(true); 5002 // UREM: (rotr (mul N, P), K) 5003 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5004 Created.push_back(Op0.getNode()); 5005 } 5006 5007 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5008 return DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5009 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5010 } 5011 5012 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5013 /// where the divisor is constant and the comparison target is zero, 5014 /// return a DAG expression that will generate the same comparison result 5015 /// using only multiplications, additions and shifts/rotations. 5016 /// Ref: "Hacker's Delight" 10-17. 5017 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5018 SDValue CompTargetNode, 5019 ISD::CondCode Cond, 5020 DAGCombinerInfo &DCI, 5021 const SDLoc &DL) const { 5022 SmallVector<SDNode *, 7> Built; 5023 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5024 DCI, DL, Built)) { 5025 assert(Built.size() <= 7 && "Max size prediction failed."); 5026 for (SDNode *N : Built) 5027 DCI.AddToWorklist(N); 5028 return Folded; 5029 } 5030 5031 return SDValue(); 5032 } 5033 5034 SDValue 5035 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5036 SDValue CompTargetNode, ISD::CondCode Cond, 5037 DAGCombinerInfo &DCI, const SDLoc &DL, 5038 SmallVectorImpl<SDNode *> &Created) const { 5039 // Fold: 5040 // (seteq/ne (srem N, D), 0) 5041 // To: 5042 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5043 // 5044 // - D must be constant, with D = D0 * 2^K where D0 is odd 5045 // - P is the multiplicative inverse of D0 modulo 2^W 5046 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5047 // - Q = floor((2 * A) / (2^K)) 5048 // where W is the width of the common type of N and D. 5049 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5050 "Only applicable for (in)equality comparisons."); 5051 5052 SelectionDAG &DAG = DCI.DAG; 5053 5054 EVT VT = REMNode.getValueType(); 5055 EVT SVT = VT.getScalarType(); 5056 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5057 EVT ShSVT = ShVT.getScalarType(); 5058 5059 // If MUL is unavailable, we cannot proceed in any case. 5060 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5061 return SDValue(); 5062 5063 // TODO: Could support comparing with non-zero too. 5064 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5065 if (!CompTarget || !CompTarget->isNullValue()) 5066 return SDValue(); 5067 5068 bool HadIntMinDivisor = false; 5069 bool HadOneDivisor = false; 5070 bool AllDivisorsAreOnes = true; 5071 bool HadEvenDivisor = false; 5072 bool NeedToApplyOffset = false; 5073 bool AllDivisorsArePowerOfTwo = true; 5074 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5075 5076 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5077 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5078 if (C->isNullValue()) 5079 return false; 5080 5081 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5082 5083 // WARNING: this fold is only valid for positive divisors! 5084 APInt D = C->getAPIntValue(); 5085 if (D.isNegative()) 5086 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5087 5088 HadIntMinDivisor |= D.isMinSignedValue(); 5089 5090 // If all divisors are ones, we will prefer to avoid the fold. 5091 HadOneDivisor |= D.isOneValue(); 5092 AllDivisorsAreOnes &= D.isOneValue(); 5093 5094 // Decompose D into D0 * 2^K 5095 unsigned K = D.countTrailingZeros(); 5096 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5097 APInt D0 = D.lshr(K); 5098 5099 if (!D.isMinSignedValue()) { 5100 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5101 // we don't care about this lane in this fold, we'll special-handle it. 5102 HadEvenDivisor |= (K != 0); 5103 } 5104 5105 // D is a power-of-two if D0 is one. This includes INT_MIN. 5106 // If all divisors are power-of-two, we will prefer to avoid the fold. 5107 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5108 5109 // P = inv(D0, 2^W) 5110 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5111 unsigned W = D.getBitWidth(); 5112 APInt P = D0.zext(W + 1) 5113 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5114 .trunc(W); 5115 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5116 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5117 5118 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5119 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5120 A.clearLowBits(K); 5121 5122 if (!D.isMinSignedValue()) { 5123 // If divisor INT_MIN, then we don't care about this lane in this fold, 5124 // we'll special-handle it. 5125 NeedToApplyOffset |= A != 0; 5126 } 5127 5128 // Q = floor((2 * A) / (2^K)) 5129 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5130 5131 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5132 "We are expecting that A is always less than all-ones for SVT"); 5133 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5134 "We are expecting that K is always less than all-ones for ShSVT"); 5135 5136 // If the divisor is 1 the result can be constant-folded. Likewise, we 5137 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5138 if (D.isOneValue()) { 5139 // Set P, A and K to a bogus values so we can try to splat them. 5140 P = 0; 5141 A = -1; 5142 K = -1; 5143 5144 // x ?% 1 == 0 <--> true <--> x u<= -1 5145 Q = -1; 5146 } 5147 5148 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5149 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5150 KAmts.push_back( 5151 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5152 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5153 return true; 5154 }; 5155 5156 SDValue N = REMNode.getOperand(0); 5157 SDValue D = REMNode.getOperand(1); 5158 5159 // Collect the values from each element. 5160 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5161 return SDValue(); 5162 5163 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5164 if (AllDivisorsAreOnes) 5165 return SDValue(); 5166 5167 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5168 // since it can be best implemented as a bit test. 5169 if (AllDivisorsArePowerOfTwo) 5170 return SDValue(); 5171 5172 SDValue PVal, AVal, KVal, QVal; 5173 if (VT.isVector()) { 5174 if (HadOneDivisor) { 5175 // Try to turn PAmts into a splat, since we don't care about the values 5176 // that are currently '0'. If we can't, just keep '0'`s. 5177 turnVectorIntoSplatVector(PAmts, isNullConstant); 5178 // Try to turn AAmts into a splat, since we don't care about the 5179 // values that are currently '-1'. If we can't, change them to '0'`s. 5180 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5181 DAG.getConstant(0, DL, SVT)); 5182 // Try to turn KAmts into a splat, since we don't care about the values 5183 // that are currently '-1'. If we can't, change them to '0'`s. 5184 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5185 DAG.getConstant(0, DL, ShSVT)); 5186 } 5187 5188 PVal = DAG.getBuildVector(VT, DL, PAmts); 5189 AVal = DAG.getBuildVector(VT, DL, AAmts); 5190 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5191 QVal = DAG.getBuildVector(VT, DL, QAmts); 5192 } else { 5193 PVal = PAmts[0]; 5194 AVal = AAmts[0]; 5195 KVal = KAmts[0]; 5196 QVal = QAmts[0]; 5197 } 5198 5199 // (mul N, P) 5200 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5201 Created.push_back(Op0.getNode()); 5202 5203 if (NeedToApplyOffset) { 5204 // We need ADD to do this. 5205 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5206 return SDValue(); 5207 5208 // (add (mul N, P), A) 5209 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5210 Created.push_back(Op0.getNode()); 5211 } 5212 5213 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5214 // divisors as a performance improvement, since rotating by 0 is a no-op. 5215 if (HadEvenDivisor) { 5216 // We need ROTR to do this. 5217 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5218 return SDValue(); 5219 SDNodeFlags Flags; 5220 Flags.setExact(true); 5221 // SREM: (rotr (add (mul N, P), A), K) 5222 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5223 Created.push_back(Op0.getNode()); 5224 } 5225 5226 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5227 SDValue Fold = 5228 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5229 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5230 5231 // If we didn't have lanes with INT_MIN divisor, then we're done. 5232 if (!HadIntMinDivisor) 5233 return Fold; 5234 5235 // That fold is only valid for positive divisors. Which effectively means, 5236 // it is invalid for INT_MIN divisors. So if we have such a lane, 5237 // we must fix-up results for said lanes. 