1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlign(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 if (SrcVT == DstVT) 621 return Src; 622 623 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 624 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 625 if (NumSrcEltBits == NumDstEltBits) 626 if (SDValue V = SimplifyMultipleUseDemandedBits( 627 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 628 return DAG.getBitcast(DstVT, V); 629 630 // TODO - bigendian once we have test coverage. 631 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 632 DAG.getDataLayout().isLittleEndian()) { 633 unsigned Scale = NumDstEltBits / NumSrcEltBits; 634 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 635 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 636 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 637 for (unsigned i = 0; i != Scale; ++i) { 638 unsigned Offset = i * NumSrcEltBits; 639 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 640 if (!Sub.isNullValue()) { 641 DemandedSrcBits |= Sub; 642 for (unsigned j = 0; j != NumElts; ++j) 643 if (DemandedElts[j]) 644 DemandedSrcElts.setBit((j * Scale) + i); 645 } 646 } 647 648 if (SDValue V = SimplifyMultipleUseDemandedBits( 649 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 650 return DAG.getBitcast(DstVT, V); 651 } 652 653 // TODO - bigendian once we have test coverage. 654 if ((NumSrcEltBits % NumDstEltBits) == 0 && 655 DAG.getDataLayout().isLittleEndian()) { 656 unsigned Scale = NumSrcEltBits / NumDstEltBits; 657 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 658 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 659 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 660 for (unsigned i = 0; i != NumElts; ++i) 661 if (DemandedElts[i]) { 662 unsigned Offset = (i % Scale) * NumDstEltBits; 663 DemandedSrcBits.insertBits(DemandedBits, Offset); 664 DemandedSrcElts.setBit(i / Scale); 665 } 666 667 if (SDValue V = SimplifyMultipleUseDemandedBits( 668 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 669 return DAG.getBitcast(DstVT, V); 670 } 671 672 break; 673 } 674 case ISD::AND: { 675 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 676 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 677 678 // If all of the demanded bits are known 1 on one side, return the other. 679 // These bits cannot contribute to the result of the 'and' in this 680 // context. 681 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 682 return Op.getOperand(0); 683 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 684 return Op.getOperand(1); 685 break; 686 } 687 case ISD::OR: { 688 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 689 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 690 691 // If all of the demanded bits are known zero on one side, return the 692 // other. These bits cannot contribute to the result of the 'or' in this 693 // context. 694 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 695 return Op.getOperand(0); 696 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 697 return Op.getOperand(1); 698 break; 699 } 700 case ISD::XOR: { 701 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 702 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 703 704 // If all of the demanded bits are known zero on one side, return the 705 // other. 706 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 707 return Op.getOperand(0); 708 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 709 return Op.getOperand(1); 710 break; 711 } 712 case ISD::SETCC: { 713 SDValue Op0 = Op.getOperand(0); 714 SDValue Op1 = Op.getOperand(1); 715 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 716 // If (1) we only need the sign-bit, (2) the setcc operands are the same 717 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 718 // -1, we may be able to bypass the setcc. 719 if (DemandedBits.isSignMask() && 720 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 721 getBooleanContents(Op0.getValueType()) == 722 BooleanContent::ZeroOrNegativeOneBooleanContent) { 723 // If we're testing X < 0, then this compare isn't needed - just use X! 724 // FIXME: We're limiting to integer types here, but this should also work 725 // if we don't care about FP signed-zero. The use of SETLT with FP means 726 // that we don't care about NaNs. 727 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 728 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 729 return Op0; 730 } 731 break; 732 } 733 case ISD::SIGN_EXTEND_INREG: { 734 // If none of the extended bits are demanded, eliminate the sextinreg. 735 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 736 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 737 return Op.getOperand(0); 738 break; 739 } 740 case ISD::INSERT_VECTOR_ELT: { 741 // If we don't demand the inserted element, return the base vector. 742 SDValue Vec = Op.getOperand(0); 743 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 744 EVT VecVT = Vec.getValueType(); 745 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 746 !DemandedElts[CIdx->getZExtValue()]) 747 return Vec; 748 break; 749 } 750 case ISD::INSERT_SUBVECTOR: { 751 // If we don't demand the inserted subvector, return the base vector. 752 SDValue Vec = Op.getOperand(0); 753 SDValue Sub = Op.getOperand(1); 754 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 755 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 756 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 757 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 758 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 759 return Vec; 760 break; 761 } 762 case ISD::VECTOR_SHUFFLE: { 763 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 764 765 // If all the demanded elts are from one operand and are inline, 766 // then we can use the operand directly. 767 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 768 for (unsigned i = 0; i != NumElts; ++i) { 769 int M = ShuffleMask[i]; 770 if (M < 0 || !DemandedElts[i]) 771 continue; 772 AllUndef = false; 773 IdentityLHS &= (M == (int)i); 774 IdentityRHS &= ((M - NumElts) == i); 775 } 776 777 if (AllUndef) 778 return DAG.getUNDEF(Op.getValueType()); 779 if (IdentityLHS) 780 return Op.getOperand(0); 781 if (IdentityRHS) 782 return Op.getOperand(1); 783 break; 784 } 785 default: 786 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 787 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 788 Op, DemandedBits, DemandedElts, DAG, Depth)) 789 return V; 790 break; 791 } 792 return SDValue(); 793 } 794 795 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 796 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 797 unsigned Depth) const { 798 EVT VT = Op.getValueType(); 799 APInt DemandedElts = VT.isVector() 800 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 801 : APInt(1, 1); 802 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 803 Depth); 804 } 805 806 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 807 /// result of Op are ever used downstream. If we can use this information to 808 /// simplify Op, create a new simplified DAG node and return true, returning the 809 /// original and new nodes in Old and New. Otherwise, analyze the expression and 810 /// return a mask of Known bits for the expression (used to simplify the 811 /// caller). The Known bits may only be accurate for those bits in the 812 /// OriginalDemandedBits and OriginalDemandedElts. 813 bool TargetLowering::SimplifyDemandedBits( 814 SDValue Op, const APInt &OriginalDemandedBits, 815 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 816 unsigned Depth, bool AssumeSingleUse) const { 817 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 818 assert(Op.getScalarValueSizeInBits() == BitWidth && 819 "Mask size mismatches value type size!"); 820 821 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 822 assert((!Op.getValueType().isVector() || 823 NumElts == Op.getValueType().getVectorNumElements()) && 824 "Unexpected vector size"); 825 826 APInt DemandedBits = OriginalDemandedBits; 827 APInt DemandedElts = OriginalDemandedElts; 828 SDLoc dl(Op); 829 auto &DL = TLO.DAG.getDataLayout(); 830 831 // Don't know anything. 832 Known = KnownBits(BitWidth); 833 834 // Undef operand. 835 if (Op.isUndef()) 836 return false; 837 838 if (Op.getOpcode() == ISD::Constant) { 839 // We know all of the bits for a constant! 840 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 841 Known.Zero = ~Known.One; 842 return false; 843 } 844 845 // Other users may use these bits. 846 EVT VT = Op.getValueType(); 847 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 848 if (Depth != 0) { 849 // If not at the root, Just compute the Known bits to 850 // simplify things downstream. 851 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 852 return false; 853 } 854 // If this is the root being simplified, allow it to have multiple uses, 855 // just set the DemandedBits/Elts to all bits. 856 DemandedBits = APInt::getAllOnesValue(BitWidth); 857 DemandedElts = APInt::getAllOnesValue(NumElts); 858 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 859 // Not demanding any bits/elts from Op. 860 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 861 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 862 // Limit search depth. 863 return false; 864 } 865 866 KnownBits Known2; 867 switch (Op.getOpcode()) { 868 case ISD::TargetConstant: 869 llvm_unreachable("Can't simplify this node"); 870 case ISD::SCALAR_TO_VECTOR: { 871 if (!DemandedElts[0]) 872 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 873 874 KnownBits SrcKnown; 875 SDValue Src = Op.getOperand(0); 876 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 877 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 878 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 879 return true; 880 881 // Upper elements are undef, so only get the knownbits if we just demand 882 // the bottom element. 883 if (DemandedElts == 1) 884 Known = SrcKnown.anyextOrTrunc(BitWidth); 885 break; 886 } 887 case ISD::BUILD_VECTOR: 888 // Collect the known bits that are shared by every demanded element. 889 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 890 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 891 return false; // Don't fall through, will infinitely loop. 892 case ISD::LOAD: { 893 LoadSDNode *LD = cast<LoadSDNode>(Op); 894 if (getTargetConstantFromLoad(LD)) { 895 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 896 return false; // Don't fall through, will infinitely loop. 897 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 898 // If this is a ZEXTLoad and we are looking at the loaded value. 899 EVT MemVT = LD->getMemoryVT(); 900 unsigned MemBits = MemVT.getScalarSizeInBits(); 901 Known.Zero.setBitsFrom(MemBits); 902 return false; // Don't fall through, will infinitely loop. 903 } 904 break; 905 } 906 case ISD::INSERT_VECTOR_ELT: { 907 SDValue Vec = Op.getOperand(0); 908 SDValue Scl = Op.getOperand(1); 909 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 910 EVT VecVT = Vec.getValueType(); 911 912 // If index isn't constant, assume we need all vector elements AND the 913 // inserted element. 914 APInt DemandedVecElts(DemandedElts); 915 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 916 unsigned Idx = CIdx->getZExtValue(); 917 DemandedVecElts.clearBit(Idx); 918 919 // Inserted element is not required. 920 if (!DemandedElts[Idx]) 921 return TLO.CombineTo(Op, Vec); 922 } 923 924 KnownBits KnownScl; 925 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 926 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 927 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 928 return true; 929 930 Known = KnownScl.anyextOrTrunc(BitWidth); 931 932 KnownBits KnownVec; 933 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 934 Depth + 1)) 935 return true; 936 937 if (!!DemandedVecElts) { 938 Known.One &= KnownVec.One; 939 Known.Zero &= KnownVec.Zero; 940 } 941 942 return false; 943 } 944 case ISD::INSERT_SUBVECTOR: { 945 SDValue Base = Op.getOperand(0); 946 SDValue Sub = Op.getOperand(1); 947 EVT SubVT = Sub.getValueType(); 948 unsigned NumSubElts = SubVT.getVectorNumElements(); 949 950 // If index isn't constant, assume we need the original demanded base 951 // elements and ALL the inserted subvector elements. 952 APInt BaseElts = DemandedElts; 953 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 954 if (isa<ConstantSDNode>(Op.getOperand(2))) { 955 const APInt &Idx = Op.getConstantOperandAPInt(2); 956 if (Idx.ule(NumElts - NumSubElts)) { 957 unsigned SubIdx = Idx.getZExtValue(); 958 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 959 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 960 } 961 } 962 963 KnownBits KnownSub, KnownBase; 964 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 965 Depth + 1)) 966 return true; 967 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 968 Depth + 1)) 969 return true; 970 971 Known.Zero.setAllBits(); 972 Known.One.setAllBits(); 973 if (!!SubElts) { 974 Known.One &= KnownSub.One; 975 Known.Zero &= KnownSub.Zero; 976 } 977 if (!!BaseElts) { 978 Known.One &= KnownBase.One; 979 Known.Zero &= KnownBase.Zero; 980 } 981 982 // Attempt to avoid multi-use src if we don't need anything from it. 983 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 984 !BaseElts.isAllOnesValue()) { 985 SDValue NewSub = SimplifyMultipleUseDemandedBits( 986 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 987 SDValue NewBase = SimplifyMultipleUseDemandedBits( 988 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 989 if (NewSub || NewBase) { 990 NewSub = NewSub ? NewSub : Sub; 991 NewBase = NewBase ? NewBase : Base; 992 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 993 Op.getOperand(2)); 994 return TLO.CombineTo(Op, NewOp); 995 } 996 } 997 break; 998 } 999 case ISD::EXTRACT_SUBVECTOR: { 1000 // If index isn't constant, assume we need all the source vector elements. 1001 SDValue Src = Op.getOperand(0); 1002 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1003 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1004 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 1005 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1006 // Offset the demanded elts by the subvector index. 1007 uint64_t Idx = SubIdx->getZExtValue(); 1008 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1009 } 1010 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1011 return true; 1012 1013 // Attempt to avoid multi-use src if we don't need anything from it. 1014 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1015 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1016 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1017 if (DemandedSrc) { 1018 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1019 Op.getOperand(1)); 1020 return TLO.CombineTo(Op, NewOp); 1021 } 1022 } 1023 break; 1024 } 1025 case ISD::CONCAT_VECTORS: { 1026 Known.Zero.setAllBits(); 1027 Known.One.setAllBits(); 1028 EVT SubVT = Op.getOperand(0).getValueType(); 1029 unsigned NumSubVecs = Op.getNumOperands(); 1030 unsigned NumSubElts = SubVT.getVectorNumElements(); 1031 for (unsigned i = 0; i != NumSubVecs; ++i) { 1032 APInt DemandedSubElts = 1033 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1034 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1035 Known2, TLO, Depth + 1)) 1036 return true; 1037 // Known bits are shared by every demanded subvector element. 1038 if (!!DemandedSubElts) { 1039 Known.One &= Known2.One; 1040 Known.Zero &= Known2.Zero; 1041 } 1042 } 1043 break; 1044 } 1045 case ISD::VECTOR_SHUFFLE: { 1046 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1047 1048 // Collect demanded elements from shuffle operands.. 1049 APInt DemandedLHS(NumElts, 0); 1050 APInt DemandedRHS(NumElts, 0); 1051 for (unsigned i = 0; i != NumElts; ++i) { 1052 if (!DemandedElts[i]) 1053 continue; 1054 int M = ShuffleMask[i]; 1055 if (M < 0) { 1056 // For UNDEF elements, we don't know anything about the common state of 1057 // the shuffle result. 1058 DemandedLHS.clearAllBits(); 1059 DemandedRHS.clearAllBits(); 1060 break; 1061 } 1062 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1063 if (M < (int)NumElts) 1064 DemandedLHS.setBit(M); 1065 else 1066 DemandedRHS.setBit(M - NumElts); 1067 } 1068 1069 if (!!DemandedLHS || !!DemandedRHS) { 1070 SDValue Op0 = Op.getOperand(0); 1071 SDValue Op1 = Op.getOperand(1); 1072 1073 Known.Zero.setAllBits(); 1074 Known.One.setAllBits(); 1075 if (!!DemandedLHS) { 1076 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1077 Depth + 1)) 1078 return true; 1079 Known.One &= Known2.One; 1080 Known.Zero &= Known2.Zero; 1081 } 1082 if (!!DemandedRHS) { 1083 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1084 Depth + 1)) 1085 return true; 1086 Known.One &= Known2.One; 1087 Known.Zero &= Known2.Zero; 1088 } 1089 1090 // Attempt to avoid multi-use ops if we don't need anything from them. 1091 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1092 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1093 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1094 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1095 if (DemandedOp0 || DemandedOp1) { 1096 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1097 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1098 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1099 return TLO.CombineTo(Op, NewOp); 1100 } 1101 } 1102 break; 1103 } 1104 case ISD::AND: { 1105 SDValue Op0 = Op.getOperand(0); 1106 SDValue Op1 = Op.getOperand(1); 1107 1108 // If the RHS is a constant, check to see if the LHS would be zero without 1109 // using the bits from the RHS. Below, we use knowledge about the RHS to 1110 // simplify the LHS, here we're using information from the LHS to simplify 1111 // the RHS. 1112 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1113 // Do not increment Depth here; that can cause an infinite loop. 1114 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1115 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1116 if ((LHSKnown.Zero & DemandedBits) == 1117 (~RHSC->getAPIntValue() & DemandedBits)) 1118 return TLO.CombineTo(Op, Op0); 1119 1120 // If any of the set bits in the RHS are known zero on the LHS, shrink 1121 // the constant. 1122 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1123 return true; 1124 1125 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1126 // constant, but if this 'and' is only clearing bits that were just set by 1127 // the xor, then this 'and' can be eliminated by shrinking the mask of 1128 // the xor. For example, for a 32-bit X: 1129 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1130 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1131 LHSKnown.One == ~RHSC->getAPIntValue()) { 1132 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1133 return TLO.CombineTo(Op, Xor); 1134 } 1135 } 1136 1137 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1138 Depth + 1)) 1139 return true; 1140 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1141 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1142 Known2, TLO, Depth + 1)) 1143 return true; 1144 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1145 1146 // Attempt to avoid multi-use ops if we don't need anything from them. 1147 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1148 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1149 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1151 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1152 if (DemandedOp0 || DemandedOp1) { 1153 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1154 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1155 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1156 return TLO.CombineTo(Op, NewOp); 1157 } 1158 } 1159 1160 // If all of the demanded bits are known one on one side, return the other. 1161 // These bits cannot contribute to the result of the 'and'. 1162 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1163 return TLO.CombineTo(Op, Op0); 1164 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1165 return TLO.CombineTo(Op, Op1); 1166 // If all of the demanded bits in the inputs are known zeros, return zero. 1167 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1168 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1169 // If the RHS is a constant, see if we can simplify it. 1170 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1171 return true; 1172 // If the operation can be done in a smaller type, do so. 1173 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1174 return true; 1175 1176 Known &= Known2; 1177 break; 1178 } 1179 case ISD::OR: { 1180 SDValue Op0 = Op.getOperand(0); 1181 SDValue Op1 = Op.getOperand(1); 1182 1183 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1184 Depth + 1)) 1185 return true; 1186 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1187 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1188 Known2, TLO, Depth + 1)) 1189 return true; 1190 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1191 1192 // Attempt to avoid multi-use ops if we don't need anything from them. 1193 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1194 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1195 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1196 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1197 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1198 if (DemandedOp0 || DemandedOp1) { 1199 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1200 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1201 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1202 return TLO.CombineTo(Op, NewOp); 1203 } 1204 } 1205 1206 // If all of the demanded bits are known zero on one side, return the other. 1207 // These bits cannot contribute to the result of the 'or'. 1208 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1209 return TLO.CombineTo(Op, Op0); 1210 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1211 return TLO.CombineTo(Op, Op1); 1212 // If the RHS is a constant, see if we can simplify it. 1213 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1214 return true; 1215 // If the operation can be done in a smaller type, do so. 1216 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1217 return true; 1218 1219 Known |= Known2; 1220 break; 1221 } 1222 case ISD::XOR: { 1223 SDValue Op0 = Op.getOperand(0); 1224 SDValue Op1 = Op.getOperand(1); 1225 1226 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1227 Depth + 1)) 1228 return true; 1229 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1230 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1231 Depth + 1)) 1232 return true; 1233 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1234 1235 // Attempt to avoid multi-use ops if we don't need anything from them. 1236 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1237 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1238 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1239 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1240 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1241 if (DemandedOp0 || DemandedOp1) { 1242 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1243 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1244 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1245 return TLO.CombineTo(Op, NewOp); 1246 } 1247 } 1248 1249 // If all of the demanded bits are known zero on one side, return the other. 1250 // These bits cannot contribute to the result of the 'xor'. 1251 if (DemandedBits.isSubsetOf(Known.Zero)) 1252 return TLO.CombineTo(Op, Op0); 1253 if (DemandedBits.isSubsetOf(Known2.Zero)) 1254 return TLO.CombineTo(Op, Op1); 1255 // If the operation can be done in a smaller type, do so. 1256 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1257 return true; 1258 1259 // If all of the unknown bits are known to be zero on one side or the other 1260 // (but not both) turn this into an *inclusive* or. 1261 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1262 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1263 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1264 1265 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1266 // If one side is a constant, and all of the known set bits on the other 1267 // side are also set in the constant, turn this into an AND, as we know 1268 // the bits will be cleared. 1269 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1270 // NB: it is okay if more bits are known than are requested 1271 if (C->getAPIntValue() == Known2.One) { 1272 SDValue ANDC = 1273 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1274 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1275 } 1276 1277 // If the RHS is a constant, see if we can change it. Don't alter a -1 1278 // constant because that's a 'not' op, and that is better for combining 1279 // and codegen. 1280 if (!C->isAllOnesValue()) { 1281 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1282 // We're flipping all demanded bits. Flip the undemanded bits too. 1283 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1284 return TLO.CombineTo(Op, New); 1285 } 1286 // If we can't turn this into a 'not', try to shrink the constant. 1287 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1288 return true; 1289 } 1290 } 1291 1292 Known ^= Known2; 1293 break; 1294 } 1295 case ISD::SELECT: 1296 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1297 Depth + 1)) 1298 return true; 1299 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1300 Depth + 1)) 1301 return true; 1302 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1303 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1304 1305 // If the operands are constants, see if we can simplify them. 1306 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1307 return true; 1308 1309 // Only known if known in both the LHS and RHS. 1310 Known.One &= Known2.One; 1311 Known.Zero &= Known2.Zero; 1312 break; 1313 case ISD::SELECT_CC: 1314 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1315 Depth + 1)) 1316 return true; 1317 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1318 Depth + 1)) 1319 return true; 1320 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1321 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1322 1323 // If the operands are constants, see if we can simplify them. 1324 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1325 return true; 1326 1327 // Only known if known in both the LHS and RHS. 1328 Known.One &= Known2.One; 1329 Known.Zero &= Known2.Zero; 1330 break; 1331 case ISD::SETCC: { 1332 SDValue Op0 = Op.getOperand(0); 1333 SDValue Op1 = Op.getOperand(1); 1334 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1335 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1336 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1337 // -1, we may be able to bypass the setcc. 1338 if (DemandedBits.isSignMask() && 1339 Op0.getScalarValueSizeInBits() == BitWidth && 1340 getBooleanContents(Op0.getValueType()) == 1341 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1342 // If we're testing X < 0, then this compare isn't needed - just use X! 1343 // FIXME: We're limiting to integer types here, but this should also work 1344 // if we don't care about FP signed-zero. The use of SETLT with FP means 1345 // that we don't care about NaNs. 1346 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1347 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1348 return TLO.CombineTo(Op, Op0); 1349 1350 // TODO: Should we check for other forms of sign-bit comparisons? 1351 // Examples: X <= -1, X >= 0 1352 } 1353 if (getBooleanContents(Op0.getValueType()) == 1354 TargetLowering::ZeroOrOneBooleanContent && 1355 BitWidth > 1) 1356 Known.Zero.setBitsFrom(1); 1357 break; 1358 } 1359 case ISD::SHL: { 1360 SDValue Op0 = Op.getOperand(0); 1361 SDValue Op1 = Op.getOperand(1); 1362 EVT ShiftVT = Op1.getValueType(); 1363 1364 if (const APInt *SA = 1365 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1366 unsigned ShAmt = SA->getZExtValue(); 1367 if (ShAmt == 0) 1368 return TLO.CombineTo(Op, Op0); 1369 1370 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1371 // single shift. We can do this if the bottom bits (which are shifted 1372 // out) are never demanded. 1373 // TODO - support non-uniform vector amounts. 1374 if (Op0.getOpcode() == ISD::SRL) { 1375 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1376 if (const APInt *SA2 = 1377 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1378 if (SA2->ult(BitWidth)) { 1379 unsigned C1 = SA2->getZExtValue(); 1380 unsigned Opc = ISD::SHL; 1381 int Diff = ShAmt - C1; 1382 if (Diff < 0) { 1383 Diff = -Diff; 1384 Opc = ISD::SRL; 1385 } 1386 1387 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1388 return TLO.CombineTo( 1389 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1390 } 1391 } 1392 } 1393 } 1394 1395 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1396 // are not demanded. This will likely allow the anyext to be folded away. 1397 // TODO - support non-uniform vector amounts. 1398 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1399 SDValue InnerOp = Op0.getOperand(0); 1400 EVT InnerVT = InnerOp.getValueType(); 1401 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1402 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1403 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1404 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1405 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1406 ShTy = InnerVT; 1407 SDValue NarrowShl = 1408 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1409 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1410 return TLO.CombineTo( 1411 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1412 } 1413 1414 // Repeat the SHL optimization above in cases where an extension 1415 // intervenes: (shl (anyext (shr x, c1)), c2) to 1416 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1417 // aren't demanded (as above) and that the shifted upper c1 bits of 1418 // x aren't demanded. 1419 // TODO - support non-uniform vector amounts. 1420 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1421 InnerOp.hasOneUse()) { 1422 if (const APInt *SA2 = 1423 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1424 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1425 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1426 DemandedBits.getActiveBits() <= 1427 (InnerBits - InnerShAmt + ShAmt) && 1428 DemandedBits.countTrailingZeros() >= ShAmt) { 1429 SDValue NewSA = 1430 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1431 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1432 InnerOp.getOperand(0)); 1433 return TLO.CombineTo( 1434 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1435 } 1436 } 1437 } 1438 } 1439 1440 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1441 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1442 Depth + 1)) 1443 return true; 1444 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1445 Known.Zero <<= ShAmt; 1446 Known.One <<= ShAmt; 1447 // low bits known zero. 1448 Known.Zero.setLowBits(ShAmt); 1449 1450 // Try shrinking the operation as long as the shift amount will still be 1451 // in range. 1452 if ((ShAmt < DemandedBits.getActiveBits()) && 1453 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1454 return true; 1455 } 1456 break; 1457 } 1458 case ISD::SRL: { 1459 SDValue Op0 = Op.getOperand(0); 1460 SDValue Op1 = Op.getOperand(1); 1461 EVT ShiftVT = Op1.getValueType(); 1462 1463 if (const APInt *SA = 1464 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1465 unsigned ShAmt = SA->getZExtValue(); 1466 if (ShAmt == 0) 1467 return TLO.CombineTo(Op, Op0); 1468 1469 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1470 // single shift. We can do this if the top bits (which are shifted out) 1471 // are never demanded. 1472 // TODO - support non-uniform vector amounts. 1473 if (Op0.getOpcode() == ISD::SHL) { 1474 if (const APInt *SA2 = 1475 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1476 if (!DemandedBits.intersects( 1477 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1478 if (SA2->ult(BitWidth)) { 1479 unsigned C1 = SA2->getZExtValue(); 1480 unsigned Opc = ISD::SRL; 1481 int Diff = ShAmt - C1; 1482 if (Diff < 0) { 1483 Diff = -Diff; 1484 Opc = ISD::SHL; 1485 } 1486 1487 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1490 } 1491 } 1492 } 1493 } 1494 1495 APInt InDemandedMask = (DemandedBits << ShAmt); 1496 1497 // If the shift is exact, then it does demand the low bits (and knows that 1498 // they are zero). 1499 if (Op->getFlags().hasExact()) 1500 InDemandedMask.setLowBits(ShAmt); 1501 1502 // Compute the new bits that are at the top now. 1503 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1504 Depth + 1)) 1505 return true; 1506 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1507 Known.Zero.lshrInPlace(ShAmt); 1508 Known.One.lshrInPlace(ShAmt); 1509 // High bits known zero. 1510 Known.Zero.setHighBits(ShAmt); 1511 } 1512 break; 1513 } 1514 case ISD::SRA: { 1515 SDValue Op0 = Op.getOperand(0); 1516 SDValue Op1 = Op.getOperand(1); 1517 EVT ShiftVT = Op1.getValueType(); 1518 1519 // If we only want bits that already match the signbit then we don't need 1520 // to shift. 