1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 487 TargetLoweringOpt &TLO) const { 488 SDLoc DL(Op); 489 unsigned Opcode = Op.getOpcode(); 490 491 // Do target-specific constant optimization. 492 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 493 return TLO.New.getNode(); 494 495 // FIXME: ISD::SELECT, ISD::SELECT_CC 496 switch (Opcode) { 497 default: 498 break; 499 case ISD::XOR: 500 case ISD::AND: 501 case ISD::OR: { 502 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 503 if (!Op1C) 504 return false; 505 506 // If this is a 'not' op, don't touch it because that's a canonical form. 507 const APInt &C = Op1C->getAPIntValue(); 508 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 509 return false; 510 511 if (!C.isSubsetOf(Demanded)) { 512 EVT VT = Op.getValueType(); 513 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 514 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 515 return TLO.CombineTo(Op, NewOp); 516 } 517 518 break; 519 } 520 } 521 522 return false; 523 } 524 525 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 526 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 527 /// generalized for targets with other types of implicit widening casts. 528 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 529 const APInt &Demanded, 530 TargetLoweringOpt &TLO) const { 531 assert(Op.getNumOperands() == 2 && 532 "ShrinkDemandedOp only supports binary operators!"); 533 assert(Op.getNode()->getNumValues() == 1 && 534 "ShrinkDemandedOp only supports nodes with one result!"); 535 536 SelectionDAG &DAG = TLO.DAG; 537 SDLoc dl(Op); 538 539 // Early return, as this function cannot handle vector types. 540 if (Op.getValueType().isVector()) 541 return false; 542 543 // Don't do this if the node has another user, which may require the 544 // full value. 545 if (!Op.getNode()->hasOneUse()) 546 return false; 547 548 // Search for the smallest integer type with free casts to and from 549 // Op's type. For expedience, just check power-of-2 integer types. 550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 551 unsigned DemandedSize = Demanded.getActiveBits(); 552 unsigned SmallVTBits = DemandedSize; 553 if (!isPowerOf2_32(SmallVTBits)) 554 SmallVTBits = NextPowerOf2(SmallVTBits); 555 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 556 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 557 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 558 TLI.isZExtFree(SmallVT, Op.getValueType())) { 559 // We found a type with free casts. 560 SDValue X = DAG.getNode( 561 Op.getOpcode(), dl, SmallVT, 562 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 563 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 564 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 565 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 566 return TLO.CombineTo(Op, Z); 567 } 568 } 569 return false; 570 } 571 572 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 573 DAGCombinerInfo &DCI) const { 574 SelectionDAG &DAG = DCI.DAG; 575 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 576 !DCI.isBeforeLegalizeOps()); 577 KnownBits Known; 578 579 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 580 if (Simplified) { 581 DCI.AddToWorklist(Op.getNode()); 582 DCI.CommitTargetLoweringOpt(TLO); 583 } 584 return Simplified; 585 } 586 587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 588 KnownBits &Known, 589 TargetLoweringOpt &TLO, 590 unsigned Depth, 591 bool AssumeSingleUse) const { 592 EVT VT = Op.getValueType(); 593 APInt DemandedElts = VT.isVector() 594 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 595 : APInt(1, 1); 596 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 597 AssumeSingleUse); 598 } 599 600 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 601 // TODO: Under what circumstances can we create nodes? Constant folding? 602 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 603 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 604 SelectionDAG &DAG, unsigned Depth) const { 605 // Limit search depth. 606 if (Depth >= SelectionDAG::MaxRecursionDepth) 607 return SDValue(); 608 609 // Ignore UNDEFs. 610 if (Op.isUndef()) 611 return SDValue(); 612 613 // Not demanding any bits/elts from Op. 614 if (DemandedBits == 0 || DemandedElts == 0) 615 return DAG.getUNDEF(Op.getValueType()); 616 617 unsigned NumElts = DemandedElts.getBitWidth(); 618 KnownBits LHSKnown, RHSKnown; 619 switch (Op.getOpcode()) { 620 case ISD::BITCAST: { 621 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 622 EVT SrcVT = Src.getValueType(); 623 EVT DstVT = Op.getValueType(); 624 if (SrcVT == DstVT) 625 return Src; 626 627 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 628 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 629 if (NumSrcEltBits == NumDstEltBits) 630 if (SDValue V = SimplifyMultipleUseDemandedBits( 631 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 632 return DAG.getBitcast(DstVT, V); 633 634 // TODO - bigendian once we have test coverage. 635 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 636 DAG.getDataLayout().isLittleEndian()) { 637 unsigned Scale = NumDstEltBits / NumSrcEltBits; 638 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 639 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 640 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 641 for (unsigned i = 0; i != Scale; ++i) { 642 unsigned Offset = i * NumSrcEltBits; 643 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 644 if (!Sub.isNullValue()) { 645 DemandedSrcBits |= Sub; 646 for (unsigned j = 0; j != NumElts; ++j) 647 if (DemandedElts[j]) 648 DemandedSrcElts.setBit((j * Scale) + i); 649 } 650 } 651 652 if (SDValue V = SimplifyMultipleUseDemandedBits( 653 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 654 return DAG.getBitcast(DstVT, V); 655 } 656 657 // TODO - bigendian once we have test coverage. 658 if ((NumSrcEltBits % NumDstEltBits) == 0 && 659 DAG.getDataLayout().isLittleEndian()) { 660 unsigned Scale = NumSrcEltBits / NumDstEltBits; 661 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 662 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 663 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 664 for (unsigned i = 0; i != NumElts; ++i) 665 if (DemandedElts[i]) { 666 unsigned Offset = (i % Scale) * NumDstEltBits; 667 DemandedSrcBits.insertBits(DemandedBits, Offset); 668 DemandedSrcElts.setBit(i / Scale); 669 } 670 671 if (SDValue V = SimplifyMultipleUseDemandedBits( 672 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 673 return DAG.getBitcast(DstVT, V); 674 } 675 676 break; 677 } 678 case ISD::AND: { 679 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 680 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 681 682 // If all of the demanded bits are known 1 on one side, return the other. 683 // These bits cannot contribute to the result of the 'and' in this 684 // context. 685 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 686 return Op.getOperand(0); 687 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 688 return Op.getOperand(1); 689 break; 690 } 691 case ISD::OR: { 692 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 693 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 694 695 // If all of the demanded bits are known zero on one side, return the 696 // other. These bits cannot contribute to the result of the 'or' in this 697 // context. 698 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 699 return Op.getOperand(0); 700 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 701 return Op.getOperand(1); 702 break; 703 } 704 case ISD::XOR: { 705 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 706 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 707 708 // If all of the demanded bits are known zero on one side, return the 709 // other. 710 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 711 return Op.getOperand(0); 712 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 713 return Op.getOperand(1); 714 break; 715 } 716 case ISD::SETCC: { 717 SDValue Op0 = Op.getOperand(0); 718 SDValue Op1 = Op.getOperand(1); 719 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 720 // If (1) we only need the sign-bit, (2) the setcc operands are the same 721 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 722 // -1, we may be able to bypass the setcc. 723 if (DemandedBits.isSignMask() && 724 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 725 getBooleanContents(Op0.getValueType()) == 726 BooleanContent::ZeroOrNegativeOneBooleanContent) { 727 // If we're testing X < 0, then this compare isn't needed - just use X! 728 // FIXME: We're limiting to integer types here, but this should also work 729 // if we don't care about FP signed-zero. The use of SETLT with FP means 730 // that we don't care about NaNs. 731 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 732 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 733 return Op0; 734 } 735 break; 736 } 737 case ISD::SIGN_EXTEND_INREG: { 738 // If none of the extended bits are demanded, eliminate the sextinreg. 739 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 740 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 741 return Op.getOperand(0); 742 break; 743 } 744 case ISD::INSERT_VECTOR_ELT: { 745 // If we don't demand the inserted element, return the base vector. 746 SDValue Vec = Op.getOperand(0); 747 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 748 EVT VecVT = Vec.getValueType(); 749 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 750 !DemandedElts[CIdx->getZExtValue()]) 751 return Vec; 752 break; 753 } 754 case ISD::INSERT_SUBVECTOR: { 755 // If we don't demand the inserted subvector, return the base vector. 756 SDValue Vec = Op.getOperand(0); 757 SDValue Sub = Op.getOperand(1); 758 uint64_t Idx = Op.getConstantOperandVal(2); 759 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 760 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 761 return Vec; 762 break; 763 } 764 case ISD::VECTOR_SHUFFLE: { 765 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 766 767 // If all the demanded elts are from one operand and are inline, 768 // then we can use the operand directly. 769 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 770 for (unsigned i = 0; i != NumElts; ++i) { 771 int M = ShuffleMask[i]; 772 if (M < 0 || !DemandedElts[i]) 773 continue; 774 AllUndef = false; 775 IdentityLHS &= (M == (int)i); 776 IdentityRHS &= ((M - NumElts) == i); 777 } 778 779 if (AllUndef) 780 return DAG.getUNDEF(Op.getValueType()); 781 if (IdentityLHS) 782 return Op.getOperand(0); 783 if (IdentityRHS) 784 return Op.getOperand(1); 785 break; 786 } 787 default: 788 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 789 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 790 Op, DemandedBits, DemandedElts, DAG, Depth)) 791 return V; 792 break; 793 } 794 return SDValue(); 795 } 796 797 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 798 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 799 unsigned Depth) const { 800 EVT VT = Op.getValueType(); 801 APInt DemandedElts = VT.isVector() 802 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 803 : APInt(1, 1); 804 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 805 Depth); 806 } 807 808 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 809 /// result of Op are ever used downstream. If we can use this information to 810 /// simplify Op, create a new simplified DAG node and return true, returning the 811 /// original and new nodes in Old and New. Otherwise, analyze the expression and 812 /// return a mask of Known bits for the expression (used to simplify the 813 /// caller). The Known bits may only be accurate for those bits in the 814 /// OriginalDemandedBits and OriginalDemandedElts. 815 bool TargetLowering::SimplifyDemandedBits( 816 SDValue Op, const APInt &OriginalDemandedBits, 817 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 818 unsigned Depth, bool AssumeSingleUse) const { 819 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 820 assert(Op.getScalarValueSizeInBits() == BitWidth && 821 "Mask size mismatches value type size!"); 822 823 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 824 assert((!Op.getValueType().isVector() || 825 NumElts == Op.getValueType().getVectorNumElements()) && 826 "Unexpected vector size"); 827 828 APInt DemandedBits = OriginalDemandedBits; 829 APInt DemandedElts = OriginalDemandedElts; 830 SDLoc dl(Op); 831 auto &DL = TLO.DAG.getDataLayout(); 832 833 // Don't know anything. 834 Known = KnownBits(BitWidth); 835 836 // Undef operand. 837 if (Op.isUndef()) 838 return false; 839 840 if (Op.getOpcode() == ISD::Constant) { 841 // We know all of the bits for a constant! 842 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 843 Known.Zero = ~Known.One; 844 return false; 845 } 846 847 // Other users may use these bits. 848 EVT VT = Op.getValueType(); 849 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 850 if (Depth != 0) { 851 // If not at the root, Just compute the Known bits to 852 // simplify things downstream. 853 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 854 return false; 855 } 856 // If this is the root being simplified, allow it to have multiple uses, 857 // just set the DemandedBits/Elts to all bits. 858 DemandedBits = APInt::getAllOnesValue(BitWidth); 859 DemandedElts = APInt::getAllOnesValue(NumElts); 860 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 861 // Not demanding any bits/elts from Op. 862 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 863 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 864 // Limit search depth. 865 return false; 866 } 867 868 KnownBits Known2; 869 switch (Op.getOpcode()) { 870 case ISD::TargetConstant: 871 llvm_unreachable("Can't simplify this node"); 872 case ISD::SCALAR_TO_VECTOR: { 873 if (!DemandedElts[0]) 874 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 875 876 KnownBits SrcKnown; 877 SDValue Src = Op.getOperand(0); 878 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 879 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 880 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 881 return true; 882 883 // Upper elements are undef, so only get the knownbits if we just demand 884 // the bottom element. 885 if (DemandedElts == 1) 886 Known = SrcKnown.anyextOrTrunc(BitWidth); 887 break; 888 } 889 case ISD::BUILD_VECTOR: 890 // Collect the known bits that are shared by every demanded element. 891 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 892 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 893 return false; // Don't fall through, will infinitely loop. 894 case ISD::LOAD: { 895 LoadSDNode *LD = cast<LoadSDNode>(Op); 896 if (getTargetConstantFromLoad(LD)) { 897 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 898 return false; // Don't fall through, will infinitely loop. 899 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 900 // If this is a ZEXTLoad and we are looking at the loaded value. 901 EVT MemVT = LD->getMemoryVT(); 902 unsigned MemBits = MemVT.getScalarSizeInBits(); 903 Known.Zero.setBitsFrom(MemBits); 904 return false; // Don't fall through, will infinitely loop. 905 } 906 break; 907 } 908 case ISD::INSERT_VECTOR_ELT: { 909 SDValue Vec = Op.getOperand(0); 910 SDValue Scl = Op.getOperand(1); 911 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 912 EVT VecVT = Vec.getValueType(); 913 914 // If index isn't constant, assume we need all vector elements AND the 915 // inserted element. 916 APInt DemandedVecElts(DemandedElts); 917 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 918 unsigned Idx = CIdx->getZExtValue(); 919 DemandedVecElts.clearBit(Idx); 920 921 // Inserted element is not required. 922 if (!DemandedElts[Idx]) 923 return TLO.CombineTo(Op, Vec); 924 } 925 926 KnownBits KnownScl; 927 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 928 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 929 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 930 return true; 931 932 Known = KnownScl.anyextOrTrunc(BitWidth); 933 934 KnownBits KnownVec; 935 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 936 Depth + 1)) 937 return true; 938 939 if (!!DemandedVecElts) { 940 Known.One &= KnownVec.One; 941 Known.Zero &= KnownVec.Zero; 942 } 943 944 return false; 945 } 946 case ISD::INSERT_SUBVECTOR: { 947 // Demand any elements from the subvector and the remainder from the src its 948 // inserted into. 949 SDValue Src = Op.getOperand(0); 950 SDValue Sub = Op.getOperand(1); 951 uint64_t Idx = Op.getConstantOperandVal(2); 952 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 953 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 954 APInt DemandedSrcElts = DemandedElts; 955 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 956 957 KnownBits KnownSub, KnownSrc; 958 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 959 Depth + 1)) 960 return true; 961 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 962 Depth + 1)) 963 return true; 964 965 Known.Zero.setAllBits(); 966 Known.One.setAllBits(); 967 if (!!DemandedSubElts) { 968 Known.One &= KnownSub.One; 969 Known.Zero &= KnownSub.Zero; 970 } 971 if (!!DemandedSrcElts) { 972 Known.One &= KnownSrc.One; 973 Known.Zero &= KnownSrc.Zero; 974 } 975 976 // Attempt to avoid multi-use src if we don't need anything from it. 977 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 978 !DemandedSrcElts.isAllOnesValue()) { 979 SDValue NewSub = SimplifyMultipleUseDemandedBits( 980 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 981 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 982 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 983 if (NewSub || NewSrc) { 984 NewSub = NewSub ? NewSub : Sub; 985 NewSrc = NewSrc ? NewSrc : Src; 986 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 987 Op.getOperand(2)); 988 return TLO.CombineTo(Op, NewOp); 989 } 990 } 991 break; 992 } 993 case ISD::EXTRACT_SUBVECTOR: { 994 // Offset the demanded elts by the subvector index. 995 SDValue Src = Op.getOperand(0); 996 uint64_t Idx = Op.getConstantOperandVal(1); 997 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 998 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 999 1000 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1001 Depth + 1)) 1002 return true; 1003 1004 // Attempt to avoid multi-use src if we don't need anything from it. 1005 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1006 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1007 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1008 if (DemandedSrc) { 1009 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1010 Op.getOperand(1)); 1011 return TLO.CombineTo(Op, NewOp); 1012 } 1013 } 1014 break; 1015 } 1016 case ISD::CONCAT_VECTORS: { 1017 Known.Zero.setAllBits(); 1018 Known.One.setAllBits(); 1019 EVT SubVT = Op.getOperand(0).getValueType(); 1020 unsigned NumSubVecs = Op.getNumOperands(); 1021 unsigned NumSubElts = SubVT.getVectorNumElements(); 1022 for (unsigned i = 0; i != NumSubVecs; ++i) { 1023 APInt DemandedSubElts = 1024 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1025 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1026 Known2, TLO, Depth + 1)) 1027 return true; 1028 // Known bits are shared by every demanded subvector element. 1029 if (!!DemandedSubElts) { 1030 Known.One &= Known2.One; 1031 Known.Zero &= Known2.Zero; 1032 } 1033 } 1034 break; 1035 } 1036 case ISD::VECTOR_SHUFFLE: { 1037 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1038 1039 // Collect demanded elements from shuffle operands.. 1040 APInt DemandedLHS(NumElts, 0); 1041 APInt DemandedRHS(NumElts, 0); 1042 for (unsigned i = 0; i != NumElts; ++i) { 1043 if (!DemandedElts[i]) 1044 continue; 1045 int M = ShuffleMask[i]; 1046 if (M < 0) { 1047 // For UNDEF elements, we don't know anything about the common state of 1048 // the shuffle result. 1049 DemandedLHS.clearAllBits(); 1050 DemandedRHS.clearAllBits(); 1051 break; 1052 } 1053 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1054 if (M < (int)NumElts) 1055 DemandedLHS.setBit(M); 1056 else 1057 DemandedRHS.setBit(M - NumElts); 1058 } 1059 1060 if (!!DemandedLHS || !!DemandedRHS) { 1061 SDValue Op0 = Op.getOperand(0); 1062 SDValue Op1 = Op.getOperand(1); 1063 1064 Known.Zero.setAllBits(); 1065 Known.One.setAllBits(); 1066 if (!!DemandedLHS) { 1067 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1068 Depth + 1)) 1069 return true; 1070 Known.One &= Known2.One; 1071 Known.Zero &= Known2.Zero; 1072 } 1073 if (!!DemandedRHS) { 1074 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1075 Depth + 1)) 1076 return true; 1077 Known.One &= Known2.One; 1078 Known.Zero &= Known2.Zero; 1079 } 1080 1081 // Attempt to avoid multi-use ops if we don't need anything from them. 1082 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1083 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1084 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1085 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1086 if (DemandedOp0 || DemandedOp1) { 1087 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1088 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1089 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1090 return TLO.CombineTo(Op, NewOp); 1091 } 1092 } 1093 break; 1094 } 1095 case ISD::AND: { 1096 SDValue Op0 = Op.getOperand(0); 1097 SDValue Op1 = Op.getOperand(1); 1098 1099 // If the RHS is a constant, check to see if the LHS would be zero without 1100 // using the bits from the RHS. Below, we use knowledge about the RHS to 1101 // simplify the LHS, here we're using information from the LHS to simplify 1102 // the RHS. 1103 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1104 // Do not increment Depth here; that can cause an infinite loop. 1105 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1106 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1107 if ((LHSKnown.Zero & DemandedBits) == 1108 (~RHSC->getAPIntValue() & DemandedBits)) 1109 return TLO.CombineTo(Op, Op0); 1110 1111 // If any of the set bits in the RHS are known zero on the LHS, shrink 1112 // the constant. 1113 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1114 return true; 1115 1116 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1117 // constant, but if this 'and' is only clearing bits that were just set by 1118 // the xor, then this 'and' can be eliminated by shrinking the mask of 1119 // the xor. For example, for a 32-bit X: 1120 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1121 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1122 LHSKnown.One == ~RHSC->getAPIntValue()) { 1123 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1124 return TLO.CombineTo(Op, Xor); 1125 } 1126 } 1127 1128 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1129 Depth + 1)) 1130 return true; 1131 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1132 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1133 Known2, TLO, Depth + 1)) 1134 return true; 1135 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1136 1137 // Attempt to avoid multi-use ops if we don't need anything from them. 1138 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1139 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1140 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1141 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1142 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1143 if (DemandedOp0 || DemandedOp1) { 1144 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1145 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1146 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1147 return TLO.CombineTo(Op, NewOp); 1148 } 1149 } 1150 1151 // If all of the demanded bits are known one on one side, return the other. 1152 // These bits cannot contribute to the result of the 'and'. 1153 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1154 return TLO.CombineTo(Op, Op0); 1155 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1156 return TLO.CombineTo(Op, Op1); 1157 // If all of the demanded bits in the inputs are known zeros, return zero. 1158 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1159 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1160 // If the RHS is a constant, see if we can simplify it. 1161 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1162 return true; 1163 // If the operation can be done in a smaller type, do so. 1164 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1165 return true; 1166 1167 Known &= Known2; 1168 break; 1169 } 1170 case ISD::OR: { 1171 SDValue Op0 = Op.getOperand(0); 1172 SDValue Op1 = Op.getOperand(1); 1173 1174 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1175 Depth + 1)) 1176 return true; 1177 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1178 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1179 Known2, TLO, Depth + 1)) 1180 return true; 1181 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1182 1183 // Attempt to avoid multi-use ops if we don't need anything from them. 1184 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1185 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1186 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1187 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1188 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1189 if (DemandedOp0 || DemandedOp1) { 1190 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1191 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1192 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1193 return TLO.CombineTo(Op, NewOp); 1194 } 1195 } 1196 1197 // If all of the demanded bits are known zero on one side, return the other. 1198 // These bits cannot contribute to the result of the 'or'. 1199 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1200 return TLO.CombineTo(Op, Op0); 1201 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1202 return TLO.CombineTo(Op, Op1); 1203 // If the RHS is a constant, see if we can simplify it. 1204 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1205 return true; 1206 // If the operation can be done in a smaller type, do so. 1207 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1208 return true; 1209 1210 Known |= Known2; 1211 break; 1212 } 1213 case ISD::XOR: { 1214 SDValue Op0 = Op.getOperand(0); 1215 SDValue Op1 = Op.getOperand(1); 1216 1217 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1218 Depth + 1)) 1219 return true; 1220 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1221 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1222 Depth + 1)) 1223 return true; 1224 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1225 1226 // Attempt to avoid multi-use ops if we don't need anything from them. 1227 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1228 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1229 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1230 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1231 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1232 if (DemandedOp0 || DemandedOp1) { 1233 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1234 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1235 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1236 return TLO.CombineTo(Op, NewOp); 1237 } 1238 } 1239 1240 // If all of the demanded bits are known zero on one side, return the other. 1241 // These bits cannot contribute to the result of the 'xor'. 1242 if (DemandedBits.isSubsetOf(Known.Zero)) 1243 return TLO.CombineTo(Op, Op0); 1244 if (DemandedBits.isSubsetOf(Known2.Zero)) 1245 return TLO.CombineTo(Op, Op1); 1246 // If the operation can be done in a smaller type, do so. 1247 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1248 return true; 1249 1250 // If all of the unknown bits are known to be zero on one side or the other 1251 // (but not both) turn this into an *inclusive* or. 1252 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1253 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1254 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1255 1256 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1257 // If one side is a constant, and all of the known set bits on the other 1258 // side are also set in the constant, turn this into an AND, as we know 1259 // the bits will be cleared. 1260 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1261 // NB: it is okay if more bits are known than are requested 1262 if (C->getAPIntValue() == Known2.One) { 1263 SDValue ANDC = 1264 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1265 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1266 } 1267 1268 // If the RHS is a constant, see if we can change it. Don't alter a -1 1269 // constant because that's a 'not' op, and that is better for combining 1270 // and codegen. 1271 if (!C->isAllOnesValue()) { 1272 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1273 // We're flipping all demanded bits. Flip the undemanded bits too. 1274 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1275 return TLO.CombineTo(Op, New); 1276 } 1277 // If we can't turn this into a 'not', try to shrink the constant. 1278 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1279 return true; 1280 } 1281 } 1282 1283 Known ^= Known2; 1284 break; 1285 } 1286 case ISD::SELECT: 1287 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1288 Depth + 1)) 1289 return true; 1290 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1291 Depth + 1)) 1292 return true; 1293 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1294 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1295 1296 // If the operands are constants, see if we can simplify them. 1297 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1298 return true; 1299 1300 // Only known if known in both the LHS and RHS. 1301 Known.One &= Known2.One; 1302 Known.Zero &= Known2.Zero; 1303 break; 1304 case ISD::SELECT_CC: 1305 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1306 Depth + 1)) 1307 return true; 1308 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1313 1314 // If the operands are constants, see if we can simplify them. 1315 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1316 return true; 1317 1318 // Only known if known in both the LHS and RHS. 1319 Known.One &= Known2.One; 1320 Known.Zero &= Known2.Zero; 1321 break; 1322 case ISD::SETCC: { 1323 SDValue Op0 = Op.getOperand(0); 1324 SDValue Op1 = Op.getOperand(1); 1325 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1326 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1327 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1328 // -1, we may be able to bypass the setcc. 1329 if (DemandedBits.isSignMask() && 1330 Op0.getScalarValueSizeInBits() == BitWidth && 1331 getBooleanContents(Op0.getValueType()) == 1332 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1333 // If we're testing X < 0, then this compare isn't needed - just use X! 1334 // FIXME: We're limiting to integer types here, but this should also work 1335 // if we don't care about FP signed-zero. The use of SETLT with FP means 1336 // that we don't care about NaNs. 1337 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1338 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1339 return TLO.CombineTo(Op, Op0); 1340 1341 // TODO: Should we check for other forms of sign-bit comparisons? 1342 // Examples: X <= -1, X >= 0 1343 } 1344 if (getBooleanContents(Op0.getValueType()) == 1345 TargetLowering::ZeroOrOneBooleanContent && 1346 BitWidth > 1) 1347 Known.Zero.setBitsFrom(1); 1348 break; 1349 } 1350 case ISD::SHL: { 1351 SDValue Op0 = Op.getOperand(0); 1352 SDValue Op1 = Op.getOperand(1); 1353 EVT ShiftVT = Op1.getValueType(); 1354 1355 if (const APInt *SA = 1356 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1357 unsigned ShAmt = SA->getZExtValue(); 1358 if (ShAmt == 0) 1359 return TLO.CombineTo(Op, Op0); 1360 1361 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1362 // single shift. We can do this if the bottom bits (which are shifted 1363 // out) are never demanded. 1364 // TODO - support non-uniform vector amounts. 1365 if (Op0.getOpcode() == ISD::SRL) { 1366 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1367 if (const APInt *SA2 = 1368 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1369 unsigned C1 = SA2->getZExtValue(); 1370 unsigned Opc = ISD::SHL; 1371 int Diff = ShAmt - C1; 1372 if (Diff < 0) { 1373 Diff = -Diff; 1374 Opc = ISD::SRL; 1375 } 1376 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1377 return TLO.CombineTo( 1378 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1379 } 1380 } 1381 } 1382 1383 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1384 // are not demanded. This will likely allow the anyext to be folded away. 1385 // TODO - support non-uniform vector amounts. 1386 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1387 SDValue InnerOp = Op0.getOperand(0); 1388 EVT InnerVT = InnerOp.getValueType(); 1389 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1390 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1391 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1392 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1393 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1394 ShTy = InnerVT; 1395 SDValue NarrowShl = 1396 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1397 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1398 return TLO.CombineTo( 1399 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1400 } 1401 1402 // Repeat the SHL optimization above in cases where an extension 1403 // intervenes: (shl (anyext (shr x, c1)), c2) to 1404 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1405 // aren't demanded (as above) and that the shifted upper c1 bits of 1406 // x aren't demanded. 