5238 assert(VT.isVector() && "Can/should only get here for vectors."); 5239 5240 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5241 !isOperationLegalOrCustom(ISD::AND, VT) || 5242 !isOperationLegalOrCustom(Cond, VT) || 5243 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5244 return SDValue(); 5245 5246 Created.push_back(Fold.getNode()); 5247 5248 SDValue IntMin = DAG.getConstant( 5249 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5250 SDValue IntMax = DAG.getConstant( 5251 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5252 SDValue Zero = 5253 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5254 5255 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5256 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5257 Created.push_back(DivisorIsIntMin.getNode()); 5258 5259 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5260 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5261 Created.push_back(Masked.getNode()); 5262 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5263 Created.push_back(MaskedIsZero.getNode()); 5264 5265 // To produce final result we need to blend 2 vectors: 'SetCC' and 5266 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5267 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5268 // constant-folded, select can get lowered to a shuffle with constant mask. 5269 SDValue Blended = 5270 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5271 5272 return Blended; 5273 } 5274 5275 bool TargetLowering:: 5276 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5277 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5278 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5279 "be a constant integer"); 5280 return true; 5281 } 5282 5283 return false; 5284 } 5285 5286 //===----------------------------------------------------------------------===// 5287 // Legalization Utilities 5288 //===----------------------------------------------------------------------===// 5289 5290 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5291 SDValue LHS, SDValue RHS, 5292 SmallVectorImpl<SDValue> &Result, 5293 EVT HiLoVT, SelectionDAG &DAG, 5294 MulExpansionKind Kind, SDValue LL, 5295 SDValue LH, SDValue RL, SDValue RH) const { 5296 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5297 Opcode == ISD::SMUL_LOHI); 5298 5299 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5300 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5301 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5302 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5303 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5304 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5305 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5306 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5307 5308 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5309 return false; 5310 5311 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5312 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5313 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5314 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5315 5316 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5317 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5318 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5319 5320 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5321 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5322 bool Signed) -> bool { 5323 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5324 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5325 Hi = SDValue(Lo.getNode(), 1); 5326 return true; 5327 } 5328 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5329 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5330 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5331 return true; 5332 } 5333 return false; 5334 }; 5335 5336 SDValue Lo, Hi; 5337 5338 if (!LL.getNode() && !RL.getNode() && 5339 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5340 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5341 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5342 } 5343 5344 if (!LL.getNode()) 5345 return false; 5346 5347 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5348 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5349 DAG.MaskedValueIsZero(RHS, HighMask)) { 5350 // The inputs are both zero-extended. 5351 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5352 Result.push_back(Lo); 5353 Result.push_back(Hi); 5354 if (Opcode != ISD::MUL) { 5355 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5356 Result.push_back(Zero); 5357 Result.push_back(Zero); 5358 } 5359 return true; 5360 } 5361 } 5362 5363 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5364 RHSSB > InnerBitSize) { 5365 // The input values are both sign-extended. 5366 // TODO non-MUL case? 5367 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5368 Result.push_back(Lo); 5369 Result.push_back(Hi); 5370 return true; 5371 } 5372 } 5373 5374 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5375 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5376 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5377 // FIXME getShiftAmountTy does not always return a sensible result when VT 5378 // is an illegal type, and so the type may be too small to fit the shift 5379 // amount. Override it with i32. The shift will have to be legalized. 5380 ShiftAmountTy = MVT::i32; 5381 } 5382 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5383 5384 if (!LH.getNode() && !RH.getNode() && 5385 isOperationLegalOrCustom(ISD::SRL, VT) && 5386 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5387 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5388 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5389 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5390 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5391 } 5392 5393 if (!LH.getNode()) 5394 return false; 5395 5396 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5397 return false; 5398 5399 Result.push_back(Lo); 5400 5401 if (Opcode == ISD::MUL) { 5402 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5403 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5404 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5405 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5406 Result.push_back(Hi); 5407 return true; 5408 } 5409 5410 // Compute the full width result. 5411 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5412 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5413 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5414 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5415 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5416 }; 5417 5418 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5419 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5420 return false; 5421 5422 // This is effectively the add part of a multiply-add of half-sized operands, 5423 // so it cannot overflow. 5424 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5425 5426 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5427 return false; 5428 5429 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5430 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5431 5432 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5433 isOperationLegalOrCustom(ISD::ADDE, VT)); 5434 if (UseGlue) 5435 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5436 Merge(Lo, Hi)); 5437 else 5438 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5439 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5440 5441 SDValue Carry = Next.getValue(1); 5442 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5443 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5444 5445 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5446 return false; 5447 5448 if (UseGlue) 5449 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5450 Carry); 5451 else 5452 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5453 Zero, Carry); 5454 5455 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5456 5457 if (Opcode == ISD::SMUL_LOHI) { 5458 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5459 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5460 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5461 5462 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5463 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5464 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5465 } 5466 5467 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5468 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5469 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5470 return true; 5471 } 5472 5473 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5474 SelectionDAG &DAG, MulExpansionKind Kind, 5475 SDValue LL, SDValue LH, SDValue RL, 5476 SDValue RH) const { 5477 SmallVector<SDValue, 2> Result; 5478 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5479 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5480 DAG, Kind, LL, LH, RL, RH); 5481 if (Ok) { 5482 assert(Result.size() == 2); 5483 Lo = Result[0]; 5484 Hi = Result[1]; 5485 } 5486 return Ok; 5487 } 5488 5489 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5490 SelectionDAG &DAG) const { 5491 EVT VT = Node->getValueType(0); 5492 5493 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5494 !isOperationLegalOrCustom(ISD::SRL, VT) || 5495 !isOperationLegalOrCustom(ISD::SUB, VT) || 5496 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5497 return false; 5498 5499 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5500 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5501 SDValue X = Node->getOperand(0); 5502 SDValue Y = Node->getOperand(1); 5503 SDValue Z = Node->getOperand(2); 5504 5505 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5506 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5507 SDLoc DL(SDValue(Node, 0)); 5508 5509 EVT ShVT = Z.getValueType(); 5510 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5511 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5512 5513 SDValue ShAmt; 5514 if (isPowerOf2_32(EltSizeInBits)) { 5515 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5516 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5517 } else { 5518 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5519 } 5520 5521 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5522 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5523 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5524 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5525 5526 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5527 // and that is undefined. We must compare and select to avoid UB. 5528 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5529 5530 // For fshl, 0-shift returns the 1st arg (X). 