1521 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1522 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1523 NumHiDemandedBits) 1524 return TLO.CombineTo(Op, Op0); 1525 1526 // If this is an arithmetic shift right and only the low-bit is set, we can 1527 // always convert this into a logical shr, even if the shift amount is 1528 // variable. The low bit of the shift cannot be an input sign bit unless 1529 // the shift amount is >= the size of the datatype, which is undefined. 1530 if (DemandedBits.isOneValue()) 1531 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1532 1533 if (const APInt *SA = 1534 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1535 unsigned ShAmt = SA->getZExtValue(); 1536 if (ShAmt == 0) 1537 return TLO.CombineTo(Op, Op0); 1538 1539 APInt InDemandedMask = (DemandedBits << ShAmt); 1540 1541 // If the shift is exact, then it does demand the low bits (and knows that 1542 // they are zero). 1543 if (Op->getFlags().hasExact()) 1544 InDemandedMask.setLowBits(ShAmt); 1545 1546 // If any of the demanded bits are produced by the sign extension, we also 1547 // demand the input sign bit. 1548 if (DemandedBits.countLeadingZeros() < ShAmt) 1549 InDemandedMask.setSignBit(); 1550 1551 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1552 Depth + 1)) 1553 return true; 1554 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1555 Known.Zero.lshrInPlace(ShAmt); 1556 Known.One.lshrInPlace(ShAmt); 1557 1558 // If the input sign bit is known to be zero, or if none of the top bits 1559 // are demanded, turn this into an unsigned shift right. 1560 if (Known.Zero[BitWidth - ShAmt - 1] || 1561 DemandedBits.countLeadingZeros() >= ShAmt) { 1562 SDNodeFlags Flags; 1563 Flags.setExact(Op->getFlags().hasExact()); 1564 return TLO.CombineTo( 1565 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1566 } 1567 1568 int Log2 = DemandedBits.exactLogBase2(); 1569 if (Log2 >= 0) { 1570 // The bit must come from the sign. 1571 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1572 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1573 } 1574 1575 if (Known.One[BitWidth - ShAmt - 1]) 1576 // New bits are known one. 1577 Known.One.setHighBits(ShAmt); 1578 1579 // Attempt to avoid multi-use ops if we don't need anything from them. 1580 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1581 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1582 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1583 if (DemandedOp0) { 1584 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1585 return TLO.CombineTo(Op, NewOp); 1586 } 1587 } 1588 } 1589 break; 1590 } 1591 case ISD::FSHL: 1592 case ISD::FSHR: { 1593 SDValue Op0 = Op.getOperand(0); 1594 SDValue Op1 = Op.getOperand(1); 1595 SDValue Op2 = Op.getOperand(2); 1596 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1597 1598 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1599 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1600 1601 // For fshl, 0-shift returns the 1st arg. 1602 // For fshr, 0-shift returns the 2nd arg. 1603 if (Amt == 0) { 1604 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1605 Known, TLO, Depth + 1)) 1606 return true; 1607 break; 1608 } 1609 1610 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1611 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1612 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1613 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1614 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1615 Depth + 1)) 1616 return true; 1617 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1618 Depth + 1)) 1619 return true; 1620 1621 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1622 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1623 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1624 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1625 Known.One |= Known2.One; 1626 Known.Zero |= Known2.Zero; 1627 } 1628 1629 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1630 if (isPowerOf2_32(BitWidth)) { 1631 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1632 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1633 Known2, TLO, Depth + 1)) 1634 return true; 1635 } 1636 break; 1637 } 1638 case ISD::ROTL: 1639 case ISD::ROTR: { 1640 SDValue Op0 = Op.getOperand(0); 1641 SDValue Op1 = Op.getOperand(1); 1642 1643 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1644 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1645 return TLO.CombineTo(Op, Op0); 1646 1647 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1648 if (isPowerOf2_32(BitWidth)) { 1649 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1650 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1651 Depth + 1)) 1652 return true; 1653 } 1654 break; 1655 } 1656 case ISD::BITREVERSE: { 1657 SDValue Src = Op.getOperand(0); 1658 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1659 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1660 Depth + 1)) 1661 return true; 1662 Known.One = Known2.One.reverseBits(); 1663 Known.Zero = Known2.Zero.reverseBits(); 1664 break; 1665 } 1666 case ISD::BSWAP: { 1667 SDValue Src = Op.getOperand(0); 1668 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1669 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1670 Depth + 1)) 1671 return true; 1672 Known.One = Known2.One.byteSwap(); 1673 Known.Zero = Known2.Zero.byteSwap(); 1674 break; 1675 } 1676 case ISD::SIGN_EXTEND_INREG: { 1677 SDValue Op0 = Op.getOperand(0); 1678 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1679 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1680 1681 // If we only care about the highest bit, don't bother shifting right. 1682 if (DemandedBits.isSignMask()) { 1683 unsigned NumSignBits = 1684 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1685 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1686 // However if the input is already sign extended we expect the sign 1687 // extension to be dropped altogether later and do not simplify. 1688 if (!AlreadySignExtended) { 1689 // Compute the correct shift amount type, which must be getShiftAmountTy 1690 // for scalar types after legalization. 1691 EVT ShiftAmtTy = VT; 1692 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1693 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1694 1695 SDValue ShiftAmt = 1696 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1697 return TLO.CombineTo(Op, 1698 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1699 } 1700 } 1701 1702 // If none of the extended bits are demanded, eliminate the sextinreg. 1703 if (DemandedBits.getActiveBits() <= ExVTBits) 1704 return TLO.CombineTo(Op, Op0); 1705 1706 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1707 1708 // Since the sign extended bits are demanded, we know that the sign 1709 // bit is demanded. 1710 InputDemandedBits.setBit(ExVTBits - 1); 1711 1712 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1713 return true; 1714 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1715 1716 // If the sign bit of the input is known set or clear, then we know the 1717 // top bits of the result. 1718 1719 // If the input sign bit is known zero, convert this into a zero extension. 1720 if (Known.Zero[ExVTBits - 1]) 1721 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1722 1723 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1724 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1725 Known.One.setBitsFrom(ExVTBits); 1726 Known.Zero &= Mask; 1727 } else { // Input sign bit unknown 1728 Known.Zero &= Mask; 1729 Known.One &= Mask; 1730 } 1731 break; 1732 } 1733 case ISD::BUILD_PAIR: { 1734 EVT HalfVT = Op.getOperand(0).getValueType(); 1735 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1736 1737 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1738 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1739 1740 KnownBits KnownLo, KnownHi; 1741 1742 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1743 return true; 1744 1745 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1746 return true; 1747 1748 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1749 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1750 1751 Known.One = KnownLo.One.zext(BitWidth) | 1752 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1753 break; 1754 } 1755 case ISD::ZERO_EXTEND: 1756 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1757 SDValue Src = Op.getOperand(0); 1758 EVT SrcVT = Src.getValueType(); 1759 unsigned InBits = SrcVT.getScalarSizeInBits(); 1760 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1761 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1762 1763 // If none of the top bits are demanded, convert this into an any_extend. 1764 if (DemandedBits.getActiveBits() <= InBits) { 1765 // If we only need the non-extended bits of the bottom element 1766 // then we can just bitcast to the result. 1767 if (IsVecInReg && DemandedElts == 1 && 1768 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1769 TLO.DAG.getDataLayout().isLittleEndian()) 1770 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1771 1772 unsigned Opc = 1773 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1774 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1775 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1776 } 1777 1778 APInt InDemandedBits = DemandedBits.trunc(InBits); 1779 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1780 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1781 Depth + 1)) 1782 return true; 1783 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1784 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1785 Known = Known.zext(BitWidth); 1786 break; 1787 } 1788 case ISD::SIGN_EXTEND: 1789 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1790 SDValue Src = Op.getOperand(0); 1791 EVT SrcVT = Src.getValueType(); 1792 unsigned InBits = SrcVT.getScalarSizeInBits(); 1793 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1794 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1795 1796 // If none of the top bits are demanded, convert this into an any_extend. 1797 if (DemandedBits.getActiveBits() <= InBits) { 1798 // If we only need the non-extended bits of the bottom element 1799 // then we can just bitcast to the result. 1800 if (IsVecInReg && DemandedElts == 1 && 1801 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1802 TLO.DAG.getDataLayout().isLittleEndian()) 1803 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1804 1805 unsigned Opc = 1806 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1807 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1808 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1809 } 1810 1811 APInt InDemandedBits = DemandedBits.trunc(InBits); 1812 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1813 1814 // Since some of the sign extended bits are demanded, we know that the sign 1815 // bit is demanded. 1816 InDemandedBits.setBit(InBits - 1); 1817 1818 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1819 Depth + 1)) 1820 return true; 1821 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1822 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1823 1824 // If the sign bit is known one, the top bits match. 1825 Known = Known.sext(BitWidth); 1826 1827 // If the sign bit is known zero, convert this to a zero extend. 1828 if (Known.isNonNegative()) { 1829 unsigned Opc = 1830 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1831 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1832 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1833 } 1834 break; 1835 } 1836 case ISD::ANY_EXTEND: 1837 case ISD::ANY_EXTEND_VECTOR_INREG: { 1838 SDValue Src = Op.getOperand(0); 1839 EVT SrcVT = Src.getValueType(); 1840 unsigned InBits = SrcVT.getScalarSizeInBits(); 1841 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1842 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1843 1844 // If we only need the bottom element then we can just bitcast. 1845 // TODO: Handle ANY_EXTEND? 1846 if (IsVecInReg && DemandedElts == 1 && 1847 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1848 TLO.DAG.getDataLayout().isLittleEndian()) 1849 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1850 1851 APInt InDemandedBits = DemandedBits.trunc(InBits); 1852 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1853 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1854 Depth + 1)) 1855 return true; 1856 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1857 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1858 Known = Known.anyext(BitWidth); 1859 1860 // Attempt to avoid multi-use ops if we don't need anything from them. 1861 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1862 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1863 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1864 break; 1865 } 1866 case ISD::TRUNCATE: { 1867 SDValue Src = Op.getOperand(0); 1868 1869 // Simplify the input, using demanded bit information, and compute the known 1870 // zero/one bits live out. 1871 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1872 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1873 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1874 return true; 1875 Known = Known.trunc(BitWidth); 1876 1877 // Attempt to avoid multi-use ops if we don't need anything from them. 1878 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1879 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1880 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1881 1882 // If the input is only used by this truncate, see if we can shrink it based 1883 // on the known demanded bits. 1884 if (Src.getNode()->hasOneUse()) { 1885 switch (Src.getOpcode()) { 1886 default: 1887 break; 1888 case ISD::SRL: 1889 // Shrink SRL by a constant if none of the high bits shifted in are 1890 // demanded. 1891 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1892 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1893 // undesirable. 1894 break; 1895 1896 SDValue ShAmt = Src.getOperand(1); 1897 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1898 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1899 break; 1900 uint64_t ShVal = ShAmtC->getZExtValue(); 1901 1902 APInt HighBits = 1903 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1904 HighBits.lshrInPlace(ShVal); 1905 HighBits = HighBits.trunc(BitWidth); 1906 1907 if (!(HighBits & DemandedBits)) { 1908 // None of the shifted in bits are needed. Add a truncate of the 1909 // shift input, then shift it. 1910 if (TLO.LegalTypes()) 1911 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1912 SDValue NewTrunc = 1913 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1914 return TLO.CombineTo( 1915 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1916 } 1917 break; 1918 } 1919 } 1920 1921 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1922 break; 1923 } 1924 case ISD::AssertZext: { 1925 // AssertZext demands all of the high bits, plus any of the low bits 1926 // demanded by its users. 1927 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1928 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1929 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1930 TLO, Depth + 1)) 1931 return true; 1932 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1933 1934 Known.Zero |= ~InMask; 1935 break; 1936 } 1937 case ISD::EXTRACT_VECTOR_ELT: { 1938 SDValue Src = Op.getOperand(0); 1939 SDValue Idx = Op.getOperand(1); 1940 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1941 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1942 1943 // Demand the bits from every vector element without a constant index. 1944 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1945 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1946 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1947 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1948 1949 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1950 // anything about the extended bits. 1951 APInt DemandedSrcBits = DemandedBits; 1952 if (BitWidth > EltBitWidth) 1953 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1954 1955 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1956 Depth + 1)) 1957 return true; 1958 1959 // Attempt to avoid multi-use ops if we don't need anything from them. 1960 if (!DemandedSrcBits.isAllOnesValue() || 1961 !DemandedSrcElts.isAllOnesValue()) { 1962 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1963 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1964 SDValue NewOp = 1965 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1966 return TLO.CombineTo(Op, NewOp); 1967 } 1968 } 1969 1970 Known = Known2; 1971 if (BitWidth > EltBitWidth) 1972 Known = Known.anyext(BitWidth); 1973 break; 1974 } 1975 case ISD::BITCAST: { 1976 SDValue Src = Op.getOperand(0); 1977 EVT SrcVT = Src.getValueType(); 1978 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1979 1980 // If this is an FP->Int bitcast and if the sign bit is the only 1981 // thing demanded, turn this into a FGETSIGN. 1982 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1983 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1984 SrcVT.isFloatingPoint()) { 1985 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1986 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1987 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1988 SrcVT != MVT::f128) { 1989 // Cannot eliminate/lower SHL for f128 yet. 1990 EVT Ty = OpVTLegal ? VT : MVT::i32; 1991 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1992 // place. We expect the SHL to be eliminated by other optimizations. 1993 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1994 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1995 if (!OpVTLegal && OpVTSizeInBits > 32) 1996 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1997 unsigned ShVal = Op.getValueSizeInBits() - 1; 1998 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1999 return TLO.CombineTo(Op, 2000 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2001 } 2002 } 2003 2004 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2005 // Demand the elt/bit if any of the original elts/bits are demanded. 2006 // TODO - bigendian once we have test coverage. 2007 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2008 TLO.DAG.getDataLayout().isLittleEndian()) { 2009 unsigned Scale = BitWidth / NumSrcEltBits; 2010 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2011 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2012 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2013 for (unsigned i = 0; i != Scale; ++i) { 2014 unsigned Offset = i * NumSrcEltBits; 2015 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2016 if (!Sub.isNullValue()) { 2017 DemandedSrcBits |= Sub; 2018 for (unsigned j = 0; j != NumElts; ++j) 2019 if (DemandedElts[j]) 2020 DemandedSrcElts.setBit((j * Scale) + i); 2021 } 2022 } 2023 2024 APInt KnownSrcUndef, KnownSrcZero; 2025 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2026 KnownSrcZero, TLO, Depth + 1)) 2027 return true; 2028 2029 KnownBits KnownSrcBits; 2030 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2031 KnownSrcBits, TLO, Depth + 1)) 2032 return true; 2033 } else if ((NumSrcEltBits % BitWidth) == 0 && 2034 TLO.DAG.getDataLayout().isLittleEndian()) { 2035 unsigned Scale = NumSrcEltBits / BitWidth; 2036 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2037 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2038 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2039 for (unsigned i = 0; i != NumElts; ++i) 2040 if (DemandedElts[i]) { 2041 unsigned Offset = (i % Scale) * BitWidth; 2042 DemandedSrcBits.insertBits(DemandedBits, Offset); 2043 DemandedSrcElts.setBit(i / Scale); 2044 } 2045 2046 if (SrcVT.isVector()) { 2047 APInt KnownSrcUndef, KnownSrcZero; 2048 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2049 KnownSrcZero, TLO, Depth + 1)) 2050 return true; 2051 } 2052 2053 KnownBits KnownSrcBits; 2054 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2055 KnownSrcBits, TLO, Depth + 1)) 2056 return true; 2057 } 2058 2059 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2060 // recursive call where Known may be useful to the caller. 2061 if (Depth > 0) { 2062 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2063 return false; 2064 } 2065 break; 2066 } 2067 case ISD::ADD: 2068 case ISD::MUL: 2069 case ISD::SUB: { 2070 // Add, Sub, and Mul don't demand any bits in positions beyond that 2071 // of the highest bit demanded of them. 2072 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2073 SDNodeFlags Flags = Op.getNode()->getFlags(); 2074 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2075 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2076 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2077 Depth + 1) || 2078 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2079 Depth + 1) || 2080 // See if the operation should be performed at a smaller bit width. 2081 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2082 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2083 // Disable the nsw and nuw flags. We can no longer guarantee that we 2084 // won't wrap after simplification. 2085 Flags.setNoSignedWrap(false); 2086 Flags.setNoUnsignedWrap(false); 2087 SDValue NewOp = 2088 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2089 return TLO.CombineTo(Op, NewOp); 2090 } 2091 return true; 2092 } 2093 2094 // Attempt to avoid multi-use ops if we don't need anything from them. 2095 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2096 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2097 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2098 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2099 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2100 if (DemandedOp0 || DemandedOp1) { 2101 Flags.setNoSignedWrap(false); 2102 Flags.setNoUnsignedWrap(false); 2103 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2104 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2105 SDValue NewOp = 2106 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2107 return TLO.CombineTo(Op, NewOp); 2108 } 2109 } 2110 2111 // If we have a constant operand, we may be able to turn it into -1 if we 2112 // do not demand the high bits. This can make the constant smaller to 2113 // encode, allow more general folding, or match specialized instruction 2114 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2115 // is probably not useful (and could be detrimental). 2116 ConstantSDNode *C = isConstOrConstSplat(Op1); 2117 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2118 if (C && !C->isAllOnesValue() && !C->isOne() && 2119 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2120 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2121 // Disable the nsw and nuw flags. We can no longer guarantee that we 2122 // won't wrap after simplification. 2123 Flags.setNoSignedWrap(false); 2124 Flags.setNoUnsignedWrap(false); 2125 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2126 return TLO.CombineTo(Op, NewOp); 2127 } 2128 2129 LLVM_FALLTHROUGH; 2130 } 2131 default: 2132 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2133 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2134 Known, TLO, Depth)) 2135 return true; 2136 break; 2137 } 2138 2139 // Just use computeKnownBits to compute output bits. 2140 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2141 break; 2142 } 2143 2144 // If we know the value of all of the demanded bits, return this as a 2145 // constant. 2146 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2147 // Avoid folding to a constant if any OpaqueConstant is involved. 2148 const SDNode *N = Op.getNode(); 2149 for (SDNodeIterator I = SDNodeIterator::begin(N), 2150 E = SDNodeIterator::end(N); 2151 I != E; ++I) { 2152 SDNode *Op = *I; 2153 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2154 if (C->isOpaque()) 2155 return false; 2156 } 2157 // TODO: Handle float bits as well. 2158 if (VT.isInteger()) 2159 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2160 } 2161 2162 return false; 2163 } 2164 2165 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2166 const APInt &DemandedElts, 2167 APInt &KnownUndef, 2168 APInt &KnownZero, 2169 DAGCombinerInfo &DCI) const { 2170 SelectionDAG &DAG = DCI.DAG; 2171 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2172 !DCI.isBeforeLegalizeOps()); 2173 2174 bool Simplified = 2175 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2176 if (Simplified) { 2177 DCI.AddToWorklist(Op.getNode()); 2178 DCI.CommitTargetLoweringOpt(TLO); 2179 } 2180 2181 return Simplified; 2182 } 2183 2184 /// Given a vector binary operation and known undefined elements for each input 2185 /// operand, compute whether each element of the output is undefined. 2186 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2187 const APInt &UndefOp0, 2188 const APInt &UndefOp1) { 2189 EVT VT = BO.getValueType(); 2190 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2191 "Vector binop only"); 2192 2193 EVT EltVT = VT.getVectorElementType(); 2194 unsigned NumElts = VT.getVectorNumElements(); 2195 assert(UndefOp0.getBitWidth() == NumElts && 2196 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2197 2198 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2199 const APInt &UndefVals) { 2200 if (UndefVals[Index]) 2201 return DAG.getUNDEF(EltVT); 2202 2203 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2204 // Try hard to make sure that the getNode() call is not creating temporary 2205 // nodes. Ignore opaque integers because they do not constant fold. 2206 SDValue Elt = BV->getOperand(Index); 2207 auto *C = dyn_cast<ConstantSDNode>(Elt); 2208 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2209 return Elt; 2210 } 2211 2212 return SDValue(); 2213 }; 2214 2215 APInt KnownUndef = APInt::getNullValue(NumElts); 2216 for (unsigned i = 0; i != NumElts; ++i) { 2217 // If both inputs for this element are either constant or undef and match 2218 // the element type, compute the constant/undef result for this element of 2219 // the vector. 2220 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2221 // not handle FP constants. The code within getNode() should be refactored 2222 // to avoid the danger of creating a bogus temporary node here. 2223 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2224 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2225 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2226 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2227 KnownUndef.setBit(i); 2228 } 2229 return KnownUndef; 2230 } 2231 2232 bool TargetLowering::SimplifyDemandedVectorElts( 2233 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2234 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2235 bool AssumeSingleUse) const { 2236 EVT VT = Op.getValueType(); 2237 APInt DemandedElts = OriginalDemandedElts; 2238 unsigned NumElts = DemandedElts.getBitWidth(); 2239 assert(VT.isVector() && "Expected vector op"); 2240 assert(VT.getVectorNumElements() == NumElts && 2241 "Mask size mismatches value type element count!"); 2242 2243 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2244 2245 // Undef operand. 2246 if (Op.isUndef()) { 2247 KnownUndef.setAllBits(); 2248 return false; 2249 } 2250 2251 // If Op has other users, assume that all elements are needed. 2252 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2253 DemandedElts.setAllBits(); 2254 2255 // Not demanding any elements from Op. 2256 if (DemandedElts == 0) { 2257 KnownUndef.setAllBits(); 2258 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2259 } 2260 2261 // Limit search depth. 2262 if (Depth >= SelectionDAG::MaxRecursionDepth) 2263 return false; 2264 2265 SDLoc DL(Op); 2266 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2267 2268 switch (Op.getOpcode()) { 2269 case ISD::SCALAR_TO_VECTOR: { 2270 if (!DemandedElts[0]) { 2271 KnownUndef.setAllBits(); 2272 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2273 } 2274 KnownUndef.setHighBits(NumElts - 1); 2275 break; 2276 } 2277 case ISD::BITCAST: { 2278 SDValue Src = Op.getOperand(0); 2279 EVT SrcVT = Src.getValueType(); 2280 2281 // We only handle vectors here. 2282 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2283 if (!SrcVT.isVector()) 2284 break; 2285 2286 // Fast handling of 'identity' bitcasts. 2287 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2288 if (NumSrcElts == NumElts) 2289 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2290 KnownZero, TLO, Depth + 1); 2291 2292 APInt SrcZero, SrcUndef; 2293 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2294 2295 // Bitcast from 'large element' src vector to 'small element' vector, we 2296 // must demand a source element if any DemandedElt maps to it. 2297 if ((NumElts % NumSrcElts) == 0) { 2298 unsigned Scale = NumElts / NumSrcElts; 2299 for (unsigned i = 0; i != NumElts; ++i) 2300 if (DemandedElts[i]) 2301 SrcDemandedElts.setBit(i / Scale); 2302 2303 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2304 TLO, Depth + 1)) 2305 return true; 2306 2307 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2308 // of the large element. 2309 // TODO - bigendian once we have test coverage. 2310 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2311 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2312 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2313 for (unsigned i = 0; i != NumElts; ++i) 2314 if (DemandedElts[i]) { 2315 unsigned Ofs = (i % Scale) * EltSizeInBits; 2316 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2317 } 2318 2319 KnownBits Known; 2320 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2321 TLO, Depth + 1)) 2322 return true; 2323 } 2324 2325 // If the src element is zero/undef then all the output elements will be - 2326 // only demanded elements are guaranteed to be correct. 2327 for (unsigned i = 0; i != NumSrcElts; ++i) { 2328 if (SrcDemandedElts[i]) { 2329 if (SrcZero[i]) 2330 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2331 if (SrcUndef[i]) 2332 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2333 } 2334 } 2335 } 2336 2337 // Bitcast from 'small element' src vector to 'large element' vector, we 2338 // demand all smaller source elements covered by the larger demanded element 2339 // of this vector. 2340 if ((NumSrcElts % NumElts) == 0) { 2341 unsigned Scale = NumSrcElts / NumElts; 2342 for (unsigned i = 0; i != NumElts; ++i) 2343 if (DemandedElts[i]) 2344 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2345 2346 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2347 TLO, Depth + 1)) 2348 return true; 2349 2350 // If all the src elements covering an output element are zero/undef, then 2351 // the output element will be as well, assuming it was demanded. 2352 for (unsigned i = 0; i != NumElts; ++i) { 2353 if (DemandedElts[i]) { 2354 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2355 KnownZero.setBit(i); 2356 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2357 KnownUndef.setBit(i); 2358 } 2359 } 2360 } 2361 break; 2362 } 2363 case ISD::BUILD_VECTOR: { 2364 // Check all elements and simplify any unused elements with UNDEF. 2365 if (!DemandedElts.isAllOnesValue()) { 2366 // Don't simplify BROADCASTS. 2367 if (llvm::any_of(Op->op_values(), 2368 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2369 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2370 bool Updated = false; 2371 for (unsigned i = 0; i != NumElts; ++i) { 2372 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2373 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2374 KnownUndef.setBit(i); 2375 Updated = true; 2376 } 2377 } 2378 if (Updated) 2379 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2380 } 2381 } 2382 for (unsigned i = 0; i != NumElts; ++i) { 2383 SDValue SrcOp = Op.getOperand(i); 2384 if (SrcOp.isUndef()) { 2385 KnownUndef.setBit(i); 2386 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2387 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2388 KnownZero.setBit(i); 2389 } 2390 } 2391 break; 2392 } 2393 case ISD::CONCAT_VECTORS: { 2394 EVT SubVT = Op.getOperand(0).getValueType(); 2395 unsigned NumSubVecs = Op.getNumOperands(); 2396 unsigned NumSubElts = SubVT.getVectorNumElements(); 2397 for (unsigned i = 0; i != NumSubVecs; ++i) { 2398 SDValue SubOp = Op.getOperand(i); 2399 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2400 APInt SubUndef, SubZero; 2401 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2402 Depth + 1)) 2403 return true; 2404 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2405 KnownZero.insertBits(SubZero, i * NumSubElts); 2406 } 2407 break; 2408 } 2409 case ISD::INSERT_SUBVECTOR: { 2410 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2411 break; 2412 SDValue Base = Op.getOperand(0); 2413 SDValue Sub = Op.getOperand(1); 2414 EVT SubVT = Sub.getValueType(); 2415 unsigned NumSubElts = SubVT.getVectorNumElements(); 2416 const APInt &Idx = Op.getConstantOperandAPInt(2); 2417 if (Idx.ugt(NumElts - NumSubElts)) 2418 break; 2419 unsigned SubIdx = Idx.getZExtValue(); 2420 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2421 if (!SubElts) 2422 return TLO.CombineTo(Op, Base); 2423 APInt SubUndef, SubZero; 2424 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2425 Depth + 1)) 2426 return true; 2427 APInt BaseElts = DemandedElts; 2428 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2429 2430 // If none of the base operand elements are demanded, replace it with undef. 