1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlign(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 794 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 795 unsigned Depth) const { 796 EVT VT = Op.getValueType(); 797 APInt DemandedElts = VT.isVector() 798 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 799 : APInt(1, 1); 800 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 801 Depth); 802 } 803 804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 805 /// result of Op are ever used downstream. If we can use this information to 806 /// simplify Op, create a new simplified DAG node and return true, returning the 807 /// original and new nodes in Old and New. Otherwise, analyze the expression and 808 /// return a mask of Known bits for the expression (used to simplify the 809 /// caller). The Known bits may only be accurate for those bits in the 810 /// OriginalDemandedBits and OriginalDemandedElts. 811 bool TargetLowering::SimplifyDemandedBits( 812 SDValue Op, const APInt &OriginalDemandedBits, 813 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 814 unsigned Depth, bool AssumeSingleUse) const { 815 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 816 assert(Op.getScalarValueSizeInBits() == BitWidth && 817 "Mask size mismatches value type size!"); 818 819 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 820 assert((!Op.getValueType().isVector() || 821 NumElts == Op.getValueType().getVectorNumElements()) && 822 "Unexpected vector size"); 823 824 APInt DemandedBits = OriginalDemandedBits; 825 APInt DemandedElts = OriginalDemandedElts; 826 SDLoc dl(Op); 827 auto &DL = TLO.DAG.getDataLayout(); 828 829 // Don't know anything. 830 Known = KnownBits(BitWidth); 831 832 // Undef operand. 833 if (Op.isUndef()) 834 return false; 835 836 if (Op.getOpcode() == ISD::Constant) { 837 // We know all of the bits for a constant! 838 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 839 Known.Zero = ~Known.One; 840 return false; 841 } 842 843 // Other users may use these bits. 844 EVT VT = Op.getValueType(); 845 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 846 if (Depth != 0) { 847 // If not at the root, Just compute the Known bits to 848 // simplify things downstream. 849 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 850 return false; 851 } 852 // If this is the root being simplified, allow it to have multiple uses, 853 // just set the DemandedBits/Elts to all bits. 854 DemandedBits = APInt::getAllOnesValue(BitWidth); 855 DemandedElts = APInt::getAllOnesValue(NumElts); 856 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 857 // Not demanding any bits/elts from Op. 858 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 859 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 860 // Limit search depth. 861 return false; 862 } 863 864 KnownBits Known2, KnownOut; 865 switch (Op.getOpcode()) { 866 case ISD::TargetConstant: 867 llvm_unreachable("Can't simplify this node"); 868 case ISD::SCALAR_TO_VECTOR: { 869 if (!DemandedElts[0]) 870 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 871 872 KnownBits SrcKnown; 873 SDValue Src = Op.getOperand(0); 874 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 875 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 877 return true; 878 879 // Upper elements are undef, so only get the knownbits if we just demand 880 // the bottom element. 881 if (DemandedElts == 1) 882 Known = SrcKnown.anyextOrTrunc(BitWidth); 883 break; 884 } 885 case ISD::BUILD_VECTOR: 886 // Collect the known bits that are shared by every demanded element. 887 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 888 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 889 return false; // Don't fall through, will infinitely loop. 890 case ISD::LOAD: { 891 LoadSDNode *LD = cast<LoadSDNode>(Op); 892 if (getTargetConstantFromLoad(LD)) { 893 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 894 return false; // Don't fall through, will infinitely loop. 895 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 896 // If this is a ZEXTLoad and we are looking at the loaded value. 897 EVT MemVT = LD->getMemoryVT(); 898 unsigned MemBits = MemVT.getScalarSizeInBits(); 899 Known.Zero.setBitsFrom(MemBits); 900 return false; // Don't fall through, will infinitely loop. 901 } 902 break; 903 } 904 case ISD::INSERT_VECTOR_ELT: { 905 SDValue Vec = Op.getOperand(0); 906 SDValue Scl = Op.getOperand(1); 907 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 908 EVT VecVT = Vec.getValueType(); 909 910 // If index isn't constant, assume we need all vector elements AND the 911 // inserted element. 912 APInt DemandedVecElts(DemandedElts); 913 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 914 unsigned Idx = CIdx->getZExtValue(); 915 DemandedVecElts.clearBit(Idx); 916 917 // Inserted element is not required. 918 if (!DemandedElts[Idx]) 919 return TLO.CombineTo(Op, Vec); 920 } 921 922 KnownBits KnownScl; 923 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 924 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 925 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 926 return true; 927 928 Known = KnownScl.anyextOrTrunc(BitWidth); 929 930 KnownBits KnownVec; 931 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 932 Depth + 1)) 933 return true; 934 935 if (!!DemandedVecElts) { 936 Known.One &= KnownVec.One; 937 Known.Zero &= KnownVec.Zero; 938 } 939 940 return false; 941 } 942 case ISD::INSERT_SUBVECTOR: { 943 SDValue Base = Op.getOperand(0); 944 SDValue Sub = Op.getOperand(1); 945 EVT SubVT = Sub.getValueType(); 946 unsigned NumSubElts = SubVT.getVectorNumElements(); 947 948 // If index isn't constant, assume we need the original demanded base 949 // elements and ALL the inserted subvector elements. 950 APInt BaseElts = DemandedElts; 951 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 952 if (isa<ConstantSDNode>(Op.getOperand(2))) { 953 const APInt &Idx = Op.getConstantOperandAPInt(2); 954 if (Idx.ule(NumElts - NumSubElts)) { 955 unsigned SubIdx = Idx.getZExtValue(); 956 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 957 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 958 } 959 } 960 961 KnownBits KnownSub, KnownBase; 962 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 963 Depth + 1)) 964 return true; 965 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 966 Depth + 1)) 967 return true; 968 969 Known.Zero.setAllBits(); 970 Known.One.setAllBits(); 971 if (!!SubElts) { 972 Known.One &= KnownSub.One; 973 Known.Zero &= KnownSub.Zero; 974 } 975 if (!!BaseElts) { 976 Known.One &= KnownBase.One; 977 Known.Zero &= KnownBase.Zero; 978 } 979 980 // Attempt to avoid multi-use src if we don't need anything from it. 981 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 982 !BaseElts.isAllOnesValue()) { 983 SDValue NewSub = SimplifyMultipleUseDemandedBits( 984 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 985 SDValue NewBase = SimplifyMultipleUseDemandedBits( 986 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 987 if (NewSub || NewBase) { 988 NewSub = NewSub ? NewSub : Sub; 989 NewBase = NewBase ? NewBase : Base; 990 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 991 Op.getOperand(2)); 992 return TLO.CombineTo(Op, NewOp); 993 } 994 } 995 break; 996 } 997 case ISD::EXTRACT_SUBVECTOR: { 998 // If index isn't constant, assume we need all the source vector elements. 999 SDValue Src = Op.getOperand(0); 1000 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1001 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1002 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 1003 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1004 // Offset the demanded elts by the subvector index. 1005 uint64_t Idx = SubIdx->getZExtValue(); 1006 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1007 } 1008 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1009 return true; 1010 1011 // Attempt to avoid multi-use src if we don't need anything from it. 1012 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1013 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1014 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1015 if (DemandedSrc) { 1016 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1017 Op.getOperand(1)); 1018 return TLO.CombineTo(Op, NewOp); 1019 } 1020 } 1021 break; 1022 } 1023 case ISD::CONCAT_VECTORS: { 1024 Known.Zero.setAllBits(); 1025 Known.One.setAllBits(); 1026 EVT SubVT = Op.getOperand(0).getValueType(); 1027 unsigned NumSubVecs = Op.getNumOperands(); 1028 unsigned NumSubElts = SubVT.getVectorNumElements(); 1029 for (unsigned i = 0; i != NumSubVecs; ++i) { 1030 APInt DemandedSubElts = 1031 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1032 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1033 Known2, TLO, Depth + 1)) 1034 return true; 1035 // Known bits are shared by every demanded subvector element. 1036 if (!!DemandedSubElts) { 1037 Known.One &= Known2.One; 1038 Known.Zero &= Known2.Zero; 1039 } 1040 } 1041 break; 1042 } 1043 case ISD::VECTOR_SHUFFLE: { 1044 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1045 1046 // Collect demanded elements from shuffle operands.. 1047 APInt DemandedLHS(NumElts, 0); 1048 APInt DemandedRHS(NumElts, 0); 1049 for (unsigned i = 0; i != NumElts; ++i) { 1050 if (!DemandedElts[i]) 1051 continue; 1052 int M = ShuffleMask[i]; 1053 if (M < 0) { 1054 // For UNDEF elements, we don't know anything about the common state of 1055 // the shuffle result. 1056 DemandedLHS.clearAllBits(); 1057 DemandedRHS.clearAllBits(); 1058 break; 1059 } 1060 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1061 if (M < (int)NumElts) 1062 DemandedLHS.setBit(M); 1063 else 1064 DemandedRHS.setBit(M - NumElts); 1065 } 1066 1067 if (!!DemandedLHS || !!DemandedRHS) { 1068 SDValue Op0 = Op.getOperand(0); 1069 SDValue Op1 = Op.getOperand(1); 1070 1071 Known.Zero.setAllBits(); 1072 Known.One.setAllBits(); 1073 if (!!DemandedLHS) { 1074 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1075 Depth + 1)) 1076 return true; 1077 Known.One &= Known2.One; 1078 Known.Zero &= Known2.Zero; 1079 } 1080 if (!!DemandedRHS) { 1081 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1082 Depth + 1)) 1083 return true; 1084 Known.One &= Known2.One; 1085 Known.Zero &= Known2.Zero; 1086 } 1087 1088 // Attempt to avoid multi-use ops if we don't need anything from them. 1089 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1090 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1091 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1092 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1093 if (DemandedOp0 || DemandedOp1) { 1094 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1095 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1096 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1097 return TLO.CombineTo(Op, NewOp); 1098 } 1099 } 1100 break; 1101 } 1102 case ISD::AND: { 1103 SDValue Op0 = Op.getOperand(0); 1104 SDValue Op1 = Op.getOperand(1); 1105 1106 // If the RHS is a constant, check to see if the LHS would be zero without 1107 // using the bits from the RHS. Below, we use knowledge about the RHS to 1108 // simplify the LHS, here we're using information from the LHS to simplify 1109 // the RHS. 1110 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1111 // Do not increment Depth here; that can cause an infinite loop. 1112 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1113 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1114 if ((LHSKnown.Zero & DemandedBits) == 1115 (~RHSC->getAPIntValue() & DemandedBits)) 1116 return TLO.CombineTo(Op, Op0); 1117 1118 // If any of the set bits in the RHS are known zero on the LHS, shrink 1119 // the constant. 1120 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1121 return true; 1122 1123 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1124 // constant, but if this 'and' is only clearing bits that were just set by 1125 // the xor, then this 'and' can be eliminated by shrinking the mask of 1126 // the xor. For example, for a 32-bit X: 1127 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1128 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1129 LHSKnown.One == ~RHSC->getAPIntValue()) { 1130 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1131 return TLO.CombineTo(Op, Xor); 1132 } 1133 } 1134 1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1136 Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1140 Known2, TLO, Depth + 1)) 1141 return true; 1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1143 1144 // Attempt to avoid multi-use ops if we don't need anything from them. 1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 if (DemandedOp0 || DemandedOp1) { 1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1154 return TLO.CombineTo(Op, NewOp); 1155 } 1156 } 1157 1158 // If all of the demanded bits are known one on one side, return the other. 1159 // These bits cannot contribute to the result of the 'and'. 1160 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1161 return TLO.CombineTo(Op, Op0); 1162 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1163 return TLO.CombineTo(Op, Op1); 1164 // If all of the demanded bits in the inputs are known zeros, return zero. 1165 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1166 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1167 // If the RHS is a constant, see if we can simplify it. 1168 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1169 return true; 1170 // If the operation can be done in a smaller type, do so. 1171 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1172 return true; 1173 1174 // Output known-1 bits are only known if set in both the LHS & RHS. 1175 Known.One &= Known2.One; 1176 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1177 Known.Zero |= Known2.Zero; 1178 break; 1179 } 1180 case ISD::OR: { 1181 SDValue Op0 = Op.getOperand(0); 1182 SDValue Op1 = Op.getOperand(1); 1183 1184 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1185 Depth + 1)) 1186 return true; 1187 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1188 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1189 Known2, TLO, Depth + 1)) 1190 return true; 1191 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1192 1193 // Attempt to avoid multi-use ops if we don't need anything from them. 1194 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1195 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1196 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1197 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1198 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1199 if (DemandedOp0 || DemandedOp1) { 1200 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1201 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1202 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1203 return TLO.CombineTo(Op, NewOp); 1204 } 1205 } 1206 1207 // If all of the demanded bits are known zero on one side, return the other. 1208 // These bits cannot contribute to the result of the 'or'. 1209 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1210 return TLO.CombineTo(Op, Op0); 1211 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1212 return TLO.CombineTo(Op, Op1); 1213 // If the RHS is a constant, see if we can simplify it. 1214 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1215 return true; 1216 // If the operation can be done in a smaller type, do so. 1217 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1218 return true; 1219 1220 // Output known-0 bits are only known if clear in both the LHS & RHS. 1221 Known.Zero &= Known2.Zero; 1222 // Output known-1 are known to be set if set in either the LHS | RHS. 1223 Known.One |= Known2.One; 1224 break; 1225 } 1226 case ISD::XOR: { 1227 SDValue Op0 = Op.getOperand(0); 1228 SDValue Op1 = Op.getOperand(1); 1229 1230 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1231 Depth + 1)) 1232 return true; 1233 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1234 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1235 Depth + 1)) 1236 return true; 1237 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1238 1239 // Attempt to avoid multi-use ops if we don't need anything from them. 1240 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1241 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1242 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1243 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1244 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1245 if (DemandedOp0 || DemandedOp1) { 1246 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1247 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1248 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1249 return TLO.CombineTo(Op, NewOp); 1250 } 1251 } 1252 1253 // If all of the demanded bits are known zero on one side, return the other. 1254 // These bits cannot contribute to the result of the 'xor'. 1255 if (DemandedBits.isSubsetOf(Known.Zero)) 1256 return TLO.CombineTo(Op, Op0); 1257 if (DemandedBits.isSubsetOf(Known2.Zero)) 1258 return TLO.CombineTo(Op, Op1); 1259 // If the operation can be done in a smaller type, do so. 1260 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1261 return true; 1262 1263 // If all of the unknown bits are known to be zero on one side or the other 1264 // (but not both) turn this into an *inclusive* or. 1265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1266 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1267 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1268 1269 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1270 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1271 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1272 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1273 1274 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1275 // If one side is a constant, and all of the known set bits on the other 1276 // side are also set in the constant, turn this into an AND, as we know 1277 // the bits will be cleared. 1278 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1279 // NB: it is okay if more bits are known than are requested 1280 if (C->getAPIntValue() == Known2.One) { 1281 SDValue ANDC = 1282 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1283 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1284 } 1285 1286 // If the RHS is a constant, see if we can change it. Don't alter a -1 1287 // constant because that's a 'not' op, and that is better for combining 1288 // and codegen. 1289 if (!C->isAllOnesValue()) { 1290 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1291 // We're flipping all demanded bits. Flip the undemanded bits too. 1292 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1293 return TLO.CombineTo(Op, New); 1294 } 1295 // If we can't turn this into a 'not', try to shrink the constant. 1296 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1297 return true; 1298 } 1299 } 1300 1301 Known = std::move(KnownOut); 1302 break; 1303 } 1304 case ISD::SELECT: 1305 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1306 Depth + 1)) 1307 return true; 1308 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1313 1314 // If the operands are constants, see if we can simplify them. 1315 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1316 return true; 1317 1318 // Only known if known in both the LHS and RHS. 1319 Known.One &= Known2.One; 1320 Known.Zero &= Known2.Zero; 1321 break; 1322 case ISD::SELECT_CC: 1323 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1324 Depth + 1)) 1325 return true; 1326 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1327 Depth + 1)) 1328 return true; 1329 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1330 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1331 1332 // If the operands are constants, see if we can simplify them. 1333 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1334 return true; 1335 1336 // Only known if known in both the LHS and RHS. 1337 Known.One &= Known2.One; 1338 Known.Zero &= Known2.Zero; 1339 break; 1340 case ISD::SETCC: { 1341 SDValue Op0 = Op.getOperand(0); 1342 SDValue Op1 = Op.getOperand(1); 1343 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1344 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1345 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1346 // -1, we may be able to bypass the setcc. 1347 if (DemandedBits.isSignMask() && 1348 Op0.getScalarValueSizeInBits() == BitWidth && 1349 getBooleanContents(Op0.getValueType()) == 1350 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1351 // If we're testing X < 0, then this compare isn't needed - just use X! 1352 // FIXME: We're limiting to integer types here, but this should also work 1353 // if we don't care about FP signed-zero. The use of SETLT with FP means 1354 // that we don't care about NaNs. 1355 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1356 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1357 return TLO.CombineTo(Op, Op0); 1358 1359 // TODO: Should we check for other forms of sign-bit comparisons? 1360 // Examples: X <= -1, X >= 0 1361 } 1362 if (getBooleanContents(Op0.getValueType()) == 1363 TargetLowering::ZeroOrOneBooleanContent && 1364 BitWidth > 1) 1365 Known.Zero.setBitsFrom(1); 1366 break; 1367 } 1368 case ISD::SHL: { 1369 SDValue Op0 = Op.getOperand(0); 1370 SDValue Op1 = Op.getOperand(1); 1371 EVT ShiftVT = Op1.getValueType(); 1372 1373 if (const APInt *SA = 1374 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1375 unsigned ShAmt = SA->getZExtValue(); 1376 if (ShAmt == 0) 1377 return TLO.CombineTo(Op, Op0); 1378 1379 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1380 // single shift. We can do this if the bottom bits (which are shifted 1381 // out) are never demanded. 1382 // TODO - support non-uniform vector amounts. 1383 if (Op0.getOpcode() == ISD::SRL) { 1384 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1385 if (const APInt *SA2 = 1386 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1387 if (SA2->ult(BitWidth)) { 1388 unsigned C1 = SA2->getZExtValue(); 1389 unsigned Opc = ISD::SHL; 1390 int Diff = ShAmt - C1; 1391 if (Diff < 0) { 1392 Diff = -Diff; 1393 Opc = ISD::SRL; 1394 } 1395 1396 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1397 return TLO.CombineTo( 1398 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1399 } 1400 } 1401 } 1402 } 1403 1404 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1405 // are not demanded. This will likely allow the anyext to be folded away. 1406 // TODO - support non-uniform vector amounts. 1407 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1408 SDValue InnerOp = Op0.getOperand(0); 1409 EVT InnerVT = InnerOp.getValueType(); 1410 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1411 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1412 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1413 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1414 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1415 ShTy = InnerVT; 1416 SDValue NarrowShl = 1417 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1418 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1419 return TLO.CombineTo( 1420 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1421 } 1422 1423 // Repeat the SHL optimization above in cases where an extension 1424 // intervenes: (shl (anyext (shr x, c1)), c2) to 1425 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1426 // aren't demanded (as above) and that the shifted upper c1 bits of 1427 // x aren't demanded. 1428 // TODO - support non-uniform vector amounts. 1429 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1430 InnerOp.hasOneUse()) { 1431 if (const APInt *SA2 = 1432 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1433 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1434 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1435 DemandedBits.getActiveBits() <= 1436 (InnerBits - InnerShAmt + ShAmt) && 1437 DemandedBits.countTrailingZeros() >= ShAmt) { 1438 SDValue NewSA = 1439 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1440 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1441 InnerOp.getOperand(0)); 1442 return TLO.CombineTo( 1443 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1444 } 1445 } 1446 } 1447 } 1448 1449 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1450 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1451 Depth + 1)) 1452 return true; 1453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1454 Known.Zero <<= ShAmt; 1455 Known.One <<= ShAmt; 1456 // low bits known zero. 1457 Known.Zero.setLowBits(ShAmt); 1458 1459 // Try shrinking the operation as long as the shift amount will still be 1460 // in range. 1461 if ((ShAmt < DemandedBits.getActiveBits()) && 1462 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1463 return true; 1464 } 1465 break; 1466 } 1467 case ISD::SRL: { 1468 SDValue Op0 = Op.getOperand(0); 1469 SDValue Op1 = Op.getOperand(1); 1470 EVT ShiftVT = Op1.getValueType(); 1471 1472 if (const APInt *SA = 1473 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1474 unsigned ShAmt = SA->getZExtValue(); 1475 if (ShAmt == 0) 1476 return TLO.CombineTo(Op, Op0); 1477 1478 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1479 // single shift. We can do this if the top bits (which are shifted out) 1480 // are never demanded. 1481 // TODO - support non-uniform vector amounts. 1482 if (Op0.getOpcode() == ISD::SHL) { 1483 if (const APInt *SA2 = 1484 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1485 if (!DemandedBits.intersects( 1486 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1487 if (SA2->ult(BitWidth)) { 1488 unsigned C1 = SA2->getZExtValue(); 1489 unsigned Opc = ISD::SRL; 1490 int Diff = ShAmt - C1; 1491 if (Diff < 0) { 1492 Diff = -Diff; 1493 Opc = ISD::SHL; 1494 } 1495 1496 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1497 return TLO.CombineTo( 1498 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1499 } 1500 } 1501 } 1502 } 1503 1504 APInt InDemandedMask = (DemandedBits << ShAmt); 1505 1506 // If the shift is exact, then it does demand the low bits (and knows that 1507 // they are zero). 1508 if (Op->getFlags().hasExact()) 1509 InDemandedMask.setLowBits(ShAmt); 1510 1511 // Compute the new bits that are at the top now. 1512 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1513 Depth + 1)) 1514 return true; 1515 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1516 Known.Zero.lshrInPlace(ShAmt); 1517 Known.One.lshrInPlace(ShAmt); 1518 // High bits known zero. 1519 Known.Zero.setHighBits(ShAmt); 1520 } 1521 break; 1522 } 1523 case ISD::SRA: { 1524 SDValue Op0 = Op.getOperand(0); 1525 SDValue Op1 = Op.getOperand(1); 1526 EVT ShiftVT = Op1.getValueType(); 1527 1528 // If we only want bits that already match the signbit then we don't need 1529 // to shift. 1530 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1531 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1532 NumHiDemandedBits) 1533 return TLO.CombineTo(Op, Op0); 1534 1535 // If this is an arithmetic shift right and only the low-bit is set, we can 1536 // always convert this into a logical shr, even if the shift amount is 1537 // variable. The low bit of the shift cannot be an input sign bit unless 1538 // the shift amount is >= the size of the datatype, which is undefined. 1539 if (DemandedBits.isOneValue()) 1540 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1541 1542 if (const APInt *SA = 1543 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 APInt InDemandedMask = (DemandedBits << ShAmt); 1549 1550 // If the shift is exact, then it does demand the low bits (and knows that 1551 // they are zero). 1552 if (Op->getFlags().hasExact()) 1553 InDemandedMask.setLowBits(ShAmt); 1554 1555 // If any of the demanded bits are produced by the sign extension, we also 1556 // demand the input sign bit. 1557 if (DemandedBits.countLeadingZeros() < ShAmt) 1558 InDemandedMask.setSignBit(); 1559 1560 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1561 Depth + 1)) 1562 return true; 1563 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1564 Known.Zero.lshrInPlace(ShAmt); 1565 Known.One.lshrInPlace(ShAmt); 1566 1567 // If the input sign bit is known to be zero, or if none of the top bits 1568 // are demanded, turn this into an unsigned shift right. 1569 if (Known.Zero[BitWidth - ShAmt - 1] || 1570 DemandedBits.countLeadingZeros() >= ShAmt) { 1571 SDNodeFlags Flags; 1572 Flags.setExact(Op->getFlags().hasExact()); 1573 return TLO.CombineTo( 1574 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1575 } 1576 1577 int Log2 = DemandedBits.exactLogBase2(); 1578 if (Log2 >= 0) { 1579 // The bit must come from the sign. 1580 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1581 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1582 } 1583 1584 if (Known.One[BitWidth - ShAmt - 1]) 1585 // New bits are known one. 1586 Known.One.setHighBits(ShAmt); 1587 1588 // Attempt to avoid multi-use ops if we don't need anything from them. 1589 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1590 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1591 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1592 if (DemandedOp0) { 1593 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1594 return TLO.CombineTo(Op, NewOp); 1595 } 1596 } 1597 } 1598 break; 1599 } 1600 case ISD::FSHL: 1601 case ISD::FSHR: { 1602 SDValue Op0 = Op.getOperand(0); 1603 SDValue Op1 = Op.getOperand(1); 1604 SDValue Op2 = Op.getOperand(2); 1605 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1606 1607 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1608 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1609 1610 // For fshl, 0-shift returns the 1st arg. 1611 // For fshr, 0-shift returns the 2nd arg. 1612 if (Amt == 0) { 1613 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1614 Known, TLO, Depth + 1)) 1615 return true; 1616 break; 1617 } 1618 1619 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1620 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1621 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1622 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1623 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1624 Depth + 1)) 1625 return true; 1626 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 1630 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1631 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1632 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1633 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1634 Known.One |= Known2.One; 1635 Known.Zero |= Known2.Zero; 1636 } 1637 1638 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1639 if (isPowerOf2_32(BitWidth)) { 1640 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1641 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1642 Known2, TLO, Depth + 1)) 1643 return true; 1644 } 1645 break; 1646 } 1647 case ISD::ROTL: 1648 case ISD::ROTR: { 1649 SDValue Op0 = Op.getOperand(0); 1650 SDValue Op1 = Op.getOperand(1); 1651 1652 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1653 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1654 return TLO.CombineTo(Op, Op0); 1655 1656 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1657 if (isPowerOf2_32(BitWidth)) { 1658 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1659 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1660 Depth + 1)) 1661 return true; 1662 } 1663 break; 1664 } 1665 case ISD::BITREVERSE: { 1666 SDValue Src = Op.getOperand(0); 1667 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1668 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1669 Depth + 1)) 1670 return true; 1671 Known.One = Known2.One.reverseBits(); 1672 Known.Zero = Known2.Zero.reverseBits(); 1673 break; 1674 } 1675 case ISD::BSWAP: { 1676 SDValue Src = Op.getOperand(0); 1677 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1678 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1679 Depth + 1)) 1680 return true; 1681 Known.One = Known2.One.byteSwap(); 1682 Known.Zero = Known2.Zero.byteSwap(); 1683 break; 1684 } 1685 case ISD::SIGN_EXTEND_INREG: { 1686 SDValue Op0 = Op.getOperand(0); 1687 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1688 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1689 1690 // If we only care about the highest bit, don't bother shifting right. 