1407 // TODO - support non-uniform vector amounts. 1408 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1409 InnerOp.hasOneUse()) { 1410 if (const APInt *SA2 = 1411 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1412 unsigned InnerShAmt = SA2->getZExtValue(); 1413 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1414 DemandedBits.getActiveBits() <= 1415 (InnerBits - InnerShAmt + ShAmt) && 1416 DemandedBits.countTrailingZeros() >= ShAmt) { 1417 SDValue NewSA = 1418 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1419 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1420 InnerOp.getOperand(0)); 1421 return TLO.CombineTo( 1422 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1423 } 1424 } 1425 } 1426 } 1427 1428 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1429 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1430 Depth + 1)) 1431 return true; 1432 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1433 Known.Zero <<= ShAmt; 1434 Known.One <<= ShAmt; 1435 // low bits known zero. 1436 Known.Zero.setLowBits(ShAmt); 1437 1438 // Try shrinking the operation as long as the shift amount will still be 1439 // in range. 1440 if ((ShAmt < DemandedBits.getActiveBits()) && 1441 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1442 return true; 1443 } 1444 break; 1445 } 1446 case ISD::SRL: { 1447 SDValue Op0 = Op.getOperand(0); 1448 SDValue Op1 = Op.getOperand(1); 1449 EVT ShiftVT = Op1.getValueType(); 1450 1451 if (const APInt *SA = 1452 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1453 unsigned ShAmt = SA->getZExtValue(); 1454 if (ShAmt == 0) 1455 return TLO.CombineTo(Op, Op0); 1456 1457 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1458 // single shift. We can do this if the top bits (which are shifted out) 1459 // are never demanded. 1460 // TODO - support non-uniform vector amounts. 1461 if (Op0.getOpcode() == ISD::SHL) { 1462 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1463 if (const APInt *SA2 = 1464 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1465 unsigned C1 = SA2->getZExtValue(); 1466 unsigned Opc = ISD::SRL; 1467 int Diff = ShAmt - C1; 1468 if (Diff < 0) { 1469 Diff = -Diff; 1470 Opc = ISD::SHL; 1471 } 1472 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1473 return TLO.CombineTo( 1474 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1475 } 1476 } 1477 } 1478 1479 APInt InDemandedMask = (DemandedBits << ShAmt); 1480 1481 // If the shift is exact, then it does demand the low bits (and knows that 1482 // they are zero). 1483 if (Op->getFlags().hasExact()) 1484 InDemandedMask.setLowBits(ShAmt); 1485 1486 // Compute the new bits that are at the top now. 1487 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1488 Depth + 1)) 1489 return true; 1490 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1491 Known.Zero.lshrInPlace(ShAmt); 1492 Known.One.lshrInPlace(ShAmt); 1493 // High bits known zero. 1494 Known.Zero.setHighBits(ShAmt); 1495 } 1496 break; 1497 } 1498 case ISD::SRA: { 1499 SDValue Op0 = Op.getOperand(0); 1500 SDValue Op1 = Op.getOperand(1); 1501 EVT ShiftVT = Op1.getValueType(); 1502 1503 // If we only want bits that already match the signbit then we don't need 1504 // to shift. 1505 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1506 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1507 NumHiDemandedBits) 1508 return TLO.CombineTo(Op, Op0); 1509 1510 // If this is an arithmetic shift right and only the low-bit is set, we can 1511 // always convert this into a logical shr, even if the shift amount is 1512 // variable. The low bit of the shift cannot be an input sign bit unless 1513 // the shift amount is >= the size of the datatype, which is undefined. 1514 if (DemandedBits.isOneValue()) 1515 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1516 1517 if (const APInt *SA = 1518 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1519 unsigned ShAmt = SA->getZExtValue(); 1520 if (ShAmt == 0) 1521 return TLO.CombineTo(Op, Op0); 1522 1523 APInt InDemandedMask = (DemandedBits << ShAmt); 1524 1525 // If the shift is exact, then it does demand the low bits (and knows that 1526 // they are zero). 1527 if (Op->getFlags().hasExact()) 1528 InDemandedMask.setLowBits(ShAmt); 1529 1530 // If any of the demanded bits are produced by the sign extension, we also 1531 // demand the input sign bit. 1532 if (DemandedBits.countLeadingZeros() < ShAmt) 1533 InDemandedMask.setSignBit(); 1534 1535 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1536 Depth + 1)) 1537 return true; 1538 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1539 Known.Zero.lshrInPlace(ShAmt); 1540 Known.One.lshrInPlace(ShAmt); 1541 1542 // If the input sign bit is known to be zero, or if none of the top bits 1543 // are demanded, turn this into an unsigned shift right. 1544 if (Known.Zero[BitWidth - ShAmt - 1] || 1545 DemandedBits.countLeadingZeros() >= ShAmt) { 1546 SDNodeFlags Flags; 1547 Flags.setExact(Op->getFlags().hasExact()); 1548 return TLO.CombineTo( 1549 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1550 } 1551 1552 int Log2 = DemandedBits.exactLogBase2(); 1553 if (Log2 >= 0) { 1554 // The bit must come from the sign. 1555 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1556 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1557 } 1558 1559 if (Known.One[BitWidth - ShAmt - 1]) 1560 // New bits are known one. 1561 Known.One.setHighBits(ShAmt); 1562 1563 // Attempt to avoid multi-use ops if we don't need anything from them. 1564 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1565 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1566 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1567 if (DemandedOp0) { 1568 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1569 return TLO.CombineTo(Op, NewOp); 1570 } 1571 } 1572 } 1573 break; 1574 } 1575 case ISD::FSHL: 1576 case ISD::FSHR: { 1577 SDValue Op0 = Op.getOperand(0); 1578 SDValue Op1 = Op.getOperand(1); 1579 SDValue Op2 = Op.getOperand(2); 1580 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1581 1582 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1583 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1584 1585 // For fshl, 0-shift returns the 1st arg. 1586 // For fshr, 0-shift returns the 2nd arg. 1587 if (Amt == 0) { 1588 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1589 Known, TLO, Depth + 1)) 1590 return true; 1591 break; 1592 } 1593 1594 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1595 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1596 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1597 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1598 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1599 Depth + 1)) 1600 return true; 1601 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1602 Depth + 1)) 1603 return true; 1604 1605 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1606 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1607 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1608 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1609 Known.One |= Known2.One; 1610 Known.Zero |= Known2.Zero; 1611 } 1612 1613 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1614 if (isPowerOf2_32(BitWidth)) { 1615 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1616 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1617 Known2, TLO, Depth + 1)) 1618 return true; 1619 } 1620 break; 1621 } 1622 case ISD::ROTL: 1623 case ISD::ROTR: { 1624 SDValue Op0 = Op.getOperand(0); 1625 SDValue Op1 = Op.getOperand(1); 1626 1627 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1628 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1629 return TLO.CombineTo(Op, Op0); 1630 1631 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1632 if (isPowerOf2_32(BitWidth)) { 1633 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1634 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1635 Depth + 1)) 1636 return true; 1637 } 1638 break; 1639 } 1640 case ISD::BITREVERSE: { 1641 SDValue Src = Op.getOperand(0); 1642 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1643 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1644 Depth + 1)) 1645 return true; 1646 Known.One = Known2.One.reverseBits(); 1647 Known.Zero = Known2.Zero.reverseBits(); 1648 break; 1649 } 1650 case ISD::BSWAP: { 1651 SDValue Src = Op.getOperand(0); 1652 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1653 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1654 Depth + 1)) 1655 return true; 1656 Known.One = Known2.One.byteSwap(); 1657 Known.Zero = Known2.Zero.byteSwap(); 1658 break; 1659 } 1660 case ISD::SIGN_EXTEND_INREG: { 1661 SDValue Op0 = Op.getOperand(0); 1662 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1663 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1664 1665 // If we only care about the highest bit, don't bother shifting right. 1666 if (DemandedBits.isSignMask()) { 1667 unsigned NumSignBits = 1668 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1669 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1670 // However if the input is already sign extended we expect the sign 1671 // extension to be dropped altogether later and do not simplify. 1672 if (!AlreadySignExtended) { 1673 // Compute the correct shift amount type, which must be getShiftAmountTy 1674 // for scalar types after legalization. 1675 EVT ShiftAmtTy = VT; 1676 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1677 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1678 1679 SDValue ShiftAmt = 1680 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1681 return TLO.CombineTo(Op, 1682 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1683 } 1684 } 1685 1686 // If none of the extended bits are demanded, eliminate the sextinreg. 1687 if (DemandedBits.getActiveBits() <= ExVTBits) 1688 return TLO.CombineTo(Op, Op0); 1689 1690 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1691 1692 // Since the sign extended bits are demanded, we know that the sign 1693 // bit is demanded. 1694 InputDemandedBits.setBit(ExVTBits - 1); 1695 1696 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1697 return true; 1698 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1699 1700 // If the sign bit of the input is known set or clear, then we know the 1701 // top bits of the result. 1702 1703 // If the input sign bit is known zero, convert this into a zero extension. 1704 if (Known.Zero[ExVTBits - 1]) 1705 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1706 1707 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1708 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1709 Known.One.setBitsFrom(ExVTBits); 1710 Known.Zero &= Mask; 1711 } else { // Input sign bit unknown 1712 Known.Zero &= Mask; 1713 Known.One &= Mask; 1714 } 1715 break; 1716 } 1717 case ISD::BUILD_PAIR: { 1718 EVT HalfVT = Op.getOperand(0).getValueType(); 1719 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1720 1721 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1722 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1723 1724 KnownBits KnownLo, KnownHi; 1725 1726 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1727 return true; 1728 1729 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1730 return true; 1731 1732 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1733 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1734 1735 Known.One = KnownLo.One.zext(BitWidth) | 1736 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1737 break; 1738 } 1739 case ISD::ZERO_EXTEND: 1740 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1741 SDValue Src = Op.getOperand(0); 1742 EVT SrcVT = Src.getValueType(); 1743 unsigned InBits = SrcVT.getScalarSizeInBits(); 1744 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1745 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1746 1747 // If none of the top bits are demanded, convert this into an any_extend. 1748 if (DemandedBits.getActiveBits() <= InBits) { 1749 // If we only need the non-extended bits of the bottom element 1750 // then we can just bitcast to the result. 1751 if (IsVecInReg && DemandedElts == 1 && 1752 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1753 TLO.DAG.getDataLayout().isLittleEndian()) 1754 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1755 1756 unsigned Opc = 1757 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1758 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1759 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1760 } 1761 1762 APInt InDemandedBits = DemandedBits.trunc(InBits); 1763 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1764 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1765 Depth + 1)) 1766 return true; 1767 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1768 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1769 Known = Known.zext(BitWidth); 1770 break; 1771 } 1772 case ISD::SIGN_EXTEND: 1773 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1774 SDValue Src = Op.getOperand(0); 1775 EVT SrcVT = Src.getValueType(); 1776 unsigned InBits = SrcVT.getScalarSizeInBits(); 1777 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1778 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1779 1780 // If none of the top bits are demanded, convert this into an any_extend. 1781 if (DemandedBits.getActiveBits() <= InBits) { 1782 // If we only need the non-extended bits of the bottom element 1783 // then we can just bitcast to the result. 1784 if (IsVecInReg && DemandedElts == 1 && 1785 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1786 TLO.DAG.getDataLayout().isLittleEndian()) 1787 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1788 1789 unsigned Opc = 1790 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1791 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1792 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1793 } 1794 1795 APInt InDemandedBits = DemandedBits.trunc(InBits); 1796 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1797 1798 // Since some of the sign extended bits are demanded, we know that the sign 1799 // bit is demanded. 1800 InDemandedBits.setBit(InBits - 1); 1801 1802 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1803 Depth + 1)) 1804 return true; 1805 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1806 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1807 1808 // If the sign bit is known one, the top bits match. 1809 Known = Known.sext(BitWidth); 1810 1811 // If the sign bit is known zero, convert this to a zero extend. 1812 if (Known.isNonNegative()) { 1813 unsigned Opc = 1814 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1815 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1816 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1817 } 1818 break; 1819 } 1820 case ISD::ANY_EXTEND: 1821 case ISD::ANY_EXTEND_VECTOR_INREG: { 1822 SDValue Src = Op.getOperand(0); 1823 EVT SrcVT = Src.getValueType(); 1824 unsigned InBits = SrcVT.getScalarSizeInBits(); 1825 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1826 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1827 1828 // If we only need the bottom element then we can just bitcast. 1829 // TODO: Handle ANY_EXTEND? 1830 if (IsVecInReg && DemandedElts == 1 && 1831 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1832 TLO.DAG.getDataLayout().isLittleEndian()) 1833 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1834 1835 APInt InDemandedBits = DemandedBits.trunc(InBits); 1836 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1837 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1838 Depth + 1)) 1839 return true; 1840 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1841 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1842 Known = Known.anyext(BitWidth); 1843 1844 // Attempt to avoid multi-use ops if we don't need anything from them. 1845 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1846 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1847 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1848 break; 1849 } 1850 case ISD::TRUNCATE: { 1851 SDValue Src = Op.getOperand(0); 1852 1853 // Simplify the input, using demanded bit information, and compute the known 1854 // zero/one bits live out. 1855 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1856 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1857 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1858 return true; 1859 Known = Known.trunc(BitWidth); 1860 1861 // Attempt to avoid multi-use ops if we don't need anything from them. 1862 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1863 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1864 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1865 1866 // If the input is only used by this truncate, see if we can shrink it based 1867 // on the known demanded bits. 1868 if (Src.getNode()->hasOneUse()) { 1869 switch (Src.getOpcode()) { 1870 default: 1871 break; 1872 case ISD::SRL: 1873 // Shrink SRL by a constant if none of the high bits shifted in are 1874 // demanded. 1875 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1876 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1877 // undesirable. 1878 break; 1879 1880 SDValue ShAmt = Src.getOperand(1); 1881 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1882 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1883 break; 1884 uint64_t ShVal = ShAmtC->getZExtValue(); 1885 1886 APInt HighBits = 1887 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1888 HighBits.lshrInPlace(ShVal); 1889 HighBits = HighBits.trunc(BitWidth); 1890 1891 if (!(HighBits & DemandedBits)) { 1892 // None of the shifted in bits are needed. Add a truncate of the 1893 // shift input, then shift it. 1894 if (TLO.LegalTypes()) 1895 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1896 SDValue NewTrunc = 1897 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1898 return TLO.CombineTo( 1899 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1900 } 1901 break; 1902 } 1903 } 1904 1905 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1906 break; 1907 } 1908 case ISD::AssertZext: { 1909 // AssertZext demands all of the high bits, plus any of the low bits 1910 // demanded by its users. 1911 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1912 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1913 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1914 TLO, Depth + 1)) 1915 return true; 1916 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1917 1918 Known.Zero |= ~InMask; 1919 break; 1920 } 1921 case ISD::EXTRACT_VECTOR_ELT: { 1922 SDValue Src = Op.getOperand(0); 1923 SDValue Idx = Op.getOperand(1); 1924 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1925 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1926 1927 // Demand the bits from every vector element without a constant index. 1928 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1929 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1930 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1931 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1932 1933 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1934 // anything about the extended bits. 1935 APInt DemandedSrcBits = DemandedBits; 1936 if (BitWidth > EltBitWidth) 1937 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1938 1939 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1940 Depth + 1)) 1941 return true; 1942 1943 // Attempt to avoid multi-use ops if we don't need anything from them. 1944 if (!DemandedSrcBits.isAllOnesValue() || 1945 !DemandedSrcElts.isAllOnesValue()) { 1946 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1947 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1948 SDValue NewOp = 1949 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1950 return TLO.CombineTo(Op, NewOp); 1951 } 1952 } 1953 1954 Known = Known2; 1955 if (BitWidth > EltBitWidth) 1956 Known = Known.anyext(BitWidth); 1957 break; 1958 } 1959 case ISD::BITCAST: { 1960 SDValue Src = Op.getOperand(0); 1961 EVT SrcVT = Src.getValueType(); 1962 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1963 1964 // If this is an FP->Int bitcast and if the sign bit is the only 1965 // thing demanded, turn this into a FGETSIGN. 1966 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1967 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1968 SrcVT.isFloatingPoint()) { 1969 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1970 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1971 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1972 SrcVT != MVT::f128) { 1973 // Cannot eliminate/lower SHL for f128 yet. 1974 EVT Ty = OpVTLegal ? VT : MVT::i32; 1975 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1976 // place. We expect the SHL to be eliminated by other optimizations. 1977 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1978 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1979 if (!OpVTLegal && OpVTSizeInBits > 32) 1980 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1981 unsigned ShVal = Op.getValueSizeInBits() - 1; 1982 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1983 return TLO.CombineTo(Op, 1984 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1985 } 1986 } 1987 1988 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1989 // Demand the elt/bit if any of the original elts/bits are demanded. 1990 // TODO - bigendian once we have test coverage. 1991 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1992 TLO.DAG.getDataLayout().isLittleEndian()) { 1993 unsigned Scale = BitWidth / NumSrcEltBits; 1994 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1995 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1996 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1997 for (unsigned i = 0; i != Scale; ++i) { 1998 unsigned Offset = i * NumSrcEltBits; 1999 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2000 if (!Sub.isNullValue()) { 2001 DemandedSrcBits |= Sub; 2002 for (unsigned j = 0; j != NumElts; ++j) 2003 if (DemandedElts[j]) 2004 DemandedSrcElts.setBit((j * Scale) + i); 2005 } 2006 } 2007 2008 APInt KnownSrcUndef, KnownSrcZero; 2009 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2010 KnownSrcZero, TLO, Depth + 1)) 2011 return true; 2012 2013 KnownBits KnownSrcBits; 2014 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2015 KnownSrcBits, TLO, Depth + 1)) 2016 return true; 2017 } else if ((NumSrcEltBits % BitWidth) == 0 && 2018 TLO.DAG.getDataLayout().isLittleEndian()) { 2019 unsigned Scale = NumSrcEltBits / BitWidth; 2020 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2021 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2022 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2023 for (unsigned i = 0; i != NumElts; ++i) 2024 if (DemandedElts[i]) { 2025 unsigned Offset = (i % Scale) * BitWidth; 2026 DemandedSrcBits.insertBits(DemandedBits, Offset); 2027 DemandedSrcElts.setBit(i / Scale); 2028 } 2029 2030 if (SrcVT.isVector()) { 2031 APInt KnownSrcUndef, KnownSrcZero; 2032 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2033 KnownSrcZero, TLO, Depth + 1)) 2034 return true; 2035 } 2036 2037 KnownBits KnownSrcBits; 2038 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2039 KnownSrcBits, TLO, Depth + 1)) 2040 return true; 2041 } 2042 2043 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2044 // recursive call where Known may be useful to the caller. 2045 if (Depth > 0) { 2046 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2047 return false; 2048 } 2049 break; 2050 } 2051 case ISD::ADD: 2052 case ISD::MUL: 2053 case ISD::SUB: { 2054 // Add, Sub, and Mul don't demand any bits in positions beyond that 2055 // of the highest bit demanded of them. 2056 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2057 SDNodeFlags Flags = Op.getNode()->getFlags(); 2058 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2059 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2060 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2061 Depth + 1) || 2062 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2063 Depth + 1) || 2064 // See if the operation should be performed at a smaller bit width. 2065 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2066 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2067 // Disable the nsw and nuw flags. We can no longer guarantee that we 2068 // won't wrap after simplification. 2069 Flags.setNoSignedWrap(false); 2070 Flags.setNoUnsignedWrap(false); 2071 SDValue NewOp = 2072 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2073 return TLO.CombineTo(Op, NewOp); 2074 } 2075 return true; 2076 } 2077 2078 // Attempt to avoid multi-use ops if we don't need anything from them. 2079 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2080 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2081 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2082 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2083 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2084 if (DemandedOp0 || DemandedOp1) { 2085 Flags.setNoSignedWrap(false); 2086 Flags.setNoUnsignedWrap(false); 2087 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2088 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2089 SDValue NewOp = 2090 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2091 return TLO.CombineTo(Op, NewOp); 2092 } 2093 } 2094 2095 // If we have a constant operand, we may be able to turn it into -1 if we 2096 // do not demand the high bits. This can make the constant smaller to 2097 // encode, allow more general folding, or match specialized instruction 2098 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2099 // is probably not useful (and could be detrimental). 2100 ConstantSDNode *C = isConstOrConstSplat(Op1); 2101 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2102 if (C && !C->isAllOnesValue() && !C->isOne() && 2103 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2104 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2105 // Disable the nsw and nuw flags. We can no longer guarantee that we 2106 // won't wrap after simplification. 2107 Flags.setNoSignedWrap(false); 2108 Flags.setNoUnsignedWrap(false); 2109 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2110 return TLO.CombineTo(Op, NewOp); 2111 } 2112 2113 LLVM_FALLTHROUGH; 2114 } 2115 default: 2116 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2117 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2118 Known, TLO, Depth)) 2119 return true; 2120 break; 2121 } 2122 2123 // Just use computeKnownBits to compute output bits. 2124 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2125 break; 2126 } 2127 2128 // If we know the value of all of the demanded bits, return this as a 2129 // constant. 2130 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2131 // Avoid folding to a constant if any OpaqueConstant is involved. 2132 const SDNode *N = Op.getNode(); 2133 for (SDNodeIterator I = SDNodeIterator::begin(N), 2134 E = SDNodeIterator::end(N); 2135 I != E; ++I) { 2136 SDNode *Op = *I; 2137 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2138 if (C->isOpaque()) 2139 return false; 2140 } 2141 // TODO: Handle float bits as well. 2142 if (VT.isInteger()) 2143 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2144 } 2145 2146 return false; 2147 } 2148 2149 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2150 const APInt &DemandedElts, 2151 APInt &KnownUndef, 2152 APInt &KnownZero, 2153 DAGCombinerInfo &DCI) const { 2154 SelectionDAG &DAG = DCI.DAG; 2155 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2156 !DCI.isBeforeLegalizeOps()); 2157 2158 bool Simplified = 2159 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2160 if (Simplified) { 2161 DCI.AddToWorklist(Op.getNode()); 2162 DCI.CommitTargetLoweringOpt(TLO); 2163 } 2164 2165 return Simplified; 2166 } 2167 2168 /// Given a vector binary operation and known undefined elements for each input 2169 /// operand, compute whether each element of the output is undefined. 2170 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2171 const APInt &UndefOp0, 2172 const APInt &UndefOp1) { 2173 EVT VT = BO.getValueType(); 2174 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2175 "Vector binop only"); 2176 2177 EVT EltVT = VT.getVectorElementType(); 2178 unsigned NumElts = VT.getVectorNumElements(); 2179 assert(UndefOp0.getBitWidth() == NumElts && 2180 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2181 2182 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2183 const APInt &UndefVals) { 2184 if (UndefVals[Index]) 2185 return DAG.getUNDEF(EltVT); 2186 2187 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2188 // Try hard to make sure that the getNode() call is not creating temporary 2189 // nodes. Ignore opaque integers because they do not constant fold. 2190 SDValue Elt = BV->getOperand(Index); 2191 auto *C = dyn_cast<ConstantSDNode>(Elt); 2192 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2193 return Elt; 2194 } 2195 2196 return SDValue(); 2197 }; 2198 2199 APInt KnownUndef = APInt::getNullValue(NumElts); 2200 for (unsigned i = 0; i != NumElts; ++i) { 2201 // If both inputs for this element are either constant or undef and match 2202 // the element type, compute the constant/undef result for this element of 2203 // the vector. 2204 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2205 // not handle FP constants. The code within getNode() should be refactored 2206 // to avoid the danger of creating a bogus temporary node here. 2207 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2208 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2209 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2210 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2211 KnownUndef.setBit(i); 2212 } 2213 return KnownUndef; 2214 } 2215 2216 bool TargetLowering::SimplifyDemandedVectorElts( 2217 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2218 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2219 bool AssumeSingleUse) const { 2220 EVT VT = Op.getValueType(); 2221 unsigned Opcode = Op.getOpcode(); 2222 APInt DemandedElts = OriginalDemandedElts; 2223 unsigned NumElts = DemandedElts.getBitWidth(); 2224 assert(VT.isVector() && "Expected vector op"); 2225 assert(VT.getVectorNumElements() == NumElts && 2226 "Mask size mismatches value type element count!"); 2227 2228 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2229 2230 // Undef operand. 2231 if (Op.isUndef()) { 2232 KnownUndef.setAllBits(); 2233 return false; 2234 } 2235 2236 // If Op has other users, assume that all elements are needed. 2237 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2238 DemandedElts.setAllBits(); 2239 2240 // Not demanding any elements from Op. 2241 if (DemandedElts == 0) { 2242 KnownUndef.setAllBits(); 2243 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2244 } 2245 2246 // Limit search depth. 2247 if (Depth >= SelectionDAG::MaxRecursionDepth) 2248 return false; 2249 2250 SDLoc DL(Op); 2251 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2252 2253 // Helper for demanding the specified elements and all the bits of both binary 2254 // operands. 2255 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2256 unsigned NumBits0 = Op0.getScalarValueSizeInBits(); 2257 unsigned NumBits1 = Op1.getScalarValueSizeInBits(); 2258 APInt DemandedBits0 = APInt::getAllOnesValue(NumBits0); 2259 APInt DemandedBits1 = APInt::getAllOnesValue(NumBits1); 2260 SDValue NewOp0 = SimplifyMultipleUseDemandedBits( 2261 Op0, DemandedBits0, DemandedElts, TLO.DAG, Depth + 1); 2262 SDValue NewOp1 = SimplifyMultipleUseDemandedBits( 2263 Op1, DemandedBits1, DemandedElts, TLO.DAG, Depth + 1); 2264 if (NewOp0 || NewOp1) { 2265 SDValue NewOp = TLO.DAG.getNode( 2266 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2267 return TLO.CombineTo(Op, NewOp); 2268 } 2269 return false; 2270 }; 2271 2272 switch (Opcode) { 2273 case ISD::SCALAR_TO_VECTOR: { 2274 if (!DemandedElts[0]) { 2275 KnownUndef.setAllBits(); 2276 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2277 } 2278 KnownUndef.setHighBits(NumElts - 1); 2279 break; 2280 } 2281 case ISD::BITCAST: { 2282 SDValue Src = Op.getOperand(0); 2283 EVT SrcVT = Src.getValueType(); 2284 2285 // We only handle vectors here. 2286 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2287 if (!SrcVT.isVector()) 2288 break; 2289 2290 // Fast handling of 'identity' bitcasts. 2291 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2292 if (NumSrcElts == NumElts) 2293 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2294 KnownZero, TLO, Depth + 1); 2295 2296 APInt SrcZero, SrcUndef; 2297 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2298 2299 // Bitcast from 'large element' src vector to 'small element' vector, we 2300 // must demand a source element if any DemandedElt maps to it. 2301 if ((NumElts % NumSrcElts) == 0) { 2302 unsigned Scale = NumElts / NumSrcElts; 2303 for (unsigned i = 0; i != NumElts; ++i) 2304 if (DemandedElts[i]) 2305 SrcDemandedElts.setBit(i / Scale); 2306 2307 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2308 TLO, Depth + 1)) 2309 return true; 2310 2311 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2312 // of the large element. 2313 // TODO - bigendian once we have test coverage. 