2431 if (!BaseElts && !Base.isUndef()) 2432 return TLO.CombineTo(Op, 2433 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2434 TLO.DAG.getUNDEF(VT), 2435 Op.getOperand(1), 2436 Op.getOperand(2))); 2437 2438 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2439 Depth + 1)) 2440 return true; 2441 KnownUndef.insertBits(SubUndef, SubIdx); 2442 KnownZero.insertBits(SubZero, SubIdx); 2443 2444 // Attempt to avoid multi-use ops if we don't need anything from them. 2445 if (!BaseElts.isAllOnesValue() || !SubElts.isAllOnesValue()) { 2446 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2447 SDValue NewBase = SimplifyMultipleUseDemandedBits( 2448 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 2449 SDValue NewSub = SimplifyMultipleUseDemandedBits( 2450 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 2451 if (NewBase || NewSub) { 2452 NewBase = NewBase ? NewBase : Base; 2453 NewSub = NewSub ? NewSub : Sub; 2454 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewBase, 2455 NewSub, Op.getOperand(2)); 2456 return TLO.CombineTo(Op, NewOp); 2457 } 2458 } 2459 break; 2460 } 2461 case ISD::EXTRACT_SUBVECTOR: { 2462 SDValue Src = Op.getOperand(0); 2463 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2464 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2465 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2466 // Offset the demanded elts by the subvector index. 2467 uint64_t Idx = SubIdx->getZExtValue(); 2468 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2469 APInt SrcUndef, SrcZero; 2470 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2471 Depth + 1)) 2472 return true; 2473 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2474 KnownZero = SrcZero.extractBits(NumElts, Idx); 2475 2476 // Attempt to avoid multi-use ops if we don't need anything from them. 2477 if (!DemandedElts.isAllOnesValue()) { 2478 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2479 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2480 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 2481 if (NewSrc) { 2482 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2483 Op.getOperand(1)); 2484 return TLO.CombineTo(Op, NewOp); 2485 } 2486 } 2487 } 2488 break; 2489 } 2490 case ISD::INSERT_VECTOR_ELT: { 2491 SDValue Vec = Op.getOperand(0); 2492 SDValue Scl = Op.getOperand(1); 2493 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2494 2495 // For a legal, constant insertion index, if we don't need this insertion 2496 // then strip it, else remove it from the demanded elts. 2497 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2498 unsigned Idx = CIdx->getZExtValue(); 2499 if (!DemandedElts[Idx]) 2500 return TLO.CombineTo(Op, Vec); 2501 2502 APInt DemandedVecElts(DemandedElts); 2503 DemandedVecElts.clearBit(Idx); 2504 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2505 KnownZero, TLO, Depth + 1)) 2506 return true; 2507 2508 KnownUndef.clearBit(Idx); 2509 if (Scl.isUndef()) 2510 KnownUndef.setBit(Idx); 2511 2512 KnownZero.clearBit(Idx); 2513 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2514 KnownZero.setBit(Idx); 2515 break; 2516 } 2517 2518 APInt VecUndef, VecZero; 2519 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2520 Depth + 1)) 2521 return true; 2522 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2523 break; 2524 } 2525 case ISD::VSELECT: { 2526 // Try to transform the select condition based on the current demanded 2527 // elements. 2528 // TODO: If a condition element is undef, we can choose from one arm of the 2529 // select (and if one arm is undef, then we can propagate that to the 2530 // result). 2531 // TODO - add support for constant vselect masks (see IR version of this). 2532 APInt UnusedUndef, UnusedZero; 2533 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2534 UnusedZero, TLO, Depth + 1)) 2535 return true; 2536 2537 // See if we can simplify either vselect operand. 2538 APInt DemandedLHS(DemandedElts); 2539 APInt DemandedRHS(DemandedElts); 2540 APInt UndefLHS, ZeroLHS; 2541 APInt UndefRHS, ZeroRHS; 2542 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2543 ZeroLHS, TLO, Depth + 1)) 2544 return true; 2545 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2546 ZeroRHS, TLO, Depth + 1)) 2547 return true; 2548 2549 KnownUndef = UndefLHS & UndefRHS; 2550 KnownZero = ZeroLHS & ZeroRHS; 2551 break; 2552 } 2553 case ISD::VECTOR_SHUFFLE: { 2554 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2555 2556 // Collect demanded elements from shuffle operands.. 2557 APInt DemandedLHS(NumElts, 0); 2558 APInt DemandedRHS(NumElts, 0); 2559 for (unsigned i = 0; i != NumElts; ++i) { 2560 int M = ShuffleMask[i]; 2561 if (M < 0 || !DemandedElts[i]) 2562 continue; 2563 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2564 if (M < (int)NumElts) 2565 DemandedLHS.setBit(M); 2566 else 2567 DemandedRHS.setBit(M - NumElts); 2568 } 2569 2570 // See if we can simplify either shuffle operand. 2571 APInt UndefLHS, ZeroLHS; 2572 APInt UndefRHS, ZeroRHS; 2573 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2574 ZeroLHS, TLO, Depth + 1)) 2575 return true; 2576 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2577 ZeroRHS, TLO, Depth + 1)) 2578 return true; 2579 2580 // Simplify mask using undef elements from LHS/RHS. 2581 bool Updated = false; 2582 bool IdentityLHS = true, IdentityRHS = true; 2583 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2584 for (unsigned i = 0; i != NumElts; ++i) { 2585 int &M = NewMask[i]; 2586 if (M < 0) 2587 continue; 2588 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2589 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2590 Updated = true; 2591 M = -1; 2592 } 2593 IdentityLHS &= (M < 0) || (M == (int)i); 2594 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2595 } 2596 2597 // Update legal shuffle masks based on demanded elements if it won't reduce 2598 // to Identity which can cause premature removal of the shuffle mask. 2599 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2600 SDValue LegalShuffle = 2601 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2602 NewMask, TLO.DAG); 2603 if (LegalShuffle) 2604 return TLO.CombineTo(Op, LegalShuffle); 2605 } 2606 2607 // Propagate undef/zero elements from LHS/RHS. 2608 for (unsigned i = 0; i != NumElts; ++i) { 2609 int M = ShuffleMask[i]; 2610 if (M < 0) { 2611 KnownUndef.setBit(i); 2612 } else if (M < (int)NumElts) { 2613 if (UndefLHS[M]) 2614 KnownUndef.setBit(i); 2615 if (ZeroLHS[M]) 2616 KnownZero.setBit(i); 2617 } else { 2618 if (UndefRHS[M - NumElts]) 2619 KnownUndef.setBit(i); 2620 if (ZeroRHS[M - NumElts]) 2621 KnownZero.setBit(i); 2622 } 2623 } 2624 break; 2625 } 2626 case ISD::ANY_EXTEND_VECTOR_INREG: 2627 case ISD::SIGN_EXTEND_VECTOR_INREG: 2628 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2629 APInt SrcUndef, SrcZero; 2630 SDValue Src = Op.getOperand(0); 2631 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2632 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2633 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2634 Depth + 1)) 2635 return true; 2636 KnownZero = SrcZero.zextOrTrunc(NumElts); 2637 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2638 2639 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2640 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2641 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2642 // aext - if we just need the bottom element then we can bitcast. 2643 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2644 } 2645 2646 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2647 // zext(undef) upper bits are guaranteed to be zero. 2648 if (DemandedElts.isSubsetOf(KnownUndef)) 2649 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2650 KnownUndef.clearAllBits(); 2651 } 2652 break; 2653 } 2654 2655 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2656 // MAX, saturated math, etc. 2657 case ISD::OR: 2658 case ISD::XOR: 2659 case ISD::ADD: 2660 case ISD::SUB: 2661 case ISD::FADD: 2662 case ISD::FSUB: 2663 case ISD::FMUL: 2664 case ISD::FDIV: 2665 case ISD::FREM: { 2666 APInt UndefRHS, ZeroRHS; 2667 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2668 ZeroRHS, TLO, Depth + 1)) 2669 return true; 2670 APInt UndefLHS, ZeroLHS; 2671 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2672 ZeroLHS, TLO, Depth + 1)) 2673 return true; 2674 2675 KnownZero = ZeroLHS & ZeroRHS; 2676 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2677 break; 2678 } 2679 case ISD::SHL: 2680 case ISD::SRL: 2681 case ISD::SRA: 2682 case ISD::ROTL: 2683 case ISD::ROTR: { 2684 APInt UndefRHS, ZeroRHS; 2685 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2686 ZeroRHS, TLO, Depth + 1)) 2687 return true; 2688 APInt UndefLHS, ZeroLHS; 2689 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2690 ZeroLHS, TLO, Depth + 1)) 2691 return true; 2692 2693 KnownZero = ZeroLHS; 2694 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2695 break; 2696 } 2697 case ISD::MUL: 2698 case ISD::AND: { 2699 APInt SrcUndef, SrcZero; 2700 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2701 SrcZero, TLO, Depth + 1)) 2702 return true; 2703 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2704 KnownZero, TLO, Depth + 1)) 2705 return true; 2706 2707 // If either side has a zero element, then the result element is zero, even 2708 // if the other is an UNDEF. 2709 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2710 // and then handle 'and' nodes with the rest of the binop opcodes. 2711 KnownZero |= SrcZero; 2712 KnownUndef &= SrcUndef; 2713 KnownUndef &= ~KnownZero; 2714 break; 2715 } 2716 case ISD::TRUNCATE: 2717 case ISD::SIGN_EXTEND: 2718 case ISD::ZERO_EXTEND: 2719 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2720 KnownZero, TLO, Depth + 1)) 2721 return true; 2722 2723 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2724 // zext(undef) upper bits are guaranteed to be zero. 2725 if (DemandedElts.isSubsetOf(KnownUndef)) 2726 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2727 KnownUndef.clearAllBits(); 2728 } 2729 break; 2730 default: { 2731 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2732 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2733 KnownZero, TLO, Depth)) 2734 return true; 2735 } else { 2736 KnownBits Known; 2737 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2738 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2739 TLO, Depth, AssumeSingleUse)) 2740 return true; 2741 } 2742 break; 2743 } 2744 } 2745 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2746 2747 // Constant fold all undef cases. 2748 // TODO: Handle zero cases as well. 2749 if (DemandedElts.isSubsetOf(KnownUndef)) 2750 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2751 2752 return false; 2753 } 2754 2755 /// Determine which of the bits specified in Mask are known to be either zero or 2756 /// one and return them in the Known. 2757 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2758 KnownBits &Known, 2759 const APInt &DemandedElts, 2760 const SelectionDAG &DAG, 2761 unsigned Depth) const { 2762 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2763 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2764 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2765 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2766 "Should use MaskedValueIsZero if you don't know whether Op" 2767 " is a target node!"); 2768 Known.resetAll(); 2769 } 2770 2771 void TargetLowering::computeKnownBitsForTargetInstr( 2772 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2773 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2774 unsigned Depth) const { 2775 Known.resetAll(); 2776 } 2777 2778 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2779 KnownBits &Known, 2780 const APInt &DemandedElts, 2781 const SelectionDAG &DAG, 2782 unsigned Depth) const { 2783 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2784 2785 if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) { 2786 // The low bits are known zero if the pointer is aligned. 2787 Known.Zero.setLowBits(Log2(*Alignment)); 2788 } 2789 } 2790 2791 /// This method can be implemented by targets that want to expose additional 2792 /// information about sign bits to the DAG Combiner. 2793 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2794 const APInt &, 2795 const SelectionDAG &, 2796 unsigned Depth) const { 2797 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2798 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2799 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2800 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2801 "Should use ComputeNumSignBits if you don't know whether Op" 2802 " is a target node!"); 2803 return 1; 2804 } 2805 2806 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2807 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2808 const MachineRegisterInfo &MRI, unsigned Depth) const { 2809 return 1; 2810 } 2811 2812 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2813 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2814 TargetLoweringOpt &TLO, unsigned Depth) const { 2815 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2816 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2817 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2818 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2819 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2820 " is a target node!"); 2821 return false; 2822 } 2823 2824 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2825 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2826 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2827 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2828 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2829 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2830 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2831 "Should use SimplifyDemandedBits if you don't know whether Op" 2832 " is a target node!"); 2833 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2834 return false; 2835 } 2836 2837 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2838 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2839 SelectionDAG &DAG, unsigned Depth) const { 2840 assert( 2841 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2842 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2843 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2844 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2845 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2846 " is a target node!"); 2847 return SDValue(); 2848 } 2849 2850 SDValue 2851 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2852 SDValue N1, MutableArrayRef<int> Mask, 2853 SelectionDAG &DAG) const { 2854 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2855 if (!LegalMask) { 2856 std::swap(N0, N1); 2857 ShuffleVectorSDNode::commuteMask(Mask); 2858 LegalMask = isShuffleMaskLegal(Mask, VT); 2859 } 2860 2861 if (!LegalMask) 2862 return SDValue(); 2863 2864 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2865 } 2866 2867 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2868 return nullptr; 2869 } 2870 2871 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2872 const SelectionDAG &DAG, 2873 bool SNaN, 2874 unsigned Depth) const { 2875 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2876 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2877 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2878 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2879 "Should use isKnownNeverNaN if you don't know whether Op" 2880 " is a target node!"); 2881 return false; 2882 } 2883 2884 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2885 // work with truncating build vectors and vectors with elements of less than 2886 // 8 bits. 2887 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2888 if (!N) 2889 return false; 2890 2891 APInt CVal; 2892 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2893 CVal = CN->getAPIntValue(); 2894 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2895 auto *CN = BV->getConstantSplatNode(); 2896 if (!CN) 2897 return false; 2898 2899 // If this is a truncating build vector, truncate the splat value. 2900 // Otherwise, we may fail to match the expected values below. 2901 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2902 CVal = CN->getAPIntValue(); 2903 if (BVEltWidth < CVal.getBitWidth()) 2904 CVal = CVal.trunc(BVEltWidth); 2905 } else { 2906 return false; 2907 } 2908 2909 switch (getBooleanContents(N->getValueType(0))) { 2910 case UndefinedBooleanContent: 2911 return CVal[0]; 2912 case ZeroOrOneBooleanContent: 2913 return CVal.isOneValue(); 2914 case ZeroOrNegativeOneBooleanContent: 2915 return CVal.isAllOnesValue(); 2916 } 2917 2918 llvm_unreachable("Invalid boolean contents"); 2919 } 2920 2921 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2922 if (!N) 2923 return false; 2924 2925 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2926 if (!CN) { 2927 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2928 if (!BV) 2929 return false; 2930 2931 // Only interested in constant splats, we don't care about undef 2932 // elements in identifying boolean constants and getConstantSplatNode 2933 // returns NULL if all ops are undef; 2934 CN = BV->getConstantSplatNode(); 2935 if (!CN) 2936 return false; 2937 } 2938 2939 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2940 return !CN->getAPIntValue()[0]; 2941 2942 return CN->isNullValue(); 2943 } 2944 2945 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2946 bool SExt) const { 2947 if (VT == MVT::i1) 2948 return N->isOne(); 2949 2950 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2951 switch (Cnt) { 2952 case TargetLowering::ZeroOrOneBooleanContent: 2953 // An extended value of 1 is always true, unless its original type is i1, 2954 // in which case it will be sign extended to -1. 2955 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2956 case TargetLowering::UndefinedBooleanContent: 2957 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2958 return N->isAllOnesValue() && SExt; 2959 } 2960 llvm_unreachable("Unexpected enumeration."); 2961 } 2962 2963 /// This helper function of SimplifySetCC tries to optimize the comparison when 2964 /// either operand of the SetCC node is a bitwise-and instruction. 2965 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2966 ISD::CondCode Cond, const SDLoc &DL, 2967 DAGCombinerInfo &DCI) const { 2968 // Match these patterns in any of their permutations: 2969 // (X & Y) == Y 2970 // (X & Y) != Y 2971 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2972 std::swap(N0, N1); 2973 2974 EVT OpVT = N0.getValueType(); 2975 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2976 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2977 return SDValue(); 2978 2979 SDValue X, Y; 2980 if (N0.getOperand(0) == N1) { 2981 X = N0.getOperand(1); 2982 Y = N0.getOperand(0); 2983 } else if (N0.getOperand(1) == N1) { 2984 X = N0.getOperand(0); 2985 Y = N0.getOperand(1); 2986 } else { 2987 return SDValue(); 2988 } 2989 2990 SelectionDAG &DAG = DCI.DAG; 2991 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2992 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2993 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2994 // Note that where Y is variable and is known to have at most one bit set 2995 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2996 // equivalent when Y == 0. 2997 assert(OpVT.isInteger()); 2998 Cond = ISD::getSetCCInverse(Cond, OpVT); 2999 if (DCI.isBeforeLegalizeOps() || 3000 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3001 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3002 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3003 // If the target supports an 'and-not' or 'and-complement' logic operation, 3004 // try to use that to make a comparison operation more efficient. 3005 // But don't do this transform if the mask is a single bit because there are 3006 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3007 // 'rlwinm' on PPC). 3008 3009 // Bail out if the compare operand that we want to turn into a zero is 3010 // already a zero (otherwise, infinite loop). 3011 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3012 if (YConst && YConst->isNullValue()) 3013 return SDValue(); 3014 3015 // Transform this into: ~X & Y == 0. 3016 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3017 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3018 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3019 } 3020 3021 return SDValue(); 3022 } 3023 3024 /// There are multiple IR patterns that could be checking whether certain 3025 /// truncation of a signed number would be lossy or not. The pattern which is 3026 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3027 /// We are looking for the following pattern: (KeptBits is a constant) 3028 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3029 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3030 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3031 /// We will unfold it into the natural trunc+sext pattern: 3032 /// ((%x << C) a>> C) dstcond %x 3033 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3034 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3035 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3036 const SDLoc &DL) const { 3037 // We must be comparing with a constant. 3038 ConstantSDNode *C1; 3039 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3040 return SDValue(); 3041 3042 // N0 should be: add %x, (1 << (KeptBits-1)) 3043 if (N0->getOpcode() != ISD::ADD) 3044 return SDValue(); 3045 3046 // And we must be 'add'ing a constant. 3047 ConstantSDNode *C01; 3048 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3049 return SDValue(); 3050 3051 SDValue X = N0->getOperand(0); 3052 EVT XVT = X.getValueType(); 3053 3054 // Validate constants ... 3055 3056 APInt I1 = C1->getAPIntValue(); 3057 3058 ISD::CondCode NewCond; 3059 if (Cond == ISD::CondCode::SETULT) { 3060 NewCond = ISD::CondCode::SETEQ; 3061 } else if (Cond == ISD::CondCode::SETULE) { 3062 NewCond = ISD::CondCode::SETEQ; 3063 // But need to 'canonicalize' the constant. 3064 I1 += 1; 3065 } else if (Cond == ISD::CondCode::SETUGT) { 3066 NewCond = ISD::CondCode::SETNE; 3067 // But need to 'canonicalize' the constant. 3068 I1 += 1; 3069 } else if (Cond == ISD::CondCode::SETUGE) { 3070 NewCond = ISD::CondCode::SETNE; 3071 } else 3072 return SDValue(); 3073 3074 APInt I01 = C01->getAPIntValue(); 3075 3076 auto checkConstants = [&I1, &I01]() -> bool { 3077 // Both of them must be power-of-two, and the constant from setcc is bigger. 3078 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3079 }; 3080 3081 if (checkConstants()) { 3082 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3083 } else { 3084 // What if we invert constants? (and the target predicate) 3085 I1.negate(); 3086 I01.negate(); 3087 assert(XVT.isInteger()); 3088 NewCond = getSetCCInverse(NewCond, XVT); 3089 if (!checkConstants()) 3090 return SDValue(); 3091 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3092 } 3093 3094 // They are power-of-two, so which bit is set? 3095 const unsigned KeptBits = I1.logBase2(); 3096 const unsigned KeptBitsMinusOne = I01.logBase2(); 3097 3098 // Magic! 3099 if (KeptBits != (KeptBitsMinusOne + 1)) 3100 return SDValue(); 3101 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3102 3103 // We don't want to do this in every single case. 3104 SelectionDAG &DAG = DCI.DAG; 3105 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3106 XVT, KeptBits)) 3107 return SDValue(); 3108 3109 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3110 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3111 3112 // Unfold into: ((%x << C) a>> C) cond %x 3113 // Where 'cond' will be either 'eq' or 'ne'. 3114 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3115 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3116 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3117 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3118 3119 return T2; 3120 } 3121 3122 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3123 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3124 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3125 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3126 assert(isConstOrConstSplat(N1C) && 3127 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3128 "Should be a comparison with 0."); 3129 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3130 "Valid only for [in]equality comparisons."); 3131 3132 unsigned NewShiftOpcode; 3133 SDValue X, C, Y; 3134 3135 SelectionDAG &DAG = DCI.DAG; 3136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3137 3138 // Look for '(C l>>/<< Y)'. 3139 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3140 // The shift should be one-use. 3141 if (!V.hasOneUse()) 3142 return false; 3143 unsigned OldShiftOpcode = V.getOpcode(); 3144 switch (OldShiftOpcode) { 3145 case ISD::SHL: 3146 NewShiftOpcode = ISD::SRL; 3147 break; 3148 case ISD::SRL: 3149 NewShiftOpcode = ISD::SHL; 3150 break; 3151 default: 3152 return false; // must be a logical shift. 3153 } 3154 // We should be shifting a constant. 3155 // FIXME: best to use isConstantOrConstantVector(). 3156 C = V.getOperand(0); 3157 ConstantSDNode *CC = 3158 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3159 if (!CC) 3160 return false; 3161 Y = V.getOperand(1); 3162 3163 ConstantSDNode *XC = 3164 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3165 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3166 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3167 }; 3168 3169 // LHS of comparison should be an one-use 'and'. 3170 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3171 return SDValue(); 3172 3173 X = N0.getOperand(0); 3174 SDValue Mask = N0.getOperand(1); 3175 3176 // 'and' is commutative! 3177 if (!Match(Mask)) { 3178 std::swap(X, Mask); 3179 if (!Match(Mask)) 3180 return SDValue(); 3181 } 3182 3183 EVT VT = X.getValueType(); 3184 3185 // Produce: 3186 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3187 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3188 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3189 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3190 return T2; 3191 } 3192 3193 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3194 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3195 /// handle the commuted versions of these patterns. 3196 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3197 ISD::CondCode Cond, const SDLoc &DL, 3198 DAGCombinerInfo &DCI) const { 3199 unsigned BOpcode = N0.getOpcode(); 3200 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3201 "Unexpected binop"); 3202 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3203 3204 // (X + Y) == X --> Y == 0 3205 // (X - Y) == X --> Y == 0 3206 // (X ^ Y) == X --> Y == 0 3207 SelectionDAG &DAG = DCI.DAG; 3208 EVT OpVT = N0.getValueType(); 3209 SDValue X = N0.getOperand(0); 3210 SDValue Y = N0.getOperand(1); 3211 if (X == N1) 3212 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3213 3214 if (Y != N1) 3215 return SDValue(); 3216 3217 // (X + Y) == Y --> X == 0 3218 // (X ^ Y) == Y --> X == 0 3219 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3220 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3221 3222 // The shift would not be valid if the operands are boolean (i1). 3223 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3224 return SDValue(); 3225 3226 // (X - Y) == Y --> X == Y << 1 3227 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3228 !DCI.isBeforeLegalize()); 3229 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3230 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3231 if (!DCI.isCalledByLegalizer()) 3232 DCI.AddToWorklist(YShl1.getNode()); 3233 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3234 } 3235 3236 /// Try to simplify a setcc built with the specified operands and cc. If it is 3237 /// unable to simplify it, return a null SDValue. 3238 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3239 ISD::CondCode Cond, bool foldBooleans, 3240 DAGCombinerInfo &DCI, 3241 const SDLoc &dl) const { 3242 SelectionDAG &DAG = DCI.DAG; 3243 const DataLayout &Layout = DAG.getDataLayout(); 3244 EVT OpVT = N0.getValueType(); 3245 3246 // Constant fold or commute setcc. 3247 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3248 return Fold; 3249 3250 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3251 // TODO: Handle non-splat vector constants. All undef causes trouble. 3252 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3253 if (isConstOrConstSplat(N0) && 3254 (DCI.isBeforeLegalizeOps() || 3255 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3256 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3257 3258 // If we have a subtract with the same 2 non-constant operands as this setcc 3259 // -- but in reverse order -- then try to commute the operands of this setcc 3260 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3261 // instruction on some targets. 3262 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3263 (DCI.isBeforeLegalizeOps() || 3264 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3265 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3266 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3267 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3268 3269 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3270 const APInt &C1 = N1C->getAPIntValue(); 3271 3272 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3273 // equality comparison, then we're just comparing whether X itself is 3274 // zero. 3275 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3276 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3277 N0.getOperand(1).getOpcode() == ISD::Constant) { 3278 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3279 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3280 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3281 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3282 // (srl (ctlz x), 5) == 0 -> X != 0 3283 // (srl (ctlz x), 5) != 1 -> X != 0 3284 Cond = ISD::SETNE; 3285 } else { 3286 // (srl (ctlz x), 5) != 0 -> X == 0 3287 // (srl (ctlz x), 5) == 1 -> X == 0 3288 Cond = ISD::SETEQ; 3289 } 3290 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3291 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3292 Zero, Cond); 3293 } 3294 } 3295 3296 SDValue CTPOP = N0; 3297 // Look through truncs that don't change the value of a ctpop. 3298 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3299 CTPOP = N0.getOperand(0); 3300 3301 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3302 (N0 == CTPOP || 3303 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3304 EVT CTVT = CTPOP.getValueType(); 3305 SDValue CTOp = CTPOP.getOperand(0); 3306 3307 // (ctpop x) u< 2 -> (x & x-1) == 0 3308 // (ctpop x) u> 1 -> (x & x-1) != 0 3309 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3310 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3311 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3312 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3313 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3314 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3315 } 3316 3317 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3318 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3319 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3320 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3321 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3322 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3323 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3324 assert(CTVT.isInteger()); 3325 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3326 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3327 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3328 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3329 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3330 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3331 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3332 } 3333 } 3334 3335 // (zext x) == C --> x == (trunc C) 3336 // (sext x) == C --> x == (trunc C) 3337 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3338 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3339 unsigned MinBits = N0.getValueSizeInBits(); 3340 SDValue PreExt; 3341 bool Signed = false; 3342 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3343 // ZExt 3344 MinBits = N0->getOperand(0).getValueSizeInBits(); 3345 PreExt = N0->getOperand(0); 3346 } else if (N0->getOpcode() == ISD::AND) { 3347 // DAGCombine turns costly ZExts into ANDs 3348 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3349 if ((C->getAPIntValue()+1).isPowerOf2()) { 3350 MinBits = C->getAPIntValue().countTrailingOnes(); 3351 PreExt = N0->getOperand(0); 3352 } 3353 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3354 // SExt 3355 MinBits = N0->getOperand(0).getValueSizeInBits(); 3356 PreExt = N0->getOperand(0); 3357 Signed = true; 3358 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3359 // ZEXTLOAD / SEXTLOAD 3360 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3361 MinBits = LN0->getMemoryVT().getSizeInBits(); 3362 PreExt = N0; 3363 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3364 Signed = true; 3365 MinBits = LN0->getMemoryVT().getSizeInBits(); 3366 PreExt = N0; 3367 } 3368 } 3369 3370 // Figure out how many bits we need to preserve this constant. 