1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135 }
136 
137 /// Generate a libcall taking the given operands as arguments and returning a
138 /// result of type RetVT.
139 std::pair<SDValue, SDValue>
140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141                             ArrayRef<SDValue> Ops,
142                             MakeLibCallOptions CallOptions,
143                             const SDLoc &dl,
144                             SDValue InChain) const {
145   if (!InChain)
146     InChain = DAG.getEntryNode();
147 
148   TargetLowering::ArgListTy Args;
149   Args.reserve(Ops.size());
150 
151   TargetLowering::ArgListEntry Entry;
152   for (unsigned i = 0; i < Ops.size(); ++i) {
153     SDValue NewOp = Ops[i];
154     Entry.Node = NewOp;
155     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157                                                  CallOptions.IsSExt);
158     Entry.IsZExt = !Entry.IsSExt;
159 
160     if (CallOptions.IsSoften &&
161         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162       Entry.IsSExt = Entry.IsZExt = false;
163     }
164     Args.push_back(Entry);
165   }
166 
167   if (LC == RTLIB::UNKNOWN_LIBCALL)
168     report_fatal_error("Unsupported library call operation!");
169   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170                                          getPointerTy(DAG.getDataLayout()));
171 
172   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173   TargetLowering::CallLoweringInfo CLI(DAG);
174   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175   bool zeroExtend = !signExtend;
176 
177   if (CallOptions.IsSoften &&
178       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179     signExtend = zeroExtend = false;
180   }
181 
182   CLI.setDebugLoc(dl)
183       .setChain(InChain)
184       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185       .setNoReturn(CallOptions.DoesNotReturn)
186       .setDiscardResult(!CallOptions.IsReturnValueUsed)
187       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188       .setSExtResult(signExtend)
189       .setZExtResult(zeroExtend);
190   return LowerCallTo(CLI);
191 }
192 
193 bool TargetLowering::findOptimalMemOpLowering(
194     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195     unsigned SrcAS, const AttributeList &FuncAttributes) const {
196   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200 
201   if (VT == MVT::Other) {
202     // Use the largest integer type whose alignment constraints are satisfied.
203     // We only need to check DstAlign here as SrcAlign is always greater or
204     // equal to DstAlign (or zero).
205     VT = MVT::i64;
206     if (Op.isFixedDstAlign())
207       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210     assert(VT.isInteger());
211 
212     // Find the largest legal integer type.
213     MVT LVT = MVT::i64;
214     while (!isTypeLegal(LVT))
215       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216     assert(LVT.isInteger());
217 
218     // If the type we've chosen is larger than the largest legal integer type
219     // then use that instead.
220     if (VT.bitsGT(LVT))
221       VT = LVT;
222   }
223 
224   unsigned NumMemOps = 0;
225   uint64_t Size = Op.size();
226   while (Size) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(
262               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263               MachineMemOperand::MONone, &Fast) &&
264           Fast)
265         VTSize = Size;
266       else {
267         VT = NewVT;
268         VTSize = NewVTSize;
269       }
270     }
271 
272     if (++NumMemOps > Limit)
273       return false;
274 
275     MemOps.push_back(VT);
276     Size -= VTSize;
277   }
278 
279   return true;
280 }
281 
282 /// Soften the operands of a comparison. This code is shared among BR_CC,
283 /// SELECT_CC, and SETCC handlers.
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS) const {
289   SDValue Chain;
290   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291                              OldRHS, Chain);
292 }
293 
294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295                                          SDValue &NewLHS, SDValue &NewRHS,
296                                          ISD::CondCode &CCCode,
297                                          const SDLoc &dl, const SDValue OldLHS,
298                                          const SDValue OldRHS,
299                                          SDValue &Chain,
300                                          bool IsSignaling) const {
301   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302   // not supporting it. We can update this code when libgcc provides such
303   // functions.
304 
305   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
306          && "Unsupported setcc type!");
307 
308   // Expand into one or more soft-fp libcall(s).
309   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310   bool ShouldInvertCC = false;
311   switch (CCCode) {
312   case ISD::SETEQ:
313   case ISD::SETOEQ:
314     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317     break;
318   case ISD::SETNE:
319   case ISD::SETUNE:
320     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321           (VT == MVT::f64) ? RTLIB::UNE_F64 :
322           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323     break;
324   case ISD::SETGE:
325   case ISD::SETOGE:
326     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327           (VT == MVT::f64) ? RTLIB::OGE_F64 :
328           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329     break;
330   case ISD::SETLT:
331   case ISD::SETOLT:
332     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333           (VT == MVT::f64) ? RTLIB::OLT_F64 :
334           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335     break;
336   case ISD::SETLE:
337   case ISD::SETOLE:
338     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339           (VT == MVT::f64) ? RTLIB::OLE_F64 :
340           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341     break;
342   case ISD::SETGT:
343   case ISD::SETOGT:
344     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345           (VT == MVT::f64) ? RTLIB::OGT_F64 :
346           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347     break;
348   case ISD::SETO:
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUO:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     break;
356   case ISD::SETONE:
357     // SETONE = O && UNE
358     ShouldInvertCC = true;
359     LLVM_FALLTHROUGH;
360   case ISD::SETUEQ:
361     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362           (VT == MVT::f64) ? RTLIB::UO_F64 :
363           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367     break;
368   default:
369     // Invert CC for unordered comparisons
370     ShouldInvertCC = true;
371     switch (CCCode) {
372     case ISD::SETULT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374             (VT == MVT::f64) ? RTLIB::OGE_F64 :
375             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376       break;
377     case ISD::SETULE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379             (VT == MVT::f64) ? RTLIB::OGT_F64 :
380             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381       break;
382     case ISD::SETUGT:
383       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384             (VT == MVT::f64) ? RTLIB::OLE_F64 :
385             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386       break;
387     case ISD::SETUGE:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389             (VT == MVT::f64) ? RTLIB::OLT_F64 :
390             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391       break;
392     default: llvm_unreachable("Do not know how to soften this setcc!");
393     }
394   }
395 
396   // Use the target specific return value for comparions lib calls.
397   EVT RetVT = getCmpLibcallReturnType();
398   SDValue Ops[2] = {NewLHS, NewRHS};
399   TargetLowering::MakeLibCallOptions CallOptions;
400   EVT OpsVT[2] = { OldLHS.getValueType(),
401                    OldRHS.getValueType() };
402   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404   NewLHS = Call.first;
405   NewRHS = DAG.getConstant(0, dl, RetVT);
406 
407   CCCode = getCmpLibcallCC(LC1);
408   if (ShouldInvertCC) {
409     assert(RetVT.isInteger());
410     CCCode = getSetCCInverse(CCCode, RetVT);
411   }
412 
413   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414     // Update Chain.
415     Chain = Call.second;
416   } else {
417     EVT SetCCVT =
418         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421     CCCode = getCmpLibcallCC(LC2);
422     if (ShouldInvertCC)
423       CCCode = getSetCCInverse(CCCode, RetVT);
424     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425     if (Chain)
426       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427                           Call2.second);
428     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429                          Tmp.getValueType(), Tmp, NewLHS);
430     NewRHS = SDValue();
431   }
432 }
433 
434 /// Return the entry encoding for a jump table in the current function. The
435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436 unsigned TargetLowering::getJumpTableEncoding() const {
437   // In non-pic modes, just use the address of a block.
438   if (!isPositionIndependent())
439     return MachineJumpTableInfo::EK_BlockAddress;
440 
441   // In PIC mode, if the target supports a GPRel32 directive, use it.
442   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444 
445   // Otherwise, use a label difference.
446   return MachineJumpTableInfo::EK_LabelDifference32;
447 }
448 
449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450                                                  SelectionDAG &DAG) const {
451   // If our PIC model is GP relative, use the global offset table as the base.
452   unsigned JTEncoding = getJumpTableEncoding();
453 
454   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457 
458   return Table;
459 }
460 
461 /// This returns the relocation base for the given PIC jumptable, the same as
462 /// getPICJumpTableRelocBase, but as an MCExpr.
463 const MCExpr *
464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465                                              unsigned JTI,MCContext &Ctx) const{
466   // The normal PIC reloc base is the label at the start of the jump table.
467   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468 }
469 
470 bool
471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472   const TargetMachine &TM = getTargetMachine();
473   const GlobalValue *GV = GA->getGlobal();
474 
475   // If the address is not even local to this DSO we will have to load it from
476   // a got and then add the offset.
477   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478     return false;
479 
480   // If the code is position independent we will have to add a base register.
481   if (isPositionIndependent())
482     return false;
483 
484   // Otherwise we can do it.
485   return true;
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //  Optimization Methods
490 //===----------------------------------------------------------------------===//
491 
492 /// If the specified instruction has a constant integer operand and there are
493 /// bits set in that constant that are not demanded, then clear those bits and
494 /// return true.
495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496                                             const APInt &DemandedBits,
497                                             const APInt &DemandedElts,
498                                             TargetLoweringOpt &TLO) const {
499   SDLoc DL(Op);
500   unsigned Opcode = Op.getOpcode();
501 
502   // Do target-specific constant optimization.
503   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504     return TLO.New.getNode();
505 
506   // FIXME: ISD::SELECT, ISD::SELECT_CC
507   switch (Opcode) {
508   default:
509     break;
510   case ISD::XOR:
511   case ISD::AND:
512   case ISD::OR: {
513     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514     if (!Op1C || Op1C->isOpaque())
515       return false;
516 
517     // If this is a 'not' op, don't touch it because that's a canonical form.
518     const APInt &C = Op1C->getAPIntValue();
519     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520       return false;
521 
522     if (!C.isSubsetOf(DemandedBits)) {
523       EVT VT = Op.getValueType();
524       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526       return TLO.CombineTo(Op, NewOp);
527     }
528 
529     break;
530   }
531   }
532 
533   return false;
534 }
535 
536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537                                             const APInt &DemandedBits,
538                                             TargetLoweringOpt &TLO) const {
539   EVT VT = Op.getValueType();
540   APInt DemandedElts = VT.isVector()
541                            ? APInt::getAllOnes(VT.getVectorNumElements())
542                            : APInt(1, 1);
543   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544 }
545 
546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548 /// generalized for targets with other types of implicit widening casts.
549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550                                       const APInt &Demanded,
551                                       TargetLoweringOpt &TLO) const {
552   assert(Op.getNumOperands() == 2 &&
553          "ShrinkDemandedOp only supports binary operators!");
554   assert(Op.getNode()->getNumValues() == 1 &&
555          "ShrinkDemandedOp only supports nodes with one result!");
556 
557   SelectionDAG &DAG = TLO.DAG;
558   SDLoc dl(Op);
559 
560   // Early return, as this function cannot handle vector types.
561   if (Op.getValueType().isVector())
562     return false;
563 
564   // Don't do this if the node has another user, which may require the
565   // full value.
566   if (!Op.getNode()->hasOneUse())
567     return false;
568 
569   // Search for the smallest integer type with free casts to and from
570   // Op's type. For expedience, just check power-of-2 integer types.
571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572   unsigned DemandedSize = Demanded.getActiveBits();
573   unsigned SmallVTBits = DemandedSize;
574   if (!isPowerOf2_32(SmallVTBits))
575     SmallVTBits = NextPowerOf2(SmallVTBits);
576   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579         TLI.isZExtFree(SmallVT, Op.getValueType())) {
580       // We found a type with free casts.
581       SDValue X = DAG.getNode(
582           Op.getOpcode(), dl, SmallVT,
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
586       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587       return TLO.CombineTo(Op, Z);
588     }
589   }
590   return false;
591 }
592 
593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594                                           DAGCombinerInfo &DCI) const {
595   SelectionDAG &DAG = DCI.DAG;
596   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597                         !DCI.isBeforeLegalizeOps());
598   KnownBits Known;
599 
600   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601   if (Simplified) {
602     DCI.AddToWorklist(Op.getNode());
603     DCI.CommitTargetLoweringOpt(TLO);
604   }
605   return Simplified;
606 }
607 
608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609                                           KnownBits &Known,
610                                           TargetLoweringOpt &TLO,
611                                           unsigned Depth,
612                                           bool AssumeSingleUse) const {
613   EVT VT = Op.getValueType();
614 
615   // TODO: We can probably do more work on calculating the known bits and
616   // simplifying the operations for scalable vectors, but for now we just
617   // bail out.
618   if (VT.isScalableVector()) {
619     // Pretend we don't know anything for now.
620     Known = KnownBits(DemandedBits.getBitWidth());
621     return false;
622   }
623 
624   APInt DemandedElts = VT.isVector()
625                            ? APInt::getAllOnes(VT.getVectorNumElements())
626                            : APInt(1, 1);
627   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628                               AssumeSingleUse);
629 }
630 
631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632 // TODO: Under what circumstances can we create nodes? Constant folding?
633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635     SelectionDAG &DAG, unsigned Depth) const {
636   // Limit search depth.
637   if (Depth >= SelectionDAG::MaxRecursionDepth)
638     return SDValue();
639 
640   // Ignore UNDEFs.
641   if (Op.isUndef())
642     return SDValue();
643 
644   // Not demanding any bits/elts from Op.
645   if (DemandedBits == 0 || DemandedElts == 0)
646     return DAG.getUNDEF(Op.getValueType());
647 
648   unsigned NumElts = DemandedElts.getBitWidth();
649   unsigned BitWidth = DemandedBits.getBitWidth();
650   KnownBits LHSKnown, RHSKnown;
651   switch (Op.getOpcode()) {
652   case ISD::BITCAST: {
653     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
654     EVT SrcVT = Src.getValueType();
655     EVT DstVT = Op.getValueType();
656     if (SrcVT == DstVT)
657       return Src;
658 
659     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
660     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
661     if (NumSrcEltBits == NumDstEltBits)
662       if (SDValue V = SimplifyMultipleUseDemandedBits(
663               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
664         return DAG.getBitcast(DstVT, V);
665 
666     // TODO - bigendian once we have test coverage.