2314 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2315 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2316 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2317 for (unsigned i = 0; i != NumElts; ++i) 2318 if (DemandedElts[i]) { 2319 unsigned Ofs = (i % Scale) * EltSizeInBits; 2320 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2321 } 2322 2323 KnownBits Known; 2324 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2325 TLO, Depth + 1)) 2326 return true; 2327 } 2328 2329 // If the src element is zero/undef then all the output elements will be - 2330 // only demanded elements are guaranteed to be correct. 2331 for (unsigned i = 0; i != NumSrcElts; ++i) { 2332 if (SrcDemandedElts[i]) { 2333 if (SrcZero[i]) 2334 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2335 if (SrcUndef[i]) 2336 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2337 } 2338 } 2339 } 2340 2341 // Bitcast from 'small element' src vector to 'large element' vector, we 2342 // demand all smaller source elements covered by the larger demanded element 2343 // of this vector. 2344 if ((NumSrcElts % NumElts) == 0) { 2345 unsigned Scale = NumSrcElts / NumElts; 2346 for (unsigned i = 0; i != NumElts; ++i) 2347 if (DemandedElts[i]) 2348 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2349 2350 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2351 TLO, Depth + 1)) 2352 return true; 2353 2354 // If all the src elements covering an output element are zero/undef, then 2355 // the output element will be as well, assuming it was demanded. 2356 for (unsigned i = 0; i != NumElts; ++i) { 2357 if (DemandedElts[i]) { 2358 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2359 KnownZero.setBit(i); 2360 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2361 KnownUndef.setBit(i); 2362 } 2363 } 2364 } 2365 break; 2366 } 2367 case ISD::BUILD_VECTOR: { 2368 // Check all elements and simplify any unused elements with UNDEF. 2369 if (!DemandedElts.isAllOnesValue()) { 2370 // Don't simplify BROADCASTS. 2371 if (llvm::any_of(Op->op_values(), 2372 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2373 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2374 bool Updated = false; 2375 for (unsigned i = 0; i != NumElts; ++i) { 2376 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2377 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2378 KnownUndef.setBit(i); 2379 Updated = true; 2380 } 2381 } 2382 if (Updated) 2383 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2384 } 2385 } 2386 for (unsigned i = 0; i != NumElts; ++i) { 2387 SDValue SrcOp = Op.getOperand(i); 2388 if (SrcOp.isUndef()) { 2389 KnownUndef.setBit(i); 2390 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2391 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2392 KnownZero.setBit(i); 2393 } 2394 } 2395 break; 2396 } 2397 case ISD::CONCAT_VECTORS: { 2398 EVT SubVT = Op.getOperand(0).getValueType(); 2399 unsigned NumSubVecs = Op.getNumOperands(); 2400 unsigned NumSubElts = SubVT.getVectorNumElements(); 2401 for (unsigned i = 0; i != NumSubVecs; ++i) { 2402 SDValue SubOp = Op.getOperand(i); 2403 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2404 APInt SubUndef, SubZero; 2405 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2406 Depth + 1)) 2407 return true; 2408 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2409 KnownZero.insertBits(SubZero, i * NumSubElts); 2410 } 2411 break; 2412 } 2413 case ISD::INSERT_SUBVECTOR: { 2414 // Demand any elements from the subvector and the remainder from the src its 2415 // inserted into. 2416 SDValue Src = Op.getOperand(0); 2417 SDValue Sub = Op.getOperand(1); 2418 uint64_t Idx = Op.getConstantOperandVal(2); 2419 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2420 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2421 APInt DemandedSrcElts = DemandedElts; 2422 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2423 2424 APInt SubUndef, SubZero; 2425 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2426 Depth + 1)) 2427 return true; 2428 2429 // If none of the src operand elements are demanded, replace it with undef. 2430 if (!DemandedSrcElts && !Src.isUndef()) 2431 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2432 TLO.DAG.getUNDEF(VT), Sub, 2433 Op.getOperand(2))); 2434 2435 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2436 TLO, Depth + 1)) 2437 return true; 2438 KnownUndef.insertBits(SubUndef, Idx); 2439 KnownZero.insertBits(SubZero, Idx); 2440 2441 // Attempt to avoid multi-use ops if we don't need anything from them. 2442 if (!DemandedSrcElts.isAllOnesValue() || 2443 !DemandedSubElts.isAllOnesValue()) { 2444 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2445 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2446 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 2447 SDValue NewSub = SimplifyMultipleUseDemandedBits( 2448 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 2449 if (NewSrc || NewSub) { 2450 NewSrc = NewSrc ? NewSrc : Src; 2451 NewSub = NewSub ? NewSub : Sub; 2452 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2453 NewSub, Op.getOperand(2)); 2454 return TLO.CombineTo(Op, NewOp); 2455 } 2456 } 2457 break; 2458 } 2459 case ISD::EXTRACT_SUBVECTOR: { 2460 // Offset the demanded elts by the subvector index. 2461 SDValue Src = Op.getOperand(0); 2462 uint64_t Idx = Op.getConstantOperandVal(1); 2463 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2464 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2465 2466 APInt SrcUndef, SrcZero; 2467 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2468 Depth + 1)) 2469 return true; 2470 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2471 KnownZero = SrcZero.extractBits(NumElts, Idx); 2472 2473 // Attempt to avoid multi-use ops if we don't need anything from them. 2474 if (!DemandedElts.isAllOnesValue()) { 2475 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2476 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2477 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 2478 if (NewSrc) { 2479 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2480 Op.getOperand(1)); 2481 return TLO.CombineTo(Op, NewOp); 2482 } 2483 } 2484 break; 2485 } 2486 case ISD::INSERT_VECTOR_ELT: { 2487 SDValue Vec = Op.getOperand(0); 2488 SDValue Scl = Op.getOperand(1); 2489 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2490 2491 // For a legal, constant insertion index, if we don't need this insertion 2492 // then strip it, else remove it from the demanded elts. 2493 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2494 unsigned Idx = CIdx->getZExtValue(); 2495 if (!DemandedElts[Idx]) 2496 return TLO.CombineTo(Op, Vec); 2497 2498 APInt DemandedVecElts(DemandedElts); 2499 DemandedVecElts.clearBit(Idx); 2500 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2501 KnownZero, TLO, Depth + 1)) 2502 return true; 2503 2504 KnownUndef.clearBit(Idx); 2505 if (Scl.isUndef()) 2506 KnownUndef.setBit(Idx); 2507 2508 KnownZero.clearBit(Idx); 2509 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2510 KnownZero.setBit(Idx); 2511 break; 2512 } 2513 2514 APInt VecUndef, VecZero; 2515 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2516 Depth + 1)) 2517 return true; 2518 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2519 break; 2520 } 2521 case ISD::VSELECT: { 2522 // Try to transform the select condition based on the current demanded 2523 // elements. 2524 // TODO: If a condition element is undef, we can choose from one arm of the 2525 // select (and if one arm is undef, then we can propagate that to the 2526 // result). 2527 // TODO - add support for constant vselect masks (see IR version of this). 2528 APInt UnusedUndef, UnusedZero; 2529 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2530 UnusedZero, TLO, Depth + 1)) 2531 return true; 2532 2533 // See if we can simplify either vselect operand. 2534 APInt DemandedLHS(DemandedElts); 2535 APInt DemandedRHS(DemandedElts); 2536 APInt UndefLHS, ZeroLHS; 2537 APInt UndefRHS, ZeroRHS; 2538 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2539 ZeroLHS, TLO, Depth + 1)) 2540 return true; 2541 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2542 ZeroRHS, TLO, Depth + 1)) 2543 return true; 2544 2545 KnownUndef = UndefLHS & UndefRHS; 2546 KnownZero = ZeroLHS & ZeroRHS; 2547 break; 2548 } 2549 case ISD::VECTOR_SHUFFLE: { 2550 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2551 2552 // Collect demanded elements from shuffle operands.. 2553 APInt DemandedLHS(NumElts, 0); 2554 APInt DemandedRHS(NumElts, 0); 2555 for (unsigned i = 0; i != NumElts; ++i) { 2556 int M = ShuffleMask[i]; 2557 if (M < 0 || !DemandedElts[i]) 2558 continue; 2559 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2560 if (M < (int)NumElts) 2561 DemandedLHS.setBit(M); 2562 else 2563 DemandedRHS.setBit(M - NumElts); 2564 } 2565 2566 // See if we can simplify either shuffle operand. 2567 APInt UndefLHS, ZeroLHS; 2568 APInt UndefRHS, ZeroRHS; 2569 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2570 ZeroLHS, TLO, Depth + 1)) 2571 return true; 2572 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2573 ZeroRHS, TLO, Depth + 1)) 2574 return true; 2575 2576 // Simplify mask using undef elements from LHS/RHS. 2577 bool Updated = false; 2578 bool IdentityLHS = true, IdentityRHS = true; 2579 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2580 for (unsigned i = 0; i != NumElts; ++i) { 2581 int &M = NewMask[i]; 2582 if (M < 0) 2583 continue; 2584 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2585 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2586 Updated = true; 2587 M = -1; 2588 } 2589 IdentityLHS &= (M < 0) || (M == (int)i); 2590 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2591 } 2592 2593 // Update legal shuffle masks based on demanded elements if it won't reduce 2594 // to Identity which can cause premature removal of the shuffle mask. 2595 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2596 SDValue LegalShuffle = 2597 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2598 NewMask, TLO.DAG); 2599 if (LegalShuffle) 2600 return TLO.CombineTo(Op, LegalShuffle); 2601 } 2602 2603 // Propagate undef/zero elements from LHS/RHS. 2604 for (unsigned i = 0; i != NumElts; ++i) { 2605 int M = ShuffleMask[i]; 2606 if (M < 0) { 2607 KnownUndef.setBit(i); 2608 } else if (M < (int)NumElts) { 2609 if (UndefLHS[M]) 2610 KnownUndef.setBit(i); 2611 if (ZeroLHS[M]) 2612 KnownZero.setBit(i); 2613 } else { 2614 if (UndefRHS[M - NumElts]) 2615 KnownUndef.setBit(i); 2616 if (ZeroRHS[M - NumElts]) 2617 KnownZero.setBit(i); 2618 } 2619 } 2620 break; 2621 } 2622 case ISD::ANY_EXTEND_VECTOR_INREG: 2623 case ISD::SIGN_EXTEND_VECTOR_INREG: 2624 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2625 APInt SrcUndef, SrcZero; 2626 SDValue Src = Op.getOperand(0); 2627 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2628 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2629 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2630 Depth + 1)) 2631 return true; 2632 KnownZero = SrcZero.zextOrTrunc(NumElts); 2633 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2634 2635 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2636 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2637 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2638 // aext - if we just need the bottom element then we can bitcast. 2639 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2640 } 2641 2642 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2643 // zext(undef) upper bits are guaranteed to be zero. 2644 if (DemandedElts.isSubsetOf(KnownUndef)) 2645 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2646 KnownUndef.clearAllBits(); 2647 } 2648 break; 2649 } 2650 2651 // TODO: There are more binop opcodes that could be handled here - MIN, 2652 // MAX, saturated math, etc. 2653 case ISD::OR: 2654 case ISD::XOR: 2655 case ISD::ADD: 2656 case ISD::SUB: 2657 case ISD::FADD: 2658 case ISD::FSUB: 2659 case ISD::FMUL: 2660 case ISD::FDIV: 2661 case ISD::FREM: { 2662 SDValue Op0 = Op.getOperand(0); 2663 SDValue Op1 = Op.getOperand(1); 2664 2665 APInt UndefRHS, ZeroRHS; 2666 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2667 Depth + 1)) 2668 return true; 2669 APInt UndefLHS, ZeroLHS; 2670 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2671 Depth + 1)) 2672 return true; 2673 2674 KnownZero = ZeroLHS & ZeroRHS; 2675 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2676 2677 // Attempt to avoid multi-use ops if we don't need anything from them. 2678 // TODO - use KnownUndef to relax the demandedelts? 2679 if (!DemandedElts.isAllOnesValue()) 2680 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2681 return true; 2682 break; 2683 } 2684 case ISD::SHL: 2685 case ISD::SRL: 2686 case ISD::SRA: 2687 case ISD::ROTL: 2688 case ISD::ROTR: { 2689 SDValue Op0 = Op.getOperand(0); 2690 SDValue Op1 = Op.getOperand(1); 2691 2692 APInt UndefRHS, ZeroRHS; 2693 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2694 Depth + 1)) 2695 return true; 2696 APInt UndefLHS, ZeroLHS; 2697 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2698 Depth + 1)) 2699 return true; 2700 2701 KnownZero = ZeroLHS; 2702 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2703 2704 // Attempt to avoid multi-use ops if we don't need anything from them. 2705 // TODO - use KnownUndef to relax the demandedelts? 2706 if (!DemandedElts.isAllOnesValue()) 2707 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2708 return true; 2709 break; 2710 } 2711 case ISD::MUL: 2712 case ISD::AND: { 2713 SDValue Op0 = Op.getOperand(0); 2714 SDValue Op1 = Op.getOperand(1); 2715 2716 APInt SrcUndef, SrcZero; 2717 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2718 Depth + 1)) 2719 return true; 2720 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2721 TLO, Depth + 1)) 2722 return true; 2723 2724 // If either side has a zero element, then the result element is zero, even 2725 // if the other is an UNDEF. 2726 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2727 // and then handle 'and' nodes with the rest of the binop opcodes. 2728 KnownZero |= SrcZero; 2729 KnownUndef &= SrcUndef; 2730 KnownUndef &= ~KnownZero; 2731 2732 // Attempt to avoid multi-use ops if we don't need anything from them. 2733 // TODO - use KnownUndef to relax the demandedelts? 2734 if (!DemandedElts.isAllOnesValue()) 2735 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2736 return true; 2737 break; 2738 } 2739 case ISD::TRUNCATE: 2740 case ISD::SIGN_EXTEND: 2741 case ISD::ZERO_EXTEND: 2742 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2743 KnownZero, TLO, Depth + 1)) 2744 return true; 2745 2746 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2747 // zext(undef) upper bits are guaranteed to be zero. 2748 if (DemandedElts.isSubsetOf(KnownUndef)) 2749 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2750 KnownUndef.clearAllBits(); 2751 } 2752 break; 2753 default: { 2754 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2755 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2756 KnownZero, TLO, Depth)) 2757 return true; 2758 } else { 2759 KnownBits Known; 2760 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2761 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2762 TLO, Depth, AssumeSingleUse)) 2763 return true; 2764 } 2765 break; 2766 } 2767 } 2768 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2769 2770 // Constant fold all undef cases. 2771 // TODO: Handle zero cases as well. 2772 if (DemandedElts.isSubsetOf(KnownUndef)) 2773 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2774 2775 return false; 2776 } 2777 2778 /// Determine which of the bits specified in Mask are known to be either zero or 2779 /// one and return them in the Known. 2780 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2781 KnownBits &Known, 2782 const APInt &DemandedElts, 2783 const SelectionDAG &DAG, 2784 unsigned Depth) const { 2785 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2786 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2787 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2788 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2789 "Should use MaskedValueIsZero if you don't know whether Op" 2790 " is a target node!"); 2791 Known.resetAll(); 2792 } 2793 2794 void TargetLowering::computeKnownBitsForTargetInstr( 2795 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2796 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2797 unsigned Depth) const { 2798 Known.resetAll(); 2799 } 2800 2801 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2802 KnownBits &Known, 2803 const APInt &DemandedElts, 2804 const SelectionDAG &DAG, 2805 unsigned Depth) const { 2806 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2807 2808 if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) { 2809 // The low bits are known zero if the pointer is aligned. 2810 Known.Zero.setLowBits(Log2(*Alignment)); 2811 } 2812 } 2813 2814 /// This method can be implemented by targets that want to expose additional 2815 /// information about sign bits to the DAG Combiner. 2816 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2817 const APInt &, 2818 const SelectionDAG &, 2819 unsigned Depth) const { 2820 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2821 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2822 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2823 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2824 "Should use ComputeNumSignBits if you don't know whether Op" 2825 " is a target node!"); 2826 return 1; 2827 } 2828 2829 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2830 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2831 const MachineRegisterInfo &MRI, unsigned Depth) const { 2832 return 1; 2833 } 2834 2835 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2836 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2837 TargetLoweringOpt &TLO, unsigned Depth) const { 2838 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2839 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2840 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2841 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2842 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2843 " is a target node!"); 2844 return false; 2845 } 2846 2847 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2848 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2849 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2850 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2851 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2852 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2853 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2854 "Should use SimplifyDemandedBits if you don't know whether Op" 2855 " is a target node!"); 2856 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2857 return false; 2858 } 2859 2860 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2861 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2862 SelectionDAG &DAG, unsigned Depth) const { 2863 assert( 2864 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2865 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2866 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2867 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2868 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2869 " is a target node!"); 2870 return SDValue(); 2871 } 2872 2873 SDValue 2874 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2875 SDValue N1, MutableArrayRef<int> Mask, 2876 SelectionDAG &DAG) const { 2877 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2878 if (!LegalMask) { 2879 std::swap(N0, N1); 2880 ShuffleVectorSDNode::commuteMask(Mask); 2881 LegalMask = isShuffleMaskLegal(Mask, VT); 2882 } 2883 2884 if (!LegalMask) 2885 return SDValue(); 2886 2887 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2888 } 2889 2890 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2891 return nullptr; 2892 } 2893 2894 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2895 const SelectionDAG &DAG, 2896 bool SNaN, 2897 unsigned Depth) const { 2898 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2899 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2900 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2901 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2902 "Should use isKnownNeverNaN if you don't know whether Op" 2903 " is a target node!"); 2904 return false; 2905 } 2906 2907 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2908 // work with truncating build vectors and vectors with elements of less than 2909 // 8 bits. 2910 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2911 if (!N) 2912 return false; 2913 2914 APInt CVal; 2915 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2916 CVal = CN->getAPIntValue(); 2917 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2918 auto *CN = BV->getConstantSplatNode(); 2919 if (!CN) 2920 return false; 2921 2922 // If this is a truncating build vector, truncate the splat value. 2923 // Otherwise, we may fail to match the expected values below. 2924 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2925 CVal = CN->getAPIntValue(); 2926 if (BVEltWidth < CVal.getBitWidth()) 2927 CVal = CVal.trunc(BVEltWidth); 2928 } else { 2929 return false; 2930 } 2931 2932 switch (getBooleanContents(N->getValueType(0))) { 2933 case UndefinedBooleanContent: 2934 return CVal[0]; 2935 case ZeroOrOneBooleanContent: 2936 return CVal.isOneValue(); 2937 case ZeroOrNegativeOneBooleanContent: 2938 return CVal.isAllOnesValue(); 2939 } 2940 2941 llvm_unreachable("Invalid boolean contents"); 2942 } 2943 2944 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2945 if (!N) 2946 return false; 2947 2948 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2949 if (!CN) { 2950 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2951 if (!BV) 2952 return false; 2953 2954 // Only interested in constant splats, we don't care about undef 2955 // elements in identifying boolean constants and getConstantSplatNode 2956 // returns NULL if all ops are undef; 2957 CN = BV->getConstantSplatNode(); 2958 if (!CN) 2959 return false; 2960 } 2961 2962 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2963 return !CN->getAPIntValue()[0]; 2964 2965 return CN->isNullValue(); 2966 } 2967 2968 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2969 bool SExt) const { 2970 if (VT == MVT::i1) 2971 return N->isOne(); 2972 2973 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2974 switch (Cnt) { 2975 case TargetLowering::ZeroOrOneBooleanContent: 2976 // An extended value of 1 is always true, unless its original type is i1, 2977 // in which case it will be sign extended to -1. 2978 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2979 case TargetLowering::UndefinedBooleanContent: 2980 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2981 return N->isAllOnesValue() && SExt; 2982 } 2983 llvm_unreachable("Unexpected enumeration."); 2984 } 2985 2986 /// This helper function of SimplifySetCC tries to optimize the comparison when 2987 /// either operand of the SetCC node is a bitwise-and instruction. 2988 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2989 ISD::CondCode Cond, const SDLoc &DL, 2990 DAGCombinerInfo &DCI) const { 2991 // Match these patterns in any of their permutations: 2992 // (X & Y) == Y 2993 // (X & Y) != Y 2994 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2995 std::swap(N0, N1); 2996 2997 EVT OpVT = N0.getValueType(); 2998 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2999 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3000 return SDValue(); 3001 3002 SDValue X, Y; 3003 if (N0.getOperand(0) == N1) { 3004 X = N0.getOperand(1); 3005 Y = N0.getOperand(0); 3006 } else if (N0.getOperand(1) == N1) { 3007 X = N0.getOperand(0); 3008 Y = N0.getOperand(1); 3009 } else { 3010 return SDValue(); 3011 } 3012 3013 SelectionDAG &DAG = DCI.DAG; 3014 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3015 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3016 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3017 // Note that where Y is variable and is known to have at most one bit set 3018 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3019 // equivalent when Y == 0. 3020 assert(OpVT.isInteger()); 3021 Cond = ISD::getSetCCInverse(Cond, OpVT); 3022 if (DCI.isBeforeLegalizeOps() || 3023 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3024 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3025 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3026 // If the target supports an 'and-not' or 'and-complement' logic operation, 3027 // try to use that to make a comparison operation more efficient. 3028 // But don't do this transform if the mask is a single bit because there are 3029 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3030 // 'rlwinm' on PPC). 3031 3032 // Bail out if the compare operand that we want to turn into a zero is 3033 // already a zero (otherwise, infinite loop). 3034 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3035 if (YConst && YConst->isNullValue()) 3036 return SDValue(); 3037 3038 // Transform this into: ~X & Y == 0. 3039 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3040 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3041 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3042 } 3043 3044 return SDValue(); 3045 } 3046 3047 /// There are multiple IR patterns that could be checking whether certain 3048 /// truncation of a signed number would be lossy or not. The pattern which is 3049 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3050 /// We are looking for the following pattern: (KeptBits is a constant) 3051 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3052 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3053 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3054 /// We will unfold it into the natural trunc+sext pattern: 3055 /// ((%x << C) a>> C) dstcond %x 3056 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3057 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3058 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3059 const SDLoc &DL) const { 3060 // We must be comparing with a constant. 3061 ConstantSDNode *C1; 3062 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3063 return SDValue(); 3064 3065 // N0 should be: add %x, (1 << (KeptBits-1)) 3066 if (N0->getOpcode() != ISD::ADD) 3067 return SDValue(); 3068 3069 // And we must be 'add'ing a constant. 3070 ConstantSDNode *C01; 3071 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3072 return SDValue(); 3073 3074 SDValue X = N0->getOperand(0); 3075 EVT XVT = X.getValueType(); 3076 3077 // Validate constants ... 3078 3079 APInt I1 = C1->getAPIntValue(); 3080 3081 ISD::CondCode NewCond; 3082 if (Cond == ISD::CondCode::SETULT) { 3083 NewCond = ISD::CondCode::SETEQ; 3084 } else if (Cond == ISD::CondCode::SETULE) { 3085 NewCond = ISD::CondCode::SETEQ; 3086 // But need to 'canonicalize' the constant. 3087 I1 += 1; 3088 } else if (Cond == ISD::CondCode::SETUGT) { 3089 NewCond = ISD::CondCode::SETNE; 3090 // But need to 'canonicalize' the constant. 3091 I1 += 1; 3092 } else if (Cond == ISD::CondCode::SETUGE) { 3093 NewCond = ISD::CondCode::SETNE; 3094 } else 3095 return SDValue(); 3096 3097 APInt I01 = C01->getAPIntValue(); 3098 3099 auto checkConstants = [&I1, &I01]() -> bool { 3100 // Both of them must be power-of-two, and the constant from setcc is bigger. 3101 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3102 }; 3103 3104 if (checkConstants()) { 3105 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3106 } else { 3107 // What if we invert constants? (and the target predicate) 3108 I1.negate(); 3109 I01.negate(); 3110 assert(XVT.isInteger()); 3111 NewCond = getSetCCInverse(NewCond, XVT); 3112 if (!checkConstants()) 3113 return SDValue(); 3114 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3115 } 3116 3117 // They are power-of-two, so which bit is set? 3118 const unsigned KeptBits = I1.logBase2(); 3119 const unsigned KeptBitsMinusOne = I01.logBase2(); 3120 3121 // Magic! 3122 if (KeptBits != (KeptBitsMinusOne + 1)) 3123 return SDValue(); 3124 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3125 3126 // We don't want to do this in every single case. 3127 SelectionDAG &DAG = DCI.DAG; 3128 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3129 XVT, KeptBits)) 3130 return SDValue(); 3131 3132 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3133 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3134 3135 // Unfold into: ((%x << C) a>> C) cond %x 3136 // Where 'cond' will be either 'eq' or 'ne'. 3137 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3138 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3139 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3140 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3141 3142 return T2; 3143 } 3144 3145 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3146 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3147 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3148 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3149 assert(isConstOrConstSplat(N1C) && 3150 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3151 "Should be a comparison with 0."); 3152 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3153 "Valid only for [in]equality comparisons."); 3154 3155 unsigned NewShiftOpcode; 3156 SDValue X, C, Y; 3157 3158 SelectionDAG &DAG = DCI.DAG; 3159 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3160 3161 // Look for '(C l>>/<< Y)'. 3162 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3163 // The shift should be one-use. 3164 if (!V.hasOneUse()) 3165 return false; 3166 unsigned OldShiftOpcode = V.getOpcode(); 3167 switch (OldShiftOpcode) { 3168 case ISD::SHL: 3169 NewShiftOpcode = ISD::SRL; 3170 break; 3171 case ISD::SRL: 3172 NewShiftOpcode = ISD::SHL; 3173 break; 3174 default: 3175 return false; // must be a logical shift. 3176 } 3177 // We should be shifting a constant. 3178 // FIXME: best to use isConstantOrConstantVector(). 3179 C = V.getOperand(0); 3180 ConstantSDNode *CC = 3181 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3182 if (!CC) 3183 return false; 3184 Y = V.getOperand(1); 3185 3186 ConstantSDNode *XC = 3187 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3188 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3189 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3190 }; 3191 3192 // LHS of comparison should be an one-use 'and'. 3193 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3194 return SDValue(); 3195 3196 X = N0.getOperand(0); 3197 SDValue Mask = N0.getOperand(1); 3198 3199 // 'and' is commutative! 3200 if (!Match(Mask)) { 3201 std::swap(X, Mask); 3202 if (!Match(Mask)) 3203 return SDValue(); 3204 } 3205 3206 EVT VT = X.getValueType(); 3207 3208 // Produce: 3209 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3210 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3211 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3212 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3213 return T2; 3214 } 3215 3216 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3217 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3218 /// handle the commuted versions of these patterns. 3219 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3220 ISD::CondCode Cond, const SDLoc &DL, 3221 DAGCombinerInfo &DCI) const { 3222 unsigned BOpcode = N0.getOpcode(); 3223 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3224 "Unexpected binop"); 3225 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3226 3227 // (X + Y) == X --> Y == 0 3228 // (X - Y) == X --> Y == 0 3229 // (X ^ Y) == X --> Y == 0 3230 SelectionDAG &DAG = DCI.DAG; 3231 EVT OpVT = N0.getValueType(); 3232 SDValue X = N0.getOperand(0); 3233 SDValue Y = N0.getOperand(1); 3234 if (X == N1) 3235 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3236 3237 if (Y != N1) 3238 return SDValue(); 3239 3240 // (X + Y) == Y --> X == 0 3241 // (X ^ Y) == Y --> X == 0 3242 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3243 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3244 3245 // The shift would not be valid if the operands are boolean (i1). 3246 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3247 return SDValue(); 3248 3249 // (X - Y) == Y --> X == Y << 1 3250 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3251 !DCI.isBeforeLegalize()); 3252 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3253 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3254 if (!DCI.isCalledByLegalizer()) 3255 DCI.AddToWorklist(YShl1.getNode()); 3256 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3257 } 3258 3259 /// Try to simplify a setcc built with the specified operands and cc. If it is 3260 /// unable to simplify it, return a null SDValue. 3261 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3262 ISD::CondCode Cond, bool foldBooleans, 3263 DAGCombinerInfo &DCI, 3264 const SDLoc &dl) const { 3265 SelectionDAG &DAG = DCI.DAG; 3266 const DataLayout &Layout = DAG.getDataLayout(); 3267 EVT OpVT = N0.getValueType(); 3268 3269 // Constant fold or commute setcc. 3270 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3271 return Fold; 3272 3273 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3274 // TODO: Handle non-splat vector constants. All undef causes trouble. 3275 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3276 if (isConstOrConstSplat(N0) && 3277 (DCI.isBeforeLegalizeOps() || 3278 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3279 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3280 3281 // If we have a subtract with the same 2 non-constant operands as this setcc 3282 // -- but in reverse order -- then try to commute the operands of this setcc 3283 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3284 // instruction on some targets. 