1691 if (DemandedBits.isSignMask()) { 1692 unsigned NumSignBits = 1693 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1694 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1695 // However if the input is already sign extended we expect the sign 1696 // extension to be dropped altogether later and do not simplify. 1697 if (!AlreadySignExtended) { 1698 // Compute the correct shift amount type, which must be getShiftAmountTy 1699 // for scalar types after legalization. 1700 EVT ShiftAmtTy = VT; 1701 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1702 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1703 1704 SDValue ShiftAmt = 1705 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1706 return TLO.CombineTo(Op, 1707 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1708 } 1709 } 1710 1711 // If none of the extended bits are demanded, eliminate the sextinreg. 1712 if (DemandedBits.getActiveBits() <= ExVTBits) 1713 return TLO.CombineTo(Op, Op0); 1714 1715 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1716 1717 // Since the sign extended bits are demanded, we know that the sign 1718 // bit is demanded. 1719 InputDemandedBits.setBit(ExVTBits - 1); 1720 1721 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1722 return true; 1723 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1724 1725 // If the sign bit of the input is known set or clear, then we know the 1726 // top bits of the result. 1727 1728 // If the input sign bit is known zero, convert this into a zero extension. 1729 if (Known.Zero[ExVTBits - 1]) 1730 return TLO.CombineTo( 1731 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1732 1733 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1734 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1735 Known.One.setBitsFrom(ExVTBits); 1736 Known.Zero &= Mask; 1737 } else { // Input sign bit unknown 1738 Known.Zero &= Mask; 1739 Known.One &= Mask; 1740 } 1741 break; 1742 } 1743 case ISD::BUILD_PAIR: { 1744 EVT HalfVT = Op.getOperand(0).getValueType(); 1745 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1746 1747 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1748 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1749 1750 KnownBits KnownLo, KnownHi; 1751 1752 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1753 return true; 1754 1755 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1756 return true; 1757 1758 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1759 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1760 1761 Known.One = KnownLo.One.zext(BitWidth) | 1762 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1763 break; 1764 } 1765 case ISD::ZERO_EXTEND: 1766 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1767 SDValue Src = Op.getOperand(0); 1768 EVT SrcVT = Src.getValueType(); 1769 unsigned InBits = SrcVT.getScalarSizeInBits(); 1770 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1771 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1772 1773 // If none of the top bits are demanded, convert this into an any_extend. 1774 if (DemandedBits.getActiveBits() <= InBits) { 1775 // If we only need the non-extended bits of the bottom element 1776 // then we can just bitcast to the result. 1777 if (IsVecInReg && DemandedElts == 1 && 1778 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1779 TLO.DAG.getDataLayout().isLittleEndian()) 1780 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1781 1782 unsigned Opc = 1783 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1784 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1785 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1786 } 1787 1788 APInt InDemandedBits = DemandedBits.trunc(InBits); 1789 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1790 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1791 Depth + 1)) 1792 return true; 1793 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1794 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1795 Known = Known.zext(BitWidth); 1796 break; 1797 } 1798 case ISD::SIGN_EXTEND: 1799 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1800 SDValue Src = Op.getOperand(0); 1801 EVT SrcVT = Src.getValueType(); 1802 unsigned InBits = SrcVT.getScalarSizeInBits(); 1803 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1804 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1805 1806 // If none of the top bits are demanded, convert this into an any_extend. 1807 if (DemandedBits.getActiveBits() <= InBits) { 1808 // If we only need the non-extended bits of the bottom element 1809 // then we can just bitcast to the result. 1810 if (IsVecInReg && DemandedElts == 1 && 1811 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1812 TLO.DAG.getDataLayout().isLittleEndian()) 1813 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1814 1815 unsigned Opc = 1816 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1817 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1818 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1819 } 1820 1821 APInt InDemandedBits = DemandedBits.trunc(InBits); 1822 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1823 1824 // Since some of the sign extended bits are demanded, we know that the sign 1825 // bit is demanded. 1826 InDemandedBits.setBit(InBits - 1); 1827 1828 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1829 Depth + 1)) 1830 return true; 1831 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1832 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1833 1834 // If the sign bit is known one, the top bits match. 1835 Known = Known.sext(BitWidth); 1836 1837 // If the sign bit is known zero, convert this to a zero extend. 1838 if (Known.isNonNegative()) { 1839 unsigned Opc = 1840 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1841 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1842 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1843 } 1844 break; 1845 } 1846 case ISD::ANY_EXTEND: 1847 case ISD::ANY_EXTEND_VECTOR_INREG: { 1848 SDValue Src = Op.getOperand(0); 1849 EVT SrcVT = Src.getValueType(); 1850 unsigned InBits = SrcVT.getScalarSizeInBits(); 1851 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1852 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1853 1854 // If we only need the bottom element then we can just bitcast. 1855 // TODO: Handle ANY_EXTEND? 1856 if (IsVecInReg && DemandedElts == 1 && 1857 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1858 TLO.DAG.getDataLayout().isLittleEndian()) 1859 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1860 1861 APInt InDemandedBits = DemandedBits.trunc(InBits); 1862 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1863 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1864 Depth + 1)) 1865 return true; 1866 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1867 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1868 Known = Known.anyext(BitWidth); 1869 1870 // Attempt to avoid multi-use ops if we don't need anything from them. 1871 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1872 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1873 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1874 break; 1875 } 1876 case ISD::TRUNCATE: { 1877 SDValue Src = Op.getOperand(0); 1878 1879 // Simplify the input, using demanded bit information, and compute the known 1880 // zero/one bits live out. 1881 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1882 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1883 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1884 return true; 1885 Known = Known.trunc(BitWidth); 1886 1887 // Attempt to avoid multi-use ops if we don't need anything from them. 1888 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1889 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1890 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1891 1892 // If the input is only used by this truncate, see if we can shrink it based 1893 // on the known demanded bits. 1894 if (Src.getNode()->hasOneUse()) { 1895 switch (Src.getOpcode()) { 1896 default: 1897 break; 1898 case ISD::SRL: 1899 // Shrink SRL by a constant if none of the high bits shifted in are 1900 // demanded. 1901 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1902 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1903 // undesirable. 1904 break; 1905 1906 SDValue ShAmt = Src.getOperand(1); 1907 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1908 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1909 break; 1910 uint64_t ShVal = ShAmtC->getZExtValue(); 1911 1912 APInt HighBits = 1913 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1914 HighBits.lshrInPlace(ShVal); 1915 HighBits = HighBits.trunc(BitWidth); 1916 1917 if (!(HighBits & DemandedBits)) { 1918 // None of the shifted in bits are needed. Add a truncate of the 1919 // shift input, then shift it. 1920 if (TLO.LegalTypes()) 1921 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1922 SDValue NewTrunc = 1923 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1924 return TLO.CombineTo( 1925 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1926 } 1927 break; 1928 } 1929 } 1930 1931 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1932 break; 1933 } 1934 case ISD::AssertZext: { 1935 // AssertZext demands all of the high bits, plus any of the low bits 1936 // demanded by its users. 1937 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1938 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1939 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1940 TLO, Depth + 1)) 1941 return true; 1942 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1943 1944 Known.Zero |= ~InMask; 1945 break; 1946 } 1947 case ISD::EXTRACT_VECTOR_ELT: { 1948 SDValue Src = Op.getOperand(0); 1949 SDValue Idx = Op.getOperand(1); 1950 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1951 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1952 1953 // Demand the bits from every vector element without a constant index. 1954 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1955 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1956 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1957 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1958 1959 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1960 // anything about the extended bits. 1961 APInt DemandedSrcBits = DemandedBits; 1962 if (BitWidth > EltBitWidth) 1963 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1964 1965 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1966 Depth + 1)) 1967 return true; 1968 1969 // Attempt to avoid multi-use ops if we don't need anything from them. 1970 if (!DemandedSrcBits.isAllOnesValue() || 1971 !DemandedSrcElts.isAllOnesValue()) { 1972 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1973 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1974 SDValue NewOp = 1975 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1976 return TLO.CombineTo(Op, NewOp); 1977 } 1978 } 1979 1980 Known = Known2; 1981 if (BitWidth > EltBitWidth) 1982 Known = Known.anyext(BitWidth); 1983 break; 1984 } 1985 case ISD::BITCAST: { 1986 SDValue Src = Op.getOperand(0); 1987 EVT SrcVT = Src.getValueType(); 1988 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1989 1990 // If this is an FP->Int bitcast and if the sign bit is the only 1991 // thing demanded, turn this into a FGETSIGN. 1992 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1993 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1994 SrcVT.isFloatingPoint()) { 1995 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1996 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1997 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1998 SrcVT != MVT::f128) { 1999 // Cannot eliminate/lower SHL for f128 yet. 2000 EVT Ty = OpVTLegal ? VT : MVT::i32; 2001 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2002 // place. We expect the SHL to be eliminated by other optimizations. 2003 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2004 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2005 if (!OpVTLegal && OpVTSizeInBits > 32) 2006 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2007 unsigned ShVal = Op.getValueSizeInBits() - 1; 2008 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2009 return TLO.CombineTo(Op, 2010 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2011 } 2012 } 2013 2014 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2015 // Demand the elt/bit if any of the original elts/bits are demanded. 2016 // TODO - bigendian once we have test coverage. 2017 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2018 TLO.DAG.getDataLayout().isLittleEndian()) { 2019 unsigned Scale = BitWidth / NumSrcEltBits; 2020 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2021 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2022 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2023 for (unsigned i = 0; i != Scale; ++i) { 2024 unsigned Offset = i * NumSrcEltBits; 2025 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2026 if (!Sub.isNullValue()) { 2027 DemandedSrcBits |= Sub; 2028 for (unsigned j = 0; j != NumElts; ++j) 2029 if (DemandedElts[j]) 2030 DemandedSrcElts.setBit((j * Scale) + i); 2031 } 2032 } 2033 2034 APInt KnownSrcUndef, KnownSrcZero; 2035 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2036 KnownSrcZero, TLO, Depth + 1)) 2037 return true; 2038 2039 KnownBits KnownSrcBits; 2040 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2041 KnownSrcBits, TLO, Depth + 1)) 2042 return true; 2043 } else if ((NumSrcEltBits % BitWidth) == 0 && 2044 TLO.DAG.getDataLayout().isLittleEndian()) { 2045 unsigned Scale = NumSrcEltBits / BitWidth; 2046 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2047 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2048 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2049 for (unsigned i = 0; i != NumElts; ++i) 2050 if (DemandedElts[i]) { 2051 unsigned Offset = (i % Scale) * BitWidth; 2052 DemandedSrcBits.insertBits(DemandedBits, Offset); 2053 DemandedSrcElts.setBit(i / Scale); 2054 } 2055 2056 if (SrcVT.isVector()) { 2057 APInt KnownSrcUndef, KnownSrcZero; 2058 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2059 KnownSrcZero, TLO, Depth + 1)) 2060 return true; 2061 } 2062 2063 KnownBits KnownSrcBits; 2064 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2065 KnownSrcBits, TLO, Depth + 1)) 2066 return true; 2067 } 2068 2069 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2070 // recursive call where Known may be useful to the caller. 2071 if (Depth > 0) { 2072 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2073 return false; 2074 } 2075 break; 2076 } 2077 case ISD::ADD: 2078 case ISD::MUL: 2079 case ISD::SUB: { 2080 // Add, Sub, and Mul don't demand any bits in positions beyond that 2081 // of the highest bit demanded of them. 2082 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2083 SDNodeFlags Flags = Op.getNode()->getFlags(); 2084 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2085 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2086 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2087 Depth + 1) || 2088 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2089 Depth + 1) || 2090 // See if the operation should be performed at a smaller bit width. 2091 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2092 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2093 // Disable the nsw and nuw flags. We can no longer guarantee that we 2094 // won't wrap after simplification. 2095 Flags.setNoSignedWrap(false); 2096 Flags.setNoUnsignedWrap(false); 2097 SDValue NewOp = 2098 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2099 return TLO.CombineTo(Op, NewOp); 2100 } 2101 return true; 2102 } 2103 2104 // Attempt to avoid multi-use ops if we don't need anything from them. 2105 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2106 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2107 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2108 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2109 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2110 if (DemandedOp0 || DemandedOp1) { 2111 Flags.setNoSignedWrap(false); 2112 Flags.setNoUnsignedWrap(false); 2113 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2114 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2115 SDValue NewOp = 2116 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2117 return TLO.CombineTo(Op, NewOp); 2118 } 2119 } 2120 2121 // If we have a constant operand, we may be able to turn it into -1 if we 2122 // do not demand the high bits. This can make the constant smaller to 2123 // encode, allow more general folding, or match specialized instruction 2124 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2125 // is probably not useful (and could be detrimental). 2126 ConstantSDNode *C = isConstOrConstSplat(Op1); 2127 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2128 if (C && !C->isAllOnesValue() && !C->isOne() && 2129 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2130 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2131 // Disable the nsw and nuw flags. We can no longer guarantee that we 2132 // won't wrap after simplification. 2133 Flags.setNoSignedWrap(false); 2134 Flags.setNoUnsignedWrap(false); 2135 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2136 return TLO.CombineTo(Op, NewOp); 2137 } 2138 2139 LLVM_FALLTHROUGH; 2140 } 2141 default: 2142 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2143 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2144 Known, TLO, Depth)) 2145 return true; 2146 break; 2147 } 2148 2149 // Just use computeKnownBits to compute output bits. 2150 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2151 break; 2152 } 2153 2154 // If we know the value of all of the demanded bits, return this as a 2155 // constant. 2156 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2157 // Avoid folding to a constant if any OpaqueConstant is involved. 2158 const SDNode *N = Op.getNode(); 2159 for (SDNodeIterator I = SDNodeIterator::begin(N), 2160 E = SDNodeIterator::end(N); 2161 I != E; ++I) { 2162 SDNode *Op = *I; 2163 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2164 if (C->isOpaque()) 2165 return false; 2166 } 2167 // TODO: Handle float bits as well. 2168 if (VT.isInteger()) 2169 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2170 } 2171 2172 return false; 2173 } 2174 2175 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2176 const APInt &DemandedElts, 2177 APInt &KnownUndef, 2178 APInt &KnownZero, 2179 DAGCombinerInfo &DCI) const { 2180 SelectionDAG &DAG = DCI.DAG; 2181 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2182 !DCI.isBeforeLegalizeOps()); 2183 2184 bool Simplified = 2185 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2186 if (Simplified) { 2187 DCI.AddToWorklist(Op.getNode()); 2188 DCI.CommitTargetLoweringOpt(TLO); 2189 } 2190 2191 return Simplified; 2192 } 2193 2194 /// Given a vector binary operation and known undefined elements for each input 2195 /// operand, compute whether each element of the output is undefined. 2196 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2197 const APInt &UndefOp0, 2198 const APInt &UndefOp1) { 2199 EVT VT = BO.getValueType(); 2200 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2201 "Vector binop only"); 2202 2203 EVT EltVT = VT.getVectorElementType(); 2204 unsigned NumElts = VT.getVectorNumElements(); 2205 assert(UndefOp0.getBitWidth() == NumElts && 2206 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2207 2208 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2209 const APInt &UndefVals) { 2210 if (UndefVals[Index]) 2211 return DAG.getUNDEF(EltVT); 2212 2213 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2214 // Try hard to make sure that the getNode() call is not creating temporary 2215 // nodes. Ignore opaque integers because they do not constant fold. 2216 SDValue Elt = BV->getOperand(Index); 2217 auto *C = dyn_cast<ConstantSDNode>(Elt); 2218 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2219 return Elt; 2220 } 2221 2222 return SDValue(); 2223 }; 2224 2225 APInt KnownUndef = APInt::getNullValue(NumElts); 2226 for (unsigned i = 0; i != NumElts; ++i) { 2227 // If both inputs for this element are either constant or undef and match 2228 // the element type, compute the constant/undef result for this element of 2229 // the vector. 2230 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2231 // not handle FP constants. The code within getNode() should be refactored 2232 // to avoid the danger of creating a bogus temporary node here. 2233 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2234 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2235 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2236 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2237 KnownUndef.setBit(i); 2238 } 2239 return KnownUndef; 2240 } 2241 2242 bool TargetLowering::SimplifyDemandedVectorElts( 2243 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2244 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2245 bool AssumeSingleUse) const { 2246 EVT VT = Op.getValueType(); 2247 APInt DemandedElts = OriginalDemandedElts; 2248 unsigned NumElts = DemandedElts.getBitWidth(); 2249 assert(VT.isVector() && "Expected vector op"); 2250 assert(VT.getVectorNumElements() == NumElts && 2251 "Mask size mismatches value type element count!"); 2252 2253 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2254 2255 // Undef operand. 2256 if (Op.isUndef()) { 2257 KnownUndef.setAllBits(); 2258 return false; 2259 } 2260 2261 // If Op has other users, assume that all elements are needed. 2262 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2263 DemandedElts.setAllBits(); 2264 2265 // Not demanding any elements from Op. 2266 if (DemandedElts == 0) { 2267 KnownUndef.setAllBits(); 2268 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2269 } 2270 2271 // Limit search depth. 2272 if (Depth >= SelectionDAG::MaxRecursionDepth) 2273 return false; 2274 2275 SDLoc DL(Op); 2276 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2277 2278 switch (Op.getOpcode()) { 2279 case ISD::SCALAR_TO_VECTOR: { 2280 if (!DemandedElts[0]) { 2281 KnownUndef.setAllBits(); 2282 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2283 } 2284 KnownUndef.setHighBits(NumElts - 1); 2285 break; 2286 } 2287 case ISD::BITCAST: { 2288 SDValue Src = Op.getOperand(0); 2289 EVT SrcVT = Src.getValueType(); 2290 2291 // We only handle vectors here. 2292 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2293 if (!SrcVT.isVector()) 2294 break; 2295 2296 // Fast handling of 'identity' bitcasts. 2297 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2298 if (NumSrcElts == NumElts) 2299 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2300 KnownZero, TLO, Depth + 1); 2301 2302 APInt SrcZero, SrcUndef; 2303 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2304 2305 // Bitcast from 'large element' src vector to 'small element' vector, we 2306 // must demand a source element if any DemandedElt maps to it. 2307 if ((NumElts % NumSrcElts) == 0) { 2308 unsigned Scale = NumElts / NumSrcElts; 2309 for (unsigned i = 0; i != NumElts; ++i) 2310 if (DemandedElts[i]) 2311 SrcDemandedElts.setBit(i / Scale); 2312 2313 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2314 TLO, Depth + 1)) 2315 return true; 2316 2317 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2318 // of the large element. 2319 // TODO - bigendian once we have test coverage. 2320 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2321 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2322 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2323 for (unsigned i = 0; i != NumElts; ++i) 2324 if (DemandedElts[i]) { 2325 unsigned Ofs = (i % Scale) * EltSizeInBits; 2326 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2327 } 2328 2329 KnownBits Known; 2330 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2331 TLO, Depth + 1)) 2332 return true; 2333 } 2334 2335 // If the src element is zero/undef then all the output elements will be - 2336 // only demanded elements are guaranteed to be correct. 2337 for (unsigned i = 0; i != NumSrcElts; ++i) { 2338 if (SrcDemandedElts[i]) { 2339 if (SrcZero[i]) 2340 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2341 if (SrcUndef[i]) 2342 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2343 } 2344 } 2345 } 2346 2347 // Bitcast from 'small element' src vector to 'large element' vector, we 2348 // demand all smaller source elements covered by the larger demanded element 2349 // of this vector. 2350 if ((NumSrcElts % NumElts) == 0) { 2351 unsigned Scale = NumSrcElts / NumElts; 2352 for (unsigned i = 0; i != NumElts; ++i) 2353 if (DemandedElts[i]) 2354 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2355 2356 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2357 TLO, Depth + 1)) 2358 return true; 2359 2360 // If all the src elements covering an output element are zero/undef, then 2361 // the output element will be as well, assuming it was demanded. 2362 for (unsigned i = 0; i != NumElts; ++i) { 2363 if (DemandedElts[i]) { 2364 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2365 KnownZero.setBit(i); 2366 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2367 KnownUndef.setBit(i); 2368 } 2369 } 2370 } 2371 break; 2372 } 2373 case ISD::BUILD_VECTOR: { 2374 // Check all elements and simplify any unused elements with UNDEF. 2375 if (!DemandedElts.isAllOnesValue()) { 2376 // Don't simplify BROADCASTS. 2377 if (llvm::any_of(Op->op_values(), 2378 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2379 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2380 bool Updated = false; 2381 for (unsigned i = 0; i != NumElts; ++i) { 2382 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2383 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2384 KnownUndef.setBit(i); 2385 Updated = true; 2386 } 2387 } 2388 if (Updated) 2389 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2390 } 2391 } 2392 for (unsigned i = 0; i != NumElts; ++i) { 2393 SDValue SrcOp = Op.getOperand(i); 2394 if (SrcOp.isUndef()) { 2395 KnownUndef.setBit(i); 2396 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2397 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2398 KnownZero.setBit(i); 2399 } 2400 } 2401 break; 2402 } 2403 case ISD::CONCAT_VECTORS: { 2404 EVT SubVT = Op.getOperand(0).getValueType(); 2405 unsigned NumSubVecs = Op.getNumOperands(); 2406 unsigned NumSubElts = SubVT.getVectorNumElements(); 2407 for (unsigned i = 0; i != NumSubVecs; ++i) { 2408 SDValue SubOp = Op.getOperand(i); 2409 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2410 APInt SubUndef, SubZero; 2411 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2412 Depth + 1)) 2413 return true; 2414 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2415 KnownZero.insertBits(SubZero, i * NumSubElts); 2416 } 2417 break; 2418 } 2419 case ISD::INSERT_SUBVECTOR: { 2420 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2421 break; 2422 SDValue Base = Op.getOperand(0); 2423 SDValue Sub = Op.getOperand(1); 2424 EVT SubVT = Sub.getValueType(); 2425 unsigned NumSubElts = SubVT.getVectorNumElements(); 2426 const APInt &Idx = Op.getConstantOperandAPInt(2); 2427 if (Idx.ugt(NumElts - NumSubElts)) 2428 break; 2429 unsigned SubIdx = Idx.getZExtValue(); 2430 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2431 APInt SubUndef, SubZero; 2432 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2433 Depth + 1)) 2434 return true; 2435 APInt BaseElts = DemandedElts; 2436 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2437 2438 // If none of the base operand elements are demanded, replace it with undef. 2439 if (!BaseElts && !Base.isUndef()) 2440 return TLO.CombineTo(Op, 2441 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2442 TLO.DAG.getUNDEF(VT), 2443 Op.getOperand(1), 2444 Op.getOperand(2))); 2445 2446 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2447 Depth + 1)) 2448 return true; 2449 KnownUndef.insertBits(SubUndef, SubIdx); 2450 KnownZero.insertBits(SubZero, SubIdx); 2451 break; 2452 } 2453 case ISD::EXTRACT_SUBVECTOR: { 2454 SDValue Src = Op.getOperand(0); 2455 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2456 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2457 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2458 // Offset the demanded elts by the subvector index. 2459 uint64_t Idx = SubIdx->getZExtValue(); 2460 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2461 APInt SrcUndef, SrcZero; 2462 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2463 Depth + 1)) 2464 return true; 2465 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2466 KnownZero = SrcZero.extractBits(NumElts, Idx); 2467 } 2468 break; 2469 } 2470 case ISD::INSERT_VECTOR_ELT: { 2471 SDValue Vec = Op.getOperand(0); 2472 SDValue Scl = Op.getOperand(1); 2473 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2474 2475 // For a legal, constant insertion index, if we don't need this insertion 2476 // then strip it, else remove it from the demanded elts. 2477 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2478 unsigned Idx = CIdx->getZExtValue(); 2479 if (!DemandedElts[Idx]) 2480 return TLO.CombineTo(Op, Vec); 2481 2482 APInt DemandedVecElts(DemandedElts); 2483 DemandedVecElts.clearBit(Idx); 2484 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2485 KnownZero, TLO, Depth + 1)) 2486 return true; 2487 2488 KnownUndef.clearBit(Idx); 2489 if (Scl.isUndef()) 2490 KnownUndef.setBit(Idx); 2491 2492 KnownZero.clearBit(Idx); 2493 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2494 KnownZero.setBit(Idx); 2495 break; 2496 } 2497 2498 APInt VecUndef, VecZero; 2499 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2500 Depth + 1)) 2501 return true; 2502 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2503 break; 2504 } 2505 case ISD::VSELECT: { 2506 // Try to transform the select condition based on the current demanded 2507 // elements. 2508 // TODO: If a condition element is undef, we can choose from one arm of the 2509 // select (and if one arm is undef, then we can propagate that to the 2510 // result). 2511 // TODO - add support for constant vselect masks (see IR version of this). 2512 APInt UnusedUndef, UnusedZero; 2513 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2514 UnusedZero, TLO, Depth + 1)) 2515 return true; 2516 2517 // See if we can simplify either vselect operand. 2518 APInt DemandedLHS(DemandedElts); 2519 APInt DemandedRHS(DemandedElts); 2520 APInt UndefLHS, ZeroLHS; 2521 APInt UndefRHS, ZeroRHS; 2522 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2523 ZeroLHS, TLO, Depth + 1)) 2524 return true; 2525 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2526 ZeroRHS, TLO, Depth + 1)) 2527 return true; 2528 2529 KnownUndef = UndefLHS & UndefRHS; 2530 KnownZero = ZeroLHS & ZeroRHS; 2531 break; 2532 } 2533 case ISD::VECTOR_SHUFFLE: { 2534 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2535 2536 // Collect demanded elements from shuffle operands.. 2537 APInt DemandedLHS(NumElts, 0); 2538 APInt DemandedRHS(NumElts, 0); 2539 for (unsigned i = 0; i != NumElts; ++i) { 2540 int M = ShuffleMask[i]; 2541 if (M < 0 || !DemandedElts[i]) 2542 continue; 2543 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2544 if (M < (int)NumElts) 2545 DemandedLHS.setBit(M); 2546 else 2547 DemandedRHS.setBit(M - NumElts); 2548 } 2549 2550 // See if we can simplify either shuffle operand. 