667     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
668         DAG.getDataLayout().isLittleEndian()) {
669       unsigned Scale = NumDstEltBits / NumSrcEltBits;
670       unsigned NumSrcElts = SrcVT.getVectorNumElements();
671       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
672       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
673       for (unsigned i = 0; i != Scale; ++i) {
674         unsigned Offset = i * NumSrcEltBits;
675         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
676         if (!Sub.isZero()) {
677           DemandedSrcBits |= Sub;
678           for (unsigned j = 0; j != NumElts; ++j)
679             if (DemandedElts[j])
680               DemandedSrcElts.setBit((j * Scale) + i);
681         }
682       }
683 
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687     }
688 
689     // TODO - bigendian once we have test coverage.
690     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
691         DAG.getDataLayout().isLittleEndian()) {
692       unsigned Scale = NumSrcEltBits / NumDstEltBits;
693       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
694       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
695       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
696       for (unsigned i = 0; i != NumElts; ++i)
697         if (DemandedElts[i]) {
698           unsigned Offset = (i % Scale) * NumDstEltBits;
699           DemandedSrcBits.insertBits(DemandedBits, Offset);
700           DemandedSrcElts.setBit(i / Scale);
701         }
702 
703       if (SDValue V = SimplifyMultipleUseDemandedBits(
704               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705         return DAG.getBitcast(DstVT, V);
706     }
707 
708     break;
709   }
710   case ISD::AND: {
711     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
712     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
713 
714     // If all of the demanded bits are known 1 on one side, return the other.
715     // These bits cannot contribute to the result of the 'and' in this
716     // context.
717     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
718       return Op.getOperand(0);
719     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
720       return Op.getOperand(1);
721     break;
722   }
723   case ISD::OR: {
724     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
725     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
726 
727     // If all of the demanded bits are known zero on one side, return the
728     // other.  These bits cannot contribute to the result of the 'or' in this
729     // context.
730     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
731       return Op.getOperand(0);
732     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
733       return Op.getOperand(1);
734     break;
735   }
736   case ISD::XOR: {
737     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
738     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
739 
740     // If all of the demanded bits are known zero on one side, return the
741     // other.
742     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
743       return Op.getOperand(0);
744     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
745       return Op.getOperand(1);
746     break;
747   }
748   case ISD::SHL: {
749     // If we are only demanding sign bits then we can use the shift source
750     // directly.
751     if (const APInt *MaxSA =
752             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
753       SDValue Op0 = Op.getOperand(0);
754       unsigned ShAmt = MaxSA->getZExtValue();
755       unsigned NumSignBits =
756           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
757       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
758       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
759         return Op0;
760     }
761     break;
762   }
763   case ISD::SETCC: {
764     SDValue Op0 = Op.getOperand(0);
765     SDValue Op1 = Op.getOperand(1);
766     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
767     // If (1) we only need the sign-bit, (2) the setcc operands are the same
768     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
769     // -1, we may be able to bypass the setcc.
770     if (DemandedBits.isSignMask() &&
771         Op0.getScalarValueSizeInBits() == BitWidth &&
772         getBooleanContents(Op0.getValueType()) ==
773             BooleanContent::ZeroOrNegativeOneBooleanContent) {
774       // If we're testing X < 0, then this compare isn't needed - just use X!
775       // FIXME: We're limiting to integer types here, but this should also work
776       // if we don't care about FP signed-zero. The use of SETLT with FP means
777       // that we don't care about NaNs.
778       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
779           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
780         return Op0;
781     }
782     break;
783   }
784   case ISD::SIGN_EXTEND_INREG: {
785     // If none of the extended bits are demanded, eliminate the sextinreg.
786     SDValue Op0 = Op.getOperand(0);
787     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
788     unsigned ExBits = ExVT.getScalarSizeInBits();
789     if (DemandedBits.getActiveBits() <= ExBits)
790       return Op0;
791     // If the input is already sign extended, just drop the extension.
792     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
793     if (NumSignBits >= (BitWidth - ExBits + 1))
794       return Op0;
795     break;
796   }
797   case ISD::ANY_EXTEND_VECTOR_INREG:
798   case ISD::SIGN_EXTEND_VECTOR_INREG:
799   case ISD::ZERO_EXTEND_VECTOR_INREG: {
800     // If we only want the lowest element and none of extended bits, then we can
801     // return the bitcasted source vector.
802     SDValue Src = Op.getOperand(0);
803     EVT SrcVT = Src.getValueType();
804     EVT DstVT = Op.getValueType();
805     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806         DAG.getDataLayout().isLittleEndian() &&
807         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
808       return DAG.getBitcast(DstVT, Src);
809     }
810     break;
811   }
812   case ISD::INSERT_VECTOR_ELT: {
813     // If we don't demand the inserted element, return the base vector.
814     SDValue Vec = Op.getOperand(0);
815     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
816     EVT VecVT = Vec.getValueType();
817     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
818         !DemandedElts[CIdx->getZExtValue()])
819       return Vec;
820     break;
821   }
822   case ISD::INSERT_SUBVECTOR: {
823     SDValue Vec = Op.getOperand(0);
824     SDValue Sub = Op.getOperand(1);
825     uint64_t Idx = Op.getConstantOperandVal(2);
826     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
827     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
828     // If we don't demand the inserted subvector, return the base vector.
829     if (DemandedSubElts == 0)
830       return Vec;
831     // If this simply widens the lowest subvector, see if we can do it earlier.
832     if (Idx == 0 && Vec.isUndef()) {
833       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
834               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
835         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
836                            Op.getOperand(0), NewSub, Op.getOperand(2));
837     }
838     break;
839   }
840   case ISD::VECTOR_SHUFFLE: {
841     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
842 
843     // If all the demanded elts are from one operand and are inline,
844     // then we can use the operand directly.
845     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
846     for (unsigned i = 0; i != NumElts; ++i) {
847       int M = ShuffleMask[i];
848       if (M < 0 || !DemandedElts[i])
849         continue;
850       AllUndef = false;
851       IdentityLHS &= (M == (int)i);
852       IdentityRHS &= ((M - NumElts) == i);
853     }
854 
855     if (AllUndef)
856       return DAG.getUNDEF(Op.getValueType());
857     if (IdentityLHS)
858       return Op.getOperand(0);
859     if (IdentityRHS)
860       return Op.getOperand(1);
861     break;
862   }
863   default:
864     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
865       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
866               Op, DemandedBits, DemandedElts, DAG, Depth))
867         return V;
868     break;
869   }
870   return SDValue();
871 }
872 
873 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
874     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
875     unsigned Depth) const {
876   EVT VT = Op.getValueType();
877   APInt DemandedElts = VT.isVector()
878                            ? APInt::getAllOnes(VT.getVectorNumElements())
879                            : APInt(1, 1);
880   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
881                                          Depth);
882 }
883 
884 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
885     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
886     unsigned Depth) const {
887   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
888   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
889                                          Depth);
890 }
891 
892 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
893 /// result of Op are ever used downstream. If we can use this information to
894 /// simplify Op, create a new simplified DAG node and return true, returning the
895 /// original and new nodes in Old and New. Otherwise, analyze the expression and
896 /// return a mask of Known bits for the expression (used to simplify the
897 /// caller).  The Known bits may only be accurate for those bits in the
898 /// OriginalDemandedBits and OriginalDemandedElts.
899 bool TargetLowering::SimplifyDemandedBits(
900     SDValue Op, const APInt &OriginalDemandedBits,
901     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
902     unsigned Depth, bool AssumeSingleUse) const {
903   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
904   assert(Op.getScalarValueSizeInBits() == BitWidth &&
905          "Mask size mismatches value type size!");
906 
907   // Don't know anything.
908   Known = KnownBits(BitWidth);
909 
910   // TODO: We can probably do more work on calculating the known bits and
911   // simplifying the operations for scalable vectors, but for now we just
912   // bail out.
913   if (Op.getValueType().isScalableVector())
914     return false;
915 
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnes(BitWidth);
955     DemandedElts = APInt::getAllOnes(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069         !DemandedSrcElts.isAllOnes()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnes())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOne())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728 
1729     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1730     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1731       return TLO.CombineTo(Op, Op0);
1732 
1733     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1734     if (isPowerOf2_32(BitWidth)) {
1735       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1736       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1737                                Depth + 1))
1738         return true;
1739     }
1740     break;
1741   }
1742   case ISD::UMIN: {
1743     // Check if one arg is always less than (or equal) to the other arg.
1744     SDValue Op0 = Op.getOperand(0);
1745     SDValue Op1 = Op.getOperand(1);
1746     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1747     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1748     Known = KnownBits::umin(Known0, Known1);
1749     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1750       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1751     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1752       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1753     break;
1754   }
1755   case ISD::UMAX: {
1756     // Check if one arg is always greater than (or equal) to the other arg.
1757     SDValue Op0 = Op.getOperand(0);
1758     SDValue Op1 = Op.getOperand(1);
1759     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1760     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1761     Known = KnownBits::umax(Known0, Known1);
1762     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1763       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1764     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1765       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1766     break;
1767   }
1768   case ISD::BITREVERSE: {
1769     SDValue Src = Op.getOperand(0);
1770     APInt DemandedSrcBits = DemandedBits.reverseBits();
1771     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1772                              Depth + 1))
1773       return true;
1774     Known.One = Known2.One.reverseBits();
1775     Known.Zero = Known2.Zero.reverseBits();
1776     break;
1777   }
1778   case ISD::BSWAP: {
1779     SDValue Src = Op.getOperand(0);
1780     APInt DemandedSrcBits = DemandedBits.byteSwap();
1781     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1782                              Depth + 1))
1783       return true;
1784     Known.One = Known2.One.byteSwap();
1785     Known.Zero = Known2.Zero.byteSwap();
1786     break;
1787   }
1788   case ISD::CTPOP: {
1789     // If only 1 bit is demanded, replace with PARITY as long as we're before
1790     // op legalization.
1791     // FIXME: Limit to scalars for now.
1792     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1793       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1794                                                Op.getOperand(0)));
1795 
1796     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1797     break;
1798   }
1799   case ISD::SIGN_EXTEND_INREG: {
1800     SDValue Op0 = Op.getOperand(0);
1801     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1802     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1803 
1804     // If we only care about the highest bit, don't bother shifting right.
1805     if (DemandedBits.isSignMask()) {
1806       unsigned MinSignedBits =
1807           TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1);
1808       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1809       // However if the input is already sign extended we expect the sign
1810       // extension to be dropped altogether later and do not simplify.
1811       if (!AlreadySignExtended) {
1812         // Compute the correct shift amount type, which must be getShiftAmountTy
1813         // for scalar types after legalization.
1814         EVT ShiftAmtTy = VT;
1815         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1816           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1817 
1818         SDValue ShiftAmt =
1819             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1820         return TLO.CombineTo(Op,
1821                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1822       }
1823     }
1824 
1825     // If none of the extended bits are demanded, eliminate the sextinreg.
1826     if (DemandedBits.getActiveBits() <= ExVTBits)
1827       return TLO.CombineTo(Op, Op0);
1828 
1829     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1830 
1831     // Since the sign extended bits are demanded, we know that the sign
1832     // bit is demanded.
1833     InputDemandedBits.setBit(ExVTBits - 1);
1834 
1835     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1836       return true;
1837     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1838 
1839     // If the sign bit of the input is known set or clear, then we know the
1840     // top bits of the result.
1841 
1842     // If the input sign bit is known zero, convert this into a zero extension.
1843     if (Known.Zero[ExVTBits - 1])
1844       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1845 
1846     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1847     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1848       Known.One.setBitsFrom(ExVTBits);
1849       Known.Zero &= Mask;
1850     } else { // Input sign bit unknown
1851       Known.Zero &= Mask;
1852       Known.One &= Mask;
1853     }
1854     break;
1855   }
1856   case ISD::BUILD_PAIR: {
1857     EVT HalfVT = Op.getOperand(0).getValueType();
1858     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1859 
1860     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1861     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1862 
1863     KnownBits KnownLo, KnownHi;
1864 
1865     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1866       return true;
1867 
1868     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1869       return true;
1870 
1871     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1872                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1873 
1874     Known.One = KnownLo.One.zext(BitWidth) |
1875                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1876     break;
1877   }
1878   case ISD::ZERO_EXTEND:
1879   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1880     SDValue Src = Op.getOperand(0);
1881     EVT SrcVT = Src.getValueType();
1882     unsigned InBits = SrcVT.getScalarSizeInBits();
1883     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1884     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1885 
1886     // If none of the top bits are demanded, convert this into an any_extend.
1887     if (DemandedBits.getActiveBits() <= InBits) {
1888       // If we only need the non-extended bits of the bottom element
1889       // then we can just bitcast to the result.
1890       if (IsVecInReg && DemandedElts == 1 &&
1891           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1892           TLO.DAG.getDataLayout().isLittleEndian())
1893         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1894 
1895       unsigned Opc =
1896           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1897       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1898         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1899     }
1900 
1901     APInt InDemandedBits = DemandedBits.trunc(InBits);
1902     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1903     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1904                              Depth + 1))
1905       return true;
1906     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1907     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1908     Known = Known.zext(BitWidth);
1909 
1910     // Attempt to avoid multi-use ops if we don't need anything from them.
1911     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1912             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1913       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1914     break;
1915   }
1916   case ISD::SIGN_EXTEND:
1917   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1918     SDValue Src = Op.getOperand(0);
1919     EVT SrcVT = Src.getValueType();
1920     unsigned InBits = SrcVT.getScalarSizeInBits();
1921     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1922     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1923 
1924     // If none of the top bits are demanded, convert this into an any_extend.
1925     if (DemandedBits.getActiveBits() <= InBits) {
1926       // If we only need the non-extended bits of the bottom element
1927       // then we can just bitcast to the result.
1928       if (IsVecInReg && DemandedElts == 1 &&
1929           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1930           TLO.DAG.getDataLayout().isLittleEndian())
1931         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1932 
1933       unsigned Opc =
1934           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1935       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1936         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1937     }
1938 
1939     APInt InDemandedBits = DemandedBits.trunc(InBits);
1940     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1941 
1942     // Since some of the sign extended bits are demanded, we know that the sign
1943     // bit is demanded.
1944     InDemandedBits.setBit(InBits - 1);
1945 
1946     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1947                              Depth + 1))
1948       return true;
1949     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1950     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1951 
1952     // If the sign bit is known one, the top bits match.
