1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // Conservatively require the attributes of the call to match those of 56 // the return. Ignore NoAlias and NonNull because they don't affect the 57 // call sequence. 58 AttributeList CallerAttrs = F.getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .removeAttribute(Attribute::NonNull) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 Register Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 102 unsigned ArgIdx) { 103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = Call->getParamAlignment(ArgIdx); 114 ByValType = nullptr; 115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 116 ByValType = Call->getParamByValType(ArgIdx); 117 } 118 119 /// Generate a libcall taking the given operands as arguments and returning a 120 /// result of type RetVT. 121 std::pair<SDValue, SDValue> 122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 123 ArrayRef<SDValue> Ops, 124 MakeLibCallOptions CallOptions, 125 const SDLoc &dl) const { 126 TargetLowering::ArgListTy Args; 127 Args.reserve(Ops.size()); 128 129 TargetLowering::ArgListEntry Entry; 130 for (unsigned i = 0; i < Ops.size(); ++i) { 131 SDValue NewOp = Ops[i]; 132 Entry.Node = NewOp; 133 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 134 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 135 CallOptions.IsSExt); 136 Entry.IsZExt = !Entry.IsSExt; 137 138 if (CallOptions.IsSoften && 139 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 140 Entry.IsSExt = Entry.IsZExt = false; 141 } 142 Args.push_back(Entry); 143 } 144 145 if (LC == RTLIB::UNKNOWN_LIBCALL) 146 report_fatal_error("Unsupported library call operation!"); 147 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 148 getPointerTy(DAG.getDataLayout())); 149 150 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 151 TargetLowering::CallLoweringInfo CLI(DAG); 152 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 153 bool zeroExtend = !signExtend; 154 155 if (CallOptions.IsSoften && 156 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 157 signExtend = zeroExtend = false; 158 } 159 160 CLI.setDebugLoc(dl) 161 .setChain(DAG.getEntryNode()) 162 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 163 .setNoReturn(CallOptions.DoesNotReturn) 164 .setDiscardResult(!CallOptions.IsReturnValueUsed) 165 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 166 .setSExtResult(signExtend) 167 .setZExtResult(zeroExtend); 168 return LowerCallTo(CLI); 169 } 170 171 /// Expand a node into a call to a libcall. Similar to ExpandLibCall except that 172 /// the first operand is the in-chain. 173 std::pair<SDValue, SDValue> 174 TargetLowering::ExpandChainLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, 175 SDNode *Node, bool isSigned) const { 176 SDValue InChain = Node->getOperand(0); 177 178 TargetLowering::ArgListTy Args; 179 TargetLowering::ArgListEntry Entry; 180 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 181 EVT ArgVT = Node->getOperand(i).getValueType(); 182 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 183 Entry.Node = Node->getOperand(i); 184 Entry.Ty = ArgTy; 185 Entry.IsSExt = isSigned; 186 Entry.IsZExt = !isSigned; 187 Args.push_back(Entry); 188 } 189 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 190 getPointerTy(DAG.getDataLayout())); 191 192 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 193 194 TargetLowering::CallLoweringInfo CLI(DAG); 195 CLI.setDebugLoc(SDLoc(Node)) 196 .setChain(InChain) 197 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, 198 std::move(Args)) 199 .setSExtResult(isSigned) 200 .setZExtResult(!isSigned); 201 202 return LowerCallTo(CLI); 203 } 204 205 bool 206 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 207 unsigned Limit, uint64_t Size, 208 unsigned DstAlign, unsigned SrcAlign, 209 bool IsMemset, 210 bool ZeroMemset, 211 bool MemcpyStrSrc, 212 bool AllowOverlap, 213 unsigned DstAS, unsigned SrcAS, 214 const AttributeList &FuncAttributes) const { 215 // If 'SrcAlign' is zero, that means the memory operation does not need to 216 // load the value, i.e. memset or memcpy from constant string. Otherwise, 217 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 218 // is the specified alignment of the memory operation. If it is zero, that 219 // means it's possible to change the alignment of the destination. 220 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 221 // not need to be loaded. 222 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 223 return false; 224 225 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 226 IsMemset, ZeroMemset, MemcpyStrSrc, 227 FuncAttributes); 228 229 if (VT == MVT::Other) { 230 // Use the largest integer type whose alignment constraints are satisfied. 231 // We only need to check DstAlign here as SrcAlign is always greater or 232 // equal to DstAlign (or zero). 233 VT = MVT::i64; 234 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 235 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 236 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 237 assert(VT.isInteger()); 238 239 // Find the largest legal integer type. 240 MVT LVT = MVT::i64; 241 while (!isTypeLegal(LVT)) 242 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 243 assert(LVT.isInteger()); 244 245 // If the type we've chosen is larger than the largest legal integer type 246 // then use that instead. 247 if (VT.bitsGT(LVT)) 248 VT = LVT; 249 } 250 251 unsigned NumMemOps = 0; 252 while (Size != 0) { 253 unsigned VTSize = VT.getSizeInBits() / 8; 254 while (VTSize > Size) { 255 // For now, only use non-vector load / store's for the left-over pieces. 256 EVT NewVT = VT; 257 unsigned NewVTSize; 258 259 bool Found = false; 260 if (VT.isVector() || VT.isFloatingPoint()) { 261 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 262 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 263 isSafeMemOpType(NewVT.getSimpleVT())) 264 Found = true; 265 else if (NewVT == MVT::i64 && 266 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 267 isSafeMemOpType(MVT::f64)) { 268 // i64 is usually not legal on 32-bit targets, but f64 may be. 269 NewVT = MVT::f64; 270 Found = true; 271 } 272 } 273 274 if (!Found) { 275 do { 276 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 277 if (NewVT == MVT::i8) 278 break; 279 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 280 } 281 NewVTSize = NewVT.getSizeInBits() / 8; 282 283 // If the new VT cannot cover all of the remaining bits, then consider 284 // issuing a (or a pair of) unaligned and overlapping load / store. 285 bool Fast; 286 if (NumMemOps && AllowOverlap && NewVTSize < Size && 287 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 288 MachineMemOperand::MONone, &Fast) && 289 Fast) 290 VTSize = Size; 291 else { 292 VT = NewVT; 293 VTSize = NewVTSize; 294 } 295 } 296 297 if (++NumMemOps > Limit) 298 return false; 299 300 MemOps.push_back(VT); 301 Size -= VTSize; 302 } 303 304 return true; 305 } 306 307 /// Soften the operands of a comparison. This code is shared among BR_CC, 308 /// SELECT_CC, and SETCC handlers. 309 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 310 SDValue &NewLHS, SDValue &NewRHS, 311 ISD::CondCode &CCCode, 312 const SDLoc &dl, const SDValue OldLHS, 313 const SDValue OldRHS) const { 314 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 315 && "Unsupported setcc type!"); 316 317 // Expand into one or more soft-fp libcall(s). 318 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 319 bool ShouldInvertCC = false; 320 switch (CCCode) { 321 case ISD::SETEQ: 322 case ISD::SETOEQ: 323 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 324 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 325 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 326 break; 327 case ISD::SETNE: 328 case ISD::SETUNE: 329 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 330 (VT == MVT::f64) ? RTLIB::UNE_F64 : 331 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 332 break; 333 case ISD::SETGE: 334 case ISD::SETOGE: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 336 (VT == MVT::f64) ? RTLIB::OGE_F64 : 337 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 338 break; 339 case ISD::SETLT: 340 case ISD::SETOLT: 341 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 342 (VT == MVT::f64) ? RTLIB::OLT_F64 : 343 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 344 break; 345 case ISD::SETLE: 346 case ISD::SETOLE: 347 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 348 (VT == MVT::f64) ? RTLIB::OLE_F64 : 349 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 350 break; 351 case ISD::SETGT: 352 case ISD::SETOGT: 353 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 354 (VT == MVT::f64) ? RTLIB::OGT_F64 : 355 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 356 break; 357 case ISD::SETUO: 358 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 359 (VT == MVT::f64) ? RTLIB::UO_F64 : 360 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 361 break; 362 case ISD::SETO: 363 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 364 (VT == MVT::f64) ? RTLIB::O_F64 : 365 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 366 break; 367 case ISD::SETONE: 368 // SETONE = SETOLT | SETOGT 369 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 370 (VT == MVT::f64) ? RTLIB::OLT_F64 : 371 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 372 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 373 (VT == MVT::f64) ? RTLIB::OGT_F64 : 374 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 375 break; 376 case ISD::SETUEQ: 377 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 378 (VT == MVT::f64) ? RTLIB::UO_F64 : 379 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 380 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 381 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 382 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 383 break; 384 default: 385 // Invert CC for unordered comparisons 386 ShouldInvertCC = true; 387 switch (CCCode) { 388 case ISD::SETULT: 389 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 390 (VT == MVT::f64) ? RTLIB::OGE_F64 : 391 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 392 break; 393 case ISD::SETULE: 394 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 395 (VT == MVT::f64) ? RTLIB::OGT_F64 : 396 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 397 break; 398 case ISD::SETUGT: 399 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 400 (VT == MVT::f64) ? RTLIB::OLE_F64 : 401 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 402 break; 403 case ISD::SETUGE: 404 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 405 (VT == MVT::f64) ? RTLIB::OLT_F64 : 406 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 407 break; 408 default: llvm_unreachable("Do not know how to soften this setcc!"); 409 } 410 } 411 412 // Use the target specific return value for comparions lib calls. 413 EVT RetVT = getCmpLibcallReturnType(); 414 SDValue Ops[2] = {NewLHS, NewRHS}; 415 TargetLowering::MakeLibCallOptions CallOptions; 416 EVT OpsVT[2] = { OldLHS.getValueType(), 417 OldRHS.getValueType() }; 418 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 419 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first; 420 NewRHS = DAG.getConstant(0, dl, RetVT); 421 422 CCCode = getCmpLibcallCC(LC1); 423 if (ShouldInvertCC) 424 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 425 426 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 427 SDValue Tmp = DAG.getNode( 428 ISD::SETCC, dl, 429 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 430 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 431 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first; 432 NewLHS = DAG.getNode( 433 ISD::SETCC, dl, 434 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 435 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 436 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 437 NewRHS = SDValue(); 438 } 439 } 440 441 /// Return the entry encoding for a jump table in the current function. The 442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 443 unsigned TargetLowering::getJumpTableEncoding() const { 444 // In non-pic modes, just use the address of a block. 445 if (!isPositionIndependent()) 446 return MachineJumpTableInfo::EK_BlockAddress; 447 448 // In PIC mode, if the target supports a GPRel32 directive, use it. 449 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 450 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 451 452 // Otherwise, use a label difference. 453 return MachineJumpTableInfo::EK_LabelDifference32; 454 } 455 456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 457 SelectionDAG &DAG) const { 458 // If our PIC model is GP relative, use the global offset table as the base. 459 unsigned JTEncoding = getJumpTableEncoding(); 460 461 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 462 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 463 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 464 465 return Table; 466 } 467 468 /// This returns the relocation base for the given PIC jumptable, the same as 469 /// getPICJumpTableRelocBase, but as an MCExpr. 470 const MCExpr * 471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 472 unsigned JTI,MCContext &Ctx) const{ 473 // The normal PIC reloc base is the label at the start of the jump table. 474 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 475 } 476 477 bool 478 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 479 const TargetMachine &TM = getTargetMachine(); 480 const GlobalValue *GV = GA->getGlobal(); 481 482 // If the address is not even local to this DSO we will have to load it from 483 // a got and then add the offset. 484 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 485 return false; 486 487 // If the code is position independent we will have to add a base register. 488 if (isPositionIndependent()) 489 return false; 490 491 // Otherwise we can do it. 492 return true; 493 } 494 495 //===----------------------------------------------------------------------===// 496 // Optimization Methods 497 //===----------------------------------------------------------------------===// 498 499 /// If the specified instruction has a constant integer operand and there are 500 /// bits set in that constant that are not demanded, then clear those bits and 501 /// return true. 502 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 503 TargetLoweringOpt &TLO) const { 504 SDLoc DL(Op); 505 unsigned Opcode = Op.getOpcode(); 506 507 // Do target-specific constant optimization. 508 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 509 return TLO.New.getNode(); 510 511 // FIXME: ISD::SELECT, ISD::SELECT_CC 512 switch (Opcode) { 513 default: 514 break; 515 case ISD::XOR: 516 case ISD::AND: 517 case ISD::OR: { 518 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 519 if (!Op1C) 520 return false; 521 522 // If this is a 'not' op, don't touch it because that's a canonical form. 523 const APInt &C = Op1C->getAPIntValue(); 524 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 525 return false; 526 527 if (!C.isSubsetOf(Demanded)) { 528 EVT VT = Op.getValueType(); 529 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 530 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 531 return TLO.CombineTo(Op, NewOp); 532 } 533 534 break; 535 } 536 } 537 538 return false; 539 } 540 541 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 542 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 543 /// generalized for targets with other types of implicit widening casts. 544 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 545 const APInt &Demanded, 546 TargetLoweringOpt &TLO) const { 547 assert(Op.getNumOperands() == 2 && 548 "ShrinkDemandedOp only supports binary operators!"); 549 assert(Op.getNode()->getNumValues() == 1 && 550 "ShrinkDemandedOp only supports nodes with one result!"); 551 552 SelectionDAG &DAG = TLO.DAG; 553 SDLoc dl(Op); 554 555 // Early return, as this function cannot handle vector types. 556 if (Op.getValueType().isVector()) 557 return false; 558 559 // Don't do this if the node has another user, which may require the 560 // full value. 561 if (!Op.getNode()->hasOneUse()) 562 return false; 563 564 // Search for the smallest integer type with free casts to and from 565 // Op's type. For expedience, just check power-of-2 integer types. 566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 567 unsigned DemandedSize = Demanded.getActiveBits(); 568 unsigned SmallVTBits = DemandedSize; 569 if (!isPowerOf2_32(SmallVTBits)) 570 SmallVTBits = NextPowerOf2(SmallVTBits); 571 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 572 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 573 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 574 TLI.isZExtFree(SmallVT, Op.getValueType())) { 575 // We found a type with free casts. 576 SDValue X = DAG.getNode( 577 Op.getOpcode(), dl, SmallVT, 578 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 579 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 580 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 581 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 582 return TLO.CombineTo(Op, Z); 583 } 584 } 585 return false; 586 } 587 588 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 589 DAGCombinerInfo &DCI) const { 590 SelectionDAG &DAG = DCI.DAG; 591 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 592 !DCI.isBeforeLegalizeOps()); 593 KnownBits Known; 594 595 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 596 if (Simplified) { 597 DCI.AddToWorklist(Op.getNode()); 598 DCI.CommitTargetLoweringOpt(TLO); 599 } 600 return Simplified; 601 } 602 603 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 604 KnownBits &Known, 605 TargetLoweringOpt &TLO, 606 unsigned Depth, 607 bool AssumeSingleUse) const { 608 EVT VT = Op.getValueType(); 609 APInt DemandedElts = VT.isVector() 610 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 611 : APInt(1, 1); 612 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 613 AssumeSingleUse); 614 } 615 616 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 617 // TODO: Under what circumstances can we create nodes? Constant folding? 618 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 619 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 620 SelectionDAG &DAG, unsigned Depth) const { 621 // Limit search depth. 622 if (Depth >= SelectionDAG::MaxRecursionDepth) 623 return SDValue(); 624 625 // Ignore UNDEFs. 626 if (Op.isUndef()) 627 return SDValue(); 628 629 // Not demanding any bits/elts from Op. 630 if (DemandedBits == 0 || DemandedElts == 0) 631 return DAG.getUNDEF(Op.getValueType()); 632 633 unsigned NumElts = DemandedElts.getBitWidth(); 634 KnownBits LHSKnown, RHSKnown; 635 switch (Op.getOpcode()) { 636 case ISD::BITCAST: { 637 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 638 EVT SrcVT = Src.getValueType(); 639 EVT DstVT = Op.getValueType(); 640 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 641 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 642 643 if (NumSrcEltBits == NumDstEltBits) 644 if (SDValue V = SimplifyMultipleUseDemandedBits( 645 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 646 return DAG.getBitcast(DstVT, V); 647 648 // TODO - bigendian once we have test coverage. 649 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 650 DAG.getDataLayout().isLittleEndian()) { 651 unsigned Scale = NumDstEltBits / NumSrcEltBits; 652 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 653 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 654 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 655 for (unsigned i = 0; i != Scale; ++i) { 656 unsigned Offset = i * NumSrcEltBits; 657 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 658 if (!Sub.isNullValue()) { 659 DemandedSrcBits |= Sub; 660 for (unsigned j = 0; j != NumElts; ++j) 661 if (DemandedElts[j]) 662 DemandedSrcElts.setBit((j * Scale) + i); 663 } 664 } 665 666 if (SDValue V = SimplifyMultipleUseDemandedBits( 667 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 668 return DAG.getBitcast(DstVT, V); 669 } 670 671 // TODO - bigendian once we have test coverage. 672 if ((NumSrcEltBits % NumDstEltBits) == 0 && 673 DAG.getDataLayout().isLittleEndian()) { 674 unsigned Scale = NumSrcEltBits / NumDstEltBits; 675 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 676 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 677 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 678 for (unsigned i = 0; i != NumElts; ++i) 679 if (DemandedElts[i]) { 680 unsigned Offset = (i % Scale) * NumDstEltBits; 681 DemandedSrcBits.insertBits(DemandedBits, Offset); 682 DemandedSrcElts.setBit(i / Scale); 683 } 684 685 if (SDValue V = SimplifyMultipleUseDemandedBits( 686 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 687 return DAG.getBitcast(DstVT, V); 688 } 689 690 break; 691 } 692 case ISD::AND: { 693 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 694 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 695 696 // If all of the demanded bits are known 1 on one side, return the other. 697 // These bits cannot contribute to the result of the 'and' in this 698 // context. 699 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 700 return Op.getOperand(0); 701 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 702 return Op.getOperand(1); 703 break; 704 } 705 case ISD::OR: { 706 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 707 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 708 709 // If all of the demanded bits are known zero on one side, return the 710 // other. These bits cannot contribute to the result of the 'or' in this 711 // context. 712 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 713 return Op.getOperand(0); 714 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 715 return Op.getOperand(1); 716 break; 717 } 718 case ISD::XOR: { 719 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 720 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 721 722 // If all of the demanded bits are known zero on one side, return the 723 // other. 724 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 725 return Op.getOperand(0); 726 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 727 return Op.getOperand(1); 728 break; 729 } 730 case ISD::SIGN_EXTEND_INREG: { 731 // If none of the extended bits are demanded, eliminate the sextinreg. 732 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 733 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 734 return Op.getOperand(0); 735 break; 736 } 737 case ISD::INSERT_VECTOR_ELT: { 738 // If we don't demand the inserted element, return the base vector. 739 SDValue Vec = Op.getOperand(0); 740 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 741 EVT VecVT = Vec.getValueType(); 742 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 743 !DemandedElts[CIdx->getZExtValue()]) 744 return Vec; 745 break; 746 } 747 case ISD::VECTOR_SHUFFLE: { 748 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 749 750 // If all the demanded elts are from one operand and are inline, 751 // then we can use the operand directly. 752 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 753 for (unsigned i = 0; i != NumElts; ++i) { 754 int M = ShuffleMask[i]; 755 if (M < 0 || !DemandedElts[i]) 756 continue; 757 AllUndef = false; 758 IdentityLHS &= (M == (int)i); 759 IdentityRHS &= ((M - NumElts) == i); 760 } 761 762 if (AllUndef) 763 return DAG.getUNDEF(Op.getValueType()); 764 if (IdentityLHS) 765 return Op.getOperand(0); 766 if (IdentityRHS) 767 return Op.getOperand(1); 768 break; 769 } 770 default: 771 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 772 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 773 Op, DemandedBits, DemandedElts, DAG, Depth)) 774 return V; 775 break; 776 } 777 return SDValue(); 778 } 779 780 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 781 /// result of Op are ever used downstream. If we can use this information to 782 /// simplify Op, create a new simplified DAG node and return true, returning the 783 /// original and new nodes in Old and New. Otherwise, analyze the expression and 784 /// return a mask of Known bits for the expression (used to simplify the 785 /// caller). The Known bits may only be accurate for those bits in the 786 /// OriginalDemandedBits and OriginalDemandedElts. 787 bool TargetLowering::SimplifyDemandedBits( 788 SDValue Op, const APInt &OriginalDemandedBits, 789 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 790 unsigned Depth, bool AssumeSingleUse) const { 791 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 792 assert(Op.getScalarValueSizeInBits() == BitWidth && 793 "Mask size mismatches value type size!"); 794 795 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 796 assert((!Op.getValueType().isVector() || 797 NumElts == Op.getValueType().getVectorNumElements()) && 798 "Unexpected vector size"); 799 800 APInt DemandedBits = OriginalDemandedBits; 801 APInt DemandedElts = OriginalDemandedElts; 802 SDLoc dl(Op); 803 auto &DL = TLO.DAG.getDataLayout(); 804 805 // Don't know anything. 806 Known = KnownBits(BitWidth); 807 808 // Undef operand. 809 if (Op.isUndef()) 810 return false; 811 812 if (Op.getOpcode() == ISD::Constant) { 813 // We know all of the bits for a constant! 814 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 815 Known.Zero = ~Known.One; 816 return false; 817 } 818 819 // Other users may use these bits. 820 EVT VT = Op.getValueType(); 821 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 822 if (Depth != 0) { 823 // If not at the root, Just compute the Known bits to 824 // simplify things downstream. 825 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 826 return false; 827 } 828 // If this is the root being simplified, allow it to have multiple uses, 829 // just set the DemandedBits/Elts to all bits. 830 DemandedBits = APInt::getAllOnesValue(BitWidth); 831 DemandedElts = APInt::getAllOnesValue(NumElts); 832 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 833 // Not demanding any bits/elts from Op. 834 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 835 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 836 // Limit search depth. 837 return false; 838 } 839 840 KnownBits Known2, KnownOut; 841 switch (Op.getOpcode()) { 842 case ISD::TargetConstant: 843 llvm_unreachable("Can't simplify this node"); 844 case ISD::SCALAR_TO_VECTOR: { 845 if (!DemandedElts[0]) 846 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 847 848 KnownBits SrcKnown; 849 SDValue Src = Op.getOperand(0); 850 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 851 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 852 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 853 return true; 854 Known = SrcKnown.zextOrTrunc(BitWidth, false); 855 break; 856 } 857 case ISD::BUILD_VECTOR: 858 // Collect the known bits that are shared by every demanded element. 859 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 860 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 861 return false; // Don't fall through, will infinitely loop. 862 case ISD::LOAD: { 863 LoadSDNode *LD = cast<LoadSDNode>(Op); 864 if (getTargetConstantFromLoad(LD)) { 865 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 866 return false; // Don't fall through, will infinitely loop. 867 } 868 break; 869 } 870 case ISD::INSERT_VECTOR_ELT: { 871 SDValue Vec = Op.getOperand(0); 872 SDValue Scl = Op.getOperand(1); 873 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 874 EVT VecVT = Vec.getValueType(); 875 876 // If index isn't constant, assume we need all vector elements AND the 877 // inserted element. 878 APInt DemandedVecElts(DemandedElts); 879 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 880 unsigned Idx = CIdx->getZExtValue(); 881 DemandedVecElts.clearBit(Idx); 882 883 // Inserted element is not required. 884 if (!DemandedElts[Idx]) 885 return TLO.CombineTo(Op, Vec); 886 } 887 888 KnownBits KnownScl; 889 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 890 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 891 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 892 return true; 893 894 Known = KnownScl.zextOrTrunc(BitWidth, false); 895 896 KnownBits KnownVec; 897 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 898 Depth + 1)) 899 return true; 900 901 if (!!DemandedVecElts) { 902 Known.One &= KnownVec.One; 903 Known.Zero &= KnownVec.Zero; 904 } 905 906 return false; 907 } 908 case ISD::INSERT_SUBVECTOR: { 909 SDValue Base = Op.getOperand(0); 910 SDValue Sub = Op.getOperand(1); 911 EVT SubVT = Sub.getValueType(); 912 unsigned NumSubElts = SubVT.getVectorNumElements(); 913 914 // If index isn't constant, assume we need the original demanded base 915 // elements and ALL the inserted subvector elements. 916 APInt BaseElts = DemandedElts; 917 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 918 if (isa<ConstantSDNode>(Op.getOperand(2))) { 919 const APInt &Idx = Op.getConstantOperandAPInt(2); 920 if (Idx.ule(NumElts - NumSubElts)) { 921 unsigned SubIdx = Idx.getZExtValue(); 922 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 923 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 924 } 925 } 926 927 KnownBits KnownSub, KnownBase; 928 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 929 Depth + 1)) 930 return true; 931 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 932 Depth + 1)) 933 return true; 934 935 Known.Zero.setAllBits(); 936 Known.One.setAllBits(); 937 if (!!SubElts) { 938 Known.One &= KnownSub.One; 939 Known.Zero &= KnownSub.Zero; 940 } 941 if (!!BaseElts) { 942 Known.One &= KnownBase.One; 943 Known.Zero &= KnownBase.Zero; 944 } 945 break; 946 } 947 case ISD::EXTRACT_SUBVECTOR: { 948 // If index isn't constant, assume we need all the source vector elements. 949 SDValue Src = Op.getOperand(0); 950 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 951 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 952 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 953 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 954 // Offset the demanded elts by the subvector index. 955 uint64_t Idx = SubIdx->getZExtValue(); 956 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 957 } 958 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 959 return true; 960 break; 961 } 962 case ISD::CONCAT_VECTORS: { 963 Known.Zero.setAllBits(); 964 Known.One.setAllBits(); 965 EVT SubVT = Op.getOperand(0).getValueType(); 966 unsigned NumSubVecs = Op.getNumOperands(); 967 unsigned NumSubElts = SubVT.getVectorNumElements(); 968 for (unsigned i = 0; i != NumSubVecs; ++i) { 969 APInt DemandedSubElts = 970 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 971 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 972 Known2, TLO, Depth + 1)) 973 return true; 974 // Known bits are shared by every demanded subvector element. 975 if (!!DemandedSubElts) { 976 Known.One &= Known2.One; 977 Known.Zero &= Known2.Zero; 978 } 979 } 980 break; 981 } 982 case ISD::VECTOR_SHUFFLE: { 983 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 984 985 // Collect demanded elements from shuffle operands.. 986 APInt DemandedLHS(NumElts, 0); 987 APInt DemandedRHS(NumElts, 0); 988 for (unsigned i = 0; i != NumElts; ++i) { 989 if (!DemandedElts[i]) 990 continue; 991 int M = ShuffleMask[i]; 992 if (M < 0) { 993 // For UNDEF elements, we don't know anything about the common state of 994 // the shuffle result. 995 DemandedLHS.clearAllBits(); 996 DemandedRHS.clearAllBits(); 997 break; 998 } 999 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1000 if (M < (int)NumElts) 1001 DemandedLHS.setBit(M); 1002 else 1003 DemandedRHS.setBit(M - NumElts); 1004 } 1005 1006 if (!!DemandedLHS || !!DemandedRHS) { 1007 SDValue Op0 = Op.getOperand(0); 1008 SDValue Op1 = Op.getOperand(1); 1009 1010 Known.Zero.setAllBits(); 1011 Known.One.setAllBits(); 1012 if (!!DemandedLHS) { 1013 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1014 Depth + 1)) 1015 return true; 1016 Known.One &= Known2.One; 1017 Known.Zero &= Known2.Zero; 1018 } 1019 if (!!DemandedRHS) { 1020 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1021 Depth + 1)) 1022 return true; 1023 Known.One &= Known2.One; 1024 Known.Zero &= Known2.Zero; 1025 } 1026 1027 // Attempt to avoid multi-use ops if we don't need anything from them. 1028 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1029 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1030 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1031 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1032 if (DemandedOp0 || DemandedOp1) { 1033 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1034 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1035 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1036 return TLO.CombineTo(Op, NewOp); 1037 } 1038 } 1039 break; 1040 } 1041 case ISD::AND: { 1042 SDValue Op0 = Op.getOperand(0); 1043 SDValue Op1 = Op.getOperand(1); 1044 1045 // If the RHS is a constant, check to see if the LHS would be zero without 1046 // using the bits from the RHS. Below, we use knowledge about the RHS to 1047 // simplify the LHS, here we're using information from the LHS to simplify 1048 // the RHS. 1049 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1050 // Do not increment Depth here; that can cause an infinite loop. 1051 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1052 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1053 if ((LHSKnown.Zero & DemandedBits) == 1054 (~RHSC->getAPIntValue() & DemandedBits)) 1055 return TLO.CombineTo(Op, Op0); 1056 1057 // If any of the set bits in the RHS are known zero on the LHS, shrink 1058 // the constant. 