2551 APInt UndefLHS, ZeroLHS; 2552 APInt UndefRHS, ZeroRHS; 2553 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2554 ZeroLHS, TLO, Depth + 1)) 2555 return true; 2556 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2557 ZeroRHS, TLO, Depth + 1)) 2558 return true; 2559 2560 // Simplify mask using undef elements from LHS/RHS. 2561 bool Updated = false; 2562 bool IdentityLHS = true, IdentityRHS = true; 2563 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2564 for (unsigned i = 0; i != NumElts; ++i) { 2565 int &M = NewMask[i]; 2566 if (M < 0) 2567 continue; 2568 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2569 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2570 Updated = true; 2571 M = -1; 2572 } 2573 IdentityLHS &= (M < 0) || (M == (int)i); 2574 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2575 } 2576 2577 // Update legal shuffle masks based on demanded elements if it won't reduce 2578 // to Identity which can cause premature removal of the shuffle mask. 2579 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2580 SDValue LegalShuffle = 2581 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2582 NewMask, TLO.DAG); 2583 if (LegalShuffle) 2584 return TLO.CombineTo(Op, LegalShuffle); 2585 } 2586 2587 // Propagate undef/zero elements from LHS/RHS. 2588 for (unsigned i = 0; i != NumElts; ++i) { 2589 int M = ShuffleMask[i]; 2590 if (M < 0) { 2591 KnownUndef.setBit(i); 2592 } else if (M < (int)NumElts) { 2593 if (UndefLHS[M]) 2594 KnownUndef.setBit(i); 2595 if (ZeroLHS[M]) 2596 KnownZero.setBit(i); 2597 } else { 2598 if (UndefRHS[M - NumElts]) 2599 KnownUndef.setBit(i); 2600 if (ZeroRHS[M - NumElts]) 2601 KnownZero.setBit(i); 2602 } 2603 } 2604 break; 2605 } 2606 case ISD::ANY_EXTEND_VECTOR_INREG: 2607 case ISD::SIGN_EXTEND_VECTOR_INREG: 2608 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2609 APInt SrcUndef, SrcZero; 2610 SDValue Src = Op.getOperand(0); 2611 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2612 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2613 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2614 Depth + 1)) 2615 return true; 2616 KnownZero = SrcZero.zextOrTrunc(NumElts); 2617 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2618 2619 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2620 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2621 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2622 // aext - if we just need the bottom element then we can bitcast. 2623 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2624 } 2625 2626 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2627 // zext(undef) upper bits are guaranteed to be zero. 2628 if (DemandedElts.isSubsetOf(KnownUndef)) 2629 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2630 KnownUndef.clearAllBits(); 2631 } 2632 break; 2633 } 2634 2635 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2636 // MAX, saturated math, etc. 2637 case ISD::OR: 2638 case ISD::XOR: 2639 case ISD::ADD: 2640 case ISD::SUB: 2641 case ISD::FADD: 2642 case ISD::FSUB: 2643 case ISD::FMUL: 2644 case ISD::FDIV: 2645 case ISD::FREM: { 2646 APInt UndefRHS, ZeroRHS; 2647 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2648 ZeroRHS, TLO, Depth + 1)) 2649 return true; 2650 APInt UndefLHS, ZeroLHS; 2651 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2652 ZeroLHS, TLO, Depth + 1)) 2653 return true; 2654 2655 KnownZero = ZeroLHS & ZeroRHS; 2656 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2657 break; 2658 } 2659 case ISD::SHL: 2660 case ISD::SRL: 2661 case ISD::SRA: 2662 case ISD::ROTL: 2663 case ISD::ROTR: { 2664 APInt UndefRHS, ZeroRHS; 2665 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2666 ZeroRHS, TLO, Depth + 1)) 2667 return true; 2668 APInt UndefLHS, ZeroLHS; 2669 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2670 ZeroLHS, TLO, Depth + 1)) 2671 return true; 2672 2673 KnownZero = ZeroLHS; 2674 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2675 break; 2676 } 2677 case ISD::MUL: 2678 case ISD::AND: { 2679 APInt SrcUndef, SrcZero; 2680 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2681 SrcZero, TLO, Depth + 1)) 2682 return true; 2683 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2684 KnownZero, TLO, Depth + 1)) 2685 return true; 2686 2687 // If either side has a zero element, then the result element is zero, even 2688 // if the other is an UNDEF. 2689 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2690 // and then handle 'and' nodes with the rest of the binop opcodes. 2691 KnownZero |= SrcZero; 2692 KnownUndef &= SrcUndef; 2693 KnownUndef &= ~KnownZero; 2694 break; 2695 } 2696 case ISD::TRUNCATE: 2697 case ISD::SIGN_EXTEND: 2698 case ISD::ZERO_EXTEND: 2699 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2700 KnownZero, TLO, Depth + 1)) 2701 return true; 2702 2703 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2704 // zext(undef) upper bits are guaranteed to be zero. 2705 if (DemandedElts.isSubsetOf(KnownUndef)) 2706 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2707 KnownUndef.clearAllBits(); 2708 } 2709 break; 2710 default: { 2711 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2712 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2713 KnownZero, TLO, Depth)) 2714 return true; 2715 } else { 2716 KnownBits Known; 2717 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2718 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2719 TLO, Depth, AssumeSingleUse)) 2720 return true; 2721 } 2722 break; 2723 } 2724 } 2725 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2726 2727 // Constant fold all undef cases. 2728 // TODO: Handle zero cases as well. 2729 if (DemandedElts.isSubsetOf(KnownUndef)) 2730 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2731 2732 return false; 2733 } 2734 2735 /// Determine which of the bits specified in Mask are known to be either zero or 2736 /// one and return them in the Known. 2737 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2738 KnownBits &Known, 2739 const APInt &DemandedElts, 2740 const SelectionDAG &DAG, 2741 unsigned Depth) const { 2742 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2743 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2744 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2745 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2746 "Should use MaskedValueIsZero if you don't know whether Op" 2747 " is a target node!"); 2748 Known.resetAll(); 2749 } 2750 2751 void TargetLowering::computeKnownBitsForTargetInstr( 2752 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2753 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2754 unsigned Depth) const { 2755 Known.resetAll(); 2756 } 2757 2758 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2759 KnownBits &Known, 2760 const APInt &DemandedElts, 2761 const SelectionDAG &DAG, 2762 unsigned Depth) const { 2763 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2764 2765 if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) { 2766 // The low bits are known zero if the pointer is aligned. 2767 Known.Zero.setLowBits(Log2(*Alignment)); 2768 } 2769 } 2770 2771 /// This method can be implemented by targets that want to expose additional 2772 /// information about sign bits to the DAG Combiner. 2773 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2774 const APInt &, 2775 const SelectionDAG &, 2776 unsigned Depth) const { 2777 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2778 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2779 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2780 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2781 "Should use ComputeNumSignBits if you don't know whether Op" 2782 " is a target node!"); 2783 return 1; 2784 } 2785 2786 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2787 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2788 const MachineRegisterInfo &MRI, unsigned Depth) const { 2789 return 1; 2790 } 2791 2792 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2793 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2794 TargetLoweringOpt &TLO, unsigned Depth) const { 2795 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2796 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2797 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2798 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2799 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2800 " is a target node!"); 2801 return false; 2802 } 2803 2804 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2805 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2806 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2807 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2808 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2809 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2810 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2811 "Should use SimplifyDemandedBits if you don't know whether Op" 2812 " is a target node!"); 2813 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2814 return false; 2815 } 2816 2817 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2818 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2819 SelectionDAG &DAG, unsigned Depth) const { 2820 assert( 2821 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2822 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2823 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2824 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2825 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2826 " is a target node!"); 2827 return SDValue(); 2828 } 2829 2830 SDValue 2831 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2832 SDValue N1, MutableArrayRef<int> Mask, 2833 SelectionDAG &DAG) const { 2834 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2835 if (!LegalMask) { 2836 std::swap(N0, N1); 2837 ShuffleVectorSDNode::commuteMask(Mask); 2838 LegalMask = isShuffleMaskLegal(Mask, VT); 2839 } 2840 2841 if (!LegalMask) 2842 return SDValue(); 2843 2844 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2845 } 2846 2847 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2848 return nullptr; 2849 } 2850 2851 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2852 const SelectionDAG &DAG, 2853 bool SNaN, 2854 unsigned Depth) const { 2855 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2856 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2857 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2858 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2859 "Should use isKnownNeverNaN if you don't know whether Op" 2860 " is a target node!"); 2861 return false; 2862 } 2863 2864 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2865 // work with truncating build vectors and vectors with elements of less than 2866 // 8 bits. 2867 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2868 if (!N) 2869 return false; 2870 2871 APInt CVal; 2872 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2873 CVal = CN->getAPIntValue(); 2874 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2875 auto *CN = BV->getConstantSplatNode(); 2876 if (!CN) 2877 return false; 2878 2879 // If this is a truncating build vector, truncate the splat value. 2880 // Otherwise, we may fail to match the expected values below. 2881 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2882 CVal = CN->getAPIntValue(); 2883 if (BVEltWidth < CVal.getBitWidth()) 2884 CVal = CVal.trunc(BVEltWidth); 2885 } else { 2886 return false; 2887 } 2888 2889 switch (getBooleanContents(N->getValueType(0))) { 2890 case UndefinedBooleanContent: 2891 return CVal[0]; 2892 case ZeroOrOneBooleanContent: 2893 return CVal.isOneValue(); 2894 case ZeroOrNegativeOneBooleanContent: 2895 return CVal.isAllOnesValue(); 2896 } 2897 2898 llvm_unreachable("Invalid boolean contents"); 2899 } 2900 2901 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2902 if (!N) 2903 return false; 2904 2905 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2906 if (!CN) { 2907 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2908 if (!BV) 2909 return false; 2910 2911 // Only interested in constant splats, we don't care about undef 2912 // elements in identifying boolean constants and getConstantSplatNode 2913 // returns NULL if all ops are undef; 2914 CN = BV->getConstantSplatNode(); 2915 if (!CN) 2916 return false; 2917 } 2918 2919 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2920 return !CN->getAPIntValue()[0]; 2921 2922 return CN->isNullValue(); 2923 } 2924 2925 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2926 bool SExt) const { 2927 if (VT == MVT::i1) 2928 return N->isOne(); 2929 2930 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2931 switch (Cnt) { 2932 case TargetLowering::ZeroOrOneBooleanContent: 2933 // An extended value of 1 is always true, unless its original type is i1, 2934 // in which case it will be sign extended to -1. 2935 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2936 case TargetLowering::UndefinedBooleanContent: 2937 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2938 return N->isAllOnesValue() && SExt; 2939 } 2940 llvm_unreachable("Unexpected enumeration."); 2941 } 2942 2943 /// This helper function of SimplifySetCC tries to optimize the comparison when 2944 /// either operand of the SetCC node is a bitwise-and instruction. 2945 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2946 ISD::CondCode Cond, const SDLoc &DL, 2947 DAGCombinerInfo &DCI) const { 2948 // Match these patterns in any of their permutations: 2949 // (X & Y) == Y 2950 // (X & Y) != Y 2951 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2952 std::swap(N0, N1); 2953 2954 EVT OpVT = N0.getValueType(); 2955 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2956 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2957 return SDValue(); 2958 2959 SDValue X, Y; 2960 if (N0.getOperand(0) == N1) { 2961 X = N0.getOperand(1); 2962 Y = N0.getOperand(0); 2963 } else if (N0.getOperand(1) == N1) { 2964 X = N0.getOperand(0); 2965 Y = N0.getOperand(1); 2966 } else { 2967 return SDValue(); 2968 } 2969 2970 SelectionDAG &DAG = DCI.DAG; 2971 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2972 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2973 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2974 // Note that where Y is variable and is known to have at most one bit set 2975 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2976 // equivalent when Y == 0. 2977 assert(OpVT.isInteger()); 2978 Cond = ISD::getSetCCInverse(Cond, OpVT); 2979 if (DCI.isBeforeLegalizeOps() || 2980 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2981 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2982 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2983 // If the target supports an 'and-not' or 'and-complement' logic operation, 2984 // try to use that to make a comparison operation more efficient. 2985 // But don't do this transform if the mask is a single bit because there are 2986 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2987 // 'rlwinm' on PPC). 2988 2989 // Bail out if the compare operand that we want to turn into a zero is 2990 // already a zero (otherwise, infinite loop). 2991 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2992 if (YConst && YConst->isNullValue()) 2993 return SDValue(); 2994 2995 // Transform this into: ~X & Y == 0. 2996 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2997 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2998 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2999 } 3000 3001 return SDValue(); 3002 } 3003 3004 /// There are multiple IR patterns that could be checking whether certain 3005 /// truncation of a signed number would be lossy or not. The pattern which is 3006 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3007 /// We are looking for the following pattern: (KeptBits is a constant) 3008 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3009 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3010 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3011 /// We will unfold it into the natural trunc+sext pattern: 3012 /// ((%x << C) a>> C) dstcond %x 3013 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3014 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3015 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3016 const SDLoc &DL) const { 3017 // We must be comparing with a constant. 3018 ConstantSDNode *C1; 3019 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3020 return SDValue(); 3021 3022 // N0 should be: add %x, (1 << (KeptBits-1)) 3023 if (N0->getOpcode() != ISD::ADD) 3024 return SDValue(); 3025 3026 // And we must be 'add'ing a constant. 3027 ConstantSDNode *C01; 3028 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3029 return SDValue(); 3030 3031 SDValue X = N0->getOperand(0); 3032 EVT XVT = X.getValueType(); 3033 3034 // Validate constants ... 3035 3036 APInt I1 = C1->getAPIntValue(); 3037 3038 ISD::CondCode NewCond; 3039 if (Cond == ISD::CondCode::SETULT) { 3040 NewCond = ISD::CondCode::SETEQ; 3041 } else if (Cond == ISD::CondCode::SETULE) { 3042 NewCond = ISD::CondCode::SETEQ; 3043 // But need to 'canonicalize' the constant. 3044 I1 += 1; 3045 } else if (Cond == ISD::CondCode::SETUGT) { 3046 NewCond = ISD::CondCode::SETNE; 3047 // But need to 'canonicalize' the constant. 3048 I1 += 1; 3049 } else if (Cond == ISD::CondCode::SETUGE) { 3050 NewCond = ISD::CondCode::SETNE; 3051 } else 3052 return SDValue(); 3053 3054 APInt I01 = C01->getAPIntValue(); 3055 3056 auto checkConstants = [&I1, &I01]() -> bool { 3057 // Both of them must be power-of-two, and the constant from setcc is bigger. 3058 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3059 }; 3060 3061 if (checkConstants()) { 3062 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3063 } else { 3064 // What if we invert constants? (and the target predicate) 3065 I1.negate(); 3066 I01.negate(); 3067 assert(XVT.isInteger()); 3068 NewCond = getSetCCInverse(NewCond, XVT); 3069 if (!checkConstants()) 3070 return SDValue(); 3071 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3072 } 3073 3074 // They are power-of-two, so which bit is set? 3075 const unsigned KeptBits = I1.logBase2(); 3076 const unsigned KeptBitsMinusOne = I01.logBase2(); 3077 3078 // Magic! 3079 if (KeptBits != (KeptBitsMinusOne + 1)) 3080 return SDValue(); 3081 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3082 3083 // We don't want to do this in every single case. 3084 SelectionDAG &DAG = DCI.DAG; 3085 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3086 XVT, KeptBits)) 3087 return SDValue(); 3088 3089 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3090 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3091 3092 // Unfold into: ((%x << C) a>> C) cond %x 3093 // Where 'cond' will be either 'eq' or 'ne'. 3094 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3095 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3096 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3097 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3098 3099 return T2; 3100 } 3101 3102 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3103 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3104 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3105 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3106 assert(isConstOrConstSplat(N1C) && 3107 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3108 "Should be a comparison with 0."); 3109 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3110 "Valid only for [in]equality comparisons."); 3111 3112 unsigned NewShiftOpcode; 3113 SDValue X, C, Y; 3114 3115 SelectionDAG &DAG = DCI.DAG; 3116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3117 3118 // Look for '(C l>>/<< Y)'. 3119 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3120 // The shift should be one-use. 3121 if (!V.hasOneUse()) 3122 return false; 3123 unsigned OldShiftOpcode = V.getOpcode(); 3124 switch (OldShiftOpcode) { 3125 case ISD::SHL: 3126 NewShiftOpcode = ISD::SRL; 3127 break; 3128 case ISD::SRL: 3129 NewShiftOpcode = ISD::SHL; 3130 break; 3131 default: 3132 return false; // must be a logical shift. 3133 } 3134 // We should be shifting a constant. 3135 // FIXME: best to use isConstantOrConstantVector(). 3136 C = V.getOperand(0); 3137 ConstantSDNode *CC = 3138 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3139 if (!CC) 3140 return false; 3141 Y = V.getOperand(1); 3142 3143 ConstantSDNode *XC = 3144 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3145 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3146 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3147 }; 3148 3149 // LHS of comparison should be an one-use 'and'. 3150 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3151 return SDValue(); 3152 3153 X = N0.getOperand(0); 3154 SDValue Mask = N0.getOperand(1); 3155 3156 // 'and' is commutative! 3157 if (!Match(Mask)) { 3158 std::swap(X, Mask); 3159 if (!Match(Mask)) 3160 return SDValue(); 3161 } 3162 3163 EVT VT = X.getValueType(); 3164 3165 // Produce: 3166 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3167 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3168 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3169 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3170 return T2; 3171 } 3172 3173 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3174 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3175 /// handle the commuted versions of these patterns. 3176 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3177 ISD::CondCode Cond, const SDLoc &DL, 3178 DAGCombinerInfo &DCI) const { 3179 unsigned BOpcode = N0.getOpcode(); 3180 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3181 "Unexpected binop"); 3182 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3183 3184 // (X + Y) == X --> Y == 0 3185 // (X - Y) == X --> Y == 0 3186 // (X ^ Y) == X --> Y == 0 3187 SelectionDAG &DAG = DCI.DAG; 3188 EVT OpVT = N0.getValueType(); 3189 SDValue X = N0.getOperand(0); 3190 SDValue Y = N0.getOperand(1); 3191 if (X == N1) 3192 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3193 3194 if (Y != N1) 3195 return SDValue(); 3196 3197 // (X + Y) == Y --> X == 0 3198 // (X ^ Y) == Y --> X == 0 3199 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3200 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3201 3202 // The shift would not be valid if the operands are boolean (i1). 3203 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3204 return SDValue(); 3205 3206 // (X - Y) == Y --> X == Y << 1 3207 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3208 !DCI.isBeforeLegalize()); 3209 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3210 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3211 if (!DCI.isCalledByLegalizer()) 3212 DCI.AddToWorklist(YShl1.getNode()); 3213 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3214 } 3215 3216 /// Try to simplify a setcc built with the specified operands and cc. If it is 3217 /// unable to simplify it, return a null SDValue. 3218 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3219 ISD::CondCode Cond, bool foldBooleans, 3220 DAGCombinerInfo &DCI, 3221 const SDLoc &dl) const { 3222 SelectionDAG &DAG = DCI.DAG; 3223 const DataLayout &Layout = DAG.getDataLayout(); 3224 EVT OpVT = N0.getValueType(); 3225 3226 // Constant fold or commute setcc. 3227 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3228 return Fold; 3229 3230 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3231 // TODO: Handle non-splat vector constants. All undef causes trouble. 3232 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3233 if (isConstOrConstSplat(N0) && 3234 (DCI.isBeforeLegalizeOps() || 3235 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3236 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3237 3238 // If we have a subtract with the same 2 non-constant operands as this setcc 3239 // -- but in reverse order -- then try to commute the operands of this setcc 3240 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3241 // instruction on some targets. 3242 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3243 (DCI.isBeforeLegalizeOps() || 3244 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3245 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3246 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3247 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3248 3249 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3250 const APInt &C1 = N1C->getAPIntValue(); 3251 3252 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3253 // equality comparison, then we're just comparing whether X itself is 3254 // zero. 3255 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3256 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3257 N0.getOperand(1).getOpcode() == ISD::Constant) { 3258 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3259 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3260 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3261 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3262 // (srl (ctlz x), 5) == 0 -> X != 0 3263 // (srl (ctlz x), 5) != 1 -> X != 0 3264 Cond = ISD::SETNE; 3265 } else { 3266 // (srl (ctlz x), 5) != 0 -> X == 0 3267 // (srl (ctlz x), 5) == 1 -> X == 0 3268 Cond = ISD::SETEQ; 3269 } 3270 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3271 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3272 Zero, Cond); 3273 } 3274 } 3275 3276 SDValue CTPOP = N0; 3277 // Look through truncs that don't change the value of a ctpop. 3278 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3279 CTPOP = N0.getOperand(0); 3280 3281 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3282 (N0 == CTPOP || 3283 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3284 EVT CTVT = CTPOP.getValueType(); 3285 SDValue CTOp = CTPOP.getOperand(0); 3286 3287 // (ctpop x) u< 2 -> (x & x-1) == 0 3288 // (ctpop x) u> 1 -> (x & x-1) != 0 3289 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3290 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3291 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3292 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3293 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3294 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3295 } 3296 3297 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3298 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3299 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3300 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3301 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3302 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3303 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3304 assert(CTVT.isInteger()); 3305 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3306 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3307 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3308 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3309 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3310 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3311 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3312 } 3313 } 3314 3315 // (zext x) == C --> x == (trunc C) 3316 // (sext x) == C --> x == (trunc C) 3317 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3318 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3319 unsigned MinBits = N0.getValueSizeInBits(); 3320 SDValue PreExt; 3321 bool Signed = false; 3322 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3323 // ZExt 3324 MinBits = N0->getOperand(0).getValueSizeInBits(); 3325 PreExt = N0->getOperand(0); 3326 } else if (N0->getOpcode() == ISD::AND) { 3327 // DAGCombine turns costly ZExts into ANDs 3328 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3329 if ((C->getAPIntValue()+1).isPowerOf2()) { 3330 MinBits = C->getAPIntValue().countTrailingOnes(); 3331 PreExt = N0->getOperand(0); 3332 } 3333 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3334 // SExt 3335 MinBits = N0->getOperand(0).getValueSizeInBits(); 3336 PreExt = N0->getOperand(0); 3337 Signed = true; 3338 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3339 // ZEXTLOAD / SEXTLOAD 3340 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3341 MinBits = LN0->getMemoryVT().getSizeInBits(); 3342 PreExt = N0; 3343 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3344 Signed = true; 3345 MinBits = LN0->getMemoryVT().getSizeInBits(); 3346 PreExt = N0; 3347 } 3348 } 3349 3350 // Figure out how many bits we need to preserve this constant. 3351 unsigned ReqdBits = Signed ? 3352 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3353 C1.getActiveBits(); 3354 3355 // Make sure we're not losing bits from the constant. 3356 if (MinBits > 0 && 3357 MinBits < C1.getBitWidth() && 3358 MinBits >= ReqdBits) { 3359 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3360 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3361 // Will get folded away. 3362 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3363 if (MinBits == 1 && C1 == 1) 3364 // Invert the condition. 3365 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3366 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3367 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3368 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3369 } 3370 3371 // If truncating the setcc operands is not desirable, we can still 3372 // simplify the expression in some cases: 3373 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3374 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3375 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3376 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3377 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3378 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3379 SDValue TopSetCC = N0->getOperand(0); 3380 unsigned N0Opc = N0->getOpcode(); 3381 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3382 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3383 TopSetCC.getOpcode() == ISD::SETCC && 3384 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3385 (isConstFalseVal(N1C) || 3386 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3387 3388 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3389 (!N1C->isNullValue() && Cond == ISD::SETNE); 3390 3391 if (!Inverse) 3392 return TopSetCC; 3393 3394 ISD::CondCode InvCond = ISD::getSetCCInverse( 3395 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3396 TopSetCC.getOperand(0).getValueType()); 3397 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3398 TopSetCC.getOperand(1), 3399 InvCond); 3400 } 3401 } 3402 } 3403 3404 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3405 // equality or unsigned, and all 1 bits of the const are in the same 3406 // partial word, see if we can shorten the load. 3407 if (DCI.isBeforeLegalize() && 3408 !ISD::isSignedIntSetCC(Cond) && 3409 N0.getOpcode() == ISD::AND && C1 == 0 && 3410 N0.getNode()->hasOneUse() && 3411 isa<LoadSDNode>(N0.getOperand(0)) && 3412 N0.getOperand(0).getNode()->hasOneUse() && 3413 isa<ConstantSDNode>(N0.getOperand(1))) { 3414 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3415 APInt bestMask; 3416 unsigned bestWidth = 0, bestOffset = 0; 3417 if (Lod->isSimple() && Lod->isUnindexed()) { 3418 unsigned origWidth = N0.getValueSizeInBits(); 3419 unsigned maskWidth = origWidth; 3420 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3421 // 8 bits, but have to be careful... 3422 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3423 origWidth = Lod->getMemoryVT().getSizeInBits(); 3424 const APInt &Mask = N0.getConstantOperandAPInt(1); 3425 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3426 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3427 for (unsigned offset=0; offset<origWidth/width; offset++) { 3428 if (Mask.isSubsetOf(newMask)) { 3429 if (Layout.isLittleEndian()) 3430 bestOffset = (uint64_t)offset * (width/8); 3431 else 3432 bestOffset = (origWidth/width - offset - 1) * (width/8); 3433 bestMask = Mask.lshr(offset * (width/8) * 8); 3434 bestWidth = width; 3435 break; 3436 } 3437 newMask <<= width; 3438 } 3439 } 3440 } 3441 if (bestWidth) { 3442 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3443 if (newVT.isRound() && 3444 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3445 SDValue Ptr = Lod->getBasePtr(); 3446 if (bestOffset != 0) 3447 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3448 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3449 SDValue NewLoad = DAG.getLoad( 3450 newVT, dl, Lod->getChain(), Ptr, 3451 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3452 return DAG.getSetCC(dl, VT, 3453 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3454 DAG.getConstant(bestMask.trunc(bestWidth), 3455 dl, newVT)), 3456 DAG.getConstant(0LL, dl, newVT), Cond); 3457 } 3458 } 3459 } 3460 3461 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3462 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3463 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3464 3465 // If the comparison constant has bits in the upper part, the 3466 // zero-extended value could never match. 