3285 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3286 (DCI.isBeforeLegalizeOps() || 3287 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3288 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3289 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3290 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3291 3292 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3293 const APInt &C1 = N1C->getAPIntValue(); 3294 3295 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3296 // equality comparison, then we're just comparing whether X itself is 3297 // zero. 3298 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3299 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3300 N0.getOperand(1).getOpcode() == ISD::Constant) { 3301 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3302 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3303 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3304 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3305 // (srl (ctlz x), 5) == 0 -> X != 0 3306 // (srl (ctlz x), 5) != 1 -> X != 0 3307 Cond = ISD::SETNE; 3308 } else { 3309 // (srl (ctlz x), 5) != 0 -> X == 0 3310 // (srl (ctlz x), 5) == 1 -> X == 0 3311 Cond = ISD::SETEQ; 3312 } 3313 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3314 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3315 Zero, Cond); 3316 } 3317 } 3318 3319 SDValue CTPOP = N0; 3320 // Look through truncs that don't change the value of a ctpop. 3321 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3322 CTPOP = N0.getOperand(0); 3323 3324 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3325 (N0 == CTPOP || 3326 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3327 EVT CTVT = CTPOP.getValueType(); 3328 SDValue CTOp = CTPOP.getOperand(0); 3329 3330 // (ctpop x) u< 2 -> (x & x-1) == 0 3331 // (ctpop x) u> 1 -> (x & x-1) != 0 3332 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3333 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3334 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3335 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3336 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3337 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3338 } 3339 3340 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3341 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3342 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3343 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3344 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3345 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3346 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3347 assert(CTVT.isInteger()); 3348 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3349 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3350 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3351 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3352 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3353 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3354 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3355 } 3356 } 3357 3358 // (zext x) == C --> x == (trunc C) 3359 // (sext x) == C --> x == (trunc C) 3360 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3361 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3362 unsigned MinBits = N0.getValueSizeInBits(); 3363 SDValue PreExt; 3364 bool Signed = false; 3365 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3366 // ZExt 3367 MinBits = N0->getOperand(0).getValueSizeInBits(); 3368 PreExt = N0->getOperand(0); 3369 } else if (N0->getOpcode() == ISD::AND) { 3370 // DAGCombine turns costly ZExts into ANDs 3371 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3372 if ((C->getAPIntValue()+1).isPowerOf2()) { 3373 MinBits = C->getAPIntValue().countTrailingOnes(); 3374 PreExt = N0->getOperand(0); 3375 } 3376 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3377 // SExt 3378 MinBits = N0->getOperand(0).getValueSizeInBits(); 3379 PreExt = N0->getOperand(0); 3380 Signed = true; 3381 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3382 // ZEXTLOAD / SEXTLOAD 3383 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3384 MinBits = LN0->getMemoryVT().getSizeInBits(); 3385 PreExt = N0; 3386 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3387 Signed = true; 3388 MinBits = LN0->getMemoryVT().getSizeInBits(); 3389 PreExt = N0; 3390 } 3391 } 3392 3393 // Figure out how many bits we need to preserve this constant. 3394 unsigned ReqdBits = Signed ? 3395 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3396 C1.getActiveBits(); 3397 3398 // Make sure we're not losing bits from the constant. 3399 if (MinBits > 0 && 3400 MinBits < C1.getBitWidth() && 3401 MinBits >= ReqdBits) { 3402 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3403 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3404 // Will get folded away. 3405 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3406 if (MinBits == 1 && C1 == 1) 3407 // Invert the condition. 3408 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3409 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3410 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3411 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3412 } 3413 3414 // If truncating the setcc operands is not desirable, we can still 3415 // simplify the expression in some cases: 3416 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3417 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3418 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3419 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3420 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3421 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3422 SDValue TopSetCC = N0->getOperand(0); 3423 unsigned N0Opc = N0->getOpcode(); 3424 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3425 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3426 TopSetCC.getOpcode() == ISD::SETCC && 3427 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3428 (isConstFalseVal(N1C) || 3429 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3430 3431 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3432 (!N1C->isNullValue() && Cond == ISD::SETNE); 3433 3434 if (!Inverse) 3435 return TopSetCC; 3436 3437 ISD::CondCode InvCond = ISD::getSetCCInverse( 3438 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3439 TopSetCC.getOperand(0).getValueType()); 3440 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3441 TopSetCC.getOperand(1), 3442 InvCond); 3443 } 3444 } 3445 } 3446 3447 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3448 // equality or unsigned, and all 1 bits of the const are in the same 3449 // partial word, see if we can shorten the load. 3450 if (DCI.isBeforeLegalize() && 3451 !ISD::isSignedIntSetCC(Cond) && 3452 N0.getOpcode() == ISD::AND && C1 == 0 && 3453 N0.getNode()->hasOneUse() && 3454 isa<LoadSDNode>(N0.getOperand(0)) && 3455 N0.getOperand(0).getNode()->hasOneUse() && 3456 isa<ConstantSDNode>(N0.getOperand(1))) { 3457 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3458 APInt bestMask; 3459 unsigned bestWidth = 0, bestOffset = 0; 3460 if (Lod->isSimple() && Lod->isUnindexed()) { 3461 unsigned origWidth = N0.getValueSizeInBits(); 3462 unsigned maskWidth = origWidth; 3463 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3464 // 8 bits, but have to be careful... 3465 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3466 origWidth = Lod->getMemoryVT().getSizeInBits(); 3467 const APInt &Mask = N0.getConstantOperandAPInt(1); 3468 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3469 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3470 for (unsigned offset=0; offset<origWidth/width; offset++) { 3471 if (Mask.isSubsetOf(newMask)) { 3472 if (Layout.isLittleEndian()) 3473 bestOffset = (uint64_t)offset * (width/8); 3474 else 3475 bestOffset = (origWidth/width - offset - 1) * (width/8); 3476 bestMask = Mask.lshr(offset * (width/8) * 8); 3477 bestWidth = width; 3478 break; 3479 } 3480 newMask <<= width; 3481 } 3482 } 3483 } 3484 if (bestWidth) { 3485 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3486 if (newVT.isRound() && 3487 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3488 SDValue Ptr = Lod->getBasePtr(); 3489 if (bestOffset != 0) 3490 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3491 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3492 SDValue NewLoad = DAG.getLoad( 3493 newVT, dl, Lod->getChain(), Ptr, 3494 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3495 return DAG.getSetCC(dl, VT, 3496 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3497 DAG.getConstant(bestMask.trunc(bestWidth), 3498 dl, newVT)), 3499 DAG.getConstant(0LL, dl, newVT), Cond); 3500 } 3501 } 3502 } 3503 3504 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3505 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3506 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3507 3508 // If the comparison constant has bits in the upper part, the 3509 // zero-extended value could never match. 3510 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3511 C1.getBitWidth() - InSize))) { 3512 switch (Cond) { 3513 case ISD::SETUGT: 3514 case ISD::SETUGE: 3515 case ISD::SETEQ: 3516 return DAG.getConstant(0, dl, VT); 3517 case ISD::SETULT: 3518 case ISD::SETULE: 3519 case ISD::SETNE: 3520 return DAG.getConstant(1, dl, VT); 3521 case ISD::SETGT: 3522 case ISD::SETGE: 3523 // True if the sign bit of C1 is set. 3524 return DAG.getConstant(C1.isNegative(), dl, VT); 3525 case ISD::SETLT: 3526 case ISD::SETLE: 3527 // True if the sign bit of C1 isn't set. 3528 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3529 default: 3530 break; 3531 } 3532 } 3533 3534 // Otherwise, we can perform the comparison with the low bits. 3535 switch (Cond) { 3536 case ISD::SETEQ: 3537 case ISD::SETNE: 3538 case ISD::SETUGT: 3539 case ISD::SETUGE: 3540 case ISD::SETULT: 3541 case ISD::SETULE: { 3542 EVT newVT = N0.getOperand(0).getValueType(); 3543 if (DCI.isBeforeLegalizeOps() || 3544 (isOperationLegal(ISD::SETCC, newVT) && 3545 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3546 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3547 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3548 3549 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3550 NewConst, Cond); 3551 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3552 } 3553 break; 3554 } 3555 default: 3556 break; // todo, be more careful with signed comparisons 3557 } 3558 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3559 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3560 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3561 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3562 EVT ExtDstTy = N0.getValueType(); 3563 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3564 3565 // If the constant doesn't fit into the number of bits for the source of 3566 // the sign extension, it is impossible for both sides to be equal. 3567 if (C1.getMinSignedBits() > ExtSrcTyBits) 3568 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3569 3570 SDValue ZextOp; 3571 EVT Op0Ty = N0.getOperand(0).getValueType(); 3572 if (Op0Ty == ExtSrcTy) { 3573 ZextOp = N0.getOperand(0); 3574 } else { 3575 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3576 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3577 DAG.getConstant(Imm, dl, Op0Ty)); 3578 } 3579 if (!DCI.isCalledByLegalizer()) 3580 DCI.AddToWorklist(ZextOp.getNode()); 3581 // Otherwise, make this a use of a zext. 3582 return DAG.getSetCC(dl, VT, ZextOp, 3583 DAG.getConstant(C1 & APInt::getLowBitsSet( 3584 ExtDstTyBits, 3585 ExtSrcTyBits), 3586 dl, ExtDstTy), 3587 Cond); 3588 } else if ((N1C->isNullValue() || N1C->isOne()) && 3589 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3590 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3591 if (N0.getOpcode() == ISD::SETCC && 3592 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3593 (N0.getValueType() == MVT::i1 || 3594 getBooleanContents(N0.getOperand(0).getValueType()) == 3595 ZeroOrOneBooleanContent)) { 3596 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3597 if (TrueWhenTrue) 3598 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3599 // Invert the condition. 3600 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3601 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3602 if (DCI.isBeforeLegalizeOps() || 3603 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3604 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3605 } 3606 3607 if ((N0.getOpcode() == ISD::XOR || 3608 (N0.getOpcode() == ISD::AND && 3609 N0.getOperand(0).getOpcode() == ISD::XOR && 3610 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3611 isa<ConstantSDNode>(N0.getOperand(1)) && 3612 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3613 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3614 // can only do this if the top bits are known zero. 3615 unsigned BitWidth = N0.getValueSizeInBits(); 3616 if (DAG.MaskedValueIsZero(N0, 3617 APInt::getHighBitsSet(BitWidth, 3618 BitWidth-1))) { 3619 // Okay, get the un-inverted input value. 3620 SDValue Val; 3621 if (N0.getOpcode() == ISD::XOR) { 3622 Val = N0.getOperand(0); 3623 } else { 3624 assert(N0.getOpcode() == ISD::AND && 3625 N0.getOperand(0).getOpcode() == ISD::XOR); 3626 // ((X^1)&1)^1 -> X & 1 3627 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3628 N0.getOperand(0).getOperand(0), 3629 N0.getOperand(1)); 3630 } 3631 3632 return DAG.getSetCC(dl, VT, Val, N1, 3633 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3634 } 3635 } else if (N1C->isOne()) { 3636 SDValue Op0 = N0; 3637 if (Op0.getOpcode() == ISD::TRUNCATE) 3638 Op0 = Op0.getOperand(0); 3639 3640 if ((Op0.getOpcode() == ISD::XOR) && 3641 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3642 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3643 SDValue XorLHS = Op0.getOperand(0); 3644 SDValue XorRHS = Op0.getOperand(1); 3645 // Ensure that the input setccs return an i1 type or 0/1 value. 3646 if (Op0.getValueType() == MVT::i1 || 3647 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3648 ZeroOrOneBooleanContent && 3649 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3650 ZeroOrOneBooleanContent)) { 3651 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3652 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3653 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3654 } 3655 } 3656 if (Op0.getOpcode() == ISD::AND && 3657 isa<ConstantSDNode>(Op0.getOperand(1)) && 3658 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3659 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3660 if (Op0.getValueType().bitsGT(VT)) 3661 Op0 = DAG.getNode(ISD::AND, dl, VT, 3662 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3663 DAG.getConstant(1, dl, VT)); 3664 else if (Op0.getValueType().bitsLT(VT)) 3665 Op0 = DAG.getNode(ISD::AND, dl, VT, 3666 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3667 DAG.getConstant(1, dl, VT)); 3668 3669 return DAG.getSetCC(dl, VT, Op0, 3670 DAG.getConstant(0, dl, Op0.getValueType()), 3671 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3672 } 3673 if (Op0.getOpcode() == ISD::AssertZext && 3674 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3675 return DAG.getSetCC(dl, VT, Op0, 3676 DAG.getConstant(0, dl, Op0.getValueType()), 3677 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3678 } 3679 } 3680 3681 // Given: 3682 // icmp eq/ne (urem %x, %y), 0 3683 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3684 // icmp eq/ne %x, 0 3685 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3686 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3687 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3688 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3689 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3690 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3691 } 3692 3693 if (SDValue V = 3694 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3695 return V; 3696 } 3697 3698 // These simplifications apply to splat vectors as well. 3699 // TODO: Handle more splat vector cases. 3700 if (auto *N1C = isConstOrConstSplat(N1)) { 3701 const APInt &C1 = N1C->getAPIntValue(); 3702 3703 APInt MinVal, MaxVal; 3704 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3705 if (ISD::isSignedIntSetCC(Cond)) { 3706 MinVal = APInt::getSignedMinValue(OperandBitSize); 3707 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3708 } else { 3709 MinVal = APInt::getMinValue(OperandBitSize); 3710 MaxVal = APInt::getMaxValue(OperandBitSize); 3711 } 3712 3713 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3714 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3715 // X >= MIN --> true 3716 if (C1 == MinVal) 3717 return DAG.getBoolConstant(true, dl, VT, OpVT); 3718 3719 if (!VT.isVector()) { // TODO: Support this for vectors. 3720 // X >= C0 --> X > (C0 - 1) 3721 APInt C = C1 - 1; 3722 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3723 if ((DCI.isBeforeLegalizeOps() || 3724 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3725 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3726 isLegalICmpImmediate(C.getSExtValue())))) { 3727 return DAG.getSetCC(dl, VT, N0, 3728 DAG.getConstant(C, dl, N1.getValueType()), 3729 NewCC); 3730 } 3731 } 3732 } 3733 3734 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3735 // X <= MAX --> true 3736 if (C1 == MaxVal) 3737 return DAG.getBoolConstant(true, dl, VT, OpVT); 3738 3739 // X <= C0 --> X < (C0 + 1) 3740 if (!VT.isVector()) { // TODO: Support this for vectors. 3741 APInt C = C1 + 1; 3742 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3743 if ((DCI.isBeforeLegalizeOps() || 3744 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3745 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3746 isLegalICmpImmediate(C.getSExtValue())))) { 3747 return DAG.getSetCC(dl, VT, N0, 3748 DAG.getConstant(C, dl, N1.getValueType()), 3749 NewCC); 3750 } 3751 } 3752 } 3753 3754 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3755 if (C1 == MinVal) 3756 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3757 3758 // TODO: Support this for vectors after legalize ops. 3759 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3760 // Canonicalize setlt X, Max --> setne X, Max 3761 if (C1 == MaxVal) 3762 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3763 3764 // If we have setult X, 1, turn it into seteq X, 0 3765 if (C1 == MinVal+1) 3766 return DAG.getSetCC(dl, VT, N0, 3767 DAG.getConstant(MinVal, dl, N0.getValueType()), 3768 ISD::SETEQ); 3769 } 3770 } 3771 3772 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3773 if (C1 == MaxVal) 3774 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3775 3776 // TODO: Support this for vectors after legalize ops. 3777 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3778 // Canonicalize setgt X, Min --> setne X, Min 3779 if (C1 == MinVal) 3780 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3781 3782 // If we have setugt X, Max-1, turn it into seteq X, Max 3783 if (C1 == MaxVal-1) 3784 return DAG.getSetCC(dl, VT, N0, 3785 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3786 ISD::SETEQ); 3787 } 3788 } 3789 3790 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3791 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3792 if (C1.isNullValue()) 3793 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3794 VT, N0, N1, Cond, DCI, dl)) 3795 return CC; 3796 } 3797 3798 // If we have "setcc X, C0", check to see if we can shrink the immediate 3799 // by changing cc. 3800 // TODO: Support this for vectors after legalize ops. 3801 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3802 // SETUGT X, SINTMAX -> SETLT X, 0 3803 if (Cond == ISD::SETUGT && 3804 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3805 return DAG.getSetCC(dl, VT, N0, 3806 DAG.getConstant(0, dl, N1.getValueType()), 3807 ISD::SETLT); 3808 3809 // SETULT X, SINTMIN -> SETGT X, -1 3810 if (Cond == ISD::SETULT && 3811 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3812 SDValue ConstMinusOne = 3813 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3814 N1.getValueType()); 3815 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3816 } 3817 } 3818 } 3819 3820 // Back to non-vector simplifications. 3821 // TODO: Can we do these for vector splats? 3822 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3823 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3824 const APInt &C1 = N1C->getAPIntValue(); 3825 EVT ShValTy = N0.getValueType(); 3826 3827 // Fold bit comparisons when we can. 3828 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3829 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3830 N0.getOpcode() == ISD::AND) { 3831 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3832 EVT ShiftTy = 3833 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3834 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3835 // Perform the xform if the AND RHS is a single bit. 3836 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3837 if (AndRHS->getAPIntValue().isPowerOf2() && 3838 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3839 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3840 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3841 DAG.getConstant(ShCt, dl, ShiftTy))); 3842 } 3843 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3844 // (X & 8) == 8 --> (X & 8) >> 3 3845 // Perform the xform if C1 is a single bit. 3846 unsigned ShCt = C1.logBase2(); 3847 if (C1.isPowerOf2() && 3848 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3849 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3850 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3851 DAG.getConstant(ShCt, dl, ShiftTy))); 3852 } 3853 } 3854 } 3855 } 3856 3857 if (C1.getMinSignedBits() <= 64 && 3858 !isLegalICmpImmediate(C1.getSExtValue())) { 3859 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3860 // (X & -256) == 256 -> (X >> 8) == 1 3861 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3862 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3863 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3864 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3865 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3866 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3867 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3868 SDValue Shift = 3869 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3870 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3871 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3872 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3873 } 3874 } 3875 } 3876 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3877 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3878 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3879 // X < 0x100000000 -> (X >> 32) < 1 3880 // X >= 0x100000000 -> (X >> 32) >= 1 3881 // X <= 0x0ffffffff -> (X >> 32) < 1 3882 // X > 0x0ffffffff -> (X >> 32) >= 1 3883 unsigned ShiftBits; 3884 APInt NewC = C1; 3885 ISD::CondCode NewCond = Cond; 3886 if (AdjOne) { 3887 ShiftBits = C1.countTrailingOnes(); 3888 NewC = NewC + 1; 3889 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3890 } else { 3891 ShiftBits = C1.countTrailingZeros(); 3892 } 3893 NewC.lshrInPlace(ShiftBits); 3894 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3895 isLegalICmpImmediate(NewC.getSExtValue()) && 3896 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3897 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3898 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3899 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3900 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3901 } 3902 } 3903 } 3904 } 3905 3906 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3907 auto *CFP = cast<ConstantFPSDNode>(N1); 3908 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3909 3910 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3911 // constant if knowing that the operand is non-nan is enough. We prefer to 3912 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3913 // materialize 0.0. 3914 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3915 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3916 3917 // setcc (fneg x), C -> setcc swap(pred) x, -C 3918 if (N0.getOpcode() == ISD::FNEG) { 3919 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3920 if (DCI.isBeforeLegalizeOps() || 3921 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3922 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3923 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3924 } 3925 } 3926 3927 // If the condition is not legal, see if we can find an equivalent one 3928 // which is legal. 3929 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3930 // If the comparison was an awkward floating-point == or != and one of 3931 // the comparison operands is infinity or negative infinity, convert the 3932 // condition to a less-awkward <= or >=. 3933 if (CFP->getValueAPF().isInfinity()) { 3934 bool IsNegInf = CFP->getValueAPF().isNegative(); 3935 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3936 switch (Cond) { 3937 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3938 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3939 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3940 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3941 default: break; 3942 } 3943 if (NewCond != ISD::SETCC_INVALID && 3944 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3945 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3946 } 3947 } 3948 } 3949 3950 if (N0 == N1) { 3951 // The sext(setcc()) => setcc() optimization relies on the appropriate 3952 // constant being emitted. 3953 assert(!N0.getValueType().isInteger() && 3954 "Integer types should be handled by FoldSetCC"); 3955 3956 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3957 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3958 if (UOF == 2) // FP operators that are undefined on NaNs. 3959 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3960 if (UOF == unsigned(EqTrue)) 3961 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3962 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3963 // if it is not already. 3964 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3965 if (NewCond != Cond && 3966 (DCI.isBeforeLegalizeOps() || 3967 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3968 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3969 } 3970 3971 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3972 N0.getValueType().isInteger()) { 3973 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3974 N0.getOpcode() == ISD::XOR) { 3975 // Simplify (X+Y) == (X+Z) --> Y == Z 3976 if (N0.getOpcode() == N1.getOpcode()) { 3977 if (N0.getOperand(0) == N1.getOperand(0)) 3978 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3979 if (N0.getOperand(1) == N1.getOperand(1)) 3980 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3981 if (isCommutativeBinOp(N0.getOpcode())) { 3982 // If X op Y == Y op X, try other combinations. 3983 if (N0.getOperand(0) == N1.getOperand(1)) 3984 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3985 Cond); 3986 if (N0.getOperand(1) == N1.getOperand(0)) 3987 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3988 Cond); 3989 } 3990 } 3991 3992 // If RHS is a legal immediate value for a compare instruction, we need 3993 // to be careful about increasing register pressure needlessly. 3994 bool LegalRHSImm = false; 3995 3996 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3997 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3998 // Turn (X+C1) == C2 --> X == C2-C1 3999 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4000 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4001 DAG.getConstant(RHSC->getAPIntValue()- 4002 LHSR->getAPIntValue(), 4003 dl, N0.getValueType()), Cond); 4004 } 4005 4006 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4007 if (N0.getOpcode() == ISD::XOR) 4008 // If we know that all of the inverted bits are zero, don't bother 4009 // performing the inversion. 4010 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4011 return 4012 DAG.getSetCC(dl, VT, N0.getOperand(0), 4013 DAG.getConstant(LHSR->getAPIntValue() ^ 4014 RHSC->getAPIntValue(), 4015 dl, N0.getValueType()), 4016 Cond); 4017 } 4018 4019 // Turn (C1-X) == C2 --> X == C1-C2 4020 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4021 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4022 return 4023 DAG.getSetCC(dl, VT, N0.getOperand(1), 4024 DAG.getConstant(SUBC->getAPIntValue() - 4025 RHSC->getAPIntValue(), 4026 dl, N0.getValueType()), 4027 Cond); 4028 } 4029 } 4030 4031 // Could RHSC fold directly into a compare? 4032 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4033 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4034 } 4035 4036 // (X+Y) == X --> Y == 0 and similar folds. 4037 // Don't do this if X is an immediate that can fold into a cmp 4038 // instruction and X+Y has other uses. It could be an induction variable 4039 // chain, and the transform would increase register pressure. 4040 if (!LegalRHSImm || N0.hasOneUse()) 4041 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4042 return V; 4043 } 4044 4045 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4046 N1.getOpcode() == ISD::XOR) 4047 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4048 return V; 4049 4050 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4051 return V; 4052 } 4053 4054 // Fold remainder of division by a constant. 4055 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4056 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4057 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4058 4059 // When division is cheap or optimizing for minimum size, 4060 // fall through to DIVREM creation by skipping this fold. 4061 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4062 if (N0.getOpcode() == ISD::UREM) { 4063 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4064 return Folded; 4065 } else if (N0.getOpcode() == ISD::SREM) { 4066 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4067 return Folded; 4068 } 4069 } 4070 } 4071 4072 // Fold away ALL boolean setcc's. 4073 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4074 SDValue Temp; 4075 switch (Cond) { 4076 default: llvm_unreachable("Unknown integer setcc!"); 4077 case ISD::SETEQ: // X == Y -> ~(X^Y) 4078 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4079 N0 = DAG.getNOT(dl, Temp, OpVT); 4080 if (!DCI.isCalledByLegalizer()) 4081 DCI.AddToWorklist(Temp.getNode()); 4082 break; 4083 case ISD::SETNE: // X != Y --> (X^Y) 4084 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4085 break; 4086 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4087 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4088 Temp = DAG.getNOT(dl, N0, OpVT); 4089 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4090 if (!DCI.isCalledByLegalizer()) 4091 DCI.AddToWorklist(Temp.getNode()); 4092 break; 4093 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4094 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4095 Temp = DAG.getNOT(dl, N1, OpVT); 4096 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4097 if (!DCI.isCalledByLegalizer()) 4098 DCI.AddToWorklist(Temp.getNode()); 4099 break; 4100 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4101 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4102 Temp = DAG.getNOT(dl, N0, OpVT); 4103 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4104 if (!DCI.isCalledByLegalizer()) 4105 DCI.AddToWorklist(Temp.getNode()); 4106 break; 4107 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4108 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4109 Temp = DAG.getNOT(dl, N1, OpVT); 4110 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4111 break; 4112 } 4113 if (VT.getScalarType() != MVT::i1) { 4114 if (!DCI.isCalledByLegalizer()) 4115 DCI.AddToWorklist(N0.getNode()); 4116 // FIXME: If running after legalize, we probably can't do this. 4117 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4118 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4119 } 4120 return N0; 4121 } 4122 4123 // Could not fold it. 4124 return SDValue(); 4125 } 4126 4127 /// Returns true (and the GlobalValue and the offset) if the node is a 4128 /// GlobalAddress + offset. 4129 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4130 int64_t &Offset) const { 4131 4132 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4133 4134 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4135 GA = GASD->getGlobal(); 4136 Offset += GASD->getOffset(); 4137 return true; 4138 } 4139 4140 if (N->getOpcode() == ISD::ADD) { 4141 SDValue N1 = N->getOperand(0); 4142 SDValue N2 = N->getOperand(1); 4143 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4144 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4145 Offset += V->getSExtValue(); 4146 return true; 4147 } 4148 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4149 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4150 Offset += V->getSExtValue(); 4151 return true; 4152 } 4153 } 4154 } 4155 4156 return false; 4157 } 4158 4159 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4160 DAGCombinerInfo &DCI) const { 4161 // Default implementation: no optimization. 