5531 // For fshr, 0-shift returns the 2nd arg (Y). 5532 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5533 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5534 return true; 5535 } 5536 5537 // TODO: Merge with expandFunnelShift. 5538 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5539 SelectionDAG &DAG) const { 5540 EVT VT = Node->getValueType(0); 5541 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5542 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5543 SDValue Op0 = Node->getOperand(0); 5544 SDValue Op1 = Node->getOperand(1); 5545 SDLoc DL(SDValue(Node, 0)); 5546 5547 EVT ShVT = Op1.getValueType(); 5548 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5549 5550 // If a rotate in the other direction is legal, use it. 5551 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5552 if (isOperationLegal(RevRot, VT)) { 5553 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5554 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 5555 return true; 5556 } 5557 5558 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5559 !isOperationLegalOrCustom(ISD::SRL, VT) || 5560 !isOperationLegalOrCustom(ISD::SUB, VT) || 5561 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 5562 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5563 return false; 5564 5565 // Otherwise, 5566 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 5567 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 5568 // 5569 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 5570 "Expecting the type bitwidth to be a power of 2"); 5571 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 5572 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 5573 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5574 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5575 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 5576 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 5577 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 5578 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 5579 return true; 5580 } 5581 5582 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 5583 SelectionDAG &DAG) const { 5584 SDValue Src = Node->getOperand(0); 5585 EVT SrcVT = Src.getValueType(); 5586 EVT DstVT = Node->getValueType(0); 5587 SDLoc dl(SDValue(Node, 0)); 5588 5589 // FIXME: Only f32 to i64 conversions are supported. 5590 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 5591 return false; 5592 5593 // Expand f32 -> i64 conversion 5594 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5595 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5596 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 5597 EVT IntVT = SrcVT.changeTypeToInteger(); 5598 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 5599 5600 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 5601 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 5602 SDValue Bias = DAG.getConstant(127, dl, IntVT); 5603 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 5604 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 5605 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 5606 5607 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 5608 5609 SDValue ExponentBits = DAG.getNode( 5610 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 5611 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 5612 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 5613 5614 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 5615 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 5616 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 5617 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 5618 5619 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 5620 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 5621 DAG.getConstant(0x00800000, dl, IntVT)); 5622 5623 R = DAG.getZExtOrTrunc(R, dl, DstVT); 5624 5625 R = DAG.getSelectCC( 5626 dl, Exponent, ExponentLoBit, 5627 DAG.getNode(ISD::SHL, dl, DstVT, R, 5628 DAG.getZExtOrTrunc( 5629 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 5630 dl, IntShVT)), 5631 DAG.getNode(ISD::SRL, dl, DstVT, R, 5632 DAG.getZExtOrTrunc( 5633 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 5634 dl, IntShVT)), 5635 ISD::SETGT); 5636 5637 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 5638 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 5639 5640 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 5641 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 5642 return true; 5643 } 5644 5645 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 5646 SelectionDAG &DAG) const { 5647 SDLoc dl(SDValue(Node, 0)); 5648 SDValue Src = Node->getOperand(0); 5649 5650 EVT SrcVT = Src.getValueType(); 5651 EVT DstVT = Node->getValueType(0); 5652 EVT SetCCVT = 5653 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 5654 5655 // Only expand vector types if we have the appropriate vector bit operations. 5656 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 5657 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 5658 return false; 5659 5660 // If the maximum float value is smaller then the signed integer range, 5661 // the destination signmask can't be represented by the float, so we can 5662 // just use FP_TO_SINT directly. 5663 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 5664 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 5665 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 5666 if (APFloat::opOverflow & 5667 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 5668 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 5669 return true; 5670 } 5671 5672 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 5673 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 5674 5675 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 5676 if (Strict) { 5677 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 5678 // signmask then offset (the result of which should be fully representable). 5679 // Sel = Src < 0x8000000000000000 5680 // Val = select Sel, Src, Src - 0x8000000000000000 5681 // Ofs = select Sel, 0, 0x8000000000000000 5682 // Result = fp_to_sint(Val) ^ Ofs 5683 5684 // TODO: Should any fast-math-flags be set for the FSUB? 5685 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 5686 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 5687 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 5688 DAG.getConstant(SignMask, dl, DstVT)); 5689 Result = DAG.getNode(ISD::XOR, dl, DstVT, 5690 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 5691 } else { 5692 // Expand based on maximum range of FP_TO_SINT: 5693 // True = fp_to_sint(Src) 5694 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 5695 // Result = select (Src < 0x8000000000000000), True, False 5696 5697 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 5698 // TODO: Should any fast-math-flags be set for the FSUB? 5699 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 5700 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 5701 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 5702 DAG.getConstant(SignMask, dl, DstVT)); 5703 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 5704 } 5705 return true; 5706 } 5707 5708 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 5709 SelectionDAG &DAG) const { 5710 SDValue Src = Node->getOperand(0); 5711 EVT SrcVT = Src.getValueType(); 5712 EVT DstVT = Node->getValueType(0); 5713 5714 if (SrcVT.getScalarType() != MVT::i64) 5715 return false; 5716 5717 SDLoc dl(SDValue(Node, 0)); 5718 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 5719 5720 if (DstVT.getScalarType() == MVT::f32) { 5721 // Only expand vector types if we have the appropriate vector bit 5722 // operations. 5723 if (SrcVT.isVector() && 5724 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 5725 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 5726 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 5727 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 5728 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 5729 return false; 5730 5731 // For unsigned conversions, convert them to signed conversions using the 5732 // algorithm from the x86_64 __floatundidf in compiler_rt. 5733 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 5734 5735 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 5736 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 5737 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 5738 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 5739 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 5740 5741 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 5742 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 5743 5744 // TODO: This really should be implemented using a branch rather than a 5745 // select. We happen to get lucky and machinesink does the right 5746 // thing most of the time. This would be a good candidate for a 5747 // pseudo-op, or, even better, for whole-function isel. 5748 EVT SetCCVT = 5749 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 5750 5751 SDValue SignBitTest = DAG.getSetCC( 5752 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 5753 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 5754 return true; 5755 } 5756 5757 if (DstVT.getScalarType() == MVT::f64) { 5758 // Only expand vector types if we have the appropriate vector bit 5759 // operations. 