3467 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3468 C1.getBitWidth() - InSize))) { 3469 switch (Cond) { 3470 case ISD::SETUGT: 3471 case ISD::SETUGE: 3472 case ISD::SETEQ: 3473 return DAG.getConstant(0, dl, VT); 3474 case ISD::SETULT: 3475 case ISD::SETULE: 3476 case ISD::SETNE: 3477 return DAG.getConstant(1, dl, VT); 3478 case ISD::SETGT: 3479 case ISD::SETGE: 3480 // True if the sign bit of C1 is set. 3481 return DAG.getConstant(C1.isNegative(), dl, VT); 3482 case ISD::SETLT: 3483 case ISD::SETLE: 3484 // True if the sign bit of C1 isn't set. 3485 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3486 default: 3487 break; 3488 } 3489 } 3490 3491 // Otherwise, we can perform the comparison with the low bits. 3492 switch (Cond) { 3493 case ISD::SETEQ: 3494 case ISD::SETNE: 3495 case ISD::SETUGT: 3496 case ISD::SETUGE: 3497 case ISD::SETULT: 3498 case ISD::SETULE: { 3499 EVT newVT = N0.getOperand(0).getValueType(); 3500 if (DCI.isBeforeLegalizeOps() || 3501 (isOperationLegal(ISD::SETCC, newVT) && 3502 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3503 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3504 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3505 3506 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3507 NewConst, Cond); 3508 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3509 } 3510 break; 3511 } 3512 default: 3513 break; // todo, be more careful with signed comparisons 3514 } 3515 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3516 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3517 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3518 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3519 EVT ExtDstTy = N0.getValueType(); 3520 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3521 3522 // If the constant doesn't fit into the number of bits for the source of 3523 // the sign extension, it is impossible for both sides to be equal. 3524 if (C1.getMinSignedBits() > ExtSrcTyBits) 3525 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3526 3527 SDValue ZextOp; 3528 EVT Op0Ty = N0.getOperand(0).getValueType(); 3529 if (Op0Ty == ExtSrcTy) { 3530 ZextOp = N0.getOperand(0); 3531 } else { 3532 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3533 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3534 DAG.getConstant(Imm, dl, Op0Ty)); 3535 } 3536 if (!DCI.isCalledByLegalizer()) 3537 DCI.AddToWorklist(ZextOp.getNode()); 3538 // Otherwise, make this a use of a zext. 3539 return DAG.getSetCC(dl, VT, ZextOp, 3540 DAG.getConstant(C1 & APInt::getLowBitsSet( 3541 ExtDstTyBits, 3542 ExtSrcTyBits), 3543 dl, ExtDstTy), 3544 Cond); 3545 } else if ((N1C->isNullValue() || N1C->isOne()) && 3546 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3547 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3548 if (N0.getOpcode() == ISD::SETCC && 3549 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3550 (N0.getValueType() == MVT::i1 || 3551 getBooleanContents(N0.getOperand(0).getValueType()) == 3552 ZeroOrOneBooleanContent)) { 3553 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3554 if (TrueWhenTrue) 3555 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3556 // Invert the condition. 3557 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3558 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3559 if (DCI.isBeforeLegalizeOps() || 3560 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3561 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3562 } 3563 3564 if ((N0.getOpcode() == ISD::XOR || 3565 (N0.getOpcode() == ISD::AND && 3566 N0.getOperand(0).getOpcode() == ISD::XOR && 3567 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3568 isa<ConstantSDNode>(N0.getOperand(1)) && 3569 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3570 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3571 // can only do this if the top bits are known zero. 3572 unsigned BitWidth = N0.getValueSizeInBits(); 3573 if (DAG.MaskedValueIsZero(N0, 3574 APInt::getHighBitsSet(BitWidth, 3575 BitWidth-1))) { 3576 // Okay, get the un-inverted input value. 3577 SDValue Val; 3578 if (N0.getOpcode() == ISD::XOR) { 3579 Val = N0.getOperand(0); 3580 } else { 3581 assert(N0.getOpcode() == ISD::AND && 3582 N0.getOperand(0).getOpcode() == ISD::XOR); 3583 // ((X^1)&1)^1 -> X & 1 3584 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3585 N0.getOperand(0).getOperand(0), 3586 N0.getOperand(1)); 3587 } 3588 3589 return DAG.getSetCC(dl, VT, Val, N1, 3590 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3591 } 3592 } else if (N1C->isOne()) { 3593 SDValue Op0 = N0; 3594 if (Op0.getOpcode() == ISD::TRUNCATE) 3595 Op0 = Op0.getOperand(0); 3596 3597 if ((Op0.getOpcode() == ISD::XOR) && 3598 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3599 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3600 SDValue XorLHS = Op0.getOperand(0); 3601 SDValue XorRHS = Op0.getOperand(1); 3602 // Ensure that the input setccs return an i1 type or 0/1 value. 3603 if (Op0.getValueType() == MVT::i1 || 3604 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3605 ZeroOrOneBooleanContent && 3606 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3607 ZeroOrOneBooleanContent)) { 3608 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3609 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3610 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3611 } 3612 } 3613 if (Op0.getOpcode() == ISD::AND && 3614 isa<ConstantSDNode>(Op0.getOperand(1)) && 3615 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3616 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3617 if (Op0.getValueType().bitsGT(VT)) 3618 Op0 = DAG.getNode(ISD::AND, dl, VT, 3619 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3620 DAG.getConstant(1, dl, VT)); 3621 else if (Op0.getValueType().bitsLT(VT)) 3622 Op0 = DAG.getNode(ISD::AND, dl, VT, 3623 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3624 DAG.getConstant(1, dl, VT)); 3625 3626 return DAG.getSetCC(dl, VT, Op0, 3627 DAG.getConstant(0, dl, Op0.getValueType()), 3628 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3629 } 3630 if (Op0.getOpcode() == ISD::AssertZext && 3631 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3632 return DAG.getSetCC(dl, VT, Op0, 3633 DAG.getConstant(0, dl, Op0.getValueType()), 3634 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3635 } 3636 } 3637 3638 // Given: 3639 // icmp eq/ne (urem %x, %y), 0 3640 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3641 // icmp eq/ne %x, 0 3642 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3643 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3644 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3645 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3646 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3647 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3648 } 3649 3650 if (SDValue V = 3651 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3652 return V; 3653 } 3654 3655 // These simplifications apply to splat vectors as well. 3656 // TODO: Handle more splat vector cases. 3657 if (auto *N1C = isConstOrConstSplat(N1)) { 3658 const APInt &C1 = N1C->getAPIntValue(); 3659 3660 APInt MinVal, MaxVal; 3661 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3662 if (ISD::isSignedIntSetCC(Cond)) { 3663 MinVal = APInt::getSignedMinValue(OperandBitSize); 3664 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3665 } else { 3666 MinVal = APInt::getMinValue(OperandBitSize); 3667 MaxVal = APInt::getMaxValue(OperandBitSize); 3668 } 3669 3670 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3671 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3672 // X >= MIN --> true 3673 if (C1 == MinVal) 3674 return DAG.getBoolConstant(true, dl, VT, OpVT); 3675 3676 if (!VT.isVector()) { // TODO: Support this for vectors. 3677 // X >= C0 --> X > (C0 - 1) 3678 APInt C = C1 - 1; 3679 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3680 if ((DCI.isBeforeLegalizeOps() || 3681 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3682 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3683 isLegalICmpImmediate(C.getSExtValue())))) { 3684 return DAG.getSetCC(dl, VT, N0, 3685 DAG.getConstant(C, dl, N1.getValueType()), 3686 NewCC); 3687 } 3688 } 3689 } 3690 3691 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3692 // X <= MAX --> true 3693 if (C1 == MaxVal) 3694 return DAG.getBoolConstant(true, dl, VT, OpVT); 3695 3696 // X <= C0 --> X < (C0 + 1) 3697 if (!VT.isVector()) { // TODO: Support this for vectors. 3698 APInt C = C1 + 1; 3699 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3700 if ((DCI.isBeforeLegalizeOps() || 3701 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3702 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3703 isLegalICmpImmediate(C.getSExtValue())))) { 3704 return DAG.getSetCC(dl, VT, N0, 3705 DAG.getConstant(C, dl, N1.getValueType()), 3706 NewCC); 3707 } 3708 } 3709 } 3710 3711 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3712 if (C1 == MinVal) 3713 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3714 3715 // TODO: Support this for vectors after legalize ops. 3716 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3717 // Canonicalize setlt X, Max --> setne X, Max 3718 if (C1 == MaxVal) 3719 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3720 3721 // If we have setult X, 1, turn it into seteq X, 0 3722 if (C1 == MinVal+1) 3723 return DAG.getSetCC(dl, VT, N0, 3724 DAG.getConstant(MinVal, dl, N0.getValueType()), 3725 ISD::SETEQ); 3726 } 3727 } 3728 3729 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3730 if (C1 == MaxVal) 3731 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3732 3733 // TODO: Support this for vectors after legalize ops. 3734 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3735 // Canonicalize setgt X, Min --> setne X, Min 3736 if (C1 == MinVal) 3737 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3738 3739 // If we have setugt X, Max-1, turn it into seteq X, Max 3740 if (C1 == MaxVal-1) 3741 return DAG.getSetCC(dl, VT, N0, 3742 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3743 ISD::SETEQ); 3744 } 3745 } 3746 3747 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3748 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3749 if (C1.isNullValue()) 3750 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3751 VT, N0, N1, Cond, DCI, dl)) 3752 return CC; 3753 } 3754 3755 // If we have "setcc X, C0", check to see if we can shrink the immediate 3756 // by changing cc. 3757 // TODO: Support this for vectors after legalize ops. 3758 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3759 // SETUGT X, SINTMAX -> SETLT X, 0 3760 if (Cond == ISD::SETUGT && 3761 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3762 return DAG.getSetCC(dl, VT, N0, 3763 DAG.getConstant(0, dl, N1.getValueType()), 3764 ISD::SETLT); 3765 3766 // SETULT X, SINTMIN -> SETGT X, -1 3767 if (Cond == ISD::SETULT && 3768 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3769 SDValue ConstMinusOne = 3770 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3771 N1.getValueType()); 3772 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3773 } 3774 } 3775 } 3776 3777 // Back to non-vector simplifications. 3778 // TODO: Can we do these for vector splats? 3779 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3781 const APInt &C1 = N1C->getAPIntValue(); 3782 EVT ShValTy = N0.getValueType(); 3783 3784 // Fold bit comparisons when we can. 3785 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3786 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3787 N0.getOpcode() == ISD::AND) { 3788 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3789 EVT ShiftTy = 3790 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3791 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3792 // Perform the xform if the AND RHS is a single bit. 3793 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3794 if (AndRHS->getAPIntValue().isPowerOf2() && 3795 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3796 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3797 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3798 DAG.getConstant(ShCt, dl, ShiftTy))); 3799 } 3800 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3801 // (X & 8) == 8 --> (X & 8) >> 3 3802 // Perform the xform if C1 is a single bit. 3803 unsigned ShCt = C1.logBase2(); 3804 if (C1.isPowerOf2() && 3805 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3806 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3807 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3808 DAG.getConstant(ShCt, dl, ShiftTy))); 3809 } 3810 } 3811 } 3812 } 3813 3814 if (C1.getMinSignedBits() <= 64 && 3815 !isLegalICmpImmediate(C1.getSExtValue())) { 3816 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3817 // (X & -256) == 256 -> (X >> 8) == 1 3818 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3819 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3820 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3821 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3822 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3823 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3824 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3825 SDValue Shift = 3826 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3827 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3828 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3829 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3830 } 3831 } 3832 } 3833 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3834 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3835 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3836 // X < 0x100000000 -> (X >> 32) < 1 3837 // X >= 0x100000000 -> (X >> 32) >= 1 3838 // X <= 0x0ffffffff -> (X >> 32) < 1 3839 // X > 0x0ffffffff -> (X >> 32) >= 1 3840 unsigned ShiftBits; 3841 APInt NewC = C1; 3842 ISD::CondCode NewCond = Cond; 3843 if (AdjOne) { 3844 ShiftBits = C1.countTrailingOnes(); 3845 NewC = NewC + 1; 3846 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3847 } else { 3848 ShiftBits = C1.countTrailingZeros(); 3849 } 3850 NewC.lshrInPlace(ShiftBits); 3851 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3852 isLegalICmpImmediate(NewC.getSExtValue()) && 3853 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3854 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3855 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3856 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3857 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3858 } 3859 } 3860 } 3861 } 3862 3863 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3864 auto *CFP = cast<ConstantFPSDNode>(N1); 3865 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3866 3867 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3868 // constant if knowing that the operand is non-nan is enough. We prefer to 3869 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3870 // materialize 0.0. 3871 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3872 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3873 3874 // setcc (fneg x), C -> setcc swap(pred) x, -C 3875 if (N0.getOpcode() == ISD::FNEG) { 3876 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3877 if (DCI.isBeforeLegalizeOps() || 3878 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3879 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3880 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3881 } 3882 } 3883 3884 // If the condition is not legal, see if we can find an equivalent one 3885 // which is legal. 3886 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3887 // If the comparison was an awkward floating-point == or != and one of 3888 // the comparison operands is infinity or negative infinity, convert the 3889 // condition to a less-awkward <= or >=. 3890 if (CFP->getValueAPF().isInfinity()) { 3891 bool IsNegInf = CFP->getValueAPF().isNegative(); 3892 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3893 switch (Cond) { 3894 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3895 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3896 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3897 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3898 default: break; 3899 } 3900 if (NewCond != ISD::SETCC_INVALID && 3901 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3902 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3903 } 3904 } 3905 } 3906 3907 if (N0 == N1) { 3908 // The sext(setcc()) => setcc() optimization relies on the appropriate 3909 // constant being emitted. 3910 assert(!N0.getValueType().isInteger() && 3911 "Integer types should be handled by FoldSetCC"); 3912 3913 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3914 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3915 if (UOF == 2) // FP operators that are undefined on NaNs. 3916 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3917 if (UOF == unsigned(EqTrue)) 3918 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3919 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3920 // if it is not already. 3921 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3922 if (NewCond != Cond && 3923 (DCI.isBeforeLegalizeOps() || 3924 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3925 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3926 } 3927 3928 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3929 N0.getValueType().isInteger()) { 3930 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3931 N0.getOpcode() == ISD::XOR) { 3932 // Simplify (X+Y) == (X+Z) --> Y == Z 3933 if (N0.getOpcode() == N1.getOpcode()) { 3934 if (N0.getOperand(0) == N1.getOperand(0)) 3935 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3936 if (N0.getOperand(1) == N1.getOperand(1)) 3937 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3938 if (isCommutativeBinOp(N0.getOpcode())) { 3939 // If X op Y == Y op X, try other combinations. 3940 if (N0.getOperand(0) == N1.getOperand(1)) 3941 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3942 Cond); 3943 if (N0.getOperand(1) == N1.getOperand(0)) 3944 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3945 Cond); 3946 } 3947 } 3948 3949 // If RHS is a legal immediate value for a compare instruction, we need 3950 // to be careful about increasing register pressure needlessly. 3951 bool LegalRHSImm = false; 3952 3953 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3954 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3955 // Turn (X+C1) == C2 --> X == C2-C1 3956 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3957 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3958 DAG.getConstant(RHSC->getAPIntValue()- 3959 LHSR->getAPIntValue(), 3960 dl, N0.getValueType()), Cond); 3961 } 3962 3963 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3964 if (N0.getOpcode() == ISD::XOR) 3965 // If we know that all of the inverted bits are zero, don't bother 3966 // performing the inversion. 3967 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3968 return 3969 DAG.getSetCC(dl, VT, N0.getOperand(0), 3970 DAG.getConstant(LHSR->getAPIntValue() ^ 3971 RHSC->getAPIntValue(), 3972 dl, N0.getValueType()), 3973 Cond); 3974 } 3975 3976 // Turn (C1-X) == C2 --> X == C1-C2 3977 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3978 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3979 return 3980 DAG.getSetCC(dl, VT, N0.getOperand(1), 3981 DAG.getConstant(SUBC->getAPIntValue() - 3982 RHSC->getAPIntValue(), 3983 dl, N0.getValueType()), 3984 Cond); 3985 } 3986 } 3987 3988 // Could RHSC fold directly into a compare? 3989 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3990 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3991 } 3992 3993 // (X+Y) == X --> Y == 0 and similar folds. 3994 // Don't do this if X is an immediate that can fold into a cmp 3995 // instruction and X+Y has other uses. It could be an induction variable 3996 // chain, and the transform would increase register pressure. 3997 if (!LegalRHSImm || N0.hasOneUse()) 3998 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3999 return V; 4000 } 4001 4002 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4003 N1.getOpcode() == ISD::XOR) 4004 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4005 return V; 4006 4007 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4008 return V; 4009 } 4010 4011 // Fold remainder of division by a constant. 4012 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4013 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4014 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4015 4016 // When division is cheap or optimizing for minimum size, 4017 // fall through to DIVREM creation by skipping this fold. 4018 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4019 if (N0.getOpcode() == ISD::UREM) { 4020 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4021 return Folded; 4022 } else if (N0.getOpcode() == ISD::SREM) { 4023 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4024 return Folded; 4025 } 4026 } 4027 } 4028 4029 // Fold away ALL boolean setcc's. 4030 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4031 SDValue Temp; 4032 switch (Cond) { 4033 default: llvm_unreachable("Unknown integer setcc!"); 4034 case ISD::SETEQ: // X == Y -> ~(X^Y) 4035 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4036 N0 = DAG.getNOT(dl, Temp, OpVT); 4037 if (!DCI.isCalledByLegalizer()) 4038 DCI.AddToWorklist(Temp.getNode()); 4039 break; 4040 case ISD::SETNE: // X != Y --> (X^Y) 4041 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4042 break; 4043 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4044 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4045 Temp = DAG.getNOT(dl, N0, OpVT); 4046 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4047 if (!DCI.isCalledByLegalizer()) 4048 DCI.AddToWorklist(Temp.getNode()); 4049 break; 4050 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4051 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4052 Temp = DAG.getNOT(dl, N1, OpVT); 4053 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4054 if (!DCI.isCalledByLegalizer()) 4055 DCI.AddToWorklist(Temp.getNode()); 4056 break; 4057 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4058 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4059 Temp = DAG.getNOT(dl, N0, OpVT); 4060 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4061 if (!DCI.isCalledByLegalizer()) 4062 DCI.AddToWorklist(Temp.getNode()); 4063 break; 4064 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4065 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4066 Temp = DAG.getNOT(dl, N1, OpVT); 4067 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4068 break; 4069 } 4070 if (VT.getScalarType() != MVT::i1) { 4071 if (!DCI.isCalledByLegalizer()) 4072 DCI.AddToWorklist(N0.getNode()); 4073 // FIXME: If running after legalize, we probably can't do this. 4074 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4075 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4076 } 4077 return N0; 4078 } 4079 4080 // Could not fold it. 4081 return SDValue(); 4082 } 4083 4084 /// Returns true (and the GlobalValue and the offset) if the node is a 4085 /// GlobalAddress + offset. 4086 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4087 int64_t &Offset) const { 4088 4089 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4090 4091 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4092 GA = GASD->getGlobal(); 4093 Offset += GASD->getOffset(); 4094 return true; 4095 } 4096 4097 if (N->getOpcode() == ISD::ADD) { 4098 SDValue N1 = N->getOperand(0); 4099 SDValue N2 = N->getOperand(1); 4100 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4101 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4102 Offset += V->getSExtValue(); 4103 return true; 4104 } 4105 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4106 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4107 Offset += V->getSExtValue(); 4108 return true; 4109 } 4110 } 4111 } 4112 4113 return false; 4114 } 4115 4116 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4117 DAGCombinerInfo &DCI) const { 4118 // Default implementation: no optimization. 4119 return SDValue(); 4120 } 4121 4122 //===----------------------------------------------------------------------===// 4123 // Inline Assembler Implementation Methods 4124 //===----------------------------------------------------------------------===// 4125 4126 TargetLowering::ConstraintType 4127 TargetLowering::getConstraintType(StringRef Constraint) const { 4128 unsigned S = Constraint.size(); 4129 4130 if (S == 1) { 4131 switch (Constraint[0]) { 4132 default: break; 4133 case 'r': 4134 return C_RegisterClass; 4135 case 'm': // memory 4136 case 'o': // offsetable 4137 case 'V': // not offsetable 4138 return C_Memory; 4139 case 'n': // Simple Integer 4140 case 'E': // Floating Point Constant 4141 case 'F': // Floating Point Constant 4142 return C_Immediate; 4143 case 'i': // Simple Integer or Relocatable Constant 4144 case 's': // Relocatable Constant 4145 case 'p': // Address. 4146 case 'X': // Allow ANY value. 4147 case 'I': // Target registers. 4148 case 'J': 4149 case 'K': 4150 case 'L': 4151 case 'M': 4152 case 'N': 4153 case 'O': 4154 case 'P': 4155 case '<': 4156 case '>': 4157 return C_Other; 4158 } 4159 } 4160 4161 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4162 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4163 return C_Memory; 4164 return C_Register; 4165 } 4166 return C_Unknown; 4167 } 4168 4169 /// Try to replace an X constraint, which matches anything, with another that 4170 /// has more specific requirements based on the type of the corresponding 4171 /// operand. 4172 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4173 if (ConstraintVT.isInteger()) 4174 return "r"; 4175 if (ConstraintVT.isFloatingPoint()) 4176 return "f"; // works for many targets 4177 return nullptr; 4178 } 4179 4180 SDValue TargetLowering::LowerAsmOutputForConstraint( 4181 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4182 SelectionDAG &DAG) const { 4183 return SDValue(); 4184 } 4185 4186 /// Lower the specified operand into the Ops vector. 4187 /// If it is invalid, don't add anything to Ops. 4188 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4189 std::string &Constraint, 4190 std::vector<SDValue> &Ops, 4191 SelectionDAG &DAG) const { 4192 4193 if (Constraint.length() > 1) return; 4194 4195 char ConstraintLetter = Constraint[0]; 4196 switch (ConstraintLetter) { 4197 default: break; 4198 case 'X': // Allows any operand; labels (basic block) use this. 4199 if (Op.getOpcode() == ISD::BasicBlock || 4200 Op.getOpcode() == ISD::TargetBlockAddress) { 4201 Ops.push_back(Op); 4202 return; 4203 } 4204 LLVM_FALLTHROUGH; 4205 case 'i': // Simple Integer or Relocatable Constant 4206 case 'n': // Simple Integer 4207 case 's': { // Relocatable Constant 4208 4209 GlobalAddressSDNode *GA; 4210 ConstantSDNode *C; 4211 BlockAddressSDNode *BA; 4212 uint64_t Offset = 0; 4213 4214 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4215 // etc., since getelementpointer is variadic. We can't use 4216 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4217 // while in this case the GA may be furthest from the root node which is 4218 // likely an ISD::ADD. 4219 while (1) { 4220 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4221 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4222 GA->getValueType(0), 4223 Offset + GA->getOffset())); 4224 return; 4225 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4226 ConstraintLetter != 's') { 4227 // gcc prints these as sign extended. Sign extend value to 64 bits 4228 // now; without this it would get ZExt'd later in 4229 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4230 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4231 BooleanContent BCont = getBooleanContents(MVT::i64); 4232 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4233 : ISD::SIGN_EXTEND; 4234 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4235 : C->getSExtValue(); 4236 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4237 SDLoc(C), MVT::i64)); 4238 return; 4239 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4240 ConstraintLetter != 'n') { 4241 Ops.push_back(DAG.getTargetBlockAddress( 4242 BA->getBlockAddress(), BA->getValueType(0), 4243 Offset + BA->getOffset(), BA->getTargetFlags())); 4244 return; 4245 } else { 4246 const unsigned OpCode = Op.getOpcode(); 4247 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4248 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4249 Op = Op.getOperand(1); 4250 // Subtraction is not commutative. 4251 else if (OpCode == ISD::ADD && 4252 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4253 Op = Op.getOperand(0); 4254 else 4255 return; 4256 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4257 continue; 4258 } 4259 } 4260 return; 4261 } 4262 break; 4263 } 4264 } 4265 } 4266 4267 std::pair<unsigned, const TargetRegisterClass *> 4268 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4269 StringRef Constraint, 4270 MVT VT) const { 4271 if (Constraint.empty() || Constraint[0] != '{') 4272 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4273 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4274 4275 // Remove the braces from around the name. 4276 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4277 4278 std::pair<unsigned, const TargetRegisterClass *> R = 4279 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4280 4281 // Figure out which register class contains this reg. 4282 for (const TargetRegisterClass *RC : RI->regclasses()) { 4283 // If none of the value types for this register class are valid, we 4284 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4285 if (!isLegalRC(*RI, *RC)) 4286 continue; 4287 4288 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4289 I != E; ++I) { 4290 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4291 std::pair<unsigned, const TargetRegisterClass *> S = 4292 std::make_pair(*I, RC); 4293 4294 // If this register class has the requested value type, return it, 4295 // otherwise keep searching and return the first class found 4296 // if no other is found which explicitly has the requested type. 4297 if (RI->isTypeLegalForClass(*RC, VT)) 4298 return S; 4299 if (!R.second) 4300 R = S; 4301 } 4302 } 4303 } 4304 4305 return R; 4306 } 4307 4308 //===----------------------------------------------------------------------===// 4309 // Constraint Selection. 4310 4311 /// Return true of this is an input operand that is a matching constraint like 4312 /// "4". 4313 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4314 assert(!ConstraintCode.empty() && "No known constraint!"); 4315 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4316 } 4317 4318 /// If this is an input matching constraint, this method returns the output 4319 /// operand it matches. 4320 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4321 assert(!ConstraintCode.empty() && "No known constraint!"); 4322 return atoi(ConstraintCode.c_str()); 4323 } 4324 4325 /// Split up the constraint string from the inline assembly value into the 4326 /// specific constraints and their prefixes, and also tie in the associated 4327 /// operand values. 4328 /// If this returns an empty vector, and if the constraint string itself 4329 /// isn't empty, there was an error parsing. 4330 TargetLowering::AsmOperandInfoVector 4331 TargetLowering::ParseConstraints(const DataLayout &DL, 4332 const TargetRegisterInfo *TRI, 4333 ImmutableCallSite CS) const { 4334 /// Information about all of the constraints. 