1059 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1060 return true; 1061 1062 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1063 // constant, but if this 'and' is only clearing bits that were just set by 1064 // the xor, then this 'and' can be eliminated by shrinking the mask of 1065 // the xor. For example, for a 32-bit X: 1066 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1067 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1068 LHSKnown.One == ~RHSC->getAPIntValue()) { 1069 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1070 return TLO.CombineTo(Op, Xor); 1071 } 1072 } 1073 1074 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1075 Depth + 1)) 1076 return true; 1077 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1078 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1079 Known2, TLO, Depth + 1)) 1080 return true; 1081 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1082 1083 // Attempt to avoid multi-use ops if we don't need anything from them. 1084 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1085 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1086 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1087 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1088 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1089 if (DemandedOp0 || DemandedOp1) { 1090 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1091 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1092 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1093 return TLO.CombineTo(Op, NewOp); 1094 } 1095 } 1096 1097 // If all of the demanded bits are known one on one side, return the other. 1098 // These bits cannot contribute to the result of the 'and'. 1099 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1100 return TLO.CombineTo(Op, Op0); 1101 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1102 return TLO.CombineTo(Op, Op1); 1103 // If all of the demanded bits in the inputs are known zeros, return zero. 1104 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1105 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1106 // If the RHS is a constant, see if we can simplify it. 1107 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1108 return true; 1109 // If the operation can be done in a smaller type, do so. 1110 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1111 return true; 1112 1113 // Output known-1 bits are only known if set in both the LHS & RHS. 1114 Known.One &= Known2.One; 1115 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1116 Known.Zero |= Known2.Zero; 1117 break; 1118 } 1119 case ISD::OR: { 1120 SDValue Op0 = Op.getOperand(0); 1121 SDValue Op1 = Op.getOperand(1); 1122 1123 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1124 Depth + 1)) 1125 return true; 1126 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1127 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1128 Known2, TLO, Depth + 1)) 1129 return true; 1130 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1131 1132 // Attempt to avoid multi-use ops if we don't need anything from them. 1133 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1134 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1135 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1136 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1137 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1138 if (DemandedOp0 || DemandedOp1) { 1139 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1140 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1141 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1142 return TLO.CombineTo(Op, NewOp); 1143 } 1144 } 1145 1146 // If all of the demanded bits are known zero on one side, return the other. 1147 // These bits cannot contribute to the result of the 'or'. 1148 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1149 return TLO.CombineTo(Op, Op0); 1150 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1151 return TLO.CombineTo(Op, Op1); 1152 // If the RHS is a constant, see if we can simplify it. 1153 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1154 return true; 1155 // If the operation can be done in a smaller type, do so. 1156 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1157 return true; 1158 1159 // Output known-0 bits are only known if clear in both the LHS & RHS. 1160 Known.Zero &= Known2.Zero; 1161 // Output known-1 are known to be set if set in either the LHS | RHS. 1162 Known.One |= Known2.One; 1163 break; 1164 } 1165 case ISD::XOR: { 1166 SDValue Op0 = Op.getOperand(0); 1167 SDValue Op1 = Op.getOperand(1); 1168 1169 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1170 Depth + 1)) 1171 return true; 1172 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1173 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1174 Depth + 1)) 1175 return true; 1176 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1177 1178 // Attempt to avoid multi-use ops if we don't need anything from them. 1179 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1180 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1181 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1182 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1183 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1184 if (DemandedOp0 || DemandedOp1) { 1185 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1186 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1187 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1188 return TLO.CombineTo(Op, NewOp); 1189 } 1190 } 1191 1192 // If all of the demanded bits are known zero on one side, return the other. 1193 // These bits cannot contribute to the result of the 'xor'. 1194 if (DemandedBits.isSubsetOf(Known.Zero)) 1195 return TLO.CombineTo(Op, Op0); 1196 if (DemandedBits.isSubsetOf(Known2.Zero)) 1197 return TLO.CombineTo(Op, Op1); 1198 // If the operation can be done in a smaller type, do so. 1199 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1200 return true; 1201 1202 // If all of the unknown bits are known to be zero on one side or the other 1203 // (but not both) turn this into an *inclusive* or. 1204 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1205 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1206 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1207 1208 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1209 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1210 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1211 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1212 1213 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1214 // If one side is a constant, and all of the known set bits on the other 1215 // side are also set in the constant, turn this into an AND, as we know 1216 // the bits will be cleared. 1217 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1218 // NB: it is okay if more bits are known than are requested 1219 if (C->getAPIntValue() == Known2.One) { 1220 SDValue ANDC = 1221 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1222 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1223 } 1224 1225 // If the RHS is a constant, see if we can change it. Don't alter a -1 1226 // constant because that's a 'not' op, and that is better for combining 1227 // and codegen. 1228 if (!C->isAllOnesValue()) { 1229 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1230 // We're flipping all demanded bits. Flip the undemanded bits too. 1231 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1232 return TLO.CombineTo(Op, New); 1233 } 1234 // If we can't turn this into a 'not', try to shrink the constant. 1235 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1236 return true; 1237 } 1238 } 1239 1240 Known = std::move(KnownOut); 1241 break; 1242 } 1243 case ISD::SELECT: 1244 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1245 Depth + 1)) 1246 return true; 1247 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1248 Depth + 1)) 1249 return true; 1250 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1251 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1252 1253 // If the operands are constants, see if we can simplify them. 1254 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1255 return true; 1256 1257 // Only known if known in both the LHS and RHS. 1258 Known.One &= Known2.One; 1259 Known.Zero &= Known2.Zero; 1260 break; 1261 case ISD::SELECT_CC: 1262 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1263 Depth + 1)) 1264 return true; 1265 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1270 1271 // If the operands are constants, see if we can simplify them. 1272 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1273 return true; 1274 1275 // Only known if known in both the LHS and RHS. 1276 Known.One &= Known2.One; 1277 Known.Zero &= Known2.Zero; 1278 break; 1279 case ISD::SETCC: { 1280 SDValue Op0 = Op.getOperand(0); 1281 SDValue Op1 = Op.getOperand(1); 1282 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1283 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1284 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1285 // -1, we may be able to bypass the setcc. 1286 if (DemandedBits.isSignMask() && 1287 Op0.getScalarValueSizeInBits() == BitWidth && 1288 getBooleanContents(VT) == 1289 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1290 // If we're testing X < 0, then this compare isn't needed - just use X! 1291 // FIXME: We're limiting to integer types here, but this should also work 1292 // if we don't care about FP signed-zero. The use of SETLT with FP means 1293 // that we don't care about NaNs. 1294 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1295 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1296 return TLO.CombineTo(Op, Op0); 1297 1298 // TODO: Should we check for other forms of sign-bit comparisons? 1299 // Examples: X <= -1, X >= 0 1300 } 1301 if (getBooleanContents(Op0.getValueType()) == 1302 TargetLowering::ZeroOrOneBooleanContent && 1303 BitWidth > 1) 1304 Known.Zero.setBitsFrom(1); 1305 break; 1306 } 1307 case ISD::SHL: { 1308 SDValue Op0 = Op.getOperand(0); 1309 SDValue Op1 = Op.getOperand(1); 1310 1311 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1312 // If the shift count is an invalid immediate, don't do anything. 1313 if (SA->getAPIntValue().uge(BitWidth)) 1314 break; 1315 1316 unsigned ShAmt = SA->getZExtValue(); 1317 if (ShAmt == 0) 1318 return TLO.CombineTo(Op, Op0); 1319 1320 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1321 // single shift. We can do this if the bottom bits (which are shifted 1322 // out) are never demanded. 1323 // TODO - support non-uniform vector amounts. 1324 if (Op0.getOpcode() == ISD::SRL) { 1325 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1326 if (ConstantSDNode *SA2 = 1327 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1328 if (SA2->getAPIntValue().ult(BitWidth)) { 1329 unsigned C1 = SA2->getZExtValue(); 1330 unsigned Opc = ISD::SHL; 1331 int Diff = ShAmt - C1; 1332 if (Diff < 0) { 1333 Diff = -Diff; 1334 Opc = ISD::SRL; 1335 } 1336 1337 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1338 return TLO.CombineTo( 1339 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1340 } 1341 } 1342 } 1343 } 1344 1345 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1346 Known, TLO, Depth + 1)) 1347 return true; 1348 1349 // Try shrinking the operation as long as the shift amount will still be 1350 // in range. 1351 if ((ShAmt < DemandedBits.getActiveBits()) && 1352 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1353 return true; 1354 1355 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1356 // are not demanded. This will likely allow the anyext to be folded away. 1357 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1358 SDValue InnerOp = Op0.getOperand(0); 1359 EVT InnerVT = InnerOp.getValueType(); 1360 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1361 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1362 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1363 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1364 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1365 ShTy = InnerVT; 1366 SDValue NarrowShl = 1367 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1368 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1369 return TLO.CombineTo( 1370 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1371 } 1372 // Repeat the SHL optimization above in cases where an extension 1373 // intervenes: (shl (anyext (shr x, c1)), c2) to 1374 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1375 // aren't demanded (as above) and that the shifted upper c1 bits of 1376 // x aren't demanded. 1377 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1378 InnerOp.hasOneUse()) { 1379 if (ConstantSDNode *SA2 = 1380 isConstOrConstSplat(InnerOp.getOperand(1))) { 1381 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1382 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1383 DemandedBits.getActiveBits() <= 1384 (InnerBits - InnerShAmt + ShAmt) && 1385 DemandedBits.countTrailingZeros() >= ShAmt) { 1386 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1387 Op1.getValueType()); 1388 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1389 InnerOp.getOperand(0)); 1390 return TLO.CombineTo( 1391 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1392 } 1393 } 1394 } 1395 } 1396 1397 Known.Zero <<= ShAmt; 1398 Known.One <<= ShAmt; 1399 // low bits known zero. 1400 Known.Zero.setLowBits(ShAmt); 1401 } 1402 break; 1403 } 1404 case ISD::SRL: { 1405 SDValue Op0 = Op.getOperand(0); 1406 SDValue Op1 = Op.getOperand(1); 1407 1408 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1409 // If the shift count is an invalid immediate, don't do anything. 1410 if (SA->getAPIntValue().uge(BitWidth)) 1411 break; 1412 1413 unsigned ShAmt = SA->getZExtValue(); 1414 if (ShAmt == 0) 1415 return TLO.CombineTo(Op, Op0); 1416 1417 EVT ShiftVT = Op1.getValueType(); 1418 APInt InDemandedMask = (DemandedBits << ShAmt); 1419 1420 // If the shift is exact, then it does demand the low bits (and knows that 1421 // they are zero). 1422 if (Op->getFlags().hasExact()) 1423 InDemandedMask.setLowBits(ShAmt); 1424 1425 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1426 // single shift. We can do this if the top bits (which are shifted out) 1427 // are never demanded. 1428 // TODO - support non-uniform vector amounts. 1429 if (Op0.getOpcode() == ISD::SHL) { 1430 if (ConstantSDNode *SA2 = 1431 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1432 if (!DemandedBits.intersects( 1433 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1434 if (SA2->getAPIntValue().ult(BitWidth)) { 1435 unsigned C1 = SA2->getZExtValue(); 1436 unsigned Opc = ISD::SRL; 1437 int Diff = ShAmt - C1; 1438 if (Diff < 0) { 1439 Diff = -Diff; 1440 Opc = ISD::SHL; 1441 } 1442 1443 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1444 return TLO.CombineTo( 1445 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1446 } 1447 } 1448 } 1449 } 1450 1451 // Compute the new bits that are at the top now. 1452 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1453 Depth + 1)) 1454 return true; 1455 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1456 Known.Zero.lshrInPlace(ShAmt); 1457 Known.One.lshrInPlace(ShAmt); 1458 1459 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1460 } 1461 break; 1462 } 1463 case ISD::SRA: { 1464 SDValue Op0 = Op.getOperand(0); 1465 SDValue Op1 = Op.getOperand(1); 1466 1467 // If this is an arithmetic shift right and only the low-bit is set, we can 1468 // always convert this into a logical shr, even if the shift amount is 1469 // variable. The low bit of the shift cannot be an input sign bit unless 1470 // the shift amount is >= the size of the datatype, which is undefined. 1471 if (DemandedBits.isOneValue()) 1472 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1473 1474 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1475 // If the shift count is an invalid immediate, don't do anything. 1476 if (SA->getAPIntValue().uge(BitWidth)) 1477 break; 1478 1479 unsigned ShAmt = SA->getZExtValue(); 1480 if (ShAmt == 0) 1481 return TLO.CombineTo(Op, Op0); 1482 1483 APInt InDemandedMask = (DemandedBits << ShAmt); 1484 1485 // If the shift is exact, then it does demand the low bits (and knows that 1486 // they are zero). 1487 if (Op->getFlags().hasExact()) 1488 InDemandedMask.setLowBits(ShAmt); 1489 1490 // If any of the demanded bits are produced by the sign extension, we also 1491 // demand the input sign bit. 1492 if (DemandedBits.countLeadingZeros() < ShAmt) 1493 InDemandedMask.setSignBit(); 1494 1495 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1496 Depth + 1)) 1497 return true; 1498 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1499 Known.Zero.lshrInPlace(ShAmt); 1500 Known.One.lshrInPlace(ShAmt); 1501 1502 // If the input sign bit is known to be zero, or if none of the top bits 1503 // are demanded, turn this into an unsigned shift right. 1504 if (Known.Zero[BitWidth - ShAmt - 1] || 1505 DemandedBits.countLeadingZeros() >= ShAmt) { 1506 SDNodeFlags Flags; 1507 Flags.setExact(Op->getFlags().hasExact()); 1508 return TLO.CombineTo( 1509 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1510 } 1511 1512 int Log2 = DemandedBits.exactLogBase2(); 1513 if (Log2 >= 0) { 1514 // The bit must come from the sign. 1515 SDValue NewSA = 1516 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1517 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1518 } 1519 1520 if (Known.One[BitWidth - ShAmt - 1]) 1521 // New bits are known one. 1522 Known.One.setHighBits(ShAmt); 1523 } 1524 break; 1525 } 1526 case ISD::FSHL: 1527 case ISD::FSHR: { 1528 SDValue Op0 = Op.getOperand(0); 1529 SDValue Op1 = Op.getOperand(1); 1530 SDValue Op2 = Op.getOperand(2); 1531 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1532 1533 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1534 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1535 1536 // For fshl, 0-shift returns the 1st arg. 1537 // For fshr, 0-shift returns the 2nd arg. 1538 if (Amt == 0) { 1539 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1540 Known, TLO, Depth + 1)) 1541 return true; 1542 break; 1543 } 1544 1545 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1546 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1547 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1548 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1549 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1550 Depth + 1)) 1551 return true; 1552 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1553 Depth + 1)) 1554 return true; 1555 1556 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1557 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1558 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1559 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1560 Known.One |= Known2.One; 1561 Known.Zero |= Known2.Zero; 1562 } 1563 break; 1564 } 1565 case ISD::BITREVERSE: { 1566 SDValue Src = Op.getOperand(0); 1567 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1568 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1569 Depth + 1)) 1570 return true; 1571 Known.One = Known2.One.reverseBits(); 1572 Known.Zero = Known2.Zero.reverseBits(); 1573 break; 1574 } 1575 case ISD::SIGN_EXTEND_INREG: { 1576 SDValue Op0 = Op.getOperand(0); 1577 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1578 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1579 1580 // If we only care about the highest bit, don't bother shifting right. 1581 if (DemandedBits.isSignMask()) { 1582 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1583 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1584 // However if the input is already sign extended we expect the sign 1585 // extension to be dropped altogether later and do not simplify. 1586 if (!AlreadySignExtended) { 1587 // Compute the correct shift amount type, which must be getShiftAmountTy 1588 // for scalar types after legalization. 1589 EVT ShiftAmtTy = VT; 1590 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1591 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1592 1593 SDValue ShiftAmt = 1594 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1595 return TLO.CombineTo(Op, 1596 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1597 } 1598 } 1599 1600 // If none of the extended bits are demanded, eliminate the sextinreg. 1601 if (DemandedBits.getActiveBits() <= ExVTBits) 1602 return TLO.CombineTo(Op, Op0); 1603 1604 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1605 1606 // Since the sign extended bits are demanded, we know that the sign 1607 // bit is demanded. 1608 InputDemandedBits.setBit(ExVTBits - 1); 1609 1610 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1611 return true; 1612 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1613 1614 // If the sign bit of the input is known set or clear, then we know the 1615 // top bits of the result. 1616 1617 // If the input sign bit is known zero, convert this into a zero extension. 1618 if (Known.Zero[ExVTBits - 1]) 1619 return TLO.CombineTo( 1620 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1621 1622 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1623 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1624 Known.One.setBitsFrom(ExVTBits); 1625 Known.Zero &= Mask; 1626 } else { // Input sign bit unknown 1627 Known.Zero &= Mask; 1628 Known.One &= Mask; 1629 } 1630 break; 1631 } 1632 case ISD::BUILD_PAIR: { 1633 EVT HalfVT = Op.getOperand(0).getValueType(); 1634 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1635 1636 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1637 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1638 1639 KnownBits KnownLo, KnownHi; 1640 1641 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1642 return true; 1643 1644 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1645 return true; 1646 1647 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1648 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1649 1650 Known.One = KnownLo.One.zext(BitWidth) | 1651 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1652 break; 1653 } 1654 case ISD::ZERO_EXTEND: 1655 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1656 SDValue Src = Op.getOperand(0); 1657 EVT SrcVT = Src.getValueType(); 1658 unsigned InBits = SrcVT.getScalarSizeInBits(); 1659 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1660 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1661 1662 // If none of the top bits are demanded, convert this into an any_extend. 1663 if (DemandedBits.getActiveBits() <= InBits) { 1664 // If we only need the non-extended bits of the bottom element 1665 // then we can just bitcast to the result. 1666 if (IsVecInReg && DemandedElts == 1 && 1667 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1668 TLO.DAG.getDataLayout().isLittleEndian()) 1669 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1670 1671 unsigned Opc = 1672 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1673 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1674 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1675 } 1676 1677 APInt InDemandedBits = DemandedBits.trunc(InBits); 1678 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1679 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1680 Depth + 1)) 1681 return true; 1682 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1683 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1684 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1685 break; 1686 } 1687 case ISD::SIGN_EXTEND: 1688 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1689 SDValue Src = Op.getOperand(0); 1690 EVT SrcVT = Src.getValueType(); 1691 unsigned InBits = SrcVT.getScalarSizeInBits(); 1692 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1693 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1694 1695 // If none of the top bits are demanded, convert this into an any_extend. 1696 if (DemandedBits.getActiveBits() <= InBits) { 1697 // If we only need the non-extended bits of the bottom element 1698 // then we can just bitcast to the result. 1699 if (IsVecInReg && DemandedElts == 1 && 1700 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1701 TLO.DAG.getDataLayout().isLittleEndian()) 1702 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1703 1704 unsigned Opc = 1705 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1706 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1707 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1708 } 1709 1710 APInt InDemandedBits = DemandedBits.trunc(InBits); 1711 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1712 1713 // Since some of the sign extended bits are demanded, we know that the sign 1714 // bit is demanded. 1715 InDemandedBits.setBit(InBits - 1); 1716 1717 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1718 Depth + 1)) 1719 return true; 1720 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1721 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1722 1723 // If the sign bit is known one, the top bits match. 1724 Known = Known.sext(BitWidth); 1725 1726 // If the sign bit is known zero, convert this to a zero extend. 1727 if (Known.isNonNegative()) { 1728 unsigned Opc = 1729 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1730 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1731 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1732 } 1733 break; 1734 } 1735 case ISD::ANY_EXTEND: 1736 case ISD::ANY_EXTEND_VECTOR_INREG: { 1737 SDValue Src = Op.getOperand(0); 1738 EVT SrcVT = Src.getValueType(); 1739 unsigned InBits = SrcVT.getScalarSizeInBits(); 1740 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1741 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1742 1743 // If we only need the bottom element then we can just bitcast. 1744 // TODO: Handle ANY_EXTEND? 1745 if (IsVecInReg && DemandedElts == 1 && 1746 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1747 TLO.DAG.getDataLayout().isLittleEndian()) 1748 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1749 1750 APInt InDemandedBits = DemandedBits.trunc(InBits); 1751 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1752 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1753 Depth + 1)) 1754 return true; 1755 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1756 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1757 Known = Known.zext(BitWidth, false /* => any extend */); 1758 break; 1759 } 1760 case ISD::TRUNCATE: { 1761 SDValue Src = Op.getOperand(0); 1762 1763 // Simplify the input, using demanded bit information, and compute the known 1764 // zero/one bits live out. 1765 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1766 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1767 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1768 return true; 1769 Known = Known.trunc(BitWidth); 1770 1771 // Attempt to avoid multi-use ops if we don't need anything from them. 1772 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1773 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1774 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1775 1776 // If the input is only used by this truncate, see if we can shrink it based 1777 // on the known demanded bits. 1778 if (Src.getNode()->hasOneUse()) { 1779 switch (Src.getOpcode()) { 1780 default: 1781 break; 1782 case ISD::SRL: 1783 // Shrink SRL by a constant if none of the high bits shifted in are 1784 // demanded. 1785 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1786 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1787 // undesirable. 1788 break; 1789 1790 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1791 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1792 break; 1793 1794 SDValue Shift = Src.getOperand(1); 1795 uint64_t ShVal = ShAmt->getZExtValue(); 1796 1797 if (TLO.LegalTypes()) 1798 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1799 1800 APInt HighBits = 1801 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1802 HighBits.lshrInPlace(ShVal); 1803 HighBits = HighBits.trunc(BitWidth); 1804 1805 if (!(HighBits & DemandedBits)) { 1806 // None of the shifted in bits are needed. Add a truncate of the 1807 // shift input, then shift it. 1808 SDValue NewTrunc = 1809 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1810 return TLO.CombineTo( 1811 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1812 } 1813 break; 1814 } 1815 } 1816 1817 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1818 break; 1819 } 1820 case ISD::AssertZext: { 1821 // AssertZext demands all of the high bits, plus any of the low bits 1822 // demanded by its users. 1823 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1824 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1825 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1826 TLO, Depth + 1)) 1827 return true; 1828 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1829 1830 Known.Zero |= ~InMask; 1831 break; 1832 } 1833 case ISD::EXTRACT_VECTOR_ELT: { 1834 SDValue Src = Op.getOperand(0); 1835 SDValue Idx = Op.getOperand(1); 1836 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1837 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1838 1839 // Demand the bits from every vector element without a constant index. 1840 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1841 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1842 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1843 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1844 1845 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1846 // anything about the extended bits. 1847 APInt DemandedSrcBits = DemandedBits; 1848 if (BitWidth > EltBitWidth) 1849 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1850 1851 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1852 Depth + 1)) 1853 return true; 1854 1855 Known = Known2; 1856 if (BitWidth > EltBitWidth) 1857 Known = Known.zext(BitWidth, false /* => any extend */); 1858 break; 1859 } 1860 case ISD::BITCAST: { 1861 SDValue Src = Op.getOperand(0); 1862 EVT SrcVT = Src.getValueType(); 1863 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1864 1865 // If this is an FP->Int bitcast and if the sign bit is the only 1866 // thing demanded, turn this into a FGETSIGN. 1867 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1868 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1869 SrcVT.isFloatingPoint()) { 1870 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1871 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1872 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1873 SrcVT != MVT::f128) { 1874 // Cannot eliminate/lower SHL for f128 yet. 1875 EVT Ty = OpVTLegal ? VT : MVT::i32; 1876 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1877 // place. We expect the SHL to be eliminated by other optimizations. 1878 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1879 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1880 if (!OpVTLegal && OpVTSizeInBits > 32) 1881 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1882 unsigned ShVal = Op.getValueSizeInBits() - 1; 1883 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1884 return TLO.CombineTo(Op, 1885 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1886 } 1887 } 1888 1889 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1890 // Demand the elt/bit if any of the original elts/bits are demanded. 1891 // TODO - bigendian once we have test coverage. 1892 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1893 TLO.DAG.getDataLayout().isLittleEndian()) { 1894 unsigned Scale = BitWidth / NumSrcEltBits; 1895 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1896 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1897 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1898 for (unsigned i = 0; i != Scale; ++i) { 1899 unsigned Offset = i * NumSrcEltBits; 1900 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1901 if (!Sub.isNullValue()) { 1902 DemandedSrcBits |= Sub; 1903 for (unsigned j = 0; j != NumElts; ++j) 1904 if (DemandedElts[j]) 1905 DemandedSrcElts.setBit((j * Scale) + i); 1906 } 1907 } 1908 1909 APInt KnownSrcUndef, KnownSrcZero; 1910 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1911 KnownSrcZero, TLO, Depth + 1)) 1912 return true; 1913 1914 KnownBits KnownSrcBits; 1915 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1916 KnownSrcBits, TLO, Depth + 1)) 1917 return true; 1918 } else if ((NumSrcEltBits % BitWidth) == 0 && 1919 TLO.DAG.getDataLayout().isLittleEndian()) { 1920 unsigned Scale = NumSrcEltBits / BitWidth; 1921 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1922 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1923 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1924 for (unsigned i = 0; i != NumElts; ++i) 1925 if (DemandedElts[i]) { 1926 unsigned Offset = (i % Scale) * BitWidth; 1927 DemandedSrcBits.insertBits(DemandedBits, Offset); 1928 DemandedSrcElts.setBit(i / Scale); 1929 } 1930 1931 if (SrcVT.isVector()) { 1932 APInt KnownSrcUndef, KnownSrcZero; 1933 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1934 KnownSrcZero, TLO, Depth + 1)) 1935 return true; 1936 } 1937 1938 KnownBits KnownSrcBits; 1939 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1940 KnownSrcBits, TLO, Depth + 1)) 1941 return true; 1942 } 1943 1944 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1945 // recursive call where Known may be useful to the caller. 