3371 unsigned ReqdBits = Signed ? 3372 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3373 C1.getActiveBits(); 3374 3375 // Make sure we're not losing bits from the constant. 3376 if (MinBits > 0 && 3377 MinBits < C1.getBitWidth() && 3378 MinBits >= ReqdBits) { 3379 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3380 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3381 // Will get folded away. 3382 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3383 if (MinBits == 1 && C1 == 1) 3384 // Invert the condition. 3385 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3386 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3387 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3388 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3389 } 3390 3391 // If truncating the setcc operands is not desirable, we can still 3392 // simplify the expression in some cases: 3393 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3394 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3395 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3396 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3397 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3398 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3399 SDValue TopSetCC = N0->getOperand(0); 3400 unsigned N0Opc = N0->getOpcode(); 3401 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3402 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3403 TopSetCC.getOpcode() == ISD::SETCC && 3404 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3405 (isConstFalseVal(N1C) || 3406 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3407 3408 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3409 (!N1C->isNullValue() && Cond == ISD::SETNE); 3410 3411 if (!Inverse) 3412 return TopSetCC; 3413 3414 ISD::CondCode InvCond = ISD::getSetCCInverse( 3415 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3416 TopSetCC.getOperand(0).getValueType()); 3417 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3418 TopSetCC.getOperand(1), 3419 InvCond); 3420 } 3421 } 3422 } 3423 3424 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3425 // equality or unsigned, and all 1 bits of the const are in the same 3426 // partial word, see if we can shorten the load. 3427 if (DCI.isBeforeLegalize() && 3428 !ISD::isSignedIntSetCC(Cond) && 3429 N0.getOpcode() == ISD::AND && C1 == 0 && 3430 N0.getNode()->hasOneUse() && 3431 isa<LoadSDNode>(N0.getOperand(0)) && 3432 N0.getOperand(0).getNode()->hasOneUse() && 3433 isa<ConstantSDNode>(N0.getOperand(1))) { 3434 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3435 APInt bestMask; 3436 unsigned bestWidth = 0, bestOffset = 0; 3437 if (Lod->isSimple() && Lod->isUnindexed()) { 3438 unsigned origWidth = N0.getValueSizeInBits(); 3439 unsigned maskWidth = origWidth; 3440 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3441 // 8 bits, but have to be careful... 3442 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3443 origWidth = Lod->getMemoryVT().getSizeInBits(); 3444 const APInt &Mask = N0.getConstantOperandAPInt(1); 3445 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3446 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3447 for (unsigned offset=0; offset<origWidth/width; offset++) { 3448 if (Mask.isSubsetOf(newMask)) { 3449 if (Layout.isLittleEndian()) 3450 bestOffset = (uint64_t)offset * (width/8); 3451 else 3452 bestOffset = (origWidth/width - offset - 1) * (width/8); 3453 bestMask = Mask.lshr(offset * (width/8) * 8); 3454 bestWidth = width; 3455 break; 3456 } 3457 newMask <<= width; 3458 } 3459 } 3460 } 3461 if (bestWidth) { 3462 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3463 if (newVT.isRound() && 3464 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3465 SDValue Ptr = Lod->getBasePtr(); 3466 if (bestOffset != 0) 3467 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3468 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3469 SDValue NewLoad = DAG.getLoad( 3470 newVT, dl, Lod->getChain(), Ptr, 3471 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3472 return DAG.getSetCC(dl, VT, 3473 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3474 DAG.getConstant(bestMask.trunc(bestWidth), 3475 dl, newVT)), 3476 DAG.getConstant(0LL, dl, newVT), Cond); 3477 } 3478 } 3479 } 3480 3481 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3482 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3483 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3484 3485 // If the comparison constant has bits in the upper part, the 3486 // zero-extended value could never match. 3487 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3488 C1.getBitWidth() - InSize))) { 3489 switch (Cond) { 3490 case ISD::SETUGT: 3491 case ISD::SETUGE: 3492 case ISD::SETEQ: 3493 return DAG.getConstant(0, dl, VT); 3494 case ISD::SETULT: 3495 case ISD::SETULE: 3496 case ISD::SETNE: 3497 return DAG.getConstant(1, dl, VT); 3498 case ISD::SETGT: 3499 case ISD::SETGE: 3500 // True if the sign bit of C1 is set. 3501 return DAG.getConstant(C1.isNegative(), dl, VT); 3502 case ISD::SETLT: 3503 case ISD::SETLE: 3504 // True if the sign bit of C1 isn't set. 3505 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3506 default: 3507 break; 3508 } 3509 } 3510 3511 // Otherwise, we can perform the comparison with the low bits. 3512 switch (Cond) { 3513 case ISD::SETEQ: 3514 case ISD::SETNE: 3515 case ISD::SETUGT: 3516 case ISD::SETUGE: 3517 case ISD::SETULT: 3518 case ISD::SETULE: { 3519 EVT newVT = N0.getOperand(0).getValueType(); 3520 if (DCI.isBeforeLegalizeOps() || 3521 (isOperationLegal(ISD::SETCC, newVT) && 3522 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3523 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3524 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3525 3526 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3527 NewConst, Cond); 3528 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3529 } 3530 break; 3531 } 3532 default: 3533 break; // todo, be more careful with signed comparisons 3534 } 3535 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3536 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3537 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3538 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3539 EVT ExtDstTy = N0.getValueType(); 3540 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3541 3542 // If the constant doesn't fit into the number of bits for the source of 3543 // the sign extension, it is impossible for both sides to be equal. 3544 if (C1.getMinSignedBits() > ExtSrcTyBits) 3545 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3546 3547 SDValue ZextOp; 3548 EVT Op0Ty = N0.getOperand(0).getValueType(); 3549 if (Op0Ty == ExtSrcTy) { 3550 ZextOp = N0.getOperand(0); 3551 } else { 3552 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3553 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3554 DAG.getConstant(Imm, dl, Op0Ty)); 3555 } 3556 if (!DCI.isCalledByLegalizer()) 3557 DCI.AddToWorklist(ZextOp.getNode()); 3558 // Otherwise, make this a use of a zext. 3559 return DAG.getSetCC(dl, VT, ZextOp, 3560 DAG.getConstant(C1 & APInt::getLowBitsSet( 3561 ExtDstTyBits, 3562 ExtSrcTyBits), 3563 dl, ExtDstTy), 3564 Cond); 3565 } else if ((N1C->isNullValue() || N1C->isOne()) && 3566 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3567 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3568 if (N0.getOpcode() == ISD::SETCC && 3569 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3570 (N0.getValueType() == MVT::i1 || 3571 getBooleanContents(N0.getOperand(0).getValueType()) == 3572 ZeroOrOneBooleanContent)) { 3573 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3574 if (TrueWhenTrue) 3575 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3576 // Invert the condition. 3577 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3578 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3579 if (DCI.isBeforeLegalizeOps() || 3580 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3581 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3582 } 3583 3584 if ((N0.getOpcode() == ISD::XOR || 3585 (N0.getOpcode() == ISD::AND && 3586 N0.getOperand(0).getOpcode() == ISD::XOR && 3587 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3588 isa<ConstantSDNode>(N0.getOperand(1)) && 3589 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3590 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3591 // can only do this if the top bits are known zero. 3592 unsigned BitWidth = N0.getValueSizeInBits(); 3593 if (DAG.MaskedValueIsZero(N0, 3594 APInt::getHighBitsSet(BitWidth, 3595 BitWidth-1))) { 3596 // Okay, get the un-inverted input value. 3597 SDValue Val; 3598 if (N0.getOpcode() == ISD::XOR) { 3599 Val = N0.getOperand(0); 3600 } else { 3601 assert(N0.getOpcode() == ISD::AND && 3602 N0.getOperand(0).getOpcode() == ISD::XOR); 3603 // ((X^1)&1)^1 -> X & 1 3604 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3605 N0.getOperand(0).getOperand(0), 3606 N0.getOperand(1)); 3607 } 3608 3609 return DAG.getSetCC(dl, VT, Val, N1, 3610 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3611 } 3612 } else if (N1C->isOne()) { 3613 SDValue Op0 = N0; 3614 if (Op0.getOpcode() == ISD::TRUNCATE) 3615 Op0 = Op0.getOperand(0); 3616 3617 if ((Op0.getOpcode() == ISD::XOR) && 3618 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3619 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3620 SDValue XorLHS = Op0.getOperand(0); 3621 SDValue XorRHS = Op0.getOperand(1); 3622 // Ensure that the input setccs return an i1 type or 0/1 value. 3623 if (Op0.getValueType() == MVT::i1 || 3624 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3625 ZeroOrOneBooleanContent && 3626 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3627 ZeroOrOneBooleanContent)) { 3628 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3629 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3630 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3631 } 3632 } 3633 if (Op0.getOpcode() == ISD::AND && 3634 isa<ConstantSDNode>(Op0.getOperand(1)) && 3635 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3636 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3637 if (Op0.getValueType().bitsGT(VT)) 3638 Op0 = DAG.getNode(ISD::AND, dl, VT, 3639 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3640 DAG.getConstant(1, dl, VT)); 3641 else if (Op0.getValueType().bitsLT(VT)) 3642 Op0 = DAG.getNode(ISD::AND, dl, VT, 3643 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3644 DAG.getConstant(1, dl, VT)); 3645 3646 return DAG.getSetCC(dl, VT, Op0, 3647 DAG.getConstant(0, dl, Op0.getValueType()), 3648 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3649 } 3650 if (Op0.getOpcode() == ISD::AssertZext && 3651 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3652 return DAG.getSetCC(dl, VT, Op0, 3653 DAG.getConstant(0, dl, Op0.getValueType()), 3654 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3655 } 3656 } 3657 3658 // Given: 3659 // icmp eq/ne (urem %x, %y), 0 3660 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3661 // icmp eq/ne %x, 0 3662 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3663 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3664 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3665 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3666 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3667 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3668 } 3669 3670 if (SDValue V = 3671 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3672 return V; 3673 } 3674 3675 // These simplifications apply to splat vectors as well. 3676 // TODO: Handle more splat vector cases. 3677 if (auto *N1C = isConstOrConstSplat(N1)) { 3678 const APInt &C1 = N1C->getAPIntValue(); 3679 3680 APInt MinVal, MaxVal; 3681 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3682 if (ISD::isSignedIntSetCC(Cond)) { 3683 MinVal = APInt::getSignedMinValue(OperandBitSize); 3684 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3685 } else { 3686 MinVal = APInt::getMinValue(OperandBitSize); 3687 MaxVal = APInt::getMaxValue(OperandBitSize); 3688 } 3689 3690 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3691 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3692 // X >= MIN --> true 3693 if (C1 == MinVal) 3694 return DAG.getBoolConstant(true, dl, VT, OpVT); 3695 3696 if (!VT.isVector()) { // TODO: Support this for vectors. 3697 // X >= C0 --> X > (C0 - 1) 3698 APInt C = C1 - 1; 3699 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3700 if ((DCI.isBeforeLegalizeOps() || 3701 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3702 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3703 isLegalICmpImmediate(C.getSExtValue())))) { 3704 return DAG.getSetCC(dl, VT, N0, 3705 DAG.getConstant(C, dl, N1.getValueType()), 3706 NewCC); 3707 } 3708 } 3709 } 3710 3711 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3712 // X <= MAX --> true 3713 if (C1 == MaxVal) 3714 return DAG.getBoolConstant(true, dl, VT, OpVT); 3715 3716 // X <= C0 --> X < (C0 + 1) 3717 if (!VT.isVector()) { // TODO: Support this for vectors. 3718 APInt C = C1 + 1; 3719 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3720 if ((DCI.isBeforeLegalizeOps() || 3721 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3722 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3723 isLegalICmpImmediate(C.getSExtValue())))) { 3724 return DAG.getSetCC(dl, VT, N0, 3725 DAG.getConstant(C, dl, N1.getValueType()), 3726 NewCC); 3727 } 3728 } 3729 } 3730 3731 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3732 if (C1 == MinVal) 3733 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3734 3735 // TODO: Support this for vectors after legalize ops. 3736 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3737 // Canonicalize setlt X, Max --> setne X, Max 3738 if (C1 == MaxVal) 3739 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3740 3741 // If we have setult X, 1, turn it into seteq X, 0 3742 if (C1 == MinVal+1) 3743 return DAG.getSetCC(dl, VT, N0, 3744 DAG.getConstant(MinVal, dl, N0.getValueType()), 3745 ISD::SETEQ); 3746 } 3747 } 3748 3749 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3750 if (C1 == MaxVal) 3751 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3752 3753 // TODO: Support this for vectors after legalize ops. 3754 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3755 // Canonicalize setgt X, Min --> setne X, Min 3756 if (C1 == MinVal) 3757 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3758 3759 // If we have setugt X, Max-1, turn it into seteq X, Max 3760 if (C1 == MaxVal-1) 3761 return DAG.getSetCC(dl, VT, N0, 3762 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3763 ISD::SETEQ); 3764 } 3765 } 3766 3767 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3768 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3769 if (C1.isNullValue()) 3770 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3771 VT, N0, N1, Cond, DCI, dl)) 3772 return CC; 3773 } 3774 3775 // If we have "setcc X, C0", check to see if we can shrink the immediate 3776 // by changing cc. 3777 // TODO: Support this for vectors after legalize ops. 3778 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3779 // SETUGT X, SINTMAX -> SETLT X, 0 3780 if (Cond == ISD::SETUGT && 3781 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3782 return DAG.getSetCC(dl, VT, N0, 3783 DAG.getConstant(0, dl, N1.getValueType()), 3784 ISD::SETLT); 3785 3786 // SETULT X, SINTMIN -> SETGT X, -1 3787 if (Cond == ISD::SETULT && 3788 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3789 SDValue ConstMinusOne = 3790 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3791 N1.getValueType()); 3792 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3793 } 3794 } 3795 } 3796 3797 // Back to non-vector simplifications. 3798 // TODO: Can we do these for vector splats? 3799 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3801 const APInt &C1 = N1C->getAPIntValue(); 3802 EVT ShValTy = N0.getValueType(); 3803 3804 // Fold bit comparisons when we can. 3805 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3806 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3807 N0.getOpcode() == ISD::AND) { 3808 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3809 EVT ShiftTy = 3810 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3811 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3812 // Perform the xform if the AND RHS is a single bit. 3813 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3814 if (AndRHS->getAPIntValue().isPowerOf2() && 3815 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3816 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3817 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3818 DAG.getConstant(ShCt, dl, ShiftTy))); 3819 } 3820 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3821 // (X & 8) == 8 --> (X & 8) >> 3 3822 // Perform the xform if C1 is a single bit. 3823 unsigned ShCt = C1.logBase2(); 3824 if (C1.isPowerOf2() && 3825 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3826 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3827 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3828 DAG.getConstant(ShCt, dl, ShiftTy))); 3829 } 3830 } 3831 } 3832 } 3833 3834 if (C1.getMinSignedBits() <= 64 && 3835 !isLegalICmpImmediate(C1.getSExtValue())) { 3836 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3837 // (X & -256) == 256 -> (X >> 8) == 1 3838 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3839 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3840 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3841 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3842 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3843 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3844 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3845 SDValue Shift = 3846 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3847 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3848 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3849 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3850 } 3851 } 3852 } 3853 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3854 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3855 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3856 // X < 0x100000000 -> (X >> 32) < 1 3857 // X >= 0x100000000 -> (X >> 32) >= 1 3858 // X <= 0x0ffffffff -> (X >> 32) < 1 3859 // X > 0x0ffffffff -> (X >> 32) >= 1 3860 unsigned ShiftBits; 3861 APInt NewC = C1; 3862 ISD::CondCode NewCond = Cond; 3863 if (AdjOne) { 3864 ShiftBits = C1.countTrailingOnes(); 3865 NewC = NewC + 1; 3866 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3867 } else { 3868 ShiftBits = C1.countTrailingZeros(); 3869 } 3870 NewC.lshrInPlace(ShiftBits); 3871 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3872 isLegalICmpImmediate(NewC.getSExtValue()) && 3873 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3874 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3875 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3876 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3877 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3878 } 3879 } 3880 } 3881 } 3882 3883 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3884 auto *CFP = cast<ConstantFPSDNode>(N1); 3885 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3886 3887 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3888 // constant if knowing that the operand is non-nan is enough. We prefer to 3889 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3890 // materialize 0.0. 3891 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3892 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3893 3894 // setcc (fneg x), C -> setcc swap(pred) x, -C 3895 if (N0.getOpcode() == ISD::FNEG) { 3896 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3897 if (DCI.isBeforeLegalizeOps() || 3898 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3899 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3900 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3901 } 3902 } 3903 3904 // If the condition is not legal, see if we can find an equivalent one 3905 // which is legal. 3906 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3907 // If the comparison was an awkward floating-point == or != and one of 3908 // the comparison operands is infinity or negative infinity, convert the 3909 // condition to a less-awkward <= or >=. 3910 if (CFP->getValueAPF().isInfinity()) { 3911 bool IsNegInf = CFP->getValueAPF().isNegative(); 3912 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3913 switch (Cond) { 3914 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3915 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3916 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3917 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3918 default: break; 3919 } 3920 if (NewCond != ISD::SETCC_INVALID && 3921 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3922 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3923 } 3924 } 3925 } 3926 3927 if (N0 == N1) { 3928 // The sext(setcc()) => setcc() optimization relies on the appropriate 3929 // constant being emitted. 3930 assert(!N0.getValueType().isInteger() && 3931 "Integer types should be handled by FoldSetCC"); 3932 3933 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3934 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3935 if (UOF == 2) // FP operators that are undefined on NaNs. 3936 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3937 if (UOF == unsigned(EqTrue)) 3938 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3939 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3940 // if it is not already. 3941 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3942 if (NewCond != Cond && 3943 (DCI.isBeforeLegalizeOps() || 3944 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3945 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3946 } 3947 3948 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3949 N0.getValueType().isInteger()) { 3950 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3951 N0.getOpcode() == ISD::XOR) { 3952 // Simplify (X+Y) == (X+Z) --> Y == Z 3953 if (N0.getOpcode() == N1.getOpcode()) { 3954 if (N0.getOperand(0) == N1.getOperand(0)) 3955 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3956 if (N0.getOperand(1) == N1.getOperand(1)) 3957 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3958 if (isCommutativeBinOp(N0.getOpcode())) { 3959 // If X op Y == Y op X, try other combinations. 3960 if (N0.getOperand(0) == N1.getOperand(1)) 3961 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3962 Cond); 3963 if (N0.getOperand(1) == N1.getOperand(0)) 3964 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3965 Cond); 3966 } 3967 } 3968 3969 // If RHS is a legal immediate value for a compare instruction, we need 3970 // to be careful about increasing register pressure needlessly. 3971 bool LegalRHSImm = false; 3972 3973 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3974 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3975 // Turn (X+C1) == C2 --> X == C2-C1 3976 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3977 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3978 DAG.getConstant(RHSC->getAPIntValue()- 3979 LHSR->getAPIntValue(), 3980 dl, N0.getValueType()), Cond); 3981 } 3982 3983 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3984 if (N0.getOpcode() == ISD::XOR) 3985 // If we know that all of the inverted bits are zero, don't bother 3986 // performing the inversion. 3987 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3988 return 3989 DAG.getSetCC(dl, VT, N0.getOperand(0), 3990 DAG.getConstant(LHSR->getAPIntValue() ^ 3991 RHSC->getAPIntValue(), 3992 dl, N0.getValueType()), 3993 Cond); 3994 } 3995 3996 // Turn (C1-X) == C2 --> X == C1-C2 3997 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3998 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3999 return 4000 DAG.getSetCC(dl, VT, N0.getOperand(1), 4001 DAG.getConstant(SUBC->getAPIntValue() - 4002 RHSC->getAPIntValue(), 4003 dl, N0.getValueType()), 4004 Cond); 4005 } 4006 } 4007 4008 // Could RHSC fold directly into a compare? 4009 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4010 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4011 } 4012 4013 // (X+Y) == X --> Y == 0 and similar folds. 4014 // Don't do this if X is an immediate that can fold into a cmp 4015 // instruction and X+Y has other uses. It could be an induction variable 4016 // chain, and the transform would increase register pressure. 4017 if (!LegalRHSImm || N0.hasOneUse()) 4018 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4019 return V; 4020 } 4021 4022 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4023 N1.getOpcode() == ISD::XOR) 4024 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4025 return V; 4026 4027 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4028 return V; 4029 } 4030 4031 // Fold remainder of division by a constant. 4032 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4033 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4034 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4035 4036 // When division is cheap or optimizing for minimum size, 4037 // fall through to DIVREM creation by skipping this fold. 4038 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4039 if (N0.getOpcode() == ISD::UREM) { 4040 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4041 return Folded; 4042 } else if (N0.getOpcode() == ISD::SREM) { 4043 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4044 return Folded; 4045 } 4046 } 4047 } 4048 4049 // Fold away ALL boolean setcc's. 4050 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4051 SDValue Temp; 4052 switch (Cond) { 4053 default: llvm_unreachable("Unknown integer setcc!"); 4054 case ISD::SETEQ: // X == Y -> ~(X^Y) 4055 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4056 N0 = DAG.getNOT(dl, Temp, OpVT); 4057 if (!DCI.isCalledByLegalizer()) 4058 DCI.AddToWorklist(Temp.getNode()); 4059 break; 4060 case ISD::SETNE: // X != Y --> (X^Y) 4061 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4062 break; 4063 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4064 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4065 Temp = DAG.getNOT(dl, N0, OpVT); 4066 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4067 if (!DCI.isCalledByLegalizer()) 4068 DCI.AddToWorklist(Temp.getNode()); 4069 break; 4070 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4071 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4072 Temp = DAG.getNOT(dl, N1, OpVT); 4073 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4074 if (!DCI.isCalledByLegalizer()) 4075 DCI.AddToWorklist(Temp.getNode()); 4076 break; 4077 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4078 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4079 Temp = DAG.getNOT(dl, N0, OpVT); 4080 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4081 if (!DCI.isCalledByLegalizer()) 4082 DCI.AddToWorklist(Temp.getNode()); 4083 break; 4084 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4085 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4086 Temp = DAG.getNOT(dl, N1, OpVT); 4087 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4088 break; 4089 } 4090 if (VT.getScalarType() != MVT::i1) { 4091 if (!DCI.isCalledByLegalizer()) 4092 DCI.AddToWorklist(N0.getNode()); 4093 // FIXME: If running after legalize, we probably can't do this. 4094 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4095 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4096 } 4097 return N0; 4098 } 4099 4100 // Could not fold it. 4101 return SDValue(); 4102 } 4103 4104 /// Returns true (and the GlobalValue and the offset) if the node is a 4105 /// GlobalAddress + offset. 4106 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4107 int64_t &Offset) const { 4108 4109 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4110 4111 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4112 GA = GASD->getGlobal(); 4113 Offset += GASD->getOffset(); 4114 return true; 4115 } 4116 4117 if (N->getOpcode() == ISD::ADD) { 4118 SDValue N1 = N->getOperand(0); 4119 SDValue N2 = N->getOperand(1); 4120 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4121 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4122 Offset += V->getSExtValue(); 4123 return true; 4124 } 4125 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4126 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4127 Offset += V->getSExtValue(); 4128 return true; 4129 } 4130 } 4131 } 4132 4133 return false; 4134 } 4135 4136 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4137 DAGCombinerInfo &DCI) const { 4138 // Default implementation: no optimization. 4139 return SDValue(); 4140 } 4141 4142 //===----------------------------------------------------------------------===// 4143 // Inline Assembler Implementation Methods 4144 //===----------------------------------------------------------------------===// 4145 4146 TargetLowering::ConstraintType 4147 TargetLowering::getConstraintType(StringRef Constraint) const { 4148 unsigned S = Constraint.size(); 4149 4150 if (S == 1) { 4151 switch (Constraint[0]) { 4152 default: break; 4153 case 'r': 4154 return C_RegisterClass; 4155 case 'm': // memory 4156 case 'o': // offsetable 4157 case 'V': // not offsetable 4158 return C_Memory; 4159 case 'n': // Simple Integer 4160 case 'E': // Floating Point Constant 4161 case 'F': // Floating Point Constant 4162 return C_Immediate; 4163 case 'i': // Simple Integer or Relocatable Constant 4164 case 's': // Relocatable Constant 4165 case 'p': // Address. 4166 case 'X': // Allow ANY value. 4167 case 'I': // Target registers. 4168 case 'J': 4169 case 'K': 4170 case 'L': 4171 case 'M': 4172 case 'N': 4173 case 'O': 4174 case 'P': 4175 case '<': 4176 case '>': 4177 return C_Other; 4178 } 4179 } 4180 4181 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4182 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4183 return C_Memory; 4184 return C_Register; 4185 } 4186 return C_Unknown; 4187 } 4188 4189 /// Try to replace an X constraint, which matches anything, with another that 4190 /// has more specific requirements based on the type of the corresponding 4191 /// operand. 4192 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4193 if (ConstraintVT.isInteger()) 4194 return "r"; 4195 if (ConstraintVT.isFloatingPoint()) 4196 return "f"; // works for many targets 4197 return nullptr; 4198 } 4199 4200 SDValue TargetLowering::LowerAsmOutputForConstraint( 4201 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4202 SelectionDAG &DAG) const { 4203 return SDValue(); 4204 } 4205 4206 /// Lower the specified operand into the Ops vector. 4207 /// If it is invalid, don't add anything to Ops. 4208 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4209 std::string &Constraint, 4210 std::vector<SDValue> &Ops, 4211 SelectionDAG &DAG) const { 4212 4213 if (Constraint.length() > 1) return; 4214 4215 char ConstraintLetter = Constraint[0]; 4216 switch (ConstraintLetter) { 4217 default: break; 4218 case 'X': // Allows any operand; labels (basic block) use this. 4219 if (Op.getOpcode() == ISD::BasicBlock || 4220 Op.getOpcode() == ISD::TargetBlockAddress) { 4221 Ops.push_back(Op); 4222 return; 4223 } 4224 LLVM_FALLTHROUGH; 4225 case 'i': // Simple Integer or Relocatable Constant 4226 case 'n': // Simple Integer 4227 case 's': { // Relocatable Constant 4228 4229 GlobalAddressSDNode *GA; 4230 ConstantSDNode *C; 4231 BlockAddressSDNode *BA; 4232 uint64_t Offset = 0; 4233 4234 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4235 // etc., since getelementpointer is variadic. We can't use 4236 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4237 // while in this case the GA may be furthest from the root node which is 4238 // likely an ISD::ADD. 4239 while (1) { 4240 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4241 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4242 GA->getValueType(0), 4243 Offset + GA->getOffset())); 4244 return; 4245 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4246 ConstraintLetter != 's') { 4247 // gcc prints these as sign extended. Sign extend value to 64 bits 4248 // now; without this it would get ZExt'd later in 4249 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4250 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4251 BooleanContent BCont = getBooleanContents(MVT::i64); 4252 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4253 : ISD::SIGN_EXTEND; 4254 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4255 : C->getSExtValue(); 4256 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4257 SDLoc(C), MVT::i64)); 4258 return; 4259 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4260 ConstraintLetter != 'n') { 4261 Ops.push_back(DAG.getTargetBlockAddress( 4262 BA->getBlockAddress(), BA->getValueType(0), 4263 Offset + BA->getOffset(), BA->getTargetFlags())); 4264 return; 4265 } else { 4266 const unsigned OpCode = Op.getOpcode(); 4267 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4268 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4269 Op = Op.getOperand(1); 4270 // Subtraction is not commutative. 