4335 AsmOperandInfoVector ConstraintOperands; 4336 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4337 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4338 4339 // Do a prepass over the constraints, canonicalizing them, and building up the 4340 // ConstraintOperands list. 4341 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4342 unsigned ResNo = 0; // ResNo - The result number of the next output. 4343 4344 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4345 ConstraintOperands.emplace_back(std::move(CI)); 4346 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4347 4348 // Update multiple alternative constraint count. 4349 if (OpInfo.multipleAlternatives.size() > maCount) 4350 maCount = OpInfo.multipleAlternatives.size(); 4351 4352 OpInfo.ConstraintVT = MVT::Other; 4353 4354 // Compute the value type for each operand. 4355 switch (OpInfo.Type) { 4356 case InlineAsm::isOutput: 4357 // Indirect outputs just consume an argument. 4358 if (OpInfo.isIndirect) { 4359 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4360 break; 4361 } 4362 4363 // The return value of the call is this value. As such, there is no 4364 // corresponding argument. 4365 assert(!CS.getType()->isVoidTy() && 4366 "Bad inline asm!"); 4367 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4368 OpInfo.ConstraintVT = 4369 getSimpleValueType(DL, STy->getElementType(ResNo)); 4370 } else { 4371 assert(ResNo == 0 && "Asm only has one result!"); 4372 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4373 } 4374 ++ResNo; 4375 break; 4376 case InlineAsm::isInput: 4377 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4378 break; 4379 case InlineAsm::isClobber: 4380 // Nothing to do. 4381 break; 4382 } 4383 4384 if (OpInfo.CallOperandVal) { 4385 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4386 if (OpInfo.isIndirect) { 4387 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4388 if (!PtrTy) 4389 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4390 OpTy = PtrTy->getElementType(); 4391 } 4392 4393 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4394 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4395 if (STy->getNumElements() == 1) 4396 OpTy = STy->getElementType(0); 4397 4398 // If OpTy is not a single value, it may be a struct/union that we 4399 // can tile with integers. 4400 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4401 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4402 switch (BitSize) { 4403 default: break; 4404 case 1: 4405 case 8: 4406 case 16: 4407 case 32: 4408 case 64: 4409 case 128: 4410 OpInfo.ConstraintVT = 4411 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4412 break; 4413 } 4414 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4415 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4416 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4417 } else { 4418 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4419 } 4420 } 4421 } 4422 4423 // If we have multiple alternative constraints, select the best alternative. 4424 if (!ConstraintOperands.empty()) { 4425 if (maCount) { 4426 unsigned bestMAIndex = 0; 4427 int bestWeight = -1; 4428 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4429 int weight = -1; 4430 unsigned maIndex; 4431 // Compute the sums of the weights for each alternative, keeping track 4432 // of the best (highest weight) one so far. 4433 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4434 int weightSum = 0; 4435 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4436 cIndex != eIndex; ++cIndex) { 4437 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4438 if (OpInfo.Type == InlineAsm::isClobber) 4439 continue; 4440 4441 // If this is an output operand with a matching input operand, 4442 // look up the matching input. If their types mismatch, e.g. one 4443 // is an integer, the other is floating point, or their sizes are 4444 // different, flag it as an maCantMatch. 4445 if (OpInfo.hasMatchingInput()) { 4446 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4447 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4448 if ((OpInfo.ConstraintVT.isInteger() != 4449 Input.ConstraintVT.isInteger()) || 4450 (OpInfo.ConstraintVT.getSizeInBits() != 4451 Input.ConstraintVT.getSizeInBits())) { 4452 weightSum = -1; // Can't match. 4453 break; 4454 } 4455 } 4456 } 4457 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4458 if (weight == -1) { 4459 weightSum = -1; 4460 break; 4461 } 4462 weightSum += weight; 4463 } 4464 // Update best. 4465 if (weightSum > bestWeight) { 4466 bestWeight = weightSum; 4467 bestMAIndex = maIndex; 4468 } 4469 } 4470 4471 // Now select chosen alternative in each constraint. 4472 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4473 cIndex != eIndex; ++cIndex) { 4474 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4475 if (cInfo.Type == InlineAsm::isClobber) 4476 continue; 4477 cInfo.selectAlternative(bestMAIndex); 4478 } 4479 } 4480 } 4481 4482 // Check and hook up tied operands, choose constraint code to use. 4483 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4484 cIndex != eIndex; ++cIndex) { 4485 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4486 4487 // If this is an output operand with a matching input operand, look up the 4488 // matching input. If their types mismatch, e.g. one is an integer, the 4489 // other is floating point, or their sizes are different, flag it as an 4490 // error. 4491 if (OpInfo.hasMatchingInput()) { 4492 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4493 4494 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4495 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4496 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4497 OpInfo.ConstraintVT); 4498 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4499 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4500 Input.ConstraintVT); 4501 if ((OpInfo.ConstraintVT.isInteger() != 4502 Input.ConstraintVT.isInteger()) || 4503 (MatchRC.second != InputRC.second)) { 4504 report_fatal_error("Unsupported asm: input constraint" 4505 " with a matching output constraint of" 4506 " incompatible type!"); 4507 } 4508 } 4509 } 4510 } 4511 4512 return ConstraintOperands; 4513 } 4514 4515 /// Return an integer indicating how general CT is. 4516 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4517 switch (CT) { 4518 case TargetLowering::C_Immediate: 4519 case TargetLowering::C_Other: 4520 case TargetLowering::C_Unknown: 4521 return 0; 4522 case TargetLowering::C_Register: 4523 return 1; 4524 case TargetLowering::C_RegisterClass: 4525 return 2; 4526 case TargetLowering::C_Memory: 4527 return 3; 4528 } 4529 llvm_unreachable("Invalid constraint type"); 4530 } 4531 4532 /// Examine constraint type and operand type and determine a weight value. 4533 /// This object must already have been set up with the operand type 4534 /// and the current alternative constraint selected. 4535 TargetLowering::ConstraintWeight 4536 TargetLowering::getMultipleConstraintMatchWeight( 4537 AsmOperandInfo &info, int maIndex) const { 4538 InlineAsm::ConstraintCodeVector *rCodes; 4539 if (maIndex >= (int)info.multipleAlternatives.size()) 4540 rCodes = &info.Codes; 4541 else 4542 rCodes = &info.multipleAlternatives[maIndex].Codes; 4543 ConstraintWeight BestWeight = CW_Invalid; 4544 4545 // Loop over the options, keeping track of the most general one. 4546 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4547 ConstraintWeight weight = 4548 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4549 if (weight > BestWeight) 4550 BestWeight = weight; 4551 } 4552 4553 return BestWeight; 4554 } 4555 4556 /// Examine constraint type and operand type and determine a weight value. 4557 /// This object must already have been set up with the operand type 4558 /// and the current alternative constraint selected. 4559 TargetLowering::ConstraintWeight 4560 TargetLowering::getSingleConstraintMatchWeight( 4561 AsmOperandInfo &info, const char *constraint) const { 4562 ConstraintWeight weight = CW_Invalid; 4563 Value *CallOperandVal = info.CallOperandVal; 4564 // If we don't have a value, we can't do a match, 4565 // but allow it at the lowest weight. 4566 if (!CallOperandVal) 4567 return CW_Default; 4568 // Look at the constraint type. 4569 switch (*constraint) { 4570 case 'i': // immediate integer. 4571 case 'n': // immediate integer with a known value. 4572 if (isa<ConstantInt>(CallOperandVal)) 4573 weight = CW_Constant; 4574 break; 4575 case 's': // non-explicit intregal immediate. 4576 if (isa<GlobalValue>(CallOperandVal)) 4577 weight = CW_Constant; 4578 break; 4579 case 'E': // immediate float if host format. 4580 case 'F': // immediate float. 4581 if (isa<ConstantFP>(CallOperandVal)) 4582 weight = CW_Constant; 4583 break; 4584 case '<': // memory operand with autodecrement. 4585 case '>': // memory operand with autoincrement. 4586 case 'm': // memory operand. 4587 case 'o': // offsettable memory operand 4588 case 'V': // non-offsettable memory operand 4589 weight = CW_Memory; 4590 break; 4591 case 'r': // general register. 4592 case 'g': // general register, memory operand or immediate integer. 4593 // note: Clang converts "g" to "imr". 4594 if (CallOperandVal->getType()->isIntegerTy()) 4595 weight = CW_Register; 4596 break; 4597 case 'X': // any operand. 4598 default: 4599 weight = CW_Default; 4600 break; 4601 } 4602 return weight; 4603 } 4604 4605 /// If there are multiple different constraints that we could pick for this 4606 /// operand (e.g. "imr") try to pick the 'best' one. 4607 /// This is somewhat tricky: constraints fall into four classes: 4608 /// Other -> immediates and magic values 4609 /// Register -> one specific register 4610 /// RegisterClass -> a group of regs 4611 /// Memory -> memory 4612 /// Ideally, we would pick the most specific constraint possible: if we have 4613 /// something that fits into a register, we would pick it. The problem here 4614 /// is that if we have something that could either be in a register or in 4615 /// memory that use of the register could cause selection of *other* 4616 /// operands to fail: they might only succeed if we pick memory. Because of 4617 /// this the heuristic we use is: 4618 /// 4619 /// 1) If there is an 'other' constraint, and if the operand is valid for 4620 /// that constraint, use it. This makes us take advantage of 'i' 4621 /// constraints when available. 4622 /// 2) Otherwise, pick the most general constraint present. This prefers 4623 /// 'm' over 'r', for example. 4624 /// 4625 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4626 const TargetLowering &TLI, 4627 SDValue Op, SelectionDAG *DAG) { 4628 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4629 unsigned BestIdx = 0; 4630 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4631 int BestGenerality = -1; 4632 4633 // Loop over the options, keeping track of the most general one. 4634 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4635 TargetLowering::ConstraintType CType = 4636 TLI.getConstraintType(OpInfo.Codes[i]); 4637 4638 // Indirect 'other' or 'immediate' constraints are not allowed. 4639 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4640 CType == TargetLowering::C_Register || 4641 CType == TargetLowering::C_RegisterClass)) 4642 continue; 4643 4644 // If this is an 'other' or 'immediate' constraint, see if the operand is 4645 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4646 // the operand is an integer in the range [0..31] we want to use I (saving a 4647 // load of a register), otherwise we must use 'r'. 4648 if ((CType == TargetLowering::C_Other || 4649 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4650 assert(OpInfo.Codes[i].size() == 1 && 4651 "Unhandled multi-letter 'other' constraint"); 4652 std::vector<SDValue> ResultOps; 4653 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4654 ResultOps, *DAG); 4655 if (!ResultOps.empty()) { 4656 BestType = CType; 4657 BestIdx = i; 4658 break; 4659 } 4660 } 4661 4662 // Things with matching constraints can only be registers, per gcc 4663 // documentation. This mainly affects "g" constraints. 4664 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4665 continue; 4666 4667 // This constraint letter is more general than the previous one, use it. 4668 int Generality = getConstraintGenerality(CType); 4669 if (Generality > BestGenerality) { 4670 BestType = CType; 4671 BestIdx = i; 4672 BestGenerality = Generality; 4673 } 4674 } 4675 4676 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4677 OpInfo.ConstraintType = BestType; 4678 } 4679 4680 /// Determines the constraint code and constraint type to use for the specific 4681 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4682 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4683 SDValue Op, 4684 SelectionDAG *DAG) const { 4685 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4686 4687 // Single-letter constraints ('r') are very common. 4688 if (OpInfo.Codes.size() == 1) { 4689 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4690 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4691 } else { 4692 ChooseConstraint(OpInfo, *this, Op, DAG); 4693 } 4694 4695 // 'X' matches anything. 4696 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4697 // Labels and constants are handled elsewhere ('X' is the only thing 4698 // that matches labels). For Functions, the type here is the type of 4699 // the result, which is not what we want to look at; leave them alone. 4700 Value *v = OpInfo.CallOperandVal; 4701 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4702 OpInfo.CallOperandVal = v; 4703 return; 4704 } 4705 4706 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4707 return; 4708 4709 // Otherwise, try to resolve it to something we know about by looking at 4710 // the actual operand type. 4711 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4712 OpInfo.ConstraintCode = Repl; 4713 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4714 } 4715 } 4716 } 4717 4718 /// Given an exact SDIV by a constant, create a multiplication 4719 /// with the multiplicative inverse of the constant. 4720 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4721 const SDLoc &dl, SelectionDAG &DAG, 4722 SmallVectorImpl<SDNode *> &Created) { 4723 SDValue Op0 = N->getOperand(0); 4724 SDValue Op1 = N->getOperand(1); 4725 EVT VT = N->getValueType(0); 4726 EVT SVT = VT.getScalarType(); 4727 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4728 EVT ShSVT = ShVT.getScalarType(); 4729 4730 bool UseSRA = false; 4731 SmallVector<SDValue, 16> Shifts, Factors; 4732 4733 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4734 if (C->isNullValue()) 4735 return false; 4736 APInt Divisor = C->getAPIntValue(); 4737 unsigned Shift = Divisor.countTrailingZeros(); 4738 if (Shift) { 4739 Divisor.ashrInPlace(Shift); 4740 UseSRA = true; 4741 } 4742 // Calculate the multiplicative inverse, using Newton's method. 4743 APInt t; 4744 APInt Factor = Divisor; 4745 while ((t = Divisor * Factor) != 1) 4746 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4747 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4748 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4749 return true; 4750 }; 4751 4752 // Collect all magic values from the build vector. 4753 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4754 return SDValue(); 4755 4756 SDValue Shift, Factor; 4757 if (VT.isVector()) { 4758 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4759 Factor = DAG.getBuildVector(VT, dl, Factors); 4760 } else { 4761 Shift = Shifts[0]; 4762 Factor = Factors[0]; 4763 } 4764 4765 SDValue Res = Op0; 4766 4767 // Shift the value upfront if it is even, so the LSB is one. 4768 if (UseSRA) { 4769 // TODO: For UDIV use SRL instead of SRA. 4770 SDNodeFlags Flags; 4771 Flags.setExact(true); 4772 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4773 Created.push_back(Res.getNode()); 4774 } 4775 4776 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4777 } 4778 4779 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4780 SelectionDAG &DAG, 4781 SmallVectorImpl<SDNode *> &Created) const { 4782 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4784 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4785 return SDValue(N, 0); // Lower SDIV as SDIV 4786 return SDValue(); 4787 } 4788 4789 /// Given an ISD::SDIV node expressing a divide by constant, 4790 /// return a DAG expression to select that will generate the same value by 4791 /// multiplying by a magic number. 4792 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4793 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4794 bool IsAfterLegalization, 4795 SmallVectorImpl<SDNode *> &Created) const { 4796 SDLoc dl(N); 4797 EVT VT = N->getValueType(0); 4798 EVT SVT = VT.getScalarType(); 4799 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4800 EVT ShSVT = ShVT.getScalarType(); 4801 unsigned EltBits = VT.getScalarSizeInBits(); 4802 4803 // Check to see if we can do this. 4804 // FIXME: We should be more aggressive here. 4805 if (!isTypeLegal(VT)) 4806 return SDValue(); 4807 4808 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4809 if (N->getFlags().hasExact()) 4810 return BuildExactSDIV(*this, N, dl, DAG, Created); 4811 4812 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4813 4814 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4815 if (C->isNullValue()) 4816 return false; 4817 4818 const APInt &Divisor = C->getAPIntValue(); 4819 APInt::ms magics = Divisor.magic(); 4820 int NumeratorFactor = 0; 4821 int ShiftMask = -1; 4822 4823 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4824 // If d is +1/-1, we just multiply the numerator by +1/-1. 4825 NumeratorFactor = Divisor.getSExtValue(); 4826 magics.m = 0; 4827 magics.s = 0; 4828 ShiftMask = 0; 4829 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4830 // If d > 0 and m < 0, add the numerator. 4831 NumeratorFactor = 1; 4832 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4833 // If d < 0 and m > 0, subtract the numerator. 4834 NumeratorFactor = -1; 4835 } 4836 4837 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4838 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4839 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4840 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4841 return true; 4842 }; 4843 4844 SDValue N0 = N->getOperand(0); 4845 SDValue N1 = N->getOperand(1); 4846 4847 // Collect the shifts / magic values from each element. 4848 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4849 return SDValue(); 4850 4851 SDValue MagicFactor, Factor, Shift, ShiftMask; 4852 if (VT.isVector()) { 4853 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4854 Factor = DAG.getBuildVector(VT, dl, Factors); 4855 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4856 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4857 } else { 4858 MagicFactor = MagicFactors[0]; 4859 Factor = Factors[0]; 4860 Shift = Shifts[0]; 4861 ShiftMask = ShiftMasks[0]; 4862 } 4863 4864 // Multiply the numerator (operand 0) by the magic value. 4865 // FIXME: We should support doing a MUL in a wider type. 4866 SDValue Q; 4867 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4868 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4869 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4870 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4871 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4872 SDValue LoHi = 4873 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4874 Q = SDValue(LoHi.getNode(), 1); 4875 } else 4876 return SDValue(); // No mulhs or equivalent. 4877 Created.push_back(Q.getNode()); 4878 4879 // (Optionally) Add/subtract the numerator using Factor. 4880 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4881 Created.push_back(Factor.getNode()); 4882 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4883 Created.push_back(Q.getNode()); 4884 4885 // Shift right algebraic by shift value. 4886 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4887 Created.push_back(Q.getNode()); 4888 4889 // Extract the sign bit, mask it and add it to the quotient. 4890 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4891 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4892 Created.push_back(T.getNode()); 4893 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4894 Created.push_back(T.getNode()); 4895 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4896 } 4897 4898 /// Given an ISD::UDIV node expressing a divide by constant, 4899 /// return a DAG expression to select that will generate the same value by 4900 /// multiplying by a magic number. 4901 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4902 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4903 bool IsAfterLegalization, 4904 SmallVectorImpl<SDNode *> &Created) const { 4905 SDLoc dl(N); 4906 EVT VT = N->getValueType(0); 4907 EVT SVT = VT.getScalarType(); 4908 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4909 EVT ShSVT = ShVT.getScalarType(); 4910 unsigned EltBits = VT.getScalarSizeInBits(); 4911 4912 // Check to see if we can do this. 4913 // FIXME: We should be more aggressive here. 4914 if (!isTypeLegal(VT)) 4915 return SDValue(); 4916 4917 bool UseNPQ = false; 4918 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4919 4920 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4921 if (C->isNullValue()) 4922 return false; 4923 // FIXME: We should use a narrower constant when the upper 4924 // bits are known to be zero. 4925 APInt Divisor = C->getAPIntValue(); 4926 APInt::mu magics = Divisor.magicu(); 4927 unsigned PreShift = 0, PostShift = 0; 4928 4929 // If the divisor is even, we can avoid using the expensive fixup by 4930 // shifting the divided value upfront. 4931 if (magics.a != 0 && !Divisor[0]) { 4932 PreShift = Divisor.countTrailingZeros(); 4933 // Get magic number for the shifted divisor. 4934 magics = Divisor.lshr(PreShift).magicu(PreShift); 4935 assert(magics.a == 0 && "Should use cheap fixup now"); 4936 } 4937 4938 APInt Magic = magics.m; 4939 4940 unsigned SelNPQ; 4941 if (magics.a == 0 || Divisor.isOneValue()) { 4942 assert(magics.s < Divisor.getBitWidth() && 4943 "We shouldn't generate an undefined shift!"); 4944 PostShift = magics.s; 4945 SelNPQ = false; 4946 } else { 4947 PostShift = magics.s - 1; 4948 SelNPQ = true; 4949 } 4950 4951 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4952 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4953 NPQFactors.push_back( 4954 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4955 : APInt::getNullValue(EltBits), 4956 dl, SVT)); 4957 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4958 UseNPQ |= SelNPQ; 4959 return true; 4960 }; 4961 4962 SDValue N0 = N->getOperand(0); 4963 SDValue N1 = N->getOperand(1); 4964 4965 // Collect the shifts/magic values from each element. 4966 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4967 return SDValue(); 4968 4969 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4970 if (VT.isVector()) { 4971 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4972 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4973 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4974 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4975 } else { 4976 PreShift = PreShifts[0]; 4977 MagicFactor = MagicFactors[0]; 4978 PostShift = PostShifts[0]; 4979 } 4980 4981 SDValue Q = N0; 4982 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4983 Created.push_back(Q.getNode()); 4984 4985 // FIXME: We should support doing a MUL in a wider type. 4986 auto GetMULHU = [&](SDValue X, SDValue Y) { 4987 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4988 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4989 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4990 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4991 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4992 SDValue LoHi = 4993 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4994 return SDValue(LoHi.getNode(), 1); 4995 } 4996 return SDValue(); // No mulhu or equivalent 4997 }; 4998 4999 // Multiply the numerator (operand 0) by the magic value. 5000 Q = GetMULHU(Q, MagicFactor); 5001 if (!Q) 5002 return SDValue(); 5003 5004 Created.push_back(Q.getNode()); 5005 5006 if (UseNPQ) { 5007 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5008 Created.push_back(NPQ.getNode()); 5009 5010 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5011 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5012 if (VT.isVector()) 5013 NPQ = GetMULHU(NPQ, NPQFactor); 5014 else 5015 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5016 5017 Created.push_back(NPQ.getNode()); 5018 5019 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5020 Created.push_back(Q.getNode()); 5021 } 5022 5023 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5024 Created.push_back(Q.getNode()); 5025 5026 SDValue One = DAG.getConstant(1, dl, VT); 5027 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5028 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5029 } 5030 5031 /// If all values in Values that *don't* match the predicate are same 'splat' 5032 /// value, then replace all values with that splat value. 5033 /// Else, if AlternativeReplacement was provided, then replace all values that 5034 /// do match predicate with AlternativeReplacement value. 5035 static void 5036 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5037 std::function<bool(SDValue)> Predicate, 5038 SDValue AlternativeReplacement = SDValue()) { 5039 SDValue Replacement; 5040 // Is there a value for which the Predicate does *NOT* match? What is it? 5041 auto SplatValue = llvm::find_if_not(Values, Predicate); 5042 if (SplatValue != Values.end()) { 5043 // Does Values consist only of SplatValue's and values matching Predicate? 5044 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5045 return Value == *SplatValue || Predicate(Value); 5046 })) // Then we shall replace values matching predicate with SplatValue. 5047 Replacement = *SplatValue; 5048 } 5049 if (!Replacement) { 5050 // Oops, we did not find the "baseline" splat value. 5051 if (!AlternativeReplacement) 5052 return; // Nothing to do. 5053 // Let's replace with provided value then. 5054 Replacement = AlternativeReplacement; 5055 } 5056 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5057 } 5058 5059 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5060 /// where the divisor is constant and the comparison target is zero, 5061 /// return a DAG expression that will generate the same comparison result 5062 /// using only multiplications, additions and shifts/rotations. 5063 /// Ref: "Hacker's Delight" 10-17. 5064 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5065 SDValue CompTargetNode, 5066 ISD::CondCode Cond, 5067 DAGCombinerInfo &DCI, 5068 const SDLoc &DL) const { 5069 SmallVector<SDNode *, 5> Built; 5070 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5071 DCI, DL, Built)) { 5072 for (SDNode *N : Built) 5073 DCI.AddToWorklist(N); 5074 return Folded; 5075 } 5076 5077 return SDValue(); 5078 } 5079 5080 SDValue 5081 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5082 SDValue CompTargetNode, ISD::CondCode Cond, 5083 DAGCombinerInfo &DCI, const SDLoc &DL, 5084 SmallVectorImpl<SDNode *> &Created) const { 5085 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5086 // - D must be constant, with D = D0 * 2^K where D0 is odd 5087 // - P is the multiplicative inverse of D0 modulo 2^W 5088 // - Q = floor(((2^W) - 1) / D) 5089 // where W is the width of the common type of N and D. 5090 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5091 "Only applicable for (in)equality comparisons."); 5092 5093 SelectionDAG &DAG = DCI.DAG; 5094 5095 EVT VT = REMNode.getValueType(); 5096 EVT SVT = VT.getScalarType(); 5097 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5098 EVT ShSVT = ShVT.getScalarType(); 5099 5100 // If MUL is unavailable, we cannot proceed in any case. 5101 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5102 return SDValue(); 5103 5104 bool ComparingWithAllZeros = true; 5105 bool AllComparisonsWithNonZerosAreTautological = true; 5106 bool HadTautologicalLanes = false; 5107 bool AllLanesAreTautological = true; 5108 bool HadEvenDivisor = false; 5109 bool AllDivisorsArePowerOfTwo = true; 5110 bool HadTautologicalInvertedLanes = false; 5111 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5112 5113 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5114 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5115 if (CDiv->isNullValue()) 5116 return false; 5117 5118 const APInt &D = CDiv->getAPIntValue(); 5119 const APInt &Cmp = CCmp->getAPIntValue(); 5120 5121 ComparingWithAllZeros &= Cmp.isNullValue(); 5122 5123 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5124 // if C2 is not less than C1, the comparison is always false. 5125 // But we will only be able to produce the comparison that will give the 5126 // opposive tautological answer. So this lane would need to be fixed up. 5127 bool TautologicalInvertedLane = D.ule(Cmp); 5128 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5129 5130 // If all lanes are tautological (either all divisors are ones, or divisor 5131 // is not greater than the constant we are comparing with), 5132 // we will prefer to avoid the fold. 5133 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5134 HadTautologicalLanes |= TautologicalLane; 5135 AllLanesAreTautological &= TautologicalLane; 5136 5137 // If we are comparing with non-zero, we need'll need to subtract said 5138 // comparison value from the LHS. But there is no point in doing that if 5139 // every lane where we are comparing with non-zero is tautological.. 5140 if (!Cmp.isNullValue()) 5141 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5142 5143 // Decompose D into D0 * 2^K 5144 unsigned K = D.countTrailingZeros(); 5145 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5146 APInt D0 = D.lshr(K); 5147 5148 // D is even if it has trailing zeros. 5149 HadEvenDivisor |= (K != 0); 5150 // D is a power-of-two if D0 is one. 5151 // If all divisors are power-of-two, we will prefer to avoid the fold. 5152 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5153 5154 // P = inv(D0, 2^W) 5155 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5156 unsigned W = D.getBitWidth(); 5157 APInt P = D0.zext(W + 1) 5158 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5159 .trunc(W); 5160 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5161 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5162 5163 // Q = floor((2^W - 1) u/ D) 5164 // R = ((2^W - 1) u% D) 5165 APInt Q, R; 5166 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5167 5168 // If we are comparing with zero, then that comparison constant is okay, 5169 // else it may need to be one less than that. 5170 if (Cmp.ugt(R)) 5171 Q -= 1; 5172 5173 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5174 "We are expecting that K is always less than all-ones for ShSVT"); 5175 5176 // If the lane is tautological the result can be constant-folded. 5177 if (TautologicalLane) { 5178 // Set P and K amount to a bogus values so we can try to splat them. 5179 P = 0; 5180 K = -1; 5181 // And ensure that comparison constant is tautological, 5182 // it will always compare true/false. 5183 Q = -1; 5184 } 5185 5186 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5187 KAmts.push_back( 5188 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5189 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5190 return true; 5191 }; 5192 5193 SDValue N = REMNode.getOperand(0); 5194 SDValue D = REMNode.getOperand(1); 5195 5196 // Collect the values from each element. 5197 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5198 return SDValue(); 5199 5200 // If all lanes are tautological, the result can be constant-folded. 