4162 return SDValue(); 4163 } 4164 4165 //===----------------------------------------------------------------------===// 4166 // Inline Assembler Implementation Methods 4167 //===----------------------------------------------------------------------===// 4168 4169 TargetLowering::ConstraintType 4170 TargetLowering::getConstraintType(StringRef Constraint) const { 4171 unsigned S = Constraint.size(); 4172 4173 if (S == 1) { 4174 switch (Constraint[0]) { 4175 default: break; 4176 case 'r': 4177 return C_RegisterClass; 4178 case 'm': // memory 4179 case 'o': // offsetable 4180 case 'V': // not offsetable 4181 return C_Memory; 4182 case 'n': // Simple Integer 4183 case 'E': // Floating Point Constant 4184 case 'F': // Floating Point Constant 4185 return C_Immediate; 4186 case 'i': // Simple Integer or Relocatable Constant 4187 case 's': // Relocatable Constant 4188 case 'p': // Address. 4189 case 'X': // Allow ANY value. 4190 case 'I': // Target registers. 4191 case 'J': 4192 case 'K': 4193 case 'L': 4194 case 'M': 4195 case 'N': 4196 case 'O': 4197 case 'P': 4198 case '<': 4199 case '>': 4200 return C_Other; 4201 } 4202 } 4203 4204 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4205 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4206 return C_Memory; 4207 return C_Register; 4208 } 4209 return C_Unknown; 4210 } 4211 4212 /// Try to replace an X constraint, which matches anything, with another that 4213 /// has more specific requirements based on the type of the corresponding 4214 /// operand. 4215 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4216 if (ConstraintVT.isInteger()) 4217 return "r"; 4218 if (ConstraintVT.isFloatingPoint()) 4219 return "f"; // works for many targets 4220 return nullptr; 4221 } 4222 4223 SDValue TargetLowering::LowerAsmOutputForConstraint( 4224 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4225 SelectionDAG &DAG) const { 4226 return SDValue(); 4227 } 4228 4229 /// Lower the specified operand into the Ops vector. 4230 /// If it is invalid, don't add anything to Ops. 4231 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4232 std::string &Constraint, 4233 std::vector<SDValue> &Ops, 4234 SelectionDAG &DAG) const { 4235 4236 if (Constraint.length() > 1) return; 4237 4238 char ConstraintLetter = Constraint[0]; 4239 switch (ConstraintLetter) { 4240 default: break; 4241 case 'X': // Allows any operand; labels (basic block) use this. 4242 if (Op.getOpcode() == ISD::BasicBlock || 4243 Op.getOpcode() == ISD::TargetBlockAddress) { 4244 Ops.push_back(Op); 4245 return; 4246 } 4247 LLVM_FALLTHROUGH; 4248 case 'i': // Simple Integer or Relocatable Constant 4249 case 'n': // Simple Integer 4250 case 's': { // Relocatable Constant 4251 4252 GlobalAddressSDNode *GA; 4253 ConstantSDNode *C; 4254 BlockAddressSDNode *BA; 4255 uint64_t Offset = 0; 4256 4257 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4258 // etc., since getelementpointer is variadic. We can't use 4259 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4260 // while in this case the GA may be furthest from the root node which is 4261 // likely an ISD::ADD. 4262 while (1) { 4263 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4264 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4265 GA->getValueType(0), 4266 Offset + GA->getOffset())); 4267 return; 4268 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4269 ConstraintLetter != 's') { 4270 // gcc prints these as sign extended. Sign extend value to 64 bits 4271 // now; without this it would get ZExt'd later in 4272 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4273 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4274 BooleanContent BCont = getBooleanContents(MVT::i64); 4275 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4276 : ISD::SIGN_EXTEND; 4277 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4278 : C->getSExtValue(); 4279 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4280 SDLoc(C), MVT::i64)); 4281 return; 4282 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4283 ConstraintLetter != 'n') { 4284 Ops.push_back(DAG.getTargetBlockAddress( 4285 BA->getBlockAddress(), BA->getValueType(0), 4286 Offset + BA->getOffset(), BA->getTargetFlags())); 4287 return; 4288 } else { 4289 const unsigned OpCode = Op.getOpcode(); 4290 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4291 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4292 Op = Op.getOperand(1); 4293 // Subtraction is not commutative. 4294 else if (OpCode == ISD::ADD && 4295 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4296 Op = Op.getOperand(0); 4297 else 4298 return; 4299 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4300 continue; 4301 } 4302 } 4303 return; 4304 } 4305 break; 4306 } 4307 } 4308 } 4309 4310 std::pair<unsigned, const TargetRegisterClass *> 4311 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4312 StringRef Constraint, 4313 MVT VT) const { 4314 if (Constraint.empty() || Constraint[0] != '{') 4315 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4316 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4317 4318 // Remove the braces from around the name. 4319 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4320 4321 std::pair<unsigned, const TargetRegisterClass *> R = 4322 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4323 4324 // Figure out which register class contains this reg. 4325 for (const TargetRegisterClass *RC : RI->regclasses()) { 4326 // If none of the value types for this register class are valid, we 4327 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4328 if (!isLegalRC(*RI, *RC)) 4329 continue; 4330 4331 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4332 I != E; ++I) { 4333 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4334 std::pair<unsigned, const TargetRegisterClass *> S = 4335 std::make_pair(*I, RC); 4336 4337 // If this register class has the requested value type, return it, 4338 // otherwise keep searching and return the first class found 4339 // if no other is found which explicitly has the requested type. 4340 if (RI->isTypeLegalForClass(*RC, VT)) 4341 return S; 4342 if (!R.second) 4343 R = S; 4344 } 4345 } 4346 } 4347 4348 return R; 4349 } 4350 4351 //===----------------------------------------------------------------------===// 4352 // Constraint Selection. 4353 4354 /// Return true of this is an input operand that is a matching constraint like 4355 /// "4". 4356 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4357 assert(!ConstraintCode.empty() && "No known constraint!"); 4358 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4359 } 4360 4361 /// If this is an input matching constraint, this method returns the output 4362 /// operand it matches. 4363 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4364 assert(!ConstraintCode.empty() && "No known constraint!"); 4365 return atoi(ConstraintCode.c_str()); 4366 } 4367 4368 /// Split up the constraint string from the inline assembly value into the 4369 /// specific constraints and their prefixes, and also tie in the associated 4370 /// operand values. 4371 /// If this returns an empty vector, and if the constraint string itself 4372 /// isn't empty, there was an error parsing. 4373 TargetLowering::AsmOperandInfoVector 4374 TargetLowering::ParseConstraints(const DataLayout &DL, 4375 const TargetRegisterInfo *TRI, 4376 const CallBase &Call) const { 4377 /// Information about all of the constraints. 4378 AsmOperandInfoVector ConstraintOperands; 4379 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4380 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4381 4382 // Do a prepass over the constraints, canonicalizing them, and building up the 4383 // ConstraintOperands list. 4384 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4385 unsigned ResNo = 0; // ResNo - The result number of the next output. 4386 4387 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4388 ConstraintOperands.emplace_back(std::move(CI)); 4389 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4390 4391 // Update multiple alternative constraint count. 4392 if (OpInfo.multipleAlternatives.size() > maCount) 4393 maCount = OpInfo.multipleAlternatives.size(); 4394 4395 OpInfo.ConstraintVT = MVT::Other; 4396 4397 // Compute the value type for each operand. 4398 switch (OpInfo.Type) { 4399 case InlineAsm::isOutput: 4400 // Indirect outputs just consume an argument. 4401 if (OpInfo.isIndirect) { 4402 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4403 break; 4404 } 4405 4406 // The return value of the call is this value. As such, there is no 4407 // corresponding argument. 4408 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4409 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4410 OpInfo.ConstraintVT = 4411 getSimpleValueType(DL, STy->getElementType(ResNo)); 4412 } else { 4413 assert(ResNo == 0 && "Asm only has one result!"); 4414 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4415 } 4416 ++ResNo; 4417 break; 4418 case InlineAsm::isInput: 4419 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4420 break; 4421 case InlineAsm::isClobber: 4422 // Nothing to do. 4423 break; 4424 } 4425 4426 if (OpInfo.CallOperandVal) { 4427 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4428 if (OpInfo.isIndirect) { 4429 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4430 if (!PtrTy) 4431 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4432 OpTy = PtrTy->getElementType(); 4433 } 4434 4435 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4436 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4437 if (STy->getNumElements() == 1) 4438 OpTy = STy->getElementType(0); 4439 4440 // If OpTy is not a single value, it may be a struct/union that we 4441 // can tile with integers. 4442 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4443 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4444 switch (BitSize) { 4445 default: break; 4446 case 1: 4447 case 8: 4448 case 16: 4449 case 32: 4450 case 64: 4451 case 128: 4452 OpInfo.ConstraintVT = 4453 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4454 break; 4455 } 4456 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4457 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4458 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4459 } else { 4460 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4461 } 4462 } 4463 } 4464 4465 // If we have multiple alternative constraints, select the best alternative. 4466 if (!ConstraintOperands.empty()) { 4467 if (maCount) { 4468 unsigned bestMAIndex = 0; 4469 int bestWeight = -1; 4470 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4471 int weight = -1; 4472 unsigned maIndex; 4473 // Compute the sums of the weights for each alternative, keeping track 4474 // of the best (highest weight) one so far. 4475 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4476 int weightSum = 0; 4477 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4478 cIndex != eIndex; ++cIndex) { 4479 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4480 if (OpInfo.Type == InlineAsm::isClobber) 4481 continue; 4482 4483 // If this is an output operand with a matching input operand, 4484 // look up the matching input. If their types mismatch, e.g. one 4485 // is an integer, the other is floating point, or their sizes are 4486 // different, flag it as an maCantMatch. 4487 if (OpInfo.hasMatchingInput()) { 4488 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4489 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4490 if ((OpInfo.ConstraintVT.isInteger() != 4491 Input.ConstraintVT.isInteger()) || 4492 (OpInfo.ConstraintVT.getSizeInBits() != 4493 Input.ConstraintVT.getSizeInBits())) { 4494 weightSum = -1; // Can't match. 4495 break; 4496 } 4497 } 4498 } 4499 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4500 if (weight == -1) { 4501 weightSum = -1; 4502 break; 4503 } 4504 weightSum += weight; 4505 } 4506 // Update best. 4507 if (weightSum > bestWeight) { 4508 bestWeight = weightSum; 4509 bestMAIndex = maIndex; 4510 } 4511 } 4512 4513 // Now select chosen alternative in each constraint. 4514 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4515 cIndex != eIndex; ++cIndex) { 4516 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4517 if (cInfo.Type == InlineAsm::isClobber) 4518 continue; 4519 cInfo.selectAlternative(bestMAIndex); 4520 } 4521 } 4522 } 4523 4524 // Check and hook up tied operands, choose constraint code to use. 4525 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4526 cIndex != eIndex; ++cIndex) { 4527 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4528 4529 // If this is an output operand with a matching input operand, look up the 4530 // matching input. If their types mismatch, e.g. one is an integer, the 4531 // other is floating point, or their sizes are different, flag it as an 4532 // error. 4533 if (OpInfo.hasMatchingInput()) { 4534 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4535 4536 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4537 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4538 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4539 OpInfo.ConstraintVT); 4540 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4541 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4542 Input.ConstraintVT); 4543 if ((OpInfo.ConstraintVT.isInteger() != 4544 Input.ConstraintVT.isInteger()) || 4545 (MatchRC.second != InputRC.second)) { 4546 report_fatal_error("Unsupported asm: input constraint" 4547 " with a matching output constraint of" 4548 " incompatible type!"); 4549 } 4550 } 4551 } 4552 } 4553 4554 return ConstraintOperands; 4555 } 4556 4557 /// Return an integer indicating how general CT is. 4558 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4559 switch (CT) { 4560 case TargetLowering::C_Immediate: 4561 case TargetLowering::C_Other: 4562 case TargetLowering::C_Unknown: 4563 return 0; 4564 case TargetLowering::C_Register: 4565 return 1; 4566 case TargetLowering::C_RegisterClass: 4567 return 2; 4568 case TargetLowering::C_Memory: 4569 return 3; 4570 } 4571 llvm_unreachable("Invalid constraint type"); 4572 } 4573 4574 /// Examine constraint type and operand type and determine a weight value. 4575 /// This object must already have been set up with the operand type 4576 /// and the current alternative constraint selected. 4577 TargetLowering::ConstraintWeight 4578 TargetLowering::getMultipleConstraintMatchWeight( 4579 AsmOperandInfo &info, int maIndex) const { 4580 InlineAsm::ConstraintCodeVector *rCodes; 4581 if (maIndex >= (int)info.multipleAlternatives.size()) 4582 rCodes = &info.Codes; 4583 else 4584 rCodes = &info.multipleAlternatives[maIndex].Codes; 4585 ConstraintWeight BestWeight = CW_Invalid; 4586 4587 // Loop over the options, keeping track of the most general one. 4588 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4589 ConstraintWeight weight = 4590 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4591 if (weight > BestWeight) 4592 BestWeight = weight; 4593 } 4594 4595 return BestWeight; 4596 } 4597 4598 /// Examine constraint type and operand type and determine a weight value. 4599 /// This object must already have been set up with the operand type 4600 /// and the current alternative constraint selected. 4601 TargetLowering::ConstraintWeight 4602 TargetLowering::getSingleConstraintMatchWeight( 4603 AsmOperandInfo &info, const char *constraint) const { 4604 ConstraintWeight weight = CW_Invalid; 4605 Value *CallOperandVal = info.CallOperandVal; 4606 // If we don't have a value, we can't do a match, 4607 // but allow it at the lowest weight. 4608 if (!CallOperandVal) 4609 return CW_Default; 4610 // Look at the constraint type. 4611 switch (*constraint) { 4612 case 'i': // immediate integer. 4613 case 'n': // immediate integer with a known value. 4614 if (isa<ConstantInt>(CallOperandVal)) 4615 weight = CW_Constant; 4616 break; 4617 case 's': // non-explicit intregal immediate. 4618 if (isa<GlobalValue>(CallOperandVal)) 4619 weight = CW_Constant; 4620 break; 4621 case 'E': // immediate float if host format. 4622 case 'F': // immediate float. 4623 if (isa<ConstantFP>(CallOperandVal)) 4624 weight = CW_Constant; 4625 break; 4626 case '<': // memory operand with autodecrement. 4627 case '>': // memory operand with autoincrement. 4628 case 'm': // memory operand. 4629 case 'o': // offsettable memory operand 4630 case 'V': // non-offsettable memory operand 4631 weight = CW_Memory; 4632 break; 4633 case 'r': // general register. 4634 case 'g': // general register, memory operand or immediate integer. 4635 // note: Clang converts "g" to "imr". 4636 if (CallOperandVal->getType()->isIntegerTy()) 4637 weight = CW_Register; 4638 break; 4639 case 'X': // any operand. 4640 default: 4641 weight = CW_Default; 4642 break; 4643 } 4644 return weight; 4645 } 4646 4647 /// If there are multiple different constraints that we could pick for this 4648 /// operand (e.g. "imr") try to pick the 'best' one. 4649 /// This is somewhat tricky: constraints fall into four classes: 4650 /// Other -> immediates and magic values 4651 /// Register -> one specific register 4652 /// RegisterClass -> a group of regs 4653 /// Memory -> memory 4654 /// Ideally, we would pick the most specific constraint possible: if we have 4655 /// something that fits into a register, we would pick it. The problem here 4656 /// is that if we have something that could either be in a register or in 4657 /// memory that use of the register could cause selection of *other* 4658 /// operands to fail: they might only succeed if we pick memory. Because of 4659 /// this the heuristic we use is: 4660 /// 4661 /// 1) If there is an 'other' constraint, and if the operand is valid for 4662 /// that constraint, use it. This makes us take advantage of 'i' 4663 /// constraints when available. 4664 /// 2) Otherwise, pick the most general constraint present. This prefers 4665 /// 'm' over 'r', for example. 4666 /// 4667 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4668 const TargetLowering &TLI, 4669 SDValue Op, SelectionDAG *DAG) { 4670 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4671 unsigned BestIdx = 0; 4672 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4673 int BestGenerality = -1; 4674 4675 // Loop over the options, keeping track of the most general one. 4676 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4677 TargetLowering::ConstraintType CType = 4678 TLI.getConstraintType(OpInfo.Codes[i]); 4679 4680 // Indirect 'other' or 'immediate' constraints are not allowed. 4681 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4682 CType == TargetLowering::C_Register || 4683 CType == TargetLowering::C_RegisterClass)) 4684 continue; 4685 4686 // If this is an 'other' or 'immediate' constraint, see if the operand is 4687 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4688 // the operand is an integer in the range [0..31] we want to use I (saving a 4689 // load of a register), otherwise we must use 'r'. 4690 if ((CType == TargetLowering::C_Other || 4691 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4692 assert(OpInfo.Codes[i].size() == 1 && 4693 "Unhandled multi-letter 'other' constraint"); 4694 std::vector<SDValue> ResultOps; 4695 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4696 ResultOps, *DAG); 4697 if (!ResultOps.empty()) { 4698 BestType = CType; 4699 BestIdx = i; 4700 break; 4701 } 4702 } 4703 4704 // Things with matching constraints can only be registers, per gcc 4705 // documentation. This mainly affects "g" constraints. 4706 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4707 continue; 4708 4709 // This constraint letter is more general than the previous one, use it. 4710 int Generality = getConstraintGenerality(CType); 4711 if (Generality > BestGenerality) { 4712 BestType = CType; 4713 BestIdx = i; 4714 BestGenerality = Generality; 4715 } 4716 } 4717 4718 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4719 OpInfo.ConstraintType = BestType; 4720 } 4721 4722 /// Determines the constraint code and constraint type to use for the specific 4723 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4724 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4725 SDValue Op, 4726 SelectionDAG *DAG) const { 4727 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4728 4729 // Single-letter constraints ('r') are very common. 4730 if (OpInfo.Codes.size() == 1) { 4731 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4732 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4733 } else { 4734 ChooseConstraint(OpInfo, *this, Op, DAG); 4735 } 4736 4737 // 'X' matches anything. 4738 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4739 // Labels and constants are handled elsewhere ('X' is the only thing 4740 // that matches labels). For Functions, the type here is the type of 4741 // the result, which is not what we want to look at; leave them alone. 4742 Value *v = OpInfo.CallOperandVal; 4743 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4744 OpInfo.CallOperandVal = v; 4745 return; 4746 } 4747 4748 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4749 return; 4750 4751 // Otherwise, try to resolve it to something we know about by looking at 4752 // the actual operand type. 4753 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4754 OpInfo.ConstraintCode = Repl; 4755 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4756 } 4757 } 4758 } 4759 4760 /// Given an exact SDIV by a constant, create a multiplication 4761 /// with the multiplicative inverse of the constant. 4762 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4763 const SDLoc &dl, SelectionDAG &DAG, 4764 SmallVectorImpl<SDNode *> &Created) { 4765 SDValue Op0 = N->getOperand(0); 4766 SDValue Op1 = N->getOperand(1); 4767 EVT VT = N->getValueType(0); 4768 EVT SVT = VT.getScalarType(); 4769 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4770 EVT ShSVT = ShVT.getScalarType(); 4771 4772 bool UseSRA = false; 4773 SmallVector<SDValue, 16> Shifts, Factors; 4774 4775 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4776 if (C->isNullValue()) 4777 return false; 4778 APInt Divisor = C->getAPIntValue(); 4779 unsigned Shift = Divisor.countTrailingZeros(); 4780 if (Shift) { 4781 Divisor.ashrInPlace(Shift); 4782 UseSRA = true; 4783 } 4784 // Calculate the multiplicative inverse, using Newton's method. 4785 APInt t; 4786 APInt Factor = Divisor; 4787 while ((t = Divisor * Factor) != 1) 4788 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4789 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4790 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4791 return true; 4792 }; 4793 4794 // Collect all magic values from the build vector. 4795 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4796 return SDValue(); 4797 4798 SDValue Shift, Factor; 4799 if (VT.isVector()) { 4800 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4801 Factor = DAG.getBuildVector(VT, dl, Factors); 4802 } else { 4803 Shift = Shifts[0]; 4804 Factor = Factors[0]; 4805 } 4806 4807 SDValue Res = Op0; 4808 4809 // Shift the value upfront if it is even, so the LSB is one. 4810 if (UseSRA) { 4811 // TODO: For UDIV use SRL instead of SRA. 4812 SDNodeFlags Flags; 4813 Flags.setExact(true); 4814 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4815 Created.push_back(Res.getNode()); 4816 } 4817 4818 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4819 } 4820 4821 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4822 SelectionDAG &DAG, 4823 SmallVectorImpl<SDNode *> &Created) const { 4824 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4826 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4827 return SDValue(N, 0); // Lower SDIV as SDIV 4828 return SDValue(); 4829 } 4830 4831 /// Given an ISD::SDIV node expressing a divide by constant, 4832 /// return a DAG expression to select that will generate the same value by 4833 /// multiplying by a magic number. 4834 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4835 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4836 bool IsAfterLegalization, 4837 SmallVectorImpl<SDNode *> &Created) const { 4838 SDLoc dl(N); 4839 EVT VT = N->getValueType(0); 4840 EVT SVT = VT.getScalarType(); 4841 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4842 EVT ShSVT = ShVT.getScalarType(); 4843 unsigned EltBits = VT.getScalarSizeInBits(); 4844 4845 // Check to see if we can do this. 4846 // FIXME: We should be more aggressive here. 4847 if (!isTypeLegal(VT)) 4848 return SDValue(); 4849 4850 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4851 if (N->getFlags().hasExact()) 4852 return BuildExactSDIV(*this, N, dl, DAG, Created); 4853 4854 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4855 4856 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4857 if (C->isNullValue()) 4858 return false; 4859 4860 const APInt &Divisor = C->getAPIntValue(); 4861 APInt::ms magics = Divisor.magic(); 4862 int NumeratorFactor = 0; 4863 int ShiftMask = -1; 4864 4865 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4866 // If d is +1/-1, we just multiply the numerator by +1/-1. 4867 NumeratorFactor = Divisor.getSExtValue(); 4868 magics.m = 0; 4869 magics.s = 0; 4870 ShiftMask = 0; 4871 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4872 // If d > 0 and m < 0, add the numerator. 4873 NumeratorFactor = 1; 4874 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4875 // If d < 0 and m > 0, subtract the numerator. 4876 NumeratorFactor = -1; 4877 } 4878 4879 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4880 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4881 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4882 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4883 return true; 4884 }; 4885 4886 SDValue N0 = N->getOperand(0); 4887 SDValue N1 = N->getOperand(1); 4888 4889 // Collect the shifts / magic values from each element. 4890 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4891 return SDValue(); 4892 4893 SDValue MagicFactor, Factor, Shift, ShiftMask; 4894 if (VT.isVector()) { 4895 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4896 Factor = DAG.getBuildVector(VT, dl, Factors); 4897 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4898 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4899 } else { 4900 MagicFactor = MagicFactors[0]; 4901 Factor = Factors[0]; 4902 Shift = Shifts[0]; 4903 ShiftMask = ShiftMasks[0]; 4904 } 4905 4906 // Multiply the numerator (operand 0) by the magic value. 4907 // FIXME: We should support doing a MUL in a wider type. 4908 SDValue Q; 4909 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4910 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4911 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4912 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4913 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4914 SDValue LoHi = 4915 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4916 Q = SDValue(LoHi.getNode(), 1); 4917 } else 4918 return SDValue(); // No mulhs or equivalent. 4919 Created.push_back(Q.getNode()); 4920 4921 // (Optionally) Add/subtract the numerator using Factor. 4922 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4923 Created.push_back(Factor.getNode()); 4924 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4925 Created.push_back(Q.getNode()); 4926 4927 // Shift right algebraic by shift value. 4928 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4929 Created.push_back(Q.getNode()); 4930 4931 // Extract the sign bit, mask it and add it to the quotient. 4932 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4933 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4934 Created.push_back(T.getNode()); 4935 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4936 Created.push_back(T.getNode()); 4937 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4938 } 4939 4940 /// Given an ISD::UDIV node expressing a divide by constant, 4941 /// return a DAG expression to select that will generate the same value by 4942 /// multiplying by a magic number. 4943 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4944 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4945 bool IsAfterLegalization, 4946 SmallVectorImpl<SDNode *> &Created) const { 4947 SDLoc dl(N); 4948 EVT VT = N->getValueType(0); 4949 EVT SVT = VT.getScalarType(); 4950 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4951 EVT ShSVT = ShVT.getScalarType(); 4952 unsigned EltBits = VT.getScalarSizeInBits(); 4953 4954 // Check to see if we can do this. 4955 // FIXME: We should be more aggressive here. 4956 if (!isTypeLegal(VT)) 4957 return SDValue(); 4958 4959 bool UseNPQ = false; 4960 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4961 4962 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4963 if (C->isNullValue()) 4964 return false; 4965 // FIXME: We should use a narrower constant when the upper 4966 // bits are known to be zero. 4967 APInt Divisor = C->getAPIntValue(); 4968 APInt::mu magics = Divisor.magicu(); 4969 unsigned PreShift = 0, PostShift = 0; 4970 4971 // If the divisor is even, we can avoid using the expensive fixup by 4972 // shifting the divided value upfront. 4973 if (magics.a != 0 && !Divisor[0]) { 4974 PreShift = Divisor.countTrailingZeros(); 4975 // Get magic number for the shifted divisor. 4976 magics = Divisor.lshr(PreShift).magicu(PreShift); 4977 assert(magics.a == 0 && "Should use cheap fixup now"); 4978 } 4979 4980 APInt Magic = magics.m; 4981 4982 unsigned SelNPQ; 4983 if (magics.a == 0 || Divisor.isOneValue()) { 4984 assert(magics.s < Divisor.getBitWidth() && 4985 "We shouldn't generate an undefined shift!"); 4986 PostShift = magics.s; 4987 SelNPQ = false; 4988 } else { 4989 PostShift = magics.s - 1; 4990 SelNPQ = true; 4991 } 4992 4993 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4994 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4995 NPQFactors.push_back( 4996 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4997 : APInt::getNullValue(EltBits), 4998 dl, SVT)); 4999 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5000 UseNPQ |= SelNPQ; 5001 return true; 5002 }; 5003 5004 SDValue N0 = N->getOperand(0); 5005 SDValue N1 = N->getOperand(1); 5006 5007 // Collect the shifts/magic values from each element. 5008 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5009 return SDValue(); 5010 5011 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5012 if (VT.isVector()) { 5013 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5014 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5015 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5016 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5017 } else { 5018 PreShift = PreShifts[0]; 5019 MagicFactor = MagicFactors[0]; 5020 PostShift = PostShifts[0]; 5021 } 5022 5023 SDValue Q = N0; 5024 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5025 Created.push_back(Q.getNode()); 5026 5027 // FIXME: We should support doing a MUL in a wider type. 5028 auto GetMULHU = [&](SDValue X, SDValue Y) { 5029 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5030 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5031 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5032 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5033 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5034 SDValue LoHi = 5035 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5036 return SDValue(LoHi.getNode(), 1); 5037 } 5038 return SDValue(); // No mulhu or equivalent 5039 }; 5040 5041 // Multiply the numerator (operand 0) by the magic value. 5042 Q = GetMULHU(Q, MagicFactor); 5043 if (!Q) 5044 return SDValue(); 5045 5046 Created.push_back(Q.getNode()); 5047 5048 if (UseNPQ) { 5049 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5050 Created.push_back(NPQ.getNode()); 5051 5052 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5053 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5054 if (VT.isVector()) 5055 NPQ = GetMULHU(NPQ, NPQFactor); 5056 else 5057 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5058 5059 Created.push_back(NPQ.getNode()); 5060 5061 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5062 Created.push_back(Q.getNode()); 5063 } 5064 5065 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5066 Created.push_back(Q.getNode()); 5067 5068 SDValue One = DAG.getConstant(1, dl, VT); 5069 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5070 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5071 } 5072 5073 /// If all values in Values that *don't* match the predicate are same 'splat' 5074 /// value, then replace all values with that splat value. 5075 /// Else, if AlternativeReplacement was provided, then replace all values that 5076 /// do match predicate with AlternativeReplacement value. 5077 static void 5078 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5079 std::function<bool(SDValue)> Predicate, 5080 SDValue AlternativeReplacement = SDValue()) { 5081 SDValue Replacement; 5082 // Is there a value for which the Predicate does *NOT* match? What is it? 5083 auto SplatValue = llvm::find_if_not(Values, Predicate); 5084 if (SplatValue != Values.end()) { 5085 // Does Values consist only of SplatValue's and values matching Predicate? 5086 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5087 return Value == *SplatValue || Predicate(Value); 5088 })) // Then we shall replace values matching predicate with SplatValue. 5089 Replacement = *SplatValue; 5090 } 5091 if (!Replacement) { 5092 // Oops, we did not find the "baseline" splat value. 5093 if (!AlternativeReplacement) 5094 return; // Nothing to do. 5095 // Let's replace with provided value then. 5096 Replacement = AlternativeReplacement; 5097 } 5098 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5099 } 5100 5101 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5102 /// where the divisor is constant and the comparison target is zero, 5103 /// return a DAG expression that will generate the same comparison result 5104 /// using only multiplications, additions and shifts/rotations. 