1953     Known = Known.sext(BitWidth);
1954 
1955     // If the sign bit is known zero, convert this to a zero extend.
1956     if (Known.isNonNegative()) {
1957       unsigned Opc =
1958           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1959       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1960         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1961     }
1962 
1963     // Attempt to avoid multi-use ops if we don't need anything from them.
1964     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1965             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1966       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1967     break;
1968   }
1969   case ISD::ANY_EXTEND:
1970   case ISD::ANY_EXTEND_VECTOR_INREG: {
1971     SDValue Src = Op.getOperand(0);
1972     EVT SrcVT = Src.getValueType();
1973     unsigned InBits = SrcVT.getScalarSizeInBits();
1974     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1975     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1976 
1977     // If we only need the bottom element then we can just bitcast.
1978     // TODO: Handle ANY_EXTEND?
1979     if (IsVecInReg && DemandedElts == 1 &&
1980         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1981         TLO.DAG.getDataLayout().isLittleEndian())
1982       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1983 
1984     APInt InDemandedBits = DemandedBits.trunc(InBits);
1985     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1986     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1987                              Depth + 1))
1988       return true;
1989     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1990     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1991     Known = Known.anyext(BitWidth);
1992 
1993     // Attempt to avoid multi-use ops if we don't need anything from them.
1994     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1995             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1996       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1997     break;
1998   }
1999   case ISD::TRUNCATE: {
2000     SDValue Src = Op.getOperand(0);
2001 
2002     // Simplify the input, using demanded bit information, and compute the known
2003     // zero/one bits live out.
2004     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2005     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2006     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2007                              Depth + 1))
2008       return true;
2009     Known = Known.trunc(BitWidth);
2010 
2011     // Attempt to avoid multi-use ops if we don't need anything from them.
2012     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2013             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2014       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2015 
2016     // If the input is only used by this truncate, see if we can shrink it based
2017     // on the known demanded bits.
2018     if (Src.getNode()->hasOneUse()) {
2019       switch (Src.getOpcode()) {
2020       default:
2021         break;
2022       case ISD::SRL:
2023         // Shrink SRL by a constant if none of the high bits shifted in are
2024         // demanded.
2025         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2026           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2027           // undesirable.
2028           break;
2029 
2030         const APInt *ShAmtC =
2031             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2032         if (!ShAmtC || ShAmtC->uge(BitWidth))
2033           break;
2034         uint64_t ShVal = ShAmtC->getZExtValue();
2035 
2036         APInt HighBits =
2037             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2038         HighBits.lshrInPlace(ShVal);
2039         HighBits = HighBits.trunc(BitWidth);
2040 
2041         if (!(HighBits & DemandedBits)) {
2042           // None of the shifted in bits are needed.  Add a truncate of the
2043           // shift input, then shift it.
2044           SDValue NewShAmt = TLO.DAG.getConstant(
2045               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2046           SDValue NewTrunc =
2047               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2048           return TLO.CombineTo(
2049               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2050         }
2051         break;
2052       }
2053     }
2054 
2055     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2056     break;
2057   }
2058   case ISD::AssertZext: {
2059     // AssertZext demands all of the high bits, plus any of the low bits
2060     // demanded by its users.
2061     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2062     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2063     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2064                              TLO, Depth + 1))
2065       return true;
2066     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2067 
2068     Known.Zero |= ~InMask;
2069     break;
2070   }
2071   case ISD::EXTRACT_VECTOR_ELT: {
2072     SDValue Src = Op.getOperand(0);
2073     SDValue Idx = Op.getOperand(1);
2074     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2075     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2076 
2077     if (SrcEltCnt.isScalable())
2078       return false;
2079 
2080     // Demand the bits from every vector element without a constant index.
2081     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2082     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2083     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2084       if (CIdx->getAPIntValue().ult(NumSrcElts))
2085         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2086 
2087     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2088     // anything about the extended bits.
2089     APInt DemandedSrcBits = DemandedBits;
2090     if (BitWidth > EltBitWidth)
2091       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2092 
2093     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2094                              Depth + 1))
2095       return true;
2096 
2097     // Attempt to avoid multi-use ops if we don't need anything from them.
2098     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2099       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2100               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2101         SDValue NewOp =
2102             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2103         return TLO.CombineTo(Op, NewOp);
2104       }
2105     }
2106 
2107     Known = Known2;
2108     if (BitWidth > EltBitWidth)
2109       Known = Known.anyext(BitWidth);
2110     break;
2111   }
2112   case ISD::BITCAST: {
2113     SDValue Src = Op.getOperand(0);
2114     EVT SrcVT = Src.getValueType();
2115     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2116 
2117     // If this is an FP->Int bitcast and if the sign bit is the only
2118     // thing demanded, turn this into a FGETSIGN.
2119     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2120         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2121         SrcVT.isFloatingPoint()) {
2122       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2123       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2124       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2125           SrcVT != MVT::f128) {
2126         // Cannot eliminate/lower SHL for f128 yet.
2127         EVT Ty = OpVTLegal ? VT : MVT::i32;
2128         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2129         // place.  We expect the SHL to be eliminated by other optimizations.
2130         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2131         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2132         if (!OpVTLegal && OpVTSizeInBits > 32)
2133           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2134         unsigned ShVal = Op.getValueSizeInBits() - 1;
2135         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2136         return TLO.CombineTo(Op,
2137                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2138       }
2139     }
2140 
2141     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2142     // Demand the elt/bit if any of the original elts/bits are demanded.
2143     // TODO - bigendian once we have test coverage.
2144     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2145         TLO.DAG.getDataLayout().isLittleEndian()) {
2146       unsigned Scale = BitWidth / NumSrcEltBits;
2147       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2148       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2149       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2150       for (unsigned i = 0; i != Scale; ++i) {
2151         unsigned Offset = i * NumSrcEltBits;
2152         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2153         if (!Sub.isZero()) {
2154           DemandedSrcBits |= Sub;
2155           for (unsigned j = 0; j != NumElts; ++j)
2156             if (DemandedElts[j])
2157               DemandedSrcElts.setBit((j * Scale) + i);
2158         }
2159       }
2160 
2161       APInt KnownSrcUndef, KnownSrcZero;
2162       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2163                                      KnownSrcZero, TLO, Depth + 1))
2164         return true;
2165 
2166       KnownBits KnownSrcBits;
2167       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2168                                KnownSrcBits, TLO, Depth + 1))
2169         return true;
2170     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2171                TLO.DAG.getDataLayout().isLittleEndian()) {
2172       unsigned Scale = NumSrcEltBits / BitWidth;
2173       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2174       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2175       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2176       for (unsigned i = 0; i != NumElts; ++i)
2177         if (DemandedElts[i]) {
2178           unsigned Offset = (i % Scale) * BitWidth;
2179           DemandedSrcBits.insertBits(DemandedBits, Offset);
2180           DemandedSrcElts.setBit(i / Scale);
2181         }
2182 
2183       if (SrcVT.isVector()) {
2184         APInt KnownSrcUndef, KnownSrcZero;
2185         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2186                                        KnownSrcZero, TLO, Depth + 1))
2187           return true;
2188       }
2189 
2190       KnownBits KnownSrcBits;
2191       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2192                                KnownSrcBits, TLO, Depth + 1))
2193         return true;
2194     }
2195 
2196     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2197     // recursive call where Known may be useful to the caller.
2198     if (Depth > 0) {
2199       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2200       return false;
2201     }
2202     break;
2203   }
2204   case ISD::ADD:
2205   case ISD::MUL:
2206   case ISD::SUB: {
2207     // Add, Sub, and Mul don't demand any bits in positions beyond that
2208     // of the highest bit demanded of them.
2209     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2210     SDNodeFlags Flags = Op.getNode()->getFlags();
2211     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2212     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2213     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2214                              Depth + 1) ||
2215         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2216                              Depth + 1) ||
2217         // See if the operation should be performed at a smaller bit width.
2218         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2219       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2220         // Disable the nsw and nuw flags. We can no longer guarantee that we
2221         // won't wrap after simplification.
2222         Flags.setNoSignedWrap(false);
2223         Flags.setNoUnsignedWrap(false);
2224         SDValue NewOp =
2225             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2226         return TLO.CombineTo(Op, NewOp);
2227       }
2228       return true;
2229     }
2230 
2231     // Attempt to avoid multi-use ops if we don't need anything from them.
2232     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2233       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2234           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2235       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2236           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2237       if (DemandedOp0 || DemandedOp1) {
2238         Flags.setNoSignedWrap(false);
2239         Flags.setNoUnsignedWrap(false);
2240         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2241         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2242         SDValue NewOp =
2243             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2244         return TLO.CombineTo(Op, NewOp);
2245       }
2246     }
2247 
2248     // If we have a constant operand, we may be able to turn it into -1 if we
2249     // do not demand the high bits. This can make the constant smaller to
2250     // encode, allow more general folding, or match specialized instruction
2251     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2252     // is probably not useful (and could be detrimental).
2253     ConstantSDNode *C = isConstOrConstSplat(Op1);
2254     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2255     if (C && !C->isAllOnes() && !C->isOne() &&
2256         (C->getAPIntValue() | HighMask).isAllOnes()) {
2257       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2258       // Disable the nsw and nuw flags. We can no longer guarantee that we
2259       // won't wrap after simplification.
2260       Flags.setNoSignedWrap(false);
2261       Flags.setNoUnsignedWrap(false);
2262       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2263       return TLO.CombineTo(Op, NewOp);
2264     }
2265 
2266     LLVM_FALLTHROUGH;
2267   }
2268   default:
2269     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2270       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2271                                             Known, TLO, Depth))
2272         return true;
2273       break;
2274     }
2275 
2276     // Just use computeKnownBits to compute output bits.
2277     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2278     break;
2279   }
2280 
2281   // If we know the value of all of the demanded bits, return this as a
2282   // constant.
2283   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2284     // Avoid folding to a constant if any OpaqueConstant is involved.
2285     const SDNode *N = Op.getNode();
2286     for (SDNode *Op :
2287          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2288       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2289         if (C->isOpaque())
2290           return false;
2291     }
2292     if (VT.isInteger())
2293       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2294     if (VT.isFloatingPoint())
2295       return TLO.CombineTo(
2296           Op,
2297           TLO.DAG.getConstantFP(
2298               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2299   }
2300 
2301   return false;
2302 }
2303 
2304 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2305                                                 const APInt &DemandedElts,
2306                                                 APInt &KnownUndef,
2307                                                 APInt &KnownZero,
2308                                                 DAGCombinerInfo &DCI) const {
2309   SelectionDAG &DAG = DCI.DAG;
2310   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2311                         !DCI.isBeforeLegalizeOps());
2312 
2313   bool Simplified =
2314       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2315   if (Simplified) {
2316     DCI.AddToWorklist(Op.getNode());
2317     DCI.CommitTargetLoweringOpt(TLO);
2318   }
2319 
2320   return Simplified;
2321 }
2322 
2323 /// Given a vector binary operation and known undefined elements for each input
2324 /// operand, compute whether each element of the output is undefined.
2325 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2326                                          const APInt &UndefOp0,
2327                                          const APInt &UndefOp1) {
2328   EVT VT = BO.getValueType();
2329   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2330          "Vector binop only");
2331 
2332   EVT EltVT = VT.getVectorElementType();
2333   unsigned NumElts = VT.getVectorNumElements();
2334   assert(UndefOp0.getBitWidth() == NumElts &&
2335          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2336 
2337   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2338                                    const APInt &UndefVals) {
2339     if (UndefVals[Index])
2340       return DAG.getUNDEF(EltVT);
2341 
2342     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2343       // Try hard to make sure that the getNode() call is not creating temporary
2344       // nodes. Ignore opaque integers because they do not constant fold.
2345       SDValue Elt = BV->getOperand(Index);
2346       auto *C = dyn_cast<ConstantSDNode>(Elt);
2347       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2348         return Elt;
2349     }
2350 
2351     return SDValue();
2352   };
2353 
2354   APInt KnownUndef = APInt::getZero(NumElts);
2355   for (unsigned i = 0; i != NumElts; ++i) {
2356     // If both inputs for this element are either constant or undef and match
2357     // the element type, compute the constant/undef result for this element of
2358     // the vector.
2359     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2360     // not handle FP constants. The code within getNode() should be refactored
2361     // to avoid the danger of creating a bogus temporary node here.
2362     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2363     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2364     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2365       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2366         KnownUndef.setBit(i);
2367   }
2368   return KnownUndef;
2369 }
2370 
2371 bool TargetLowering::SimplifyDemandedVectorElts(
2372     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2373     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2374     bool AssumeSingleUse) const {
2375   EVT VT = Op.getValueType();
2376   unsigned Opcode = Op.getOpcode();
2377   APInt DemandedElts = OriginalDemandedElts;
2378   unsigned NumElts = DemandedElts.getBitWidth();
2379   assert(VT.isVector() && "Expected vector op");
2380 
2381   KnownUndef = KnownZero = APInt::getZero(NumElts);
2382 
2383   // TODO: For now we assume we know nothing about scalable vectors.
2384   if (VT.isScalableVector())
2385     return false;
2386 
2387   assert(VT.getVectorNumElements() == NumElts &&
2388          "Mask size mismatches value type element count!");
2389 
2390   // Undef operand.
2391   if (Op.isUndef()) {
2392     KnownUndef.setAllBits();
2393     return false;
2394   }
2395 
2396   // If Op has other users, assume that all elements are needed.
2397   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2398     DemandedElts.setAllBits();
2399 
2400   // Not demanding any elements from Op.
2401   if (DemandedElts == 0) {
2402     KnownUndef.setAllBits();
2403     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2404   }
2405 
2406   // Limit search depth.
2407   if (Depth >= SelectionDAG::MaxRecursionDepth)
2408     return false;
2409 
2410   SDLoc DL(Op);
2411   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2412 
2413   // Helper for demanding the specified elements and all the bits of both binary
2414   // operands.