1946 if (Depth > 0) { 1947 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1948 return false; 1949 } 1950 break; 1951 } 1952 case ISD::ADD: 1953 case ISD::MUL: 1954 case ISD::SUB: { 1955 // Add, Sub, and Mul don't demand any bits in positions beyond that 1956 // of the highest bit demanded of them. 1957 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1958 SDNodeFlags Flags = Op.getNode()->getFlags(); 1959 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1960 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1961 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1962 Depth + 1) || 1963 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1964 Depth + 1) || 1965 // See if the operation should be performed at a smaller bit width. 1966 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1967 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1968 // Disable the nsw and nuw flags. We can no longer guarantee that we 1969 // won't wrap after simplification. 1970 Flags.setNoSignedWrap(false); 1971 Flags.setNoUnsignedWrap(false); 1972 SDValue NewOp = 1973 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1974 return TLO.CombineTo(Op, NewOp); 1975 } 1976 return true; 1977 } 1978 1979 // Attempt to avoid multi-use ops if we don't need anything from them. 1980 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1981 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1982 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1983 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1984 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1985 if (DemandedOp0 || DemandedOp1) { 1986 Flags.setNoSignedWrap(false); 1987 Flags.setNoUnsignedWrap(false); 1988 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1989 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1990 SDValue NewOp = 1991 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1992 return TLO.CombineTo(Op, NewOp); 1993 } 1994 } 1995 1996 // If we have a constant operand, we may be able to turn it into -1 if we 1997 // do not demand the high bits. This can make the constant smaller to 1998 // encode, allow more general folding, or match specialized instruction 1999 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2000 // is probably not useful (and could be detrimental). 2001 ConstantSDNode *C = isConstOrConstSplat(Op1); 2002 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2003 if (C && !C->isAllOnesValue() && !C->isOne() && 2004 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2005 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2006 // Disable the nsw and nuw flags. We can no longer guarantee that we 2007 // won't wrap after simplification. 2008 Flags.setNoSignedWrap(false); 2009 Flags.setNoUnsignedWrap(false); 2010 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2011 return TLO.CombineTo(Op, NewOp); 2012 } 2013 2014 LLVM_FALLTHROUGH; 2015 } 2016 default: 2017 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2018 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2019 Known, TLO, Depth)) 2020 return true; 2021 break; 2022 } 2023 2024 // Just use computeKnownBits to compute output bits. 2025 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2026 break; 2027 } 2028 2029 // If we know the value of all of the demanded bits, return this as a 2030 // constant. 2031 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2032 // Avoid folding to a constant if any OpaqueConstant is involved. 2033 const SDNode *N = Op.getNode(); 2034 for (SDNodeIterator I = SDNodeIterator::begin(N), 2035 E = SDNodeIterator::end(N); 2036 I != E; ++I) { 2037 SDNode *Op = *I; 2038 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2039 if (C->isOpaque()) 2040 return false; 2041 } 2042 // TODO: Handle float bits as well. 2043 if (VT.isInteger()) 2044 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2045 } 2046 2047 return false; 2048 } 2049 2050 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2051 const APInt &DemandedElts, 2052 APInt &KnownUndef, 2053 APInt &KnownZero, 2054 DAGCombinerInfo &DCI) const { 2055 SelectionDAG &DAG = DCI.DAG; 2056 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2057 !DCI.isBeforeLegalizeOps()); 2058 2059 bool Simplified = 2060 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2061 if (Simplified) { 2062 DCI.AddToWorklist(Op.getNode()); 2063 DCI.CommitTargetLoweringOpt(TLO); 2064 } 2065 2066 return Simplified; 2067 } 2068 2069 /// Given a vector binary operation and known undefined elements for each input 2070 /// operand, compute whether each element of the output is undefined. 2071 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2072 const APInt &UndefOp0, 2073 const APInt &UndefOp1) { 2074 EVT VT = BO.getValueType(); 2075 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2076 "Vector binop only"); 2077 2078 EVT EltVT = VT.getVectorElementType(); 2079 unsigned NumElts = VT.getVectorNumElements(); 2080 assert(UndefOp0.getBitWidth() == NumElts && 2081 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2082 2083 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2084 const APInt &UndefVals) { 2085 if (UndefVals[Index]) 2086 return DAG.getUNDEF(EltVT); 2087 2088 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2089 // Try hard to make sure that the getNode() call is not creating temporary 2090 // nodes. Ignore opaque integers because they do not constant fold. 2091 SDValue Elt = BV->getOperand(Index); 2092 auto *C = dyn_cast<ConstantSDNode>(Elt); 2093 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2094 return Elt; 2095 } 2096 2097 return SDValue(); 2098 }; 2099 2100 APInt KnownUndef = APInt::getNullValue(NumElts); 2101 for (unsigned i = 0; i != NumElts; ++i) { 2102 // If both inputs for this element are either constant or undef and match 2103 // the element type, compute the constant/undef result for this element of 2104 // the vector. 2105 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2106 // not handle FP constants. The code within getNode() should be refactored 2107 // to avoid the danger of creating a bogus temporary node here. 2108 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2109 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2110 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2111 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2112 KnownUndef.setBit(i); 2113 } 2114 return KnownUndef; 2115 } 2116 2117 bool TargetLowering::SimplifyDemandedVectorElts( 2118 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2119 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2120 bool AssumeSingleUse) const { 2121 EVT VT = Op.getValueType(); 2122 APInt DemandedElts = OriginalDemandedElts; 2123 unsigned NumElts = DemandedElts.getBitWidth(); 2124 assert(VT.isVector() && "Expected vector op"); 2125 assert(VT.getVectorNumElements() == NumElts && 2126 "Mask size mismatches value type element count!"); 2127 2128 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2129 2130 // Undef operand. 2131 if (Op.isUndef()) { 2132 KnownUndef.setAllBits(); 2133 return false; 2134 } 2135 2136 // If Op has other users, assume that all elements are needed. 2137 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2138 DemandedElts.setAllBits(); 2139 2140 // Not demanding any elements from Op. 2141 if (DemandedElts == 0) { 2142 KnownUndef.setAllBits(); 2143 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2144 } 2145 2146 // Limit search depth. 2147 if (Depth >= SelectionDAG::MaxRecursionDepth) 2148 return false; 2149 2150 SDLoc DL(Op); 2151 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2152 2153 switch (Op.getOpcode()) { 2154 case ISD::SCALAR_TO_VECTOR: { 2155 if (!DemandedElts[0]) { 2156 KnownUndef.setAllBits(); 2157 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2158 } 2159 KnownUndef.setHighBits(NumElts - 1); 2160 break; 2161 } 2162 case ISD::BITCAST: { 2163 SDValue Src = Op.getOperand(0); 2164 EVT SrcVT = Src.getValueType(); 2165 2166 // We only handle vectors here. 2167 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2168 if (!SrcVT.isVector()) 2169 break; 2170 2171 // Fast handling of 'identity' bitcasts. 2172 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2173 if (NumSrcElts == NumElts) 2174 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2175 KnownZero, TLO, Depth + 1); 2176 2177 APInt SrcZero, SrcUndef; 2178 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2179 2180 // Bitcast from 'large element' src vector to 'small element' vector, we 2181 // must demand a source element if any DemandedElt maps to it. 2182 if ((NumElts % NumSrcElts) == 0) { 2183 unsigned Scale = NumElts / NumSrcElts; 2184 for (unsigned i = 0; i != NumElts; ++i) 2185 if (DemandedElts[i]) 2186 SrcDemandedElts.setBit(i / Scale); 2187 2188 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2189 TLO, Depth + 1)) 2190 return true; 2191 2192 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2193 // of the large element. 2194 // TODO - bigendian once we have test coverage. 2195 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2196 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2197 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2198 for (unsigned i = 0; i != NumElts; ++i) 2199 if (DemandedElts[i]) { 2200 unsigned Ofs = (i % Scale) * EltSizeInBits; 2201 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2202 } 2203 2204 KnownBits Known; 2205 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2206 return true; 2207 } 2208 2209 // If the src element is zero/undef then all the output elements will be - 2210 // only demanded elements are guaranteed to be correct. 2211 for (unsigned i = 0; i != NumSrcElts; ++i) { 2212 if (SrcDemandedElts[i]) { 2213 if (SrcZero[i]) 2214 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2215 if (SrcUndef[i]) 2216 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2217 } 2218 } 2219 } 2220 2221 // Bitcast from 'small element' src vector to 'large element' vector, we 2222 // demand all smaller source elements covered by the larger demanded element 2223 // of this vector. 2224 if ((NumSrcElts % NumElts) == 0) { 2225 unsigned Scale = NumSrcElts / NumElts; 2226 for (unsigned i = 0; i != NumElts; ++i) 2227 if (DemandedElts[i]) 2228 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2229 2230 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2231 TLO, Depth + 1)) 2232 return true; 2233 2234 // If all the src elements covering an output element are zero/undef, then 2235 // the output element will be as well, assuming it was demanded. 2236 for (unsigned i = 0; i != NumElts; ++i) { 2237 if (DemandedElts[i]) { 2238 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2239 KnownZero.setBit(i); 2240 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2241 KnownUndef.setBit(i); 2242 } 2243 } 2244 } 2245 break; 2246 } 2247 case ISD::BUILD_VECTOR: { 2248 // Check all elements and simplify any unused elements with UNDEF. 2249 if (!DemandedElts.isAllOnesValue()) { 2250 // Don't simplify BROADCASTS. 2251 if (llvm::any_of(Op->op_values(), 2252 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2253 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2254 bool Updated = false; 2255 for (unsigned i = 0; i != NumElts; ++i) { 2256 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2257 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2258 KnownUndef.setBit(i); 2259 Updated = true; 2260 } 2261 } 2262 if (Updated) 2263 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2264 } 2265 } 2266 for (unsigned i = 0; i != NumElts; ++i) { 2267 SDValue SrcOp = Op.getOperand(i); 2268 if (SrcOp.isUndef()) { 2269 KnownUndef.setBit(i); 2270 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2271 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2272 KnownZero.setBit(i); 2273 } 2274 } 2275 break; 2276 } 2277 case ISD::CONCAT_VECTORS: { 2278 EVT SubVT = Op.getOperand(0).getValueType(); 2279 unsigned NumSubVecs = Op.getNumOperands(); 2280 unsigned NumSubElts = SubVT.getVectorNumElements(); 2281 for (unsigned i = 0; i != NumSubVecs; ++i) { 2282 SDValue SubOp = Op.getOperand(i); 2283 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2284 APInt SubUndef, SubZero; 2285 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2286 Depth + 1)) 2287 return true; 2288 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2289 KnownZero.insertBits(SubZero, i * NumSubElts); 2290 } 2291 break; 2292 } 2293 case ISD::INSERT_SUBVECTOR: { 2294 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2295 break; 2296 SDValue Base = Op.getOperand(0); 2297 SDValue Sub = Op.getOperand(1); 2298 EVT SubVT = Sub.getValueType(); 2299 unsigned NumSubElts = SubVT.getVectorNumElements(); 2300 const APInt &Idx = Op.getConstantOperandAPInt(2); 2301 if (Idx.ugt(NumElts - NumSubElts)) 2302 break; 2303 unsigned SubIdx = Idx.getZExtValue(); 2304 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2305 APInt SubUndef, SubZero; 2306 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2307 Depth + 1)) 2308 return true; 2309 APInt BaseElts = DemandedElts; 2310 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2311 2312 // If none of the base operand elements are demanded, replace it with undef. 2313 if (!BaseElts && !Base.isUndef()) 2314 return TLO.CombineTo(Op, 2315 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2316 TLO.DAG.getUNDEF(VT), 2317 Op.getOperand(1), 2318 Op.getOperand(2))); 2319 2320 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2321 Depth + 1)) 2322 return true; 2323 KnownUndef.insertBits(SubUndef, SubIdx); 2324 KnownZero.insertBits(SubZero, SubIdx); 2325 break; 2326 } 2327 case ISD::EXTRACT_SUBVECTOR: { 2328 SDValue Src = Op.getOperand(0); 2329 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2330 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2331 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2332 // Offset the demanded elts by the subvector index. 2333 uint64_t Idx = SubIdx->getZExtValue(); 2334 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2335 APInt SrcUndef, SrcZero; 2336 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2337 Depth + 1)) 2338 return true; 2339 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2340 KnownZero = SrcZero.extractBits(NumElts, Idx); 2341 } 2342 break; 2343 } 2344 case ISD::INSERT_VECTOR_ELT: { 2345 SDValue Vec = Op.getOperand(0); 2346 SDValue Scl = Op.getOperand(1); 2347 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2348 2349 // For a legal, constant insertion index, if we don't need this insertion 2350 // then strip it, else remove it from the demanded elts. 2351 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2352 unsigned Idx = CIdx->getZExtValue(); 2353 if (!DemandedElts[Idx]) 2354 return TLO.CombineTo(Op, Vec); 2355 2356 APInt DemandedVecElts(DemandedElts); 2357 DemandedVecElts.clearBit(Idx); 2358 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2359 KnownZero, TLO, Depth + 1)) 2360 return true; 2361 2362 KnownUndef.clearBit(Idx); 2363 if (Scl.isUndef()) 2364 KnownUndef.setBit(Idx); 2365 2366 KnownZero.clearBit(Idx); 2367 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2368 KnownZero.setBit(Idx); 2369 break; 2370 } 2371 2372 APInt VecUndef, VecZero; 2373 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2374 Depth + 1)) 2375 return true; 2376 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2377 break; 2378 } 2379 case ISD::VSELECT: { 2380 // Try to transform the select condition based on the current demanded 2381 // elements. 2382 // TODO: If a condition element is undef, we can choose from one arm of the 2383 // select (and if one arm is undef, then we can propagate that to the 2384 // result). 2385 // TODO - add support for constant vselect masks (see IR version of this). 2386 APInt UnusedUndef, UnusedZero; 2387 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2388 UnusedZero, TLO, Depth + 1)) 2389 return true; 2390 2391 // See if we can simplify either vselect operand. 2392 APInt DemandedLHS(DemandedElts); 2393 APInt DemandedRHS(DemandedElts); 2394 APInt UndefLHS, ZeroLHS; 2395 APInt UndefRHS, ZeroRHS; 2396 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2397 ZeroLHS, TLO, Depth + 1)) 2398 return true; 2399 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2400 ZeroRHS, TLO, Depth + 1)) 2401 return true; 2402 2403 KnownUndef = UndefLHS & UndefRHS; 2404 KnownZero = ZeroLHS & ZeroRHS; 2405 break; 2406 } 2407 case ISD::VECTOR_SHUFFLE: { 2408 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2409 2410 // Collect demanded elements from shuffle operands.. 2411 APInt DemandedLHS(NumElts, 0); 2412 APInt DemandedRHS(NumElts, 0); 2413 for (unsigned i = 0; i != NumElts; ++i) { 2414 int M = ShuffleMask[i]; 2415 if (M < 0 || !DemandedElts[i]) 2416 continue; 2417 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2418 if (M < (int)NumElts) 2419 DemandedLHS.setBit(M); 2420 else 2421 DemandedRHS.setBit(M - NumElts); 2422 } 2423 2424 // See if we can simplify either shuffle operand. 2425 APInt UndefLHS, ZeroLHS; 2426 APInt UndefRHS, ZeroRHS; 2427 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2428 ZeroLHS, TLO, Depth + 1)) 2429 return true; 2430 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2431 ZeroRHS, TLO, Depth + 1)) 2432 return true; 2433 2434 // Simplify mask using undef elements from LHS/RHS. 2435 bool Updated = false; 2436 bool IdentityLHS = true, IdentityRHS = true; 2437 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2438 for (unsigned i = 0; i != NumElts; ++i) { 2439 int &M = NewMask[i]; 2440 if (M < 0) 2441 continue; 2442 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2443 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2444 Updated = true; 2445 M = -1; 2446 } 2447 IdentityLHS &= (M < 0) || (M == (int)i); 2448 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2449 } 2450 2451 // Update legal shuffle masks based on demanded elements if it won't reduce 2452 // to Identity which can cause premature removal of the shuffle mask. 2453 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2454 SDValue LegalShuffle = 2455 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2456 NewMask, TLO.DAG); 2457 if (LegalShuffle) 2458 return TLO.CombineTo(Op, LegalShuffle); 2459 } 2460 2461 // Propagate undef/zero elements from LHS/RHS. 2462 for (unsigned i = 0; i != NumElts; ++i) { 2463 int M = ShuffleMask[i]; 2464 if (M < 0) { 2465 KnownUndef.setBit(i); 2466 } else if (M < (int)NumElts) { 2467 if (UndefLHS[M]) 2468 KnownUndef.setBit(i); 2469 if (ZeroLHS[M]) 2470 KnownZero.setBit(i); 2471 } else { 2472 if (UndefRHS[M - NumElts]) 2473 KnownUndef.setBit(i); 2474 if (ZeroRHS[M - NumElts]) 2475 KnownZero.setBit(i); 2476 } 2477 } 2478 break; 2479 } 2480 case ISD::ANY_EXTEND_VECTOR_INREG: 2481 case ISD::SIGN_EXTEND_VECTOR_INREG: 2482 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2483 APInt SrcUndef, SrcZero; 2484 SDValue Src = Op.getOperand(0); 2485 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2486 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2487 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2488 Depth + 1)) 2489 return true; 2490 KnownZero = SrcZero.zextOrTrunc(NumElts); 2491 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2492 2493 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2494 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2495 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2496 // aext - if we just need the bottom element then we can bitcast. 2497 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2498 } 2499 2500 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2501 // zext(undef) upper bits are guaranteed to be zero. 2502 if (DemandedElts.isSubsetOf(KnownUndef)) 2503 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2504 KnownUndef.clearAllBits(); 2505 } 2506 break; 2507 } 2508 2509 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2510 // MAX, saturated math, etc. 2511 case ISD::OR: 2512 case ISD::XOR: 2513 case ISD::ADD: 2514 case ISD::SUB: 2515 case ISD::FADD: 2516 case ISD::FSUB: 2517 case ISD::FMUL: 2518 case ISD::FDIV: 2519 case ISD::FREM: { 2520 APInt UndefRHS, ZeroRHS; 2521 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2522 ZeroRHS, TLO, Depth + 1)) 2523 return true; 2524 APInt UndefLHS, ZeroLHS; 2525 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2526 ZeroLHS, TLO, Depth + 1)) 2527 return true; 2528 2529 KnownZero = ZeroLHS & ZeroRHS; 2530 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2531 break; 2532 } 2533 case ISD::SHL: 2534 case ISD::SRL: 2535 case ISD::SRA: 2536 case ISD::ROTL: 2537 case ISD::ROTR: { 2538 APInt UndefRHS, ZeroRHS; 2539 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2540 ZeroRHS, TLO, Depth + 1)) 2541 return true; 2542 APInt UndefLHS, ZeroLHS; 2543 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2544 ZeroLHS, TLO, Depth + 1)) 2545 return true; 2546 2547 KnownZero = ZeroLHS; 2548 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2549 break; 2550 } 2551 case ISD::MUL: 2552 case ISD::AND: { 2553 APInt SrcUndef, SrcZero; 2554 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2555 SrcZero, TLO, Depth + 1)) 2556 return true; 2557 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2558 KnownZero, TLO, Depth + 1)) 2559 return true; 2560 2561 // If either side has a zero element, then the result element is zero, even 2562 // if the other is an UNDEF. 2563 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2564 // and then handle 'and' nodes with the rest of the binop opcodes. 2565 KnownZero |= SrcZero; 2566 KnownUndef &= SrcUndef; 2567 KnownUndef &= ~KnownZero; 2568 break; 2569 } 2570 case ISD::TRUNCATE: 2571 case ISD::SIGN_EXTEND: 2572 case ISD::ZERO_EXTEND: 2573 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2574 KnownZero, TLO, Depth + 1)) 2575 return true; 2576 2577 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2578 // zext(undef) upper bits are guaranteed to be zero. 2579 if (DemandedElts.isSubsetOf(KnownUndef)) 2580 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2581 KnownUndef.clearAllBits(); 2582 } 2583 break; 2584 default: { 2585 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2586 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2587 KnownZero, TLO, Depth)) 2588 return true; 2589 } else { 2590 KnownBits Known; 2591 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2592 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2593 TLO, Depth, AssumeSingleUse)) 2594 return true; 2595 } 2596 break; 2597 } 2598 } 2599 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2600 2601 // Constant fold all undef cases. 2602 // TODO: Handle zero cases as well. 2603 if (DemandedElts.isSubsetOf(KnownUndef)) 2604 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2605 2606 return false; 2607 } 2608 2609 /// Determine which of the bits specified in Mask are known to be either zero or 2610 /// one and return them in the Known. 2611 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2612 KnownBits &Known, 2613 const APInt &DemandedElts, 2614 const SelectionDAG &DAG, 2615 unsigned Depth) const { 2616 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2617 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2618 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2619 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2620 "Should use MaskedValueIsZero if you don't know whether Op" 2621 " is a target node!"); 2622 Known.resetAll(); 2623 } 2624 2625 void TargetLowering::computeKnownBitsForTargetInstr( 2626 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2627 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2628 unsigned Depth) const { 2629 Known.resetAll(); 2630 } 2631 2632 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2633 KnownBits &Known, 2634 const APInt &DemandedElts, 2635 const SelectionDAG &DAG, 2636 unsigned Depth) const { 2637 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2638 2639 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2640 // The low bits are known zero if the pointer is aligned. 2641 Known.Zero.setLowBits(Log2_32(Align)); 2642 } 2643 } 2644 2645 /// This method can be implemented by targets that want to expose additional 2646 /// information about sign bits to the DAG Combiner. 2647 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2648 const APInt &, 2649 const SelectionDAG &, 2650 unsigned Depth) const { 2651 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2652 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2653 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2654 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2655 "Should use ComputeNumSignBits if you don't know whether Op" 2656 " is a target node!"); 2657 return 1; 2658 } 2659 2660 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2661 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2662 TargetLoweringOpt &TLO, unsigned Depth) const { 2663 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2664 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2665 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2666 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2667 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2668 " is a target node!"); 2669 return false; 2670 } 2671 2672 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2673 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2674 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2675 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2676 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2677 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2678 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2679 "Should use SimplifyDemandedBits if you don't know whether Op" 2680 " is a target node!"); 2681 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2682 return false; 2683 } 2684 2685 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2686 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2687 SelectionDAG &DAG, unsigned Depth) const { 2688 assert( 2689 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2690 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2691 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2692 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2693 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2694 " is a target node!"); 2695 return SDValue(); 2696 } 2697 2698 SDValue 2699 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2700 SDValue N1, MutableArrayRef<int> Mask, 2701 SelectionDAG &DAG) const { 2702 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2703 if (!LegalMask) { 2704 std::swap(N0, N1); 2705 ShuffleVectorSDNode::commuteMask(Mask); 2706 LegalMask = isShuffleMaskLegal(Mask, VT); 2707 } 2708 2709 if (!LegalMask) 2710 return SDValue(); 2711 2712 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2713 } 2714 2715 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2716 return nullptr; 2717 } 2718 2719 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2720 const SelectionDAG &DAG, 2721 bool SNaN, 2722 unsigned Depth) const { 2723 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2724 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2725 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2726 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2727 "Should use isKnownNeverNaN if you don't know whether Op" 2728 " is a target node!"); 2729 return false; 2730 } 2731 2732 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2733 // work with truncating build vectors and vectors with elements of less than 2734 // 8 bits. 2735 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2736 if (!N) 2737 return false; 2738 2739 APInt CVal; 2740 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2741 CVal = CN->getAPIntValue(); 2742 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2743 auto *CN = BV->getConstantSplatNode(); 2744 if (!CN) 2745 return false; 2746 2747 // If this is a truncating build vector, truncate the splat value. 2748 // Otherwise, we may fail to match the expected values below. 2749 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2750 CVal = CN->getAPIntValue(); 2751 if (BVEltWidth < CVal.getBitWidth()) 2752 CVal = CVal.trunc(BVEltWidth); 2753 } else { 2754 return false; 2755 } 2756 2757 switch (getBooleanContents(N->getValueType(0))) { 2758 case UndefinedBooleanContent: 2759 return CVal[0]; 2760 case ZeroOrOneBooleanContent: 2761 return CVal.isOneValue(); 2762 case ZeroOrNegativeOneBooleanContent: 2763 return CVal.isAllOnesValue(); 2764 } 2765 2766 llvm_unreachable("Invalid boolean contents"); 2767 } 2768 2769 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2770 if (!N) 2771 return false; 2772 2773 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2774 if (!CN) { 2775 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2776 if (!BV) 2777 return false; 2778 2779 // Only interested in constant splats, we don't care about undef 2780 // elements in identifying boolean constants and getConstantSplatNode 2781 // returns NULL if all ops are undef; 2782 CN = BV->getConstantSplatNode(); 2783 if (!CN) 2784 return false; 2785 } 2786 2787 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2788 return !CN->getAPIntValue()[0]; 2789 2790 return CN->isNullValue(); 2791 } 2792 2793 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2794 bool SExt) const { 2795 if (VT == MVT::i1) 2796 return N->isOne(); 2797 2798 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2799 switch (Cnt) { 2800 case TargetLowering::ZeroOrOneBooleanContent: 2801 // An extended value of 1 is always true, unless its original type is i1, 2802 // in which case it will be sign extended to -1. 2803 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2804 case TargetLowering::UndefinedBooleanContent: 2805 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2806 return N->isAllOnesValue() && SExt; 2807 } 2808 llvm_unreachable("Unexpected enumeration."); 2809 } 2810 2811 /// This helper function of SimplifySetCC tries to optimize the comparison when 2812 /// either operand of the SetCC node is a bitwise-and instruction. 2813 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2814 ISD::CondCode Cond, const SDLoc &DL, 2815 DAGCombinerInfo &DCI) const { 2816 // Match these patterns in any of their permutations: 2817 // (X & Y) == Y 2818 // (X & Y) != Y 2819 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2820 std::swap(N0, N1); 2821 2822 EVT OpVT = N0.getValueType(); 2823 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2824 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2825 return SDValue(); 2826 2827 SDValue X, Y; 2828 if (N0.getOperand(0) == N1) { 2829 X = N0.getOperand(1); 2830 Y = N0.getOperand(0); 2831 } else if (N0.getOperand(1) == N1) { 2832 X = N0.getOperand(0); 2833 Y = N0.getOperand(1); 2834 } else { 2835 return SDValue(); 2836 } 2837 2838 SelectionDAG &DAG = DCI.DAG; 2839 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2840 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2841 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2842 // Note that where Y is variable and is known to have at most one bit set 2843 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2844 // equivalent when Y == 0. 2845 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2846 if (DCI.isBeforeLegalizeOps() || 2847 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2848 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2849 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2850 // If the target supports an 'and-not' or 'and-complement' logic operation, 2851 // try to use that to make a comparison operation more efficient. 2852 // But don't do this transform if the mask is a single bit because there are 2853 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2854 // 'rlwinm' on PPC). 2855 2856 // Bail out if the compare operand that we want to turn into a zero is 2857 // already a zero (otherwise, infinite loop). 2858 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2859 if (YConst && YConst->isNullValue()) 2860 return SDValue(); 2861 2862 // Transform this into: ~X & Y == 0. 2863 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2864 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2865 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2866 } 2867 2868 return SDValue(); 2869 } 2870 2871 /// There are multiple IR patterns that could be checking whether certain 2872 /// truncation of a signed number would be lossy or not. The pattern which is 2873 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2874 /// We are looking for the following pattern: (KeptBits is a constant) 2875 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2876 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2877 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2878 /// We will unfold it into the natural trunc+sext pattern: 2879 /// ((%x << C) a>> C) dstcond %x 2880 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2881 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2882 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2883 const SDLoc &DL) const { 2884 // We must be comparing with a constant. 2885 ConstantSDNode *C1; 2886 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2887 return SDValue(); 2888 2889 // N0 should be: add %x, (1 << (KeptBits-1)) 2890 if (N0->getOpcode() != ISD::ADD) 2891 return SDValue(); 2892 2893 // And we must be 'add'ing a constant. 2894 ConstantSDNode *C01; 2895 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2896 return SDValue(); 2897 2898 SDValue X = N0->getOperand(0); 2899 EVT XVT = X.getValueType(); 2900 2901 // Validate constants ... 