4271 else if (OpCode == ISD::ADD && 4272 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4273 Op = Op.getOperand(0); 4274 else 4275 return; 4276 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4277 continue; 4278 } 4279 } 4280 return; 4281 } 4282 break; 4283 } 4284 } 4285 } 4286 4287 std::pair<unsigned, const TargetRegisterClass *> 4288 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4289 StringRef Constraint, 4290 MVT VT) const { 4291 if (Constraint.empty() || Constraint[0] != '{') 4292 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4293 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4294 4295 // Remove the braces from around the name. 4296 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4297 4298 std::pair<unsigned, const TargetRegisterClass *> R = 4299 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4300 4301 // Figure out which register class contains this reg. 4302 for (const TargetRegisterClass *RC : RI->regclasses()) { 4303 // If none of the value types for this register class are valid, we 4304 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4305 if (!isLegalRC(*RI, *RC)) 4306 continue; 4307 4308 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4309 I != E; ++I) { 4310 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4311 std::pair<unsigned, const TargetRegisterClass *> S = 4312 std::make_pair(*I, RC); 4313 4314 // If this register class has the requested value type, return it, 4315 // otherwise keep searching and return the first class found 4316 // if no other is found which explicitly has the requested type. 4317 if (RI->isTypeLegalForClass(*RC, VT)) 4318 return S; 4319 if (!R.second) 4320 R = S; 4321 } 4322 } 4323 } 4324 4325 return R; 4326 } 4327 4328 //===----------------------------------------------------------------------===// 4329 // Constraint Selection. 4330 4331 /// Return true of this is an input operand that is a matching constraint like 4332 /// "4". 4333 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4334 assert(!ConstraintCode.empty() && "No known constraint!"); 4335 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4336 } 4337 4338 /// If this is an input matching constraint, this method returns the output 4339 /// operand it matches. 4340 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4341 assert(!ConstraintCode.empty() && "No known constraint!"); 4342 return atoi(ConstraintCode.c_str()); 4343 } 4344 4345 /// Split up the constraint string from the inline assembly value into the 4346 /// specific constraints and their prefixes, and also tie in the associated 4347 /// operand values. 4348 /// If this returns an empty vector, and if the constraint string itself 4349 /// isn't empty, there was an error parsing. 4350 TargetLowering::AsmOperandInfoVector 4351 TargetLowering::ParseConstraints(const DataLayout &DL, 4352 const TargetRegisterInfo *TRI, 4353 const CallBase &Call) const { 4354 /// Information about all of the constraints. 4355 AsmOperandInfoVector ConstraintOperands; 4356 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4357 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4358 4359 // Do a prepass over the constraints, canonicalizing them, and building up the 4360 // ConstraintOperands list. 4361 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4362 unsigned ResNo = 0; // ResNo - The result number of the next output. 4363 4364 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4365 ConstraintOperands.emplace_back(std::move(CI)); 4366 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4367 4368 // Update multiple alternative constraint count. 4369 if (OpInfo.multipleAlternatives.size() > maCount) 4370 maCount = OpInfo.multipleAlternatives.size(); 4371 4372 OpInfo.ConstraintVT = MVT::Other; 4373 4374 // Compute the value type for each operand. 4375 switch (OpInfo.Type) { 4376 case InlineAsm::isOutput: 4377 // Indirect outputs just consume an argument. 4378 if (OpInfo.isIndirect) { 4379 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4380 break; 4381 } 4382 4383 // The return value of the call is this value. As such, there is no 4384 // corresponding argument. 4385 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4386 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4387 OpInfo.ConstraintVT = 4388 getSimpleValueType(DL, STy->getElementType(ResNo)); 4389 } else { 4390 assert(ResNo == 0 && "Asm only has one result!"); 4391 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4392 } 4393 ++ResNo; 4394 break; 4395 case InlineAsm::isInput: 4396 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4397 break; 4398 case InlineAsm::isClobber: 4399 // Nothing to do. 4400 break; 4401 } 4402 4403 if (OpInfo.CallOperandVal) { 4404 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4405 if (OpInfo.isIndirect) { 4406 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4407 if (!PtrTy) 4408 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4409 OpTy = PtrTy->getElementType(); 4410 } 4411 4412 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4413 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4414 if (STy->getNumElements() == 1) 4415 OpTy = STy->getElementType(0); 4416 4417 // If OpTy is not a single value, it may be a struct/union that we 4418 // can tile with integers. 4419 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4420 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4421 switch (BitSize) { 4422 default: break; 4423 case 1: 4424 case 8: 4425 case 16: 4426 case 32: 4427 case 64: 4428 case 128: 4429 OpInfo.ConstraintVT = 4430 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4431 break; 4432 } 4433 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4434 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4435 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4436 } else { 4437 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4438 } 4439 } 4440 } 4441 4442 // If we have multiple alternative constraints, select the best alternative. 4443 if (!ConstraintOperands.empty()) { 4444 if (maCount) { 4445 unsigned bestMAIndex = 0; 4446 int bestWeight = -1; 4447 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4448 int weight = -1; 4449 unsigned maIndex; 4450 // Compute the sums of the weights for each alternative, keeping track 4451 // of the best (highest weight) one so far. 4452 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4453 int weightSum = 0; 4454 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4455 cIndex != eIndex; ++cIndex) { 4456 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4457 if (OpInfo.Type == InlineAsm::isClobber) 4458 continue; 4459 4460 // If this is an output operand with a matching input operand, 4461 // look up the matching input. If their types mismatch, e.g. one 4462 // is an integer, the other is floating point, or their sizes are 4463 // different, flag it as an maCantMatch. 4464 if (OpInfo.hasMatchingInput()) { 4465 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4466 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4467 if ((OpInfo.ConstraintVT.isInteger() != 4468 Input.ConstraintVT.isInteger()) || 4469 (OpInfo.ConstraintVT.getSizeInBits() != 4470 Input.ConstraintVT.getSizeInBits())) { 4471 weightSum = -1; // Can't match. 4472 break; 4473 } 4474 } 4475 } 4476 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4477 if (weight == -1) { 4478 weightSum = -1; 4479 break; 4480 } 4481 weightSum += weight; 4482 } 4483 // Update best. 4484 if (weightSum > bestWeight) { 4485 bestWeight = weightSum; 4486 bestMAIndex = maIndex; 4487 } 4488 } 4489 4490 // Now select chosen alternative in each constraint. 4491 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4492 cIndex != eIndex; ++cIndex) { 4493 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4494 if (cInfo.Type == InlineAsm::isClobber) 4495 continue; 4496 cInfo.selectAlternative(bestMAIndex); 4497 } 4498 } 4499 } 4500 4501 // Check and hook up tied operands, choose constraint code to use. 4502 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4503 cIndex != eIndex; ++cIndex) { 4504 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4505 4506 // If this is an output operand with a matching input operand, look up the 4507 // matching input. If their types mismatch, e.g. one is an integer, the 4508 // other is floating point, or their sizes are different, flag it as an 4509 // error. 4510 if (OpInfo.hasMatchingInput()) { 4511 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4512 4513 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4514 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4515 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4516 OpInfo.ConstraintVT); 4517 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4518 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4519 Input.ConstraintVT); 4520 if ((OpInfo.ConstraintVT.isInteger() != 4521 Input.ConstraintVT.isInteger()) || 4522 (MatchRC.second != InputRC.second)) { 4523 report_fatal_error("Unsupported asm: input constraint" 4524 " with a matching output constraint of" 4525 " incompatible type!"); 4526 } 4527 } 4528 } 4529 } 4530 4531 return ConstraintOperands; 4532 } 4533 4534 /// Return an integer indicating how general CT is. 4535 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4536 switch (CT) { 4537 case TargetLowering::C_Immediate: 4538 case TargetLowering::C_Other: 4539 case TargetLowering::C_Unknown: 4540 return 0; 4541 case TargetLowering::C_Register: 4542 return 1; 4543 case TargetLowering::C_RegisterClass: 4544 return 2; 4545 case TargetLowering::C_Memory: 4546 return 3; 4547 } 4548 llvm_unreachable("Invalid constraint type"); 4549 } 4550 4551 /// Examine constraint type and operand type and determine a weight value. 4552 /// This object must already have been set up with the operand type 4553 /// and the current alternative constraint selected. 4554 TargetLowering::ConstraintWeight 4555 TargetLowering::getMultipleConstraintMatchWeight( 4556 AsmOperandInfo &info, int maIndex) const { 4557 InlineAsm::ConstraintCodeVector *rCodes; 4558 if (maIndex >= (int)info.multipleAlternatives.size()) 4559 rCodes = &info.Codes; 4560 else 4561 rCodes = &info.multipleAlternatives[maIndex].Codes; 4562 ConstraintWeight BestWeight = CW_Invalid; 4563 4564 // Loop over the options, keeping track of the most general one. 4565 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4566 ConstraintWeight weight = 4567 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4568 if (weight > BestWeight) 4569 BestWeight = weight; 4570 } 4571 4572 return BestWeight; 4573 } 4574 4575 /// Examine constraint type and operand type and determine a weight value. 4576 /// This object must already have been set up with the operand type 4577 /// and the current alternative constraint selected. 4578 TargetLowering::ConstraintWeight 4579 TargetLowering::getSingleConstraintMatchWeight( 4580 AsmOperandInfo &info, const char *constraint) const { 4581 ConstraintWeight weight = CW_Invalid; 4582 Value *CallOperandVal = info.CallOperandVal; 4583 // If we don't have a value, we can't do a match, 4584 // but allow it at the lowest weight. 4585 if (!CallOperandVal) 4586 return CW_Default; 4587 // Look at the constraint type. 4588 switch (*constraint) { 4589 case 'i': // immediate integer. 4590 case 'n': // immediate integer with a known value. 4591 if (isa<ConstantInt>(CallOperandVal)) 4592 weight = CW_Constant; 4593 break; 4594 case 's': // non-explicit intregal immediate. 4595 if (isa<GlobalValue>(CallOperandVal)) 4596 weight = CW_Constant; 4597 break; 4598 case 'E': // immediate float if host format. 4599 case 'F': // immediate float. 4600 if (isa<ConstantFP>(CallOperandVal)) 4601 weight = CW_Constant; 4602 break; 4603 case '<': // memory operand with autodecrement. 4604 case '>': // memory operand with autoincrement. 4605 case 'm': // memory operand. 4606 case 'o': // offsettable memory operand 4607 case 'V': // non-offsettable memory operand 4608 weight = CW_Memory; 4609 break; 4610 case 'r': // general register. 4611 case 'g': // general register, memory operand or immediate integer. 4612 // note: Clang converts "g" to "imr". 4613 if (CallOperandVal->getType()->isIntegerTy()) 4614 weight = CW_Register; 4615 break; 4616 case 'X': // any operand. 4617 default: 4618 weight = CW_Default; 4619 break; 4620 } 4621 return weight; 4622 } 4623 4624 /// If there are multiple different constraints that we could pick for this 4625 /// operand (e.g. "imr") try to pick the 'best' one. 4626 /// This is somewhat tricky: constraints fall into four classes: 4627 /// Other -> immediates and magic values 4628 /// Register -> one specific register 4629 /// RegisterClass -> a group of regs 4630 /// Memory -> memory 4631 /// Ideally, we would pick the most specific constraint possible: if we have 4632 /// something that fits into a register, we would pick it. The problem here 4633 /// is that if we have something that could either be in a register or in 4634 /// memory that use of the register could cause selection of *other* 4635 /// operands to fail: they might only succeed if we pick memory. Because of 4636 /// this the heuristic we use is: 4637 /// 4638 /// 1) If there is an 'other' constraint, and if the operand is valid for 4639 /// that constraint, use it. This makes us take advantage of 'i' 4640 /// constraints when available. 4641 /// 2) Otherwise, pick the most general constraint present. This prefers 4642 /// 'm' over 'r', for example. 4643 /// 4644 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4645 const TargetLowering &TLI, 4646 SDValue Op, SelectionDAG *DAG) { 4647 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4648 unsigned BestIdx = 0; 4649 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4650 int BestGenerality = -1; 4651 4652 // Loop over the options, keeping track of the most general one. 4653 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4654 TargetLowering::ConstraintType CType = 4655 TLI.getConstraintType(OpInfo.Codes[i]); 4656 4657 // Indirect 'other' or 'immediate' constraints are not allowed. 4658 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4659 CType == TargetLowering::C_Register || 4660 CType == TargetLowering::C_RegisterClass)) 4661 continue; 4662 4663 // If this is an 'other' or 'immediate' constraint, see if the operand is 4664 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4665 // the operand is an integer in the range [0..31] we want to use I (saving a 4666 // load of a register), otherwise we must use 'r'. 4667 if ((CType == TargetLowering::C_Other || 4668 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4669 assert(OpInfo.Codes[i].size() == 1 && 4670 "Unhandled multi-letter 'other' constraint"); 4671 std::vector<SDValue> ResultOps; 4672 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4673 ResultOps, *DAG); 4674 if (!ResultOps.empty()) { 4675 BestType = CType; 4676 BestIdx = i; 4677 break; 4678 } 4679 } 4680 4681 // Things with matching constraints can only be registers, per gcc 4682 // documentation. This mainly affects "g" constraints. 4683 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4684 continue; 4685 4686 // This constraint letter is more general than the previous one, use it. 4687 int Generality = getConstraintGenerality(CType); 4688 if (Generality > BestGenerality) { 4689 BestType = CType; 4690 BestIdx = i; 4691 BestGenerality = Generality; 4692 } 4693 } 4694 4695 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4696 OpInfo.ConstraintType = BestType; 4697 } 4698 4699 /// Determines the constraint code and constraint type to use for the specific 4700 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4701 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4702 SDValue Op, 4703 SelectionDAG *DAG) const { 4704 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4705 4706 // Single-letter constraints ('r') are very common. 4707 if (OpInfo.Codes.size() == 1) { 4708 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4709 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4710 } else { 4711 ChooseConstraint(OpInfo, *this, Op, DAG); 4712 } 4713 4714 // 'X' matches anything. 4715 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4716 // Labels and constants are handled elsewhere ('X' is the only thing 4717 // that matches labels). For Functions, the type here is the type of 4718 // the result, which is not what we want to look at; leave them alone. 4719 Value *v = OpInfo.CallOperandVal; 4720 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4721 OpInfo.CallOperandVal = v; 4722 return; 4723 } 4724 4725 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4726 return; 4727 4728 // Otherwise, try to resolve it to something we know about by looking at 4729 // the actual operand type. 4730 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4731 OpInfo.ConstraintCode = Repl; 4732 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4733 } 4734 } 4735 } 4736 4737 /// Given an exact SDIV by a constant, create a multiplication 4738 /// with the multiplicative inverse of the constant. 4739 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4740 const SDLoc &dl, SelectionDAG &DAG, 4741 SmallVectorImpl<SDNode *> &Created) { 4742 SDValue Op0 = N->getOperand(0); 4743 SDValue Op1 = N->getOperand(1); 4744 EVT VT = N->getValueType(0); 4745 EVT SVT = VT.getScalarType(); 4746 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4747 EVT ShSVT = ShVT.getScalarType(); 4748 4749 bool UseSRA = false; 4750 SmallVector<SDValue, 16> Shifts, Factors; 4751 4752 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4753 if (C->isNullValue()) 4754 return false; 4755 APInt Divisor = C->getAPIntValue(); 4756 unsigned Shift = Divisor.countTrailingZeros(); 4757 if (Shift) { 4758 Divisor.ashrInPlace(Shift); 4759 UseSRA = true; 4760 } 4761 // Calculate the multiplicative inverse, using Newton's method. 4762 APInt t; 4763 APInt Factor = Divisor; 4764 while ((t = Divisor * Factor) != 1) 4765 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4766 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4767 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4768 return true; 4769 }; 4770 4771 // Collect all magic values from the build vector. 4772 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4773 return SDValue(); 4774 4775 SDValue Shift, Factor; 4776 if (VT.isVector()) { 4777 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4778 Factor = DAG.getBuildVector(VT, dl, Factors); 4779 } else { 4780 Shift = Shifts[0]; 4781 Factor = Factors[0]; 4782 } 4783 4784 SDValue Res = Op0; 4785 4786 // Shift the value upfront if it is even, so the LSB is one. 4787 if (UseSRA) { 4788 // TODO: For UDIV use SRL instead of SRA. 4789 SDNodeFlags Flags; 4790 Flags.setExact(true); 4791 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4792 Created.push_back(Res.getNode()); 4793 } 4794 4795 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4796 } 4797 4798 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4799 SelectionDAG &DAG, 4800 SmallVectorImpl<SDNode *> &Created) const { 4801 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4803 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4804 return SDValue(N, 0); // Lower SDIV as SDIV 4805 return SDValue(); 4806 } 4807 4808 /// Given an ISD::SDIV node expressing a divide by constant, 4809 /// return a DAG expression to select that will generate the same value by 4810 /// multiplying by a magic number. 4811 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4812 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4813 bool IsAfterLegalization, 4814 SmallVectorImpl<SDNode *> &Created) const { 4815 SDLoc dl(N); 4816 EVT VT = N->getValueType(0); 4817 EVT SVT = VT.getScalarType(); 4818 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4819 EVT ShSVT = ShVT.getScalarType(); 4820 unsigned EltBits = VT.getScalarSizeInBits(); 4821 4822 // Check to see if we can do this. 4823 // FIXME: We should be more aggressive here. 4824 if (!isTypeLegal(VT)) 4825 return SDValue(); 4826 4827 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4828 if (N->getFlags().hasExact()) 4829 return BuildExactSDIV(*this, N, dl, DAG, Created); 4830 4831 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4832 4833 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4834 if (C->isNullValue()) 4835 return false; 4836 4837 const APInt &Divisor = C->getAPIntValue(); 4838 APInt::ms magics = Divisor.magic(); 4839 int NumeratorFactor = 0; 4840 int ShiftMask = -1; 4841 4842 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4843 // If d is +1/-1, we just multiply the numerator by +1/-1. 4844 NumeratorFactor = Divisor.getSExtValue(); 4845 magics.m = 0; 4846 magics.s = 0; 4847 ShiftMask = 0; 4848 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4849 // If d > 0 and m < 0, add the numerator. 4850 NumeratorFactor = 1; 4851 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4852 // If d < 0 and m > 0, subtract the numerator. 4853 NumeratorFactor = -1; 4854 } 4855 4856 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4857 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4858 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4859 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4860 return true; 4861 }; 4862 4863 SDValue N0 = N->getOperand(0); 4864 SDValue N1 = N->getOperand(1); 4865 4866 // Collect the shifts / magic values from each element. 4867 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4868 return SDValue(); 4869 4870 SDValue MagicFactor, Factor, Shift, ShiftMask; 4871 if (VT.isVector()) { 4872 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4873 Factor = DAG.getBuildVector(VT, dl, Factors); 4874 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4875 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4876 } else { 4877 MagicFactor = MagicFactors[0]; 4878 Factor = Factors[0]; 4879 Shift = Shifts[0]; 4880 ShiftMask = ShiftMasks[0]; 4881 } 4882 4883 // Multiply the numerator (operand 0) by the magic value. 4884 // FIXME: We should support doing a MUL in a wider type. 4885 SDValue Q; 4886 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4887 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4888 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4889 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4890 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4891 SDValue LoHi = 4892 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4893 Q = SDValue(LoHi.getNode(), 1); 4894 } else 4895 return SDValue(); // No mulhs or equivalent. 4896 Created.push_back(Q.getNode()); 4897 4898 // (Optionally) Add/subtract the numerator using Factor. 4899 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4900 Created.push_back(Factor.getNode()); 4901 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4902 Created.push_back(Q.getNode()); 4903 4904 // Shift right algebraic by shift value. 4905 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4906 Created.push_back(Q.getNode()); 4907 4908 // Extract the sign bit, mask it and add it to the quotient. 4909 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4910 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4911 Created.push_back(T.getNode()); 4912 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4913 Created.push_back(T.getNode()); 4914 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4915 } 4916 4917 /// Given an ISD::UDIV node expressing a divide by constant, 4918 /// return a DAG expression to select that will generate the same value by 4919 /// multiplying by a magic number. 4920 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4921 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4922 bool IsAfterLegalization, 4923 SmallVectorImpl<SDNode *> &Created) const { 4924 SDLoc dl(N); 4925 EVT VT = N->getValueType(0); 4926 EVT SVT = VT.getScalarType(); 4927 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4928 EVT ShSVT = ShVT.getScalarType(); 4929 unsigned EltBits = VT.getScalarSizeInBits(); 4930 4931 // Check to see if we can do this. 4932 // FIXME: We should be more aggressive here. 4933 if (!isTypeLegal(VT)) 4934 return SDValue(); 4935 4936 bool UseNPQ = false; 4937 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4938 4939 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4940 if (C->isNullValue()) 4941 return false; 4942 // FIXME: We should use a narrower constant when the upper 4943 // bits are known to be zero. 4944 APInt Divisor = C->getAPIntValue(); 4945 APInt::mu magics = Divisor.magicu(); 4946 unsigned PreShift = 0, PostShift = 0; 4947 4948 // If the divisor is even, we can avoid using the expensive fixup by 4949 // shifting the divided value upfront. 4950 if (magics.a != 0 && !Divisor[0]) { 4951 PreShift = Divisor.countTrailingZeros(); 4952 // Get magic number for the shifted divisor. 4953 magics = Divisor.lshr(PreShift).magicu(PreShift); 4954 assert(magics.a == 0 && "Should use cheap fixup now"); 4955 } 4956 4957 APInt Magic = magics.m; 4958 4959 unsigned SelNPQ; 4960 if (magics.a == 0 || Divisor.isOneValue()) { 4961 assert(magics.s < Divisor.getBitWidth() && 4962 "We shouldn't generate an undefined shift!"); 4963 PostShift = magics.s; 4964 SelNPQ = false; 4965 } else { 4966 PostShift = magics.s - 1; 4967 SelNPQ = true; 4968 } 4969 4970 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4971 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4972 NPQFactors.push_back( 4973 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4974 : APInt::getNullValue(EltBits), 4975 dl, SVT)); 4976 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4977 UseNPQ |= SelNPQ; 4978 return true; 4979 }; 4980 4981 SDValue N0 = N->getOperand(0); 4982 SDValue N1 = N->getOperand(1); 4983 4984 // Collect the shifts/magic values from each element. 4985 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4986 return SDValue(); 4987 4988 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4989 if (VT.isVector()) { 4990 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4991 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4992 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4993 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4994 } else { 4995 PreShift = PreShifts[0]; 4996 MagicFactor = MagicFactors[0]; 4997 PostShift = PostShifts[0]; 4998 } 4999 5000 SDValue Q = N0; 5001 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5002 Created.push_back(Q.getNode()); 5003 5004 // FIXME: We should support doing a MUL in a wider type. 5005 auto GetMULHU = [&](SDValue X, SDValue Y) { 5006 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5007 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5008 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5009 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5010 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5011 SDValue LoHi = 5012 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5013 return SDValue(LoHi.getNode(), 1); 5014 } 5015 return SDValue(); // No mulhu or equivalent 5016 }; 5017 5018 // Multiply the numerator (operand 0) by the magic value. 5019 Q = GetMULHU(Q, MagicFactor); 5020 if (!Q) 5021 return SDValue(); 5022 5023 Created.push_back(Q.getNode()); 5024 5025 if (UseNPQ) { 5026 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5027 Created.push_back(NPQ.getNode()); 5028 5029 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5030 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5031 if (VT.isVector()) 5032 NPQ = GetMULHU(NPQ, NPQFactor); 5033 else 5034 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5035 5036 Created.push_back(NPQ.getNode()); 5037 5038 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5039 Created.push_back(Q.getNode()); 5040 } 5041 5042 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5043 Created.push_back(Q.getNode()); 5044 5045 SDValue One = DAG.getConstant(1, dl, VT); 5046 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5047 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5048 } 5049 5050 /// If all values in Values that *don't* match the predicate are same 'splat' 5051 /// value, then replace all values with that splat value. 5052 /// Else, if AlternativeReplacement was provided, then replace all values that 5053 /// do match predicate with AlternativeReplacement value. 5054 static void 5055 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5056 std::function<bool(SDValue)> Predicate, 5057 SDValue AlternativeReplacement = SDValue()) { 5058 SDValue Replacement; 5059 // Is there a value for which the Predicate does *NOT* match? What is it? 5060 auto SplatValue = llvm::find_if_not(Values, Predicate); 5061 if (SplatValue != Values.end()) { 5062 // Does Values consist only of SplatValue's and values matching Predicate? 5063 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5064 return Value == *SplatValue || Predicate(Value); 5065 })) // Then we shall replace values matching predicate with SplatValue. 5066 Replacement = *SplatValue; 5067 } 5068 if (!Replacement) { 5069 // Oops, we did not find the "baseline" splat value. 5070 if (!AlternativeReplacement) 5071 return; // Nothing to do. 5072 // Let's replace with provided value then. 5073 Replacement = AlternativeReplacement; 5074 } 5075 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5076 } 5077 5078 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5079 /// where the divisor is constant and the comparison target is zero, 5080 /// return a DAG expression that will generate the same comparison result 5081 /// using only multiplications, additions and shifts/rotations. 5082 /// Ref: "Hacker's Delight" 10-17. 5083 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5084 SDValue CompTargetNode, 5085 ISD::CondCode Cond, 5086 DAGCombinerInfo &DCI, 5087 const SDLoc &DL) const { 5088 SmallVector<SDNode *, 5> Built; 5089 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5090 DCI, DL, Built)) { 5091 for (SDNode *N : Built) 5092 DCI.AddToWorklist(N); 5093 return Folded; 5094 } 5095 5096 return SDValue(); 5097 } 5098 5099 SDValue 5100 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5101 SDValue CompTargetNode, ISD::CondCode Cond, 5102 DAGCombinerInfo &DCI, const SDLoc &DL, 5103 SmallVectorImpl<SDNode *> &Created) const { 5104 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5105 // - D must be constant, with D = D0 * 2^K where D0 is odd 5106 // - P is the multiplicative inverse of D0 modulo 2^W 5107 // - Q = floor(((2^W) - 1) / D) 5108 // where W is the width of the common type of N and D. 5109 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5110 "Only applicable for (in)equality comparisons."); 5111 5112 SelectionDAG &DAG = DCI.DAG; 5113 5114 EVT VT = REMNode.getValueType(); 5115 EVT SVT = VT.getScalarType(); 5116 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5117 EVT ShSVT = ShVT.getScalarType(); 5118 5119 // If MUL is unavailable, we cannot proceed in any case. 5120 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5121 return SDValue(); 5122 5123 bool ComparingWithAllZeros = true; 5124 bool AllComparisonsWithNonZerosAreTautological = true; 5125 bool HadTautologicalLanes = false; 5126 bool AllLanesAreTautological = true; 5127 bool HadEvenDivisor = false; 5128 bool AllDivisorsArePowerOfTwo = true; 5129 bool HadTautologicalInvertedLanes = false; 5130 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5131 5132 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5133 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5134 if (CDiv->isNullValue()) 5135 return false; 5136 5137 const APInt &D = CDiv->getAPIntValue(); 5138 const APInt &Cmp = CCmp->getAPIntValue(); 5139 5140 ComparingWithAllZeros &= Cmp.isNullValue(); 5141 5142 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5143 // if C2 is not less than C1, the comparison is always false. 5144 // But we will only be able to produce the comparison that will give the 5145 // opposive tautological answer. So this lane would need to be fixed up. 5146 bool TautologicalInvertedLane = D.ule(Cmp); 5147 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5148 5149 // If all lanes are tautological (either all divisors are ones, or divisor 5150 // is not greater than the constant we are comparing with), 5151 // we will prefer to avoid the fold. 5152 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5153 HadTautologicalLanes |= TautologicalLane; 5154 AllLanesAreTautological &= TautologicalLane; 5155 5156 // If we are comparing with non-zero, we need'll need to subtract said 5157 // comparison value from the LHS. But there is no point in doing that if 5158 // every lane where we are comparing with non-zero is tautological.. 