2415   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2416     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2417                                                            TLO.DAG, Depth + 1);
2418     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2419                                                            TLO.DAG, Depth + 1);
2420     if (NewOp0 || NewOp1) {
2421       SDValue NewOp = TLO.DAG.getNode(
2422           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2423       return TLO.CombineTo(Op, NewOp);
2424     }
2425     return false;
2426   };
2427 
2428   switch (Opcode) {
2429   case ISD::SCALAR_TO_VECTOR: {
2430     if (!DemandedElts[0]) {
2431       KnownUndef.setAllBits();
2432       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2433     }
2434     SDValue ScalarSrc = Op.getOperand(0);
2435     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2436       SDValue Src = ScalarSrc.getOperand(0);
2437       SDValue Idx = ScalarSrc.getOperand(1);
2438       EVT SrcVT = Src.getValueType();
2439 
2440       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2441 
2442       if (SrcEltCnt.isScalable())
2443         return false;
2444 
2445       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2446       if (isNullConstant(Idx)) {
2447         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2448         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2449         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2450         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2451                                        TLO, Depth + 1))
2452           return true;
2453       }
2454     }
2455     KnownUndef.setHighBits(NumElts - 1);
2456     break;
2457   }
2458   case ISD::BITCAST: {
2459     SDValue Src = Op.getOperand(0);
2460     EVT SrcVT = Src.getValueType();
2461 
2462     // We only handle vectors here.
2463     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2464     if (!SrcVT.isVector())
2465       break;
2466 
2467     // Fast handling of 'identity' bitcasts.
2468     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2469     if (NumSrcElts == NumElts)
2470       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2471                                         KnownZero, TLO, Depth + 1);
2472 
2473     APInt SrcDemandedElts, SrcZero, SrcUndef;
2474 
2475     // Bitcast from 'large element' src vector to 'small element' vector, we
2476     // must demand a source element if any DemandedElt maps to it.
2477     if ((NumElts % NumSrcElts) == 0) {
2478       unsigned Scale = NumElts / NumSrcElts;
2479       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2480       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2481                                      TLO, Depth + 1))
2482         return true;
2483 
2484       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2485       // of the large element.
2486       // TODO - bigendian once we have test coverage.
2487       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2488         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2489         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2490         for (unsigned i = 0; i != NumElts; ++i)
2491           if (DemandedElts[i]) {
2492             unsigned Ofs = (i % Scale) * EltSizeInBits;
2493             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2494           }
2495 
2496         KnownBits Known;
2497         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2498                                  TLO, Depth + 1))
2499           return true;
2500       }
2501 
2502       // If the src element is zero/undef then all the output elements will be -
2503       // only demanded elements are guaranteed to be correct.
2504       for (unsigned i = 0; i != NumSrcElts; ++i) {
2505         if (SrcDemandedElts[i]) {
2506           if (SrcZero[i])
2507             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2508           if (SrcUndef[i])
2509             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2510         }
2511       }
2512     }
2513 
2514     // Bitcast from 'small element' src vector to 'large element' vector, we
2515     // demand all smaller source elements covered by the larger demanded element
2516     // of this vector.
2517     if ((NumSrcElts % NumElts) == 0) {
2518       unsigned Scale = NumSrcElts / NumElts;
2519       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2520       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2521                                      TLO, Depth + 1))
2522         return true;
2523 
2524       // If all the src elements covering an output element are zero/undef, then
2525       // the output element will be as well, assuming it was demanded.
2526       for (unsigned i = 0; i != NumElts; ++i) {
2527         if (DemandedElts[i]) {
2528           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2529             KnownZero.setBit(i);
2530           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2531             KnownUndef.setBit(i);
2532         }
2533       }
2534     }
2535     break;
2536   }
2537   case ISD::BUILD_VECTOR: {
2538     // Check all elements and simplify any unused elements with UNDEF.
2539     if (!DemandedElts.isAllOnes()) {
2540       // Don't simplify BROADCASTS.
2541       if (llvm::any_of(Op->op_values(),
2542                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2543         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2544         bool Updated = false;
2545         for (unsigned i = 0; i != NumElts; ++i) {
2546           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2547             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2548             KnownUndef.setBit(i);
2549             Updated = true;
2550           }
2551         }
2552         if (Updated)
2553           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2554       }
2555     }
2556     for (unsigned i = 0; i != NumElts; ++i) {
2557       SDValue SrcOp = Op.getOperand(i);
2558       if (SrcOp.isUndef()) {
2559         KnownUndef.setBit(i);
2560       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2561                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2562         KnownZero.setBit(i);
2563       }
2564     }
2565     break;
2566   }
2567   case ISD::CONCAT_VECTORS: {
2568     EVT SubVT = Op.getOperand(0).getValueType();
2569     unsigned NumSubVecs = Op.getNumOperands();
2570     unsigned NumSubElts = SubVT.getVectorNumElements();
2571     for (unsigned i = 0; i != NumSubVecs; ++i) {
2572       SDValue SubOp = Op.getOperand(i);
2573       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2574       APInt SubUndef, SubZero;
2575       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2576                                      Depth + 1))
2577         return true;
2578       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2579       KnownZero.insertBits(SubZero, i * NumSubElts);
2580     }
2581     break;
2582   }
2583   case ISD::INSERT_SUBVECTOR: {
2584     // Demand any elements from the subvector and the remainder from the src its
2585     // inserted into.
2586     SDValue Src = Op.getOperand(0);
2587     SDValue Sub = Op.getOperand(1);
2588     uint64_t Idx = Op.getConstantOperandVal(2);
2589     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2590     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2591     APInt DemandedSrcElts = DemandedElts;
2592     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2593 
2594     APInt SubUndef, SubZero;
2595     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2596                                    Depth + 1))
2597       return true;
2598 
2599     // If none of the src operand elements are demanded, replace it with undef.
2600     if (!DemandedSrcElts && !Src.isUndef())
2601       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2602                                                TLO.DAG.getUNDEF(VT), Sub,
2603                                                Op.getOperand(2)));
2604 
2605     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2606                                    TLO, Depth + 1))
2607       return true;
2608     KnownUndef.insertBits(SubUndef, Idx);
2609     KnownZero.insertBits(SubZero, Idx);
2610 
2611     // Attempt to avoid multi-use ops if we don't need anything from them.
2612     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2613       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2614           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2615       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2616           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2617       if (NewSrc || NewSub) {
2618         NewSrc = NewSrc ? NewSrc : Src;
2619         NewSub = NewSub ? NewSub : Sub;
2620         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2621                                         NewSub, Op.getOperand(2));
2622         return TLO.CombineTo(Op, NewOp);
2623       }
2624     }
2625     break;
2626   }
2627   case ISD::EXTRACT_SUBVECTOR: {
2628     // Offset the demanded elts by the subvector index.
2629     SDValue Src = Op.getOperand(0);
2630     if (Src.getValueType().isScalableVector())
2631       break;
2632     uint64_t Idx = Op.getConstantOperandVal(1);
2633     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2634     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2635 
2636     APInt SrcUndef, SrcZero;
2637     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2638                                    Depth + 1))
2639       return true;
2640     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2641     KnownZero = SrcZero.extractBits(NumElts, Idx);
2642 
2643     // Attempt to avoid multi-use ops if we don't need anything from them.
2644     if (!DemandedElts.isAllOnes()) {
2645       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2646           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2647       if (NewSrc) {
2648         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2649                                         Op.getOperand(1));
2650         return TLO.CombineTo(Op, NewOp);
2651       }
2652     }
2653     break;
2654   }
2655   case ISD::INSERT_VECTOR_ELT: {
2656     SDValue Vec = Op.getOperand(0);
2657     SDValue Scl = Op.getOperand(1);
2658     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2659 
2660     // For a legal, constant insertion index, if we don't need this insertion
2661     // then strip it, else remove it from the demanded elts.
2662     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2663       unsigned Idx = CIdx->getZExtValue();
2664       if (!DemandedElts[Idx])
2665         return TLO.CombineTo(Op, Vec);
2666 
2667       APInt DemandedVecElts(DemandedElts);
2668       DemandedVecElts.clearBit(Idx);
2669       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2670                                      KnownZero, TLO, Depth + 1))
2671         return true;
2672 
2673       KnownUndef.setBitVal(Idx, Scl.isUndef());
2674 
2675       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2676       break;
2677     }
2678 
2679     APInt VecUndef, VecZero;
2680     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2681                                    Depth + 1))
2682       return true;
2683     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2684     break;
2685   }
2686   case ISD::VSELECT: {
2687     // Try to transform the select condition based on the current demanded
2688     // elements.
2689     // TODO: If a condition element is undef, we can choose from one arm of the
2690     //       select (and if one arm is undef, then we can propagate that to the
2691     //       result).
2692     // TODO - add support for constant vselect masks (see IR version of this).
2693     APInt UnusedUndef, UnusedZero;
2694     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2695                                    UnusedZero, TLO, Depth + 1))
2696       return true;
2697 
2698     // See if we can simplify either vselect operand.
2699     APInt DemandedLHS(DemandedElts);
2700     APInt DemandedRHS(DemandedElts);
2701     APInt UndefLHS, ZeroLHS;
2702     APInt UndefRHS, ZeroRHS;
2703     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2704                                    ZeroLHS, TLO, Depth + 1))
2705       return true;
2706     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2707                                    ZeroRHS, TLO, Depth + 1))
2708       return true;
2709 
2710     KnownUndef = UndefLHS & UndefRHS;
2711     KnownZero = ZeroLHS & ZeroRHS;
2712     break;
2713   }
2714   case ISD::VECTOR_SHUFFLE: {
2715     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2716 
2717     // Collect demanded elements from shuffle operands..
2718     APInt DemandedLHS(NumElts, 0);
2719     APInt DemandedRHS(NumElts, 0);
2720     for (unsigned i = 0; i != NumElts; ++i) {
2721       int M = ShuffleMask[i];
2722       if (M < 0 || !DemandedElts[i])
2723         continue;
2724       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2725       if (M < (int)NumElts)
2726         DemandedLHS.setBit(M);
2727       else
2728         DemandedRHS.setBit(M - NumElts);
2729     }
2730 
2731     // See if we can simplify either shuffle operand.
2732     APInt UndefLHS, ZeroLHS;
2733     APInt UndefRHS, ZeroRHS;
2734     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2735                                    ZeroLHS, TLO, Depth + 1))
2736       return true;
2737     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2738                                    ZeroRHS, TLO, Depth + 1))
2739       return true;
2740 
2741     // Simplify mask using undef elements from LHS/RHS.
2742     bool Updated = false;
2743     bool IdentityLHS = true, IdentityRHS = true;
2744     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2745     for (unsigned i = 0; i != NumElts; ++i) {
2746       int &M = NewMask[i];
2747       if (M < 0)
2748         continue;
2749       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2750           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2751         Updated = true;
2752         M = -1;
2753       }
2754       IdentityLHS &= (M < 0) || (M == (int)i);
2755       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2756     }
2757 
2758     // Update legal shuffle masks based on demanded elements if it won't reduce
2759     // to Identity which can cause premature removal of the shuffle mask.
2760     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2761       SDValue LegalShuffle =
2762           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2763                                   NewMask, TLO.DAG);
2764       if (LegalShuffle)
2765         return TLO.CombineTo(Op, LegalShuffle);
2766     }
2767 
2768     // Propagate undef/zero elements from LHS/RHS.
2769     for (unsigned i = 0; i != NumElts; ++i) {
2770       int M = ShuffleMask[i];
2771       if (M < 0) {
2772         KnownUndef.setBit(i);
2773       } else if (M < (int)NumElts) {
2774         if (UndefLHS[M])
2775           KnownUndef.setBit(i);
2776         if (ZeroLHS[M])
2777           KnownZero.setBit(i);
2778       } else {
2779         if (UndefRHS[M - NumElts])
2780           KnownUndef.setBit(i);
2781         if (ZeroRHS[M - NumElts])
2782           KnownZero.setBit(i);
2783       }
2784     }
2785     break;
2786   }
2787   case ISD::ANY_EXTEND_VECTOR_INREG:
2788   case ISD::SIGN_EXTEND_VECTOR_INREG:
2789   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2790     APInt SrcUndef, SrcZero;
2791     SDValue Src = Op.getOperand(0);
2792     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2793     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2794     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2795                                    Depth + 1))
2796       return true;
2797     KnownZero = SrcZero.zextOrTrunc(NumElts);
2798     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2799 
2800     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2801         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2802         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2803       // aext - if we just need the bottom element then we can bitcast.
2804       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2805     }
2806 
2807     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2808       // zext(undef) upper bits are guaranteed to be zero.
2809       if (DemandedElts.isSubsetOf(KnownUndef))
2810         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2811       KnownUndef.clearAllBits();
2812     }
2813     break;
2814   }
2815 
2816   // TODO: There are more binop opcodes that could be handled here - MIN,
2817   // MAX, saturated math, etc.
2818   case ISD::OR:
2819   case ISD::XOR:
2820   case ISD::ADD:
2821   case ISD::SUB:
2822   case ISD::FADD:
2823   case ISD::FSUB:
2824   case ISD::FMUL:
2825   case ISD::FDIV:
2826   case ISD::FREM: {
2827     SDValue Op0 = Op.getOperand(0);
2828     SDValue Op1 = Op.getOperand(1);
2829 
2830     APInt UndefRHS, ZeroRHS;
2831     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2832                                    Depth + 1))
2833       return true;
2834     APInt UndefLHS, ZeroLHS;
2835     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2836                                    Depth + 1))
2837       return true;
2838 
2839     KnownZero = ZeroLHS & ZeroRHS;
2840     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2841 
2842     // Attempt to avoid multi-use ops if we don't need anything from them.
2843     // TODO - use KnownUndef to relax the demandedelts?
2844     if (!DemandedElts.isAllOnes())
2845       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2846         return true;
2847     break;
2848   }
2849   case ISD::SHL:
2850   case ISD::SRL:
2851   case ISD::SRA:
2852   case ISD::ROTL:
2853   case ISD::ROTR: {
2854     SDValue Op0 = Op.getOperand(0);
2855     SDValue Op1 = Op.getOperand(1);
2856 
2857     APInt UndefRHS, ZeroRHS;
2858     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2859                                    Depth + 1))
2860       return true;
2861     APInt UndefLHS, ZeroLHS;
2862     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2863                                    Depth + 1))
2864       return true;
2865 
2866     KnownZero = ZeroLHS;
2867     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2868 
2869     // Attempt to avoid multi-use ops if we don't need anything from them.