2902 2903 APInt I1 = C1->getAPIntValue(); 2904 2905 ISD::CondCode NewCond; 2906 if (Cond == ISD::CondCode::SETULT) { 2907 NewCond = ISD::CondCode::SETEQ; 2908 } else if (Cond == ISD::CondCode::SETULE) { 2909 NewCond = ISD::CondCode::SETEQ; 2910 // But need to 'canonicalize' the constant. 2911 I1 += 1; 2912 } else if (Cond == ISD::CondCode::SETUGT) { 2913 NewCond = ISD::CondCode::SETNE; 2914 // But need to 'canonicalize' the constant. 2915 I1 += 1; 2916 } else if (Cond == ISD::CondCode::SETUGE) { 2917 NewCond = ISD::CondCode::SETNE; 2918 } else 2919 return SDValue(); 2920 2921 APInt I01 = C01->getAPIntValue(); 2922 2923 auto checkConstants = [&I1, &I01]() -> bool { 2924 // Both of them must be power-of-two, and the constant from setcc is bigger. 2925 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2926 }; 2927 2928 if (checkConstants()) { 2929 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2930 } else { 2931 // What if we invert constants? (and the target predicate) 2932 I1.negate(); 2933 I01.negate(); 2934 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2935 if (!checkConstants()) 2936 return SDValue(); 2937 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2938 } 2939 2940 // They are power-of-two, so which bit is set? 2941 const unsigned KeptBits = I1.logBase2(); 2942 const unsigned KeptBitsMinusOne = I01.logBase2(); 2943 2944 // Magic! 2945 if (KeptBits != (KeptBitsMinusOne + 1)) 2946 return SDValue(); 2947 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2948 2949 // We don't want to do this in every single case. 2950 SelectionDAG &DAG = DCI.DAG; 2951 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2952 XVT, KeptBits)) 2953 return SDValue(); 2954 2955 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2956 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2957 2958 // Unfold into: ((%x << C) a>> C) cond %x 2959 // Where 'cond' will be either 'eq' or 'ne'. 2960 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2961 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2962 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2963 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2964 2965 return T2; 2966 } 2967 2968 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 2969 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 2970 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 2971 DAGCombinerInfo &DCI, const SDLoc &DL) const { 2972 assert(isConstOrConstSplat(N1C) && 2973 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 2974 "Should be a comparison with 0."); 2975 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2976 "Valid only for [in]equality comparisons."); 2977 2978 unsigned NewShiftOpcode; 2979 SDValue X, C, Y; 2980 2981 SelectionDAG &DAG = DCI.DAG; 2982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2983 2984 // Look for '(C l>>/<< Y)'. 2985 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 2986 // The shift should be one-use. 2987 if (!V.hasOneUse()) 2988 return false; 2989 unsigned OldShiftOpcode = V.getOpcode(); 2990 switch (OldShiftOpcode) { 2991 case ISD::SHL: 2992 NewShiftOpcode = ISD::SRL; 2993 break; 2994 case ISD::SRL: 2995 NewShiftOpcode = ISD::SHL; 2996 break; 2997 default: 2998 return false; // must be a logical shift. 2999 } 3000 // We should be shifting a constant. 3001 // FIXME: best to use isConstantOrConstantVector(). 3002 C = V.getOperand(0); 3003 ConstantSDNode *CC = 3004 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3005 if (!CC) 3006 return false; 3007 Y = V.getOperand(1); 3008 3009 ConstantSDNode *XC = 3010 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3011 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3012 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3013 }; 3014 3015 // LHS of comparison should be an one-use 'and'. 3016 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3017 return SDValue(); 3018 3019 X = N0.getOperand(0); 3020 SDValue Mask = N0.getOperand(1); 3021 3022 // 'and' is commutative! 3023 if (!Match(Mask)) { 3024 std::swap(X, Mask); 3025 if (!Match(Mask)) 3026 return SDValue(); 3027 } 3028 3029 EVT VT = X.getValueType(); 3030 3031 // Produce: 3032 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3033 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3034 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3035 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3036 return T2; 3037 } 3038 3039 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3040 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3041 /// handle the commuted versions of these patterns. 3042 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3043 ISD::CondCode Cond, const SDLoc &DL, 3044 DAGCombinerInfo &DCI) const { 3045 unsigned BOpcode = N0.getOpcode(); 3046 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3047 "Unexpected binop"); 3048 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3049 3050 // (X + Y) == X --> Y == 0 3051 // (X - Y) == X --> Y == 0 3052 // (X ^ Y) == X --> Y == 0 3053 SelectionDAG &DAG = DCI.DAG; 3054 EVT OpVT = N0.getValueType(); 3055 SDValue X = N0.getOperand(0); 3056 SDValue Y = N0.getOperand(1); 3057 if (X == N1) 3058 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3059 3060 if (Y != N1) 3061 return SDValue(); 3062 3063 // (X + Y) == Y --> X == 0 3064 // (X ^ Y) == Y --> X == 0 3065 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3066 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3067 3068 // The shift would not be valid if the operands are boolean (i1). 3069 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3070 return SDValue(); 3071 3072 // (X - Y) == Y --> X == Y << 1 3073 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3074 !DCI.isBeforeLegalize()); 3075 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3076 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3077 if (!DCI.isCalledByLegalizer()) 3078 DCI.AddToWorklist(YShl1.getNode()); 3079 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3080 } 3081 3082 /// Try to simplify a setcc built with the specified operands and cc. If it is 3083 /// unable to simplify it, return a null SDValue. 3084 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3085 ISD::CondCode Cond, bool foldBooleans, 3086 DAGCombinerInfo &DCI, 3087 const SDLoc &dl) const { 3088 SelectionDAG &DAG = DCI.DAG; 3089 const DataLayout &Layout = DAG.getDataLayout(); 3090 EVT OpVT = N0.getValueType(); 3091 3092 // Constant fold or commute setcc. 3093 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3094 return Fold; 3095 3096 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3097 // TODO: Handle non-splat vector constants. All undef causes trouble. 3098 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3099 if (isConstOrConstSplat(N0) && 3100 (DCI.isBeforeLegalizeOps() || 3101 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3102 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3103 3104 // If we have a subtract with the same 2 non-constant operands as this setcc 3105 // -- but in reverse order -- then try to commute the operands of this setcc 3106 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3107 // instruction on some targets. 3108 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3109 (DCI.isBeforeLegalizeOps() || 3110 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3111 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3112 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3113 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3114 3115 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3116 const APInt &C1 = N1C->getAPIntValue(); 3117 3118 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3119 // equality comparison, then we're just comparing whether X itself is 3120 // zero. 3121 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3122 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3123 N0.getOperand(1).getOpcode() == ISD::Constant) { 3124 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3125 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3126 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3127 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3128 // (srl (ctlz x), 5) == 0 -> X != 0 3129 // (srl (ctlz x), 5) != 1 -> X != 0 3130 Cond = ISD::SETNE; 3131 } else { 3132 // (srl (ctlz x), 5) != 0 -> X == 0 3133 // (srl (ctlz x), 5) == 1 -> X == 0 3134 Cond = ISD::SETEQ; 3135 } 3136 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3137 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3138 Zero, Cond); 3139 } 3140 } 3141 3142 SDValue CTPOP = N0; 3143 // Look through truncs that don't change the value of a ctpop. 3144 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3145 CTPOP = N0.getOperand(0); 3146 3147 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3148 (N0 == CTPOP || 3149 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3150 EVT CTVT = CTPOP.getValueType(); 3151 SDValue CTOp = CTPOP.getOperand(0); 3152 3153 // (ctpop x) u< 2 -> (x & x-1) == 0 3154 // (ctpop x) u> 1 -> (x & x-1) != 0 3155 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3156 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3157 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3158 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3159 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3160 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3161 } 3162 3163 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3164 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3165 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3166 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3167 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3168 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3169 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3170 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true); 3171 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3172 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3173 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3174 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3175 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3176 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3177 } 3178 } 3179 3180 // (zext x) == C --> x == (trunc C) 3181 // (sext x) == C --> x == (trunc C) 3182 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3183 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3184 unsigned MinBits = N0.getValueSizeInBits(); 3185 SDValue PreExt; 3186 bool Signed = false; 3187 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3188 // ZExt 3189 MinBits = N0->getOperand(0).getValueSizeInBits(); 3190 PreExt = N0->getOperand(0); 3191 } else if (N0->getOpcode() == ISD::AND) { 3192 // DAGCombine turns costly ZExts into ANDs 3193 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3194 if ((C->getAPIntValue()+1).isPowerOf2()) { 3195 MinBits = C->getAPIntValue().countTrailingOnes(); 3196 PreExt = N0->getOperand(0); 3197 } 3198 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3199 // SExt 3200 MinBits = N0->getOperand(0).getValueSizeInBits(); 3201 PreExt = N0->getOperand(0); 3202 Signed = true; 3203 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3204 // ZEXTLOAD / SEXTLOAD 3205 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3206 MinBits = LN0->getMemoryVT().getSizeInBits(); 3207 PreExt = N0; 3208 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3209 Signed = true; 3210 MinBits = LN0->getMemoryVT().getSizeInBits(); 3211 PreExt = N0; 3212 } 3213 } 3214 3215 // Figure out how many bits we need to preserve this constant. 3216 unsigned ReqdBits = Signed ? 3217 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3218 C1.getActiveBits(); 3219 3220 // Make sure we're not losing bits from the constant. 3221 if (MinBits > 0 && 3222 MinBits < C1.getBitWidth() && 3223 MinBits >= ReqdBits) { 3224 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3225 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3226 // Will get folded away. 3227 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3228 if (MinBits == 1 && C1 == 1) 3229 // Invert the condition. 3230 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3231 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3232 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3233 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3234 } 3235 3236 // If truncating the setcc operands is not desirable, we can still 3237 // simplify the expression in some cases: 3238 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3239 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3240 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3241 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3242 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3243 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3244 SDValue TopSetCC = N0->getOperand(0); 3245 unsigned N0Opc = N0->getOpcode(); 3246 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3247 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3248 TopSetCC.getOpcode() == ISD::SETCC && 3249 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3250 (isConstFalseVal(N1C) || 3251 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3252 3253 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3254 (!N1C->isNullValue() && Cond == ISD::SETNE); 3255 3256 if (!Inverse) 3257 return TopSetCC; 3258 3259 ISD::CondCode InvCond = ISD::getSetCCInverse( 3260 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3261 TopSetCC.getOperand(0).getValueType().isInteger()); 3262 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3263 TopSetCC.getOperand(1), 3264 InvCond); 3265 } 3266 } 3267 } 3268 3269 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3270 // equality or unsigned, and all 1 bits of the const are in the same 3271 // partial word, see if we can shorten the load. 3272 if (DCI.isBeforeLegalize() && 3273 !ISD::isSignedIntSetCC(Cond) && 3274 N0.getOpcode() == ISD::AND && C1 == 0 && 3275 N0.getNode()->hasOneUse() && 3276 isa<LoadSDNode>(N0.getOperand(0)) && 3277 N0.getOperand(0).getNode()->hasOneUse() && 3278 isa<ConstantSDNode>(N0.getOperand(1))) { 3279 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3280 APInt bestMask; 3281 unsigned bestWidth = 0, bestOffset = 0; 3282 if (Lod->isSimple() && Lod->isUnindexed()) { 3283 unsigned origWidth = N0.getValueSizeInBits(); 3284 unsigned maskWidth = origWidth; 3285 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3286 // 8 bits, but have to be careful... 3287 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3288 origWidth = Lod->getMemoryVT().getSizeInBits(); 3289 const APInt &Mask = N0.getConstantOperandAPInt(1); 3290 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3291 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3292 for (unsigned offset=0; offset<origWidth/width; offset++) { 3293 if (Mask.isSubsetOf(newMask)) { 3294 if (Layout.isLittleEndian()) 3295 bestOffset = (uint64_t)offset * (width/8); 3296 else 3297 bestOffset = (origWidth/width - offset - 1) * (width/8); 3298 bestMask = Mask.lshr(offset * (width/8) * 8); 3299 bestWidth = width; 3300 break; 3301 } 3302 newMask <<= width; 3303 } 3304 } 3305 } 3306 if (bestWidth) { 3307 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3308 if (newVT.isRound() && 3309 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3310 EVT PtrType = Lod->getOperand(1).getValueType(); 3311 SDValue Ptr = Lod->getBasePtr(); 3312 if (bestOffset != 0) 3313 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 3314 DAG.getConstant(bestOffset, dl, PtrType)); 3315 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3316 SDValue NewLoad = DAG.getLoad( 3317 newVT, dl, Lod->getChain(), Ptr, 3318 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3319 return DAG.getSetCC(dl, VT, 3320 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3321 DAG.getConstant(bestMask.trunc(bestWidth), 3322 dl, newVT)), 3323 DAG.getConstant(0LL, dl, newVT), Cond); 3324 } 3325 } 3326 } 3327 3328 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3329 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3330 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3331 3332 // If the comparison constant has bits in the upper part, the 3333 // zero-extended value could never match. 3334 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3335 C1.getBitWidth() - InSize))) { 3336 switch (Cond) { 3337 case ISD::SETUGT: 3338 case ISD::SETUGE: 3339 case ISD::SETEQ: 3340 return DAG.getConstant(0, dl, VT); 3341 case ISD::SETULT: 3342 case ISD::SETULE: 3343 case ISD::SETNE: 3344 return DAG.getConstant(1, dl, VT); 3345 case ISD::SETGT: 3346 case ISD::SETGE: 3347 // True if the sign bit of C1 is set. 3348 return DAG.getConstant(C1.isNegative(), dl, VT); 3349 case ISD::SETLT: 3350 case ISD::SETLE: 3351 // True if the sign bit of C1 isn't set. 3352 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3353 default: 3354 break; 3355 } 3356 } 3357 3358 // Otherwise, we can perform the comparison with the low bits. 3359 switch (Cond) { 3360 case ISD::SETEQ: 3361 case ISD::SETNE: 3362 case ISD::SETUGT: 3363 case ISD::SETUGE: 3364 case ISD::SETULT: 3365 case ISD::SETULE: { 3366 EVT newVT = N0.getOperand(0).getValueType(); 3367 if (DCI.isBeforeLegalizeOps() || 3368 (isOperationLegal(ISD::SETCC, newVT) && 3369 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3370 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3371 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3372 3373 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3374 NewConst, Cond); 3375 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3376 } 3377 break; 3378 } 3379 default: 3380 break; // todo, be more careful with signed comparisons 3381 } 3382 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3383 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3384 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3385 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3386 EVT ExtDstTy = N0.getValueType(); 3387 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3388 3389 // If the constant doesn't fit into the number of bits for the source of 3390 // the sign extension, it is impossible for both sides to be equal. 3391 if (C1.getMinSignedBits() > ExtSrcTyBits) 3392 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3393 3394 SDValue ZextOp; 3395 EVT Op0Ty = N0.getOperand(0).getValueType(); 3396 if (Op0Ty == ExtSrcTy) { 3397 ZextOp = N0.getOperand(0); 3398 } else { 3399 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3400 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3401 DAG.getConstant(Imm, dl, Op0Ty)); 3402 } 3403 if (!DCI.isCalledByLegalizer()) 3404 DCI.AddToWorklist(ZextOp.getNode()); 3405 // Otherwise, make this a use of a zext. 3406 return DAG.getSetCC(dl, VT, ZextOp, 3407 DAG.getConstant(C1 & APInt::getLowBitsSet( 3408 ExtDstTyBits, 3409 ExtSrcTyBits), 3410 dl, ExtDstTy), 3411 Cond); 3412 } else if ((N1C->isNullValue() || N1C->isOne()) && 3413 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3414 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3415 if (N0.getOpcode() == ISD::SETCC && 3416 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3417 (N0.getValueType() == MVT::i1 || 3418 getBooleanContents(N0.getOperand(0).getValueType()) == 3419 ZeroOrOneBooleanContent)) { 3420 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3421 if (TrueWhenTrue) 3422 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3423 // Invert the condition. 3424 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3425 CC = ISD::getSetCCInverse(CC, 3426 N0.getOperand(0).getValueType().isInteger()); 3427 if (DCI.isBeforeLegalizeOps() || 3428 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3429 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3430 } 3431 3432 if ((N0.getOpcode() == ISD::XOR || 3433 (N0.getOpcode() == ISD::AND && 3434 N0.getOperand(0).getOpcode() == ISD::XOR && 3435 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3436 isa<ConstantSDNode>(N0.getOperand(1)) && 3437 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3438 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3439 // can only do this if the top bits are known zero. 3440 unsigned BitWidth = N0.getValueSizeInBits(); 3441 if (DAG.MaskedValueIsZero(N0, 3442 APInt::getHighBitsSet(BitWidth, 3443 BitWidth-1))) { 3444 // Okay, get the un-inverted input value. 3445 SDValue Val; 3446 if (N0.getOpcode() == ISD::XOR) { 3447 Val = N0.getOperand(0); 3448 } else { 3449 assert(N0.getOpcode() == ISD::AND && 3450 N0.getOperand(0).getOpcode() == ISD::XOR); 3451 // ((X^1)&1)^1 -> X & 1 3452 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3453 N0.getOperand(0).getOperand(0), 3454 N0.getOperand(1)); 3455 } 3456 3457 return DAG.getSetCC(dl, VT, Val, N1, 3458 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3459 } 3460 } else if (N1C->isOne()) { 3461 SDValue Op0 = N0; 3462 if (Op0.getOpcode() == ISD::TRUNCATE) 3463 Op0 = Op0.getOperand(0); 3464 3465 if ((Op0.getOpcode() == ISD::XOR) && 3466 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3467 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3468 SDValue XorLHS = Op0.getOperand(0); 3469 SDValue XorRHS = Op0.getOperand(1); 3470 // Ensure that the input setccs return an i1 type or 0/1 value. 3471 if (Op0.getValueType() == MVT::i1 || 3472 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3473 ZeroOrOneBooleanContent && 3474 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3475 ZeroOrOneBooleanContent)) { 3476 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3477 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3478 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3479 } 3480 } 3481 if (Op0.getOpcode() == ISD::AND && 3482 isa<ConstantSDNode>(Op0.getOperand(1)) && 3483 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3484 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3485 if (Op0.getValueType().bitsGT(VT)) 3486 Op0 = DAG.getNode(ISD::AND, dl, VT, 3487 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3488 DAG.getConstant(1, dl, VT)); 3489 else if (Op0.getValueType().bitsLT(VT)) 3490 Op0 = DAG.getNode(ISD::AND, dl, VT, 3491 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3492 DAG.getConstant(1, dl, VT)); 3493 3494 return DAG.getSetCC(dl, VT, Op0, 3495 DAG.getConstant(0, dl, Op0.getValueType()), 3496 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3497 } 3498 if (Op0.getOpcode() == ISD::AssertZext && 3499 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3500 return DAG.getSetCC(dl, VT, Op0, 3501 DAG.getConstant(0, dl, Op0.getValueType()), 3502 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3503 } 3504 } 3505 3506 // Given: 3507 // icmp eq/ne (urem %x, %y), 0 3508 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3509 // icmp eq/ne %x, 0 3510 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3511 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3512 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3513 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3514 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3515 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3516 } 3517 3518 if (SDValue V = 3519 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3520 return V; 3521 } 3522 3523 // These simplifications apply to splat vectors as well. 3524 // TODO: Handle more splat vector cases. 3525 if (auto *N1C = isConstOrConstSplat(N1)) { 3526 const APInt &C1 = N1C->getAPIntValue(); 3527 3528 APInt MinVal, MaxVal; 3529 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3530 if (ISD::isSignedIntSetCC(Cond)) { 3531 MinVal = APInt::getSignedMinValue(OperandBitSize); 3532 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3533 } else { 3534 MinVal = APInt::getMinValue(OperandBitSize); 3535 MaxVal = APInt::getMaxValue(OperandBitSize); 3536 } 3537 3538 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3539 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3540 // X >= MIN --> true 3541 if (C1 == MinVal) 3542 return DAG.getBoolConstant(true, dl, VT, OpVT); 3543 3544 if (!VT.isVector()) { // TODO: Support this for vectors. 3545 // X >= C0 --> X > (C0 - 1) 3546 APInt C = C1 - 1; 3547 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3548 if ((DCI.isBeforeLegalizeOps() || 3549 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3550 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3551 isLegalICmpImmediate(C.getSExtValue())))) { 3552 return DAG.getSetCC(dl, VT, N0, 3553 DAG.getConstant(C, dl, N1.getValueType()), 3554 NewCC); 3555 } 3556 } 3557 } 3558 3559 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3560 // X <= MAX --> true 3561 if (C1 == MaxVal) 3562 return DAG.getBoolConstant(true, dl, VT, OpVT); 3563 3564 // X <= C0 --> X < (C0 + 1) 3565 if (!VT.isVector()) { // TODO: Support this for vectors. 3566 APInt C = C1 + 1; 3567 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3568 if ((DCI.isBeforeLegalizeOps() || 3569 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3570 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3571 isLegalICmpImmediate(C.getSExtValue())))) { 3572 return DAG.getSetCC(dl, VT, N0, 3573 DAG.getConstant(C, dl, N1.getValueType()), 3574 NewCC); 3575 } 3576 } 3577 } 3578 3579 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3580 if (C1 == MinVal) 3581 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3582 3583 // TODO: Support this for vectors after legalize ops. 3584 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3585 // Canonicalize setlt X, Max --> setne X, Max 3586 if (C1 == MaxVal) 3587 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3588 3589 // If we have setult X, 1, turn it into seteq X, 0 3590 if (C1 == MinVal+1) 3591 return DAG.getSetCC(dl, VT, N0, 3592 DAG.getConstant(MinVal, dl, N0.getValueType()), 3593 ISD::SETEQ); 3594 } 3595 } 3596 3597 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3598 if (C1 == MaxVal) 3599 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3600 3601 // TODO: Support this for vectors after legalize ops. 3602 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3603 // Canonicalize setgt X, Min --> setne X, Min 3604 if (C1 == MinVal) 3605 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3606 3607 // If we have setugt X, Max-1, turn it into seteq X, Max 3608 if (C1 == MaxVal-1) 3609 return DAG.getSetCC(dl, VT, N0, 3610 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3611 ISD::SETEQ); 3612 } 3613 } 3614 3615 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3616 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3617 if (C1.isNullValue()) 3618 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3619 VT, N0, N1, Cond, DCI, dl)) 3620 return CC; 3621 } 3622 3623 // If we have "setcc X, C0", check to see if we can shrink the immediate 3624 // by changing cc. 3625 // TODO: Support this for vectors after legalize ops. 3626 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3627 // SETUGT X, SINTMAX -> SETLT X, 0 3628 if (Cond == ISD::SETUGT && 3629 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3630 return DAG.getSetCC(dl, VT, N0, 3631 DAG.getConstant(0, dl, N1.getValueType()), 3632 ISD::SETLT); 3633 3634 // SETULT X, SINTMIN -> SETGT X, -1 3635 if (Cond == ISD::SETULT && 3636 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3637 SDValue ConstMinusOne = 3638 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3639 N1.getValueType()); 3640 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3641 } 3642 } 3643 } 3644 3645 // Back to non-vector simplifications. 3646 // TODO: Can we do these for vector splats? 3647 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3649 const APInt &C1 = N1C->getAPIntValue(); 3650 EVT ShValTy = N0.getValueType(); 3651 3652 // Fold bit comparisons when we can. 3653 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3654 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3655 N0.getOpcode() == ISD::AND) { 3656 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3657 EVT ShiftTy = 3658 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3659 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3660 // Perform the xform if the AND RHS is a single bit. 3661 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3662 if (AndRHS->getAPIntValue().isPowerOf2() && 3663 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3664 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3665 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3666 DAG.getConstant(ShCt, dl, ShiftTy))); 3667 } 3668 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3669 // (X & 8) == 8 --> (X & 8) >> 3 3670 // Perform the xform if C1 is a single bit. 3671 unsigned ShCt = C1.logBase2(); 3672 if (C1.isPowerOf2() && 3673 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3674 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3675 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3676 DAG.getConstant(ShCt, dl, ShiftTy))); 3677 } 3678 } 3679 } 3680 } 3681 3682 if (C1.getMinSignedBits() <= 64 && 3683 !isLegalICmpImmediate(C1.getSExtValue())) { 3684 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3685 // (X & -256) == 256 -> (X >> 8) == 1 3686 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3687 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3688 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3689 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3690 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3691 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3692 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3693 SDValue Shift = 3694 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3695 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3696 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3697 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3698 } 3699 } 3700 } 3701 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3702 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3703 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3704 // X < 0x100000000 -> (X >> 32) < 1 3705 // X >= 0x100000000 -> (X >> 32) >= 1 3706 // X <= 0x0ffffffff -> (X >> 32) < 1 3707 // X > 0x0ffffffff -> (X >> 32) >= 1 3708 unsigned ShiftBits; 3709 APInt NewC = C1; 3710 ISD::CondCode NewCond = Cond; 3711 if (AdjOne) { 3712 ShiftBits = C1.countTrailingOnes(); 3713 NewC = NewC + 1; 3714 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3715 } else { 3716 ShiftBits = C1.countTrailingZeros(); 3717 } 3718 NewC.lshrInPlace(ShiftBits); 3719 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3720 isLegalICmpImmediate(NewC.getSExtValue()) && 3721 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3722 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3723 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3724 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3725 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3726 } 3727 } 3728 } 3729 } 3730 3731 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3732 auto *CFP = cast<ConstantFPSDNode>(N1); 3733 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3734 3735 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3736 // constant if knowing that the operand is non-nan is enough. We prefer to 3737 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3738 // materialize 0.0. 3739 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3740 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3741 3742 // setcc (fneg x), C -> setcc swap(pred) x, -C 3743 if (N0.getOpcode() == ISD::FNEG) { 3744 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3745 if (DCI.isBeforeLegalizeOps() || 3746 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3747 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3748 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3749 } 3750 } 3751 3752 // If the condition is not legal, see if we can find an equivalent one 3753 // which is legal. 3754 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3755 // If the comparison was an awkward floating-point == or != and one of 3756 // the comparison operands is infinity or negative infinity, convert the 3757 // condition to a less-awkward <= or >=. 3758 if (CFP->getValueAPF().isInfinity()) { 3759 if (CFP->getValueAPF().isNegative()) { 3760 if (Cond == ISD::SETOEQ && 3761 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3762 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3763 if (Cond == ISD::SETUEQ && 3764 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3765 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3766 if (Cond == ISD::SETUNE && 3767 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3768 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3769 if (Cond == ISD::SETONE && 3770 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3771 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3772 } else { 3773 if (Cond == ISD::SETOEQ && 3774 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3775 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3776 if (Cond == ISD::SETUEQ && 3777 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3778 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3779 if (Cond == ISD::SETUNE && 3780 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3781 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3782 if (Cond == ISD::SETONE && 3783 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3784 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3785 } 3786 } 3787 } 3788 } 3789 3790 if (N0 == N1) { 3791 // The sext(setcc()) => setcc() optimization relies on the appropriate 3792 // constant being emitted. 