5760 if (SrcVT.isVector() && 5761 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 5762 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 5763 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 5764 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 5765 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 5766 return false; 5767 5768 // Implementation of unsigned i64 to f64 following the algorithm in 5769 // __floatundidf in compiler_rt. This implementation has the advantage 5770 // of performing rounding correctly, both in the default rounding mode 5771 // and in all alternate rounding modes. 5772 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 5773 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 5774 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 5775 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 5776 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 5777 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 5778 5779 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 5780 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 5781 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 5782 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 5783 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 5784 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 5785 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 5786 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 5787 return true; 5788 } 5789 5790 return false; 5791 } 5792 5793 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 5794 SelectionDAG &DAG) const { 5795 SDLoc dl(Node); 5796 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 5797 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 5798 EVT VT = Node->getValueType(0); 5799 if (isOperationLegalOrCustom(NewOp, VT)) { 5800 SDValue Quiet0 = Node->getOperand(0); 5801 SDValue Quiet1 = Node->getOperand(1); 5802 5803 if (!Node->getFlags().hasNoNaNs()) { 5804 // Insert canonicalizes if it's possible we need to quiet to get correct 5805 // sNaN behavior. 5806 if (!DAG.isKnownNeverSNaN(Quiet0)) { 5807 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 5808 Node->getFlags()); 5809 } 5810 if (!DAG.isKnownNeverSNaN(Quiet1)) { 5811 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 5812 Node->getFlags()); 5813 } 5814 } 5815 5816 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 5817 } 5818 5819 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 5820 // instead if there are no NaNs. 5821 if (Node->getFlags().hasNoNaNs()) { 5822 unsigned IEEE2018Op = 5823 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 5824 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 5825 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 5826 Node->getOperand(1), Node->getFlags()); 5827 } 5828 } 5829 5830 return SDValue(); 5831 } 5832 5833 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 5834 SelectionDAG &DAG) const { 5835 SDLoc dl(Node); 5836 EVT VT = Node->getValueType(0); 5837 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5838 SDValue Op = Node->getOperand(0); 5839 unsigned Len = VT.getScalarSizeInBits(); 5840 assert(VT.isInteger() && "CTPOP not implemented for this type."); 5841 5842 // TODO: Add support for irregular type lengths. 5843 if (!(Len <= 128 && Len % 8 == 0)) 5844 return false; 5845 5846 // Only expand vector types if we have the appropriate vector bit operations. 5847 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 5848 !isOperationLegalOrCustom(ISD::SUB, VT) || 5849 !isOperationLegalOrCustom(ISD::SRL, VT) || 5850 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 5851 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5852 return false; 5853 5854 // This is the "best" algorithm from 5855 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 5856 SDValue Mask55 = 5857 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 5858 SDValue Mask33 = 5859 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 5860 SDValue Mask0F = 5861 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 5862 SDValue Mask01 = 5863 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 5864 5865 // v = v - ((v >> 1) & 0x55555555...) 5866 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 5867 DAG.getNode(ISD::AND, dl, VT, 5868 DAG.getNode(ISD::SRL, dl, VT, Op, 5869 DAG.getConstant(1, dl, ShVT)), 5870 Mask55)); 5871 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 5872 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 5873 DAG.getNode(ISD::AND, dl, VT, 5874 DAG.getNode(ISD::SRL, dl, VT, Op, 5875 DAG.getConstant(2, dl, ShVT)), 5876 Mask33)); 5877 // v = (v + (v >> 4)) & 0x0F0F0F0F... 5878 Op = DAG.getNode(ISD::AND, dl, VT, 5879 DAG.getNode(ISD::ADD, dl, VT, Op, 5880 DAG.getNode(ISD::SRL, dl, VT, Op, 5881 DAG.getConstant(4, dl, ShVT))), 5882 Mask0F); 5883 // v = (v * 0x01010101...) >> (Len - 8) 5884 if (Len > 8) 5885 Op = 5886 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 5887 DAG.getConstant(Len - 8, dl, ShVT)); 5888 5889 Result = Op; 5890 return true; 5891 } 5892 5893 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 5894 SelectionDAG &DAG) const { 5895 SDLoc dl(Node); 5896 EVT VT = Node->getValueType(0); 5897 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5898 SDValue Op = Node->getOperand(0); 5899 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5900 5901 // If the non-ZERO_UNDEF version is supported we can use that instead. 5902 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 5903 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 5904 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 5905 return true; 5906 } 5907 5908 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5909 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 5910 EVT SetCCVT = 5911 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5912 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 5913 SDValue Zero = DAG.getConstant(0, dl, VT); 5914 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5915 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5916 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 5917 return true; 5918 } 5919 5920 // Only expand vector types if we have the appropriate vector bit operations. 5921 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5922 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 5923 !isOperationLegalOrCustom(ISD::SRL, VT) || 5924 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5925 return false; 5926 5927 // for now, we do this: 5928 // x = x | (x >> 1); 5929 // x = x | (x >> 2); 5930 // ... 5931 // x = x | (x >>16); 5932 // x = x | (x >>32); // for 64-bit input 5933 // return popcount(~x); 5934 // 5935 // Ref: "Hacker's Delight" by Henry Warren 5936 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 5937 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 5938 Op = DAG.getNode(ISD::OR, dl, VT, Op, 5939 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 5940 } 5941 Op = DAG.getNOT(dl, Op, VT); 5942 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 5943 return true; 5944 } 5945 5946 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 5947 SelectionDAG &DAG) const { 5948 SDLoc dl(Node); 5949 EVT VT = Node->getValueType(0); 5950 SDValue Op = Node->getOperand(0); 5951 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5952 5953 // If the non-ZERO_UNDEF version is supported we can use that instead. 5954 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 5955 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 5956 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 5957 return true; 5958 } 5959 5960 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5961 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 5962 EVT SetCCVT = 5963 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5964 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 5965 SDValue Zero = DAG.getConstant(0, dl, VT); 5966 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5967 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5968 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 5969 return true; 5970 } 5971 5972 // Only expand vector types if we have the appropriate vector bit operations. 5973 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5974 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 5975 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 5976 !isOperationLegalOrCustom(ISD::SUB, VT) || 5977 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 5978 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 5979 return false; 5980 5981 // for now, we use: { return popcount(~x & (x - 1)); } 5982 // unless the target has ctlz but not ctpop, in which case we use: 5983 // { return 32 - nlz(~x & (x-1)); } 5984 // Ref: "Hacker's Delight" by Henry Warren 5985 SDValue Tmp = DAG.getNode( 5986 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 5987 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 5988 5989 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5990 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 5991 Result = 5992 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 5993 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 5994 return true; 5995 } 5996 5997 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 5998 return true; 5999 } 6000 6001 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6002 SelectionDAG &DAG) const { 6003 SDLoc dl(N); 6004 EVT VT = N->getValueType(0); 6005 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6006 SDValue Op = N->getOperand(0); 6007 6008 // Only expand vector types if we have the appropriate vector operations. 