5105 /// Ref: "Hacker's Delight" 10-17. 5106 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5107 SDValue CompTargetNode, 5108 ISD::CondCode Cond, 5109 DAGCombinerInfo &DCI, 5110 const SDLoc &DL) const { 5111 SmallVector<SDNode *, 5> Built; 5112 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5113 DCI, DL, Built)) { 5114 for (SDNode *N : Built) 5115 DCI.AddToWorklist(N); 5116 return Folded; 5117 } 5118 5119 return SDValue(); 5120 } 5121 5122 SDValue 5123 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5124 SDValue CompTargetNode, ISD::CondCode Cond, 5125 DAGCombinerInfo &DCI, const SDLoc &DL, 5126 SmallVectorImpl<SDNode *> &Created) const { 5127 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5128 // - D must be constant, with D = D0 * 2^K where D0 is odd 5129 // - P is the multiplicative inverse of D0 modulo 2^W 5130 // - Q = floor(((2^W) - 1) / D) 5131 // where W is the width of the common type of N and D. 5132 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5133 "Only applicable for (in)equality comparisons."); 5134 5135 SelectionDAG &DAG = DCI.DAG; 5136 5137 EVT VT = REMNode.getValueType(); 5138 EVT SVT = VT.getScalarType(); 5139 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5140 EVT ShSVT = ShVT.getScalarType(); 5141 5142 // If MUL is unavailable, we cannot proceed in any case. 5143 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5144 return SDValue(); 5145 5146 bool ComparingWithAllZeros = true; 5147 bool AllComparisonsWithNonZerosAreTautological = true; 5148 bool HadTautologicalLanes = false; 5149 bool AllLanesAreTautological = true; 5150 bool HadEvenDivisor = false; 5151 bool AllDivisorsArePowerOfTwo = true; 5152 bool HadTautologicalInvertedLanes = false; 5153 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5154 5155 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5156 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5157 if (CDiv->isNullValue()) 5158 return false; 5159 5160 const APInt &D = CDiv->getAPIntValue(); 5161 const APInt &Cmp = CCmp->getAPIntValue(); 5162 5163 ComparingWithAllZeros &= Cmp.isNullValue(); 5164 5165 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5166 // if C2 is not less than C1, the comparison is always false. 5167 // But we will only be able to produce the comparison that will give the 5168 // opposive tautological answer. So this lane would need to be fixed up. 5169 bool TautologicalInvertedLane = D.ule(Cmp); 5170 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5171 5172 // If all lanes are tautological (either all divisors are ones, or divisor 5173 // is not greater than the constant we are comparing with), 5174 // we will prefer to avoid the fold. 5175 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5176 HadTautologicalLanes |= TautologicalLane; 5177 AllLanesAreTautological &= TautologicalLane; 5178 5179 // If we are comparing with non-zero, we need'll need to subtract said 5180 // comparison value from the LHS. But there is no point in doing that if 5181 // every lane where we are comparing with non-zero is tautological.. 5182 if (!Cmp.isNullValue()) 5183 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5184 5185 // Decompose D into D0 * 2^K 5186 unsigned K = D.countTrailingZeros(); 5187 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5188 APInt D0 = D.lshr(K); 5189 5190 // D is even if it has trailing zeros. 5191 HadEvenDivisor |= (K != 0); 5192 // D is a power-of-two if D0 is one. 5193 // If all divisors are power-of-two, we will prefer to avoid the fold. 5194 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5195 5196 // P = inv(D0, 2^W) 5197 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5198 unsigned W = D.getBitWidth(); 5199 APInt P = D0.zext(W + 1) 5200 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5201 .trunc(W); 5202 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5203 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5204 5205 // Q = floor((2^W - 1) u/ D) 5206 // R = ((2^W - 1) u% D) 5207 APInt Q, R; 5208 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5209 5210 // If we are comparing with zero, then that comparison constant is okay, 5211 // else it may need to be one less than that. 5212 if (Cmp.ugt(R)) 5213 Q -= 1; 5214 5215 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5216 "We are expecting that K is always less than all-ones for ShSVT"); 5217 5218 // If the lane is tautological the result can be constant-folded. 5219 if (TautologicalLane) { 5220 // Set P and K amount to a bogus values so we can try to splat them. 5221 P = 0; 5222 K = -1; 5223 // And ensure that comparison constant is tautological, 5224 // it will always compare true/false. 5225 Q = -1; 5226 } 5227 5228 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5229 KAmts.push_back( 5230 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5231 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5232 return true; 5233 }; 5234 5235 SDValue N = REMNode.getOperand(0); 5236 SDValue D = REMNode.getOperand(1); 5237 5238 // Collect the values from each element. 5239 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5240 return SDValue(); 5241 5242 // If all lanes are tautological, the result can be constant-folded. 5243 if (AllLanesAreTautological) 5244 return SDValue(); 5245 5246 // If this is a urem by a powers-of-two, avoid the fold since it can be 5247 // best implemented as a bit test. 5248 if (AllDivisorsArePowerOfTwo) 5249 return SDValue(); 5250 5251 SDValue PVal, KVal, QVal; 5252 if (VT.isVector()) { 5253 if (HadTautologicalLanes) { 5254 // Try to turn PAmts into a splat, since we don't care about the values 5255 // that are currently '0'. If we can't, just keep '0'`s. 5256 turnVectorIntoSplatVector(PAmts, isNullConstant); 5257 // Try to turn KAmts into a splat, since we don't care about the values 5258 // that are currently '-1'. If we can't, change them to '0'`s. 5259 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5260 DAG.getConstant(0, DL, ShSVT)); 5261 } 5262 5263 PVal = DAG.getBuildVector(VT, DL, PAmts); 5264 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5265 QVal = DAG.getBuildVector(VT, DL, QAmts); 5266 } else { 5267 PVal = PAmts[0]; 5268 KVal = KAmts[0]; 5269 QVal = QAmts[0]; 5270 } 5271 5272 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5273 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5274 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5275 assert(CompTargetNode.getValueType() == N.getValueType() && 5276 "Expecting that the types on LHS and RHS of comparisons match."); 5277 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5278 } 5279 5280 // (mul N, P) 5281 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5282 Created.push_back(Op0.getNode()); 5283 5284 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5285 // divisors as a performance improvement, since rotating by 0 is a no-op. 5286 if (HadEvenDivisor) { 5287 // We need ROTR to do this. 5288 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5289 return SDValue(); 5290 SDNodeFlags Flags; 5291 Flags.setExact(true); 5292 // UREM: (rotr (mul N, P), K) 5293 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5294 Created.push_back(Op0.getNode()); 5295 } 5296 5297 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5298 SDValue NewCC = 5299 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5300 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5301 if (!HadTautologicalInvertedLanes) 5302 return NewCC; 5303 5304 // If any lanes previously compared always-false, the NewCC will give 5305 // always-true result for them, so we need to fixup those lanes. 5306 // Or the other way around for inequality predicate. 5307 assert(VT.isVector() && "Can/should only get here for vectors."); 5308 Created.push_back(NewCC.getNode()); 5309 5310 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5311 // if C2 is not less than C1, the comparison is always false. 5312 // But we have produced the comparison that will give the 5313 // opposive tautological answer. So these lanes would need to be fixed up. 5314 SDValue TautologicalInvertedChannels = 5315 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5316 Created.push_back(TautologicalInvertedChannels.getNode()); 5317 5318 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5319 // If we have a vector select, let's replace the comparison results in the 5320 // affected lanes with the correct tautological result. 5321 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5322 DL, SETCCVT, SETCCVT); 5323 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5324 Replacement, NewCC); 5325 } 5326 5327 // Else, we can just invert the comparison result in the appropriate lanes. 5328 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5329 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5330 TautologicalInvertedChannels); 5331 5332 return SDValue(); // Don't know how to lower. 5333 } 5334 5335 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5336 /// where the divisor is constant and the comparison target is zero, 5337 /// return a DAG expression that will generate the same comparison result 5338 /// using only multiplications, additions and shifts/rotations. 5339 /// Ref: "Hacker's Delight" 10-17. 5340 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5341 SDValue CompTargetNode, 5342 ISD::CondCode Cond, 5343 DAGCombinerInfo &DCI, 5344 const SDLoc &DL) const { 5345 SmallVector<SDNode *, 7> Built; 5346 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5347 DCI, DL, Built)) { 5348 assert(Built.size() <= 7 && "Max size prediction failed."); 5349 for (SDNode *N : Built) 5350 DCI.AddToWorklist(N); 5351 return Folded; 5352 } 5353 5354 return SDValue(); 5355 } 5356 5357 SDValue 5358 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5359 SDValue CompTargetNode, ISD::CondCode Cond, 5360 DAGCombinerInfo &DCI, const SDLoc &DL, 5361 SmallVectorImpl<SDNode *> &Created) const { 5362 // Fold: 5363 // (seteq/ne (srem N, D), 0) 5364 // To: 5365 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5366 // 5367 // - D must be constant, with D = D0 * 2^K where D0 is odd 5368 // - P is the multiplicative inverse of D0 modulo 2^W 5369 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5370 // - Q = floor((2 * A) / (2^K)) 5371 // where W is the width of the common type of N and D. 5372 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5373 "Only applicable for (in)equality comparisons."); 5374 5375 SelectionDAG &DAG = DCI.DAG; 5376 5377 EVT VT = REMNode.getValueType(); 5378 EVT SVT = VT.getScalarType(); 5379 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5380 EVT ShSVT = ShVT.getScalarType(); 5381 5382 // If MUL is unavailable, we cannot proceed in any case. 5383 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5384 return SDValue(); 5385 5386 // TODO: Could support comparing with non-zero too. 5387 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5388 if (!CompTarget || !CompTarget->isNullValue()) 5389 return SDValue(); 5390 5391 bool HadIntMinDivisor = false; 5392 bool HadOneDivisor = false; 5393 bool AllDivisorsAreOnes = true; 5394 bool HadEvenDivisor = false; 5395 bool NeedToApplyOffset = false; 5396 bool AllDivisorsArePowerOfTwo = true; 5397 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5398 5399 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5400 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5401 if (C->isNullValue()) 5402 return false; 5403 5404 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5405 5406 // WARNING: this fold is only valid for positive divisors! 5407 APInt D = C->getAPIntValue(); 5408 if (D.isNegative()) 5409 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5410 5411 HadIntMinDivisor |= D.isMinSignedValue(); 5412 5413 // If all divisors are ones, we will prefer to avoid the fold. 5414 HadOneDivisor |= D.isOneValue(); 5415 AllDivisorsAreOnes &= D.isOneValue(); 5416 5417 // Decompose D into D0 * 2^K 5418 unsigned K = D.countTrailingZeros(); 5419 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5420 APInt D0 = D.lshr(K); 5421 5422 if (!D.isMinSignedValue()) { 5423 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5424 // we don't care about this lane in this fold, we'll special-handle it. 5425 HadEvenDivisor |= (K != 0); 5426 } 5427 5428 // D is a power-of-two if D0 is one. This includes INT_MIN. 5429 // If all divisors are power-of-two, we will prefer to avoid the fold. 5430 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5431 5432 // P = inv(D0, 2^W) 5433 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5434 unsigned W = D.getBitWidth(); 5435 APInt P = D0.zext(W + 1) 5436 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5437 .trunc(W); 5438 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5439 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5440 5441 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5442 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5443 A.clearLowBits(K); 5444 5445 if (!D.isMinSignedValue()) { 5446 // If divisor INT_MIN, then we don't care about this lane in this fold, 5447 // we'll special-handle it. 5448 NeedToApplyOffset |= A != 0; 5449 } 5450 5451 // Q = floor((2 * A) / (2^K)) 5452 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5453 5454 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5455 "We are expecting that A is always less than all-ones for SVT"); 5456 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5457 "We are expecting that K is always less than all-ones for ShSVT"); 5458 5459 // If the divisor is 1 the result can be constant-folded. Likewise, we 5460 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5461 if (D.isOneValue()) { 5462 // Set P, A and K to a bogus values so we can try to splat them. 5463 P = 0; 5464 A = -1; 5465 K = -1; 5466 5467 // x ?% 1 == 0 <--> true <--> x u<= -1 5468 Q = -1; 5469 } 5470 5471 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5472 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5473 KAmts.push_back( 5474 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5475 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5476 return true; 5477 }; 5478 5479 SDValue N = REMNode.getOperand(0); 5480 SDValue D = REMNode.getOperand(1); 5481 5482 // Collect the values from each element. 5483 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5484 return SDValue(); 5485 5486 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5487 if (AllDivisorsAreOnes) 5488 return SDValue(); 5489 5490 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5491 // since it can be best implemented as a bit test. 5492 if (AllDivisorsArePowerOfTwo) 5493 return SDValue(); 5494 5495 SDValue PVal, AVal, KVal, QVal; 5496 if (VT.isVector()) { 5497 if (HadOneDivisor) { 5498 // Try to turn PAmts into a splat, since we don't care about the values 5499 // that are currently '0'. If we can't, just keep '0'`s. 5500 turnVectorIntoSplatVector(PAmts, isNullConstant); 5501 // Try to turn AAmts into a splat, since we don't care about the 5502 // values that are currently '-1'. If we can't, change them to '0'`s. 5503 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5504 DAG.getConstant(0, DL, SVT)); 5505 // Try to turn KAmts into a splat, since we don't care about the values 5506 // that are currently '-1'. If we can't, change them to '0'`s. 5507 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5508 DAG.getConstant(0, DL, ShSVT)); 5509 } 5510 5511 PVal = DAG.getBuildVector(VT, DL, PAmts); 5512 AVal = DAG.getBuildVector(VT, DL, AAmts); 5513 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5514 QVal = DAG.getBuildVector(VT, DL, QAmts); 5515 } else { 5516 PVal = PAmts[0]; 5517 AVal = AAmts[0]; 5518 KVal = KAmts[0]; 5519 QVal = QAmts[0]; 5520 } 5521 5522 // (mul N, P) 5523 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5524 Created.push_back(Op0.getNode()); 5525 5526 if (NeedToApplyOffset) { 5527 // We need ADD to do this. 5528 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5529 return SDValue(); 5530 5531 // (add (mul N, P), A) 5532 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5533 Created.push_back(Op0.getNode()); 5534 } 5535 5536 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5537 // divisors as a performance improvement, since rotating by 0 is a no-op. 5538 if (HadEvenDivisor) { 5539 // We need ROTR to do this. 5540 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5541 return SDValue(); 5542 SDNodeFlags Flags; 5543 Flags.setExact(true); 5544 // SREM: (rotr (add (mul N, P), A), K) 5545 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5546 Created.push_back(Op0.getNode()); 5547 } 5548 5549 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5550 SDValue Fold = 5551 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5552 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5553 5554 // If we didn't have lanes with INT_MIN divisor, then we're done. 5555 if (!HadIntMinDivisor) 5556 return Fold; 5557 5558 // That fold is only valid for positive divisors. Which effectively means, 5559 // it is invalid for INT_MIN divisors. So if we have such a lane, 5560 // we must fix-up results for said lanes. 5561 assert(VT.isVector() && "Can/should only get here for vectors."); 5562 5563 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5564 !isOperationLegalOrCustom(ISD::AND, VT) || 5565 !isOperationLegalOrCustom(Cond, VT) || 5566 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5567 return SDValue(); 5568 5569 Created.push_back(Fold.getNode()); 5570 5571 SDValue IntMin = DAG.getConstant( 5572 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5573 SDValue IntMax = DAG.getConstant( 5574 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5575 SDValue Zero = 5576 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5577 5578 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5579 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5580 Created.push_back(DivisorIsIntMin.getNode()); 5581 5582 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5583 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5584 Created.push_back(Masked.getNode()); 5585 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5586 Created.push_back(MaskedIsZero.getNode()); 5587 5588 // To produce final result we need to blend 2 vectors: 'SetCC' and 5589 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5590 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5591 // constant-folded, select can get lowered to a shuffle with constant mask. 5592 SDValue Blended = 5593 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5594 5595 return Blended; 5596 } 5597 5598 bool TargetLowering:: 5599 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5600 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5601 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5602 "be a constant integer"); 5603 return true; 5604 } 5605 5606 return false; 5607 } 5608 5609 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5610 bool LegalOps, bool OptForSize, 5611 NegatibleCost &Cost, 5612 unsigned Depth) const { 5613 // fneg is removable even if it has multiple uses. 5614 if (Op.getOpcode() == ISD::FNEG) { 5615 Cost = NegatibleCost::Cheaper; 5616 return Op.getOperand(0); 5617 } 5618 5619 // Don't recurse exponentially. 5620 if (Depth > SelectionDAG::MaxRecursionDepth) 5621 return SDValue(); 5622 5623 // Pre-increment recursion depth for use in recursive calls. 5624 ++Depth; 5625 const SDNodeFlags Flags = Op->getFlags(); 5626 const TargetOptions &Options = DAG.getTarget().Options; 5627 EVT VT = Op.getValueType(); 5628 unsigned Opcode = Op.getOpcode(); 5629 5630 // Don't allow anything with multiple uses unless we know it is free. 5631 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5632 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5633 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5634 if (!IsFreeExtend) 5635 return SDValue(); 5636 } 5637 5638 SDLoc DL(Op); 5639 5640 switch (Opcode) { 5641 case ISD::ConstantFP: { 5642 // Don't invert constant FP values after legalization unless the target says 5643 // the negated constant is legal. 5644 bool IsOpLegal = 5645 isOperationLegal(ISD::ConstantFP, VT) || 5646 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5647 OptForSize); 5648 5649 if (LegalOps && !IsOpLegal) 5650 break; 5651 5652 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5653 V.changeSign(); 5654 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5655 5656 // If we already have the use of the negated floating constant, it is free 5657 // to negate it even it has multiple uses. 5658 if (!Op.hasOneUse() && CFP.use_empty()) 5659 break; 5660 Cost = NegatibleCost::Neutral; 5661 return CFP; 5662 } 5663 case ISD::BUILD_VECTOR: { 5664 // Only permit BUILD_VECTOR of constants. 5665 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5666 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5667 })) 5668 break; 5669 5670 bool IsOpLegal = 5671 (isOperationLegal(ISD::ConstantFP, VT) && 5672 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5673 llvm::all_of(Op->op_values(), [&](SDValue N) { 5674 return N.isUndef() || 5675 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5676 OptForSize); 5677 }); 5678 5679 if (LegalOps && !IsOpLegal) 5680 break; 5681 5682 SmallVector<SDValue, 4> Ops; 5683 for (SDValue C : Op->op_values()) { 5684 if (C.isUndef()) { 5685 Ops.push_back(C); 5686 continue; 5687 } 5688 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5689 V.changeSign(); 5690 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5691 } 5692 Cost = NegatibleCost::Neutral; 5693 return DAG.getBuildVector(VT, DL, Ops); 5694 } 5695 case ISD::FADD: { 5696 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5697 break; 5698 5699 // After operation legalization, it might not be legal to create new FSUBs. 5700 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5701 break; 5702 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5703 5704 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5705 NegatibleCost CostX = NegatibleCost::Expensive; 5706 SDValue NegX = 5707 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5708 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5709 NegatibleCost CostY = NegatibleCost::Expensive; 5710 SDValue NegY = 5711 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5712 5713 // Negate the X if its cost is less or equal than Y. 5714 if (NegX && (CostX <= CostY)) { 5715 Cost = CostX; 5716 return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5717 } 5718 5719 // Negate the Y if it is not expensive. 5720 if (NegY) { 5721 Cost = CostY; 5722 return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5723 } 5724 break; 5725 } 5726 case ISD::FSUB: { 5727 // We can't turn -(A-B) into B-A when we honor signed zeros. 5728 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5729 break; 5730 5731 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5732 // fold (fneg (fsub 0, Y)) -> Y 5733 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5734 if (C->isZero()) { 5735 Cost = NegatibleCost::Cheaper; 5736 return Y; 5737 } 5738 5739 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5740 Cost = NegatibleCost::Neutral; 5741 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5742 } 5743 case ISD::FMUL: 5744 case ISD::FDIV: { 5745 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5746 5747 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5748 NegatibleCost CostX = NegatibleCost::Expensive; 5749 SDValue NegX = 5750 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5751 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5752 NegatibleCost CostY = NegatibleCost::Expensive; 5753 SDValue NegY = 5754 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5755 5756 // Negate the X if its cost is less or equal than Y. 5757 if (NegX && (CostX <= CostY)) { 5758 Cost = CostX; 5759 return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 5760 } 5761 5762 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5763 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5764 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5765 break; 5766 5767 // Negate the Y if it is not expensive. 5768 if (NegY) { 5769 Cost = CostY; 5770 return DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 5771 } 5772 break; 5773 } 5774 case ISD::FMA: 5775 case ISD::FMAD: { 5776 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5777 break; 5778 5779 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5780 NegatibleCost CostZ = NegatibleCost::Expensive; 5781 SDValue NegZ = 5782 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 5783 // Give up if fail to negate the Z. 5784 if (!NegZ) 5785 break; 5786 5787 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5788 NegatibleCost CostX = NegatibleCost::Expensive; 5789 SDValue NegX = 5790 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5791 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5792 NegatibleCost CostY = NegatibleCost::Expensive; 5793 SDValue NegY = 5794 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5795 5796 // Negate the X if its cost is less or equal than Y. 5797 if (NegX && (CostX <= CostY)) { 5798 Cost = std::min(CostX, CostZ); 5799 return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5800 } 5801 5802 // Negate the Y if it is not expensive. 5803 if (NegY) { 5804 Cost = std::min(CostY, CostZ); 5805 return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5806 } 5807 break; 5808 } 5809 5810 case ISD::FP_EXTEND: 5811 case ISD::FSIN: 5812 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5813 OptForSize, Cost, Depth)) 5814 return DAG.getNode(Opcode, DL, VT, NegV); 5815 break; 5816 case ISD::FP_ROUND: 5817 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5818 OptForSize, Cost, Depth)) 5819 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 5820 break; 5821 } 5822 5823 return SDValue(); 5824 } 5825 5826 //===----------------------------------------------------------------------===// 5827 // Legalization Utilities 5828 //===----------------------------------------------------------------------===// 5829 5830 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5831 SDValue LHS, SDValue RHS, 5832 SmallVectorImpl<SDValue> &Result, 5833 EVT HiLoVT, SelectionDAG &DAG, 5834 MulExpansionKind Kind, SDValue LL, 5835 SDValue LH, SDValue RL, SDValue RH) const { 5836 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5837 Opcode == ISD::SMUL_LOHI); 5838 5839 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5840 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5841 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5842 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5843 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5844 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5845 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5846 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5847 5848 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5849 return false; 5850 5851 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5852 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5853 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5854 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5855 5856 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5857 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5858 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5859 5860 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5861 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5862 bool Signed) -> bool { 5863 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5864 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5865 Hi = SDValue(Lo.getNode(), 1); 5866 return true; 5867 } 5868 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5869 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5870 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5871 return true; 5872 } 5873 return false; 5874 }; 5875 5876 SDValue Lo, Hi; 5877 5878 if (!LL.getNode() && !RL.getNode() && 5879 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5880 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5881 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5882 } 5883 5884 if (!LL.getNode()) 5885 return false; 5886 5887 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5888 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5889 DAG.MaskedValueIsZero(RHS, HighMask)) { 5890 // The inputs are both zero-extended. 5891 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5892 Result.push_back(Lo); 5893 Result.push_back(Hi); 5894 if (Opcode != ISD::MUL) { 5895 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5896 Result.push_back(Zero); 5897 Result.push_back(Zero); 5898 } 5899 return true; 5900 } 5901 } 5902 5903 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5904 RHSSB > InnerBitSize) { 5905 // The input values are both sign-extended. 5906 // TODO non-MUL case? 5907 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5908 Result.push_back(Lo); 5909 Result.push_back(Hi); 5910 return true; 5911 } 5912 } 5913 5914 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5915 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5916 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5917 // FIXME getShiftAmountTy does not always return a sensible result when VT 5918 // is an illegal type, and so the type may be too small to fit the shift 5919 // amount. Override it with i32. The shift will have to be legalized. 5920 ShiftAmountTy = MVT::i32; 5921 } 5922 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5923 5924 if (!LH.getNode() && !RH.getNode() && 5925 isOperationLegalOrCustom(ISD::SRL, VT) && 5926 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5927 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5928 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5929 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5930 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5931 } 5932 5933 if (!LH.getNode()) 5934 return false; 5935 5936 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5937 return false; 5938 5939 Result.push_back(Lo); 5940 5941 if (Opcode == ISD::MUL) { 5942 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5943 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5944 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5945 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5946 Result.push_back(Hi); 5947 return true; 5948 } 5949 5950 // Compute the full width result. 5951 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5952 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5953 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5954 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5955 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5956 }; 5957 5958 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5959 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5960 return false; 5961 5962 // This is effectively the add part of a multiply-add of half-sized operands, 5963 // so it cannot overflow. 5964 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5965 5966 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5967 return false; 5968 5969 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5970 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5971 5972 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5973 isOperationLegalOrCustom(ISD::ADDE, VT)); 5974 if (UseGlue) 5975 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5976 Merge(Lo, Hi)); 5977 else 5978 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5979 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5980 5981 SDValue Carry = Next.getValue(1); 5982 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5983 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5984 5985 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5986 return false; 5987 5988 if (UseGlue) 5989 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5990 Carry); 5991 else 5992 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5993 Zero, Carry); 5994 5995 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5996 5997 if (Opcode == ISD::SMUL_LOHI) { 5998 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5999 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6000 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6001 6002 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6003 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6004 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6005 } 6006 6007 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6008 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6009 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6010 return true; 6011 } 6012 6013 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6014 SelectionDAG &DAG, MulExpansionKind Kind, 6015 SDValue LL, SDValue LH, SDValue RL, 6016 SDValue RH) const { 6017 SmallVector<SDValue, 2> Result; 6018 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6019 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6020 DAG, Kind, LL, LH, RL, RH); 6021 if (Ok) { 6022 assert(Result.size() == 2); 6023 Lo = Result[0]; 6024 Hi = Result[1]; 6025 } 6026 return Ok; 6027 } 6028 6029 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6030 SelectionDAG &DAG) const { 6031 EVT VT = Node->getValueType(0); 6032 6033 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6034 !isOperationLegalOrCustom(ISD::SRL, VT) || 6035 !isOperationLegalOrCustom(ISD::SUB, VT) || 6036 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6037 return false; 6038 6039 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6040 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6041 SDValue X = Node->getOperand(0); 6042 SDValue Y = Node->getOperand(1); 6043 SDValue Z = Node->getOperand(2); 6044 6045 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6046 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6047 SDLoc DL(SDValue(Node, 0)); 6048 6049 EVT ShVT = Z.getValueType(); 6050 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6051 SDValue ShAmt, InvShAmt; 6052 if (isPowerOf2_32(EltSizeInBits)) { 6053 // Z % BW -> Z & (BW - 1) 6054 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6055 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6056 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6057 } else { 6058 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6059 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6060 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6061 } 6062 6063 SDValue One = DAG.getConstant(1, DL, ShVT); 6064 SDValue ShX, ShY; 6065 if (IsFSHL) { 6066 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6067 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6068 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6069 } else { 6070 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6071 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6072 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6073 } 6074 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6075 return true; 6076 } 6077 6078 // TODO: Merge with expandFunnelShift. 