2870     // TODO - use KnownUndef to relax the demandedelts?
2871     if (!DemandedElts.isAllOnes())
2872       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2873         return true;
2874     break;
2875   }
2876   case ISD::MUL:
2877   case ISD::AND: {
2878     SDValue Op0 = Op.getOperand(0);
2879     SDValue Op1 = Op.getOperand(1);
2880 
2881     APInt SrcUndef, SrcZero;
2882     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2883                                    Depth + 1))
2884       return true;
2885     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2886                                    TLO, Depth + 1))
2887       return true;
2888 
2889     // If either side has a zero element, then the result element is zero, even
2890     // if the other is an UNDEF.
2891     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2892     // and then handle 'and' nodes with the rest of the binop opcodes.
2893     KnownZero |= SrcZero;
2894     KnownUndef &= SrcUndef;
2895     KnownUndef &= ~KnownZero;
2896 
2897     // Attempt to avoid multi-use ops if we don't need anything from them.
2898     // TODO - use KnownUndef to relax the demandedelts?
2899     if (!DemandedElts.isAllOnes())
2900       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2901         return true;
2902     break;
2903   }
2904   case ISD::TRUNCATE:
2905   case ISD::SIGN_EXTEND:
2906   case ISD::ZERO_EXTEND:
2907     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2908                                    KnownZero, TLO, Depth + 1))
2909       return true;
2910 
2911     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2912       // zext(undef) upper bits are guaranteed to be zero.
2913       if (DemandedElts.isSubsetOf(KnownUndef))
2914         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2915       KnownUndef.clearAllBits();
2916     }
2917     break;
2918   default: {
2919     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2920       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2921                                                   KnownZero, TLO, Depth))
2922         return true;
2923     } else {
2924       KnownBits Known;
2925       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
2926       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2927                                TLO, Depth, AssumeSingleUse))
2928         return true;
2929     }
2930     break;
2931   }
2932   }
2933   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2934 
2935   // Constant fold all undef cases.
2936   // TODO: Handle zero cases as well.
2937   if (DemandedElts.isSubsetOf(KnownUndef))
2938     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2939 
2940   return false;
2941 }
2942 
2943 /// Determine which of the bits specified in Mask are known to be either zero or
2944 /// one and return them in the Known.
2945 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2946                                                    KnownBits &Known,
2947                                                    const APInt &DemandedElts,
2948                                                    const SelectionDAG &DAG,
2949                                                    unsigned Depth) const {
2950   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2951           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2952           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2953           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2954          "Should use MaskedValueIsZero if you don't know whether Op"
2955          " is a target node!");
2956   Known.resetAll();
2957 }
2958 
2959 void TargetLowering::computeKnownBitsForTargetInstr(
2960     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2961     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2962     unsigned Depth) const {
2963   Known.resetAll();
2964 }
2965 
2966 void TargetLowering::computeKnownBitsForFrameIndex(
2967   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2968   // The low bits are known zero if the pointer is aligned.
2969   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2970 }
2971 
2972 Align TargetLowering::computeKnownAlignForTargetInstr(
2973   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2974   unsigned Depth) const {
2975   return Align(1);
2976 }
2977 
2978 /// This method can be implemented by targets that want to expose additional
2979 /// information about sign bits to the DAG Combiner.
2980 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2981                                                          const APInt &,
2982                                                          const SelectionDAG &,
2983                                                          unsigned Depth) const {
2984   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2985           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2986           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2987           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2988          "Should use ComputeNumSignBits if you don't know whether Op"
2989          " is a target node!");
2990   return 1;
2991 }
2992 
2993 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2994   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2995   const MachineRegisterInfo &MRI, unsigned Depth) const {
2996   return 1;
2997 }
2998 
2999 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3000     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3001     TargetLoweringOpt &TLO, unsigned Depth) const {
3002   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3003           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3004           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3005           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3006          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3007          " is a target node!");
3008   return false;
3009 }
3010 
3011 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3012     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3013     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3014   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3015           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3016           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3017           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3018          "Should use SimplifyDemandedBits if you don't know whether Op"
3019          " is a target node!");
3020   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3021   return false;
3022 }
3023 
3024 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3025     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3026     SelectionDAG &DAG, unsigned Depth) const {
3027   assert(
3028       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3029        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3030        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3031        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3032       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3033       " is a target node!");
3034   return SDValue();
3035 }
3036 
3037 SDValue
3038 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3039                                         SDValue N1, MutableArrayRef<int> Mask,
3040                                         SelectionDAG &DAG) const {
3041   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3042   if (!LegalMask) {
3043     std::swap(N0, N1);
3044     ShuffleVectorSDNode::commuteMask(Mask);
3045     LegalMask = isShuffleMaskLegal(Mask, VT);
3046   }
3047 
3048   if (!LegalMask)
3049     return SDValue();
3050 
3051   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3052 }
3053 
3054 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3055   return nullptr;
3056 }
3057 
3058 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3059     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3060     bool PoisonOnly, unsigned Depth) const {
3061   assert(
3062       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3063        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3064        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3065        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3066       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3067       " is a target node!");
3068   return false;
3069 }
3070 
3071 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3072                                                   const SelectionDAG &DAG,
3073                                                   bool SNaN,
3074                                                   unsigned Depth) const {
3075   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3076           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3077           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3078           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3079          "Should use isKnownNeverNaN if you don't know whether Op"
3080          " is a target node!");
3081   return false;
3082 }
3083 
3084 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3085 // work with truncating build vectors and vectors with elements of less than
3086 // 8 bits.
3087 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3088   if (!N)
3089     return false;
3090 
3091   APInt CVal;
3092   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3093     CVal = CN->getAPIntValue();
3094   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3095     auto *CN = BV->getConstantSplatNode();
3096     if (!CN)
3097       return false;
3098 
3099     // If this is a truncating build vector, truncate the splat value.
3100     // Otherwise, we may fail to match the expected values below.
3101     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3102     CVal = CN->getAPIntValue();
3103     if (BVEltWidth < CVal.getBitWidth())
3104       CVal = CVal.trunc(BVEltWidth);
3105   } else {
3106     return false;
3107   }
3108 
3109   switch (getBooleanContents(N->getValueType(0))) {
3110   case UndefinedBooleanContent:
3111     return CVal[0];
3112   case ZeroOrOneBooleanContent:
3113     return CVal.isOne();
3114   case ZeroOrNegativeOneBooleanContent:
3115     return CVal.isAllOnes();
3116   }
3117 
3118   llvm_unreachable("Invalid boolean contents");
3119 }
3120 
3121 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3122   if (!N)
3123     return false;
3124 
3125   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3126   if (!CN) {
3127     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3128     if (!BV)
3129       return false;
3130 
3131     // Only interested in constant splats, we don't care about undef
3132     // elements in identifying boolean constants and getConstantSplatNode
3133     // returns NULL if all ops are undef;
3134     CN = BV->getConstantSplatNode();
3135     if (!CN)
3136       return false;
3137   }
3138 
3139   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3140     return !CN->getAPIntValue()[0];
3141 
3142   return CN->isZero();
3143 }
3144 
3145 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3146                                        bool SExt) const {
3147   if (VT == MVT::i1)
3148     return N->isOne();
3149 
3150   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3151   switch (Cnt) {
3152   case TargetLowering::ZeroOrOneBooleanContent:
3153     // An extended value of 1 is always true, unless its original type is i1,
3154     // in which case it will be sign extended to -1.
3155     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3156   case TargetLowering::UndefinedBooleanContent:
3157   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3158     return N->isAllOnes() && SExt;
3159   }
3160   llvm_unreachable("Unexpected enumeration.");
3161 }
3162 
3163 /// This helper function of SimplifySetCC tries to optimize the comparison when
3164 /// either operand of the SetCC node is a bitwise-and instruction.
3165 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3166                                          ISD::CondCode Cond, const SDLoc &DL,
3167                                          DAGCombinerInfo &DCI) const {
3168   // Match these patterns in any of their permutations:
3169   // (X & Y) == Y
3170   // (X & Y) != Y
3171   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3172     std::swap(N0, N1);
3173 
3174   EVT OpVT = N0.getValueType();
3175   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3176       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3177     return SDValue();
3178 
3179   SDValue X, Y;
3180   if (N0.getOperand(0) == N1) {
3181     X = N0.getOperand(1);
3182     Y = N0.getOperand(0);
3183   } else if (N0.getOperand(1) == N1) {
3184     X = N0.getOperand(0);
3185     Y = N0.getOperand(1);
3186   } else {
3187     return SDValue();
3188   }
3189 
3190   SelectionDAG &DAG = DCI.DAG;
3191   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3192   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3193     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3194     // Note that where Y is variable and is known to have at most one bit set
3195     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3196     // equivalent when Y == 0.
3197     assert(OpVT.isInteger());
3198     Cond = ISD::getSetCCInverse(Cond, OpVT);
3199     if (DCI.isBeforeLegalizeOps() ||
3200         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3201       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3202   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3203     // If the target supports an 'and-not' or 'and-complement' logic operation,
3204     // try to use that to make a comparison operation more efficient.
3205     // But don't do this transform if the mask is a single bit because there are
3206     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3207     // 'rlwinm' on PPC).
3208 
3209     // Bail out if the compare operand that we want to turn into a zero is
3210     // already a zero (otherwise, infinite loop).
3211     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3212     if (YConst && YConst->isZero())
3213       return SDValue();
3214 
3215     // Transform this into: ~X & Y == 0.
3216     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3217     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3218     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3219   }
3220 
3221   return SDValue();
3222 }
3223 
3224 /// There are multiple IR patterns that could be checking whether certain
3225 /// truncation of a signed number would be lossy or not. The pattern which is
3226 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3227 /// We are looking for the following pattern: (KeptBits is a constant)
3228 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3229 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3230 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3231 /// We will unfold it into the natural trunc+sext pattern:
3232 ///   ((%x << C) a>> C) dstcond %x
3233 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3234 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3235     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3236     const SDLoc &DL) const {
3237   // We must be comparing with a constant.
3238   ConstantSDNode *C1;
3239   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3240     return SDValue();
3241 
3242   // N0 should be:  add %x, (1 << (KeptBits-1))
3243   if (N0->getOpcode() != ISD::ADD)
3244     return SDValue();
3245 
3246   // And we must be 'add'ing a constant.
3247   ConstantSDNode *C01;
3248   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3249     return SDValue();
3250 
3251   SDValue X = N0->getOperand(0);
3252   EVT XVT = X.getValueType();
3253 
3254   // Validate constants ...
3255 
3256   APInt I1 = C1->getAPIntValue();
3257 
3258   ISD::CondCode NewCond;
3259   if (Cond == ISD::CondCode::SETULT) {
3260     NewCond = ISD::CondCode::SETEQ;
3261   } else if (Cond == ISD::CondCode::SETULE) {
3262     NewCond = ISD::CondCode::SETEQ;
3263     // But need to 'canonicalize' the constant.
3264     I1 += 1;
3265   } else if (Cond == ISD::CondCode::SETUGT) {
3266     NewCond = ISD::CondCode::SETNE;
3267     // But need to 'canonicalize' the constant.
3268     I1 += 1;
3269   } else if (Cond == ISD::CondCode::SETUGE) {
3270     NewCond = ISD::CondCode::SETNE;
3271   } else
3272     return SDValue();
3273 
3274   APInt I01 = C01->getAPIntValue();
3275 
3276   auto checkConstants = [&I1, &I01]() -> bool {
3277     // Both of them must be power-of-two, and the constant from setcc is bigger.
3278     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3279   };
3280 
3281   if (checkConstants()) {
3282     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3283   } else {
3284     // What if we invert constants? (and the target predicate)
3285     I1.negate();
3286     I01.negate();
3287     assert(XVT.isInteger());
3288     NewCond = getSetCCInverse(NewCond, XVT);
3289     if (!checkConstants())
3290       return SDValue();
3291     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3292   }
3293 
3294   // They are power-of-two, so which bit is set?
3295   const unsigned KeptBits = I1.logBase2();
3296   const unsigned KeptBitsMinusOne = I01.logBase2();
3297 
3298   // Magic!
3299   if (KeptBits != (KeptBitsMinusOne + 1))
3300     return SDValue();
3301   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3302 
3303   // We don't want to do this in every single case.
3304   SelectionDAG &DAG = DCI.DAG;
3305   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3306           XVT, KeptBits))
3307     return SDValue();
3308 
3309   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3310   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3311 
3312   // Unfold into:  ((%x << C) a>> C) cond %x
3313   // Where 'cond' will be either 'eq' or 'ne'.
3314   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3315   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3316   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3317   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3318 
3319   return T2;
3320 }
3321 
3322 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3323 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3324     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3325     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3326   assert(isConstOrConstSplat(N1C) &&
3327          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3328          "Should be a comparison with 0.");
3329   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3330          "Valid only for [in]equality comparisons.");
3331 
3332   unsigned NewShiftOpcode;
3333   SDValue X, C, Y;
3334 
3335   SelectionDAG &DAG = DCI.DAG;
3336   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3337 
3338   // Look for '(C l>>/<< Y)'.
3339   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3340     // The shift should be one-use.
3341     if (!V.hasOneUse())
3342       return false;
3343     unsigned OldShiftOpcode = V.getOpcode();
3344     switch (OldShiftOpcode) {
3345     case ISD::SHL:
3346       NewShiftOpcode = ISD::SRL;
3347       break;
3348     case ISD::SRL:
3349       NewShiftOpcode = ISD::SHL;
3350       break;
3351     default:
3352       return false; // must be a logical shift.
3353     }
3354     // We should be shifting a constant.
3355     // FIXME: best to use isConstantOrConstantVector().
3356     C = V.getOperand(0);
3357     ConstantSDNode *CC =
3358         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3359     if (!CC)
3360       return false;
3361     Y = V.getOperand(1);
3362 
3363     ConstantSDNode *XC =
3364         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3365     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3366         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3367   };
3368 
3369   // LHS of comparison should be an one-use 'and'.