6009 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6010 !isOperationLegalOrCustom(ISD::ADD, VT) || 6011 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6012 return false; 6013 6014 SDValue Shift = 6015 DAG.getNode(ISD::SRA, dl, VT, Op, 6016 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6017 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6018 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6019 return true; 6020 } 6021 6022 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6023 SelectionDAG &DAG) const { 6024 SDLoc SL(LD); 6025 SDValue Chain = LD->getChain(); 6026 SDValue BasePTR = LD->getBasePtr(); 6027 EVT SrcVT = LD->getMemoryVT(); 6028 ISD::LoadExtType ExtType = LD->getExtensionType(); 6029 6030 unsigned NumElem = SrcVT.getVectorNumElements(); 6031 6032 EVT SrcEltVT = SrcVT.getScalarType(); 6033 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6034 6035 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6036 assert(SrcEltVT.isByteSized()); 6037 6038 SmallVector<SDValue, 8> Vals; 6039 SmallVector<SDValue, 8> LoadChains; 6040 6041 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6042 SDValue ScalarLoad = 6043 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6044 LD->getPointerInfo().getWithOffset(Idx * Stride), 6045 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6046 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6047 6048 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6049 6050 Vals.push_back(ScalarLoad.getValue(0)); 6051 LoadChains.push_back(ScalarLoad.getValue(1)); 6052 } 6053 6054 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6055 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6056 6057 return DAG.getMergeValues({Value, NewChain}, SL); 6058 } 6059 6060 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6061 SelectionDAG &DAG) const { 6062 SDLoc SL(ST); 6063 6064 SDValue Chain = ST->getChain(); 6065 SDValue BasePtr = ST->getBasePtr(); 6066 SDValue Value = ST->getValue(); 6067 EVT StVT = ST->getMemoryVT(); 6068 6069 // The type of the data we want to save 6070 EVT RegVT = Value.getValueType(); 6071 EVT RegSclVT = RegVT.getScalarType(); 6072 6073 // The type of data as saved in memory. 6074 EVT MemSclVT = StVT.getScalarType(); 6075 6076 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6077 unsigned NumElem = StVT.getVectorNumElements(); 6078 6079 // A vector must always be stored in memory as-is, i.e. without any padding 6080 // between the elements, since various code depend on it, e.g. in the 6081 // handling of a bitcast of a vector type to int, which may be done with a 6082 // vector store followed by an integer load. A vector that does not have 6083 // elements that are byte-sized must therefore be stored as an integer 6084 // built out of the extracted vector elements. 6085 if (!MemSclVT.isByteSized()) { 6086 unsigned NumBits = StVT.getSizeInBits(); 6087 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6088 6089 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6090 6091 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6092 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6093 DAG.getConstant(Idx, SL, IdxVT)); 6094 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6095 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6096 unsigned ShiftIntoIdx = 6097 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6098 SDValue ShiftAmount = 6099 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6100 SDValue ShiftedElt = 6101 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6102 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6103 } 6104 6105 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6106 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6107 ST->getAAInfo()); 6108 } 6109 6110 // Store Stride in bytes 6111 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6112 assert(Stride && "Zero stride!"); 6113 // Extract each of the elements from the original vector and save them into 6114 // memory individually. 6115 SmallVector<SDValue, 8> Stores; 6116 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6117 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6118 DAG.getConstant(Idx, SL, IdxVT)); 6119 6120 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6121 6122 // This scalar TruncStore may be illegal, but we legalize it later. 6123 SDValue Store = DAG.getTruncStore( 6124 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6125 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6126 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6127 6128 Stores.push_back(Store); 6129 } 6130 6131 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6132 } 6133 6134 std::pair<SDValue, SDValue> 6135 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6136 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6137 "unaligned indexed loads not implemented!"); 6138 SDValue Chain = LD->getChain(); 6139 SDValue Ptr = LD->getBasePtr(); 6140 EVT VT = LD->getValueType(0); 6141 EVT LoadedVT = LD->getMemoryVT(); 6142 SDLoc dl(LD); 6143 auto &MF = DAG.getMachineFunction(); 6144 6145 if (VT.isFloatingPoint() || VT.isVector()) { 6146 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6147 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6148 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6149 LoadedVT.isVector()) { 6150 // Scalarize the load and let the individual components be handled. 6151 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 6152 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 6153 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 6154 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 6155 } 6156 6157 // Expand to a (misaligned) integer load of the same size, 6158 // then bitconvert to floating point or vector. 6159 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6160 LD->getMemOperand()); 6161 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6162 if (LoadedVT != VT) 6163 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6164 ISD::ANY_EXTEND, dl, VT, Result); 6165 6166 return std::make_pair(Result, newLoad.getValue(1)); 6167 } 6168 6169 // Copy the value to a (aligned) stack slot using (unaligned) integer 6170 // loads and stores, then do a (aligned) load from the stack slot. 6171 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6172 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6173 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6174 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6175 6176 // Make sure the stack slot is also aligned for the register type. 6177 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6178 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6179 SmallVector<SDValue, 8> Stores; 6180 SDValue StackPtr = StackBase; 6181 unsigned Offset = 0; 6182 6183 EVT PtrVT = Ptr.getValueType(); 6184 EVT StackPtrVT = StackPtr.getValueType(); 6185 6186 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6187 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6188 6189 // Do all but one copies using the full register width. 6190 for (unsigned i = 1; i < NumRegs; i++) { 6191 // Load one integer register's worth from the original location. 6192 SDValue Load = DAG.getLoad( 6193 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6194 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6195 LD->getAAInfo()); 6196 // Follow the load with a store to the stack slot. Remember the store. 6197 Stores.push_back(DAG.getStore( 6198 Load.getValue(1), dl, Load, StackPtr, 6199 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6200 // Increment the pointers. 6201 Offset += RegBytes; 6202 6203 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6204 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6205 } 6206 6207 // The last copy may be partial. Do an extending load. 6208 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6209 8 * (LoadedBytes - Offset)); 6210 SDValue Load = 6211 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6212 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6213 MinAlign(LD->getAlignment(), Offset), 6214 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6215 // Follow the load with a store to the stack slot. Remember the store. 6216 // On big-endian machines this requires a truncating store to ensure 6217 // that the bits end up in the right place. 6218 Stores.push_back(DAG.getTruncStore( 6219 Load.getValue(1), dl, Load, StackPtr, 6220 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6221 6222 // The order of the stores doesn't matter - say it with a TokenFactor. 