6079 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6080 SelectionDAG &DAG) const { 6081 EVT VT = Node->getValueType(0); 6082 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6083 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6084 SDValue Op0 = Node->getOperand(0); 6085 SDValue Op1 = Node->getOperand(1); 6086 SDLoc DL(SDValue(Node, 0)); 6087 6088 EVT ShVT = Op1.getValueType(); 6089 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6090 6091 // If a rotate in the other direction is legal, use it. 6092 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6093 if (isOperationLegal(RevRot, VT)) { 6094 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6095 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6096 return true; 6097 } 6098 6099 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6100 !isOperationLegalOrCustom(ISD::SRL, VT) || 6101 !isOperationLegalOrCustom(ISD::SUB, VT) || 6102 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6103 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6104 return false; 6105 6106 // Otherwise, 6107 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6108 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6109 // 6110 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6111 "Expecting the type bitwidth to be a power of 2"); 6112 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6113 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6114 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6115 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6116 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6117 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6118 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6119 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6120 return true; 6121 } 6122 6123 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6124 SelectionDAG &DAG) const { 6125 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6126 SDValue Src = Node->getOperand(OpNo); 6127 EVT SrcVT = Src.getValueType(); 6128 EVT DstVT = Node->getValueType(0); 6129 SDLoc dl(SDValue(Node, 0)); 6130 6131 // FIXME: Only f32 to i64 conversions are supported. 6132 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6133 return false; 6134 6135 if (Node->isStrictFPOpcode()) 6136 // When a NaN is converted to an integer a trap is allowed. We can't 6137 // use this expansion here because it would eliminate that trap. Other 6138 // traps are also allowed and cannot be eliminated. See 6139 // IEEE 754-2008 sec 5.8. 6140 return false; 6141 6142 // Expand f32 -> i64 conversion 6143 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6144 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6145 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6146 EVT IntVT = SrcVT.changeTypeToInteger(); 6147 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6148 6149 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6150 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6151 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6152 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6153 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6154 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6155 6156 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6157 6158 SDValue ExponentBits = DAG.getNode( 6159 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6160 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6161 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6162 6163 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6164 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6165 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6166 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6167 6168 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6169 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6170 DAG.getConstant(0x00800000, dl, IntVT)); 6171 6172 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6173 6174 R = DAG.getSelectCC( 6175 dl, Exponent, ExponentLoBit, 6176 DAG.getNode(ISD::SHL, dl, DstVT, R, 6177 DAG.getZExtOrTrunc( 6178 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6179 dl, IntShVT)), 6180 DAG.getNode(ISD::SRL, dl, DstVT, R, 6181 DAG.getZExtOrTrunc( 6182 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6183 dl, IntShVT)), 6184 ISD::SETGT); 6185 6186 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6187 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6188 6189 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6190 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6191 return true; 6192 } 6193 6194 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6195 SDValue &Chain, 6196 SelectionDAG &DAG) const { 6197 SDLoc dl(SDValue(Node, 0)); 6198 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6199 SDValue Src = Node->getOperand(OpNo); 6200 6201 EVT SrcVT = Src.getValueType(); 6202 EVT DstVT = Node->getValueType(0); 6203 EVT SetCCVT = 6204 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6205 EVT DstSetCCVT = 6206 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6207 6208 // Only expand vector types if we have the appropriate vector bit operations. 6209 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6210 ISD::FP_TO_SINT; 6211 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6212 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6213 return false; 6214 6215 // If the maximum float value is smaller then the signed integer range, 6216 // the destination signmask can't be represented by the float, so we can 6217 // just use FP_TO_SINT directly. 6218 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6219 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6220 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6221 if (APFloat::opOverflow & 6222 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6223 if (Node->isStrictFPOpcode()) { 6224 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6225 { Node->getOperand(0), Src }); 6226 Chain = Result.getValue(1); 6227 } else 6228 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6229 return true; 6230 } 6231 6232 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6233 SDValue Sel; 6234 6235 if (Node->isStrictFPOpcode()) { 6236 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6237 Node->getOperand(0), /*IsSignaling*/ true); 6238 Chain = Sel.getValue(1); 6239 } else { 6240 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6241 } 6242 6243 bool Strict = Node->isStrictFPOpcode() || 6244 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6245 6246 if (Strict) { 6247 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6248 // signmask then offset (the result of which should be fully representable). 6249 // Sel = Src < 0x8000000000000000 6250 // FltOfs = select Sel, 0, 0x8000000000000000 6251 // IntOfs = select Sel, 0, 0x8000000000000000 6252 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6253 6254 // TODO: Should any fast-math-flags be set for the FSUB? 6255 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6256 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6257 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6258 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6259 DAG.getConstant(0, dl, DstVT), 6260 DAG.getConstant(SignMask, dl, DstVT)); 6261 SDValue SInt; 6262 if (Node->isStrictFPOpcode()) { 6263 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6264 { Chain, Src, FltOfs }); 6265 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6266 { Val.getValue(1), Val }); 6267 Chain = SInt.getValue(1); 6268 } else { 6269 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6270 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6271 } 6272 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6273 } else { 6274 // Expand based on maximum range of FP_TO_SINT: 6275 // True = fp_to_sint(Src) 6276 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6277 // Result = select (Src < 0x8000000000000000), True, False 6278 6279 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6280 // TODO: Should any fast-math-flags be set for the FSUB? 6281 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6282 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6283 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6284 DAG.getConstant(SignMask, dl, DstVT)); 6285 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6286 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6287 } 6288 return true; 6289 } 6290 6291 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6292 SDValue &Chain, 6293 SelectionDAG &DAG) const { 6294 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6295 SDValue Src = Node->getOperand(OpNo); 6296 EVT SrcVT = Src.getValueType(); 6297 EVT DstVT = Node->getValueType(0); 6298 6299 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6300 return false; 6301 6302 // Only expand vector types if we have the appropriate vector bit operations. 6303 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6304 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6305 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6306 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6307 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6308 return false; 6309 6310 SDLoc dl(SDValue(Node, 0)); 6311 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6312 6313 // Implementation of unsigned i64 to f64 following the algorithm in 6314 // __floatundidf in compiler_rt. This implementation has the advantage 6315 // of performing rounding correctly, both in the default rounding mode 6316 // and in all alternate rounding modes. 6317 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6318 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6319 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6320 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6321 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6322 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6323 6324 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6325 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6326 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6327 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6328 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6329 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6330 if (Node->isStrictFPOpcode()) { 6331 SDValue HiSub = 6332 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6333 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6334 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6335 {HiSub.getValue(1), LoFlt, HiSub}); 6336 Chain = Result.getValue(1); 6337 } else { 6338 SDValue HiSub = 6339 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6340 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6341 } 6342 return true; 6343 } 6344 6345 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6346 SelectionDAG &DAG) const { 6347 SDLoc dl(Node); 6348 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6349 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6350 EVT VT = Node->getValueType(0); 6351 if (isOperationLegalOrCustom(NewOp, VT)) { 6352 SDValue Quiet0 = Node->getOperand(0); 6353 SDValue Quiet1 = Node->getOperand(1); 6354 6355 if (!Node->getFlags().hasNoNaNs()) { 6356 // Insert canonicalizes if it's possible we need to quiet to get correct 6357 // sNaN behavior. 6358 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6359 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6360 Node->getFlags()); 6361 } 6362 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6363 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6364 Node->getFlags()); 6365 } 6366 } 6367 6368 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6369 } 6370 6371 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6372 // instead if there are no NaNs. 6373 if (Node->getFlags().hasNoNaNs()) { 6374 unsigned IEEE2018Op = 6375 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6376 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6377 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6378 Node->getOperand(1), Node->getFlags()); 6379 } 6380 } 6381 6382 // If none of the above worked, but there are no NaNs, then expand to 6383 // a compare/select sequence. This is required for correctness since 6384 // InstCombine might have canonicalized a fcmp+select sequence to a 6385 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6386 // expansion to libcall, we might introduce a link-time dependency 6387 // on libm into a file that originally did not have one. 6388 if (Node->getFlags().hasNoNaNs()) { 6389 ISD::CondCode Pred = 6390 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6391 SDValue Op1 = Node->getOperand(0); 6392 SDValue Op2 = Node->getOperand(1); 6393 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6394 // Copy FMF flags, but always set the no-signed-zeros flag 6395 // as this is implied by the FMINNUM/FMAXNUM semantics. 6396 SDNodeFlags Flags = Node->getFlags(); 6397 Flags.setNoSignedZeros(true); 6398 SelCC->setFlags(Flags); 6399 return SelCC; 6400 } 6401 6402 return SDValue(); 6403 } 6404 6405 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6406 SelectionDAG &DAG) const { 6407 SDLoc dl(Node); 6408 EVT VT = Node->getValueType(0); 6409 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6410 SDValue Op = Node->getOperand(0); 6411 unsigned Len = VT.getScalarSizeInBits(); 6412 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6413 6414 // TODO: Add support for irregular type lengths. 6415 if (!(Len <= 128 && Len % 8 == 0)) 6416 return false; 6417 6418 // Only expand vector types if we have the appropriate vector bit operations. 6419 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6420 !isOperationLegalOrCustom(ISD::SUB, VT) || 6421 !isOperationLegalOrCustom(ISD::SRL, VT) || 6422 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6423 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6424 return false; 6425 6426 // This is the "best" algorithm from 6427 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6428 SDValue Mask55 = 6429 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6430 SDValue Mask33 = 6431 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6432 SDValue Mask0F = 6433 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6434 SDValue Mask01 = 6435 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6436 6437 // v = v - ((v >> 1) & 0x55555555...) 6438 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6439 DAG.getNode(ISD::AND, dl, VT, 6440 DAG.getNode(ISD::SRL, dl, VT, Op, 6441 DAG.getConstant(1, dl, ShVT)), 6442 Mask55)); 6443 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6444 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6445 DAG.getNode(ISD::AND, dl, VT, 6446 DAG.getNode(ISD::SRL, dl, VT, Op, 6447 DAG.getConstant(2, dl, ShVT)), 6448 Mask33)); 6449 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6450 Op = DAG.getNode(ISD::AND, dl, VT, 6451 DAG.getNode(ISD::ADD, dl, VT, Op, 6452 DAG.getNode(ISD::SRL, dl, VT, Op, 6453 DAG.getConstant(4, dl, ShVT))), 6454 Mask0F); 6455 // v = (v * 0x01010101...) >> (Len - 8) 6456 if (Len > 8) 6457 Op = 6458 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6459 DAG.getConstant(Len - 8, dl, ShVT)); 6460 6461 Result = Op; 6462 return true; 6463 } 6464 6465 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6466 SelectionDAG &DAG) const { 6467 SDLoc dl(Node); 6468 EVT VT = Node->getValueType(0); 6469 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6470 SDValue Op = Node->getOperand(0); 6471 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6472 6473 // If the non-ZERO_UNDEF version is supported we can use that instead. 6474 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6475 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6476 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6477 return true; 6478 } 6479 6480 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6481 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6482 EVT SetCCVT = 6483 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6484 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6485 SDValue Zero = DAG.getConstant(0, dl, VT); 6486 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6487 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6488 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6489 return true; 6490 } 6491 6492 // Only expand vector types if we have the appropriate vector bit operations. 6493 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6494 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6495 !isOperationLegalOrCustom(ISD::SRL, VT) || 6496 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6497 return false; 6498 6499 // for now, we do this: 6500 // x = x | (x >> 1); 6501 // x = x | (x >> 2); 6502 // ... 6503 // x = x | (x >>16); 6504 // x = x | (x >>32); // for 64-bit input 6505 // return popcount(~x); 6506 // 6507 // Ref: "Hacker's Delight" by Henry Warren 6508 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6509 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6510 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6511 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6512 } 6513 Op = DAG.getNOT(dl, Op, VT); 6514 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6515 return true; 6516 } 6517 6518 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6519 SelectionDAG &DAG) const { 6520 SDLoc dl(Node); 6521 EVT VT = Node->getValueType(0); 6522 SDValue Op = Node->getOperand(0); 6523 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6524 6525 // If the non-ZERO_UNDEF version is supported we can use that instead. 6526 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6527 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6528 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6529 return true; 6530 } 6531 6532 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6533 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6534 EVT SetCCVT = 6535 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6536 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6537 SDValue Zero = DAG.getConstant(0, dl, VT); 6538 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6539 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6540 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6541 return true; 6542 } 6543 6544 // Only expand vector types if we have the appropriate vector bit operations. 6545 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6546 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6547 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6548 !isOperationLegalOrCustom(ISD::SUB, VT) || 6549 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6550 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6551 return false; 6552 6553 // for now, we use: { return popcount(~x & (x - 1)); } 6554 // unless the target has ctlz but not ctpop, in which case we use: 6555 // { return 32 - nlz(~x & (x-1)); } 6556 // Ref: "Hacker's Delight" by Henry Warren 6557 SDValue Tmp = DAG.getNode( 6558 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6559 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6560 6561 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6562 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6563 Result = 6564 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6565 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6566 return true; 6567 } 6568 6569 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6570 return true; 6571 } 6572 6573 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6574 SelectionDAG &DAG) const { 6575 SDLoc dl(N); 6576 EVT VT = N->getValueType(0); 6577 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6578 SDValue Op = N->getOperand(0); 6579 6580 // Only expand vector types if we have the appropriate vector operations. 6581 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6582 !isOperationLegalOrCustom(ISD::ADD, VT) || 6583 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6584 return false; 6585 6586 SDValue Shift = 6587 DAG.getNode(ISD::SRA, dl, VT, Op, 6588 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6589 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6590 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6591 return true; 6592 } 6593 6594 std::pair<SDValue, SDValue> 6595 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6596 SelectionDAG &DAG) const { 6597 SDLoc SL(LD); 6598 SDValue Chain = LD->getChain(); 6599 SDValue BasePTR = LD->getBasePtr(); 6600 EVT SrcVT = LD->getMemoryVT(); 6601 EVT DstVT = LD->getValueType(0); 6602 ISD::LoadExtType ExtType = LD->getExtensionType(); 6603 6604 unsigned NumElem = SrcVT.getVectorNumElements(); 6605 6606 EVT SrcEltVT = SrcVT.getScalarType(); 6607 EVT DstEltVT = DstVT.getScalarType(); 6608 6609 // A vector must always be stored in memory as-is, i.e. without any padding 6610 // between the elements, since various code depend on it, e.g. in the 6611 // handling of a bitcast of a vector type to int, which may be done with a 6612 // vector store followed by an integer load. A vector that does not have 6613 // elements that are byte-sized must therefore be stored as an integer 6614 // built out of the extracted vector elements. 6615 if (!SrcEltVT.isByteSized()) { 6616 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6617 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6618 6619 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6620 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6621 6622 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6623 SDValue SrcEltBitMask = DAG.getConstant( 6624 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6625 6626 // Load the whole vector and avoid masking off the top bits as it makes 6627 // the codegen worse. 6628 SDValue Load = 6629 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6630 LD->getPointerInfo(), SrcIntVT, LD->getAlignment(), 6631 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6632 6633 SmallVector<SDValue, 8> Vals; 6634 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6635 unsigned ShiftIntoIdx = 6636 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6637 SDValue ShiftAmount = 6638 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6639 LoadVT, SL, /*LegalTypes=*/false); 6640 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6641 SDValue Elt = 6642 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6643 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6644 6645 if (ExtType != ISD::NON_EXTLOAD) { 6646 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6647 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6648 } 6649 6650 Vals.push_back(Scalar); 6651 } 6652 6653 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6654 return std::make_pair(Value, Load.getValue(1)); 6655 } 6656 6657 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6658 assert(SrcEltVT.isByteSized()); 6659 6660 SmallVector<SDValue, 8> Vals; 6661 SmallVector<SDValue, 8> LoadChains; 6662 6663 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6664 SDValue ScalarLoad = 6665 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6666 LD->getPointerInfo().getWithOffset(Idx * Stride), 6667 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6668 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6669 6670 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6671 6672 Vals.push_back(ScalarLoad.getValue(0)); 6673 LoadChains.push_back(ScalarLoad.getValue(1)); 6674 } 6675 6676 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6677 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6678 6679 return std::make_pair(Value, NewChain); 6680 } 6681 6682 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6683 SelectionDAG &DAG) const { 6684 SDLoc SL(ST); 6685 6686 SDValue Chain = ST->getChain(); 6687 SDValue BasePtr = ST->getBasePtr(); 6688 SDValue Value = ST->getValue(); 6689 EVT StVT = ST->getMemoryVT(); 6690 6691 // The type of the data we want to save 6692 EVT RegVT = Value.getValueType(); 6693 EVT RegSclVT = RegVT.getScalarType(); 6694 6695 // The type of data as saved in memory. 6696 EVT MemSclVT = StVT.getScalarType(); 6697 6698 unsigned NumElem = StVT.getVectorNumElements(); 6699 6700 // A vector must always be stored in memory as-is, i.e. without any padding 6701 // between the elements, since various code depend on it, e.g. in the 6702 // handling of a bitcast of a vector type to int, which may be done with a 6703 // vector store followed by an integer load. A vector that does not have 6704 // elements that are byte-sized must therefore be stored as an integer 6705 // built out of the extracted vector elements. 6706 if (!MemSclVT.isByteSized()) { 6707 unsigned NumBits = StVT.getSizeInBits(); 6708 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6709 6710 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6711 6712 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6713 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6714 DAG.getVectorIdxConstant(Idx, SL)); 6715 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6716 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6717 unsigned ShiftIntoIdx = 6718 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6719 SDValue ShiftAmount = 6720 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6721 SDValue ShiftedElt = 6722 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6723 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6724 } 6725 6726 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6727 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6728 ST->getAAInfo()); 6729 } 6730 6731 // Store Stride in bytes 6732 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6733 assert(Stride && "Zero stride!"); 6734 // Extract each of the elements from the original vector and save them into 6735 // memory individually. 6736 SmallVector<SDValue, 8> Stores; 6737 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6738 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6739 DAG.getVectorIdxConstant(Idx, SL)); 6740 6741 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6742 6743 // This scalar TruncStore may be illegal, but we legalize it later. 6744 SDValue Store = DAG.getTruncStore( 6745 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6746 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6747 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6748 6749 Stores.push_back(Store); 6750 } 6751 6752 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6753 } 6754 6755 std::pair<SDValue, SDValue> 6756 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6757 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6758 "unaligned indexed loads not implemented!"); 6759 SDValue Chain = LD->getChain(); 6760 SDValue Ptr = LD->getBasePtr(); 6761 EVT VT = LD->getValueType(0); 6762 EVT LoadedVT = LD->getMemoryVT(); 6763 SDLoc dl(LD); 6764 auto &MF = DAG.getMachineFunction(); 6765 6766 if (VT.isFloatingPoint() || VT.isVector()) { 6767 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6768 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6769 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6770 LoadedVT.isVector()) { 6771 // Scalarize the load and let the individual components be handled. 6772 return scalarizeVectorLoad(LD, DAG); 6773 } 6774 6775 // Expand to a (misaligned) integer load of the same size, 6776 // then bitconvert to floating point or vector. 6777 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6778 LD->getMemOperand()); 6779 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6780 if (LoadedVT != VT) 6781 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6782 ISD::ANY_EXTEND, dl, VT, Result); 6783 6784 return std::make_pair(Result, newLoad.getValue(1)); 6785 } 6786 6787 // Copy the value to a (aligned) stack slot using (unaligned) integer 6788 // loads and stores, then do a (aligned) load from the stack slot. 6789 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6790 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6791 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6792 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6793 6794 // Make sure the stack slot is also aligned for the register type. 6795 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6796 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6797 SmallVector<SDValue, 8> Stores; 6798 SDValue StackPtr = StackBase; 6799 unsigned Offset = 0; 6800 6801 EVT PtrVT = Ptr.getValueType(); 6802 EVT StackPtrVT = StackPtr.getValueType(); 6803 6804 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6805 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6806 6807 // Do all but one copies using the full register width. 6808 for (unsigned i = 1; i < NumRegs; i++) { 6809 // Load one integer register's worth from the original location. 6810 SDValue Load = DAG.getLoad( 6811 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6812 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6813 LD->getAAInfo()); 6814 // Follow the load with a store to the stack slot. Remember the store. 6815 Stores.push_back(DAG.getStore( 6816 Load.getValue(1), dl, Load, StackPtr, 6817 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6818 // Increment the pointers. 6819 Offset += RegBytes; 6820 6821 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6822 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6823 } 6824 6825 // The last copy may be partial. Do an extending load. 6826 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6827 8 * (LoadedBytes - Offset)); 6828 SDValue Load = 6829 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6830 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6831 MinAlign(LD->getAlignment(), Offset), 6832 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6833 // Follow the load with a store to the stack slot. Remember the store. 6834 // On big-endian machines this requires a truncating store to ensure 6835 // that the bits end up in the right place. 6836 Stores.push_back(DAG.getTruncStore( 6837 Load.getValue(1), dl, Load, StackPtr, 6838 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6839 6840 // The order of the stores doesn't matter - say it with a TokenFactor. 6841 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6842 6843 // Finally, perform the original load only redirected to the stack slot. 6844 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6845 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6846 LoadedVT); 6847 6848 // Callers expect a MERGE_VALUES node. 6849 return std::make_pair(Load, TF); 6850 } 6851 6852 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6853 "Unaligned load of unsupported type."); 6854 6855 // Compute the new VT that is half the size of the old one. This is an 6856 // integer MVT. 6857 unsigned NumBits = LoadedVT.getSizeInBits(); 6858 EVT NewLoadedVT; 6859 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6860 NumBits >>= 1; 6861 6862 unsigned Alignment = LD->getAlignment(); 6863 unsigned IncrementSize = NumBits / 8; 6864 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6865 6866 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6867 if (HiExtType == ISD::NON_EXTLOAD) 6868 HiExtType = ISD::ZEXTLOAD; 6869 6870 // Load the value in two parts 6871 SDValue Lo, Hi; 6872 if (DAG.getDataLayout().isLittleEndian()) { 6873 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6874 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6875 LD->getAAInfo()); 6876 6877 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6878 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6879 LD->getPointerInfo().getWithOffset(IncrementSize), 6880 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6881 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6882 } else { 6883 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6884 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6885 LD->getAAInfo()); 6886 6887 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6888 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6889 LD->getPointerInfo().getWithOffset(IncrementSize), 6890 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6891 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6892 } 6893 6894 // aggregate the two parts 6895 SDValue ShiftAmount = 6896 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6897 DAG.getDataLayout())); 6898 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6899 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6900 6901 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6902 Hi.getValue(1)); 6903 6904 return std::make_pair(Result, TF); 6905 } 6906 6907 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6908 SelectionDAG &DAG) const { 6909 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6910 "unaligned indexed stores not implemented!"); 6911 SDValue Chain = ST->getChain(); 6912 SDValue Ptr = ST->getBasePtr(); 6913 SDValue Val = ST->getValue(); 6914 EVT VT = Val.getValueType(); 6915 int Alignment = ST->getAlignment(); 6916 auto &MF = DAG.getMachineFunction(); 6917 EVT StoreMemVT = ST->getMemoryVT(); 6918 6919 SDLoc dl(ST); 6920 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6921 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6922 if (isTypeLegal(intVT)) { 6923 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6924 StoreMemVT.isVector()) { 6925 // Scalarize the store and let the individual components be handled. 