3793 assert(!N0.getValueType().isInteger() && 3794 "Integer types should be handled by FoldSetCC"); 3795 3796 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3797 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3798 if (UOF == 2) // FP operators that are undefined on NaNs. 3799 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3800 if (UOF == unsigned(EqTrue)) 3801 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3802 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3803 // if it is not already. 3804 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3805 if (NewCond != Cond && 3806 (DCI.isBeforeLegalizeOps() || 3807 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3808 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3809 } 3810 3811 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3812 N0.getValueType().isInteger()) { 3813 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3814 N0.getOpcode() == ISD::XOR) { 3815 // Simplify (X+Y) == (X+Z) --> Y == Z 3816 if (N0.getOpcode() == N1.getOpcode()) { 3817 if (N0.getOperand(0) == N1.getOperand(0)) 3818 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3819 if (N0.getOperand(1) == N1.getOperand(1)) 3820 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3821 if (isCommutativeBinOp(N0.getOpcode())) { 3822 // If X op Y == Y op X, try other combinations. 3823 if (N0.getOperand(0) == N1.getOperand(1)) 3824 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3825 Cond); 3826 if (N0.getOperand(1) == N1.getOperand(0)) 3827 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3828 Cond); 3829 } 3830 } 3831 3832 // If RHS is a legal immediate value for a compare instruction, we need 3833 // to be careful about increasing register pressure needlessly. 3834 bool LegalRHSImm = false; 3835 3836 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3837 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3838 // Turn (X+C1) == C2 --> X == C2-C1 3839 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3840 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3841 DAG.getConstant(RHSC->getAPIntValue()- 3842 LHSR->getAPIntValue(), 3843 dl, N0.getValueType()), Cond); 3844 } 3845 3846 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3847 if (N0.getOpcode() == ISD::XOR) 3848 // If we know that all of the inverted bits are zero, don't bother 3849 // performing the inversion. 3850 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3851 return 3852 DAG.getSetCC(dl, VT, N0.getOperand(0), 3853 DAG.getConstant(LHSR->getAPIntValue() ^ 3854 RHSC->getAPIntValue(), 3855 dl, N0.getValueType()), 3856 Cond); 3857 } 3858 3859 // Turn (C1-X) == C2 --> X == C1-C2 3860 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3861 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3862 return 3863 DAG.getSetCC(dl, VT, N0.getOperand(1), 3864 DAG.getConstant(SUBC->getAPIntValue() - 3865 RHSC->getAPIntValue(), 3866 dl, N0.getValueType()), 3867 Cond); 3868 } 3869 } 3870 3871 // Could RHSC fold directly into a compare? 3872 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3873 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3874 } 3875 3876 // (X+Y) == X --> Y == 0 and similar folds. 3877 // Don't do this if X is an immediate that can fold into a cmp 3878 // instruction and X+Y has other uses. It could be an induction variable 3879 // chain, and the transform would increase register pressure. 3880 if (!LegalRHSImm || N0.hasOneUse()) 3881 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3882 return V; 3883 } 3884 3885 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3886 N1.getOpcode() == ISD::XOR) 3887 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3888 return V; 3889 3890 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3891 return V; 3892 } 3893 3894 // Fold remainder of division by a constant. 3895 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3896 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3897 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3898 3899 // When division is cheap or optimizing for minimum size, 3900 // fall through to DIVREM creation by skipping this fold. 3901 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3902 if (N0.getOpcode() == ISD::UREM) { 3903 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3904 return Folded; 3905 } else if (N0.getOpcode() == ISD::SREM) { 3906 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3907 return Folded; 3908 } 3909 } 3910 } 3911 3912 // Fold away ALL boolean setcc's. 3913 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3914 SDValue Temp; 3915 switch (Cond) { 3916 default: llvm_unreachable("Unknown integer setcc!"); 3917 case ISD::SETEQ: // X == Y -> ~(X^Y) 3918 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3919 N0 = DAG.getNOT(dl, Temp, OpVT); 3920 if (!DCI.isCalledByLegalizer()) 3921 DCI.AddToWorklist(Temp.getNode()); 3922 break; 3923 case ISD::SETNE: // X != Y --> (X^Y) 3924 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3925 break; 3926 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3927 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3928 Temp = DAG.getNOT(dl, N0, OpVT); 3929 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3930 if (!DCI.isCalledByLegalizer()) 3931 DCI.AddToWorklist(Temp.getNode()); 3932 break; 3933 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3934 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3935 Temp = DAG.getNOT(dl, N1, OpVT); 3936 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3937 if (!DCI.isCalledByLegalizer()) 3938 DCI.AddToWorklist(Temp.getNode()); 3939 break; 3940 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3941 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3942 Temp = DAG.getNOT(dl, N0, OpVT); 3943 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3944 if (!DCI.isCalledByLegalizer()) 3945 DCI.AddToWorklist(Temp.getNode()); 3946 break; 3947 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3948 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3949 Temp = DAG.getNOT(dl, N1, OpVT); 3950 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3951 break; 3952 } 3953 if (VT.getScalarType() != MVT::i1) { 3954 if (!DCI.isCalledByLegalizer()) 3955 DCI.AddToWorklist(N0.getNode()); 3956 // FIXME: If running after legalize, we probably can't do this. 3957 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3958 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3959 } 3960 return N0; 3961 } 3962 3963 // Could not fold it. 3964 return SDValue(); 3965 } 3966 3967 /// Returns true (and the GlobalValue and the offset) if the node is a 3968 /// GlobalAddress + offset. 3969 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3970 int64_t &Offset) const { 3971 3972 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3973 3974 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3975 GA = GASD->getGlobal(); 3976 Offset += GASD->getOffset(); 3977 return true; 3978 } 3979 3980 if (N->getOpcode() == ISD::ADD) { 3981 SDValue N1 = N->getOperand(0); 3982 SDValue N2 = N->getOperand(1); 3983 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3984 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3985 Offset += V->getSExtValue(); 3986 return true; 3987 } 3988 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3989 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3990 Offset += V->getSExtValue(); 3991 return true; 3992 } 3993 } 3994 } 3995 3996 return false; 3997 } 3998 3999 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4000 DAGCombinerInfo &DCI) const { 4001 // Default implementation: no optimization. 4002 return SDValue(); 4003 } 4004 4005 //===----------------------------------------------------------------------===// 4006 // Inline Assembler Implementation Methods 4007 //===----------------------------------------------------------------------===// 4008 4009 TargetLowering::ConstraintType 4010 TargetLowering::getConstraintType(StringRef Constraint) const { 4011 unsigned S = Constraint.size(); 4012 4013 if (S == 1) { 4014 switch (Constraint[0]) { 4015 default: break; 4016 case 'r': 4017 return C_RegisterClass; 4018 case 'm': // memory 4019 case 'o': // offsetable 4020 case 'V': // not offsetable 4021 return C_Memory; 4022 case 'n': // Simple Integer 4023 case 'E': // Floating Point Constant 4024 case 'F': // Floating Point Constant 4025 return C_Immediate; 4026 case 'i': // Simple Integer or Relocatable Constant 4027 case 's': // Relocatable Constant 4028 case 'p': // Address. 4029 case 'X': // Allow ANY value. 4030 case 'I': // Target registers. 4031 case 'J': 4032 case 'K': 4033 case 'L': 4034 case 'M': 4035 case 'N': 4036 case 'O': 4037 case 'P': 4038 case '<': 4039 case '>': 4040 return C_Other; 4041 } 4042 } 4043 4044 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4045 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4046 return C_Memory; 4047 return C_Register; 4048 } 4049 return C_Unknown; 4050 } 4051 4052 /// Try to replace an X constraint, which matches anything, with another that 4053 /// has more specific requirements based on the type of the corresponding 4054 /// operand. 4055 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4056 if (ConstraintVT.isInteger()) 4057 return "r"; 4058 if (ConstraintVT.isFloatingPoint()) 4059 return "f"; // works for many targets 4060 return nullptr; 4061 } 4062 4063 SDValue TargetLowering::LowerAsmOutputForConstraint( 4064 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4065 SelectionDAG &DAG) const { 4066 return SDValue(); 4067 } 4068 4069 /// Lower the specified operand into the Ops vector. 4070 /// If it is invalid, don't add anything to Ops. 4071 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4072 std::string &Constraint, 4073 std::vector<SDValue> &Ops, 4074 SelectionDAG &DAG) const { 4075 4076 if (Constraint.length() > 1) return; 4077 4078 char ConstraintLetter = Constraint[0]; 4079 switch (ConstraintLetter) { 4080 default: break; 4081 case 'X': // Allows any operand; labels (basic block) use this. 4082 if (Op.getOpcode() == ISD::BasicBlock || 4083 Op.getOpcode() == ISD::TargetBlockAddress) { 4084 Ops.push_back(Op); 4085 return; 4086 } 4087 LLVM_FALLTHROUGH; 4088 case 'i': // Simple Integer or Relocatable Constant 4089 case 'n': // Simple Integer 4090 case 's': { // Relocatable Constant 4091 4092 GlobalAddressSDNode *GA; 4093 ConstantSDNode *C; 4094 BlockAddressSDNode *BA; 4095 uint64_t Offset = 0; 4096 4097 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4098 // etc., since getelementpointer is variadic. We can't use 4099 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4100 // while in this case the GA may be furthest from the root node which is 4101 // likely an ISD::ADD. 4102 while (1) { 4103 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4104 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4105 GA->getValueType(0), 4106 Offset + GA->getOffset())); 4107 return; 4108 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4109 ConstraintLetter != 's') { 4110 // gcc prints these as sign extended. Sign extend value to 64 bits 4111 // now; without this it would get ZExt'd later in 4112 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4113 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4114 BooleanContent BCont = getBooleanContents(MVT::i64); 4115 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4116 : ISD::SIGN_EXTEND; 4117 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4118 : C->getSExtValue(); 4119 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4120 SDLoc(C), MVT::i64)); 4121 return; 4122 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4123 ConstraintLetter != 'n') { 4124 Ops.push_back(DAG.getTargetBlockAddress( 4125 BA->getBlockAddress(), BA->getValueType(0), 4126 Offset + BA->getOffset(), BA->getTargetFlags())); 4127 return; 4128 } else { 4129 const unsigned OpCode = Op.getOpcode(); 4130 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4131 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4132 Op = Op.getOperand(1); 4133 // Subtraction is not commutative. 4134 else if (OpCode == ISD::ADD && 4135 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4136 Op = Op.getOperand(0); 4137 else 4138 return; 4139 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4140 continue; 4141 } 4142 } 4143 return; 4144 } 4145 break; 4146 } 4147 } 4148 } 4149 4150 std::pair<unsigned, const TargetRegisterClass *> 4151 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4152 StringRef Constraint, 4153 MVT VT) const { 4154 if (Constraint.empty() || Constraint[0] != '{') 4155 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4156 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4157 4158 // Remove the braces from around the name. 4159 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4160 4161 std::pair<unsigned, const TargetRegisterClass *> R = 4162 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4163 4164 // Figure out which register class contains this reg. 4165 for (const TargetRegisterClass *RC : RI->regclasses()) { 4166 // If none of the value types for this register class are valid, we 4167 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4168 if (!isLegalRC(*RI, *RC)) 4169 continue; 4170 4171 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4172 I != E; ++I) { 4173 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4174 std::pair<unsigned, const TargetRegisterClass *> S = 4175 std::make_pair(*I, RC); 4176 4177 // If this register class has the requested value type, return it, 4178 // otherwise keep searching and return the first class found 4179 // if no other is found which explicitly has the requested type. 4180 if (RI->isTypeLegalForClass(*RC, VT)) 4181 return S; 4182 if (!R.second) 4183 R = S; 4184 } 4185 } 4186 } 4187 4188 return R; 4189 } 4190 4191 //===----------------------------------------------------------------------===// 4192 // Constraint Selection. 4193 4194 /// Return true of this is an input operand that is a matching constraint like 4195 /// "4". 4196 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4197 assert(!ConstraintCode.empty() && "No known constraint!"); 4198 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4199 } 4200 4201 /// If this is an input matching constraint, this method returns the output 4202 /// operand it matches. 4203 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4204 assert(!ConstraintCode.empty() && "No known constraint!"); 4205 return atoi(ConstraintCode.c_str()); 4206 } 4207 4208 /// Split up the constraint string from the inline assembly value into the 4209 /// specific constraints and their prefixes, and also tie in the associated 4210 /// operand values. 4211 /// If this returns an empty vector, and if the constraint string itself 4212 /// isn't empty, there was an error parsing. 4213 TargetLowering::AsmOperandInfoVector 4214 TargetLowering::ParseConstraints(const DataLayout &DL, 4215 const TargetRegisterInfo *TRI, 4216 ImmutableCallSite CS) const { 4217 /// Information about all of the constraints. 4218 AsmOperandInfoVector ConstraintOperands; 4219 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4220 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4221 4222 // Do a prepass over the constraints, canonicalizing them, and building up the 4223 // ConstraintOperands list. 4224 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4225 unsigned ResNo = 0; // ResNo - The result number of the next output. 4226 4227 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4228 ConstraintOperands.emplace_back(std::move(CI)); 4229 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4230 4231 // Update multiple alternative constraint count. 4232 if (OpInfo.multipleAlternatives.size() > maCount) 4233 maCount = OpInfo.multipleAlternatives.size(); 4234 4235 OpInfo.ConstraintVT = MVT::Other; 4236 4237 // Compute the value type for each operand. 4238 switch (OpInfo.Type) { 4239 case InlineAsm::isOutput: 4240 // Indirect outputs just consume an argument. 4241 if (OpInfo.isIndirect) { 4242 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4243 break; 4244 } 4245 4246 // The return value of the call is this value. As such, there is no 4247 // corresponding argument. 4248 assert(!CS.getType()->isVoidTy() && 4249 "Bad inline asm!"); 4250 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4251 OpInfo.ConstraintVT = 4252 getSimpleValueType(DL, STy->getElementType(ResNo)); 4253 } else { 4254 assert(ResNo == 0 && "Asm only has one result!"); 4255 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4256 } 4257 ++ResNo; 4258 break; 4259 case InlineAsm::isInput: 4260 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4261 break; 4262 case InlineAsm::isClobber: 4263 // Nothing to do. 4264 break; 4265 } 4266 4267 if (OpInfo.CallOperandVal) { 4268 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4269 if (OpInfo.isIndirect) { 4270 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4271 if (!PtrTy) 4272 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4273 OpTy = PtrTy->getElementType(); 4274 } 4275 4276 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4277 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4278 if (STy->getNumElements() == 1) 4279 OpTy = STy->getElementType(0); 4280 4281 // If OpTy is not a single value, it may be a struct/union that we 4282 // can tile with integers. 4283 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4284 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4285 switch (BitSize) { 4286 default: break; 4287 case 1: 4288 case 8: 4289 case 16: 4290 case 32: 4291 case 64: 4292 case 128: 4293 OpInfo.ConstraintVT = 4294 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4295 break; 4296 } 4297 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4298 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4299 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4300 } else { 4301 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4302 } 4303 } 4304 } 4305 4306 // If we have multiple alternative constraints, select the best alternative. 4307 if (!ConstraintOperands.empty()) { 4308 if (maCount) { 4309 unsigned bestMAIndex = 0; 4310 int bestWeight = -1; 4311 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4312 int weight = -1; 4313 unsigned maIndex; 4314 // Compute the sums of the weights for each alternative, keeping track 4315 // of the best (highest weight) one so far. 4316 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4317 int weightSum = 0; 4318 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4319 cIndex != eIndex; ++cIndex) { 4320 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4321 if (OpInfo.Type == InlineAsm::isClobber) 4322 continue; 4323 4324 // If this is an output operand with a matching input operand, 4325 // look up the matching input. If their types mismatch, e.g. one 4326 // is an integer, the other is floating point, or their sizes are 4327 // different, flag it as an maCantMatch. 4328 if (OpInfo.hasMatchingInput()) { 4329 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4330 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4331 if ((OpInfo.ConstraintVT.isInteger() != 4332 Input.ConstraintVT.isInteger()) || 4333 (OpInfo.ConstraintVT.getSizeInBits() != 4334 Input.ConstraintVT.getSizeInBits())) { 4335 weightSum = -1; // Can't match. 4336 break; 4337 } 4338 } 4339 } 4340 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4341 if (weight == -1) { 4342 weightSum = -1; 4343 break; 4344 } 4345 weightSum += weight; 4346 } 4347 // Update best. 4348 if (weightSum > bestWeight) { 4349 bestWeight = weightSum; 4350 bestMAIndex = maIndex; 4351 } 4352 } 4353 4354 // Now select chosen alternative in each constraint. 4355 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4356 cIndex != eIndex; ++cIndex) { 4357 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4358 if (cInfo.Type == InlineAsm::isClobber) 4359 continue; 4360 cInfo.selectAlternative(bestMAIndex); 4361 } 4362 } 4363 } 4364 4365 // Check and hook up tied operands, choose constraint code to use. 4366 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4367 cIndex != eIndex; ++cIndex) { 4368 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4369 4370 // If this is an output operand with a matching input operand, look up the 4371 // matching input. If their types mismatch, e.g. one is an integer, the 4372 // other is floating point, or their sizes are different, flag it as an 4373 // error. 4374 if (OpInfo.hasMatchingInput()) { 4375 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4376 4377 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4378 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4379 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4380 OpInfo.ConstraintVT); 4381 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4382 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4383 Input.ConstraintVT); 4384 if ((OpInfo.ConstraintVT.isInteger() != 4385 Input.ConstraintVT.isInteger()) || 4386 (MatchRC.second != InputRC.second)) { 4387 report_fatal_error("Unsupported asm: input constraint" 4388 " with a matching output constraint of" 4389 " incompatible type!"); 4390 } 4391 } 4392 } 4393 } 4394 4395 return ConstraintOperands; 4396 } 4397 4398 /// Return an integer indicating how general CT is. 4399 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4400 switch (CT) { 4401 case TargetLowering::C_Immediate: 4402 case TargetLowering::C_Other: 4403 case TargetLowering::C_Unknown: 4404 return 0; 4405 case TargetLowering::C_Register: 4406 return 1; 4407 case TargetLowering::C_RegisterClass: 4408 return 2; 4409 case TargetLowering::C_Memory: 4410 return 3; 4411 } 4412 llvm_unreachable("Invalid constraint type"); 4413 } 4414 4415 /// Examine constraint type and operand type and determine a weight value. 4416 /// This object must already have been set up with the operand type 4417 /// and the current alternative constraint selected. 4418 TargetLowering::ConstraintWeight 4419 TargetLowering::getMultipleConstraintMatchWeight( 4420 AsmOperandInfo &info, int maIndex) const { 4421 InlineAsm::ConstraintCodeVector *rCodes; 4422 if (maIndex >= (int)info.multipleAlternatives.size()) 4423 rCodes = &info.Codes; 4424 else 4425 rCodes = &info.multipleAlternatives[maIndex].Codes; 4426 ConstraintWeight BestWeight = CW_Invalid; 4427 4428 // Loop over the options, keeping track of the most general one. 4429 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4430 ConstraintWeight weight = 4431 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4432 if (weight > BestWeight) 4433 BestWeight = weight; 4434 } 4435 4436 return BestWeight; 4437 } 4438 4439 /// Examine constraint type and operand type and determine a weight value. 4440 /// This object must already have been set up with the operand type 4441 /// and the current alternative constraint selected. 4442 TargetLowering::ConstraintWeight 4443 TargetLowering::getSingleConstraintMatchWeight( 4444 AsmOperandInfo &info, const char *constraint) const { 4445 ConstraintWeight weight = CW_Invalid; 4446 Value *CallOperandVal = info.CallOperandVal; 4447 // If we don't have a value, we can't do a match, 4448 // but allow it at the lowest weight. 4449 if (!CallOperandVal) 4450 return CW_Default; 4451 // Look at the constraint type. 4452 switch (*constraint) { 4453 case 'i': // immediate integer. 4454 case 'n': // immediate integer with a known value. 4455 if (isa<ConstantInt>(CallOperandVal)) 4456 weight = CW_Constant; 4457 break; 4458 case 's': // non-explicit intregal immediate. 4459 if (isa<GlobalValue>(CallOperandVal)) 4460 weight = CW_Constant; 4461 break; 4462 case 'E': // immediate float if host format. 4463 case 'F': // immediate float. 4464 if (isa<ConstantFP>(CallOperandVal)) 4465 weight = CW_Constant; 4466 break; 4467 case '<': // memory operand with autodecrement. 4468 case '>': // memory operand with autoincrement. 4469 case 'm': // memory operand. 4470 case 'o': // offsettable memory operand 4471 case 'V': // non-offsettable memory operand 4472 weight = CW_Memory; 4473 break; 4474 case 'r': // general register. 4475 case 'g': // general register, memory operand or immediate integer. 4476 // note: Clang converts "g" to "imr". 4477 if (CallOperandVal->getType()->isIntegerTy()) 4478 weight = CW_Register; 4479 break; 4480 case 'X': // any operand. 4481 default: 4482 weight = CW_Default; 4483 break; 4484 } 4485 return weight; 4486 } 4487 4488 /// If there are multiple different constraints that we could pick for this 4489 /// operand (e.g. "imr") try to pick the 'best' one. 4490 /// This is somewhat tricky: constraints fall into four classes: 4491 /// Other -> immediates and magic values 4492 /// Register -> one specific register 4493 /// RegisterClass -> a group of regs 4494 /// Memory -> memory 4495 /// Ideally, we would pick the most specific constraint possible: if we have 4496 /// something that fits into a register, we would pick it. The problem here 4497 /// is that if we have something that could either be in a register or in 4498 /// memory that use of the register could cause selection of *other* 4499 /// operands to fail: they might only succeed if we pick memory. Because of 4500 /// this the heuristic we use is: 4501 /// 4502 /// 1) If there is an 'other' constraint, and if the operand is valid for 4503 /// that constraint, use it. This makes us take advantage of 'i' 4504 /// constraints when available. 4505 /// 2) Otherwise, pick the most general constraint present. This prefers 4506 /// 'm' over 'r', for example. 4507 /// 4508 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4509 const TargetLowering &TLI, 4510 SDValue Op, SelectionDAG *DAG) { 4511 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4512 unsigned BestIdx = 0; 4513 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4514 int BestGenerality = -1; 4515 4516 // Loop over the options, keeping track of the most general one. 4517 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4518 TargetLowering::ConstraintType CType = 4519 TLI.getConstraintType(OpInfo.Codes[i]); 4520 4521 // If this is an 'other' or 'immediate' constraint, see if the operand is 4522 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4523 // the operand is an integer in the range [0..31] we want to use I (saving a 4524 // load of a register), otherwise we must use 'r'. 4525 if ((CType == TargetLowering::C_Other || 4526 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4527 assert(OpInfo.Codes[i].size() == 1 && 4528 "Unhandled multi-letter 'other' constraint"); 4529 std::vector<SDValue> ResultOps; 4530 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4531 ResultOps, *DAG); 4532 if (!ResultOps.empty()) { 4533 BestType = CType; 4534 BestIdx = i; 4535 break; 4536 } 4537 } 4538 4539 // Things with matching constraints can only be registers, per gcc 4540 // documentation. This mainly affects "g" constraints. 4541 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4542 continue; 4543 4544 // This constraint letter is more general than the previous one, use it. 4545 int Generality = getConstraintGenerality(CType); 4546 if (Generality > BestGenerality) { 4547 BestType = CType; 4548 BestIdx = i; 4549 BestGenerality = Generality; 4550 } 4551 } 4552 4553 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4554 OpInfo.ConstraintType = BestType; 4555 } 4556 4557 /// Determines the constraint code and constraint type to use for the specific 4558 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4559 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4560 SDValue Op, 4561 SelectionDAG *DAG) const { 4562 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4563 4564 // Single-letter constraints ('r') are very common. 4565 if (OpInfo.Codes.size() == 1) { 4566 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4567 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4568 } else { 4569 ChooseConstraint(OpInfo, *this, Op, DAG); 4570 } 4571 4572 // 'X' matches anything. 4573 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4574 // Labels and constants are handled elsewhere ('X' is the only thing 4575 // that matches labels). For Functions, the type here is the type of 4576 // the result, which is not what we want to look at; leave them alone. 4577 Value *v = OpInfo.CallOperandVal; 4578 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4579 OpInfo.CallOperandVal = v; 4580 return; 4581 } 4582 4583 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4584 return; 4585 4586 // Otherwise, try to resolve it to something we know about by looking at 4587 // the actual operand type. 4588 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4589 OpInfo.ConstraintCode = Repl; 4590 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4591 } 4592 } 4593 } 4594 4595 /// Given an exact SDIV by a constant, create a multiplication 4596 /// with the multiplicative inverse of the constant. 4597 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4598 const SDLoc &dl, SelectionDAG &DAG, 4599 SmallVectorImpl<SDNode *> &Created) { 4600 SDValue Op0 = N->getOperand(0); 4601 SDValue Op1 = N->getOperand(1); 4602 EVT VT = N->getValueType(0); 4603 EVT SVT = VT.getScalarType(); 4604 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4605 EVT ShSVT = ShVT.getScalarType(); 4606 4607 bool UseSRA = false; 4608 SmallVector<SDValue, 16> Shifts, Factors; 4609 4610 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4611 if (C->isNullValue()) 4612 return false; 4613 APInt Divisor = C->getAPIntValue(); 4614 unsigned Shift = Divisor.countTrailingZeros(); 4615 if (Shift) { 4616 Divisor.ashrInPlace(Shift); 4617 UseSRA = true; 4618 } 4619 // Calculate the multiplicative inverse, using Newton's method. 4620 APInt t; 4621 APInt Factor = Divisor; 4622 while ((t = Divisor * Factor) != 1) 4623 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4624 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4625 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4626 return true; 4627 }; 4628 4629 // Collect all magic values from the build vector. 4630 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4631 return SDValue(); 4632 4633 SDValue Shift, Factor; 4634 if (VT.isVector()) { 4635 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4636 Factor = DAG.getBuildVector(VT, dl, Factors); 4637 } else { 4638 Shift = Shifts[0]; 4639 Factor = Factors[0]; 4640 } 4641 4642 SDValue Res = Op0; 4643 4644 // Shift the value upfront if it is even, so the LSB is one. 4645 if (UseSRA) { 4646 // TODO: For UDIV use SRL instead of SRA. 4647 SDNodeFlags Flags; 4648 Flags.setExact(true); 4649 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4650 Created.push_back(Res.getNode()); 4651 } 4652 4653 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4654 } 4655 4656 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4657 SelectionDAG &DAG, 4658 SmallVectorImpl<SDNode *> &Created) const { 4659 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4661 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4662 return SDValue(N, 0); // Lower SDIV as SDIV 4663 return SDValue(); 4664 } 4665 4666 /// Given an ISD::SDIV node expressing a divide by constant, 4667 /// return a DAG expression to select that will generate the same value by 4668 /// multiplying by a magic number. 4669 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4670 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4671 bool IsAfterLegalization, 4672 SmallVectorImpl<SDNode *> &Created) const { 4673 SDLoc dl(N); 4674 EVT VT = N->getValueType(0); 4675 EVT SVT = VT.getScalarType(); 4676 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4677 EVT ShSVT = ShVT.getScalarType(); 4678 unsigned EltBits = VT.getScalarSizeInBits(); 4679 4680 // Check to see if we can do this. 4681 // FIXME: We should be more aggressive here. 4682 if (!isTypeLegal(VT)) 4683 return SDValue(); 4684 4685 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4686 if (N->getFlags().hasExact()) 4687 return BuildExactSDIV(*this, N, dl, DAG, Created); 4688 4689 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4690 4691 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4692 if (C->isNullValue()) 4693 return false; 4694 4695 const APInt &Divisor = C->getAPIntValue(); 4696 APInt::ms magics = Divisor.magic(); 4697 int NumeratorFactor = 0; 4698 int ShiftMask = -1; 4699 4700 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4701 // If d is +1/-1, we just multiply the numerator by +1/-1. 4702 NumeratorFactor = Divisor.getSExtValue(); 4703 magics.m = 0; 4704 magics.s = 0; 4705 ShiftMask = 0; 4706 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4707 // If d > 0 and m < 0, add the numerator. 4708 NumeratorFactor = 1; 4709 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4710 // If d < 0 and m > 0, subtract the numerator. 4711 NumeratorFactor = -1; 4712 } 4713 4714 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4715 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4716 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4717 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4718 return true; 4719 }; 4720 4721 SDValue N0 = N->getOperand(0); 4722 SDValue N1 = N->getOperand(1); 4723 4724 // Collect the shifts / magic values from each element. 4725 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4726 return SDValue(); 4727 4728 SDValue MagicFactor, Factor, Shift, ShiftMask; 4729 if (VT.isVector()) { 4730 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4731 Factor = DAG.getBuildVector(VT, dl, Factors); 4732 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4733 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4734 } else { 4735 MagicFactor = MagicFactors[0]; 4736 Factor = Factors[0]; 4737 Shift = Shifts[0]; 4738 ShiftMask = ShiftMasks[0]; 4739 } 4740 4741 // Multiply the numerator (operand 0) by the magic value. 