6223 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6224 6225 // Finally, perform the original load only redirected to the stack slot. 6226 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6227 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6228 LoadedVT); 6229 6230 // Callers expect a MERGE_VALUES node. 6231 return std::make_pair(Load, TF); 6232 } 6233 6234 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6235 "Unaligned load of unsupported type."); 6236 6237 // Compute the new VT that is half the size of the old one. This is an 6238 // integer MVT. 6239 unsigned NumBits = LoadedVT.getSizeInBits(); 6240 EVT NewLoadedVT; 6241 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6242 NumBits >>= 1; 6243 6244 unsigned Alignment = LD->getAlignment(); 6245 unsigned IncrementSize = NumBits / 8; 6246 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6247 6248 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6249 if (HiExtType == ISD::NON_EXTLOAD) 6250 HiExtType = ISD::ZEXTLOAD; 6251 6252 // Load the value in two parts 6253 SDValue Lo, Hi; 6254 if (DAG.getDataLayout().isLittleEndian()) { 6255 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6256 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6257 LD->getAAInfo()); 6258 6259 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6260 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6261 LD->getPointerInfo().getWithOffset(IncrementSize), 6262 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6263 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6264 } else { 6265 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6266 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6267 LD->getAAInfo()); 6268 6269 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6270 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6271 LD->getPointerInfo().getWithOffset(IncrementSize), 6272 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6273 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6274 } 6275 6276 // aggregate the two parts 6277 SDValue ShiftAmount = 6278 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6279 DAG.getDataLayout())); 6280 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6281 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6282 6283 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6284 Hi.getValue(1)); 6285 6286 return std::make_pair(Result, TF); 6287 } 6288 6289 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6290 SelectionDAG &DAG) const { 6291 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6292 "unaligned indexed stores not implemented!"); 6293 SDValue Chain = ST->getChain(); 6294 SDValue Ptr = ST->getBasePtr(); 6295 SDValue Val = ST->getValue(); 6296 EVT VT = Val.getValueType(); 6297 int Alignment = ST->getAlignment(); 6298 auto &MF = DAG.getMachineFunction(); 6299 EVT StoreMemVT = ST->getMemoryVT(); 6300 6301 SDLoc dl(ST); 6302 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6303 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6304 if (isTypeLegal(intVT)) { 6305 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6306 StoreMemVT.isVector()) { 6307 // Scalarize the store and let the individual components be handled. 6308 SDValue Result = scalarizeVectorStore(ST, DAG); 6309 return Result; 6310 } 6311 // Expand to a bitconvert of the value to the integer type of the 6312 // same size, then a (misaligned) int store. 6313 // FIXME: Does not handle truncating floating point stores! 6314 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6315 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6316 Alignment, ST->getMemOperand()->getFlags()); 6317 return Result; 6318 } 6319 // Do a (aligned) store to a stack slot, then copy from the stack slot 6320 // to the final destination using (unaligned) integer loads and stores. 6321 MVT RegVT = getRegisterType( 6322 *DAG.getContext(), 6323 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6324 EVT PtrVT = Ptr.getValueType(); 6325 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6326 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6327 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6328 6329 // Make sure the stack slot is also aligned for the register type. 6330 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6331 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6332 6333 // Perform the original store, only redirected to the stack slot. 6334 SDValue Store = DAG.getTruncStore( 6335 Chain, dl, Val, StackPtr, 6336 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6337 6338 EVT StackPtrVT = StackPtr.getValueType(); 6339 6340 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6341 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6342 SmallVector<SDValue, 8> Stores; 6343 unsigned Offset = 0; 6344 6345 // Do all but one copies using the full register width. 6346 for (unsigned i = 1; i < NumRegs; i++) { 6347 // Load one integer register's worth from the stack slot. 6348 SDValue Load = DAG.getLoad( 6349 RegVT, dl, Store, StackPtr, 6350 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6351 // Store it to the final location. Remember the store. 6352 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6353 ST->getPointerInfo().getWithOffset(Offset), 6354 MinAlign(ST->getAlignment(), Offset), 6355 ST->getMemOperand()->getFlags())); 6356 // Increment the pointers. 6357 Offset += RegBytes; 6358 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6359 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6360 } 6361 6362 // The last store may be partial. Do a truncating store. On big-endian 6363 // machines this requires an extending load from the stack slot to ensure 6364 // that the bits are in the right place. 6365 EVT LoadMemVT = 6366 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6367 6368 // Load from the stack slot. 6369 SDValue Load = DAG.getExtLoad( 6370 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6371 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6372 6373 Stores.push_back( 6374 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6375 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6376 MinAlign(ST->getAlignment(), Offset), 6377 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6378 // The order of the stores doesn't matter - say it with a TokenFactor. 6379 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6380 return Result; 6381 } 6382 6383 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6384 "Unaligned store of unknown type."); 6385 // Get the half-size VT 6386 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6387 int NumBits = NewStoredVT.getSizeInBits(); 6388 int IncrementSize = NumBits / 8; 6389 6390 // Divide the stored value in two parts. 6391 SDValue ShiftAmount = DAG.getConstant( 6392 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6393 SDValue Lo = Val; 6394 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6395 6396 // Store the two parts 6397 SDValue Store1, Store2; 6398 Store1 = DAG.getTruncStore(Chain, dl, 6399 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6400 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6401 ST->getMemOperand()->getFlags()); 6402 6403 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6404 Alignment = MinAlign(Alignment, IncrementSize); 6405 Store2 = DAG.getTruncStore( 6406 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6407 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6408 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6409 6410 SDValue Result = 6411 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6412 return Result; 6413 } 6414 6415 SDValue 6416 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6417 const SDLoc &DL, EVT DataVT, 6418 SelectionDAG &DAG, 6419 bool IsCompressedMemory) const { 6420 SDValue Increment; 6421 EVT AddrVT = Addr.getValueType(); 6422 EVT MaskVT = Mask.getValueType(); 6423 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6424 "Incompatible types of Data and Mask"); 6425 if (IsCompressedMemory) { 6426 // Incrementing the pointer according to number of '1's in the mask. 6427 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6428 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6429 if (MaskIntVT.getSizeInBits() < 32) { 6430 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6431 MaskIntVT = MVT::i32; 6432 } 6433 6434 // Count '1's with POPCNT. 6435 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6436 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6437 // Scale is an element size in bytes. 6438 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6439 AddrVT); 6440 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6441 } else 6442 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6443 6444 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6445 } 6446 6447 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6448 SDValue Idx, 6449 EVT VecVT, 6450 const SDLoc &dl) { 6451 if (isa<ConstantSDNode>(Idx)) 6452 return Idx; 6453 6454 EVT IdxVT = Idx.getValueType(); 6455 unsigned NElts = VecVT.getVectorNumElements(); 6456 if (isPowerOf2_32(NElts)) { 6457 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6458 Log2_32(NElts)); 6459 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 6460 DAG.getConstant(Imm, dl, IdxVT)); 6461 } 6462 6463 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 6464 DAG.getConstant(NElts - 1, dl, IdxVT)); 6465 } 6466 6467 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 6468 SDValue VecPtr, EVT VecVT, 6469 SDValue Index) const { 6470 SDLoc dl(Index); 6471 // Make sure the index type is big enough to compute in. 6472 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 6473 6474 EVT EltVT = VecVT.getVectorElementType(); 6475 6476 // Calculate the element offset and add it to the pointer. 6477 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 6478 assert(EltSize * 8 == EltVT.getSizeInBits() && 6479 "Converting bits to bytes lost precision"); 6480 6481 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 6482 6483 EVT IdxVT = Index.getValueType(); 6484 6485 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 6486 DAG.getConstant(EltSize, dl, IdxVT)); 6487 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 6488 } 6489 6490 //===----------------------------------------------------------------------===// 6491 // Implementation of Emulated TLS Model 6492 //===----------------------------------------------------------------------===// 6493 6494 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 6495 SelectionDAG &DAG) const { 6496 // Access to address of TLS varialbe xyz is lowered to a function call: 6497 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 6498 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6499 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 6500 SDLoc dl(GA); 6501 6502 ArgListTy Args; 6503 ArgListEntry Entry; 6504 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 6505 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 6506 StringRef EmuTlsVarName(NameString); 6507 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 6508 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 6509 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 6510 Entry.Ty = VoidPtrType; 6511 Args.push_back(Entry); 6512 6513 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 6514 6515 TargetLowering::CallLoweringInfo CLI(DAG); 6516 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 6517 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 6518 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6519 6520 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 6521 // At last for X86 targets, maybe good for other targets too? 6522 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6523 MFI.setAdjustsStack(true); // Is this only for X86 target? 