3370   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3371     return SDValue();
3372 
3373   X = N0.getOperand(0);
3374   SDValue Mask = N0.getOperand(1);
3375 
3376   // 'and' is commutative!
3377   if (!Match(Mask)) {
3378     std::swap(X, Mask);
3379     if (!Match(Mask))
3380       return SDValue();
3381   }
3382 
3383   EVT VT = X.getValueType();
3384 
3385   // Produce:
3386   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3387   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3388   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3389   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3390   return T2;
3391 }
3392 
3393 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3394 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3395 /// handle the commuted versions of these patterns.
3396 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3397                                            ISD::CondCode Cond, const SDLoc &DL,
3398                                            DAGCombinerInfo &DCI) const {
3399   unsigned BOpcode = N0.getOpcode();
3400   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3401          "Unexpected binop");
3402   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3403 
3404   // (X + Y) == X --> Y == 0
3405   // (X - Y) == X --> Y == 0
3406   // (X ^ Y) == X --> Y == 0
3407   SelectionDAG &DAG = DCI.DAG;
3408   EVT OpVT = N0.getValueType();
3409   SDValue X = N0.getOperand(0);
3410   SDValue Y = N0.getOperand(1);
3411   if (X == N1)
3412     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3413 
3414   if (Y != N1)
3415     return SDValue();
3416 
3417   // (X + Y) == Y --> X == 0
3418   // (X ^ Y) == Y --> X == 0
3419   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3420     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3421 
3422   // The shift would not be valid if the operands are boolean (i1).
3423   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3424     return SDValue();
3425 
3426   // (X - Y) == Y --> X == Y << 1
3427   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3428                                  !DCI.isBeforeLegalize());
3429   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3430   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3431   if (!DCI.isCalledByLegalizer())
3432     DCI.AddToWorklist(YShl1.getNode());
3433   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3434 }
3435 
3436 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3437                                       SDValue N0, const APInt &C1,
3438                                       ISD::CondCode Cond, const SDLoc &dl,
3439                                       SelectionDAG &DAG) {
3440   // Look through truncs that don't change the value of a ctpop.
3441   // FIXME: Add vector support? Need to be careful with setcc result type below.
3442   SDValue CTPOP = N0;
3443   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3444       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3445     CTPOP = N0.getOperand(0);
3446 
3447   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3448     return SDValue();
3449 
3450   EVT CTVT = CTPOP.getValueType();
3451   SDValue CTOp = CTPOP.getOperand(0);
3452 
3453   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3454   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3455   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3456     return SDValue();
3457 
3458   // (ctpop x) u< 2 -> (x & x-1) == 0
3459   // (ctpop x) u> 1 -> (x & x-1) != 0
3460   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3461     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3462     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3463       return SDValue();
3464     if (C1 == 0 && (Cond == ISD::SETULT))
3465       return SDValue(); // This is handled elsewhere.
3466 
3467     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3468 
3469     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3470     SDValue Result = CTOp;
3471     for (unsigned i = 0; i < Passes; i++) {
3472       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3473       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3474     }
3475     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3476     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3477   }
3478 
3479   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3480   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3481     // For scalars, keep CTPOP if it is legal or custom.
3482     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3483       return SDValue();
3484     // This is based on X86's custom lowering for CTPOP which produces more
3485     // instructions than the expansion here.
3486 
3487     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3488     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3489     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3490     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3491     assert(CTVT.isInteger());
3492     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3493     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3494     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3495     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3496     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3497     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3498     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3499   }
3500 
3501   return SDValue();
3502 }
3503 
3504 /// Try to simplify a setcc built with the specified operands and cc. If it is
3505 /// unable to simplify it, return a null SDValue.
3506 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3507                                       ISD::CondCode Cond, bool foldBooleans,
3508                                       DAGCombinerInfo &DCI,
3509                                       const SDLoc &dl) const {
3510   SelectionDAG &DAG = DCI.DAG;
3511   const DataLayout &Layout = DAG.getDataLayout();
3512   EVT OpVT = N0.getValueType();
3513 
3514   // Constant fold or commute setcc.
3515   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3516     return Fold;
3517 
3518   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3519   // TODO: Handle non-splat vector constants. All undef causes trouble.
3520   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3521   // infinite loop here when we encounter one.
3522   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3523   if (isConstOrConstSplat(N0) &&
3524       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3525       (DCI.isBeforeLegalizeOps() ||
3526        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3527     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3528 
3529   // If we have a subtract with the same 2 non-constant operands as this setcc
3530   // -- but in reverse order -- then try to commute the operands of this setcc
3531   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3532   // instruction on some targets.
3533   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3534       (DCI.isBeforeLegalizeOps() ||
3535        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3536       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3537       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3538     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3539 
3540   if (auto *N1C = isConstOrConstSplat(N1)) {
3541     const APInt &C1 = N1C->getAPIntValue();
3542 
3543     // Optimize some CTPOP cases.
3544     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3545       return V;
3546 
3547     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3548     // equality comparison, then we're just comparing whether X itself is
3549     // zero.
3550     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3551         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3552         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3553       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3554         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3555             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3556           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3557             // (srl (ctlz x), 5) == 0  -> X != 0
3558             // (srl (ctlz x), 5) != 1  -> X != 0
3559             Cond = ISD::SETNE;
3560           } else {
3561             // (srl (ctlz x), 5) != 0  -> X == 0
3562             // (srl (ctlz x), 5) == 1  -> X == 0
3563             Cond = ISD::SETEQ;
3564           }
3565           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3566           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3567                               Cond);
3568         }
3569       }
3570     }
3571   }
3572 
3573   // FIXME: Support vectors.
3574   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3575     const APInt &C1 = N1C->getAPIntValue();
3576 
3577     // (zext x) == C --> x == (trunc C)
3578     // (sext x) == C --> x == (trunc C)
3579     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3580         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3581       unsigned MinBits = N0.getValueSizeInBits();
3582       SDValue PreExt;
3583       bool Signed = false;
3584       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3585         // ZExt
3586         MinBits = N0->getOperand(0).getValueSizeInBits();
3587         PreExt = N0->getOperand(0);
3588       } else if (N0->getOpcode() == ISD::AND) {
3589         // DAGCombine turns costly ZExts into ANDs
3590         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3591           if ((C->getAPIntValue()+1).isPowerOf2()) {
3592             MinBits = C->getAPIntValue().countTrailingOnes();
3593             PreExt = N0->getOperand(0);
3594           }
3595       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3596         // SExt
3597         MinBits = N0->getOperand(0).getValueSizeInBits();
3598         PreExt = N0->getOperand(0);
3599         Signed = true;
3600       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3601         // ZEXTLOAD / SEXTLOAD
3602         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3603           MinBits = LN0->getMemoryVT().getSizeInBits();
3604           PreExt = N0;
3605         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3606           Signed = true;
3607           MinBits = LN0->getMemoryVT().getSizeInBits();
3608           PreExt = N0;
3609         }
3610       }
3611 
3612       // Figure out how many bits we need to preserve this constant.
3613       unsigned ReqdBits = Signed ?
3614         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3615         C1.getActiveBits();
3616 
3617       // Make sure we're not losing bits from the constant.
3618       if (MinBits > 0 &&
3619           MinBits < C1.getBitWidth() &&
3620           MinBits >= ReqdBits) {
3621         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3622         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3623           // Will get folded away.
3624           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3625           if (MinBits == 1 && C1 == 1)
3626             // Invert the condition.
3627             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3628                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3629           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3630           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3631         }
3632 
3633         // If truncating the setcc operands is not desirable, we can still
3634         // simplify the expression in some cases:
3635         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3636         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3637         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3638         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3639         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3640         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3641         SDValue TopSetCC = N0->getOperand(0);
3642         unsigned N0Opc = N0->getOpcode();
3643         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3644         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3645             TopSetCC.getOpcode() == ISD::SETCC &&
3646             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3647             (isConstFalseVal(N1C) ||
3648              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3649 
3650           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3651                          (!N1C->isZero() && Cond == ISD::SETNE);
3652 
3653           if (!Inverse)
3654             return TopSetCC;
3655 
3656           ISD::CondCode InvCond = ISD::getSetCCInverse(
3657               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3658               TopSetCC.getOperand(0).getValueType());
3659           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3660                                       TopSetCC.getOperand(1),
3661                                       InvCond);
3662         }
3663       }
3664     }
3665 
3666     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3667     // equality or unsigned, and all 1 bits of the const are in the same
3668     // partial word, see if we can shorten the load.
3669     if (DCI.isBeforeLegalize() &&
3670         !ISD::isSignedIntSetCC(Cond) &&
3671         N0.getOpcode() == ISD::AND && C1 == 0 &&
3672         N0.getNode()->hasOneUse() &&
3673         isa<LoadSDNode>(N0.getOperand(0)) &&
3674         N0.getOperand(0).getNode()->hasOneUse() &&
3675         isa<ConstantSDNode>(N0.getOperand(1))) {
3676       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3677       APInt bestMask;
3678       unsigned bestWidth = 0, bestOffset = 0;
3679       if (Lod->isSimple() && Lod->isUnindexed()) {
3680         unsigned origWidth = N0.getValueSizeInBits();
3681         unsigned maskWidth = origWidth;
3682         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3683         // 8 bits, but have to be careful...
3684         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3685           origWidth = Lod->getMemoryVT().getSizeInBits();
3686         const APInt &Mask = N0.getConstantOperandAPInt(1);
3687         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3688           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3689           for (unsigned offset=0; offset<origWidth/width; offset++) {
3690             if (Mask.isSubsetOf(newMask)) {
3691               if (Layout.isLittleEndian())
3692                 bestOffset = (uint64_t)offset * (width/8);
3693               else
3694                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3695               bestMask = Mask.lshr(offset * (width/8) * 8);
3696               bestWidth = width;
3697               break;
3698             }
3699             newMask <<= width;
3700           }
3701         }
3702       }
3703       if (bestWidth) {
3704         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3705         if (newVT.isRound() &&
3706             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3707           SDValue Ptr = Lod->getBasePtr();
3708           if (bestOffset != 0)
3709             Ptr =
3710                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3711           SDValue NewLoad =
3712               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3713                           Lod->getPointerInfo().getWithOffset(bestOffset),
3714                           Lod->getOriginalAlign());
3715           return DAG.getSetCC(dl, VT,
3716                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3717                                       DAG.getConstant(bestMask.trunc(bestWidth),
3718                                                       dl, newVT)),
3719                               DAG.getConstant(0LL, dl, newVT), Cond);
3720         }
3721       }
3722     }
3723 
3724     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3725     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3726       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3727 
3728       // If the comparison constant has bits in the upper part, the
3729       // zero-extended value could never match.
3730       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3731                                               C1.getBitWidth() - InSize))) {
3732         switch (Cond) {
3733         case ISD::SETUGT:
3734         case ISD::SETUGE:
3735         case ISD::SETEQ:
3736           return DAG.getConstant(0, dl, VT);
3737         case ISD::SETULT:
3738         case ISD::SETULE:
3739         case ISD::SETNE:
3740           return DAG.getConstant(1, dl, VT);
3741         case ISD::SETGT:
3742         case ISD::SETGE:
3743           // True if the sign bit of C1 is set.
3744           return DAG.getConstant(C1.isNegative(), dl, VT);
3745         case ISD::SETLT:
3746         case ISD::SETLE:
3747           // True if the sign bit of C1 isn't set.
3748           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3749         default:
3750           break;
3751         }
3752       }
3753 
3754       // Otherwise, we can perform the comparison with the low bits.
3755       switch (Cond) {
3756       case ISD::SETEQ:
3757       case ISD::SETNE:
3758       case ISD::SETUGT:
3759       case ISD::SETUGE:
3760       case ISD::SETULT:
3761       case ISD::SETULE: {
3762         EVT newVT = N0.getOperand(0).getValueType();
3763         if (DCI.isBeforeLegalizeOps() ||
3764             (isOperationLegal(ISD::SETCC, newVT) &&
3765              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3766           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3767           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3768 
3769           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3770                                           NewConst, Cond);
3771           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3772         }
3773         break;
3774       }
3775       default:
3776         break; // todo, be more careful with signed comparisons
3777       }
3778     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3779                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3780                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3781                                       OpVT)) {
3782       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3783       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3784       EVT ExtDstTy = N0.getValueType();
3785       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3786 
3787       // If the constant doesn't fit into the number of bits for the source of
3788       // the sign extension, it is impossible for both sides to be equal.
3789       if (C1.getMinSignedBits() > ExtSrcTyBits)
3790         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3791 
3792       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3793              ExtDstTy != ExtSrcTy && "Unexpected types!");
3794       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3795       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3796                                    DAG.getConstant(Imm, dl, ExtDstTy));
3797       if (!DCI.isCalledByLegalizer())
3798         DCI.AddToWorklist(ZextOp.getNode());
3799       // Otherwise, make this a use of a zext.
3800       return DAG.getSetCC(dl, VT, ZextOp,
3801                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3802     } else if ((N1C->isZero() || N1C->isOne()) &&
3803                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3804       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3805       if (N0.getOpcode() == ISD::SETCC &&
3806           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3807           (N0.getValueType() == MVT::i1 ||
3808            getBooleanContents(N0.getOperand(0).getValueType()) ==
3809                        ZeroOrOneBooleanContent)) {
3810         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3811         if (TrueWhenTrue)
3812           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3813         // Invert the condition.
3814         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3815         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3816         if (DCI.isBeforeLegalizeOps() ||
3817             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3818           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3819       }
3820 
3821       if ((N0.getOpcode() == ISD::XOR ||
3822            (N0.getOpcode() == ISD::AND &&
3823             N0.getOperand(0).getOpcode() == ISD::XOR &&
3824             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3825           isOneConstant(N0.getOperand(1))) {
3826         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3827         // can only do this if the top bits are known zero.
3828         unsigned BitWidth = N0.getValueSizeInBits();
3829         if (DAG.MaskedValueIsZero(N0,
3830                                   APInt::getHighBitsSet(BitWidth,
3831                                                         BitWidth-1))) {
3832           // Okay, get the un-inverted input value.