4742 // FIXME: We should support doing a MUL in a wider type. 4743 SDValue Q; 4744 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4745 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4746 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4747 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4748 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4749 SDValue LoHi = 4750 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4751 Q = SDValue(LoHi.getNode(), 1); 4752 } else 4753 return SDValue(); // No mulhs or equivalent. 4754 Created.push_back(Q.getNode()); 4755 4756 // (Optionally) Add/subtract the numerator using Factor. 4757 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4758 Created.push_back(Factor.getNode()); 4759 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4760 Created.push_back(Q.getNode()); 4761 4762 // Shift right algebraic by shift value. 4763 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4764 Created.push_back(Q.getNode()); 4765 4766 // Extract the sign bit, mask it and add it to the quotient. 4767 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4768 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4769 Created.push_back(T.getNode()); 4770 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4771 Created.push_back(T.getNode()); 4772 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4773 } 4774 4775 /// Given an ISD::UDIV node expressing a divide by constant, 4776 /// return a DAG expression to select that will generate the same value by 4777 /// multiplying by a magic number. 4778 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4779 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4780 bool IsAfterLegalization, 4781 SmallVectorImpl<SDNode *> &Created) const { 4782 SDLoc dl(N); 4783 EVT VT = N->getValueType(0); 4784 EVT SVT = VT.getScalarType(); 4785 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4786 EVT ShSVT = ShVT.getScalarType(); 4787 unsigned EltBits = VT.getScalarSizeInBits(); 4788 4789 // Check to see if we can do this. 4790 // FIXME: We should be more aggressive here. 4791 if (!isTypeLegal(VT)) 4792 return SDValue(); 4793 4794 bool UseNPQ = false; 4795 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4796 4797 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4798 if (C->isNullValue()) 4799 return false; 4800 // FIXME: We should use a narrower constant when the upper 4801 // bits are known to be zero. 4802 APInt Divisor = C->getAPIntValue(); 4803 APInt::mu magics = Divisor.magicu(); 4804 unsigned PreShift = 0, PostShift = 0; 4805 4806 // If the divisor is even, we can avoid using the expensive fixup by 4807 // shifting the divided value upfront. 4808 if (magics.a != 0 && !Divisor[0]) { 4809 PreShift = Divisor.countTrailingZeros(); 4810 // Get magic number for the shifted divisor. 4811 magics = Divisor.lshr(PreShift).magicu(PreShift); 4812 assert(magics.a == 0 && "Should use cheap fixup now"); 4813 } 4814 4815 APInt Magic = magics.m; 4816 4817 unsigned SelNPQ; 4818 if (magics.a == 0 || Divisor.isOneValue()) { 4819 assert(magics.s < Divisor.getBitWidth() && 4820 "We shouldn't generate an undefined shift!"); 4821 PostShift = magics.s; 4822 SelNPQ = false; 4823 } else { 4824 PostShift = magics.s - 1; 4825 SelNPQ = true; 4826 } 4827 4828 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4829 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4830 NPQFactors.push_back( 4831 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4832 : APInt::getNullValue(EltBits), 4833 dl, SVT)); 4834 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4835 UseNPQ |= SelNPQ; 4836 return true; 4837 }; 4838 4839 SDValue N0 = N->getOperand(0); 4840 SDValue N1 = N->getOperand(1); 4841 4842 // Collect the shifts/magic values from each element. 4843 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4844 return SDValue(); 4845 4846 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4847 if (VT.isVector()) { 4848 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4849 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4850 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4851 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4852 } else { 4853 PreShift = PreShifts[0]; 4854 MagicFactor = MagicFactors[0]; 4855 PostShift = PostShifts[0]; 4856 } 4857 4858 SDValue Q = N0; 4859 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4860 Created.push_back(Q.getNode()); 4861 4862 // FIXME: We should support doing a MUL in a wider type. 4863 auto GetMULHU = [&](SDValue X, SDValue Y) { 4864 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4865 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4866 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4867 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4868 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4869 SDValue LoHi = 4870 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4871 return SDValue(LoHi.getNode(), 1); 4872 } 4873 return SDValue(); // No mulhu or equivalent 4874 }; 4875 4876 // Multiply the numerator (operand 0) by the magic value. 4877 Q = GetMULHU(Q, MagicFactor); 4878 if (!Q) 4879 return SDValue(); 4880 4881 Created.push_back(Q.getNode()); 4882 4883 if (UseNPQ) { 4884 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4885 Created.push_back(NPQ.getNode()); 4886 4887 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4888 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4889 if (VT.isVector()) 4890 NPQ = GetMULHU(NPQ, NPQFactor); 4891 else 4892 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4893 4894 Created.push_back(NPQ.getNode()); 4895 4896 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4897 Created.push_back(Q.getNode()); 4898 } 4899 4900 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4901 Created.push_back(Q.getNode()); 4902 4903 SDValue One = DAG.getConstant(1, dl, VT); 4904 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4905 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4906 } 4907 4908 /// If all values in Values that *don't* match the predicate are same 'splat' 4909 /// value, then replace all values with that splat value. 4910 /// Else, if AlternativeReplacement was provided, then replace all values that 4911 /// do match predicate with AlternativeReplacement value. 4912 static void 4913 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4914 std::function<bool(SDValue)> Predicate, 4915 SDValue AlternativeReplacement = SDValue()) { 4916 SDValue Replacement; 4917 // Is there a value for which the Predicate does *NOT* match? What is it? 4918 auto SplatValue = llvm::find_if_not(Values, Predicate); 4919 if (SplatValue != Values.end()) { 4920 // Does Values consist only of SplatValue's and values matching Predicate? 4921 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4922 return Value == *SplatValue || Predicate(Value); 4923 })) // Then we shall replace values matching predicate with SplatValue. 4924 Replacement = *SplatValue; 4925 } 4926 if (!Replacement) { 4927 // Oops, we did not find the "baseline" splat value. 4928 if (!AlternativeReplacement) 4929 return; // Nothing to do. 4930 // Let's replace with provided value then. 4931 Replacement = AlternativeReplacement; 4932 } 4933 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4934 } 4935 4936 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4937 /// where the divisor is constant and the comparison target is zero, 4938 /// return a DAG expression that will generate the same comparison result 4939 /// using only multiplications, additions and shifts/rotations. 4940 /// Ref: "Hacker's Delight" 10-17. 4941 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4942 SDValue CompTargetNode, 4943 ISD::CondCode Cond, 4944 DAGCombinerInfo &DCI, 4945 const SDLoc &DL) const { 4946 SmallVector<SDNode *, 2> Built; 4947 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4948 DCI, DL, Built)) { 4949 for (SDNode *N : Built) 4950 DCI.AddToWorklist(N); 4951 return Folded; 4952 } 4953 4954 return SDValue(); 4955 } 4956 4957 SDValue 4958 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4959 SDValue CompTargetNode, ISD::CondCode Cond, 4960 DAGCombinerInfo &DCI, const SDLoc &DL, 4961 SmallVectorImpl<SDNode *> &Created) const { 4962 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4963 // - D must be constant, with D = D0 * 2^K where D0 is odd 4964 // - P is the multiplicative inverse of D0 modulo 2^W 4965 // - Q = floor(((2^W) - 1) / D) 4966 // where W is the width of the common type of N and D. 4967 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4968 "Only applicable for (in)equality comparisons."); 4969 4970 SelectionDAG &DAG = DCI.DAG; 4971 4972 EVT VT = REMNode.getValueType(); 4973 EVT SVT = VT.getScalarType(); 4974 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4975 EVT ShSVT = ShVT.getScalarType(); 4976 4977 // If MUL is unavailable, we cannot proceed in any case. 4978 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 4979 return SDValue(); 4980 4981 // TODO: Could support comparing with non-zero too. 4982 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 4983 if (!CompTarget || !CompTarget->isNullValue()) 4984 return SDValue(); 4985 4986 bool HadOneDivisor = false; 4987 bool AllDivisorsAreOnes = true; 4988 bool HadEvenDivisor = false; 4989 bool AllDivisorsArePowerOfTwo = true; 4990 SmallVector<SDValue, 16> PAmts, KAmts, QAmts; 4991 4992 auto BuildUREMPattern = [&](ConstantSDNode *C) { 4993 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 4994 if (C->isNullValue()) 4995 return false; 4996 4997 const APInt &D = C->getAPIntValue(); 4998 // If all divisors are ones, we will prefer to avoid the fold. 4999 HadOneDivisor |= D.isOneValue(); 5000 AllDivisorsAreOnes &= D.isOneValue(); 5001 5002 // Decompose D into D0 * 2^K 5003 unsigned K = D.countTrailingZeros(); 5004 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5005 APInt D0 = D.lshr(K); 5006 5007 // D is even if it has trailing zeros. 5008 HadEvenDivisor |= (K != 0); 5009 // D is a power-of-two if D0 is one. 5010 // If all divisors are power-of-two, we will prefer to avoid the fold. 5011 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5012 5013 // P = inv(D0, 2^W) 5014 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5015 unsigned W = D.getBitWidth(); 5016 APInt P = D0.zext(W + 1) 5017 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5018 .trunc(W); 5019 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5020 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5021 5022 // Q = floor((2^W - 1) / D) 5023 APInt Q = APInt::getAllOnesValue(W).udiv(D); 5024 5025 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5026 "We are expecting that K is always less than all-ones for ShSVT"); 5027 5028 // If the divisor is 1 the result can be constant-folded. 5029 if (D.isOneValue()) { 5030 // Set P and K amount to a bogus values so we can try to splat them. 5031 P = 0; 5032 K = -1; 5033 assert(Q.isAllOnesValue() && 5034 "Expecting all-ones comparison for one divisor"); 5035 } 5036 5037 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5038 KAmts.push_back( 5039 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5040 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5041 return true; 5042 }; 5043 5044 SDValue N = REMNode.getOperand(0); 5045 SDValue D = REMNode.getOperand(1); 5046 5047 // Collect the values from each element. 5048 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern)) 5049 return SDValue(); 5050 5051 // If this is a urem by a one, avoid the fold since it can be constant-folded. 5052 if (AllDivisorsAreOnes) 5053 return SDValue(); 5054 5055 // If this is a urem by a powers-of-two, avoid the fold since it can be 5056 // best implemented as a bit test. 5057 if (AllDivisorsArePowerOfTwo) 5058 return SDValue(); 5059 5060 SDValue PVal, KVal, QVal; 5061 if (VT.isVector()) { 5062 if (HadOneDivisor) { 5063 // Try to turn PAmts into a splat, since we don't care about the values 5064 // that are currently '0'. If we can't, just keep '0'`s. 5065 turnVectorIntoSplatVector(PAmts, isNullConstant); 5066 // Try to turn KAmts into a splat, since we don't care about the values 5067 // that are currently '-1'. If we can't, change them to '0'`s. 5068 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5069 DAG.getConstant(0, DL, ShSVT)); 5070 } 5071 5072 PVal = DAG.getBuildVector(VT, DL, PAmts); 5073 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5074 QVal = DAG.getBuildVector(VT, DL, QAmts); 5075 } else { 5076 PVal = PAmts[0]; 5077 KVal = KAmts[0]; 5078 QVal = QAmts[0]; 5079 } 5080 5081 // (mul N, P) 5082 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5083 Created.push_back(Op0.getNode()); 5084 5085 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5086 // divisors as a performance improvement, since rotating by 0 is a no-op. 5087 if (HadEvenDivisor) { 5088 // We need ROTR to do this. 5089 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5090 return SDValue(); 5091 SDNodeFlags Flags; 5092 Flags.setExact(true); 5093 // UREM: (rotr (mul N, P), K) 5094 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5095 Created.push_back(Op0.getNode()); 5096 } 5097 5098 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5099 return DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5100 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5101 } 5102 5103 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5104 /// where the divisor is constant and the comparison target is zero, 5105 /// return a DAG expression that will generate the same comparison result 5106 /// using only multiplications, additions and shifts/rotations. 5107 /// Ref: "Hacker's Delight" 10-17. 5108 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5109 SDValue CompTargetNode, 5110 ISD::CondCode Cond, 5111 DAGCombinerInfo &DCI, 5112 const SDLoc &DL) const { 5113 SmallVector<SDNode *, 7> Built; 5114 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5115 DCI, DL, Built)) { 5116 assert(Built.size() <= 7 && "Max size prediction failed."); 5117 for (SDNode *N : Built) 5118 DCI.AddToWorklist(N); 5119 return Folded; 5120 } 5121 5122 return SDValue(); 5123 } 5124 5125 SDValue 5126 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5127 SDValue CompTargetNode, ISD::CondCode Cond, 5128 DAGCombinerInfo &DCI, const SDLoc &DL, 5129 SmallVectorImpl<SDNode *> &Created) const { 5130 // Fold: 5131 // (seteq/ne (srem N, D), 0) 5132 // To: 5133 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5134 // 5135 // - D must be constant, with D = D0 * 2^K where D0 is odd 5136 // - P is the multiplicative inverse of D0 modulo 2^W 5137 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5138 // - Q = floor((2 * A) / (2^K)) 5139 // where W is the width of the common type of N and D. 5140 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5141 "Only applicable for (in)equality comparisons."); 5142 5143 SelectionDAG &DAG = DCI.DAG; 5144 5145 EVT VT = REMNode.getValueType(); 5146 EVT SVT = VT.getScalarType(); 5147 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5148 EVT ShSVT = ShVT.getScalarType(); 5149 5150 // If MUL is unavailable, we cannot proceed in any case. 5151 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5152 return SDValue(); 5153 5154 // TODO: Could support comparing with non-zero too. 5155 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5156 if (!CompTarget || !CompTarget->isNullValue()) 5157 return SDValue(); 5158 5159 bool HadIntMinDivisor = false; 5160 bool HadOneDivisor = false; 5161 bool AllDivisorsAreOnes = true; 5162 bool HadEvenDivisor = false; 5163 bool NeedToApplyOffset = false; 5164 bool AllDivisorsArePowerOfTwo = true; 5165 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5166 5167 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5168 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5169 if (C->isNullValue()) 5170 return false; 5171 5172 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5173 5174 // WARNING: this fold is only valid for positive divisors! 5175 APInt D = C->getAPIntValue(); 5176 if (D.isNegative()) 5177 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5178 5179 HadIntMinDivisor |= D.isMinSignedValue(); 5180 5181 // If all divisors are ones, we will prefer to avoid the fold. 5182 HadOneDivisor |= D.isOneValue(); 5183 AllDivisorsAreOnes &= D.isOneValue(); 5184 5185 // Decompose D into D0 * 2^K 5186 unsigned K = D.countTrailingZeros(); 5187 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5188 APInt D0 = D.lshr(K); 5189 5190 if (!D.isMinSignedValue()) { 5191 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5192 // we don't care about this lane in this fold, we'll special-handle it. 5193 HadEvenDivisor |= (K != 0); 5194 } 5195 5196 // D is a power-of-two if D0 is one. This includes INT_MIN. 5197 // If all divisors are power-of-two, we will prefer to avoid the fold. 5198 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5199 5200 // P = inv(D0, 2^W) 5201 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5202 unsigned W = D.getBitWidth(); 5203 APInt P = D0.zext(W + 1) 5204 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5205 .trunc(W); 5206 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5207 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5208 5209 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5210 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5211 A.clearLowBits(K); 5212 5213 if (!D.isMinSignedValue()) { 5214 // If divisor INT_MIN, then we don't care about this lane in this fold, 5215 // we'll special-handle it. 5216 NeedToApplyOffset |= A != 0; 5217 } 5218 5219 // Q = floor((2 * A) / (2^K)) 5220 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5221 5222 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5223 "We are expecting that A is always less than all-ones for SVT"); 5224 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5225 "We are expecting that K is always less than all-ones for ShSVT"); 5226 5227 // If the divisor is 1 the result can be constant-folded. Likewise, we 5228 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5229 if (D.isOneValue()) { 5230 // Set P, A and K to a bogus values so we can try to splat them. 5231 P = 0; 5232 A = -1; 5233 K = -1; 5234 5235 // x ?% 1 == 0 <--> true <--> x u<= -1 5236 Q = -1; 5237 } 5238 5239 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5240 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5241 KAmts.push_back( 5242 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5243 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5244 return true; 5245 }; 5246 5247 SDValue N = REMNode.getOperand(0); 5248 SDValue D = REMNode.getOperand(1); 5249 5250 // Collect the values from each element. 5251 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5252 return SDValue(); 5253 5254 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5255 if (AllDivisorsAreOnes) 5256 return SDValue(); 5257 5258 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5259 // since it can be best implemented as a bit test. 5260 if (AllDivisorsArePowerOfTwo) 5261 return SDValue(); 5262 5263 SDValue PVal, AVal, KVal, QVal; 5264 if (VT.isVector()) { 5265 if (HadOneDivisor) { 5266 // Try to turn PAmts into a splat, since we don't care about the values 5267 // that are currently '0'. If we can't, just keep '0'`s. 5268 turnVectorIntoSplatVector(PAmts, isNullConstant); 5269 // Try to turn AAmts into a splat, since we don't care about the 5270 // values that are currently '-1'. If we can't, change them to '0'`s. 5271 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5272 DAG.getConstant(0, DL, SVT)); 5273 // Try to turn KAmts into a splat, since we don't care about the values 5274 // that are currently '-1'. If we can't, change them to '0'`s. 5275 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5276 DAG.getConstant(0, DL, ShSVT)); 5277 } 5278 5279 PVal = DAG.getBuildVector(VT, DL, PAmts); 5280 AVal = DAG.getBuildVector(VT, DL, AAmts); 5281 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5282 QVal = DAG.getBuildVector(VT, DL, QAmts); 5283 } else { 5284 PVal = PAmts[0]; 5285 AVal = AAmts[0]; 5286 KVal = KAmts[0]; 5287 QVal = QAmts[0]; 5288 } 5289 5290 // (mul N, P) 5291 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5292 Created.push_back(Op0.getNode()); 5293 5294 if (NeedToApplyOffset) { 5295 // We need ADD to do this. 5296 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5297 return SDValue(); 5298 5299 // (add (mul N, P), A) 5300 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5301 Created.push_back(Op0.getNode()); 5302 } 5303 5304 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5305 // divisors as a performance improvement, since rotating by 0 is a no-op. 5306 if (HadEvenDivisor) { 5307 // We need ROTR to do this. 5308 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5309 return SDValue(); 5310 SDNodeFlags Flags; 5311 Flags.setExact(true); 5312 // SREM: (rotr (add (mul N, P), A), K) 5313 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5314 Created.push_back(Op0.getNode()); 5315 } 5316 5317 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5318 SDValue Fold = 5319 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5320 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5321 5322 // If we didn't have lanes with INT_MIN divisor, then we're done. 5323 if (!HadIntMinDivisor) 5324 return Fold; 5325 5326 // That fold is only valid for positive divisors. Which effectively means, 5327 // it is invalid for INT_MIN divisors. So if we have such a lane, 5328 // we must fix-up results for said lanes. 5329 assert(VT.isVector() && "Can/should only get here for vectors."); 5330 5331 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5332 !isOperationLegalOrCustom(ISD::AND, VT) || 5333 !isOperationLegalOrCustom(Cond, VT) || 5334 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5335 return SDValue(); 5336 5337 Created.push_back(Fold.getNode()); 5338 5339 SDValue IntMin = DAG.getConstant( 5340 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5341 SDValue IntMax = DAG.getConstant( 5342 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5343 SDValue Zero = 5344 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5345 5346 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5347 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5348 Created.push_back(DivisorIsIntMin.getNode()); 5349 5350 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5351 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5352 Created.push_back(Masked.getNode()); 5353 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5354 Created.push_back(MaskedIsZero.getNode()); 5355 5356 // To produce final result we need to blend 2 vectors: 'SetCC' and 5357 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5358 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5359 // constant-folded, select can get lowered to a shuffle with constant mask. 5360 SDValue Blended = 5361 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5362 5363 return Blended; 5364 } 5365 5366 bool TargetLowering:: 5367 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5368 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5369 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5370 "be a constant integer"); 5371 return true; 5372 } 5373 5374 return false; 5375 } 5376 5377 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG, 5378 bool LegalOperations, bool ForCodeSize, 5379 unsigned Depth) const { 5380 // fneg is removable even if it has multiple uses. 5381 if (Op.getOpcode() == ISD::FNEG) 5382 return 2; 5383 5384 // Don't allow anything with multiple uses unless we know it is free. 5385 EVT VT = Op.getValueType(); 5386 const SDNodeFlags Flags = Op->getFlags(); 5387 const TargetOptions &Options = DAG.getTarget().Options; 5388 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5389 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5390 return 0; 5391 5392 // Don't recurse exponentially. 5393 if (Depth > SelectionDAG::MaxRecursionDepth) 5394 return 0; 5395 5396 switch (Op.getOpcode()) { 5397 case ISD::ConstantFP: { 5398 if (!LegalOperations) 5399 return 1; 5400 5401 // Don't invert constant FP values after legalization unless the target says 5402 // the negated constant is legal. 5403 return isOperationLegal(ISD::ConstantFP, VT) || 5404 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5405 ForCodeSize); 5406 } 5407 case ISD::BUILD_VECTOR: { 5408 // Only permit BUILD_VECTOR of constants. 5409 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5410 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5411 })) 5412 return 0; 5413 if (!LegalOperations) 5414 return 1; 5415 if (isOperationLegal(ISD::ConstantFP, VT) && 5416 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5417 return 1; 5418 return llvm::all_of(Op->op_values(), [&](SDValue N) { 5419 return N.isUndef() || 5420 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5421 ForCodeSize); 5422 }); 5423 } 5424 case ISD::FADD: 5425 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5426 return 0; 5427 5428 // After operation legalization, it might not be legal to create new FSUBs. 5429 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5430 return 0; 5431 5432 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5433 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5434 ForCodeSize, Depth + 1)) 5435 return V; 5436 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5437 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5438 ForCodeSize, Depth + 1); 5439 case ISD::FSUB: 5440 // We can't turn -(A-B) into B-A when we honor signed zeros. 5441 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5442 return 0; 5443 5444 // fold (fneg (fsub A, B)) -> (fsub B, A) 5445 return 1; 5446 5447 case ISD::FMUL: 5448 case ISD::FDIV: 5449 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5450 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5451 ForCodeSize, Depth + 1)) 5452 return V; 5453 5454 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5455 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5456 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5457 return 0; 5458 5459 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5460 ForCodeSize, Depth + 1); 5461 5462 case ISD::FMA: 5463 case ISD::FMAD: { 5464 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5465 return 0; 5466 5467 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5468 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5469 char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations, 5470 ForCodeSize, Depth + 1); 5471 if (!V2) 5472 return 0; 5473 5474 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5475 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5476 ForCodeSize, Depth + 1); 5477 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5478 ForCodeSize, Depth + 1); 5479 char V01 = std::max(V0, V1); 5480 return V01 ? std::max(V01, V2) : 0; 5481 } 5482 5483 case ISD::FP_EXTEND: 5484 case ISD::FP_ROUND: 5485 case ISD::FSIN: 5486 return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5487 ForCodeSize, Depth + 1); 5488 } 5489 5490 return 0; 5491 } 5492 5493 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5494 bool LegalOperations, 5495 bool ForCodeSize, 5496 unsigned Depth) const { 5497 // fneg is removable even if it has multiple uses. 5498 if (Op.getOpcode() == ISD::FNEG) 5499 return Op.getOperand(0); 5500 5501 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5502 "getNegatedExpression doesn't match isNegatibleForFree"); 5503 const SDNodeFlags Flags = Op->getFlags(); 5504 5505 switch (Op.getOpcode()) { 5506 case ISD::ConstantFP: { 5507 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5508 V.changeSign(); 5509 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5510 } 5511 case ISD::BUILD_VECTOR: { 5512 SmallVector<SDValue, 4> Ops; 5513 for (SDValue C : Op->op_values()) { 5514 if (C.isUndef()) { 5515 Ops.push_back(C); 5516 continue; 5517 } 5518 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5519 V.changeSign(); 5520 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5521 } 5522 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5523 } 5524 case ISD::FADD: 5525 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5526 Flags.hasNoSignedZeros()) && 5527 "Expected NSZ fp-flag"); 5528 5529 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5530 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5531 Depth + 1)) 5532 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5533 getNegatedExpression(Op.getOperand(0), DAG, 5534 LegalOperations, ForCodeSize, 5535 Depth + 1), 5536 Op.getOperand(1), Flags); 5537 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5538 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5539 getNegatedExpression(Op.getOperand(1), DAG, 5540 LegalOperations, ForCodeSize, 5541 Depth + 1), 5542 Op.getOperand(0), Flags); 5543 case ISD::FSUB: 5544 // fold (fneg (fsub 0, B)) -> B 5545 if (ConstantFPSDNode *N0CFP = 5546 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5547 if (N0CFP->isZero()) 5548 return Op.getOperand(1); 5549 5550 // fold (fneg (fsub A, B)) -> (fsub B, A) 5551 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5552 Op.getOperand(1), Op.getOperand(0), Flags); 5553 5554 case ISD::FMUL: 5555 case ISD::FDIV: 5556 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5557 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5558 Depth + 1)) 5559 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5560 getNegatedExpression(Op.getOperand(0), DAG, 5561 LegalOperations, ForCodeSize, 5562 Depth + 1), 5563 Op.getOperand(1), Flags); 5564 5565 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5566 return DAG.getNode( 5567 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5568 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5569 ForCodeSize, Depth + 1), 5570 Flags); 5571 5572 case ISD::FMA: 5573 case ISD::FMAD: { 5574 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5575 Flags.hasNoSignedZeros()) && 5576 "Expected NSZ fp-flag"); 5577 5578 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5579 ForCodeSize, Depth + 1); 5580 5581 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5582 ForCodeSize, Depth + 1); 5583 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5584 ForCodeSize, Depth + 1); 5585 if (V0 >= V1) { 5586 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5587 SDValue Neg0 = getNegatedExpression( 5588 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5589 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5590 Op.getOperand(1), Neg2, Flags); 5591 } 5592 5593 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5594 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5595 ForCodeSize, Depth + 1); 5596 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5597 Op.getOperand(0), Neg1, Neg2, Flags); 5598 } 5599 5600 case ISD::FP_EXTEND: 5601 case ISD::FSIN: 5602 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5603 getNegatedExpression(Op.getOperand(0), DAG, 5604 LegalOperations, ForCodeSize, 5605 Depth + 1)); 5606 case ISD::FP_ROUND: 5607 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5608 getNegatedExpression(Op.getOperand(0), DAG, 5609 LegalOperations, ForCodeSize, 5610 Depth + 1), 5611 Op.getOperand(1)); 5612 } 5613 5614 llvm_unreachable("Unknown code"); 5615 } 5616 5617 //===----------------------------------------------------------------------===// 5618 // Legalization Utilities 5619 //===----------------------------------------------------------------------===// 5620 5621 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5622 SDValue LHS, SDValue RHS, 5623 SmallVectorImpl<SDValue> &Result, 5624 EVT HiLoVT, SelectionDAG &DAG, 5625 MulExpansionKind Kind, SDValue LL, 5626 SDValue LH, SDValue RL, SDValue RH) const { 5627 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5628 Opcode == ISD::SMUL_LOHI); 5629 5630 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5631 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5632 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5633 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5634 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5635 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5636 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5637 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5638 5639 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5640 return false; 5641 5642 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5643 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5644 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5645 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5646 5647 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5648 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5649 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5650 5651 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5652 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5653 bool Signed) -> bool { 5654 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5655 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5656 Hi = SDValue(Lo.getNode(), 1); 5657 return true; 5658 } 5659 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5660 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5661 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5662 return true; 5663 } 5664 return false; 5665 }; 5666 5667 SDValue Lo, Hi; 5668 5669 if (!LL.getNode() && !RL.getNode() && 5670 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5671 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5672 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5673 } 5674 5675 if (!LL.getNode()) 5676 return false; 5677 5678 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5679 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5680 DAG.MaskedValueIsZero(RHS, HighMask)) { 5681 // The inputs are both zero-extended. 