6524 MFI.setHasCalls(true); 6525 6526 assert((GA->getOffset() == 0) && 6527 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 6528 return CallResult.first; 6529 } 6530 6531 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 6532 SelectionDAG &DAG) const { 6533 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 6534 if (!isCtlzFast()) 6535 return SDValue(); 6536 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6537 SDLoc dl(Op); 6538 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6539 if (C->isNullValue() && CC == ISD::SETEQ) { 6540 EVT VT = Op.getOperand(0).getValueType(); 6541 SDValue Zext = Op.getOperand(0); 6542 if (VT.bitsLT(MVT::i32)) { 6543 VT = MVT::i32; 6544 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 6545 } 6546 unsigned Log2b = Log2_32(VT.getSizeInBits()); 6547 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 6548 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 6549 DAG.getConstant(Log2b, dl, MVT::i32)); 6550 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 6551 } 6552 } 6553 return SDValue(); 6554 } 6555 6556 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 6557 unsigned Opcode = Node->getOpcode(); 6558 SDValue LHS = Node->getOperand(0); 6559 SDValue RHS = Node->getOperand(1); 6560 EVT VT = LHS.getValueType(); 6561 SDLoc dl(Node); 6562 6563 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 6564 assert(VT.isInteger() && "Expected operands to be integers"); 6565 6566 // usub.sat(a, b) -> umax(a, b) - b 6567 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 6568 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 6569 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 6570 } 6571 6572 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 6573 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 6574 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 6575 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 6576 } 6577 6578 unsigned OverflowOp; 6579 switch (Opcode) { 6580 case ISD::SADDSAT: 6581 OverflowOp = ISD::SADDO; 6582 break; 6583 case ISD::UADDSAT: 6584 OverflowOp = ISD::UADDO; 6585 break; 6586 case ISD::SSUBSAT: 6587 OverflowOp = ISD::SSUBO; 6588 break; 6589 case ISD::USUBSAT: 6590 OverflowOp = ISD::USUBO; 6591 break; 6592 default: 6593 llvm_unreachable("Expected method to receive signed or unsigned saturation " 6594 "addition or subtraction node."); 6595 } 6596 6597 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 6598 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6599 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 6600 LHS, RHS); 6601 SDValue SumDiff = Result.getValue(0); 6602 SDValue Overflow = Result.getValue(1); 6603 SDValue Zero = DAG.getConstant(0, dl, VT); 6604 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 6605 6606 if (Opcode == ISD::UADDSAT) { 6607 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6608 // (LHS + RHS) | OverflowMask 6609 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6610 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 6611 } 6612 // Overflow ? 0xffff.... : (LHS + RHS) 6613 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 6614 } else if (Opcode == ISD::USUBSAT) { 6615 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6616 // (LHS - RHS) & ~OverflowMask 6617 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6618 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 6619 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 6620 } 6621 // Overflow ? 0 : (LHS - RHS) 6622 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 6623 } else { 6624 // SatMax -> Overflow && SumDiff < 0 6625 // SatMin -> Overflow && SumDiff >= 0 6626 APInt MinVal = APInt::getSignedMinValue(BitWidth); 6627 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 6628 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 6629 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6630 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 6631 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 6632 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 6633 } 6634 } 6635 6636 SDValue 6637 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 6638 assert((Node->getOpcode() == ISD::SMULFIX || 6639 Node->getOpcode() == ISD::UMULFIX || 6640 Node->getOpcode() == ISD::SMULFIXSAT) && 6641 "Expected a fixed point multiplication opcode"); 6642 6643 SDLoc dl(Node); 6644 SDValue LHS = Node->getOperand(0); 6645 SDValue RHS = Node->getOperand(1); 6646 EVT VT = LHS.getValueType(); 6647 unsigned Scale = Node->getConstantOperandVal(2); 6648 bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT; 6649 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6650 unsigned VTSize = VT.getScalarSizeInBits(); 6651 6652 if (!Scale) { 6653 // [us]mul.fix(a, b, 0) -> mul(a, b) 6654 if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) { 6655 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6656 } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) { 6657 SDValue Result = 6658 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 6659 SDValue Product = Result.getValue(0); 6660 SDValue Overflow = Result.getValue(1); 6661 SDValue Zero = DAG.getConstant(0, dl, VT); 6662 6663 APInt MinVal = APInt::getSignedMinValue(VTSize); 6664 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 6665 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 6666 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6667 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 6668 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 6669 return DAG.getSelect(dl, VT, Overflow, Result, Product); 6670 } 6671 } 6672 6673 bool Signed = 6674 Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT; 6675 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 6676 "Expected scale to be less than the number of bits if signed or at " 6677 "most the number of bits if unsigned."); 6678 assert(LHS.getValueType() == RHS.getValueType() && 6679 "Expected both operands to be the same type"); 6680 6681 // Get the upper and lower bits of the result. 6682 SDValue Lo, Hi; 6683 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 6684 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 6685 if (isOperationLegalOrCustom(LoHiOp, VT)) { 6686 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 6687 Lo = Result.getValue(0); 6688 Hi = Result.getValue(1); 6689 } else if (isOperationLegalOrCustom(HiOp, VT)) { 6690 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6691 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 6692 } else if (VT.isVector()) { 6693 return SDValue(); 6694 } else { 6695 report_fatal_error("Unable to expand fixed point multiplication."); 6696 } 6697 6698 if (Scale == VTSize) 6699 // Result is just the top half since we'd be shifting by the width of the 6700 // operand. 6701 return Hi; 6702 6703 // The result will need to be shifted right by the scale since both operands 6704 // are scaled. The result is given to us in 2 halves, so we only want part of 6705 // both in the result. 6706 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6707 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 6708 DAG.getConstant(Scale, dl, ShiftTy)); 6709 if (!Saturating) 6710 return Result; 6711 6712 unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign 6713 SDValue HiMask = 6714 DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT); 6715 SDValue LoMask = DAG.getConstant( 6716 APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT); 6717 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 6718 APInt MinVal = APInt::getSignedMinValue(VTSize); 6719 6720 Result = DAG.getSelectCC(dl, Hi, LoMask, 6721 DAG.getConstant(MaxVal, dl, VT), Result, 6722 ISD::SETGT); 6723 return DAG.getSelectCC(dl, Hi, HiMask, 6724 DAG.getConstant(MinVal, dl, VT), Result, 6725 ISD::SETLT); 6726 } 6727 6728 void TargetLowering::expandUADDSUBO( 6729 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 6730 SDLoc dl(Node); 6731 SDValue LHS = Node->getOperand(0); 6732 SDValue RHS = Node->getOperand(1); 6733 bool IsAdd = Node->getOpcode() == ISD::UADDO; 6734 6735 // If ADD/SUBCARRY is legal, use that instead. 