5159 if (!Cmp.isNullValue()) 5160 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5161 5162 // Decompose D into D0 * 2^K 5163 unsigned K = D.countTrailingZeros(); 5164 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5165 APInt D0 = D.lshr(K); 5166 5167 // D is even if it has trailing zeros. 5168 HadEvenDivisor |= (K != 0); 5169 // D is a power-of-two if D0 is one. 5170 // If all divisors are power-of-two, we will prefer to avoid the fold. 5171 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5172 5173 // P = inv(D0, 2^W) 5174 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5175 unsigned W = D.getBitWidth(); 5176 APInt P = D0.zext(W + 1) 5177 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5178 .trunc(W); 5179 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5180 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5181 5182 // Q = floor((2^W - 1) u/ D) 5183 // R = ((2^W - 1) u% D) 5184 APInt Q, R; 5185 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5186 5187 // If we are comparing with zero, then that comparison constant is okay, 5188 // else it may need to be one less than that. 5189 if (Cmp.ugt(R)) 5190 Q -= 1; 5191 5192 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5193 "We are expecting that K is always less than all-ones for ShSVT"); 5194 5195 // If the lane is tautological the result can be constant-folded. 5196 if (TautologicalLane) { 5197 // Set P and K amount to a bogus values so we can try to splat them. 5198 P = 0; 5199 K = -1; 5200 // And ensure that comparison constant is tautological, 5201 // it will always compare true/false. 5202 Q = -1; 5203 } 5204 5205 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5206 KAmts.push_back( 5207 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5208 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5209 return true; 5210 }; 5211 5212 SDValue N = REMNode.getOperand(0); 5213 SDValue D = REMNode.getOperand(1); 5214 5215 // Collect the values from each element. 5216 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5217 return SDValue(); 5218 5219 // If all lanes are tautological, the result can be constant-folded. 5220 if (AllLanesAreTautological) 5221 return SDValue(); 5222 5223 // If this is a urem by a powers-of-two, avoid the fold since it can be 5224 // best implemented as a bit test. 5225 if (AllDivisorsArePowerOfTwo) 5226 return SDValue(); 5227 5228 SDValue PVal, KVal, QVal; 5229 if (VT.isVector()) { 5230 if (HadTautologicalLanes) { 5231 // Try to turn PAmts into a splat, since we don't care about the values 5232 // that are currently '0'. If we can't, just keep '0'`s. 5233 turnVectorIntoSplatVector(PAmts, isNullConstant); 5234 // Try to turn KAmts into a splat, since we don't care about the values 5235 // that are currently '-1'. If we can't, change them to '0'`s. 5236 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5237 DAG.getConstant(0, DL, ShSVT)); 5238 } 5239 5240 PVal = DAG.getBuildVector(VT, DL, PAmts); 5241 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5242 QVal = DAG.getBuildVector(VT, DL, QAmts); 5243 } else { 5244 PVal = PAmts[0]; 5245 KVal = KAmts[0]; 5246 QVal = QAmts[0]; 5247 } 5248 5249 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5250 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5251 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5252 assert(CompTargetNode.getValueType() == N.getValueType() && 5253 "Expecting that the types on LHS and RHS of comparisons match."); 5254 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5255 } 5256 5257 // (mul N, P) 5258 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5259 Created.push_back(Op0.getNode()); 5260 5261 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5262 // divisors as a performance improvement, since rotating by 0 is a no-op. 5263 if (HadEvenDivisor) { 5264 // We need ROTR to do this. 5265 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5266 return SDValue(); 5267 SDNodeFlags Flags; 5268 Flags.setExact(true); 5269 // UREM: (rotr (mul N, P), K) 5270 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5271 Created.push_back(Op0.getNode()); 5272 } 5273 5274 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5275 SDValue NewCC = 5276 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5277 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5278 if (!HadTautologicalInvertedLanes) 5279 return NewCC; 5280 5281 // If any lanes previously compared always-false, the NewCC will give 5282 // always-true result for them, so we need to fixup those lanes. 5283 // Or the other way around for inequality predicate. 5284 assert(VT.isVector() && "Can/should only get here for vectors."); 5285 Created.push_back(NewCC.getNode()); 5286 5287 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5288 // if C2 is not less than C1, the comparison is always false. 5289 // But we have produced the comparison that will give the 5290 // opposive tautological answer. So these lanes would need to be fixed up. 5291 SDValue TautologicalInvertedChannels = 5292 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5293 Created.push_back(TautologicalInvertedChannels.getNode()); 5294 5295 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5296 // If we have a vector select, let's replace the comparison results in the 5297 // affected lanes with the correct tautological result. 5298 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5299 DL, SETCCVT, SETCCVT); 5300 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5301 Replacement, NewCC); 5302 } 5303 5304 // Else, we can just invert the comparison result in the appropriate lanes. 5305 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5306 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5307 TautologicalInvertedChannels); 5308 5309 return SDValue(); // Don't know how to lower. 5310 } 5311 5312 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5313 /// where the divisor is constant and the comparison target is zero, 5314 /// return a DAG expression that will generate the same comparison result 5315 /// using only multiplications, additions and shifts/rotations. 5316 /// Ref: "Hacker's Delight" 10-17. 5317 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5318 SDValue CompTargetNode, 5319 ISD::CondCode Cond, 5320 DAGCombinerInfo &DCI, 5321 const SDLoc &DL) const { 5322 SmallVector<SDNode *, 7> Built; 5323 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5324 DCI, DL, Built)) { 5325 assert(Built.size() <= 7 && "Max size prediction failed."); 5326 for (SDNode *N : Built) 5327 DCI.AddToWorklist(N); 5328 return Folded; 5329 } 5330 5331 return SDValue(); 5332 } 5333 5334 SDValue 5335 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5336 SDValue CompTargetNode, ISD::CondCode Cond, 5337 DAGCombinerInfo &DCI, const SDLoc &DL, 5338 SmallVectorImpl<SDNode *> &Created) const { 5339 // Fold: 5340 // (seteq/ne (srem N, D), 0) 5341 // To: 5342 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5343 // 5344 // - D must be constant, with D = D0 * 2^K where D0 is odd 5345 // - P is the multiplicative inverse of D0 modulo 2^W 5346 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5347 // - Q = floor((2 * A) / (2^K)) 5348 // where W is the width of the common type of N and D. 5349 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5350 "Only applicable for (in)equality comparisons."); 5351 5352 SelectionDAG &DAG = DCI.DAG; 5353 5354 EVT VT = REMNode.getValueType(); 5355 EVT SVT = VT.getScalarType(); 5356 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5357 EVT ShSVT = ShVT.getScalarType(); 5358 5359 // If MUL is unavailable, we cannot proceed in any case. 5360 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5361 return SDValue(); 5362 5363 // TODO: Could support comparing with non-zero too. 5364 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5365 if (!CompTarget || !CompTarget->isNullValue()) 5366 return SDValue(); 5367 5368 bool HadIntMinDivisor = false; 5369 bool HadOneDivisor = false; 5370 bool AllDivisorsAreOnes = true; 5371 bool HadEvenDivisor = false; 5372 bool NeedToApplyOffset = false; 5373 bool AllDivisorsArePowerOfTwo = true; 5374 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5375 5376 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5377 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5378 if (C->isNullValue()) 5379 return false; 5380 5381 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5382 5383 // WARNING: this fold is only valid for positive divisors! 5384 APInt D = C->getAPIntValue(); 5385 if (D.isNegative()) 5386 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5387 5388 HadIntMinDivisor |= D.isMinSignedValue(); 5389 5390 // If all divisors are ones, we will prefer to avoid the fold. 5391 HadOneDivisor |= D.isOneValue(); 5392 AllDivisorsAreOnes &= D.isOneValue(); 5393 5394 // Decompose D into D0 * 2^K 5395 unsigned K = D.countTrailingZeros(); 5396 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5397 APInt D0 = D.lshr(K); 5398 5399 if (!D.isMinSignedValue()) { 5400 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5401 // we don't care about this lane in this fold, we'll special-handle it. 5402 HadEvenDivisor |= (K != 0); 5403 } 5404 5405 // D is a power-of-two if D0 is one. This includes INT_MIN. 5406 // If all divisors are power-of-two, we will prefer to avoid the fold. 5407 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5408 5409 // P = inv(D0, 2^W) 5410 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5411 unsigned W = D.getBitWidth(); 5412 APInt P = D0.zext(W + 1) 5413 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5414 .trunc(W); 5415 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5416 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5417 5418 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5419 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5420 A.clearLowBits(K); 5421 5422 if (!D.isMinSignedValue()) { 5423 // If divisor INT_MIN, then we don't care about this lane in this fold, 5424 // we'll special-handle it. 5425 NeedToApplyOffset |= A != 0; 5426 } 5427 5428 // Q = floor((2 * A) / (2^K)) 5429 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5430 5431 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5432 "We are expecting that A is always less than all-ones for SVT"); 5433 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5434 "We are expecting that K is always less than all-ones for ShSVT"); 5435 5436 // If the divisor is 1 the result can be constant-folded. Likewise, we 5437 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5438 if (D.isOneValue()) { 5439 // Set P, A and K to a bogus values so we can try to splat them. 5440 P = 0; 5441 A = -1; 5442 K = -1; 5443 5444 // x ?% 1 == 0 <--> true <--> x u<= -1 5445 Q = -1; 5446 } 5447 5448 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5449 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5450 KAmts.push_back( 5451 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5452 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5453 return true; 5454 }; 5455 5456 SDValue N = REMNode.getOperand(0); 5457 SDValue D = REMNode.getOperand(1); 5458 5459 // Collect the values from each element. 5460 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5461 return SDValue(); 5462 5463 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5464 if (AllDivisorsAreOnes) 5465 return SDValue(); 5466 5467 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5468 // since it can be best implemented as a bit test. 5469 if (AllDivisorsArePowerOfTwo) 5470 return SDValue(); 5471 5472 SDValue PVal, AVal, KVal, QVal; 5473 if (VT.isVector()) { 5474 if (HadOneDivisor) { 5475 // Try to turn PAmts into a splat, since we don't care about the values 5476 // that are currently '0'. If we can't, just keep '0'`s. 5477 turnVectorIntoSplatVector(PAmts, isNullConstant); 5478 // Try to turn AAmts into a splat, since we don't care about the 5479 // values that are currently '-1'. If we can't, change them to '0'`s. 5480 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5481 DAG.getConstant(0, DL, SVT)); 5482 // Try to turn KAmts into a splat, since we don't care about the values 5483 // that are currently '-1'. If we can't, change them to '0'`s. 5484 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5485 DAG.getConstant(0, DL, ShSVT)); 5486 } 5487 5488 PVal = DAG.getBuildVector(VT, DL, PAmts); 5489 AVal = DAG.getBuildVector(VT, DL, AAmts); 5490 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5491 QVal = DAG.getBuildVector(VT, DL, QAmts); 5492 } else { 5493 PVal = PAmts[0]; 5494 AVal = AAmts[0]; 5495 KVal = KAmts[0]; 5496 QVal = QAmts[0]; 5497 } 5498 5499 // (mul N, P) 5500 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5501 Created.push_back(Op0.getNode()); 5502 5503 if (NeedToApplyOffset) { 5504 // We need ADD to do this. 5505 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5506 return SDValue(); 5507 5508 // (add (mul N, P), A) 5509 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5510 Created.push_back(Op0.getNode()); 5511 } 5512 5513 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5514 // divisors as a performance improvement, since rotating by 0 is a no-op. 5515 if (HadEvenDivisor) { 5516 // We need ROTR to do this. 5517 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5518 return SDValue(); 5519 SDNodeFlags Flags; 5520 Flags.setExact(true); 5521 // SREM: (rotr (add (mul N, P), A), K) 5522 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5523 Created.push_back(Op0.getNode()); 5524 } 5525 5526 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5527 SDValue Fold = 5528 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5529 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5530 5531 // If we didn't have lanes with INT_MIN divisor, then we're done. 5532 if (!HadIntMinDivisor) 5533 return Fold; 5534 5535 // That fold is only valid for positive divisors. Which effectively means, 5536 // it is invalid for INT_MIN divisors. So if we have such a lane, 5537 // we must fix-up results for said lanes. 5538 assert(VT.isVector() && "Can/should only get here for vectors."); 5539 5540 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5541 !isOperationLegalOrCustom(ISD::AND, VT) || 5542 !isOperationLegalOrCustom(Cond, VT) || 5543 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5544 return SDValue(); 5545 5546 Created.push_back(Fold.getNode()); 5547 5548 SDValue IntMin = DAG.getConstant( 5549 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5550 SDValue IntMax = DAG.getConstant( 5551 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5552 SDValue Zero = 5553 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5554 5555 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5556 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5557 Created.push_back(DivisorIsIntMin.getNode()); 5558 5559 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5560 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5561 Created.push_back(Masked.getNode()); 5562 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5563 Created.push_back(MaskedIsZero.getNode()); 5564 5565 // To produce final result we need to blend 2 vectors: 'SetCC' and 5566 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5567 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5568 // constant-folded, select can get lowered to a shuffle with constant mask. 5569 SDValue Blended = 5570 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5571 5572 return Blended; 5573 } 5574 5575 bool TargetLowering:: 5576 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5577 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5578 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5579 "be a constant integer"); 5580 return true; 5581 } 5582 5583 return false; 5584 } 5585 5586 TargetLowering::NegatibleCost 5587 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5588 bool LegalOperations, bool ForCodeSize, 5589 unsigned Depth) const { 5590 // fneg is removable even if it has multiple uses. 5591 if (Op.getOpcode() == ISD::FNEG) 5592 return NegatibleCost::Cheaper; 5593 5594 // Don't allow anything with multiple uses unless we know it is free. 5595 EVT VT = Op.getValueType(); 5596 const SDNodeFlags Flags = Op->getFlags(); 5597 const TargetOptions &Options = DAG.getTarget().Options; 5598 if (!Op.hasOneUse()) { 5599 bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND && 5600 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5601 5602 // If we already have the use of the negated floating constant, it is free 5603 // to negate it even it has multiple uses. 5604 bool IsFreeConstant = 5605 Op.getOpcode() == ISD::ConstantFP && 5606 !negateExpression(Op, DAG, LegalOperations, ForCodeSize).use_empty(); 5607 5608 if (!IsFreeExtend && !IsFreeConstant) 5609 return NegatibleCost::Expensive; 5610 } 5611 5612 // Don't recurse exponentially. 5613 if (Depth > SelectionDAG::MaxRecursionDepth) 5614 return NegatibleCost::Expensive; 5615 5616 switch (Op.getOpcode()) { 5617 case ISD::ConstantFP: { 5618 if (!LegalOperations) 5619 return NegatibleCost::Neutral; 5620 5621 // Don't invert constant FP values after legalization unless the target says 5622 // the negated constant is legal. 5623 if (isOperationLegal(ISD::ConstantFP, VT) || 5624 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5625 ForCodeSize)) 5626 return NegatibleCost::Neutral; 5627 break; 5628 } 5629 case ISD::BUILD_VECTOR: { 5630 // Only permit BUILD_VECTOR of constants. 5631 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5632 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5633 })) 5634 return NegatibleCost::Expensive; 5635 if (!LegalOperations) 5636 return NegatibleCost::Neutral; 5637 if (isOperationLegal(ISD::ConstantFP, VT) && 5638 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5639 return NegatibleCost::Neutral; 5640 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5641 return N.isUndef() || 5642 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5643 ForCodeSize); 5644 })) 5645 return NegatibleCost::Neutral; 5646 break; 5647 } 5648 case ISD::FADD: { 5649 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5650 return NegatibleCost::Expensive; 5651 5652 // After operation legalization, it might not be legal to create new FSUBs. 5653 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5654 return NegatibleCost::Expensive; 5655 5656 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5657 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5658 ForCodeSize, Depth + 1); 5659 if (V0 != NegatibleCost::Expensive) 5660 return V0; 5661 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5662 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5663 Depth + 1); 5664 } 5665 case ISD::FSUB: 5666 // We can't turn -(A-B) into B-A when we honor signed zeros. 5667 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5668 return NegatibleCost::Expensive; 5669 5670 // fold (fneg (fsub A, B)) -> (fsub B, A) 5671 return NegatibleCost::Neutral; 5672 case ISD::FMUL: 5673 case ISD::FDIV: { 5674 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5675 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5676 ForCodeSize, Depth + 1); 5677 if (V0 != NegatibleCost::Expensive) 5678 return V0; 5679 5680 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5681 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5682 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5683 return NegatibleCost::Expensive; 5684 5685 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5686 Depth + 1); 5687 } 5688 case ISD::FMA: 5689 case ISD::FMAD: { 5690 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5691 return NegatibleCost::Expensive; 5692 5693 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5694 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5695 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5696 ForCodeSize, Depth + 1); 5697 if (NegatibleCost::Expensive == V2) 5698 return NegatibleCost::Expensive; 5699 5700 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5701 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5702 ForCodeSize, Depth + 1); 5703 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5704 ForCodeSize, Depth + 1); 5705 NegatibleCost V01 = std::min(V0, V1); 5706 if (V01 == NegatibleCost::Expensive) 5707 return NegatibleCost::Expensive; 5708 return std::min(V01, V2); 5709 } 5710 5711 case ISD::FP_EXTEND: 5712 case ISD::FP_ROUND: 5713 case ISD::FSIN: 5714 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5715 Depth + 1); 5716 } 5717 5718 return NegatibleCost::Expensive; 5719 } 5720 5721 SDValue TargetLowering::negateExpression(SDValue Op, SelectionDAG &DAG, 5722 bool LegalOps, bool OptForSize, 5723 unsigned Depth) const { 5724 // fneg is removable even if it has multiple uses. 5725 if (Op.getOpcode() == ISD::FNEG) 5726 return Op.getOperand(0); 5727 5728 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5729 "negateExpression doesn't match getNegatibleCost"); 5730 5731 // Pre-increment recursion depth for use in recursive calls. 5732 ++Depth; 5733 const SDNodeFlags Flags = Op->getFlags(); 5734 EVT VT = Op.getValueType(); 5735 unsigned Opcode = Op.getOpcode(); 5736 SDLoc DL(Op); 5737 5738 switch (Opcode) { 5739 case ISD::ConstantFP: { 5740 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5741 V.changeSign(); 5742 return DAG.getConstantFP(V, DL, VT); 5743 } 5744 case ISD::BUILD_VECTOR: { 5745 SmallVector<SDValue, 4> Ops; 5746 for (SDValue C : Op->op_values()) { 5747 if (C.isUndef()) { 5748 Ops.push_back(C); 5749 continue; 5750 } 5751 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5752 V.changeSign(); 5753 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5754 } 5755 return DAG.getBuildVector(VT, DL, Ops); 5756 } 5757 case ISD::FADD: { 5758 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5759 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5760 Flags.hasNoSignedZeros()) && 5761 "Expected NSZ fp-flag"); 5762 5763 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5764 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5765 if (CostX != NegatibleCost::Expensive) 5766 return DAG.getNode(ISD::FSUB, DL, VT, 5767 negateExpression(X, DAG, LegalOps, OptForSize, Depth), 5768 Y, Flags); 5769 5770 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5771 return DAG.getNode(ISD::FSUB, DL, VT, 5772 negateExpression(Y, DAG, LegalOps, OptForSize, Depth), X, 5773 Flags); 5774 } 5775 case ISD::FSUB: { 5776 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5777 // fold (fneg (fsub 0, Y)) -> Y 5778 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5779 if (C->isZero()) 5780 return Y; 5781 5782 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5783 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5784 } 5785 case ISD::FMUL: 5786 case ISD::FDIV: { 5787 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5788 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5789 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5790 if (CostX != NegatibleCost::Expensive) 5791 return DAG.getNode(Opcode, DL, VT, 5792 negateExpression(X, DAG, LegalOps, OptForSize, Depth), 5793 Y, Flags); 5794 5795 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5796 return DAG.getNode(Opcode, DL, VT, X, 5797 negateExpression(Y, DAG, LegalOps, OptForSize, Depth), 5798 Flags); 5799 } 5800 case ISD::FMA: 5801 case ISD::FMAD: { 5802 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5803 Flags.hasNoSignedZeros()) && 5804 "Expected NSZ fp-flag"); 5805 5806 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5807 SDValue NegZ = negateExpression(Z, DAG, LegalOps, OptForSize, Depth); 5808 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5809 NegatibleCost CostY = getNegatibleCost(Y, DAG, LegalOps, OptForSize, Depth); 5810 if (CostX <= CostY) { 5811 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5812 SDValue NegX = negateExpression(X, DAG, LegalOps, OptForSize, Depth); 5813 return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5814 } 5815 5816 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5817 SDValue NegY = negateExpression(Y, DAG, LegalOps, OptForSize, Depth); 5818 return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5819 } 5820 5821 case ISD::FP_EXTEND: 5822 case ISD::FSIN: 5823 return DAG.getNode( 5824 Opcode, DL, VT, 5825 negateExpression(Op.getOperand(0), DAG, LegalOps, OptForSize, Depth)); 5826 case ISD::FP_ROUND: 5827 return DAG.getNode( 5828 ISD::FP_ROUND, DL, VT, 5829 negateExpression(Op.getOperand(0), DAG, LegalOps, OptForSize, Depth), 5830 Op.getOperand(1)); 5831 } 5832 5833 llvm_unreachable("Unknown code"); 5834 } 5835 5836 //===----------------------------------------------------------------------===// 5837 // Legalization Utilities 5838 //===----------------------------------------------------------------------===// 5839 5840 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5841 SDValue LHS, SDValue RHS, 5842 SmallVectorImpl<SDValue> &Result, 5843 EVT HiLoVT, SelectionDAG &DAG, 5844 MulExpansionKind Kind, SDValue LL, 5845 SDValue LH, SDValue RL, SDValue RH) const { 5846 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5847 Opcode == ISD::SMUL_LOHI); 5848 5849 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5850 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5851 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5852 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5853 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5854 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5855 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5856 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5857 5858 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5859 return false; 5860 5861 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5862 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5863 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5864 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5865 5866 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5867 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5868 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5869 5870 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5871 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5872 bool Signed) -> bool { 5873 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5874 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5875 Hi = SDValue(Lo.getNode(), 1); 5876 return true; 5877 } 5878 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5879 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5880 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5881 return true; 5882 } 5883 return false; 5884 }; 5885 5886 SDValue Lo, Hi; 5887 5888 if (!LL.getNode() && !RL.getNode() && 5889 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5890 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5891 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5892 } 5893 5894 if (!LL.getNode()) 5895 return false; 5896 5897 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5898 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5899 DAG.MaskedValueIsZero(RHS, HighMask)) { 5900 // The inputs are both zero-extended. 5901 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5902 Result.push_back(Lo); 5903 Result.push_back(Hi); 5904 if (Opcode != ISD::MUL) { 5905 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5906 Result.push_back(Zero); 5907 Result.push_back(Zero); 5908 } 5909 return true; 5910 } 5911 } 5912 5913 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5914 RHSSB > InnerBitSize) { 5915 // The input values are both sign-extended. 5916 // TODO non-MUL case? 5917 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5918 Result.push_back(Lo); 5919 Result.push_back(Hi); 5920 return true; 5921 } 5922 } 5923 5924 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5925 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5926 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5927 // FIXME getShiftAmountTy does not always return a sensible result when VT 5928 // is an illegal type, and so the type may be too small to fit the shift 5929 // amount. Override it with i32. The shift will have to be legalized. 5930 ShiftAmountTy = MVT::i32; 5931 } 5932 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5933 5934 if (!LH.getNode() && !RH.getNode() && 5935 isOperationLegalOrCustom(ISD::SRL, VT) && 5936 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5937 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5938 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5939 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5940 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5941 } 5942 5943 if (!LH.getNode()) 5944 return false; 5945 5946 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5947 return false; 5948 5949 Result.push_back(Lo); 5950 5951 if (Opcode == ISD::MUL) { 5952 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5953 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5954 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5955 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5956 Result.push_back(Hi); 5957 return true; 5958 } 5959 5960 // Compute the full width result. 5961 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5962 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5963 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5964 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5965 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5966 }; 5967 5968 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5969 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5970 return false; 5971 5972 // This is effectively the add part of a multiply-add of half-sized operands, 5973 // so it cannot overflow. 5974 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5975 5976 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5977 return false; 5978 5979 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5980 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5981 5982 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5983 isOperationLegalOrCustom(ISD::ADDE, VT)); 5984 if (UseGlue) 5985 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5986 Merge(Lo, Hi)); 5987 else 5988 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5989 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5990 5991 SDValue Carry = Next.getValue(1); 5992 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5993 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5994 5995 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5996 return false; 5997 5998 if (UseGlue) 5999 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6000 Carry); 6001 else 6002 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6003 Zero, Carry); 6004 6005 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6006 6007 if (Opcode == ISD::SMUL_LOHI) { 6008 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6009 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6010 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6011 6012 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6013 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6014 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6015 } 6016 6017 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6018 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6019 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6020 return true; 6021 } 6022 6023 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6024 SelectionDAG &DAG, MulExpansionKind Kind, 6025 SDValue LL, SDValue LH, SDValue RL, 6026 SDValue RH) const { 6027 SmallVector<SDValue, 2> Result; 6028 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6029 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6030 DAG, Kind, LL, LH, RL, RH); 6031 if (Ok) { 6032 assert(Result.size() == 2); 6033 Lo = Result[0]; 6034 Hi = Result[1]; 6035 } 6036 return Ok; 6037 } 6038 6039 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6040 SelectionDAG &DAG) const { 6041 EVT VT = Node->getValueType(0); 6042 6043 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6044 !isOperationLegalOrCustom(ISD::SRL, VT) || 6045 !isOperationLegalOrCustom(ISD::SUB, VT) || 6046 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6047 return false; 6048 6049 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6050 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6051 SDValue X = Node->getOperand(0); 6052 SDValue Y = Node->getOperand(1); 6053 SDValue Z = Node->getOperand(2); 6054 6055 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6056 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6057 SDLoc DL(SDValue(Node, 0)); 6058 6059 EVT ShVT = Z.getValueType(); 6060 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6061 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6062 6063 SDValue ShAmt; 6064 if (isPowerOf2_32(EltSizeInBits)) { 6065 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6066 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6067 } else { 6068 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6069 } 6070 6071 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6072 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6073 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6074 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6075 6076 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6077 // and that is undefined. We must compare and select to avoid UB. 6078 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6079 6080 // For fshl, 0-shift returns the 1st arg (X). 