6926 SDValue Result = scalarizeVectorStore(ST, DAG); 6927 return Result; 6928 } 6929 // Expand to a bitconvert of the value to the integer type of the 6930 // same size, then a (misaligned) int store. 6931 // FIXME: Does not handle truncating floating point stores! 6932 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6933 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6934 Alignment, ST->getMemOperand()->getFlags()); 6935 return Result; 6936 } 6937 // Do a (aligned) store to a stack slot, then copy from the stack slot 6938 // to the final destination using (unaligned) integer loads and stores. 6939 MVT RegVT = getRegisterType( 6940 *DAG.getContext(), 6941 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6942 EVT PtrVT = Ptr.getValueType(); 6943 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6944 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6945 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6946 6947 // Make sure the stack slot is also aligned for the register type. 6948 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6949 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6950 6951 // Perform the original store, only redirected to the stack slot. 6952 SDValue Store = DAG.getTruncStore( 6953 Chain, dl, Val, StackPtr, 6954 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6955 6956 EVT StackPtrVT = StackPtr.getValueType(); 6957 6958 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6959 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6960 SmallVector<SDValue, 8> Stores; 6961 unsigned Offset = 0; 6962 6963 // Do all but one copies using the full register width. 6964 for (unsigned i = 1; i < NumRegs; i++) { 6965 // Load one integer register's worth from the stack slot. 6966 SDValue Load = DAG.getLoad( 6967 RegVT, dl, Store, StackPtr, 6968 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6969 // Store it to the final location. Remember the store. 6970 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6971 ST->getPointerInfo().getWithOffset(Offset), 6972 MinAlign(ST->getAlignment(), Offset), 6973 ST->getMemOperand()->getFlags())); 6974 // Increment the pointers. 6975 Offset += RegBytes; 6976 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6977 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6978 } 6979 6980 // The last store may be partial. Do a truncating store. On big-endian 6981 // machines this requires an extending load from the stack slot to ensure 6982 // that the bits are in the right place. 6983 EVT LoadMemVT = 6984 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6985 6986 // Load from the stack slot. 6987 SDValue Load = DAG.getExtLoad( 6988 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6989 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6990 6991 Stores.push_back( 6992 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6993 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6994 MinAlign(ST->getAlignment(), Offset), 6995 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6996 // The order of the stores doesn't matter - say it with a TokenFactor. 6997 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6998 return Result; 6999 } 7000 7001 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7002 "Unaligned store of unknown type."); 7003 // Get the half-size VT 7004 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7005 int NumBits = NewStoredVT.getSizeInBits(); 7006 int IncrementSize = NumBits / 8; 7007 7008 // Divide the stored value in two parts. 7009 SDValue ShiftAmount = DAG.getConstant( 7010 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7011 SDValue Lo = Val; 7012 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7013 7014 // Store the two parts 7015 SDValue Store1, Store2; 7016 Store1 = DAG.getTruncStore(Chain, dl, 7017 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7018 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7019 ST->getMemOperand()->getFlags()); 7020 7021 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7022 Alignment = MinAlign(Alignment, IncrementSize); 7023 Store2 = DAG.getTruncStore( 7024 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7025 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7026 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7027 7028 SDValue Result = 7029 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7030 return Result; 7031 } 7032 7033 SDValue 7034 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7035 const SDLoc &DL, EVT DataVT, 7036 SelectionDAG &DAG, 7037 bool IsCompressedMemory) const { 7038 SDValue Increment; 7039 EVT AddrVT = Addr.getValueType(); 7040 EVT MaskVT = Mask.getValueType(); 7041 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7042 "Incompatible types of Data and Mask"); 7043 if (IsCompressedMemory) { 7044 // Incrementing the pointer according to number of '1's in the mask. 7045 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7046 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7047 if (MaskIntVT.getSizeInBits() < 32) { 7048 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7049 MaskIntVT = MVT::i32; 7050 } 7051 7052 // Count '1's with POPCNT. 7053 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7054 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7055 // Scale is an element size in bytes. 7056 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7057 AddrVT); 7058 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7059 } else 7060 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7061 7062 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7063 } 7064 7065 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7066 SDValue Idx, 7067 EVT VecVT, 7068 const SDLoc &dl) { 7069 if (isa<ConstantSDNode>(Idx)) 7070 return Idx; 7071 7072 EVT IdxVT = Idx.getValueType(); 7073 unsigned NElts = VecVT.getVectorNumElements(); 7074 if (isPowerOf2_32(NElts)) { 7075 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7076 Log2_32(NElts)); 7077 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7078 DAG.getConstant(Imm, dl, IdxVT)); 7079 } 7080 7081 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7082 DAG.getConstant(NElts - 1, dl, IdxVT)); 7083 } 7084 7085 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7086 SDValue VecPtr, EVT VecVT, 7087 SDValue Index) const { 7088 SDLoc dl(Index); 7089 // Make sure the index type is big enough to compute in. 7090 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7091 7092 EVT EltVT = VecVT.getVectorElementType(); 7093 7094 // Calculate the element offset and add it to the pointer. 7095 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7096 assert(EltSize * 8 == EltVT.getSizeInBits() && 7097 "Converting bits to bytes lost precision"); 7098 7099 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7100 7101 EVT IdxVT = Index.getValueType(); 7102 7103 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7104 DAG.getConstant(EltSize, dl, IdxVT)); 7105 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7106 } 7107 7108 //===----------------------------------------------------------------------===// 7109 // Implementation of Emulated TLS Model 7110 //===----------------------------------------------------------------------===// 7111 7112 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7113 SelectionDAG &DAG) const { 7114 // Access to address of TLS varialbe xyz is lowered to a function call: 7115 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7116 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7117 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7118 SDLoc dl(GA); 7119 7120 ArgListTy Args; 7121 ArgListEntry Entry; 7122 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7123 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7124 StringRef EmuTlsVarName(NameString); 7125 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7126 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7127 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7128 Entry.Ty = VoidPtrType; 7129 Args.push_back(Entry); 7130 7131 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7132 7133 TargetLowering::CallLoweringInfo CLI(DAG); 7134 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7135 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7136 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7137 7138 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7139 // At last for X86 targets, maybe good for other targets too? 7140 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7141 MFI.setAdjustsStack(true); // Is this only for X86 target? 7142 MFI.setHasCalls(true); 7143 7144 assert((GA->getOffset() == 0) && 7145 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7146 return CallResult.first; 7147 } 7148 7149 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7150 SelectionDAG &DAG) const { 7151 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7152 if (!isCtlzFast()) 7153 return SDValue(); 7154 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7155 SDLoc dl(Op); 7156 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7157 if (C->isNullValue() && CC == ISD::SETEQ) { 7158 EVT VT = Op.getOperand(0).getValueType(); 7159 SDValue Zext = Op.getOperand(0); 7160 if (VT.bitsLT(MVT::i32)) { 7161 VT = MVT::i32; 7162 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7163 } 7164 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7165 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7166 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7167 DAG.getConstant(Log2b, dl, MVT::i32)); 7168 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7169 } 7170 } 7171 return SDValue(); 7172 } 7173 7174 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7175 unsigned Opcode = Node->getOpcode(); 7176 SDValue LHS = Node->getOperand(0); 7177 SDValue RHS = Node->getOperand(1); 7178 EVT VT = LHS.getValueType(); 7179 SDLoc dl(Node); 7180 7181 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7182 assert(VT.isInteger() && "Expected operands to be integers"); 7183 7184 // usub.sat(a, b) -> umax(a, b) - b 7185 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7186 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7187 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7188 } 7189 7190 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7191 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7192 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7193 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7194 } 7195 7196 unsigned OverflowOp; 7197 switch (Opcode) { 7198 case ISD::SADDSAT: 7199 OverflowOp = ISD::SADDO; 7200 break; 7201 case ISD::UADDSAT: 7202 OverflowOp = ISD::UADDO; 7203 break; 7204 case ISD::SSUBSAT: 7205 OverflowOp = ISD::SSUBO; 7206 break; 7207 case ISD::USUBSAT: 7208 OverflowOp = ISD::USUBO; 7209 break; 7210 default: 7211 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7212 "addition or subtraction node."); 7213 } 7214 7215 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7216 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7217 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7218 LHS, RHS); 7219 SDValue SumDiff = Result.getValue(0); 7220 SDValue Overflow = Result.getValue(1); 7221 SDValue Zero = DAG.getConstant(0, dl, VT); 7222 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7223 7224 if (Opcode == ISD::UADDSAT) { 7225 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7226 // (LHS + RHS) | OverflowMask 7227 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7228 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7229 } 7230 // Overflow ? 0xffff.... : (LHS + RHS) 7231 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7232 } else if (Opcode == ISD::USUBSAT) { 7233 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7234 // (LHS - RHS) & ~OverflowMask 7235 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7236 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7237 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7238 } 7239 // Overflow ? 0 : (LHS - RHS) 7240 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7241 } else { 7242 // SatMax -> Overflow && SumDiff < 0 7243 // SatMin -> Overflow && SumDiff >= 0 7244 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7245 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7246 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7247 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7248 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7249 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7250 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7251 } 7252 } 7253 7254 SDValue 7255 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7256 assert((Node->getOpcode() == ISD::SMULFIX || 7257 Node->getOpcode() == ISD::UMULFIX || 7258 Node->getOpcode() == ISD::SMULFIXSAT || 7259 Node->getOpcode() == ISD::UMULFIXSAT) && 7260 "Expected a fixed point multiplication opcode"); 7261 7262 SDLoc dl(Node); 7263 SDValue LHS = Node->getOperand(0); 7264 SDValue RHS = Node->getOperand(1); 7265 EVT VT = LHS.getValueType(); 7266 unsigned Scale = Node->getConstantOperandVal(2); 7267 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7268 Node->getOpcode() == ISD::UMULFIXSAT); 7269 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7270 Node->getOpcode() == ISD::SMULFIXSAT); 7271 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7272 unsigned VTSize = VT.getScalarSizeInBits(); 7273 7274 if (!Scale) { 7275 // [us]mul.fix(a, b, 0) -> mul(a, b) 7276 if (!Saturating) { 7277 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7278 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7279 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7280 SDValue Result = 7281 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7282 SDValue Product = Result.getValue(0); 7283 SDValue Overflow = Result.getValue(1); 7284 SDValue Zero = DAG.getConstant(0, dl, VT); 7285 7286 APInt MinVal = APInt::getSignedMinValue(VTSize); 7287 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7288 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7289 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7290 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7291 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7292 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7293 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7294 SDValue Result = 7295 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7296 SDValue Product = Result.getValue(0); 7297 SDValue Overflow = Result.getValue(1); 7298 7299 APInt MaxVal = APInt::getMaxValue(VTSize); 7300 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7301 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7302 } 7303 } 7304 7305 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7306 "Expected scale to be less than the number of bits if signed or at " 7307 "most the number of bits if unsigned."); 7308 assert(LHS.getValueType() == RHS.getValueType() && 7309 "Expected both operands to be the same type"); 7310 7311 // Get the upper and lower bits of the result. 7312 SDValue Lo, Hi; 7313 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7314 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7315 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7316 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7317 Lo = Result.getValue(0); 7318 Hi = Result.getValue(1); 7319 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7320 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7321 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7322 } else if (VT.isVector()) { 7323 return SDValue(); 7324 } else { 7325 report_fatal_error("Unable to expand fixed point multiplication."); 7326 } 7327 7328 if (Scale == VTSize) 7329 // Result is just the top half since we'd be shifting by the width of the 7330 // operand. Overflow impossible so this works for both UMULFIX and 7331 // UMULFIXSAT. 7332 return Hi; 7333 7334 // The result will need to be shifted right by the scale since both operands 7335 // are scaled. The result is given to us in 2 halves, so we only want part of 7336 // both in the result. 7337 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7338 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7339 DAG.getConstant(Scale, dl, ShiftTy)); 7340 if (!Saturating) 7341 return Result; 7342 7343 if (!Signed) { 7344 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7345 // widened multiplication) aren't all zeroes. 7346 7347 // Saturate to max if ((Hi >> Scale) != 0), 7348 // which is the same as if (Hi > ((1 << Scale) - 1)) 7349 APInt MaxVal = APInt::getMaxValue(VTSize); 7350 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7351 dl, VT); 7352 Result = DAG.getSelectCC(dl, Hi, LowMask, 7353 DAG.getConstant(MaxVal, dl, VT), Result, 7354 ISD::SETUGT); 7355 7356 return Result; 7357 } 7358 7359 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7360 // widened multiplication) aren't all ones or all zeroes. 7361 7362 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7363 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7364 7365 if (Scale == 0) { 7366 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7367 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7368 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7369 // Saturated to SatMin if wide product is negative, and SatMax if wide 7370 // product is positive ... 7371 SDValue Zero = DAG.getConstant(0, dl, VT); 7372 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7373 ISD::SETLT); 7374 // ... but only if we overflowed. 7375 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7376 } 7377 7378 // We handled Scale==0 above so all the bits to examine is in Hi. 7379 7380 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7381 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7382 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7383 dl, VT); 7384 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7385 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7386 // which is the same as if (HI < (-1 << (Scale - 1)) 7387 SDValue HighMask = 7388 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7389 dl, VT); 7390 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7391 return Result; 7392 } 7393 7394 SDValue 7395 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7396 SDValue LHS, SDValue RHS, 7397 unsigned Scale, SelectionDAG &DAG) const { 7398 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7399 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7400 "Expected a fixed point division opcode"); 7401 7402 EVT VT = LHS.getValueType(); 7403 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7404 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7405 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7406 7407 // If there is enough room in the type to upscale the LHS or downscale the 7408 // RHS before the division, we can perform it in this type without having to 7409 // resize. For signed operations, the LHS headroom is the number of 7410 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7411 // The headroom for the RHS is the number of trailing zeroes. 7412 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7413 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7414 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7415 7416 // For signed saturating operations, we need to be able to detect true integer 7417 // division overflow; that is, when you have MIN / -EPS. However, this 7418 // is undefined behavior and if we emit divisions that could take such 7419 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7420 // example). 7421 // Avoid this by requiring an extra bit so that we never get this case. 7422 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7423 // signed saturating division, we need to emit a whopping 32-bit division. 7424 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7425 return SDValue(); 7426 7427 unsigned LHSShift = std::min(LHSLead, Scale); 7428 unsigned RHSShift = Scale - LHSShift; 7429 7430 // At this point, we know that if we shift the LHS up by LHSShift and the 7431 // RHS down by RHSShift, we can emit a regular division with a final scaling 7432 // factor of Scale. 7433 7434 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7435 if (LHSShift) 7436 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7437 DAG.getConstant(LHSShift, dl, ShiftTy)); 7438 if (RHSShift) 7439 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7440 DAG.getConstant(RHSShift, dl, ShiftTy)); 7441 7442 SDValue Quot; 7443 if (Signed) { 7444 // For signed operations, if the resulting quotient is negative and the 7445 // remainder is nonzero, subtract 1 from the quotient to round towards 7446 // negative infinity. 7447 SDValue Rem; 7448 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7449 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7450 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7451 if (isTypeLegal(VT) && 7452 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7453 Quot = DAG.getNode(ISD::SDIVREM, dl, 7454 DAG.getVTList(VT, VT), 7455 LHS, RHS); 7456 Rem = Quot.getValue(1); 7457 Quot = Quot.getValue(0); 7458 } else { 7459 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7460 LHS, RHS); 7461 Rem = DAG.getNode(ISD::SREM, dl, VT, 7462 LHS, RHS); 7463 } 7464 SDValue Zero = DAG.getConstant(0, dl, VT); 7465 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7466 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7467 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7468 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7469 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7470 DAG.getConstant(1, dl, VT)); 7471 Quot = DAG.getSelect(dl, VT, 7472 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7473 Sub1, Quot); 7474 } else 7475 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7476 LHS, RHS); 7477 7478 return Quot; 7479 } 7480 7481 void TargetLowering::expandUADDSUBO( 7482 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7483 SDLoc dl(Node); 7484 SDValue LHS = Node->getOperand(0); 7485 SDValue RHS = Node->getOperand(1); 7486 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7487 7488 // If ADD/SUBCARRY is legal, use that instead. 7489 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7490 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7491 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7492 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7493 { LHS, RHS, CarryIn }); 7494 Result = SDValue(NodeCarry.getNode(), 0); 7495 Overflow = SDValue(NodeCarry.getNode(), 1); 7496 return; 7497 } 7498 7499 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7500 LHS.getValueType(), LHS, RHS); 7501 7502 EVT ResultType = Node->getValueType(1); 7503 EVT SetCCType = getSetCCResultType( 7504 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7505 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7506 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7507 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7508 } 7509 7510 void TargetLowering::expandSADDSUBO( 7511 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7512 SDLoc dl(Node); 7513 SDValue LHS = Node->getOperand(0); 7514 SDValue RHS = Node->getOperand(1); 7515 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7516 7517 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7518 LHS.getValueType(), LHS, RHS); 7519 7520 EVT ResultType = Node->getValueType(1); 7521 EVT OType = getSetCCResultType( 7522 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7523 7524 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7525 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7526 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7527 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7528 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7529 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7530 return; 7531 } 7532 7533 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7534 7535 // For an addition, the result should be less than one of the operands (LHS) 7536 // if and only if the other operand (RHS) is negative, otherwise there will 7537 // be overflow. 7538 // For a subtraction, the result should be less than one of the operands 7539 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7540 // otherwise there will be overflow. 7541 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7542 SDValue ConditionRHS = 7543 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7544 7545 Overflow = DAG.getBoolExtOrTrunc( 7546 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7547 ResultType, ResultType); 7548 } 7549 7550 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7551 SDValue &Overflow, SelectionDAG &DAG) const { 7552 SDLoc dl(Node); 7553 EVT VT = Node->getValueType(0); 7554 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7555 SDValue LHS = Node->getOperand(0); 7556 SDValue RHS = Node->getOperand(1); 7557 bool isSigned = Node->getOpcode() == ISD::SMULO; 7558 7559 // For power-of-two multiplications we can use a simpler shift expansion. 7560 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7561 const APInt &C = RHSC->getAPIntValue(); 7562 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7563 if (C.isPowerOf2()) { 7564 // smulo(x, signed_min) is same as umulo(x, signed_min). 7565 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7566 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7567 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7568 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7569 Overflow = DAG.getSetCC(dl, SetCCVT, 7570 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7571 dl, VT, Result, ShiftAmt), 7572 LHS, ISD::SETNE); 7573 return true; 7574 } 7575 } 7576 7577 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7578 if (VT.isVector()) 7579 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7580 VT.getVectorNumElements()); 7581 7582 SDValue BottomHalf; 7583 SDValue TopHalf; 7584 static const unsigned Ops[2][3] = 7585 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7586 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7587 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7588 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7589 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7590 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7591 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7592 RHS); 7593 TopHalf = BottomHalf.getValue(1); 7594 } else if (isTypeLegal(WideVT)) { 7595 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7596 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7597 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7598 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7599 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7600 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7601 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7602 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7603 } else { 7604 if (VT.isVector()) 7605 return false; 7606 7607 // We can fall back to a libcall with an illegal type for the MUL if we 7608 // have a libcall big enough. 7609 // Also, we can fall back to a division in some cases, but that's a big 7610 // performance hit in the general case. 7611 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7612 if (WideVT == MVT::i16) 7613 LC = RTLIB::MUL_I16; 7614 else if (WideVT == MVT::i32) 7615 LC = RTLIB::MUL_I32; 7616 else if (WideVT == MVT::i64) 7617 LC = RTLIB::MUL_I64; 7618 else if (WideVT == MVT::i128) 7619 LC = RTLIB::MUL_I128; 7620 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7621 7622 SDValue HiLHS; 7623 SDValue HiRHS; 7624 if (isSigned) { 7625 // The high part is obtained by SRA'ing all but one of the bits of low 7626 // part. 7627 unsigned LoSize = VT.getSizeInBits(); 7628 HiLHS = 7629 DAG.getNode(ISD::SRA, dl, VT, LHS, 7630 DAG.getConstant(LoSize - 1, dl, 7631 getPointerTy(DAG.getDataLayout()))); 7632 HiRHS = 7633 DAG.getNode(ISD::SRA, dl, VT, RHS, 7634 DAG.getConstant(LoSize - 1, dl, 7635 getPointerTy(DAG.getDataLayout()))); 7636 } else { 7637 HiLHS = DAG.getConstant(0, dl, VT); 7638 HiRHS = DAG.getConstant(0, dl, VT); 7639 } 7640 7641 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7642 // pre-lowered to the correct types. This all depends upon WideVT not 7643 // being a legal type for the architecture and thus has to be split to 7644 // two arguments. 7645 SDValue Ret; 7646 TargetLowering::MakeLibCallOptions CallOptions; 7647 CallOptions.setSExt(isSigned); 7648 CallOptions.setIsPostTypeLegalization(true); 7649 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7650 // Halves of WideVT are packed into registers in different order 7651 // depending on platform endianness. This is usually handled by 7652 // the C calling convention, but we can't defer to it in 7653 // the legalizer. 7654 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7655 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7656 } else { 7657 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7658 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7659 } 7660 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7661 "Ret value is a collection of constituent nodes holding result."); 7662 if (DAG.getDataLayout().isLittleEndian()) { 7663 // Same as above. 7664 BottomHalf = Ret.getOperand(0); 7665 TopHalf = Ret.getOperand(1); 7666 } else { 7667 BottomHalf = Ret.getOperand(1); 7668 TopHalf = Ret.getOperand(0); 7669 } 7670 } 7671 7672 Result = BottomHalf; 7673 if (isSigned) { 7674 SDValue ShiftAmt = DAG.getConstant( 7675 VT.getScalarSizeInBits() - 1, dl, 7676 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7677 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7678 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7679 } else { 7680 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7681 DAG.getConstant(0, dl, VT), ISD::SETNE); 7682 } 7683 7684 // Truncate the result if SetCC returns a larger type than needed. 7685 EVT RType = Node->getValueType(1); 7686 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7687 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7688 7689 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7690 "Unexpected result type for S/UMULO legalization"); 7691 return true; 7692 } 7693 7694 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7695 SDLoc dl(Node); 7696 bool NoNaN = Node->getFlags().hasNoNaNs(); 7697 unsigned BaseOpcode = 0; 7698 switch (Node->getOpcode()) { 7699 default: llvm_unreachable("Expected VECREDUCE opcode"); 7700 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7701 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7702 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7703 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7704 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7705 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7706 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7707 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7708 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7709 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7710 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7711 case ISD::VECREDUCE_FMAX: 7712 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7713 break; 7714 case ISD::VECREDUCE_FMIN: 7715 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7716 break; 7717 } 7718 7719 SDValue Op = Node->getOperand(0); 7720 EVT VT = Op.getValueType(); 7721 7722 // Try to use a shuffle reduction for power of two vectors. 7723 if (VT.isPow2VectorType()) { 7724 while (VT.getVectorNumElements() > 1) { 7725 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7726 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7727 break; 7728 7729 SDValue Lo, Hi; 7730 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7731 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7732 VT = HalfVT; 7733 } 7734 } 7735 7736 EVT EltVT = VT.getVectorElementType(); 7737 unsigned NumElts = VT.getVectorNumElements(); 7738 7739 SmallVector<SDValue, 8> Ops; 7740 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7741 7742 SDValue Res = Ops[0]; 7743 for (unsigned i = 1; i < NumElts; i++) 7744 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7745 7746 // Result type may be wider than element type. 7747 if (EltVT != Node->getValueType(0)) 7748 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7749 return Res; 7750 } 7751