6736 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 6737 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 6738 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 6739 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 6740 { LHS, RHS, CarryIn }); 6741 Result = SDValue(NodeCarry.getNode(), 0); 6742 Overflow = SDValue(NodeCarry.getNode(), 1); 6743 return; 6744 } 6745 6746 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 6747 LHS.getValueType(), LHS, RHS); 6748 6749 EVT ResultType = Node->getValueType(1); 6750 EVT SetCCType = getSetCCResultType( 6751 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 6752 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 6753 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 6754 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 6755 } 6756 6757 void TargetLowering::expandSADDSUBO( 6758 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 6759 SDLoc dl(Node); 6760 SDValue LHS = Node->getOperand(0); 6761 SDValue RHS = Node->getOperand(1); 6762 bool IsAdd = Node->getOpcode() == ISD::SADDO; 6763 6764 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 6765 LHS.getValueType(), LHS, RHS); 6766 6767 EVT ResultType = Node->getValueType(1); 6768 EVT OType = getSetCCResultType( 6769 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 6770 6771 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6772 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 6773 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 6774 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 6775 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 6776 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 6777 return; 6778 } 6779 6780 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 6781 6782 // LHSSign -> LHS >= 0 6783 // RHSSign -> RHS >= 0 6784 // SumSign -> Result >= 0 6785 // 6786 // Add: 6787 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 6788 // Sub: 6789 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 6790 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 6791 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 6792 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 6793 IsAdd ? ISD::SETEQ : ISD::SETNE); 6794 6795 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE); 6796 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 6797 6798 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 6799 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType); 6800 } 6801 6802 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 6803 SDValue &Overflow, SelectionDAG &DAG) const { 6804 SDLoc dl(Node); 6805 EVT VT = Node->getValueType(0); 6806 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6807 SDValue LHS = Node->getOperand(0); 6808 SDValue RHS = Node->getOperand(1); 6809 bool isSigned = Node->getOpcode() == ISD::SMULO; 6810 6811 // For power-of-two multiplications we can use a simpler shift expansion. 6812 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 6813 const APInt &C = RHSC->getAPIntValue(); 6814 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 6815 if (C.isPowerOf2()) { 6816 // smulo(x, signed_min) is same as umulo(x, signed_min). 6817 bool UseArithShift = isSigned && !C.isMinSignedValue(); 6818 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6819 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 6820 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 6821 Overflow = DAG.getSetCC(dl, SetCCVT, 6822 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 6823 dl, VT, Result, ShiftAmt), 6824 LHS, ISD::SETNE); 6825 return true; 6826 } 6827 } 6828 6829 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 6830 if (VT.isVector()) 6831 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6832 VT.getVectorNumElements()); 6833 6834 SDValue BottomHalf; 6835 SDValue TopHalf; 6836 static const unsigned Ops[2][3] = 6837 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 6838 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 6839 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 6840 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6841 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 6842 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 6843 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 6844 RHS); 6845 TopHalf = BottomHalf.getValue(1); 6846 } else if (isTypeLegal(WideVT)) { 6847 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 6848 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 6849 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 6850 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 6851 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 6852 getShiftAmountTy(WideVT, DAG.getDataLayout())); 6853 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 6854 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 6855 } else { 6856 if (VT.isVector()) 6857 return false; 6858 6859 // We can fall back to a libcall with an illegal type for the MUL if we 6860 // have a libcall big enough. 6861 // Also, we can fall back to a division in some cases, but that's a big 6862 // performance hit in the general case. 6863 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6864 if (WideVT == MVT::i16) 6865 LC = RTLIB::MUL_I16; 6866 else if (WideVT == MVT::i32) 6867 LC = RTLIB::MUL_I32; 6868 else if (WideVT == MVT::i64) 6869 LC = RTLIB::MUL_I64; 6870 else if (WideVT == MVT::i128) 6871 LC = RTLIB::MUL_I128; 6872 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 6873 6874 SDValue HiLHS; 6875 SDValue HiRHS; 6876 if (isSigned) { 6877 // The high part is obtained by SRA'ing all but one of the bits of low 6878 // part. 6879 unsigned LoSize = VT.getSizeInBits(); 6880 HiLHS = 6881 DAG.getNode(ISD::SRA, dl, VT, LHS, 6882 DAG.getConstant(LoSize - 1, dl, 6883 getPointerTy(DAG.getDataLayout()))); 6884 HiRHS = 6885 DAG.getNode(ISD::SRA, dl, VT, RHS, 6886 DAG.getConstant(LoSize - 1, dl, 6887 getPointerTy(DAG.getDataLayout()))); 6888 } else { 6889 HiLHS = DAG.getConstant(0, dl, VT); 6890 HiRHS = DAG.getConstant(0, dl, VT); 6891 } 6892 6893 // Here we're passing the 2 arguments explicitly as 4 arguments that are 6894 // pre-lowered to the correct types. This all depends upon WideVT not 6895 // being a legal type for the architecture and thus has to be split to 6896 // two arguments. 6897 SDValue Ret; 6898 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 6899 // Halves of WideVT are packed into registers in different order 6900 // depending on platform endianness. This is usually handled by 6901 // the C calling convention, but we can't defer to it in 6902 // the legalizer. 6903 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 6904 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 6905 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 6906 /* isPostTypeLegalization */ true).first; 6907 } else { 6908 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 6909 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 6910 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 6911 /* isPostTypeLegalization */ true).first; 6912 } 6913 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 6914 "Ret value is a collection of constituent nodes holding result."); 6915 if (DAG.getDataLayout().isLittleEndian()) { 6916 // Same as above. 6917 BottomHalf = Ret.getOperand(0); 6918 TopHalf = Ret.getOperand(1); 6919 } else { 6920 BottomHalf = Ret.getOperand(1); 6921 TopHalf = Ret.getOperand(0); 6922 } 6923 } 6924 6925 Result = BottomHalf; 6926 if (isSigned) { 6927 SDValue ShiftAmt = DAG.getConstant( 6928 VT.getScalarSizeInBits() - 1, dl, 6929 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 6930 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 6931 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 6932 } else { 6933 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 6934 DAG.getConstant(0, dl, VT), ISD::SETNE); 6935 } 6936 6937 // Truncate the result if SetCC returns a larger type than needed. 6938 EVT RType = Node->getValueType(1); 6939 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 6940 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 6941 6942 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 6943 "Unexpected result type for S/UMULO legalization"); 6944 return true; 6945 } 6946 6947 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 6948 SDLoc dl(Node); 6949 bool NoNaN = Node->getFlags().hasNoNaNs(); 6950 unsigned BaseOpcode = 0; 6951 switch (Node->getOpcode()) { 6952 default: llvm_unreachable("Expected VECREDUCE opcode"); 6953 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 6954 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 6955 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 6956 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 6957 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 6958 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 6959 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 6960 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 6961 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 6962 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 6963 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 6964 case ISD::VECREDUCE_FMAX: 6965 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 6966 break; 6967 case ISD::VECREDUCE_FMIN: 6968 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 6969 break; 6970 } 6971 6972 SDValue Op = Node->getOperand(0); 6973 EVT VT = Op.getValueType(); 6974 6975 // Try to use a shuffle reduction for power of two vectors. 6976 if (VT.isPow2VectorType()) { 6977 while (VT.getVectorNumElements() > 1) { 6978 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 6979 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 6980 break; 6981 6982 SDValue Lo, Hi; 6983 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 6984 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 6985 VT = HalfVT; 6986 } 6987 } 6988 6989 EVT EltVT = VT.getVectorElementType(); 6990 unsigned NumElts = VT.getVectorNumElements(); 6991 6992 SmallVector<SDValue, 8> Ops; 6993 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 6994 6995 SDValue Res = Ops[0]; 6996 for (unsigned i = 1; i < NumElts; i++) 6997 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 6998 6999 // Result type may be wider than element type. 7000 if (EltVT != Node->getValueType(0)) 7001 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7002 return Res; 7003 } 7004