6081 // For fshr, 0-shift returns the 2nd arg (Y). 6082 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6083 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6084 return true; 6085 } 6086 6087 // TODO: Merge with expandFunnelShift. 6088 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6089 SelectionDAG &DAG) const { 6090 EVT VT = Node->getValueType(0); 6091 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6092 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6093 SDValue Op0 = Node->getOperand(0); 6094 SDValue Op1 = Node->getOperand(1); 6095 SDLoc DL(SDValue(Node, 0)); 6096 6097 EVT ShVT = Op1.getValueType(); 6098 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6099 6100 // If a rotate in the other direction is legal, use it. 6101 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6102 if (isOperationLegal(RevRot, VT)) { 6103 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6104 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6105 return true; 6106 } 6107 6108 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6109 !isOperationLegalOrCustom(ISD::SRL, VT) || 6110 !isOperationLegalOrCustom(ISD::SUB, VT) || 6111 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6112 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6113 return false; 6114 6115 // Otherwise, 6116 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6117 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6118 // 6119 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6120 "Expecting the type bitwidth to be a power of 2"); 6121 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6122 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6123 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6124 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6125 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6126 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6127 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6128 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6129 return true; 6130 } 6131 6132 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6133 SelectionDAG &DAG) const { 6134 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6135 SDValue Src = Node->getOperand(OpNo); 6136 EVT SrcVT = Src.getValueType(); 6137 EVT DstVT = Node->getValueType(0); 6138 SDLoc dl(SDValue(Node, 0)); 6139 6140 // FIXME: Only f32 to i64 conversions are supported. 6141 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6142 return false; 6143 6144 if (Node->isStrictFPOpcode()) 6145 // When a NaN is converted to an integer a trap is allowed. We can't 6146 // use this expansion here because it would eliminate that trap. Other 6147 // traps are also allowed and cannot be eliminated. See 6148 // IEEE 754-2008 sec 5.8. 6149 return false; 6150 6151 // Expand f32 -> i64 conversion 6152 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6153 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6154 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6155 EVT IntVT = SrcVT.changeTypeToInteger(); 6156 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6157 6158 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6159 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6160 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6161 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6162 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6163 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6164 6165 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6166 6167 SDValue ExponentBits = DAG.getNode( 6168 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6169 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6170 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6171 6172 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6173 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6174 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6175 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6176 6177 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6178 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6179 DAG.getConstant(0x00800000, dl, IntVT)); 6180 6181 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6182 6183 R = DAG.getSelectCC( 6184 dl, Exponent, ExponentLoBit, 6185 DAG.getNode(ISD::SHL, dl, DstVT, R, 6186 DAG.getZExtOrTrunc( 6187 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6188 dl, IntShVT)), 6189 DAG.getNode(ISD::SRL, dl, DstVT, R, 6190 DAG.getZExtOrTrunc( 6191 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6192 dl, IntShVT)), 6193 ISD::SETGT); 6194 6195 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6196 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6197 6198 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6199 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6200 return true; 6201 } 6202 6203 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6204 SDValue &Chain, 6205 SelectionDAG &DAG) const { 6206 SDLoc dl(SDValue(Node, 0)); 6207 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6208 SDValue Src = Node->getOperand(OpNo); 6209 6210 EVT SrcVT = Src.getValueType(); 6211 EVT DstVT = Node->getValueType(0); 6212 EVT SetCCVT = 6213 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6214 EVT DstSetCCVT = 6215 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6216 6217 // Only expand vector types if we have the appropriate vector bit operations. 6218 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6219 ISD::FP_TO_SINT; 6220 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6221 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6222 return false; 6223 6224 // If the maximum float value is smaller then the signed integer range, 6225 // the destination signmask can't be represented by the float, so we can 6226 // just use FP_TO_SINT directly. 6227 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6228 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6229 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6230 if (APFloat::opOverflow & 6231 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6232 if (Node->isStrictFPOpcode()) { 6233 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6234 { Node->getOperand(0), Src }); 6235 Chain = Result.getValue(1); 6236 } else 6237 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6238 return true; 6239 } 6240 6241 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6242 SDValue Sel; 6243 6244 if (Node->isStrictFPOpcode()) { 6245 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6246 Node->getOperand(0), /*IsSignaling*/ true); 6247 Chain = Sel.getValue(1); 6248 } else { 6249 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6250 } 6251 6252 bool Strict = Node->isStrictFPOpcode() || 6253 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6254 6255 if (Strict) { 6256 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6257 // signmask then offset (the result of which should be fully representable). 6258 // Sel = Src < 0x8000000000000000 6259 // FltOfs = select Sel, 0, 0x8000000000000000 6260 // IntOfs = select Sel, 0, 0x8000000000000000 6261 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6262 6263 // TODO: Should any fast-math-flags be set for the FSUB? 6264 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6265 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6266 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6267 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6268 DAG.getConstant(0, dl, DstVT), 6269 DAG.getConstant(SignMask, dl, DstVT)); 6270 SDValue SInt; 6271 if (Node->isStrictFPOpcode()) { 6272 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6273 { Chain, Src, FltOfs }); 6274 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6275 { Val.getValue(1), Val }); 6276 Chain = SInt.getValue(1); 6277 } else { 6278 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6279 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6280 } 6281 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6282 } else { 6283 // Expand based on maximum range of FP_TO_SINT: 6284 // True = fp_to_sint(Src) 6285 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6286 // Result = select (Src < 0x8000000000000000), True, False 6287 6288 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6289 // TODO: Should any fast-math-flags be set for the FSUB? 6290 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6291 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6292 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6293 DAG.getConstant(SignMask, dl, DstVT)); 6294 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6295 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6296 } 6297 return true; 6298 } 6299 6300 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6301 SDValue &Chain, 6302 SelectionDAG &DAG) const { 6303 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6304 SDValue Src = Node->getOperand(OpNo); 6305 EVT SrcVT = Src.getValueType(); 6306 EVT DstVT = Node->getValueType(0); 6307 6308 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6309 return false; 6310 6311 // Only expand vector types if we have the appropriate vector bit operations. 6312 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6313 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6314 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6315 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6316 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6317 return false; 6318 6319 SDLoc dl(SDValue(Node, 0)); 6320 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6321 6322 // Implementation of unsigned i64 to f64 following the algorithm in 6323 // __floatundidf in compiler_rt. This implementation has the advantage 6324 // of performing rounding correctly, both in the default rounding mode 6325 // and in all alternate rounding modes. 6326 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6327 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6328 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6329 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6330 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6331 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6332 6333 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6334 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6335 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6336 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6337 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6338 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6339 if (Node->isStrictFPOpcode()) { 6340 SDValue HiSub = 6341 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6342 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6343 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6344 {HiSub.getValue(1), LoFlt, HiSub}); 6345 Chain = Result.getValue(1); 6346 } else { 6347 SDValue HiSub = 6348 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6349 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6350 } 6351 return true; 6352 } 6353 6354 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6355 SelectionDAG &DAG) const { 6356 SDLoc dl(Node); 6357 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6358 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6359 EVT VT = Node->getValueType(0); 6360 if (isOperationLegalOrCustom(NewOp, VT)) { 6361 SDValue Quiet0 = Node->getOperand(0); 6362 SDValue Quiet1 = Node->getOperand(1); 6363 6364 if (!Node->getFlags().hasNoNaNs()) { 6365 // Insert canonicalizes if it's possible we need to quiet to get correct 6366 // sNaN behavior. 6367 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6368 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6369 Node->getFlags()); 6370 } 6371 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6372 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6373 Node->getFlags()); 6374 } 6375 } 6376 6377 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6378 } 6379 6380 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6381 // instead if there are no NaNs. 6382 if (Node->getFlags().hasNoNaNs()) { 6383 unsigned IEEE2018Op = 6384 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6385 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6386 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6387 Node->getOperand(1), Node->getFlags()); 6388 } 6389 } 6390 6391 // If none of the above worked, but there are no NaNs, then expand to 6392 // a compare/select sequence. This is required for correctness since 6393 // InstCombine might have canonicalized a fcmp+select sequence to a 6394 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6395 // expansion to libcall, we might introduce a link-time dependency 6396 // on libm into a file that originally did not have one. 6397 if (Node->getFlags().hasNoNaNs()) { 6398 ISD::CondCode Pred = 6399 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6400 SDValue Op1 = Node->getOperand(0); 6401 SDValue Op2 = Node->getOperand(1); 6402 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6403 // Copy FMF flags, but always set the no-signed-zeros flag 6404 // as this is implied by the FMINNUM/FMAXNUM semantics. 6405 SDNodeFlags Flags = Node->getFlags(); 6406 Flags.setNoSignedZeros(true); 6407 SelCC->setFlags(Flags); 6408 return SelCC; 6409 } 6410 6411 return SDValue(); 6412 } 6413 6414 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6415 SelectionDAG &DAG) const { 6416 SDLoc dl(Node); 6417 EVT VT = Node->getValueType(0); 6418 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6419 SDValue Op = Node->getOperand(0); 6420 unsigned Len = VT.getScalarSizeInBits(); 6421 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6422 6423 // TODO: Add support for irregular type lengths. 6424 if (!(Len <= 128 && Len % 8 == 0)) 6425 return false; 6426 6427 // Only expand vector types if we have the appropriate vector bit operations. 6428 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6429 !isOperationLegalOrCustom(ISD::SUB, VT) || 6430 !isOperationLegalOrCustom(ISD::SRL, VT) || 6431 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6432 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6433 return false; 6434 6435 // This is the "best" algorithm from 6436 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6437 SDValue Mask55 = 6438 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6439 SDValue Mask33 = 6440 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6441 SDValue Mask0F = 6442 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6443 SDValue Mask01 = 6444 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6445 6446 // v = v - ((v >> 1) & 0x55555555...) 6447 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6448 DAG.getNode(ISD::AND, dl, VT, 6449 DAG.getNode(ISD::SRL, dl, VT, Op, 6450 DAG.getConstant(1, dl, ShVT)), 6451 Mask55)); 6452 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6453 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6454 DAG.getNode(ISD::AND, dl, VT, 6455 DAG.getNode(ISD::SRL, dl, VT, Op, 6456 DAG.getConstant(2, dl, ShVT)), 6457 Mask33)); 6458 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6459 Op = DAG.getNode(ISD::AND, dl, VT, 6460 DAG.getNode(ISD::ADD, dl, VT, Op, 6461 DAG.getNode(ISD::SRL, dl, VT, Op, 6462 DAG.getConstant(4, dl, ShVT))), 6463 Mask0F); 6464 // v = (v * 0x01010101...) >> (Len - 8) 6465 if (Len > 8) 6466 Op = 6467 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6468 DAG.getConstant(Len - 8, dl, ShVT)); 6469 6470 Result = Op; 6471 return true; 6472 } 6473 6474 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6475 SelectionDAG &DAG) const { 6476 SDLoc dl(Node); 6477 EVT VT = Node->getValueType(0); 6478 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6479 SDValue Op = Node->getOperand(0); 6480 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6481 6482 // If the non-ZERO_UNDEF version is supported we can use that instead. 6483 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6484 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6485 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6486 return true; 6487 } 6488 6489 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6490 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6491 EVT SetCCVT = 6492 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6493 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6494 SDValue Zero = DAG.getConstant(0, dl, VT); 6495 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6496 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6497 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6498 return true; 6499 } 6500 6501 // Only expand vector types if we have the appropriate vector bit operations. 6502 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6503 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6504 !isOperationLegalOrCustom(ISD::SRL, VT) || 6505 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6506 return false; 6507 6508 // for now, we do this: 6509 // x = x | (x >> 1); 6510 // x = x | (x >> 2); 6511 // ... 6512 // x = x | (x >>16); 6513 // x = x | (x >>32); // for 64-bit input 6514 // return popcount(~x); 6515 // 6516 // Ref: "Hacker's Delight" by Henry Warren 6517 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6518 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6519 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6520 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6521 } 6522 Op = DAG.getNOT(dl, Op, VT); 6523 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6524 return true; 6525 } 6526 6527 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6528 SelectionDAG &DAG) const { 6529 SDLoc dl(Node); 6530 EVT VT = Node->getValueType(0); 6531 SDValue Op = Node->getOperand(0); 6532 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6533 6534 // If the non-ZERO_UNDEF version is supported we can use that instead. 6535 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6536 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6537 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6538 return true; 6539 } 6540 6541 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6542 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6543 EVT SetCCVT = 6544 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6545 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6546 SDValue Zero = DAG.getConstant(0, dl, VT); 6547 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6548 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6549 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6550 return true; 6551 } 6552 6553 // Only expand vector types if we have the appropriate vector bit operations. 6554 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6555 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6556 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6557 !isOperationLegalOrCustom(ISD::SUB, VT) || 6558 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6559 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6560 return false; 6561 6562 // for now, we use: { return popcount(~x & (x - 1)); } 6563 // unless the target has ctlz but not ctpop, in which case we use: 6564 // { return 32 - nlz(~x & (x-1)); } 6565 // Ref: "Hacker's Delight" by Henry Warren 6566 SDValue Tmp = DAG.getNode( 6567 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6568 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6569 6570 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6571 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6572 Result = 6573 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6574 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6575 return true; 6576 } 6577 6578 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6579 return true; 6580 } 6581 6582 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6583 SelectionDAG &DAG) const { 6584 SDLoc dl(N); 6585 EVT VT = N->getValueType(0); 6586 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6587 SDValue Op = N->getOperand(0); 6588 6589 // Only expand vector types if we have the appropriate vector operations. 6590 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6591 !isOperationLegalOrCustom(ISD::ADD, VT) || 6592 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6593 return false; 6594 6595 SDValue Shift = 6596 DAG.getNode(ISD::SRA, dl, VT, Op, 6597 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6598 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6599 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6600 return true; 6601 } 6602 6603 std::pair<SDValue, SDValue> 6604 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6605 SelectionDAG &DAG) const { 6606 SDLoc SL(LD); 6607 SDValue Chain = LD->getChain(); 6608 SDValue BasePTR = LD->getBasePtr(); 6609 EVT SrcVT = LD->getMemoryVT(); 6610 EVT DstVT = LD->getValueType(0); 6611 ISD::LoadExtType ExtType = LD->getExtensionType(); 6612 6613 unsigned NumElem = SrcVT.getVectorNumElements(); 6614 6615 EVT SrcEltVT = SrcVT.getScalarType(); 6616 EVT DstEltVT = DstVT.getScalarType(); 6617 6618 // A vector must always be stored in memory as-is, i.e. without any padding 6619 // between the elements, since various code depend on it, e.g. in the 6620 // handling of a bitcast of a vector type to int, which may be done with a 6621 // vector store followed by an integer load. A vector that does not have 6622 // elements that are byte-sized must therefore be stored as an integer 6623 // built out of the extracted vector elements. 6624 if (!SrcEltVT.isByteSized()) { 6625 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6626 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6627 6628 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6629 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6630 6631 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6632 SDValue SrcEltBitMask = DAG.getConstant( 6633 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6634 6635 // Load the whole vector and avoid masking off the top bits as it makes 6636 // the codegen worse. 6637 SDValue Load = 6638 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6639 LD->getPointerInfo(), SrcIntVT, LD->getAlignment(), 6640 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6641 6642 SmallVector<SDValue, 8> Vals; 6643 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6644 unsigned ShiftIntoIdx = 6645 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6646 SDValue ShiftAmount = 6647 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6648 LoadVT, SL, /*LegalTypes=*/false); 6649 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6650 SDValue Elt = 6651 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6652 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6653 6654 if (ExtType != ISD::NON_EXTLOAD) { 6655 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6656 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6657 } 6658 6659 Vals.push_back(Scalar); 6660 } 6661 6662 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6663 return std::make_pair(Value, Load.getValue(1)); 6664 } 6665 6666 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6667 assert(SrcEltVT.isByteSized()); 6668 6669 SmallVector<SDValue, 8> Vals; 6670 SmallVector<SDValue, 8> LoadChains; 6671 6672 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6673 SDValue ScalarLoad = 6674 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6675 LD->getPointerInfo().getWithOffset(Idx * Stride), 6676 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6677 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6678 6679 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6680 6681 Vals.push_back(ScalarLoad.getValue(0)); 6682 LoadChains.push_back(ScalarLoad.getValue(1)); 6683 } 6684 6685 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6686 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6687 6688 return std::make_pair(Value, NewChain); 6689 } 6690 6691 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6692 SelectionDAG &DAG) const { 6693 SDLoc SL(ST); 6694 6695 SDValue Chain = ST->getChain(); 6696 SDValue BasePtr = ST->getBasePtr(); 6697 SDValue Value = ST->getValue(); 6698 EVT StVT = ST->getMemoryVT(); 6699 6700 // The type of the data we want to save 6701 EVT RegVT = Value.getValueType(); 6702 EVT RegSclVT = RegVT.getScalarType(); 6703 6704 // The type of data as saved in memory. 6705 EVT MemSclVT = StVT.getScalarType(); 6706 6707 unsigned NumElem = StVT.getVectorNumElements(); 6708 6709 // A vector must always be stored in memory as-is, i.e. without any padding 6710 // between the elements, since various code depend on it, e.g. in the 6711 // handling of a bitcast of a vector type to int, which may be done with a 6712 // vector store followed by an integer load. A vector that does not have 6713 // elements that are byte-sized must therefore be stored as an integer 6714 // built out of the extracted vector elements. 6715 if (!MemSclVT.isByteSized()) { 6716 unsigned NumBits = StVT.getSizeInBits(); 6717 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6718 6719 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6720 6721 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6722 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6723 DAG.getVectorIdxConstant(Idx, SL)); 6724 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6725 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6726 unsigned ShiftIntoIdx = 6727 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6728 SDValue ShiftAmount = 6729 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6730 SDValue ShiftedElt = 6731 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6732 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6733 } 6734 6735 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6736 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6737 ST->getAAInfo()); 6738 } 6739 6740 // Store Stride in bytes 6741 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6742 assert(Stride && "Zero stride!"); 6743 // Extract each of the elements from the original vector and save them into 6744 // memory individually. 6745 SmallVector<SDValue, 8> Stores; 6746 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6747 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6748 DAG.getVectorIdxConstant(Idx, SL)); 6749 6750 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6751 6752 // This scalar TruncStore may be illegal, but we legalize it later. 6753 SDValue Store = DAG.getTruncStore( 6754 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6755 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6756 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6757 6758 Stores.push_back(Store); 6759 } 6760 6761 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6762 } 6763 6764 std::pair<SDValue, SDValue> 6765 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6766 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6767 "unaligned indexed loads not implemented!"); 6768 SDValue Chain = LD->getChain(); 6769 SDValue Ptr = LD->getBasePtr(); 6770 EVT VT = LD->getValueType(0); 6771 EVT LoadedVT = LD->getMemoryVT(); 6772 SDLoc dl(LD); 6773 auto &MF = DAG.getMachineFunction(); 6774 6775 if (VT.isFloatingPoint() || VT.isVector()) { 6776 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6777 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6778 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6779 LoadedVT.isVector()) { 6780 // Scalarize the load and let the individual components be handled. 6781 return scalarizeVectorLoad(LD, DAG); 6782 } 6783 6784 // Expand to a (misaligned) integer load of the same size, 6785 // then bitconvert to floating point or vector. 6786 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6787 LD->getMemOperand()); 6788 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6789 if (LoadedVT != VT) 6790 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6791 ISD::ANY_EXTEND, dl, VT, Result); 6792 6793 return std::make_pair(Result, newLoad.getValue(1)); 6794 } 6795 6796 // Copy the value to a (aligned) stack slot using (unaligned) integer 6797 // loads and stores, then do a (aligned) load from the stack slot. 6798 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6799 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6800 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6801 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6802 6803 // Make sure the stack slot is also aligned for the register type. 6804 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6805 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6806 SmallVector<SDValue, 8> Stores; 6807 SDValue StackPtr = StackBase; 6808 unsigned Offset = 0; 6809 6810 EVT PtrVT = Ptr.getValueType(); 6811 EVT StackPtrVT = StackPtr.getValueType(); 6812 6813 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6814 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6815 6816 // Do all but one copies using the full register width. 6817 for (unsigned i = 1; i < NumRegs; i++) { 6818 // Load one integer register's worth from the original location. 6819 SDValue Load = DAG.getLoad( 6820 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6821 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6822 LD->getAAInfo()); 6823 // Follow the load with a store to the stack slot. Remember the store. 6824 Stores.push_back(DAG.getStore( 6825 Load.getValue(1), dl, Load, StackPtr, 6826 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6827 // Increment the pointers. 6828 Offset += RegBytes; 6829 6830 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6831 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6832 } 6833 6834 // The last copy may be partial. Do an extending load. 6835 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6836 8 * (LoadedBytes - Offset)); 6837 SDValue Load = 6838 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6839 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6840 MinAlign(LD->getAlignment(), Offset), 6841 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6842 // Follow the load with a store to the stack slot. Remember the store. 6843 // On big-endian machines this requires a truncating store to ensure 6844 // that the bits end up in the right place. 6845 Stores.push_back(DAG.getTruncStore( 6846 Load.getValue(1), dl, Load, StackPtr, 6847 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6848 6849 // The order of the stores doesn't matter - say it with a TokenFactor. 6850 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6851 6852 // Finally, perform the original load only redirected to the stack slot. 6853 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6854 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6855 LoadedVT); 6856 6857 // Callers expect a MERGE_VALUES node. 6858 return std::make_pair(Load, TF); 6859 } 6860 6861 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6862 "Unaligned load of unsupported type."); 6863 6864 // Compute the new VT that is half the size of the old one. This is an 6865 // integer MVT. 6866 unsigned NumBits = LoadedVT.getSizeInBits(); 6867 EVT NewLoadedVT; 6868 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6869 NumBits >>= 1; 6870 6871 unsigned Alignment = LD->getAlignment(); 6872 unsigned IncrementSize = NumBits / 8; 6873 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6874 6875 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6876 if (HiExtType == ISD::NON_EXTLOAD) 6877 HiExtType = ISD::ZEXTLOAD; 6878 6879 // Load the value in two parts 6880 SDValue Lo, Hi; 6881 if (DAG.getDataLayout().isLittleEndian()) { 6882 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6883 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6884 LD->getAAInfo()); 6885 6886 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6887 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6888 LD->getPointerInfo().getWithOffset(IncrementSize), 6889 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6890 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6891 } else { 6892 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6893 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6894 LD->getAAInfo()); 6895 6896 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6897 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6898 LD->getPointerInfo().getWithOffset(IncrementSize), 6899 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6900 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6901 } 6902 6903 // aggregate the two parts 6904 SDValue ShiftAmount = 6905 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6906 DAG.getDataLayout())); 6907 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6908 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6909 6910 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6911 Hi.getValue(1)); 6912 6913 return std::make_pair(Result, TF); 6914 } 6915 6916 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6917 SelectionDAG &DAG) const { 6918 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6919 "unaligned indexed stores not implemented!"); 6920 SDValue Chain = ST->getChain(); 6921 SDValue Ptr = ST->getBasePtr(); 6922 SDValue Val = ST->getValue(); 6923 EVT VT = Val.getValueType(); 6924 int Alignment = ST->getAlignment(); 6925 auto &MF = DAG.getMachineFunction(); 6926 EVT StoreMemVT = ST->getMemoryVT(); 6927 6928 SDLoc dl(ST); 6929 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6930 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6931 if (isTypeLegal(intVT)) { 6932 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6933 StoreMemVT.isVector()) { 6934 // Scalarize the store and let the individual components be handled. 