3833           SDValue Val;
3834           if (N0.getOpcode() == ISD::XOR) {
3835             Val = N0.getOperand(0);
3836           } else {
3837             assert(N0.getOpcode() == ISD::AND &&
3838                     N0.getOperand(0).getOpcode() == ISD::XOR);
3839             // ((X^1)&1)^1 -> X & 1
3840             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3841                               N0.getOperand(0).getOperand(0),
3842                               N0.getOperand(1));
3843           }
3844 
3845           return DAG.getSetCC(dl, VT, Val, N1,
3846                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3847         }
3848       } else if (N1C->isOne()) {
3849         SDValue Op0 = N0;
3850         if (Op0.getOpcode() == ISD::TRUNCATE)
3851           Op0 = Op0.getOperand(0);
3852 
3853         if ((Op0.getOpcode() == ISD::XOR) &&
3854             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3855             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3856           SDValue XorLHS = Op0.getOperand(0);
3857           SDValue XorRHS = Op0.getOperand(1);
3858           // Ensure that the input setccs return an i1 type or 0/1 value.
3859           if (Op0.getValueType() == MVT::i1 ||
3860               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3861                       ZeroOrOneBooleanContent &&
3862                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3863                         ZeroOrOneBooleanContent)) {
3864             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3865             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3866             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3867           }
3868         }
3869         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3870           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3871           if (Op0.getValueType().bitsGT(VT))
3872             Op0 = DAG.getNode(ISD::AND, dl, VT,
3873                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3874                           DAG.getConstant(1, dl, VT));
3875           else if (Op0.getValueType().bitsLT(VT))
3876             Op0 = DAG.getNode(ISD::AND, dl, VT,
3877                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3878                         DAG.getConstant(1, dl, VT));
3879 
3880           return DAG.getSetCC(dl, VT, Op0,
3881                               DAG.getConstant(0, dl, Op0.getValueType()),
3882                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3883         }
3884         if (Op0.getOpcode() == ISD::AssertZext &&
3885             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3886           return DAG.getSetCC(dl, VT, Op0,
3887                               DAG.getConstant(0, dl, Op0.getValueType()),
3888                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3889       }
3890     }
3891 
3892     // Given:
3893     //   icmp eq/ne (urem %x, %y), 0
3894     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3895     //   icmp eq/ne %x, 0
3896     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3897         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3898       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3899       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3900       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3901         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3902     }
3903 
3904     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3905     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3906     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3907         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3908         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3909         N1C && N1C->isAllOnes()) {
3910       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3911                           DAG.getConstant(0, dl, OpVT),
3912                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3913     }
3914 
3915     if (SDValue V =
3916             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3917       return V;
3918   }
3919 
3920   // These simplifications apply to splat vectors as well.
3921   // TODO: Handle more splat vector cases.
3922   if (auto *N1C = isConstOrConstSplat(N1)) {
3923     const APInt &C1 = N1C->getAPIntValue();
3924 
3925     APInt MinVal, MaxVal;
3926     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3927     if (ISD::isSignedIntSetCC(Cond)) {
3928       MinVal = APInt::getSignedMinValue(OperandBitSize);
3929       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3930     } else {
3931       MinVal = APInt::getMinValue(OperandBitSize);
3932       MaxVal = APInt::getMaxValue(OperandBitSize);
3933     }
3934 
3935     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3936     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3937       // X >= MIN --> true
3938       if (C1 == MinVal)
3939         return DAG.getBoolConstant(true, dl, VT, OpVT);
3940 
3941       if (!VT.isVector()) { // TODO: Support this for vectors.
3942         // X >= C0 --> X > (C0 - 1)
3943         APInt C = C1 - 1;
3944         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3945         if ((DCI.isBeforeLegalizeOps() ||
3946              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3947             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3948                                   isLegalICmpImmediate(C.getSExtValue())))) {
3949           return DAG.getSetCC(dl, VT, N0,
3950                               DAG.getConstant(C, dl, N1.getValueType()),
3951                               NewCC);
3952         }
3953       }
3954     }
3955 
3956     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3957       // X <= MAX --> true
3958       if (C1 == MaxVal)
3959         return DAG.getBoolConstant(true, dl, VT, OpVT);
3960 
3961       // X <= C0 --> X < (C0 + 1)
3962       if (!VT.isVector()) { // TODO: Support this for vectors.
3963         APInt C = C1 + 1;
3964         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3965         if ((DCI.isBeforeLegalizeOps() ||
3966              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3967             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3968                                   isLegalICmpImmediate(C.getSExtValue())))) {
3969           return DAG.getSetCC(dl, VT, N0,
3970                               DAG.getConstant(C, dl, N1.getValueType()),
3971                               NewCC);
3972         }
3973       }
3974     }
3975 
3976     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3977       if (C1 == MinVal)
3978         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3979 
3980       // TODO: Support this for vectors after legalize ops.
3981       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3982         // Canonicalize setlt X, Max --> setne X, Max
3983         if (C1 == MaxVal)
3984           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3985 
3986         // If we have setult X, 1, turn it into seteq X, 0
3987         if (C1 == MinVal+1)
3988           return DAG.getSetCC(dl, VT, N0,
3989                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3990                               ISD::SETEQ);
3991       }
3992     }
3993 
3994     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3995       if (C1 == MaxVal)
3996         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3997 
3998       // TODO: Support this for vectors after legalize ops.
3999       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4000         // Canonicalize setgt X, Min --> setne X, Min
4001         if (C1 == MinVal)
4002           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4003 
4004         // If we have setugt X, Max-1, turn it into seteq X, Max
4005         if (C1 == MaxVal-1)
4006           return DAG.getSetCC(dl, VT, N0,
4007                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4008                               ISD::SETEQ);
4009       }
4010     }
4011 
4012     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4013       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4014       if (C1.isZero())
4015         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4016                 VT, N0, N1, Cond, DCI, dl))
4017           return CC;
4018 
4019       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4020       // For example, when high 32-bits of i64 X are known clear:
4021       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4022       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4023       bool CmpZero = N1C->getAPIntValue().isZero();
4024       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4025       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4026         // Match or(lo,shl(hi,bw/2)) pattern.
4027         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4028           unsigned EltBits = V.getScalarValueSizeInBits();
4029           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4030             return false;
4031           SDValue LHS = V.getOperand(0);
4032           SDValue RHS = V.getOperand(1);
4033           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4034           // Unshifted element must have zero upperbits.
4035           if (RHS.getOpcode() == ISD::SHL &&
4036               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4037               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4038               DAG.MaskedValueIsZero(LHS, HiBits)) {
4039             Lo = LHS;
4040             Hi = RHS.getOperand(0);
4041             return true;
4042           }
4043           if (LHS.getOpcode() == ISD::SHL &&
4044               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4045               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4046               DAG.MaskedValueIsZero(RHS, HiBits)) {
4047             Lo = RHS;
4048             Hi = LHS.getOperand(0);
4049             return true;
4050           }
4051           return false;
4052         };
4053 
4054         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4055           unsigned EltBits = N0.getScalarValueSizeInBits();
4056           unsigned HalfBits = EltBits / 2;
4057           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4058           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4059           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4060           SDValue NewN0 =
4061               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4062           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4063           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4064         };
4065 
4066         SDValue Lo, Hi;
4067         if (IsConcat(N0, Lo, Hi))
4068           return MergeConcat(Lo, Hi);
4069 
4070         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4071           SDValue Lo0, Lo1, Hi0, Hi1;
4072           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4073               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4074             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4075                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4076           }
4077         }
4078       }
4079     }
4080 
4081     // If we have "setcc X, C0", check to see if we can shrink the immediate
4082     // by changing cc.
4083     // TODO: Support this for vectors after legalize ops.
4084     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4085       // SETUGT X, SINTMAX  -> SETLT X, 0
4086       // SETUGE X, SINTMIN -> SETLT X, 0
4087       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4088           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4089         return DAG.getSetCC(dl, VT, N0,
4090                             DAG.getConstant(0, dl, N1.getValueType()),
4091                             ISD::SETLT);
4092 
4093       // SETULT X, SINTMIN  -> SETGT X, -1
4094       // SETULE X, SINTMAX  -> SETGT X, -1
4095       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4096           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4097         return DAG.getSetCC(dl, VT, N0,
4098                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4099                             ISD::SETGT);
4100     }
4101   }
4102 
4103   // Back to non-vector simplifications.
4104   // TODO: Can we do these for vector splats?
4105   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4106     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4107     const APInt &C1 = N1C->getAPIntValue();
4108     EVT ShValTy = N0.getValueType();
4109 
4110     // Fold bit comparisons when we can. This will result in an
4111     // incorrect value when boolean false is negative one, unless
4112     // the bitsize is 1 in which case the false value is the same
4113     // in practice regardless of the representation.
4114     if ((VT.getSizeInBits() == 1 ||
4115          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4116         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4117         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4118         N0.getOpcode() == ISD::AND) {
4119       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4120         EVT ShiftTy =
4121             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4122         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4123           // Perform the xform if the AND RHS is a single bit.
4124           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4125           if (AndRHS->getAPIntValue().isPowerOf2() &&
4126               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4127             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4128                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4129                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4130           }
4131         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4132           // (X & 8) == 8  -->  (X & 8) >> 3
4133           // Perform the xform if C1 is a single bit.
4134           unsigned ShCt = C1.logBase2();
4135           if (C1.isPowerOf2() &&
4136               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4137             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4138                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4139                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4140           }
4141         }
4142       }
4143     }
4144 
4145     if (C1.getMinSignedBits() <= 64 &&
4146         !isLegalICmpImmediate(C1.getSExtValue())) {
4147       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4148       // (X & -256) == 256 -> (X >> 8) == 1
4149       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4150           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4151         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4152           const APInt &AndRHSC = AndRHS->getAPIntValue();
4153           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4154             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4155             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4156               SDValue Shift =
4157                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4158                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4159               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4160               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4161             }
4162           }
4163         }
4164       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4165                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4166         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4167         // X <  0x100000000 -> (X >> 32) <  1
4168         // X >= 0x100000000 -> (X >> 32) >= 1
4169         // X <= 0x0ffffffff -> (X >> 32) <  1
4170         // X >  0x0ffffffff -> (X >> 32) >= 1
4171         unsigned ShiftBits;
4172         APInt NewC = C1;
4173         ISD::CondCode NewCond = Cond;
4174         if (AdjOne) {
4175           ShiftBits = C1.countTrailingOnes();
4176           NewC = NewC + 1;
4177           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4178         } else {
4179           ShiftBits = C1.countTrailingZeros();
4180         }
4181         NewC.lshrInPlace(ShiftBits);
4182         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4183             isLegalICmpImmediate(NewC.getSExtValue()) &&
4184             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4185           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4186                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4187           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4188           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4189         }
4190       }
4191     }
4192   }
4193 
4194   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4195     auto *CFP = cast<ConstantFPSDNode>(N1);
4196     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4197 
4198     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4199     // constant if knowing that the operand is non-nan is enough.  We prefer to
4200     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4201     // materialize 0.0.
4202     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4203       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4204 
4205     // setcc (fneg x), C -> setcc swap(pred) x, -C
4206     if (N0.getOpcode() == ISD::FNEG) {
4207       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4208       if (DCI.isBeforeLegalizeOps() ||
4209           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4210         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4211         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4212       }
4213     }
4214 
4215     // If the condition is not legal, see if we can find an equivalent one
4216     // which is legal.
4217     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4218       // If the comparison was an awkward floating-point == or != and one of
4219       // the comparison operands is infinity or negative infinity, convert the
4220       // condition to a less-awkward <= or >=.
4221       if (CFP->getValueAPF().isInfinity()) {
4222         bool IsNegInf = CFP->getValueAPF().isNegative();
4223         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4224         switch (Cond) {
4225         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4226         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4227         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4228         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4229         default: break;
4230         }
4231         if (NewCond != ISD::SETCC_INVALID &&
4232             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4233           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4234       }
4235     }
4236   }
4237 
4238   if (N0 == N1) {
4239     // The sext(setcc()) => setcc() optimization relies on the appropriate
4240     // constant being emitted.
4241     assert(!N0.getValueType().isInteger() &&
4242            "Integer types should be handled by FoldSetCC");
4243 
4244     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4245     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4246     if (UOF == 2) // FP operators that are undefined on NaNs.
4247       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4248     if (UOF == unsigned(EqTrue))
4249       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4250     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4251     // if it is not already.
4252     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4253     if (NewCond != Cond &&
4254         (DCI.isBeforeLegalizeOps() ||
4255                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4256       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4257   }
4258 
4259   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4260       N0.getValueType().isInteger()) {
4261     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4262         N0.getOpcode() == ISD::XOR) {
4263       // Simplify (X+Y) == (X+Z) -->  Y == Z
4264       if (N0.getOpcode() == N1.getOpcode()) {
4265         if (N0.getOperand(0) == N1.getOperand(0))
4266           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4267         if (N0.getOperand(1) == N1.getOperand(1))
4268           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4269         if (isCommutativeBinOp(N0.getOpcode())) {
4270           // If X op Y == Y op X, try other combinations.
4271           if (N0.getOperand(0) == N1.getOperand(1))
4272             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4273                                 Cond);
4274           if (N0.getOperand(1) == N1.getOperand(0))
4275             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4276                                 Cond);
4277         }
4278       }
4279 
4280       // If RHS is a legal immediate value for a compare instruction, we need
4281       // to be careful about increasing register pressure needlessly.
4282       bool LegalRHSImm = false;
4283 
4284       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4285         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4286           // Turn (X+C1) == C2 --> X == C2-C1
4287           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4288             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4289                                 DAG.getConstant(RHSC->getAPIntValue()-
4290                                                 LHSR->getAPIntValue(),
4291                                 dl, N0.getValueType()), Cond);
4292           }
4293 
4294           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4295           if (N0.getOpcode() == ISD::XOR)
4296             // If we know that all of the inverted bits are zero, don't bother
4297             // performing the inversion.