5682 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5683 Result.push_back(Lo); 5684 Result.push_back(Hi); 5685 if (Opcode != ISD::MUL) { 5686 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5687 Result.push_back(Zero); 5688 Result.push_back(Zero); 5689 } 5690 return true; 5691 } 5692 } 5693 5694 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5695 RHSSB > InnerBitSize) { 5696 // The input values are both sign-extended. 5697 // TODO non-MUL case? 5698 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5699 Result.push_back(Lo); 5700 Result.push_back(Hi); 5701 return true; 5702 } 5703 } 5704 5705 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5706 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5707 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5708 // FIXME getShiftAmountTy does not always return a sensible result when VT 5709 // is an illegal type, and so the type may be too small to fit the shift 5710 // amount. Override it with i32. The shift will have to be legalized. 5711 ShiftAmountTy = MVT::i32; 5712 } 5713 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5714 5715 if (!LH.getNode() && !RH.getNode() && 5716 isOperationLegalOrCustom(ISD::SRL, VT) && 5717 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5718 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5719 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5720 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5721 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5722 } 5723 5724 if (!LH.getNode()) 5725 return false; 5726 5727 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5728 return false; 5729 5730 Result.push_back(Lo); 5731 5732 if (Opcode == ISD::MUL) { 5733 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5734 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5735 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5736 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5737 Result.push_back(Hi); 5738 return true; 5739 } 5740 5741 // Compute the full width result. 5742 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5743 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5744 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5745 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5746 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5747 }; 5748 5749 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5750 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5751 return false; 5752 5753 // This is effectively the add part of a multiply-add of half-sized operands, 5754 // so it cannot overflow. 5755 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5756 5757 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5758 return false; 5759 5760 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5761 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5762 5763 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5764 isOperationLegalOrCustom(ISD::ADDE, VT)); 5765 if (UseGlue) 5766 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5767 Merge(Lo, Hi)); 5768 else 5769 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5770 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5771 5772 SDValue Carry = Next.getValue(1); 5773 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5774 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5775 5776 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5777 return false; 5778 5779 if (UseGlue) 5780 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5781 Carry); 5782 else 5783 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5784 Zero, Carry); 5785 5786 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5787 5788 if (Opcode == ISD::SMUL_LOHI) { 5789 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5790 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5791 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5792 5793 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5794 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5795 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5796 } 5797 5798 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5799 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5800 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5801 return true; 5802 } 5803 5804 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5805 SelectionDAG &DAG, MulExpansionKind Kind, 5806 SDValue LL, SDValue LH, SDValue RL, 5807 SDValue RH) const { 5808 SmallVector<SDValue, 2> Result; 5809 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5810 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5811 DAG, Kind, LL, LH, RL, RH); 5812 if (Ok) { 5813 assert(Result.size() == 2); 5814 Lo = Result[0]; 5815 Hi = Result[1]; 5816 } 5817 return Ok; 5818 } 5819 5820 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5821 SelectionDAG &DAG) const { 5822 EVT VT = Node->getValueType(0); 5823 5824 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5825 !isOperationLegalOrCustom(ISD::SRL, VT) || 5826 !isOperationLegalOrCustom(ISD::SUB, VT) || 5827 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5828 return false; 5829 5830 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5831 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5832 SDValue X = Node->getOperand(0); 5833 SDValue Y = Node->getOperand(1); 5834 SDValue Z = Node->getOperand(2); 5835 5836 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5837 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5838 SDLoc DL(SDValue(Node, 0)); 5839 5840 EVT ShVT = Z.getValueType(); 5841 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5842 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5843 5844 SDValue ShAmt; 5845 if (isPowerOf2_32(EltSizeInBits)) { 5846 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5847 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5848 } else { 5849 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5850 } 5851 5852 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5853 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5854 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5855 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5856 5857 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5858 // and that is undefined. We must compare and select to avoid UB. 5859 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5860 5861 // For fshl, 0-shift returns the 1st arg (X). 5862 // For fshr, 0-shift returns the 2nd arg (Y). 5863 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5864 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5865 return true; 5866 } 5867 5868 // TODO: Merge with expandFunnelShift. 5869 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5870 SelectionDAG &DAG) const { 5871 EVT VT = Node->getValueType(0); 5872 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5873 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5874 SDValue Op0 = Node->getOperand(0); 5875 SDValue Op1 = Node->getOperand(1); 5876 SDLoc DL(SDValue(Node, 0)); 5877 5878 EVT ShVT = Op1.getValueType(); 5879 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5880 5881 // If a rotate in the other direction is legal, use it. 5882 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5883 if (isOperationLegal(RevRot, VT)) { 5884 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5885 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 5886 return true; 5887 } 5888 5889 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5890 !isOperationLegalOrCustom(ISD::SRL, VT) || 5891 !isOperationLegalOrCustom(ISD::SUB, VT) || 5892 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 5893 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5894 return false; 5895 5896 // Otherwise, 5897 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 5898 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 5899 // 5900 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 5901 "Expecting the type bitwidth to be a power of 2"); 5902 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 5903 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 5904 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5905 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5906 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 5907 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 5908 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 5909 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 5910 return true; 5911 } 5912 5913 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 5914 SelectionDAG &DAG) const { 5915 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5916 SDValue Src = Node->getOperand(OpNo); 5917 EVT SrcVT = Src.getValueType(); 5918 EVT DstVT = Node->getValueType(0); 5919 SDLoc dl(SDValue(Node, 0)); 5920 5921 // FIXME: Only f32 to i64 conversions are supported. 5922 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 5923 return false; 5924 5925 if (Node->isStrictFPOpcode()) 5926 // When a NaN is converted to an integer a trap is allowed. We can't 5927 // use this expansion here because it would eliminate that trap. Other 5928 // traps are also allowed and cannot be eliminated. See 5929 // IEEE 754-2008 sec 5.8. 5930 return false; 5931 5932 // Expand f32 -> i64 conversion 5933 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5934 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5935 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 5936 EVT IntVT = SrcVT.changeTypeToInteger(); 5937 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 5938 5939 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 5940 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 5941 SDValue Bias = DAG.getConstant(127, dl, IntVT); 5942 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 5943 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 5944 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 5945 5946 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 5947 5948 SDValue ExponentBits = DAG.getNode( 5949 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 5950 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 5951 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 5952 5953 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 5954 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 5955 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 5956 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 5957 5958 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 5959 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 5960 DAG.getConstant(0x00800000, dl, IntVT)); 5961 5962 R = DAG.getZExtOrTrunc(R, dl, DstVT); 5963 5964 R = DAG.getSelectCC( 5965 dl, Exponent, ExponentLoBit, 5966 DAG.getNode(ISD::SHL, dl, DstVT, R, 5967 DAG.getZExtOrTrunc( 5968 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 5969 dl, IntShVT)), 5970 DAG.getNode(ISD::SRL, dl, DstVT, R, 5971 DAG.getZExtOrTrunc( 5972 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 5973 dl, IntShVT)), 5974 ISD::SETGT); 5975 5976 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 5977 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 5978 5979 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 5980 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 5981 return true; 5982 } 5983 5984 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 5985 SDValue &Chain, 5986 SelectionDAG &DAG) const { 5987 SDLoc dl(SDValue(Node, 0)); 5988 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5989 SDValue Src = Node->getOperand(OpNo); 5990 5991 EVT SrcVT = Src.getValueType(); 5992 EVT DstVT = Node->getValueType(0); 5993 EVT SetCCVT = 5994 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 5995 5996 // Only expand vector types if we have the appropriate vector bit operations. 5997 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 5998 ISD::FP_TO_SINT; 5999 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6000 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6001 return false; 6002 6003 // If the maximum float value is smaller then the signed integer range, 6004 // the destination signmask can't be represented by the float, so we can 6005 // just use FP_TO_SINT directly. 6006 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6007 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6008 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6009 if (APFloat::opOverflow & 6010 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6011 if (Node->isStrictFPOpcode()) { 6012 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6013 { Node->getOperand(0), Src }); 6014 Chain = Result.getValue(1); 6015 } else 6016 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6017 return true; 6018 } 6019 6020 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6021 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6022 6023 bool Strict = Node->isStrictFPOpcode() || 6024 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6025 6026 if (Strict) { 6027 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6028 // signmask then offset (the result of which should be fully representable). 6029 // Sel = Src < 0x8000000000000000 6030 // Val = select Sel, Src, Src - 0x8000000000000000 6031 // Ofs = select Sel, 0, 0x8000000000000000 6032 // Result = fp_to_sint(Val) ^ Ofs 6033 6034 // TODO: Should any fast-math-flags be set for the FSUB? 6035 SDValue SrcBiased; 6036 if (Node->isStrictFPOpcode()) 6037 SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6038 { Node->getOperand(0), Src, Cst }); 6039 else 6040 SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst); 6041 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased); 6042 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 6043 DAG.getConstant(SignMask, dl, DstVT)); 6044 SDValue SInt; 6045 if (Node->isStrictFPOpcode()) { 6046 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6047 { SrcBiased.getValue(1), Val }); 6048 Chain = SInt.getValue(1); 6049 } else 6050 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6051 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs); 6052 } else { 6053 // Expand based on maximum range of FP_TO_SINT: 6054 // True = fp_to_sint(Src) 6055 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6056 // Result = select (Src < 0x8000000000000000), True, False 6057 6058 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6059 // TODO: Should any fast-math-flags be set for the FSUB? 6060 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6061 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6062 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6063 DAG.getConstant(SignMask, dl, DstVT)); 6064 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6065 } 6066 return true; 6067 } 6068 6069 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6070 SelectionDAG &DAG) const { 6071 SDValue Src = Node->getOperand(0); 6072 EVT SrcVT = Src.getValueType(); 6073 EVT DstVT = Node->getValueType(0); 6074 6075 if (SrcVT.getScalarType() != MVT::i64) 6076 return false; 6077 6078 SDLoc dl(SDValue(Node, 0)); 6079 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6080 6081 if (DstVT.getScalarType() == MVT::f32) { 6082 // Only expand vector types if we have the appropriate vector bit 6083 // operations. 6084 if (SrcVT.isVector() && 6085 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6086 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6087 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 6088 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6089 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6090 return false; 6091 6092 // For unsigned conversions, convert them to signed conversions using the 6093 // algorithm from the x86_64 __floatundidf in compiler_rt. 6094 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 6095 6096 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 6097 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 6098 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 6099 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 6100 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 6101 6102 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 6103 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 6104 6105 // TODO: This really should be implemented using a branch rather than a 6106 // select. We happen to get lucky and machinesink does the right 6107 // thing most of the time. This would be a good candidate for a 6108 // pseudo-op, or, even better, for whole-function isel. 6109 EVT SetCCVT = 6110 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6111 6112 SDValue SignBitTest = DAG.getSetCC( 6113 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 6114 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 6115 return true; 6116 } 6117 6118 if (DstVT.getScalarType() == MVT::f64) { 6119 // Only expand vector types if we have the appropriate vector bit 6120 // operations. 6121 if (SrcVT.isVector() && 6122 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6123 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6124 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6125 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6126 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6127 return false; 6128 6129 // Implementation of unsigned i64 to f64 following the algorithm in 6130 // __floatundidf in compiler_rt. This implementation has the advantage 6131 // of performing rounding correctly, both in the default rounding mode 6132 // and in all alternate rounding modes. 6133 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6134 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6135 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6136 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6137 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6138 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6139 6140 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6141 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6142 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6143 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6144 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6145 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6146 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6147 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6148 return true; 6149 } 6150 6151 return false; 6152 } 6153 6154 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6155 SelectionDAG &DAG) const { 6156 SDLoc dl(Node); 6157 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6158 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6159 EVT VT = Node->getValueType(0); 6160 if (isOperationLegalOrCustom(NewOp, VT)) { 6161 SDValue Quiet0 = Node->getOperand(0); 6162 SDValue Quiet1 = Node->getOperand(1); 6163 6164 if (!Node->getFlags().hasNoNaNs()) { 6165 // Insert canonicalizes if it's possible we need to quiet to get correct 6166 // sNaN behavior. 6167 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6168 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6169 Node->getFlags()); 6170 } 6171 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6172 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6173 Node->getFlags()); 6174 } 6175 } 6176 6177 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6178 } 6179 6180 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6181 // instead if there are no NaNs. 6182 if (Node->getFlags().hasNoNaNs()) { 6183 unsigned IEEE2018Op = 6184 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6185 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6186 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6187 Node->getOperand(1), Node->getFlags()); 6188 } 6189 } 6190 6191 return SDValue(); 6192 } 6193 6194 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6195 SelectionDAG &DAG) const { 6196 SDLoc dl(Node); 6197 EVT VT = Node->getValueType(0); 6198 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6199 SDValue Op = Node->getOperand(0); 6200 unsigned Len = VT.getScalarSizeInBits(); 6201 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6202 6203 // TODO: Add support for irregular type lengths. 6204 if (!(Len <= 128 && Len % 8 == 0)) 6205 return false; 6206 6207 // Only expand vector types if we have the appropriate vector bit operations. 6208 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6209 !isOperationLegalOrCustom(ISD::SUB, VT) || 6210 !isOperationLegalOrCustom(ISD::SRL, VT) || 6211 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6212 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6213 return false; 6214 6215 // This is the "best" algorithm from 6216 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6217 SDValue Mask55 = 6218 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6219 SDValue Mask33 = 6220 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6221 SDValue Mask0F = 6222 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6223 SDValue Mask01 = 6224 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6225 6226 // v = v - ((v >> 1) & 0x55555555...) 6227 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6228 DAG.getNode(ISD::AND, dl, VT, 6229 DAG.getNode(ISD::SRL, dl, VT, Op, 6230 DAG.getConstant(1, dl, ShVT)), 6231 Mask55)); 6232 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6233 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6234 DAG.getNode(ISD::AND, dl, VT, 6235 DAG.getNode(ISD::SRL, dl, VT, Op, 6236 DAG.getConstant(2, dl, ShVT)), 6237 Mask33)); 6238 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6239 Op = DAG.getNode(ISD::AND, dl, VT, 6240 DAG.getNode(ISD::ADD, dl, VT, Op, 6241 DAG.getNode(ISD::SRL, dl, VT, Op, 6242 DAG.getConstant(4, dl, ShVT))), 6243 Mask0F); 6244 // v = (v * 0x01010101...) >> (Len - 8) 6245 if (Len > 8) 6246 Op = 6247 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6248 DAG.getConstant(Len - 8, dl, ShVT)); 6249 6250 Result = Op; 6251 return true; 6252 } 6253 6254 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6255 SelectionDAG &DAG) const { 6256 SDLoc dl(Node); 6257 EVT VT = Node->getValueType(0); 6258 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6259 SDValue Op = Node->getOperand(0); 6260 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6261 6262 // If the non-ZERO_UNDEF version is supported we can use that instead. 6263 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6264 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6265 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6266 return true; 6267 } 6268 6269 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6270 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6271 EVT SetCCVT = 6272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6273 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6274 SDValue Zero = DAG.getConstant(0, dl, VT); 6275 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6276 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6277 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6278 return true; 6279 } 6280 6281 // Only expand vector types if we have the appropriate vector bit operations. 6282 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6283 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6284 !isOperationLegalOrCustom(ISD::SRL, VT) || 6285 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6286 return false; 6287 6288 // for now, we do this: 6289 // x = x | (x >> 1); 6290 // x = x | (x >> 2); 6291 // ... 6292 // x = x | (x >>16); 6293 // x = x | (x >>32); // for 64-bit input 6294 // return popcount(~x); 6295 // 6296 // Ref: "Hacker's Delight" by Henry Warren 6297 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6298 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6299 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6300 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6301 } 6302 Op = DAG.getNOT(dl, Op, VT); 6303 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6304 return true; 6305 } 6306 6307 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6308 SelectionDAG &DAG) const { 6309 SDLoc dl(Node); 6310 EVT VT = Node->getValueType(0); 6311 SDValue Op = Node->getOperand(0); 6312 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6313 6314 // If the non-ZERO_UNDEF version is supported we can use that instead. 6315 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6316 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6317 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6318 return true; 6319 } 6320 6321 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6322 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6323 EVT SetCCVT = 6324 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6325 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6326 SDValue Zero = DAG.getConstant(0, dl, VT); 6327 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6328 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6329 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6330 return true; 6331 } 6332 6333 // Only expand vector types if we have the appropriate vector bit operations. 6334 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6335 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6336 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6337 !isOperationLegalOrCustom(ISD::SUB, VT) || 6338 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6339 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6340 return false; 6341 6342 // for now, we use: { return popcount(~x & (x - 1)); } 6343 // unless the target has ctlz but not ctpop, in which case we use: 6344 // { return 32 - nlz(~x & (x-1)); } 6345 // Ref: "Hacker's Delight" by Henry Warren 6346 SDValue Tmp = DAG.getNode( 6347 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6348 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6349 6350 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6351 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6352 Result = 6353 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6354 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6355 return true; 6356 } 6357 6358 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6359 return true; 6360 } 6361 6362 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6363 SelectionDAG &DAG) const { 6364 SDLoc dl(N); 6365 EVT VT = N->getValueType(0); 6366 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6367 SDValue Op = N->getOperand(0); 6368 6369 // Only expand vector types if we have the appropriate vector operations. 6370 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6371 !isOperationLegalOrCustom(ISD::ADD, VT) || 6372 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6373 return false; 6374 6375 SDValue Shift = 6376 DAG.getNode(ISD::SRA, dl, VT, Op, 6377 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6378 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6379 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6380 return true; 6381 } 6382 6383 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6384 SelectionDAG &DAG) const { 6385 SDLoc SL(LD); 6386 SDValue Chain = LD->getChain(); 6387 SDValue BasePTR = LD->getBasePtr(); 6388 EVT SrcVT = LD->getMemoryVT(); 6389 ISD::LoadExtType ExtType = LD->getExtensionType(); 6390 6391 unsigned NumElem = SrcVT.getVectorNumElements(); 6392 6393 EVT SrcEltVT = SrcVT.getScalarType(); 6394 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6395 6396 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6397 assert(SrcEltVT.isByteSized()); 6398 6399 SmallVector<SDValue, 8> Vals; 6400 SmallVector<SDValue, 8> LoadChains; 6401 6402 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6403 SDValue ScalarLoad = 6404 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6405 LD->getPointerInfo().getWithOffset(Idx * Stride), 6406 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6407 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6408 6409 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6410 6411 Vals.push_back(ScalarLoad.getValue(0)); 6412 LoadChains.push_back(ScalarLoad.getValue(1)); 6413 } 6414 6415 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6416 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6417 6418 return DAG.getMergeValues({Value, NewChain}, SL); 6419 } 6420 6421 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6422 SelectionDAG &DAG) const { 6423 SDLoc SL(ST); 6424 6425 SDValue Chain = ST->getChain(); 6426 SDValue BasePtr = ST->getBasePtr(); 6427 SDValue Value = ST->getValue(); 6428 EVT StVT = ST->getMemoryVT(); 6429 6430 // The type of the data we want to save 6431 EVT RegVT = Value.getValueType(); 6432 EVT RegSclVT = RegVT.getScalarType(); 6433 6434 // The type of data as saved in memory. 6435 EVT MemSclVT = StVT.getScalarType(); 6436 6437 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6438 unsigned NumElem = StVT.getVectorNumElements(); 6439 6440 // A vector must always be stored in memory as-is, i.e. without any padding 6441 // between the elements, since various code depend on it, e.g. in the 6442 // handling of a bitcast of a vector type to int, which may be done with a 6443 // vector store followed by an integer load. A vector that does not have 6444 // elements that are byte-sized must therefore be stored as an integer 6445 // built out of the extracted vector elements. 6446 if (!MemSclVT.isByteSized()) { 6447 unsigned NumBits = StVT.getSizeInBits(); 6448 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6449 6450 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6451 6452 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6453 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6454 DAG.getConstant(Idx, SL, IdxVT)); 6455 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6456 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6457 unsigned ShiftIntoIdx = 6458 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6459 SDValue ShiftAmount = 6460 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6461 SDValue ShiftedElt = 6462 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6463 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6464 } 6465 6466 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6467 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6468 ST->getAAInfo()); 6469 } 6470 6471 // Store Stride in bytes 6472 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6473 assert(Stride && "Zero stride!"); 6474 // Extract each of the elements from the original vector and save them into 6475 // memory individually. 6476 SmallVector<SDValue, 8> Stores; 6477 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6478 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6479 DAG.getConstant(Idx, SL, IdxVT)); 6480 6481 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6482 6483 // This scalar TruncStore may be illegal, but we legalize it later. 6484 SDValue Store = DAG.getTruncStore( 6485 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6486 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6487 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6488 6489 Stores.push_back(Store); 6490 } 6491 6492 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6493 } 6494 6495 std::pair<SDValue, SDValue> 6496 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6497 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6498 "unaligned indexed loads not implemented!"); 6499 SDValue Chain = LD->getChain(); 6500 SDValue Ptr = LD->getBasePtr(); 6501 EVT VT = LD->getValueType(0); 6502 EVT LoadedVT = LD->getMemoryVT(); 6503 SDLoc dl(LD); 6504 auto &MF = DAG.getMachineFunction(); 6505 6506 if (VT.isFloatingPoint() || VT.isVector()) { 6507 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6508 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6509 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6510 LoadedVT.isVector()) { 6511 // Scalarize the load and let the individual components be handled. 6512 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 6513 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 6514 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 6515 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 6516 } 6517 6518 // Expand to a (misaligned) integer load of the same size, 6519 // then bitconvert to floating point or vector. 6520 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6521 LD->getMemOperand()); 6522 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6523 if (LoadedVT != VT) 6524 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6525 ISD::ANY_EXTEND, dl, VT, Result); 6526 6527 return std::make_pair(Result, newLoad.getValue(1)); 6528 } 6529 6530 // Copy the value to a (aligned) stack slot using (unaligned) integer 6531 // loads and stores, then do a (aligned) load from the stack slot. 6532 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6533 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6534 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6535 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6536 6537 // Make sure the stack slot is also aligned for the register type. 6538 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6539 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6540 SmallVector<SDValue, 8> Stores; 6541 SDValue StackPtr = StackBase; 6542 unsigned Offset = 0; 6543 6544 EVT PtrVT = Ptr.getValueType(); 6545 EVT StackPtrVT = StackPtr.getValueType(); 6546 6547 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6548 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6549 6550 // Do all but one copies using the full register width. 