5201 if (AllLanesAreTautological) 5202 return SDValue(); 5203 5204 // If this is a urem by a powers-of-two, avoid the fold since it can be 5205 // best implemented as a bit test. 5206 if (AllDivisorsArePowerOfTwo) 5207 return SDValue(); 5208 5209 SDValue PVal, KVal, QVal; 5210 if (VT.isVector()) { 5211 if (HadTautologicalLanes) { 5212 // Try to turn PAmts into a splat, since we don't care about the values 5213 // that are currently '0'. If we can't, just keep '0'`s. 5214 turnVectorIntoSplatVector(PAmts, isNullConstant); 5215 // Try to turn KAmts into a splat, since we don't care about the values 5216 // that are currently '-1'. If we can't, change them to '0'`s. 5217 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5218 DAG.getConstant(0, DL, ShSVT)); 5219 } 5220 5221 PVal = DAG.getBuildVector(VT, DL, PAmts); 5222 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5223 QVal = DAG.getBuildVector(VT, DL, QAmts); 5224 } else { 5225 PVal = PAmts[0]; 5226 KVal = KAmts[0]; 5227 QVal = QAmts[0]; 5228 } 5229 5230 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5231 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5232 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5233 assert(CompTargetNode.getValueType() == N.getValueType() && 5234 "Expecting that the types on LHS and RHS of comparisons match."); 5235 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5236 } 5237 5238 // (mul N, P) 5239 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5240 Created.push_back(Op0.getNode()); 5241 5242 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5243 // divisors as a performance improvement, since rotating by 0 is a no-op. 5244 if (HadEvenDivisor) { 5245 // We need ROTR to do this. 5246 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5247 return SDValue(); 5248 SDNodeFlags Flags; 5249 Flags.setExact(true); 5250 // UREM: (rotr (mul N, P), K) 5251 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5252 Created.push_back(Op0.getNode()); 5253 } 5254 5255 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5256 SDValue NewCC = 5257 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5258 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5259 if (!HadTautologicalInvertedLanes) 5260 return NewCC; 5261 5262 // If any lanes previously compared always-false, the NewCC will give 5263 // always-true result for them, so we need to fixup those lanes. 5264 // Or the other way around for inequality predicate. 5265 assert(VT.isVector() && "Can/should only get here for vectors."); 5266 Created.push_back(NewCC.getNode()); 5267 5268 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5269 // if C2 is not less than C1, the comparison is always false. 5270 // But we have produced the comparison that will give the 5271 // opposive tautological answer. So these lanes would need to be fixed up. 5272 SDValue TautologicalInvertedChannels = 5273 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5274 Created.push_back(TautologicalInvertedChannels.getNode()); 5275 5276 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5277 // If we have a vector select, let's replace the comparison results in the 5278 // affected lanes with the correct tautological result. 5279 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5280 DL, SETCCVT, SETCCVT); 5281 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5282 Replacement, NewCC); 5283 } 5284 5285 // Else, we can just invert the comparison result in the appropriate lanes. 5286 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5287 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5288 TautologicalInvertedChannels); 5289 5290 return SDValue(); // Don't know how to lower. 5291 } 5292 5293 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5294 /// where the divisor is constant and the comparison target is zero, 5295 /// return a DAG expression that will generate the same comparison result 5296 /// using only multiplications, additions and shifts/rotations. 5297 /// Ref: "Hacker's Delight" 10-17. 5298 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5299 SDValue CompTargetNode, 5300 ISD::CondCode Cond, 5301 DAGCombinerInfo &DCI, 5302 const SDLoc &DL) const { 5303 SmallVector<SDNode *, 7> Built; 5304 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5305 DCI, DL, Built)) { 5306 assert(Built.size() <= 7 && "Max size prediction failed."); 5307 for (SDNode *N : Built) 5308 DCI.AddToWorklist(N); 5309 return Folded; 5310 } 5311 5312 return SDValue(); 5313 } 5314 5315 SDValue 5316 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5317 SDValue CompTargetNode, ISD::CondCode Cond, 5318 DAGCombinerInfo &DCI, const SDLoc &DL, 5319 SmallVectorImpl<SDNode *> &Created) const { 5320 // Fold: 5321 // (seteq/ne (srem N, D), 0) 5322 // To: 5323 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5324 // 5325 // - D must be constant, with D = D0 * 2^K where D0 is odd 5326 // - P is the multiplicative inverse of D0 modulo 2^W 5327 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5328 // - Q = floor((2 * A) / (2^K)) 5329 // where W is the width of the common type of N and D. 5330 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5331 "Only applicable for (in)equality comparisons."); 5332 5333 SelectionDAG &DAG = DCI.DAG; 5334 5335 EVT VT = REMNode.getValueType(); 5336 EVT SVT = VT.getScalarType(); 5337 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5338 EVT ShSVT = ShVT.getScalarType(); 5339 5340 // If MUL is unavailable, we cannot proceed in any case. 5341 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5342 return SDValue(); 5343 5344 // TODO: Could support comparing with non-zero too. 5345 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5346 if (!CompTarget || !CompTarget->isNullValue()) 5347 return SDValue(); 5348 5349 bool HadIntMinDivisor = false; 5350 bool HadOneDivisor = false; 5351 bool AllDivisorsAreOnes = true; 5352 bool HadEvenDivisor = false; 5353 bool NeedToApplyOffset = false; 5354 bool AllDivisorsArePowerOfTwo = true; 5355 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5356 5357 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5358 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5359 if (C->isNullValue()) 5360 return false; 5361 5362 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5363 5364 // WARNING: this fold is only valid for positive divisors! 5365 APInt D = C->getAPIntValue(); 5366 if (D.isNegative()) 5367 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5368 5369 HadIntMinDivisor |= D.isMinSignedValue(); 5370 5371 // If all divisors are ones, we will prefer to avoid the fold. 5372 HadOneDivisor |= D.isOneValue(); 5373 AllDivisorsAreOnes &= D.isOneValue(); 5374 5375 // Decompose D into D0 * 2^K 5376 unsigned K = D.countTrailingZeros(); 5377 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5378 APInt D0 = D.lshr(K); 5379 5380 if (!D.isMinSignedValue()) { 5381 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5382 // we don't care about this lane in this fold, we'll special-handle it. 5383 HadEvenDivisor |= (K != 0); 5384 } 5385 5386 // D is a power-of-two if D0 is one. This includes INT_MIN. 5387 // If all divisors are power-of-two, we will prefer to avoid the fold. 5388 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5389 5390 // P = inv(D0, 2^W) 5391 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5392 unsigned W = D.getBitWidth(); 5393 APInt P = D0.zext(W + 1) 5394 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5395 .trunc(W); 5396 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5397 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5398 5399 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5400 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5401 A.clearLowBits(K); 5402 5403 if (!D.isMinSignedValue()) { 5404 // If divisor INT_MIN, then we don't care about this lane in this fold, 5405 // we'll special-handle it. 5406 NeedToApplyOffset |= A != 0; 5407 } 5408 5409 // Q = floor((2 * A) / (2^K)) 5410 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5411 5412 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5413 "We are expecting that A is always less than all-ones for SVT"); 5414 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5415 "We are expecting that K is always less than all-ones for ShSVT"); 5416 5417 // If the divisor is 1 the result can be constant-folded. Likewise, we 5418 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5419 if (D.isOneValue()) { 5420 // Set P, A and K to a bogus values so we can try to splat them. 5421 P = 0; 5422 A = -1; 5423 K = -1; 5424 5425 // x ?% 1 == 0 <--> true <--> x u<= -1 5426 Q = -1; 5427 } 5428 5429 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5430 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5431 KAmts.push_back( 5432 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5433 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5434 return true; 5435 }; 5436 5437 SDValue N = REMNode.getOperand(0); 5438 SDValue D = REMNode.getOperand(1); 5439 5440 // Collect the values from each element. 5441 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5442 return SDValue(); 5443 5444 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5445 if (AllDivisorsAreOnes) 5446 return SDValue(); 5447 5448 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5449 // since it can be best implemented as a bit test. 5450 if (AllDivisorsArePowerOfTwo) 5451 return SDValue(); 5452 5453 SDValue PVal, AVal, KVal, QVal; 5454 if (VT.isVector()) { 5455 if (HadOneDivisor) { 5456 // Try to turn PAmts into a splat, since we don't care about the values 5457 // that are currently '0'. If we can't, just keep '0'`s. 5458 turnVectorIntoSplatVector(PAmts, isNullConstant); 5459 // Try to turn AAmts into a splat, since we don't care about the 5460 // values that are currently '-1'. If we can't, change them to '0'`s. 5461 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5462 DAG.getConstant(0, DL, SVT)); 5463 // Try to turn KAmts into a splat, since we don't care about the values 5464 // that are currently '-1'. If we can't, change them to '0'`s. 5465 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5466 DAG.getConstant(0, DL, ShSVT)); 5467 } 5468 5469 PVal = DAG.getBuildVector(VT, DL, PAmts); 5470 AVal = DAG.getBuildVector(VT, DL, AAmts); 5471 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5472 QVal = DAG.getBuildVector(VT, DL, QAmts); 5473 } else { 5474 PVal = PAmts[0]; 5475 AVal = AAmts[0]; 5476 KVal = KAmts[0]; 5477 QVal = QAmts[0]; 5478 } 5479 5480 // (mul N, P) 5481 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5482 Created.push_back(Op0.getNode()); 5483 5484 if (NeedToApplyOffset) { 5485 // We need ADD to do this. 5486 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5487 return SDValue(); 5488 5489 // (add (mul N, P), A) 5490 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5491 Created.push_back(Op0.getNode()); 5492 } 5493 5494 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5495 // divisors as a performance improvement, since rotating by 0 is a no-op. 5496 if (HadEvenDivisor) { 5497 // We need ROTR to do this. 5498 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5499 return SDValue(); 5500 SDNodeFlags Flags; 5501 Flags.setExact(true); 5502 // SREM: (rotr (add (mul N, P), A), K) 5503 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5504 Created.push_back(Op0.getNode()); 5505 } 5506 5507 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5508 SDValue Fold = 5509 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5510 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5511 5512 // If we didn't have lanes with INT_MIN divisor, then we're done. 5513 if (!HadIntMinDivisor) 5514 return Fold; 5515 5516 // That fold is only valid for positive divisors. Which effectively means, 5517 // it is invalid for INT_MIN divisors. So if we have such a lane, 5518 // we must fix-up results for said lanes. 5519 assert(VT.isVector() && "Can/should only get here for vectors."); 5520 5521 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5522 !isOperationLegalOrCustom(ISD::AND, VT) || 5523 !isOperationLegalOrCustom(Cond, VT) || 5524 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5525 return SDValue(); 5526 5527 Created.push_back(Fold.getNode()); 5528 5529 SDValue IntMin = DAG.getConstant( 5530 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5531 SDValue IntMax = DAG.getConstant( 5532 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5533 SDValue Zero = 5534 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5535 5536 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5537 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5538 Created.push_back(DivisorIsIntMin.getNode()); 5539 5540 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5541 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5542 Created.push_back(Masked.getNode()); 5543 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5544 Created.push_back(MaskedIsZero.getNode()); 5545 5546 // To produce final result we need to blend 2 vectors: 'SetCC' and 5547 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5548 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5549 // constant-folded, select can get lowered to a shuffle with constant mask. 5550 SDValue Blended = 5551 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5552 5553 return Blended; 5554 } 5555 5556 bool TargetLowering:: 5557 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5558 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5559 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5560 "be a constant integer"); 5561 return true; 5562 } 5563 5564 return false; 5565 } 5566 5567 TargetLowering::NegatibleCost 5568 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5569 bool LegalOperations, bool ForCodeSize, 5570 unsigned Depth) const { 5571 // fneg is removable even if it has multiple uses. 5572 if (Op.getOpcode() == ISD::FNEG) 5573 return NegatibleCost::Cheaper; 5574 5575 // Don't allow anything with multiple uses unless we know it is free. 5576 EVT VT = Op.getValueType(); 5577 const SDNodeFlags Flags = Op->getFlags(); 5578 const TargetOptions &Options = DAG.getTarget().Options; 5579 if (!Op.hasOneUse()) { 5580 bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND && 5581 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5582 5583 // If we already have the use of the negated floating constant, it is free 5584 // to negate it even it has multiple uses. 5585 bool IsFreeConstant = 5586 Op.getOpcode() == ISD::ConstantFP && 5587 !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize) 5588 .use_empty(); 5589 5590 if (!IsFreeExtend && !IsFreeConstant) 5591 return NegatibleCost::Expensive; 5592 } 5593 5594 // Don't recurse exponentially. 5595 if (Depth > SelectionDAG::MaxRecursionDepth) 5596 return NegatibleCost::Expensive; 5597 5598 switch (Op.getOpcode()) { 5599 case ISD::ConstantFP: { 5600 if (!LegalOperations) 5601 return NegatibleCost::Neutral; 5602 5603 // Don't invert constant FP values after legalization unless the target says 5604 // the negated constant is legal. 5605 if (isOperationLegal(ISD::ConstantFP, VT) || 5606 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5607 ForCodeSize)) 5608 return NegatibleCost::Neutral; 5609 break; 5610 } 5611 case ISD::BUILD_VECTOR: { 5612 // Only permit BUILD_VECTOR of constants. 5613 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5614 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5615 })) 5616 return NegatibleCost::Expensive; 5617 if (!LegalOperations) 5618 return NegatibleCost::Neutral; 5619 if (isOperationLegal(ISD::ConstantFP, VT) && 5620 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5621 return NegatibleCost::Neutral; 5622 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5623 return N.isUndef() || 5624 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5625 ForCodeSize); 5626 })) 5627 return NegatibleCost::Neutral; 5628 break; 5629 } 5630 case ISD::FADD: { 5631 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5632 return NegatibleCost::Expensive; 5633 5634 // After operation legalization, it might not be legal to create new FSUBs. 5635 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5636 return NegatibleCost::Expensive; 5637 5638 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5639 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5640 ForCodeSize, Depth + 1); 5641 if (V0 != NegatibleCost::Expensive) 5642 return V0; 5643 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5644 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5645 Depth + 1); 5646 } 5647 case ISD::FSUB: 5648 // We can't turn -(A-B) into B-A when we honor signed zeros. 5649 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5650 return NegatibleCost::Expensive; 5651 5652 // fold (fneg (fsub A, B)) -> (fsub B, A) 5653 return NegatibleCost::Neutral; 5654 case ISD::FMUL: 5655 case ISD::FDIV: { 5656 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5657 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5658 ForCodeSize, Depth + 1); 5659 if (V0 != NegatibleCost::Expensive) 5660 return V0; 5661 5662 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5663 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5664 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5665 return NegatibleCost::Expensive; 5666 5667 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5668 Depth + 1); 5669 } 5670 case ISD::FMA: 5671 case ISD::FMAD: { 5672 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5673 return NegatibleCost::Expensive; 5674 5675 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5676 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5677 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5678 ForCodeSize, Depth + 1); 5679 if (NegatibleCost::Expensive == V2) 5680 return NegatibleCost::Expensive; 5681 5682 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5683 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5684 ForCodeSize, Depth + 1); 5685 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5686 ForCodeSize, Depth + 1); 5687 NegatibleCost V01 = std::max(V0, V1); 5688 if (V01 == NegatibleCost::Expensive) 5689 return NegatibleCost::Expensive; 5690 return std::max(V01, V2); 5691 } 5692 5693 case ISD::FP_EXTEND: 5694 case ISD::FP_ROUND: 5695 case ISD::FSIN: 5696 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5697 Depth + 1); 5698 } 5699 5700 return NegatibleCost::Expensive; 5701 } 5702 5703 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5704 bool LegalOps, bool OptForSize, 5705 unsigned Depth) const { 5706 // fneg is removable even if it has multiple uses. 5707 if (Op.getOpcode() == ISD::FNEG) 5708 return Op.getOperand(0); 5709 5710 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5711 "getNegatedExpression doesn't match getNegatibleCost"); 5712 5713 // Pre-increment recursion depth for use in recursive calls. 5714 ++Depth; 5715 const SDNodeFlags Flags = Op->getFlags(); 5716 EVT VT = Op.getValueType(); 5717 unsigned Opcode = Op.getOpcode(); 5718 SDLoc DL(Op); 5719 5720 switch (Opcode) { 5721 case ISD::ConstantFP: { 5722 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5723 V.changeSign(); 5724 return DAG.getConstantFP(V, DL, VT); 5725 } 5726 case ISD::BUILD_VECTOR: { 5727 SmallVector<SDValue, 4> Ops; 5728 for (SDValue C : Op->op_values()) { 5729 if (C.isUndef()) { 5730 Ops.push_back(C); 5731 continue; 5732 } 5733 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5734 V.changeSign(); 5735 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5736 } 5737 return DAG.getBuildVector(VT, DL, Ops); 5738 } 5739 case ISD::FADD: { 5740 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5741 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5742 Flags.hasNoSignedZeros()) && 5743 "Expected NSZ fp-flag"); 5744 5745 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5746 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5747 if (CostX != NegatibleCost::Expensive) 5748 return DAG.getNode( 5749 ISD::FSUB, DL, VT, 5750 getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags); 5751 5752 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5753 return DAG.getNode( 5754 ISD::FSUB, DL, VT, 5755 getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), X, Flags); 5756 } 5757 case ISD::FSUB: { 5758 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5759 // fold (fneg (fsub 0, Y)) -> Y 5760 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5761 if (C->isZero()) 5762 return Y; 5763 5764 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5765 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5766 } 5767 case ISD::FMUL: 5768 case ISD::FDIV: { 5769 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5770 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5771 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5772 if (CostX != NegatibleCost::Expensive) 5773 return DAG.getNode( 5774 Opcode, DL, VT, 5775 getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags); 5776 5777 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5778 return DAG.getNode( 5779 Opcode, DL, VT, X, 5780 getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), Flags); 5781 } 5782 case ISD::FMA: 5783 case ISD::FMAD: { 5784 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5785 Flags.hasNoSignedZeros()) && 5786 "Expected NSZ fp-flag"); 5787 5788 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5789 SDValue NegZ = getNegatedExpression(Z, DAG, LegalOps, OptForSize, Depth); 5790 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5791 NegatibleCost CostY = getNegatibleCost(Y, DAG, LegalOps, OptForSize, Depth); 5792 if (CostX > CostY) { 5793 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5794 SDValue NegX = getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth); 5795 return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5796 } 5797 5798 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5799 SDValue NegY = getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth); 5800 return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5801 } 5802 5803 case ISD::FP_EXTEND: 5804 case ISD::FSIN: 5805 return DAG.getNode(Opcode, DL, VT, 5806 getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5807 OptForSize, Depth)); 5808 case ISD::FP_ROUND: 5809 return DAG.getNode(ISD::FP_ROUND, DL, VT, 5810 getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5811 OptForSize, Depth), 5812 Op.getOperand(1)); 5813 } 5814 5815 llvm_unreachable("Unknown code"); 5816 } 5817 5818 //===----------------------------------------------------------------------===// 5819 // Legalization Utilities 5820 //===----------------------------------------------------------------------===// 5821 5822 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5823 SDValue LHS, SDValue RHS, 5824 SmallVectorImpl<SDValue> &Result, 5825 EVT HiLoVT, SelectionDAG &DAG, 5826 MulExpansionKind Kind, SDValue LL, 5827 SDValue LH, SDValue RL, SDValue RH) const { 5828 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5829 Opcode == ISD::SMUL_LOHI); 5830 5831 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5832 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5833 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5834 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5835 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5836 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5837 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5838 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5839 5840 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5841 return false; 5842 5843 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5844 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5845 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5846 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5847 5848 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5849 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5850 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5851 5852 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5853 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5854 bool Signed) -> bool { 5855 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5856 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5857 Hi = SDValue(Lo.getNode(), 1); 5858 return true; 5859 } 5860 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5861 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5862 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5863 return true; 5864 } 5865 return false; 5866 }; 5867 5868 SDValue Lo, Hi; 5869 5870 if (!LL.getNode() && !RL.getNode() && 5871 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5872 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5873 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5874 } 5875 5876 if (!LL.getNode()) 5877 return false; 5878 5879 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5880 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5881 DAG.MaskedValueIsZero(RHS, HighMask)) { 5882 // The inputs are both zero-extended. 5883 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5884 Result.push_back(Lo); 5885 Result.push_back(Hi); 5886 if (Opcode != ISD::MUL) { 5887 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5888 Result.push_back(Zero); 5889 Result.push_back(Zero); 5890 } 5891 return true; 5892 } 5893 } 5894 5895 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5896 RHSSB > InnerBitSize) { 5897 // The input values are both sign-extended. 5898 // TODO non-MUL case? 5899 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5900 Result.push_back(Lo); 5901 Result.push_back(Hi); 5902 return true; 5903 } 5904 } 5905 5906 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5907 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5908 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5909 // FIXME getShiftAmountTy does not always return a sensible result when VT 5910 // is an illegal type, and so the type may be too small to fit the shift 5911 // amount. Override it with i32. The shift will have to be legalized. 5912 ShiftAmountTy = MVT::i32; 5913 } 5914 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5915 5916 if (!LH.getNode() && !RH.getNode() && 5917 isOperationLegalOrCustom(ISD::SRL, VT) && 5918 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5919 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5920 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5921 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5922 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5923 } 5924 5925 if (!LH.getNode()) 5926 return false; 5927 5928 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5929 return false; 5930 5931 Result.push_back(Lo); 5932 5933 if (Opcode == ISD::MUL) { 5934 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5935 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5936 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5937 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5938 Result.push_back(Hi); 5939 return true; 5940 } 5941 5942 // Compute the full width result. 5943 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5944 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5945 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5946 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5947 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5948 }; 5949 5950 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5951 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5952 return false; 5953 5954 // This is effectively the add part of a multiply-add of half-sized operands, 5955 // so it cannot overflow. 5956 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5957 5958 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5959 return false; 5960 5961 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5962 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5963 5964 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5965 isOperationLegalOrCustom(ISD::ADDE, VT)); 5966 if (UseGlue) 5967 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5968 Merge(Lo, Hi)); 5969 else 5970 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5971 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5972 5973 SDValue Carry = Next.getValue(1); 5974 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5975 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5976 5977 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5978 return false; 5979 5980 if (UseGlue) 5981 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5982 Carry); 5983 else 5984 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5985 Zero, Carry); 5986 5987 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5988 5989 if (Opcode == ISD::SMUL_LOHI) { 5990 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5991 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5992 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5993 5994 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5995 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5996 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5997 } 5998 5999 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6000 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6001 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6002 return true; 6003 } 6004 6005 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6006 SelectionDAG &DAG, MulExpansionKind Kind, 6007 SDValue LL, SDValue LH, SDValue RL, 6008 SDValue RH) const { 6009 SmallVector<SDValue, 2> Result; 6010 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6011 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6012 DAG, Kind, LL, LH, RL, RH); 6013 if (Ok) { 6014 assert(Result.size() == 2); 6015 Lo = Result[0]; 6016 Hi = Result[1]; 6017 } 6018 return Ok; 6019 } 6020 6021 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6022 SelectionDAG &DAG) const { 6023 EVT VT = Node->getValueType(0); 6024 6025 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6026 !isOperationLegalOrCustom(ISD::SRL, VT) || 6027 !isOperationLegalOrCustom(ISD::SUB, VT) || 6028 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6029 return false; 6030 6031 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6032 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6033 SDValue X = Node->getOperand(0); 6034 SDValue Y = Node->getOperand(1); 6035 SDValue Z = Node->getOperand(2); 6036 6037 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6038 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6039 SDLoc DL(SDValue(Node, 0)); 6040 6041 EVT ShVT = Z.getValueType(); 6042 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6043 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6044 6045 SDValue ShAmt; 6046 if (isPowerOf2_32(EltSizeInBits)) { 6047 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6048 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6049 } else { 6050 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6051 } 6052 6053 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6054 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6055 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6056 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6057 6058 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6059 // and that is undefined. We must compare and select to avoid UB. 6060 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6061 6062 // For fshl, 0-shift returns the 1st arg (X). 6063 // For fshr, 0-shift returns the 2nd arg (Y). 6064 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6065 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6066 return true; 6067 } 6068 6069 // TODO: Merge with expandFunnelShift. 