6935 SDValue Result = scalarizeVectorStore(ST, DAG); 6936 return Result; 6937 } 6938 // Expand to a bitconvert of the value to the integer type of the 6939 // same size, then a (misaligned) int store. 6940 // FIXME: Does not handle truncating floating point stores! 6941 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6942 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6943 Alignment, ST->getMemOperand()->getFlags()); 6944 return Result; 6945 } 6946 // Do a (aligned) store to a stack slot, then copy from the stack slot 6947 // to the final destination using (unaligned) integer loads and stores. 6948 MVT RegVT = getRegisterType( 6949 *DAG.getContext(), 6950 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6951 EVT PtrVT = Ptr.getValueType(); 6952 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6953 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6954 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6955 6956 // Make sure the stack slot is also aligned for the register type. 6957 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6958 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6959 6960 // Perform the original store, only redirected to the stack slot. 6961 SDValue Store = DAG.getTruncStore( 6962 Chain, dl, Val, StackPtr, 6963 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6964 6965 EVT StackPtrVT = StackPtr.getValueType(); 6966 6967 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6968 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6969 SmallVector<SDValue, 8> Stores; 6970 unsigned Offset = 0; 6971 6972 // Do all but one copies using the full register width. 6973 for (unsigned i = 1; i < NumRegs; i++) { 6974 // Load one integer register's worth from the stack slot. 6975 SDValue Load = DAG.getLoad( 6976 RegVT, dl, Store, StackPtr, 6977 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6978 // Store it to the final location. Remember the store. 6979 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6980 ST->getPointerInfo().getWithOffset(Offset), 6981 MinAlign(ST->getAlignment(), Offset), 6982 ST->getMemOperand()->getFlags())); 6983 // Increment the pointers. 6984 Offset += RegBytes; 6985 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6986 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6987 } 6988 6989 // The last store may be partial. Do a truncating store. On big-endian 6990 // machines this requires an extending load from the stack slot to ensure 6991 // that the bits are in the right place. 6992 EVT LoadMemVT = 6993 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6994 6995 // Load from the stack slot. 6996 SDValue Load = DAG.getExtLoad( 6997 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6998 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6999 7000 Stores.push_back( 7001 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7002 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7003 MinAlign(ST->getAlignment(), Offset), 7004 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7005 // The order of the stores doesn't matter - say it with a TokenFactor. 7006 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7007 return Result; 7008 } 7009 7010 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7011 "Unaligned store of unknown type."); 7012 // Get the half-size VT 7013 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7014 int NumBits = NewStoredVT.getSizeInBits(); 7015 int IncrementSize = NumBits / 8; 7016 7017 // Divide the stored value in two parts. 7018 SDValue ShiftAmount = DAG.getConstant( 7019 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7020 SDValue Lo = Val; 7021 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7022 7023 // Store the two parts 7024 SDValue Store1, Store2; 7025 Store1 = DAG.getTruncStore(Chain, dl, 7026 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7027 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7028 ST->getMemOperand()->getFlags()); 7029 7030 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7031 Alignment = MinAlign(Alignment, IncrementSize); 7032 Store2 = DAG.getTruncStore( 7033 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7034 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7035 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7036 7037 SDValue Result = 7038 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7039 return Result; 7040 } 7041 7042 SDValue 7043 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7044 const SDLoc &DL, EVT DataVT, 7045 SelectionDAG &DAG, 7046 bool IsCompressedMemory) const { 7047 SDValue Increment; 7048 EVT AddrVT = Addr.getValueType(); 7049 EVT MaskVT = Mask.getValueType(); 7050 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7051 "Incompatible types of Data and Mask"); 7052 if (IsCompressedMemory) { 7053 // Incrementing the pointer according to number of '1's in the mask. 7054 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7055 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7056 if (MaskIntVT.getSizeInBits() < 32) { 7057 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7058 MaskIntVT = MVT::i32; 7059 } 7060 7061 // Count '1's with POPCNT. 7062 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7063 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7064 // Scale is an element size in bytes. 7065 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7066 AddrVT); 7067 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7068 } else 7069 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7070 7071 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7072 } 7073 7074 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7075 SDValue Idx, 7076 EVT VecVT, 7077 const SDLoc &dl) { 7078 if (isa<ConstantSDNode>(Idx)) 7079 return Idx; 7080 7081 EVT IdxVT = Idx.getValueType(); 7082 unsigned NElts = VecVT.getVectorNumElements(); 7083 if (isPowerOf2_32(NElts)) { 7084 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7085 Log2_32(NElts)); 7086 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7087 DAG.getConstant(Imm, dl, IdxVT)); 7088 } 7089 7090 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7091 DAG.getConstant(NElts - 1, dl, IdxVT)); 7092 } 7093 7094 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7095 SDValue VecPtr, EVT VecVT, 7096 SDValue Index) const { 7097 SDLoc dl(Index); 7098 // Make sure the index type is big enough to compute in. 7099 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7100 7101 EVT EltVT = VecVT.getVectorElementType(); 7102 7103 // Calculate the element offset and add it to the pointer. 7104 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7105 assert(EltSize * 8 == EltVT.getSizeInBits() && 7106 "Converting bits to bytes lost precision"); 7107 7108 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7109 7110 EVT IdxVT = Index.getValueType(); 7111 7112 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7113 DAG.getConstant(EltSize, dl, IdxVT)); 7114 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7115 } 7116 7117 //===----------------------------------------------------------------------===// 7118 // Implementation of Emulated TLS Model 7119 //===----------------------------------------------------------------------===// 7120 7121 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7122 SelectionDAG &DAG) const { 7123 // Access to address of TLS varialbe xyz is lowered to a function call: 7124 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7125 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7126 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7127 SDLoc dl(GA); 7128 7129 ArgListTy Args; 7130 ArgListEntry Entry; 7131 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7132 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7133 StringRef EmuTlsVarName(NameString); 7134 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7135 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7136 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7137 Entry.Ty = VoidPtrType; 7138 Args.push_back(Entry); 7139 7140 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7141 7142 TargetLowering::CallLoweringInfo CLI(DAG); 7143 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7144 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7145 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7146 7147 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7148 // At last for X86 targets, maybe good for other targets too? 7149 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7150 MFI.setAdjustsStack(true); // Is this only for X86 target? 7151 MFI.setHasCalls(true); 7152 7153 assert((GA->getOffset() == 0) && 7154 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7155 return CallResult.first; 7156 } 7157 7158 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7159 SelectionDAG &DAG) const { 7160 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7161 if (!isCtlzFast()) 7162 return SDValue(); 7163 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7164 SDLoc dl(Op); 7165 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7166 if (C->isNullValue() && CC == ISD::SETEQ) { 7167 EVT VT = Op.getOperand(0).getValueType(); 7168 SDValue Zext = Op.getOperand(0); 7169 if (VT.bitsLT(MVT::i32)) { 7170 VT = MVT::i32; 7171 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7172 } 7173 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7174 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7175 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7176 DAG.getConstant(Log2b, dl, MVT::i32)); 7177 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7178 } 7179 } 7180 return SDValue(); 7181 } 7182 7183 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7184 unsigned Opcode = Node->getOpcode(); 7185 SDValue LHS = Node->getOperand(0); 7186 SDValue RHS = Node->getOperand(1); 7187 EVT VT = LHS.getValueType(); 7188 SDLoc dl(Node); 7189 7190 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7191 assert(VT.isInteger() && "Expected operands to be integers"); 7192 7193 // usub.sat(a, b) -> umax(a, b) - b 7194 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7195 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7196 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7197 } 7198 7199 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7200 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7201 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7202 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7203 } 7204 7205 unsigned OverflowOp; 7206 switch (Opcode) { 7207 case ISD::SADDSAT: 7208 OverflowOp = ISD::SADDO; 7209 break; 7210 case ISD::UADDSAT: 7211 OverflowOp = ISD::UADDO; 7212 break; 7213 case ISD::SSUBSAT: 7214 OverflowOp = ISD::SSUBO; 7215 break; 7216 case ISD::USUBSAT: 7217 OverflowOp = ISD::USUBO; 7218 break; 7219 default: 7220 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7221 "addition or subtraction node."); 7222 } 7223 7224 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7225 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7226 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7227 LHS, RHS); 7228 SDValue SumDiff = Result.getValue(0); 7229 SDValue Overflow = Result.getValue(1); 7230 SDValue Zero = DAG.getConstant(0, dl, VT); 7231 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7232 7233 if (Opcode == ISD::UADDSAT) { 7234 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7235 // (LHS + RHS) | OverflowMask 7236 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7237 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7238 } 7239 // Overflow ? 0xffff.... : (LHS + RHS) 7240 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7241 } else if (Opcode == ISD::USUBSAT) { 7242 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7243 // (LHS - RHS) & ~OverflowMask 7244 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7245 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7246 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7247 } 7248 // Overflow ? 0 : (LHS - RHS) 7249 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7250 } else { 7251 // SatMax -> Overflow && SumDiff < 0 7252 // SatMin -> Overflow && SumDiff >= 0 7253 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7254 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7255 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7256 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7257 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7258 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7259 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7260 } 7261 } 7262 7263 SDValue 7264 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7265 assert((Node->getOpcode() == ISD::SMULFIX || 7266 Node->getOpcode() == ISD::UMULFIX || 7267 Node->getOpcode() == ISD::SMULFIXSAT || 7268 Node->getOpcode() == ISD::UMULFIXSAT) && 7269 "Expected a fixed point multiplication opcode"); 7270 7271 SDLoc dl(Node); 7272 SDValue LHS = Node->getOperand(0); 7273 SDValue RHS = Node->getOperand(1); 7274 EVT VT = LHS.getValueType(); 7275 unsigned Scale = Node->getConstantOperandVal(2); 7276 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7277 Node->getOpcode() == ISD::UMULFIXSAT); 7278 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7279 Node->getOpcode() == ISD::SMULFIXSAT); 7280 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7281 unsigned VTSize = VT.getScalarSizeInBits(); 7282 7283 if (!Scale) { 7284 // [us]mul.fix(a, b, 0) -> mul(a, b) 7285 if (!Saturating) { 7286 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7287 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7288 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7289 SDValue Result = 7290 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7291 SDValue Product = Result.getValue(0); 7292 SDValue Overflow = Result.getValue(1); 7293 SDValue Zero = DAG.getConstant(0, dl, VT); 7294 7295 APInt MinVal = APInt::getSignedMinValue(VTSize); 7296 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7297 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7298 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7299 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7300 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7301 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7302 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7303 SDValue Result = 7304 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7305 SDValue Product = Result.getValue(0); 7306 SDValue Overflow = Result.getValue(1); 7307 7308 APInt MaxVal = APInt::getMaxValue(VTSize); 7309 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7310 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7311 } 7312 } 7313 7314 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7315 "Expected scale to be less than the number of bits if signed or at " 7316 "most the number of bits if unsigned."); 7317 assert(LHS.getValueType() == RHS.getValueType() && 7318 "Expected both operands to be the same type"); 7319 7320 // Get the upper and lower bits of the result. 7321 SDValue Lo, Hi; 7322 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7323 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7324 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7325 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7326 Lo = Result.getValue(0); 7327 Hi = Result.getValue(1); 7328 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7329 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7330 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7331 } else if (VT.isVector()) { 7332 return SDValue(); 7333 } else { 7334 report_fatal_error("Unable to expand fixed point multiplication."); 7335 } 7336 7337 if (Scale == VTSize) 7338 // Result is just the top half since we'd be shifting by the width of the 7339 // operand. Overflow impossible so this works for both UMULFIX and 7340 // UMULFIXSAT. 7341 return Hi; 7342 7343 // The result will need to be shifted right by the scale since both operands 7344 // are scaled. The result is given to us in 2 halves, so we only want part of 7345 // both in the result. 7346 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7347 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7348 DAG.getConstant(Scale, dl, ShiftTy)); 7349 if (!Saturating) 7350 return Result; 7351 7352 if (!Signed) { 7353 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7354 // widened multiplication) aren't all zeroes. 7355 7356 // Saturate to max if ((Hi >> Scale) != 0), 7357 // which is the same as if (Hi > ((1 << Scale) - 1)) 7358 APInt MaxVal = APInt::getMaxValue(VTSize); 7359 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7360 dl, VT); 7361 Result = DAG.getSelectCC(dl, Hi, LowMask, 7362 DAG.getConstant(MaxVal, dl, VT), Result, 7363 ISD::SETUGT); 7364 7365 return Result; 7366 } 7367 7368 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7369 // widened multiplication) aren't all ones or all zeroes. 7370 7371 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7372 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7373 7374 if (Scale == 0) { 7375 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7376 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7377 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7378 // Saturated to SatMin if wide product is negative, and SatMax if wide 7379 // product is positive ... 7380 SDValue Zero = DAG.getConstant(0, dl, VT); 7381 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7382 ISD::SETLT); 7383 // ... but only if we overflowed. 7384 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7385 } 7386 7387 // We handled Scale==0 above so all the bits to examine is in Hi. 7388 7389 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7390 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7391 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7392 dl, VT); 7393 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7394 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7395 // which is the same as if (HI < (-1 << (Scale - 1)) 7396 SDValue HighMask = 7397 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7398 dl, VT); 7399 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7400 return Result; 7401 } 7402 7403 SDValue 7404 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7405 SDValue LHS, SDValue RHS, 7406 unsigned Scale, SelectionDAG &DAG) const { 7407 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7408 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7409 "Expected a fixed point division opcode"); 7410 7411 EVT VT = LHS.getValueType(); 7412 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7413 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7414 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7415 7416 // If there is enough room in the type to upscale the LHS or downscale the 7417 // RHS before the division, we can perform it in this type without having to 7418 // resize. For signed operations, the LHS headroom is the number of 7419 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7420 // The headroom for the RHS is the number of trailing zeroes. 7421 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7422 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7423 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7424 7425 // For signed saturating operations, we need to be able to detect true integer 7426 // division overflow; that is, when you have MIN / -EPS. However, this 7427 // is undefined behavior and if we emit divisions that could take such 7428 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7429 // example). 7430 // Avoid this by requiring an extra bit so that we never get this case. 7431 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7432 // signed saturating division, we need to emit a whopping 32-bit division. 7433 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7434 return SDValue(); 7435 7436 unsigned LHSShift = std::min(LHSLead, Scale); 7437 unsigned RHSShift = Scale - LHSShift; 7438 7439 // At this point, we know that if we shift the LHS up by LHSShift and the 7440 // RHS down by RHSShift, we can emit a regular division with a final scaling 7441 // factor of Scale. 7442 7443 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7444 if (LHSShift) 7445 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7446 DAG.getConstant(LHSShift, dl, ShiftTy)); 7447 if (RHSShift) 7448 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7449 DAG.getConstant(RHSShift, dl, ShiftTy)); 7450 7451 SDValue Quot; 7452 if (Signed) { 7453 // For signed operations, if the resulting quotient is negative and the 7454 // remainder is nonzero, subtract 1 from the quotient to round towards 7455 // negative infinity. 7456 SDValue Rem; 7457 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7458 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7459 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7460 if (isTypeLegal(VT) && 7461 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7462 Quot = DAG.getNode(ISD::SDIVREM, dl, 7463 DAG.getVTList(VT, VT), 7464 LHS, RHS); 7465 Rem = Quot.getValue(1); 7466 Quot = Quot.getValue(0); 7467 } else { 7468 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7469 LHS, RHS); 7470 Rem = DAG.getNode(ISD::SREM, dl, VT, 7471 LHS, RHS); 7472 } 7473 SDValue Zero = DAG.getConstant(0, dl, VT); 7474 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7475 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7476 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7477 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7478 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7479 DAG.getConstant(1, dl, VT)); 7480 Quot = DAG.getSelect(dl, VT, 7481 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7482 Sub1, Quot); 7483 } else 7484 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7485 LHS, RHS); 7486 7487 return Quot; 7488 } 7489 7490 void TargetLowering::expandUADDSUBO( 7491 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7492 SDLoc dl(Node); 7493 SDValue LHS = Node->getOperand(0); 7494 SDValue RHS = Node->getOperand(1); 7495 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7496 7497 // If ADD/SUBCARRY is legal, use that instead. 7498 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7499 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7500 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7501 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7502 { LHS, RHS, CarryIn }); 7503 Result = SDValue(NodeCarry.getNode(), 0); 7504 Overflow = SDValue(NodeCarry.getNode(), 1); 7505 return; 7506 } 7507 7508 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7509 LHS.getValueType(), LHS, RHS); 7510 7511 EVT ResultType = Node->getValueType(1); 7512 EVT SetCCType = getSetCCResultType( 7513 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7514 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7515 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7516 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7517 } 7518 7519 void TargetLowering::expandSADDSUBO( 7520 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7521 SDLoc dl(Node); 7522 SDValue LHS = Node->getOperand(0); 7523 SDValue RHS = Node->getOperand(1); 7524 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7525 7526 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7527 LHS.getValueType(), LHS, RHS); 7528 7529 EVT ResultType = Node->getValueType(1); 7530 EVT OType = getSetCCResultType( 7531 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7532 7533 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7534 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7535 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7536 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7537 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7538 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7539 return; 7540 } 7541 7542 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7543 7544 // For an addition, the result should be less than one of the operands (LHS) 7545 // if and only if the other operand (RHS) is negative, otherwise there will 7546 // be overflow. 7547 // For a subtraction, the result should be less than one of the operands 7548 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7549 // otherwise there will be overflow. 7550 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7551 SDValue ConditionRHS = 7552 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7553 7554 Overflow = DAG.getBoolExtOrTrunc( 7555 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7556 ResultType, ResultType); 7557 } 7558 7559 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7560 SDValue &Overflow, SelectionDAG &DAG) const { 7561 SDLoc dl(Node); 7562 EVT VT = Node->getValueType(0); 7563 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7564 SDValue LHS = Node->getOperand(0); 7565 SDValue RHS = Node->getOperand(1); 7566 bool isSigned = Node->getOpcode() == ISD::SMULO; 7567 7568 // For power-of-two multiplications we can use a simpler shift expansion. 7569 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7570 const APInt &C = RHSC->getAPIntValue(); 7571 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7572 if (C.isPowerOf2()) { 7573 // smulo(x, signed_min) is same as umulo(x, signed_min). 7574 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7575 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7576 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7577 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7578 Overflow = DAG.getSetCC(dl, SetCCVT, 7579 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7580 dl, VT, Result, ShiftAmt), 7581 LHS, ISD::SETNE); 7582 return true; 7583 } 7584 } 7585 7586 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7587 if (VT.isVector()) 7588 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7589 VT.getVectorNumElements()); 7590 7591 SDValue BottomHalf; 7592 SDValue TopHalf; 7593 static const unsigned Ops[2][3] = 7594 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7595 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7596 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7597 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7598 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7599 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7600 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7601 RHS); 7602 TopHalf = BottomHalf.getValue(1); 7603 } else if (isTypeLegal(WideVT)) { 7604 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7605 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7606 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7607 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7608 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7609 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7610 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7611 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7612 } else { 7613 if (VT.isVector()) 7614 return false; 7615 7616 // We can fall back to a libcall with an illegal type for the MUL if we 7617 // have a libcall big enough. 7618 // Also, we can fall back to a division in some cases, but that's a big 7619 // performance hit in the general case. 7620 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7621 if (WideVT == MVT::i16) 7622 LC = RTLIB::MUL_I16; 7623 else if (WideVT == MVT::i32) 7624 LC = RTLIB::MUL_I32; 7625 else if (WideVT == MVT::i64) 7626 LC = RTLIB::MUL_I64; 7627 else if (WideVT == MVT::i128) 7628 LC = RTLIB::MUL_I128; 7629 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7630 7631 SDValue HiLHS; 7632 SDValue HiRHS; 7633 if (isSigned) { 7634 // The high part is obtained by SRA'ing all but one of the bits of low 7635 // part. 7636 unsigned LoSize = VT.getSizeInBits(); 7637 HiLHS = 7638 DAG.getNode(ISD::SRA, dl, VT, LHS, 7639 DAG.getConstant(LoSize - 1, dl, 7640 getPointerTy(DAG.getDataLayout()))); 7641 HiRHS = 7642 DAG.getNode(ISD::SRA, dl, VT, RHS, 7643 DAG.getConstant(LoSize - 1, dl, 7644 getPointerTy(DAG.getDataLayout()))); 7645 } else { 7646 HiLHS = DAG.getConstant(0, dl, VT); 7647 HiRHS = DAG.getConstant(0, dl, VT); 7648 } 7649 7650 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7651 // pre-lowered to the correct types. This all depends upon WideVT not 7652 // being a legal type for the architecture and thus has to be split to 7653 // two arguments. 7654 SDValue Ret; 7655 TargetLowering::MakeLibCallOptions CallOptions; 7656 CallOptions.setSExt(isSigned); 7657 CallOptions.setIsPostTypeLegalization(true); 7658 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7659 // Halves of WideVT are packed into registers in different order 7660 // depending on platform endianness. This is usually handled by 7661 // the C calling convention, but we can't defer to it in 7662 // the legalizer. 7663 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7664 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7665 } else { 7666 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7667 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7668 } 7669 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7670 "Ret value is a collection of constituent nodes holding result."); 7671 if (DAG.getDataLayout().isLittleEndian()) { 7672 // Same as above. 7673 BottomHalf = Ret.getOperand(0); 7674 TopHalf = Ret.getOperand(1); 7675 } else { 7676 BottomHalf = Ret.getOperand(1); 7677 TopHalf = Ret.getOperand(0); 7678 } 7679 } 7680 7681 Result = BottomHalf; 7682 if (isSigned) { 7683 SDValue ShiftAmt = DAG.getConstant( 7684 VT.getScalarSizeInBits() - 1, dl, 7685 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7686 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7687 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7688 } else { 7689 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7690 DAG.getConstant(0, dl, VT), ISD::SETNE); 7691 } 7692 7693 // Truncate the result if SetCC returns a larger type than needed. 7694 EVT RType = Node->getValueType(1); 7695 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7696 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7697 7698 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7699 "Unexpected result type for S/UMULO legalization"); 7700 return true; 7701 } 7702 7703 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7704 SDLoc dl(Node); 7705 bool NoNaN = Node->getFlags().hasNoNaNs(); 7706 unsigned BaseOpcode = 0; 7707 switch (Node->getOpcode()) { 7708 default: llvm_unreachable("Expected VECREDUCE opcode"); 7709 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7710 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7711 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7712 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7713 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7714 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7715 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7716 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7717 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7718 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7719 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7720 case ISD::VECREDUCE_FMAX: 7721 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7722 break; 7723 case ISD::VECREDUCE_FMIN: 7724 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7725 break; 7726 } 7727 7728 SDValue Op = Node->getOperand(0); 7729 EVT VT = Op.getValueType(); 7730 7731 // Try to use a shuffle reduction for power of two vectors. 7732 if (VT.isPow2VectorType()) { 7733 while (VT.getVectorNumElements() > 1) { 7734 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7735 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7736 break; 7737 7738 SDValue Lo, Hi; 7739 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7740 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7741 VT = HalfVT; 7742 } 7743 } 7744 7745 EVT EltVT = VT.getVectorElementType(); 7746 unsigned NumElts = VT.getVectorNumElements(); 7747 7748 SmallVector<SDValue, 8> Ops; 7749 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7750 7751 SDValue Res = Ops[0]; 7752 for (unsigned i = 1; i < NumElts; i++) 7753 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7754 7755 // Result type may be wider than element type. 7756 if (EltVT != Node->getValueType(0)) 7757 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7758 return Res; 7759 } 7760