6551 for (unsigned i = 1; i < NumRegs; i++) { 6552 // Load one integer register's worth from the original location. 6553 SDValue Load = DAG.getLoad( 6554 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6555 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6556 LD->getAAInfo()); 6557 // Follow the load with a store to the stack slot. Remember the store. 6558 Stores.push_back(DAG.getStore( 6559 Load.getValue(1), dl, Load, StackPtr, 6560 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6561 // Increment the pointers. 6562 Offset += RegBytes; 6563 6564 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6565 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6566 } 6567 6568 // The last copy may be partial. Do an extending load. 6569 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6570 8 * (LoadedBytes - Offset)); 6571 SDValue Load = 6572 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6573 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6574 MinAlign(LD->getAlignment(), Offset), 6575 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6576 // Follow the load with a store to the stack slot. Remember the store. 6577 // On big-endian machines this requires a truncating store to ensure 6578 // that the bits end up in the right place. 6579 Stores.push_back(DAG.getTruncStore( 6580 Load.getValue(1), dl, Load, StackPtr, 6581 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6582 6583 // The order of the stores doesn't matter - say it with a TokenFactor. 6584 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6585 6586 // Finally, perform the original load only redirected to the stack slot. 6587 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6588 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6589 LoadedVT); 6590 6591 // Callers expect a MERGE_VALUES node. 6592 return std::make_pair(Load, TF); 6593 } 6594 6595 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6596 "Unaligned load of unsupported type."); 6597 6598 // Compute the new VT that is half the size of the old one. This is an 6599 // integer MVT. 6600 unsigned NumBits = LoadedVT.getSizeInBits(); 6601 EVT NewLoadedVT; 6602 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6603 NumBits >>= 1; 6604 6605 unsigned Alignment = LD->getAlignment(); 6606 unsigned IncrementSize = NumBits / 8; 6607 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6608 6609 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6610 if (HiExtType == ISD::NON_EXTLOAD) 6611 HiExtType = ISD::ZEXTLOAD; 6612 6613 // Load the value in two parts 6614 SDValue Lo, Hi; 6615 if (DAG.getDataLayout().isLittleEndian()) { 6616 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6617 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6618 LD->getAAInfo()); 6619 6620 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6621 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6622 LD->getPointerInfo().getWithOffset(IncrementSize), 6623 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6624 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6625 } else { 6626 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6627 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6628 LD->getAAInfo()); 6629 6630 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6631 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6632 LD->getPointerInfo().getWithOffset(IncrementSize), 6633 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6634 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6635 } 6636 6637 // aggregate the two parts 6638 SDValue ShiftAmount = 6639 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6640 DAG.getDataLayout())); 6641 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6642 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6643 6644 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6645 Hi.getValue(1)); 6646 6647 return std::make_pair(Result, TF); 6648 } 6649 6650 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6651 SelectionDAG &DAG) const { 6652 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6653 "unaligned indexed stores not implemented!"); 6654 SDValue Chain = ST->getChain(); 6655 SDValue Ptr = ST->getBasePtr(); 6656 SDValue Val = ST->getValue(); 6657 EVT VT = Val.getValueType(); 6658 int Alignment = ST->getAlignment(); 6659 auto &MF = DAG.getMachineFunction(); 6660 EVT StoreMemVT = ST->getMemoryVT(); 6661 6662 SDLoc dl(ST); 6663 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6664 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6665 if (isTypeLegal(intVT)) { 6666 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6667 StoreMemVT.isVector()) { 6668 // Scalarize the store and let the individual components be handled. 6669 SDValue Result = scalarizeVectorStore(ST, DAG); 6670 return Result; 6671 } 6672 // Expand to a bitconvert of the value to the integer type of the 6673 // same size, then a (misaligned) int store. 6674 // FIXME: Does not handle truncating floating point stores! 6675 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6676 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6677 Alignment, ST->getMemOperand()->getFlags()); 6678 return Result; 6679 } 6680 // Do a (aligned) store to a stack slot, then copy from the stack slot 6681 // to the final destination using (unaligned) integer loads and stores. 6682 MVT RegVT = getRegisterType( 6683 *DAG.getContext(), 6684 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6685 EVT PtrVT = Ptr.getValueType(); 6686 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6687 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6688 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6689 6690 // Make sure the stack slot is also aligned for the register type. 6691 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6692 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6693 6694 // Perform the original store, only redirected to the stack slot. 6695 SDValue Store = DAG.getTruncStore( 6696 Chain, dl, Val, StackPtr, 6697 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6698 6699 EVT StackPtrVT = StackPtr.getValueType(); 6700 6701 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6702 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6703 SmallVector<SDValue, 8> Stores; 6704 unsigned Offset = 0; 6705 6706 // Do all but one copies using the full register width. 6707 for (unsigned i = 1; i < NumRegs; i++) { 6708 // Load one integer register's worth from the stack slot. 6709 SDValue Load = DAG.getLoad( 6710 RegVT, dl, Store, StackPtr, 6711 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6712 // Store it to the final location. Remember the store. 6713 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6714 ST->getPointerInfo().getWithOffset(Offset), 6715 MinAlign(ST->getAlignment(), Offset), 6716 ST->getMemOperand()->getFlags())); 6717 // Increment the pointers. 6718 Offset += RegBytes; 6719 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6720 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6721 } 6722 6723 // The last store may be partial. Do a truncating store. On big-endian 6724 // machines this requires an extending load from the stack slot to ensure 6725 // that the bits are in the right place. 6726 EVT LoadMemVT = 6727 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6728 6729 // Load from the stack slot. 6730 SDValue Load = DAG.getExtLoad( 6731 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6732 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6733 6734 Stores.push_back( 6735 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6736 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6737 MinAlign(ST->getAlignment(), Offset), 6738 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6739 // The order of the stores doesn't matter - say it with a TokenFactor. 6740 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6741 return Result; 6742 } 6743 6744 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6745 "Unaligned store of unknown type."); 6746 // Get the half-size VT 6747 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6748 int NumBits = NewStoredVT.getSizeInBits(); 6749 int IncrementSize = NumBits / 8; 6750 6751 // Divide the stored value in two parts. 6752 SDValue ShiftAmount = DAG.getConstant( 6753 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6754 SDValue Lo = Val; 6755 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6756 6757 // Store the two parts 6758 SDValue Store1, Store2; 6759 Store1 = DAG.getTruncStore(Chain, dl, 6760 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6761 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6762 ST->getMemOperand()->getFlags()); 6763 6764 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6765 Alignment = MinAlign(Alignment, IncrementSize); 6766 Store2 = DAG.getTruncStore( 6767 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6768 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6769 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6770 6771 SDValue Result = 6772 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6773 return Result; 6774 } 6775 6776 SDValue 6777 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6778 const SDLoc &DL, EVT DataVT, 6779 SelectionDAG &DAG, 6780 bool IsCompressedMemory) const { 6781 SDValue Increment; 6782 EVT AddrVT = Addr.getValueType(); 6783 EVT MaskVT = Mask.getValueType(); 6784 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6785 "Incompatible types of Data and Mask"); 6786 if (IsCompressedMemory) { 6787 // Incrementing the pointer according to number of '1's in the mask. 6788 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6789 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6790 if (MaskIntVT.getSizeInBits() < 32) { 6791 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6792 MaskIntVT = MVT::i32; 6793 } 6794 6795 // Count '1's with POPCNT. 6796 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6797 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6798 // Scale is an element size in bytes. 6799 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6800 AddrVT); 6801 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6802 } else 6803 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6804 6805 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6806 } 6807 6808 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6809 SDValue Idx, 6810 EVT VecVT, 6811 const SDLoc &dl) { 6812 if (isa<ConstantSDNode>(Idx)) 6813 return Idx; 6814 6815 EVT IdxVT = Idx.getValueType(); 6816 unsigned NElts = VecVT.getVectorNumElements(); 6817 if (isPowerOf2_32(NElts)) { 6818 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6819 Log2_32(NElts)); 6820 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 6821 DAG.getConstant(Imm, dl, IdxVT)); 6822 } 6823 6824 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 6825 DAG.getConstant(NElts - 1, dl, IdxVT)); 6826 } 6827 6828 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 6829 SDValue VecPtr, EVT VecVT, 6830 SDValue Index) const { 6831 SDLoc dl(Index); 6832 // Make sure the index type is big enough to compute in. 6833 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 6834 6835 EVT EltVT = VecVT.getVectorElementType(); 6836 6837 // Calculate the element offset and add it to the pointer. 6838 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 6839 assert(EltSize * 8 == EltVT.getSizeInBits() && 6840 "Converting bits to bytes lost precision"); 6841 6842 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 6843 6844 EVT IdxVT = Index.getValueType(); 6845 6846 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 6847 DAG.getConstant(EltSize, dl, IdxVT)); 6848 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 6849 } 6850 6851 //===----------------------------------------------------------------------===// 6852 // Implementation of Emulated TLS Model 6853 //===----------------------------------------------------------------------===// 6854 6855 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 6856 SelectionDAG &DAG) const { 6857 // Access to address of TLS varialbe xyz is lowered to a function call: 6858 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 6859 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6860 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 6861 SDLoc dl(GA); 6862 6863 ArgListTy Args; 6864 ArgListEntry Entry; 6865 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 6866 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 6867 StringRef EmuTlsVarName(NameString); 6868 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 6869 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 6870 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 6871 Entry.Ty = VoidPtrType; 6872 Args.push_back(Entry); 6873 6874 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 6875 6876 TargetLowering::CallLoweringInfo CLI(DAG); 6877 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 6878 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 6879 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6880 6881 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 6882 // At last for X86 targets, maybe good for other targets too? 6883 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6884 MFI.setAdjustsStack(true); // Is this only for X86 target? 6885 MFI.setHasCalls(true); 6886 6887 assert((GA->getOffset() == 0) && 6888 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 6889 return CallResult.first; 6890 } 6891 6892 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 6893 SelectionDAG &DAG) const { 6894 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 6895 if (!isCtlzFast()) 6896 return SDValue(); 6897 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6898 SDLoc dl(Op); 6899 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6900 if (C->isNullValue() && CC == ISD::SETEQ) { 6901 EVT VT = Op.getOperand(0).getValueType(); 6902 SDValue Zext = Op.getOperand(0); 6903 if (VT.bitsLT(MVT::i32)) { 6904 VT = MVT::i32; 6905 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 6906 } 6907 unsigned Log2b = Log2_32(VT.getSizeInBits()); 6908 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 6909 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 6910 DAG.getConstant(Log2b, dl, MVT::i32)); 6911 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 6912 } 6913 } 6914 return SDValue(); 6915 } 6916 6917 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 6918 unsigned Opcode = Node->getOpcode(); 6919 SDValue LHS = Node->getOperand(0); 6920 SDValue RHS = Node->getOperand(1); 6921 EVT VT = LHS.getValueType(); 6922 SDLoc dl(Node); 6923 6924 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 6925 assert(VT.isInteger() && "Expected operands to be integers"); 6926 6927 // usub.sat(a, b) -> umax(a, b) - b 6928 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 6929 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 6930 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 6931 } 6932 6933 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 6934 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 6935 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 6936 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 6937 } 6938 6939 unsigned OverflowOp; 6940 switch (Opcode) { 6941 case ISD::SADDSAT: 6942 OverflowOp = ISD::SADDO; 6943 break; 6944 case ISD::UADDSAT: 6945 OverflowOp = ISD::UADDO; 6946 break; 6947 case ISD::SSUBSAT: 6948 OverflowOp = ISD::SSUBO; 6949 break; 6950 case ISD::USUBSAT: 6951 OverflowOp = ISD::USUBO; 6952 break; 6953 default: 6954 llvm_unreachable("Expected method to receive signed or unsigned saturation " 6955 "addition or subtraction node."); 6956 } 6957 6958 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 6959 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6960 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 6961 LHS, RHS); 6962 SDValue SumDiff = Result.getValue(0); 6963 SDValue Overflow = Result.getValue(1); 6964 SDValue Zero = DAG.getConstant(0, dl, VT); 6965 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 6966 6967 if (Opcode == ISD::UADDSAT) { 6968 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6969 // (LHS + RHS) | OverflowMask 6970 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6971 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 6972 } 6973 // Overflow ? 0xffff.... : (LHS + RHS) 6974 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 6975 } else if (Opcode == ISD::USUBSAT) { 6976 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6977 // (LHS - RHS) & ~OverflowMask 6978 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6979 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 6980 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 6981 } 6982 // Overflow ? 0 : (LHS - RHS) 6983 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 6984 } else { 6985 // SatMax -> Overflow && SumDiff < 0 6986 // SatMin -> Overflow && SumDiff >= 0 6987 APInt MinVal = APInt::getSignedMinValue(BitWidth); 6988 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 6989 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 6990 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6991 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 6992 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 6993 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 6994 } 6995 } 6996 6997 SDValue 6998 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 6999 assert((Node->getOpcode() == ISD::SMULFIX || 7000 Node->getOpcode() == ISD::UMULFIX || 7001 Node->getOpcode() == ISD::SMULFIXSAT || 7002 Node->getOpcode() == ISD::UMULFIXSAT) && 7003 "Expected a fixed point multiplication opcode"); 7004 7005 SDLoc dl(Node); 7006 SDValue LHS = Node->getOperand(0); 7007 SDValue RHS = Node->getOperand(1); 7008 EVT VT = LHS.getValueType(); 7009 unsigned Scale = Node->getConstantOperandVal(2); 7010 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7011 Node->getOpcode() == ISD::UMULFIXSAT); 7012 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7013 Node->getOpcode() == ISD::SMULFIXSAT); 7014 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7015 unsigned VTSize = VT.getScalarSizeInBits(); 7016 7017 if (!Scale) { 7018 // [us]mul.fix(a, b, 0) -> mul(a, b) 7019 if (!Saturating) { 7020 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7021 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7022 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7023 SDValue Result = 7024 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7025 SDValue Product = Result.getValue(0); 7026 SDValue Overflow = Result.getValue(1); 7027 SDValue Zero = DAG.getConstant(0, dl, VT); 7028 7029 APInt MinVal = APInt::getSignedMinValue(VTSize); 7030 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7031 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7032 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7033 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7034 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7035 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7036 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7037 SDValue Result = 7038 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7039 SDValue Product = Result.getValue(0); 7040 SDValue Overflow = Result.getValue(1); 7041 7042 APInt MaxVal = APInt::getMaxValue(VTSize); 7043 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7044 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7045 } 7046 } 7047 7048 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7049 "Expected scale to be less than the number of bits if signed or at " 7050 "most the number of bits if unsigned."); 7051 assert(LHS.getValueType() == RHS.getValueType() && 7052 "Expected both operands to be the same type"); 7053 7054 // Get the upper and lower bits of the result. 7055 SDValue Lo, Hi; 7056 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7057 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7058 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7059 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7060 Lo = Result.getValue(0); 7061 Hi = Result.getValue(1); 7062 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7063 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7064 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7065 } else if (VT.isVector()) { 7066 return SDValue(); 7067 } else { 7068 report_fatal_error("Unable to expand fixed point multiplication."); 7069 } 7070 7071 if (Scale == VTSize) 7072 // Result is just the top half since we'd be shifting by the width of the 7073 // operand. Overflow impossible so this works for both UMULFIX and 7074 // UMULFIXSAT. 7075 return Hi; 7076 7077 // The result will need to be shifted right by the scale since both operands 7078 // are scaled. The result is given to us in 2 halves, so we only want part of 7079 // both in the result. 7080 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7081 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7082 DAG.getConstant(Scale, dl, ShiftTy)); 7083 if (!Saturating) 7084 return Result; 7085 7086 if (!Signed) { 7087 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7088 // widened multiplication) aren't all zeroes. 7089 7090 // Saturate to max if ((Hi >> Scale) != 0), 7091 // which is the same as if (Hi > ((1 << Scale) - 1)) 7092 APInt MaxVal = APInt::getMaxValue(VTSize); 7093 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7094 dl, VT); 7095 Result = DAG.getSelectCC(dl, Hi, LowMask, 7096 DAG.getConstant(MaxVal, dl, VT), Result, 7097 ISD::SETUGT); 7098 7099 return Result; 7100 } 7101 7102 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7103 // widened multiplication) aren't all ones or all zeroes. 7104 7105 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7106 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7107 7108 if (Scale == 0) { 7109 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7110 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7111 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7112 // Saturated to SatMin if wide product is negative, and SatMax if wide 7113 // product is positive ... 7114 SDValue Zero = DAG.getConstant(0, dl, VT); 7115 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7116 ISD::SETLT); 7117 // ... but only if we overflowed. 7118 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7119 } 7120 7121 // We handled Scale==0 above so all the bits to examine is in Hi. 7122 7123 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7124 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7125 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7126 dl, VT); 7127 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7128 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7129 // which is the same as if (HI < (-1 << (Scale - 1)) 7130 SDValue HighMask = 7131 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7132 dl, VT); 7133 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7134 return Result; 7135 } 7136 7137 void TargetLowering::expandUADDSUBO( 7138 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7139 SDLoc dl(Node); 7140 SDValue LHS = Node->getOperand(0); 7141 SDValue RHS = Node->getOperand(1); 7142 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7143 7144 // If ADD/SUBCARRY is legal, use that instead. 7145 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7146 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7147 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7148 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7149 { LHS, RHS, CarryIn }); 7150 Result = SDValue(NodeCarry.getNode(), 0); 7151 Overflow = SDValue(NodeCarry.getNode(), 1); 7152 return; 7153 } 7154 7155 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7156 LHS.getValueType(), LHS, RHS); 7157 7158 EVT ResultType = Node->getValueType(1); 7159 EVT SetCCType = getSetCCResultType( 7160 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7161 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7162 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7163 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7164 } 7165 7166 void TargetLowering::expandSADDSUBO( 7167 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7168 SDLoc dl(Node); 7169 SDValue LHS = Node->getOperand(0); 7170 SDValue RHS = Node->getOperand(1); 7171 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7172 7173 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7174 LHS.getValueType(), LHS, RHS); 7175 7176 EVT ResultType = Node->getValueType(1); 7177 EVT OType = getSetCCResultType( 7178 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7179 7180 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7181 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7182 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7183 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7184 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7185 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7186 return; 7187 } 7188 7189 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7190 7191 // For an addition, the result should be less than one of the operands (LHS) 7192 // if and only if the other operand (RHS) is negative, otherwise there will 7193 // be overflow. 7194 // For a subtraction, the result should be less than one of the operands 7195 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7196 // otherwise there will be overflow. 7197 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7198 SDValue ConditionRHS = 7199 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7200 7201 Overflow = DAG.getBoolExtOrTrunc( 7202 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7203 ResultType, ResultType); 7204 } 7205 7206 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7207 SDValue &Overflow, SelectionDAG &DAG) const { 7208 SDLoc dl(Node); 7209 EVT VT = Node->getValueType(0); 7210 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7211 SDValue LHS = Node->getOperand(0); 7212 SDValue RHS = Node->getOperand(1); 7213 bool isSigned = Node->getOpcode() == ISD::SMULO; 7214 7215 // For power-of-two multiplications we can use a simpler shift expansion. 7216 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7217 const APInt &C = RHSC->getAPIntValue(); 7218 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7219 if (C.isPowerOf2()) { 7220 // smulo(x, signed_min) is same as umulo(x, signed_min). 7221 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7222 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7223 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7224 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7225 Overflow = DAG.getSetCC(dl, SetCCVT, 7226 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7227 dl, VT, Result, ShiftAmt), 7228 LHS, ISD::SETNE); 7229 return true; 7230 } 7231 } 7232 7233 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7234 if (VT.isVector()) 7235 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7236 VT.getVectorNumElements()); 7237 7238 SDValue BottomHalf; 7239 SDValue TopHalf; 7240 static const unsigned Ops[2][3] = 7241 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7242 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7243 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7244 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7245 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7246 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7247 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7248 RHS); 7249 TopHalf = BottomHalf.getValue(1); 7250 } else if (isTypeLegal(WideVT)) { 7251 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7252 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7253 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7254 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7255 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7256 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7257 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7258 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7259 } else { 7260 if (VT.isVector()) 7261 return false; 7262 7263 // We can fall back to a libcall with an illegal type for the MUL if we 7264 // have a libcall big enough. 7265 // Also, we can fall back to a division in some cases, but that's a big 7266 // performance hit in the general case. 7267 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7268 if (WideVT == MVT::i16) 7269 LC = RTLIB::MUL_I16; 7270 else if (WideVT == MVT::i32) 7271 LC = RTLIB::MUL_I32; 7272 else if (WideVT == MVT::i64) 7273 LC = RTLIB::MUL_I64; 7274 else if (WideVT == MVT::i128) 7275 LC = RTLIB::MUL_I128; 7276 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7277 7278 SDValue HiLHS; 7279 SDValue HiRHS; 7280 if (isSigned) { 7281 // The high part is obtained by SRA'ing all but one of the bits of low 7282 // part. 7283 unsigned LoSize = VT.getSizeInBits(); 7284 HiLHS = 7285 DAG.getNode(ISD::SRA, dl, VT, LHS, 7286 DAG.getConstant(LoSize - 1, dl, 7287 getPointerTy(DAG.getDataLayout()))); 7288 HiRHS = 7289 DAG.getNode(ISD::SRA, dl, VT, RHS, 7290 DAG.getConstant(LoSize - 1, dl, 7291 getPointerTy(DAG.getDataLayout()))); 7292 } else { 7293 HiLHS = DAG.getConstant(0, dl, VT); 7294 HiRHS = DAG.getConstant(0, dl, VT); 7295 } 7296 7297 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7298 // pre-lowered to the correct types. This all depends upon WideVT not 7299 // being a legal type for the architecture and thus has to be split to 7300 // two arguments. 7301 SDValue Ret; 7302 TargetLowering::MakeLibCallOptions CallOptions; 7303 CallOptions.setSExt(isSigned); 7304 CallOptions.setIsPostTypeLegalization(true); 7305 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7306 // Halves of WideVT are packed into registers in different order 7307 // depending on platform endianness. This is usually handled by 7308 // the C calling convention, but we can't defer to it in 7309 // the legalizer. 7310 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7311 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7312 } else { 7313 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7314 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7315 } 7316 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7317 "Ret value is a collection of constituent nodes holding result."); 7318 if (DAG.getDataLayout().isLittleEndian()) { 7319 // Same as above. 7320 BottomHalf = Ret.getOperand(0); 7321 TopHalf = Ret.getOperand(1); 7322 } else { 7323 BottomHalf = Ret.getOperand(1); 7324 TopHalf = Ret.getOperand(0); 7325 } 7326 } 7327 7328 Result = BottomHalf; 7329 if (isSigned) { 7330 SDValue ShiftAmt = DAG.getConstant( 7331 VT.getScalarSizeInBits() - 1, dl, 7332 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7333 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7334 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7335 } else { 7336 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7337 DAG.getConstant(0, dl, VT), ISD::SETNE); 7338 } 7339 7340 // Truncate the result if SetCC returns a larger type than needed. 7341 EVT RType = Node->getValueType(1); 7342 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7343 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7344 7345 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7346 "Unexpected result type for S/UMULO legalization"); 7347 return true; 7348 } 7349 7350 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7351 SDLoc dl(Node); 7352 bool NoNaN = Node->getFlags().hasNoNaNs(); 7353 unsigned BaseOpcode = 0; 7354 switch (Node->getOpcode()) { 7355 default: llvm_unreachable("Expected VECREDUCE opcode"); 7356 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7357 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7358 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7359 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7360 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7361 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7362 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7363 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7364 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7365 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7366 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7367 case ISD::VECREDUCE_FMAX: 7368 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7369 break; 7370 case ISD::VECREDUCE_FMIN: 7371 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7372 break; 7373 } 7374 7375 SDValue Op = Node->getOperand(0); 7376 EVT VT = Op.getValueType(); 7377 7378 // Try to use a shuffle reduction for power of two vectors. 7379 if (VT.isPow2VectorType()) { 7380 while (VT.getVectorNumElements() > 1) { 7381 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7382 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7383 break; 7384 7385 SDValue Lo, Hi; 7386 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7387 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7388 VT = HalfVT; 7389 } 7390 } 7391 7392 EVT EltVT = VT.getVectorElementType(); 7393 unsigned NumElts = VT.getVectorNumElements(); 7394 7395 SmallVector<SDValue, 8> Ops; 7396 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7397 7398 SDValue Res = Ops[0]; 7399 for (unsigned i = 1; i < NumElts; i++) 7400 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7401 7402 // Result type may be wider than element type. 7403 if (EltVT != Node->getValueType(0)) 7404 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7405 return Res; 7406 } 7407