6070 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6071 SelectionDAG &DAG) const { 6072 EVT VT = Node->getValueType(0); 6073 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6074 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6075 SDValue Op0 = Node->getOperand(0); 6076 SDValue Op1 = Node->getOperand(1); 6077 SDLoc DL(SDValue(Node, 0)); 6078 6079 EVT ShVT = Op1.getValueType(); 6080 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6081 6082 // If a rotate in the other direction is legal, use it. 6083 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6084 if (isOperationLegal(RevRot, VT)) { 6085 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6086 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6087 return true; 6088 } 6089 6090 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6091 !isOperationLegalOrCustom(ISD::SRL, VT) || 6092 !isOperationLegalOrCustom(ISD::SUB, VT) || 6093 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6094 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6095 return false; 6096 6097 // Otherwise, 6098 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6099 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6100 // 6101 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6102 "Expecting the type bitwidth to be a power of 2"); 6103 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6104 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6105 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6106 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6107 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6108 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6109 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6110 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6111 return true; 6112 } 6113 6114 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6115 SelectionDAG &DAG) const { 6116 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6117 SDValue Src = Node->getOperand(OpNo); 6118 EVT SrcVT = Src.getValueType(); 6119 EVT DstVT = Node->getValueType(0); 6120 SDLoc dl(SDValue(Node, 0)); 6121 6122 // FIXME: Only f32 to i64 conversions are supported. 6123 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6124 return false; 6125 6126 if (Node->isStrictFPOpcode()) 6127 // When a NaN is converted to an integer a trap is allowed. We can't 6128 // use this expansion here because it would eliminate that trap. Other 6129 // traps are also allowed and cannot be eliminated. See 6130 // IEEE 754-2008 sec 5.8. 6131 return false; 6132 6133 // Expand f32 -> i64 conversion 6134 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6135 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6136 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6137 EVT IntVT = SrcVT.changeTypeToInteger(); 6138 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6139 6140 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6141 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6142 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6143 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6144 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6145 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6146 6147 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6148 6149 SDValue ExponentBits = DAG.getNode( 6150 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6151 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6152 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6153 6154 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6155 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6156 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6157 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6158 6159 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6160 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6161 DAG.getConstant(0x00800000, dl, IntVT)); 6162 6163 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6164 6165 R = DAG.getSelectCC( 6166 dl, Exponent, ExponentLoBit, 6167 DAG.getNode(ISD::SHL, dl, DstVT, R, 6168 DAG.getZExtOrTrunc( 6169 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6170 dl, IntShVT)), 6171 DAG.getNode(ISD::SRL, dl, DstVT, R, 6172 DAG.getZExtOrTrunc( 6173 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6174 dl, IntShVT)), 6175 ISD::SETGT); 6176 6177 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6178 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6179 6180 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6181 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6182 return true; 6183 } 6184 6185 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6186 SDValue &Chain, 6187 SelectionDAG &DAG) const { 6188 SDLoc dl(SDValue(Node, 0)); 6189 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6190 SDValue Src = Node->getOperand(OpNo); 6191 6192 EVT SrcVT = Src.getValueType(); 6193 EVT DstVT = Node->getValueType(0); 6194 EVT SetCCVT = 6195 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6196 EVT DstSetCCVT = 6197 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6198 6199 // Only expand vector types if we have the appropriate vector bit operations. 6200 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6201 ISD::FP_TO_SINT; 6202 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6203 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6204 return false; 6205 6206 // If the maximum float value is smaller then the signed integer range, 6207 // the destination signmask can't be represented by the float, so we can 6208 // just use FP_TO_SINT directly. 6209 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6210 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6211 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6212 if (APFloat::opOverflow & 6213 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6214 if (Node->isStrictFPOpcode()) { 6215 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6216 { Node->getOperand(0), Src }); 6217 Chain = Result.getValue(1); 6218 } else 6219 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6220 return true; 6221 } 6222 6223 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6224 SDValue Sel; 6225 6226 if (Node->isStrictFPOpcode()) { 6227 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6228 Node->getOperand(0), /*IsSignaling*/ true); 6229 Chain = Sel.getValue(1); 6230 } else { 6231 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6232 } 6233 6234 bool Strict = Node->isStrictFPOpcode() || 6235 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6236 6237 if (Strict) { 6238 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6239 // signmask then offset (the result of which should be fully representable). 6240 // Sel = Src < 0x8000000000000000 6241 // FltOfs = select Sel, 0, 0x8000000000000000 6242 // IntOfs = select Sel, 0, 0x8000000000000000 6243 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6244 6245 // TODO: Should any fast-math-flags be set for the FSUB? 6246 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6247 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6248 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6249 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6250 DAG.getConstant(0, dl, DstVT), 6251 DAG.getConstant(SignMask, dl, DstVT)); 6252 SDValue SInt; 6253 if (Node->isStrictFPOpcode()) { 6254 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6255 { Chain, Src, FltOfs }); 6256 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6257 { Val.getValue(1), Val }); 6258 Chain = SInt.getValue(1); 6259 } else { 6260 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6261 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6262 } 6263 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6264 } else { 6265 // Expand based on maximum range of FP_TO_SINT: 6266 // True = fp_to_sint(Src) 6267 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6268 // Result = select (Src < 0x8000000000000000), True, False 6269 6270 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6271 // TODO: Should any fast-math-flags be set for the FSUB? 6272 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6273 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6274 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6275 DAG.getConstant(SignMask, dl, DstVT)); 6276 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6277 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6278 } 6279 return true; 6280 } 6281 6282 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6283 SDValue &Chain, 6284 SelectionDAG &DAG) const { 6285 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6286 SDValue Src = Node->getOperand(OpNo); 6287 EVT SrcVT = Src.getValueType(); 6288 EVT DstVT = Node->getValueType(0); 6289 6290 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6291 return false; 6292 6293 // Only expand vector types if we have the appropriate vector bit operations. 6294 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6295 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6296 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6297 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6298 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6299 return false; 6300 6301 SDLoc dl(SDValue(Node, 0)); 6302 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6303 6304 // Implementation of unsigned i64 to f64 following the algorithm in 6305 // __floatundidf in compiler_rt. This implementation has the advantage 6306 // of performing rounding correctly, both in the default rounding mode 6307 // and in all alternate rounding modes. 6308 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6309 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6310 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6311 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6312 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6313 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6314 6315 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6316 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6317 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6318 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6319 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6320 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6321 if (Node->isStrictFPOpcode()) { 6322 SDValue HiSub = 6323 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6324 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6325 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6326 {HiSub.getValue(1), LoFlt, HiSub}); 6327 Chain = Result.getValue(1); 6328 } else { 6329 SDValue HiSub = 6330 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6331 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6332 } 6333 return true; 6334 } 6335 6336 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6337 SelectionDAG &DAG) const { 6338 SDLoc dl(Node); 6339 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6340 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6341 EVT VT = Node->getValueType(0); 6342 if (isOperationLegalOrCustom(NewOp, VT)) { 6343 SDValue Quiet0 = Node->getOperand(0); 6344 SDValue Quiet1 = Node->getOperand(1); 6345 6346 if (!Node->getFlags().hasNoNaNs()) { 6347 // Insert canonicalizes if it's possible we need to quiet to get correct 6348 // sNaN behavior. 6349 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6350 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6351 Node->getFlags()); 6352 } 6353 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6354 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6355 Node->getFlags()); 6356 } 6357 } 6358 6359 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6360 } 6361 6362 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6363 // instead if there are no NaNs. 6364 if (Node->getFlags().hasNoNaNs()) { 6365 unsigned IEEE2018Op = 6366 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6367 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6368 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6369 Node->getOperand(1), Node->getFlags()); 6370 } 6371 } 6372 6373 // If none of the above worked, but there are no NaNs, then expand to 6374 // a compare/select sequence. This is required for correctness since 6375 // InstCombine might have canonicalized a fcmp+select sequence to a 6376 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6377 // expansion to libcall, we might introduce a link-time dependency 6378 // on libm into a file that originally did not have one. 6379 if (Node->getFlags().hasNoNaNs()) { 6380 ISD::CondCode Pred = 6381 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6382 SDValue Op1 = Node->getOperand(0); 6383 SDValue Op2 = Node->getOperand(1); 6384 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6385 // Copy FMF flags, but always set the no-signed-zeros flag 6386 // as this is implied by the FMINNUM/FMAXNUM semantics. 6387 SDNodeFlags Flags = Node->getFlags(); 6388 Flags.setNoSignedZeros(true); 6389 SelCC->setFlags(Flags); 6390 return SelCC; 6391 } 6392 6393 return SDValue(); 6394 } 6395 6396 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6397 SelectionDAG &DAG) const { 6398 SDLoc dl(Node); 6399 EVT VT = Node->getValueType(0); 6400 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6401 SDValue Op = Node->getOperand(0); 6402 unsigned Len = VT.getScalarSizeInBits(); 6403 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6404 6405 // TODO: Add support for irregular type lengths. 6406 if (!(Len <= 128 && Len % 8 == 0)) 6407 return false; 6408 6409 // Only expand vector types if we have the appropriate vector bit operations. 6410 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6411 !isOperationLegalOrCustom(ISD::SUB, VT) || 6412 !isOperationLegalOrCustom(ISD::SRL, VT) || 6413 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6414 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6415 return false; 6416 6417 // This is the "best" algorithm from 6418 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6419 SDValue Mask55 = 6420 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6421 SDValue Mask33 = 6422 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6423 SDValue Mask0F = 6424 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6425 SDValue Mask01 = 6426 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6427 6428 // v = v - ((v >> 1) & 0x55555555...) 6429 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6430 DAG.getNode(ISD::AND, dl, VT, 6431 DAG.getNode(ISD::SRL, dl, VT, Op, 6432 DAG.getConstant(1, dl, ShVT)), 6433 Mask55)); 6434 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6435 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6436 DAG.getNode(ISD::AND, dl, VT, 6437 DAG.getNode(ISD::SRL, dl, VT, Op, 6438 DAG.getConstant(2, dl, ShVT)), 6439 Mask33)); 6440 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6441 Op = DAG.getNode(ISD::AND, dl, VT, 6442 DAG.getNode(ISD::ADD, dl, VT, Op, 6443 DAG.getNode(ISD::SRL, dl, VT, Op, 6444 DAG.getConstant(4, dl, ShVT))), 6445 Mask0F); 6446 // v = (v * 0x01010101...) >> (Len - 8) 6447 if (Len > 8) 6448 Op = 6449 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6450 DAG.getConstant(Len - 8, dl, ShVT)); 6451 6452 Result = Op; 6453 return true; 6454 } 6455 6456 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6457 SelectionDAG &DAG) const { 6458 SDLoc dl(Node); 6459 EVT VT = Node->getValueType(0); 6460 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6461 SDValue Op = Node->getOperand(0); 6462 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6463 6464 // If the non-ZERO_UNDEF version is supported we can use that instead. 6465 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6466 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6467 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6468 return true; 6469 } 6470 6471 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6472 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6473 EVT SetCCVT = 6474 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6475 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6476 SDValue Zero = DAG.getConstant(0, dl, VT); 6477 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6478 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6479 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6480 return true; 6481 } 6482 6483 // Only expand vector types if we have the appropriate vector bit operations. 6484 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6485 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6486 !isOperationLegalOrCustom(ISD::SRL, VT) || 6487 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6488 return false; 6489 6490 // for now, we do this: 6491 // x = x | (x >> 1); 6492 // x = x | (x >> 2); 6493 // ... 6494 // x = x | (x >>16); 6495 // x = x | (x >>32); // for 64-bit input 6496 // return popcount(~x); 6497 // 6498 // Ref: "Hacker's Delight" by Henry Warren 6499 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6500 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6501 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6502 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6503 } 6504 Op = DAG.getNOT(dl, Op, VT); 6505 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6506 return true; 6507 } 6508 6509 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6510 SelectionDAG &DAG) const { 6511 SDLoc dl(Node); 6512 EVT VT = Node->getValueType(0); 6513 SDValue Op = Node->getOperand(0); 6514 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6515 6516 // If the non-ZERO_UNDEF version is supported we can use that instead. 6517 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6518 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6519 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6520 return true; 6521 } 6522 6523 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6524 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6525 EVT SetCCVT = 6526 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6527 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6528 SDValue Zero = DAG.getConstant(0, dl, VT); 6529 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6530 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6531 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6532 return true; 6533 } 6534 6535 // Only expand vector types if we have the appropriate vector bit operations. 6536 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6537 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6538 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6539 !isOperationLegalOrCustom(ISD::SUB, VT) || 6540 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6541 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6542 return false; 6543 6544 // for now, we use: { return popcount(~x & (x - 1)); } 6545 // unless the target has ctlz but not ctpop, in which case we use: 6546 // { return 32 - nlz(~x & (x-1)); } 6547 // Ref: "Hacker's Delight" by Henry Warren 6548 SDValue Tmp = DAG.getNode( 6549 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6550 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6551 6552 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6553 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6554 Result = 6555 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6556 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6557 return true; 6558 } 6559 6560 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6561 return true; 6562 } 6563 6564 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6565 SelectionDAG &DAG) const { 6566 SDLoc dl(N); 6567 EVT VT = N->getValueType(0); 6568 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6569 SDValue Op = N->getOperand(0); 6570 6571 // Only expand vector types if we have the appropriate vector operations. 6572 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6573 !isOperationLegalOrCustom(ISD::ADD, VT) || 6574 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6575 return false; 6576 6577 SDValue Shift = 6578 DAG.getNode(ISD::SRA, dl, VT, Op, 6579 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6580 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6581 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6582 return true; 6583 } 6584 6585 std::pair<SDValue, SDValue> 6586 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6587 SelectionDAG &DAG) const { 6588 SDLoc SL(LD); 6589 SDValue Chain = LD->getChain(); 6590 SDValue BasePTR = LD->getBasePtr(); 6591 EVT SrcVT = LD->getMemoryVT(); 6592 EVT DstVT = LD->getValueType(0); 6593 ISD::LoadExtType ExtType = LD->getExtensionType(); 6594 6595 unsigned NumElem = SrcVT.getVectorNumElements(); 6596 6597 EVT SrcEltVT = SrcVT.getScalarType(); 6598 EVT DstEltVT = DstVT.getScalarType(); 6599 6600 // A vector must always be stored in memory as-is, i.e. without any padding 6601 // between the elements, since various code depend on it, e.g. in the 6602 // handling of a bitcast of a vector type to int, which may be done with a 6603 // vector store followed by an integer load. A vector that does not have 6604 // elements that are byte-sized must therefore be stored as an integer 6605 // built out of the extracted vector elements. 6606 if (!SrcEltVT.isByteSized()) { 6607 unsigned NumBits = SrcVT.getSizeInBits(); 6608 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6609 6610 SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(), 6611 LD->getAlignment(), 6612 LD->getMemOperand()->getFlags(), 6613 LD->getAAInfo()); 6614 6615 SmallVector<SDValue, 8> Vals; 6616 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6617 unsigned ShiftIntoIdx = 6618 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6619 SDValue ShiftAmount = 6620 DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT); 6621 SDValue ShiftedElt = 6622 DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount); 6623 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt); 6624 if (ExtType != ISD::NON_EXTLOAD) { 6625 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6626 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6627 } 6628 Vals.push_back(Scalar); 6629 } 6630 6631 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6632 return std::make_pair(Value, Load.getValue(1)); 6633 } 6634 6635 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6636 assert(SrcEltVT.isByteSized()); 6637 6638 SmallVector<SDValue, 8> Vals; 6639 SmallVector<SDValue, 8> LoadChains; 6640 6641 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6642 SDValue ScalarLoad = 6643 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6644 LD->getPointerInfo().getWithOffset(Idx * Stride), 6645 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6646 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6647 6648 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6649 6650 Vals.push_back(ScalarLoad.getValue(0)); 6651 LoadChains.push_back(ScalarLoad.getValue(1)); 6652 } 6653 6654 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6655 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6656 6657 return std::make_pair(Value, NewChain); 6658 } 6659 6660 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6661 SelectionDAG &DAG) const { 6662 SDLoc SL(ST); 6663 6664 SDValue Chain = ST->getChain(); 6665 SDValue BasePtr = ST->getBasePtr(); 6666 SDValue Value = ST->getValue(); 6667 EVT StVT = ST->getMemoryVT(); 6668 6669 // The type of the data we want to save 6670 EVT RegVT = Value.getValueType(); 6671 EVT RegSclVT = RegVT.getScalarType(); 6672 6673 // The type of data as saved in memory. 6674 EVT MemSclVT = StVT.getScalarType(); 6675 6676 unsigned NumElem = StVT.getVectorNumElements(); 6677 6678 // A vector must always be stored in memory as-is, i.e. without any padding 6679 // between the elements, since various code depend on it, e.g. in the 6680 // handling of a bitcast of a vector type to int, which may be done with a 6681 // vector store followed by an integer load. A vector that does not have 6682 // elements that are byte-sized must therefore be stored as an integer 6683 // built out of the extracted vector elements. 6684 if (!MemSclVT.isByteSized()) { 6685 unsigned NumBits = StVT.getSizeInBits(); 6686 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6687 6688 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6689 6690 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6691 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6692 DAG.getVectorIdxConstant(Idx, SL)); 6693 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6694 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6695 unsigned ShiftIntoIdx = 6696 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6697 SDValue ShiftAmount = 6698 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6699 SDValue ShiftedElt = 6700 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6701 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6702 } 6703 6704 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6705 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6706 ST->getAAInfo()); 6707 } 6708 6709 // Store Stride in bytes 6710 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6711 assert(Stride && "Zero stride!"); 6712 // Extract each of the elements from the original vector and save them into 6713 // memory individually. 6714 SmallVector<SDValue, 8> Stores; 6715 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6716 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6717 DAG.getVectorIdxConstant(Idx, SL)); 6718 6719 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6720 6721 // This scalar TruncStore may be illegal, but we legalize it later. 6722 SDValue Store = DAG.getTruncStore( 6723 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6724 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6725 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6726 6727 Stores.push_back(Store); 6728 } 6729 6730 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6731 } 6732 6733 std::pair<SDValue, SDValue> 6734 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6735 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6736 "unaligned indexed loads not implemented!"); 6737 SDValue Chain = LD->getChain(); 6738 SDValue Ptr = LD->getBasePtr(); 6739 EVT VT = LD->getValueType(0); 6740 EVT LoadedVT = LD->getMemoryVT(); 6741 SDLoc dl(LD); 6742 auto &MF = DAG.getMachineFunction(); 6743 6744 if (VT.isFloatingPoint() || VT.isVector()) { 6745 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6746 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6747 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6748 LoadedVT.isVector()) { 6749 // Scalarize the load and let the individual components be handled. 6750 return scalarizeVectorLoad(LD, DAG); 6751 } 6752 6753 // Expand to a (misaligned) integer load of the same size, 6754 // then bitconvert to floating point or vector. 6755 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6756 LD->getMemOperand()); 6757 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6758 if (LoadedVT != VT) 6759 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6760 ISD::ANY_EXTEND, dl, VT, Result); 6761 6762 return std::make_pair(Result, newLoad.getValue(1)); 6763 } 6764 6765 // Copy the value to a (aligned) stack slot using (unaligned) integer 6766 // loads and stores, then do a (aligned) load from the stack slot. 6767 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6768 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6769 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6770 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6771 6772 // Make sure the stack slot is also aligned for the register type. 6773 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6774 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6775 SmallVector<SDValue, 8> Stores; 6776 SDValue StackPtr = StackBase; 6777 unsigned Offset = 0; 6778 6779 EVT PtrVT = Ptr.getValueType(); 6780 EVT StackPtrVT = StackPtr.getValueType(); 6781 6782 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6783 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6784 6785 // Do all but one copies using the full register width. 6786 for (unsigned i = 1; i < NumRegs; i++) { 6787 // Load one integer register's worth from the original location. 6788 SDValue Load = DAG.getLoad( 6789 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6790 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6791 LD->getAAInfo()); 6792 // Follow the load with a store to the stack slot. Remember the store. 6793 Stores.push_back(DAG.getStore( 6794 Load.getValue(1), dl, Load, StackPtr, 6795 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6796 // Increment the pointers. 6797 Offset += RegBytes; 6798 6799 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6800 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6801 } 6802 6803 // The last copy may be partial. Do an extending load. 6804 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6805 8 * (LoadedBytes - Offset)); 6806 SDValue Load = 6807 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6808 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6809 MinAlign(LD->getAlignment(), Offset), 6810 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6811 // Follow the load with a store to the stack slot. Remember the store. 6812 // On big-endian machines this requires a truncating store to ensure 6813 // that the bits end up in the right place. 6814 Stores.push_back(DAG.getTruncStore( 6815 Load.getValue(1), dl, Load, StackPtr, 6816 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6817 6818 // The order of the stores doesn't matter - say it with a TokenFactor. 6819 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6820 6821 // Finally, perform the original load only redirected to the stack slot. 6822 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6823 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6824 LoadedVT); 6825 6826 // Callers expect a MERGE_VALUES node. 6827 return std::make_pair(Load, TF); 6828 } 6829 6830 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6831 "Unaligned load of unsupported type."); 6832 6833 // Compute the new VT that is half the size of the old one. This is an 6834 // integer MVT. 6835 unsigned NumBits = LoadedVT.getSizeInBits(); 6836 EVT NewLoadedVT; 6837 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6838 NumBits >>= 1; 6839 6840 unsigned Alignment = LD->getAlignment(); 6841 unsigned IncrementSize = NumBits / 8; 6842 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6843 6844 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6845 if (HiExtType == ISD::NON_EXTLOAD) 6846 HiExtType = ISD::ZEXTLOAD; 6847 6848 // Load the value in two parts 6849 SDValue Lo, Hi; 6850 if (DAG.getDataLayout().isLittleEndian()) { 6851 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6852 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6853 LD->getAAInfo()); 6854 6855 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6856 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6857 LD->getPointerInfo().getWithOffset(IncrementSize), 6858 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6859 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6860 } else { 6861 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6862 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6863 LD->getAAInfo()); 6864 6865 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6866 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6867 LD->getPointerInfo().getWithOffset(IncrementSize), 6868 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6869 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6870 } 6871 6872 // aggregate the two parts 6873 SDValue ShiftAmount = 6874 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6875 DAG.getDataLayout())); 6876 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6877 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6878 6879 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6880 Hi.getValue(1)); 6881 6882 return std::make_pair(Result, TF); 6883 } 6884 6885 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6886 SelectionDAG &DAG) const { 6887 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6888 "unaligned indexed stores not implemented!"); 6889 SDValue Chain = ST->getChain(); 6890 SDValue Ptr = ST->getBasePtr(); 6891 SDValue Val = ST->getValue(); 6892 EVT VT = Val.getValueType(); 6893 int Alignment = ST->getAlignment(); 6894 auto &MF = DAG.getMachineFunction(); 6895 EVT StoreMemVT = ST->getMemoryVT(); 6896 6897 SDLoc dl(ST); 6898 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6899 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6900 if (isTypeLegal(intVT)) { 6901 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6902 StoreMemVT.isVector()) { 6903 // Scalarize the store and let the individual components be handled. 6904 SDValue Result = scalarizeVectorStore(ST, DAG); 6905 return Result; 6906 } 6907 // Expand to a bitconvert of the value to the integer type of the 6908 // same size, then a (misaligned) int store. 6909 // FIXME: Does not handle truncating floating point stores! 6910 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6911 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6912 Alignment, ST->getMemOperand()->getFlags()); 6913 return Result; 6914 } 6915 // Do a (aligned) store to a stack slot, then copy from the stack slot 6916 // to the final destination using (unaligned) integer loads and stores. 6917 MVT RegVT = getRegisterType( 6918 *DAG.getContext(), 6919 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6920 EVT PtrVT = Ptr.getValueType(); 6921 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6922 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6923 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6924 6925 // Make sure the stack slot is also aligned for the register type. 6926 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6927 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6928 6929 // Perform the original store, only redirected to the stack slot. 6930 SDValue Store = DAG.getTruncStore( 6931 Chain, dl, Val, StackPtr, 6932 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6933 6934 EVT StackPtrVT = StackPtr.getValueType(); 6935 6936 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6937 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6938 SmallVector<SDValue, 8> Stores; 6939 unsigned Offset = 0; 6940 6941 // Do all but one copies using the full register width. 6942 for (unsigned i = 1; i < NumRegs; i++) { 6943 // Load one integer register's worth from the stack slot. 6944 SDValue Load = DAG.getLoad( 6945 RegVT, dl, Store, StackPtr, 6946 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6947 // Store it to the final location. Remember the store. 6948 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6949 ST->getPointerInfo().getWithOffset(Offset), 6950 MinAlign(ST->getAlignment(), Offset), 6951 ST->getMemOperand()->getFlags())); 6952 // Increment the pointers. 6953 Offset += RegBytes; 6954 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6955 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6956 } 6957 6958 // The last store may be partial. Do a truncating store. On big-endian 6959 // machines this requires an extending load from the stack slot to ensure 6960 // that the bits are in the right place. 6961 EVT LoadMemVT = 6962 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6963 6964 // Load from the stack slot. 6965 SDValue Load = DAG.getExtLoad( 6966 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6967 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6968 6969 Stores.push_back( 6970 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6971 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6972 MinAlign(ST->getAlignment(), Offset), 6973 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6974 // The order of the stores doesn't matter - say it with a TokenFactor. 6975 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6976 return Result; 6977 } 6978 6979 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6980 "Unaligned store of unknown type."); 6981 // Get the half-size VT 6982 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6983 int NumBits = NewStoredVT.getSizeInBits(); 6984 int IncrementSize = NumBits / 8; 6985 6986 // Divide the stored value in two parts. 6987 SDValue ShiftAmount = DAG.getConstant( 6988 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6989 SDValue Lo = Val; 6990 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6991 6992 // Store the two parts 6993 SDValue Store1, Store2; 6994 Store1 = DAG.getTruncStore(Chain, dl, 6995 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6996 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6997 ST->getMemOperand()->getFlags()); 6998 6999 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7000 Alignment = MinAlign(Alignment, IncrementSize); 7001 Store2 = DAG.getTruncStore( 7002 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7003 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7004 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7005 7006 SDValue Result = 7007 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7008 return Result; 7009 } 7010 7011 SDValue 7012 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7013 const SDLoc &DL, EVT DataVT, 7014 SelectionDAG &DAG, 7015 bool IsCompressedMemory) const { 7016 SDValue Increment; 7017 EVT AddrVT = Addr.getValueType(); 7018 EVT MaskVT = Mask.getValueType(); 7019 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7020 "Incompatible types of Data and Mask"); 7021 if (IsCompressedMemory) { 7022 // Incrementing the pointer according to number of '1's in the mask. 7023 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7024 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7025 if (MaskIntVT.getSizeInBits() < 32) { 7026 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7027 MaskIntVT = MVT::i32; 7028 } 7029 7030 // Count '1's with POPCNT. 7031 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7032 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7033 // Scale is an element size in bytes. 7034 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7035 AddrVT); 7036 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7037 } else 7038 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7039 7040 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7041 } 7042 7043 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7044 SDValue Idx, 7045 EVT VecVT, 7046 const SDLoc &dl) { 7047 if (isa<ConstantSDNode>(Idx)) 7048 return Idx; 7049 7050 EVT IdxVT = Idx.getValueType(); 7051 unsigned NElts = VecVT.getVectorNumElements(); 7052 if (isPowerOf2_32(NElts)) { 7053 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7054 Log2_32(NElts)); 7055 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7056 DAG.getConstant(Imm, dl, IdxVT)); 7057 } 7058 7059 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7060 DAG.getConstant(NElts - 1, dl, IdxVT)); 7061 } 7062 7063 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7064 SDValue VecPtr, EVT VecVT, 7065 SDValue Index) const { 7066 SDLoc dl(Index); 7067 // Make sure the index type is big enough to compute in. 7068 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7069 7070 EVT EltVT = VecVT.getVectorElementType(); 7071 7072 // Calculate the element offset and add it to the pointer. 7073 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7074 assert(EltSize * 8 == EltVT.getSizeInBits() && 7075 "Converting bits to bytes lost precision"); 7076 7077 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7078 7079 EVT IdxVT = Index.getValueType(); 7080 7081 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7082 DAG.getConstant(EltSize, dl, IdxVT)); 7083 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7084 } 7085 7086 //===----------------------------------------------------------------------===// 7087 // Implementation of Emulated TLS Model 7088 //===----------------------------------------------------------------------===// 7089 7090 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7091 SelectionDAG &DAG) const { 7092 // Access to address of TLS varialbe xyz is lowered to a function call: 7093 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7094 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7095 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7096 SDLoc dl(GA); 7097 7098 ArgListTy Args; 7099 ArgListEntry Entry; 7100 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7101 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7102 StringRef EmuTlsVarName(NameString); 7103 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7104 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7105 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7106 Entry.Ty = VoidPtrType; 7107 Args.push_back(Entry); 7108 7109 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7110 7111 TargetLowering::CallLoweringInfo CLI(DAG); 7112 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7113 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7114 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7115 7116 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7117 // At last for X86 targets, maybe good for other targets too? 7118 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7119 MFI.setAdjustsStack(true); // Is this only for X86 target? 7120 MFI.setHasCalls(true); 7121 7122 assert((GA->getOffset() == 0) && 7123 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7124 return CallResult.first; 7125 } 7126 7127 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7128 SelectionDAG &DAG) const { 7129 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7130 if (!isCtlzFast()) 7131 return SDValue(); 7132 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7133 SDLoc dl(Op); 7134 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7135 if (C->isNullValue() && CC == ISD::SETEQ) { 7136 EVT VT = Op.getOperand(0).getValueType(); 7137 SDValue Zext = Op.getOperand(0); 7138 if (VT.bitsLT(MVT::i32)) { 7139 VT = MVT::i32; 7140 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7141 } 7142 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7143 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7144 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7145 DAG.getConstant(Log2b, dl, MVT::i32)); 7146 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7147 } 7148 } 7149 return SDValue(); 7150 } 7151 7152 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7153 unsigned Opcode = Node->getOpcode(); 7154 SDValue LHS = Node->getOperand(0); 7155 SDValue RHS = Node->getOperand(1); 7156 EVT VT = LHS.getValueType(); 7157 SDLoc dl(Node); 7158 7159 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7160 assert(VT.isInteger() && "Expected operands to be integers"); 7161 7162 // usub.sat(a, b) -> umax(a, b) - b 7163 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7164 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7165 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7166 } 7167 7168 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7169 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7170 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7171 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7172 } 7173 7174 unsigned OverflowOp; 7175 switch (Opcode) { 7176 case ISD::SADDSAT: 7177 OverflowOp = ISD::SADDO; 7178 break; 7179 case ISD::UADDSAT: 7180 OverflowOp = ISD::UADDO; 7181 break; 7182 case ISD::SSUBSAT: 7183 OverflowOp = ISD::SSUBO; 7184 break; 7185 case ISD::USUBSAT: 7186 OverflowOp = ISD::USUBO; 7187 break; 7188 default: 7189 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7190 "addition or subtraction node."); 7191 } 7192 7193 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7194 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7195 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7196 LHS, RHS); 7197 SDValue SumDiff = Result.getValue(0); 7198 SDValue Overflow = Result.getValue(1); 7199 SDValue Zero = DAG.getConstant(0, dl, VT); 7200 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7201 7202 if (Opcode == ISD::UADDSAT) { 7203 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7204 // (LHS + RHS) | OverflowMask 7205 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7206 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7207 } 7208 // Overflow ? 0xffff.... : (LHS + RHS) 7209 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7210 } else if (Opcode == ISD::USUBSAT) { 7211 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7212 // (LHS - RHS) & ~OverflowMask 7213 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7214 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7215 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7216 } 7217 // Overflow ? 0 : (LHS - RHS) 7218 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7219 } else { 7220 // SatMax -> Overflow && SumDiff < 0 7221 // SatMin -> Overflow && SumDiff >= 0 7222 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7223 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7224 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7225 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7226 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7227 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7228 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7229 } 7230 } 7231 7232 SDValue 7233 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7234 assert((Node->getOpcode() == ISD::SMULFIX || 7235 Node->getOpcode() == ISD::UMULFIX || 7236 Node->getOpcode() == ISD::SMULFIXSAT || 7237 Node->getOpcode() == ISD::UMULFIXSAT) && 7238 "Expected a fixed point multiplication opcode"); 7239 7240 SDLoc dl(Node); 7241 SDValue LHS = Node->getOperand(0); 7242 SDValue RHS = Node->getOperand(1); 7243 EVT VT = LHS.getValueType(); 7244 unsigned Scale = Node->getConstantOperandVal(2); 7245 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7246 Node->getOpcode() == ISD::UMULFIXSAT); 7247 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7248 Node->getOpcode() == ISD::SMULFIXSAT); 7249 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7250 unsigned VTSize = VT.getScalarSizeInBits(); 7251 7252 if (!Scale) { 7253 // [us]mul.fix(a, b, 0) -> mul(a, b) 7254 if (!Saturating) { 7255 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7256 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7257 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7258 SDValue Result = 7259 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7260 SDValue Product = Result.getValue(0); 7261 SDValue Overflow = Result.getValue(1); 7262 SDValue Zero = DAG.getConstant(0, dl, VT); 7263 7264 APInt MinVal = APInt::getSignedMinValue(VTSize); 7265 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7266 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7267 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7268 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7269 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7270 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7271 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7272 SDValue Result = 7273 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7274 SDValue Product = Result.getValue(0); 7275 SDValue Overflow = Result.getValue(1); 7276 7277 APInt MaxVal = APInt::getMaxValue(VTSize); 7278 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7279 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7280 } 7281 } 7282 7283 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7284 "Expected scale to be less than the number of bits if signed or at " 7285 "most the number of bits if unsigned."); 7286 assert(LHS.getValueType() == RHS.getValueType() && 7287 "Expected both operands to be the same type"); 7288 7289 // Get the upper and lower bits of the result. 7290 SDValue Lo, Hi; 7291 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7292 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7293 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7294 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7295 Lo = Result.getValue(0); 7296 Hi = Result.getValue(1); 7297 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7298 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7299 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7300 } else if (VT.isVector()) { 7301 return SDValue(); 7302 } else { 7303 report_fatal_error("Unable to expand fixed point multiplication."); 7304 } 7305 7306 if (Scale == VTSize) 7307 // Result is just the top half since we'd be shifting by the width of the 7308 // operand. Overflow impossible so this works for both UMULFIX and 7309 // UMULFIXSAT. 7310 return Hi; 7311 7312 // The result will need to be shifted right by the scale since both operands 7313 // are scaled. The result is given to us in 2 halves, so we only want part of 7314 // both in the result. 7315 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7316 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7317 DAG.getConstant(Scale, dl, ShiftTy)); 7318 if (!Saturating) 7319 return Result; 7320 7321 if (!Signed) { 7322 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7323 // widened multiplication) aren't all zeroes. 7324 7325 // Saturate to max if ((Hi >> Scale) != 0), 7326 // which is the same as if (Hi > ((1 << Scale) - 1)) 7327 APInt MaxVal = APInt::getMaxValue(VTSize); 7328 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7329 dl, VT); 7330 Result = DAG.getSelectCC(dl, Hi, LowMask, 7331 DAG.getConstant(MaxVal, dl, VT), Result, 7332 ISD::SETUGT); 7333 7334 return Result; 7335 } 7336 7337 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7338 // widened multiplication) aren't all ones or all zeroes. 7339 7340 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7341 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7342 7343 if (Scale == 0) { 7344 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7345 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7346 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7347 // Saturated to SatMin if wide product is negative, and SatMax if wide 7348 // product is positive ... 7349 SDValue Zero = DAG.getConstant(0, dl, VT); 7350 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7351 ISD::SETLT); 7352 // ... but only if we overflowed. 7353 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7354 } 7355 7356 // We handled Scale==0 above so all the bits to examine is in Hi. 7357 7358 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7359 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7360 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7361 dl, VT); 7362 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7363 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7364 // which is the same as if (HI < (-1 << (Scale - 1)) 7365 SDValue HighMask = 7366 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7367 dl, VT); 7368 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7369 return Result; 7370 } 7371 7372 SDValue 7373 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7374 SDValue LHS, SDValue RHS, 7375 unsigned Scale, SelectionDAG &DAG) const { 7376 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7377 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7378 "Expected a fixed point division opcode"); 7379 7380 EVT VT = LHS.getValueType(); 7381 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7382 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7383 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7384 7385 // If there is enough room in the type to upscale the LHS or downscale the 7386 // RHS before the division, we can perform it in this type without having to 7387 // resize. For signed operations, the LHS headroom is the number of 7388 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7389 // The headroom for the RHS is the number of trailing zeroes. 7390 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7391 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7392 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7393 7394 // For signed saturating operations, we need to be able to detect true integer 7395 // division overflow; that is, when you have MIN / -EPS. However, this 7396 // is undefined behavior and if we emit divisions that could take such 7397 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7398 // example). 7399 // Avoid this by requiring an extra bit so that we never get this case. 7400 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7401 // signed saturating division, we need to emit a whopping 32-bit division. 7402 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7403 return SDValue(); 7404 7405 unsigned LHSShift = std::min(LHSLead, Scale); 7406 unsigned RHSShift = Scale - LHSShift; 7407 7408 // At this point, we know that if we shift the LHS up by LHSShift and the 7409 // RHS down by RHSShift, we can emit a regular division with a final scaling 7410 // factor of Scale. 7411 7412 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7413 if (LHSShift) 7414 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7415 DAG.getConstant(LHSShift, dl, ShiftTy)); 7416 if (RHSShift) 7417 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7418 DAG.getConstant(RHSShift, dl, ShiftTy)); 7419 7420 SDValue Quot; 7421 if (Signed) { 7422 // For signed operations, if the resulting quotient is negative and the 7423 // remainder is nonzero, subtract 1 from the quotient to round towards 7424 // negative infinity. 7425 SDValue Rem; 7426 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7427 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7428 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7429 if (isTypeLegal(VT) && 7430 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7431 Quot = DAG.getNode(ISD::SDIVREM, dl, 7432 DAG.getVTList(VT, VT), 7433 LHS, RHS); 7434 Rem = Quot.getValue(1); 7435 Quot = Quot.getValue(0); 7436 } else { 7437 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7438 LHS, RHS); 7439 Rem = DAG.getNode(ISD::SREM, dl, VT, 7440 LHS, RHS); 7441 } 7442 SDValue Zero = DAG.getConstant(0, dl, VT); 7443 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7444 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7445 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7446 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7447 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7448 DAG.getConstant(1, dl, VT)); 7449 Quot = DAG.getSelect(dl, VT, 7450 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7451 Sub1, Quot); 7452 } else 7453 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7454 LHS, RHS); 7455 7456 return Quot; 7457 } 7458 7459 void TargetLowering::expandUADDSUBO( 7460 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7461 SDLoc dl(Node); 7462 SDValue LHS = Node->getOperand(0); 7463 SDValue RHS = Node->getOperand(1); 7464 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7465 7466 // If ADD/SUBCARRY is legal, use that instead. 7467 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7468 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7469 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7470 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7471 { LHS, RHS, CarryIn }); 7472 Result = SDValue(NodeCarry.getNode(), 0); 7473 Overflow = SDValue(NodeCarry.getNode(), 1); 7474 return; 7475 } 7476 7477 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7478 LHS.getValueType(), LHS, RHS); 7479 7480 EVT ResultType = Node->getValueType(1); 7481 EVT SetCCType = getSetCCResultType( 7482 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7483 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7484 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7485 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7486 } 7487 7488 void TargetLowering::expandSADDSUBO( 7489 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7490 SDLoc dl(Node); 7491 SDValue LHS = Node->getOperand(0); 7492 SDValue RHS = Node->getOperand(1); 7493 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7494 7495 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7496 LHS.getValueType(), LHS, RHS); 7497 7498 EVT ResultType = Node->getValueType(1); 7499 EVT OType = getSetCCResultType( 7500 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7501 7502 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7503 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7504 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7505 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7506 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7507 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7508 return; 7509 } 7510 7511 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7512 7513 // For an addition, the result should be less than one of the operands (LHS) 7514 // if and only if the other operand (RHS) is negative, otherwise there will 7515 // be overflow. 7516 // For a subtraction, the result should be less than one of the operands 7517 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7518 // otherwise there will be overflow. 7519 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7520 SDValue ConditionRHS = 7521 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7522 7523 Overflow = DAG.getBoolExtOrTrunc( 7524 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7525 ResultType, ResultType); 7526 } 7527 7528 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7529 SDValue &Overflow, SelectionDAG &DAG) const { 7530 SDLoc dl(Node); 7531 EVT VT = Node->getValueType(0); 7532 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7533 SDValue LHS = Node->getOperand(0); 7534 SDValue RHS = Node->getOperand(1); 7535 bool isSigned = Node->getOpcode() == ISD::SMULO; 7536 7537 // For power-of-two multiplications we can use a simpler shift expansion. 7538 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7539 const APInt &C = RHSC->getAPIntValue(); 7540 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7541 if (C.isPowerOf2()) { 7542 // smulo(x, signed_min) is same as umulo(x, signed_min). 7543 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7544 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7545 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7546 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7547 Overflow = DAG.getSetCC(dl, SetCCVT, 7548 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7549 dl, VT, Result, ShiftAmt), 7550 LHS, ISD::SETNE); 7551 return true; 7552 } 7553 } 7554 7555 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7556 if (VT.isVector()) 7557 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7558 VT.getVectorNumElements()); 7559 7560 SDValue BottomHalf; 7561 SDValue TopHalf; 7562 static const unsigned Ops[2][3] = 7563 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7564 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7565 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7566 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7567 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7568 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7569 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7570 RHS); 7571 TopHalf = BottomHalf.getValue(1); 7572 } else if (isTypeLegal(WideVT)) { 7573 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7574 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7575 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7576 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7577 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7578 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7579 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7580 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7581 } else { 7582 if (VT.isVector()) 7583 return false; 7584 7585 // We can fall back to a libcall with an illegal type for the MUL if we 7586 // have a libcall big enough. 7587 // Also, we can fall back to a division in some cases, but that's a big 7588 // performance hit in the general case. 7589 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7590 if (WideVT == MVT::i16) 7591 LC = RTLIB::MUL_I16; 7592 else if (WideVT == MVT::i32) 7593 LC = RTLIB::MUL_I32; 7594 else if (WideVT == MVT::i64) 7595 LC = RTLIB::MUL_I64; 7596 else if (WideVT == MVT::i128) 7597 LC = RTLIB::MUL_I128; 7598 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7599 7600 SDValue HiLHS; 7601 SDValue HiRHS; 7602 if (isSigned) { 7603 // The high part is obtained by SRA'ing all but one of the bits of low 7604 // part. 7605 unsigned LoSize = VT.getSizeInBits(); 7606 HiLHS = 7607 DAG.getNode(ISD::SRA, dl, VT, LHS, 7608 DAG.getConstant(LoSize - 1, dl, 7609 getPointerTy(DAG.getDataLayout()))); 7610 HiRHS = 7611 DAG.getNode(ISD::SRA, dl, VT, RHS, 7612 DAG.getConstant(LoSize - 1, dl, 7613 getPointerTy(DAG.getDataLayout()))); 7614 } else { 7615 HiLHS = DAG.getConstant(0, dl, VT); 7616 HiRHS = DAG.getConstant(0, dl, VT); 7617 } 7618 7619 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7620 // pre-lowered to the correct types. This all depends upon WideVT not 7621 // being a legal type for the architecture and thus has to be split to 7622 // two arguments. 7623 SDValue Ret; 7624 TargetLowering::MakeLibCallOptions CallOptions; 7625 CallOptions.setSExt(isSigned); 7626 CallOptions.setIsPostTypeLegalization(true); 7627 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7628 // Halves of WideVT are packed into registers in different order 7629 // depending on platform endianness. This is usually handled by 7630 // the C calling convention, but we can't defer to it in 7631 // the legalizer. 7632 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7633 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7634 } else { 7635 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7636 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7637 } 7638 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7639 "Ret value is a collection of constituent nodes holding result."); 7640 if (DAG.getDataLayout().isLittleEndian()) { 7641 // Same as above. 7642 BottomHalf = Ret.getOperand(0); 7643 TopHalf = Ret.getOperand(1); 7644 } else { 7645 BottomHalf = Ret.getOperand(1); 7646 TopHalf = Ret.getOperand(0); 7647 } 7648 } 7649 7650 Result = BottomHalf; 7651 if (isSigned) { 7652 SDValue ShiftAmt = DAG.getConstant( 7653 VT.getScalarSizeInBits() - 1, dl, 7654 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7655 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7656 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7657 } else { 7658 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7659 DAG.getConstant(0, dl, VT), ISD::SETNE); 7660 } 7661 7662 // Truncate the result if SetCC returns a larger type than needed. 7663 EVT RType = Node->getValueType(1); 7664 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7665 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7666 7667 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7668 "Unexpected result type for S/UMULO legalization"); 7669 return true; 7670 } 7671 7672 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7673 SDLoc dl(Node); 7674 bool NoNaN = Node->getFlags().hasNoNaNs(); 7675 unsigned BaseOpcode = 0; 7676 switch (Node->getOpcode()) { 7677 default: llvm_unreachable("Expected VECREDUCE opcode"); 7678 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7679 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7680 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7681 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7682 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7683 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7684 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7685 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7686 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7687 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7688 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7689 case ISD::VECREDUCE_FMAX: 7690 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7691 break; 7692 case ISD::VECREDUCE_FMIN: 7693 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7694 break; 7695 } 7696 7697 SDValue Op = Node->getOperand(0); 7698 EVT VT = Op.getValueType(); 7699 7700 // Try to use a shuffle reduction for power of two vectors. 7701 if (VT.isPow2VectorType()) { 7702 while (VT.getVectorNumElements() > 1) { 7703 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7704 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7705 break; 7706 7707 SDValue Lo, Hi; 7708 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7709 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7710 VT = HalfVT; 7711 } 7712 } 7713 7714 EVT EltVT = VT.getVectorElementType(); 7715 unsigned NumElts = VT.getVectorNumElements(); 7716 7717 SmallVector<SDValue, 8> Ops; 7718 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7719 7720 SDValue Res = Ops[0]; 7721 for (unsigned i = 1; i < NumElts; i++) 7722 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7723 7724 // Result type may be wider than element type. 7725 if (EltVT != Node->getValueType(0)) 7726 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7727 return Res; 7728 } 7729