4298             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4299               return
4300                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4301                              DAG.getConstant(LHSR->getAPIntValue() ^
4302                                                RHSC->getAPIntValue(),
4303                                              dl, N0.getValueType()),
4304                              Cond);
4305         }
4306 
4307         // Turn (C1-X) == C2 --> X == C1-C2
4308         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4309           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4310             return
4311               DAG.getSetCC(dl, VT, N0.getOperand(1),
4312                            DAG.getConstant(SUBC->getAPIntValue() -
4313                                              RHSC->getAPIntValue(),
4314                                            dl, N0.getValueType()),
4315                            Cond);
4316           }
4317         }
4318 
4319         // Could RHSC fold directly into a compare?
4320         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4321           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4322       }
4323 
4324       // (X+Y) == X --> Y == 0 and similar folds.
4325       // Don't do this if X is an immediate that can fold into a cmp
4326       // instruction and X+Y has other uses. It could be an induction variable
4327       // chain, and the transform would increase register pressure.
4328       if (!LegalRHSImm || N0.hasOneUse())
4329         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4330           return V;
4331     }
4332 
4333     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4334         N1.getOpcode() == ISD::XOR)
4335       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4336         return V;
4337 
4338     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4339       return V;
4340   }
4341 
4342   // Fold remainder of division by a constant.
4343   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4344       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4345     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4346 
4347     // When division is cheap or optimizing for minimum size,
4348     // fall through to DIVREM creation by skipping this fold.
4349     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4350       if (N0.getOpcode() == ISD::UREM) {
4351         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4352           return Folded;
4353       } else if (N0.getOpcode() == ISD::SREM) {
4354         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4355           return Folded;
4356       }
4357     }
4358   }
4359 
4360   // Fold away ALL boolean setcc's.
4361   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4362     SDValue Temp;
4363     switch (Cond) {
4364     default: llvm_unreachable("Unknown integer setcc!");
4365     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4366       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4367       N0 = DAG.getNOT(dl, Temp, OpVT);
4368       if (!DCI.isCalledByLegalizer())
4369         DCI.AddToWorklist(Temp.getNode());
4370       break;
4371     case ISD::SETNE:  // X != Y   -->  (X^Y)
4372       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4373       break;
4374     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4375     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4376       Temp = DAG.getNOT(dl, N0, OpVT);
4377       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4378       if (!DCI.isCalledByLegalizer())
4379         DCI.AddToWorklist(Temp.getNode());
4380       break;
4381     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4382     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4383       Temp = DAG.getNOT(dl, N1, OpVT);
4384       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4385       if (!DCI.isCalledByLegalizer())
4386         DCI.AddToWorklist(Temp.getNode());
4387       break;
4388     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4389     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4390       Temp = DAG.getNOT(dl, N0, OpVT);
4391       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4392       if (!DCI.isCalledByLegalizer())
4393         DCI.AddToWorklist(Temp.getNode());
4394       break;
4395     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4396     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4397       Temp = DAG.getNOT(dl, N1, OpVT);
4398       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4399       break;
4400     }
4401     if (VT.getScalarType() != MVT::i1) {
4402       if (!DCI.isCalledByLegalizer())
4403         DCI.AddToWorklist(N0.getNode());
4404       // FIXME: If running after legalize, we probably can't do this.
4405       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4406       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4407     }
4408     return N0;
4409   }
4410 
4411   // Could not fold it.
4412   return SDValue();
4413 }
4414 
4415 /// Returns true (and the GlobalValue and the offset) if the node is a
4416 /// GlobalAddress + offset.
4417 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4418                                     int64_t &Offset) const {
4419 
4420   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4421 
4422   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4423     GA = GASD->getGlobal();
4424     Offset += GASD->getOffset();
4425     return true;
4426   }
4427 
4428   if (N->getOpcode() == ISD::ADD) {
4429     SDValue N1 = N->getOperand(0);
4430     SDValue N2 = N->getOperand(1);
4431     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4432       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4433         Offset += V->getSExtValue();
4434         return true;
4435       }
4436     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4437       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4438         Offset += V->getSExtValue();
4439         return true;
4440       }
4441     }
4442   }
4443 
4444   return false;
4445 }
4446 
4447 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4448                                           DAGCombinerInfo &DCI) const {
4449   // Default implementation: no optimization.
4450   return SDValue();
4451 }
4452 
4453 //===----------------------------------------------------------------------===//
4454 //  Inline Assembler Implementation Methods
4455 //===----------------------------------------------------------------------===//
4456 
4457 TargetLowering::ConstraintType
4458 TargetLowering::getConstraintType(StringRef Constraint) const {
4459   unsigned S = Constraint.size();
4460 
4461   if (S == 1) {
4462     switch (Constraint[0]) {
4463     default: break;
4464     case 'r':
4465       return C_RegisterClass;
4466     case 'm': // memory
4467     case 'o': // offsetable
4468     case 'V': // not offsetable
4469       return C_Memory;
4470     case 'n': // Simple Integer
4471     case 'E': // Floating Point Constant
4472     case 'F': // Floating Point Constant
4473       return C_Immediate;
4474     case 'i': // Simple Integer or Relocatable Constant
4475     case 's': // Relocatable Constant
4476     case 'p': // Address.
4477     case 'X': // Allow ANY value.
4478     case 'I': // Target registers.
4479     case 'J':
4480     case 'K':
4481     case 'L':
4482     case 'M':
4483     case 'N':
4484     case 'O':
4485     case 'P':
4486     case '<':
4487     case '>':
4488       return C_Other;
4489     }
4490   }
4491 
4492   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4493     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4494       return C_Memory;
4495     return C_Register;
4496   }
4497   return C_Unknown;
4498 }
4499 
4500 /// Try to replace an X constraint, which matches anything, with another that
4501 /// has more specific requirements based on the type of the corresponding
4502 /// operand.
4503 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4504   if (ConstraintVT.isInteger())
4505     return "r";
4506   if (ConstraintVT.isFloatingPoint())
4507     return "f"; // works for many targets
4508   return nullptr;
4509 }
4510 
4511 SDValue TargetLowering::LowerAsmOutputForConstraint(
4512     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4513     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4514   return SDValue();
4515 }
4516 
4517 /// Lower the specified operand into the Ops vector.
4518 /// If it is invalid, don't add anything to Ops.
4519 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4520                                                   std::string &Constraint,
4521                                                   std::vector<SDValue> &Ops,
4522                                                   SelectionDAG &DAG) const {
4523 
4524   if (Constraint.length() > 1) return;
4525 
4526   char ConstraintLetter = Constraint[0];
4527   switch (ConstraintLetter) {
4528   default: break;
4529   case 'X':     // Allows any operand; labels (basic block) use this.
4530     if (Op.getOpcode() == ISD::BasicBlock ||
4531         Op.getOpcode() == ISD::TargetBlockAddress) {
4532       Ops.push_back(Op);
4533       return;
4534     }
4535     LLVM_FALLTHROUGH;
4536   case 'i':    // Simple Integer or Relocatable Constant
4537   case 'n':    // Simple Integer
4538   case 's': {  // Relocatable Constant
4539 
4540     GlobalAddressSDNode *GA;
4541     ConstantSDNode *C;
4542     BlockAddressSDNode *BA;
4543     uint64_t Offset = 0;
4544 
4545     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4546     // etc., since getelementpointer is variadic. We can't use
4547     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4548     // while in this case the GA may be furthest from the root node which is
4549     // likely an ISD::ADD.
4550     while (1) {
4551       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4552         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4553                                                  GA->getValueType(0),
4554                                                  Offset + GA->getOffset()));
4555         return;
4556       }
4557       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4558         // gcc prints these as sign extended.  Sign extend value to 64 bits
4559         // now; without this it would get ZExt'd later in
4560         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4561         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4562         BooleanContent BCont = getBooleanContents(MVT::i64);
4563         ISD::NodeType ExtOpc =
4564             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4565         int64_t ExtVal =
4566             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4567         Ops.push_back(
4568             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4569         return;
4570       }
4571       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4572         Ops.push_back(DAG.getTargetBlockAddress(
4573             BA->getBlockAddress(), BA->getValueType(0),
4574             Offset + BA->getOffset(), BA->getTargetFlags()));
4575         return;
4576       }
4577       const unsigned OpCode = Op.getOpcode();
4578       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4579         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4580           Op = Op.getOperand(1);
4581         // Subtraction is not commutative.
4582         else if (OpCode == ISD::ADD &&
4583                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4584           Op = Op.getOperand(0);
4585         else
4586           return;
4587         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4588         continue;
4589       }
4590       return;
4591     }
4592     break;
4593   }
4594   }
4595 }
4596 
4597 std::pair<unsigned, const TargetRegisterClass *>
4598 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4599                                              StringRef Constraint,
4600                                              MVT VT) const {
4601   if (Constraint.empty() || Constraint[0] != '{')
4602     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4603   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4604 
4605   // Remove the braces from around the name.
4606   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4607 
4608   std::pair<unsigned, const TargetRegisterClass *> R =
4609       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4610 
4611   // Figure out which register class contains this reg.
4612   for (const TargetRegisterClass *RC : RI->regclasses()) {
4613     // If none of the value types for this register class are valid, we
4614     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4615     if (!isLegalRC(*RI, *RC))
4616       continue;
4617 
4618     for (const MCPhysReg &PR : *RC) {
4619       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4620         std::pair<unsigned, const TargetRegisterClass *> S =
4621             std::make_pair(PR, RC);
4622 
4623         // If this register class has the requested value type, return it,
4624         // otherwise keep searching and return the first class found
4625         // if no other is found which explicitly has the requested type.
4626         if (RI->isTypeLegalForClass(*RC, VT))
4627           return S;
4628         if (!R.second)
4629           R = S;
4630       }
4631     }
4632   }
4633 
4634   return R;
4635 }
4636 
4637 //===----------------------------------------------------------------------===//
4638 // Constraint Selection.
4639 
4640 /// Return true of this is an input operand that is a matching constraint like
4641 /// "4".
4642 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4643   assert(!ConstraintCode.empty() && "No known constraint!");
4644   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4645 }
4646 
4647 /// If this is an input matching constraint, this method returns the output
4648 /// operand it matches.
4649 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4650   assert(!ConstraintCode.empty() && "No known constraint!");
4651   return atoi(ConstraintCode.c_str());
4652 }
4653 
4654 /// Split up the constraint string from the inline assembly value into the
4655 /// specific constraints and their prefixes, and also tie in the associated
4656 /// operand values.
4657 /// If this returns an empty vector, and if the constraint string itself
4658 /// isn't empty, there was an error parsing.
4659 TargetLowering::AsmOperandInfoVector
4660 TargetLowering::ParseConstraints(const DataLayout &DL,
4661                                  const TargetRegisterInfo *TRI,
4662                                  const CallBase &Call) const {
4663   /// Information about all of the constraints.
4664   AsmOperandInfoVector ConstraintOperands;
4665   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4666   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4667 
4668   // Do a prepass over the constraints, canonicalizing them, and building up the
4669   // ConstraintOperands list.
4670   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4671   unsigned ResNo = 0; // ResNo - The result number of the next output.
4672 
4673   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4674     ConstraintOperands.emplace_back(std::move(CI));
4675     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4676 
4677     // Update multiple alternative constraint count.
4678     if (OpInfo.multipleAlternatives.size() > maCount)
4679       maCount = OpInfo.multipleAlternatives.size();
4680 
4681     OpInfo.ConstraintVT = MVT::Other;
4682 
4683     // Compute the value type for each operand.
4684     switch (OpInfo.Type) {
4685     case InlineAsm::isOutput:
4686       // Indirect outputs just consume an argument.
4687       if (OpInfo.isIndirect) {
4688         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4689         break;
4690       }
4691 
4692       // The return value of the call is this value.  As such, there is no
4693       // corresponding argument.
4694       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4695       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4696         OpInfo.ConstraintVT =
4697             getSimpleValueType(DL, STy->getElementType(ResNo));
4698       } else {
4699         assert(ResNo == 0 && "Asm only has one result!");
4700         OpInfo.ConstraintVT =
4701             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4702       }
4703       ++ResNo;
4704       break;
4705     case InlineAsm::isInput:
4706       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4707       break;
4708     case InlineAsm::isClobber:
4709       // Nothing to do.
4710       break;
4711     }
4712 
4713     if (OpInfo.CallOperandVal) {
4714       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4715       if (OpInfo.isIndirect) {
4716         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4717         if (!PtrTy)
4718           report_fatal_error("Indirect operand for inline asm not a pointer!");
4719         OpTy = PtrTy->getElementType();
4720       }
4721 
4722       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4723       if (StructType *STy = dyn_cast<StructType>(OpTy))
4724         if (STy->getNumElements() == 1)
4725           OpTy = STy->getElementType(0);
4726 
4727       // If OpTy is not a single value, it may be a struct/union that we
4728       // can tile with integers.
4729       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4730         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4731         switch (BitSize) {
4732         default: break;
4733         case 1:
4734         case 8:
4735         case 16:
4736         case 32:
4737         case 64:
4738         case 128:
4739           OpInfo.ConstraintVT =
4740               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4741           break;
4742         }
4743       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4744         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4745         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4746       } else {
4747         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4748       }
4749     }
4750   }
4751 
4752   // If we have multiple alternative constraints, select the best alternative.
4753   if (!ConstraintOperands.empty()) {
4754     if (maCount) {
4755       unsigned bestMAIndex = 0;
4756       int bestWeight = -1;
4757       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4758       int weight = -1;
4759       unsigned maIndex;
4760       // Compute the sums of the weights for each alternative, keeping track
4761       // of the best (highest weight) one so far.
4762       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4763         int weightSum = 0;
4764         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4765              cIndex != eIndex; ++cIndex) {
4766           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4767           if (OpInfo.Type == InlineAsm::isClobber)
4768             continue;
4769 
4770           // If this is an output operand with a matching input operand,
4771           // look up the matching input. If their types mismatch, e.g. one
4772           // is an integer, the other is floating point, or their sizes are
4773           // different, flag it as an maCantMatch.
4774           if (OpInfo.hasMatchingInput()) {
4775             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4776             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4777               if ((OpInfo.ConstraintVT.isInteger() !=
4778                    Input.ConstraintVT.isInteger()) ||
4779                   (OpInfo.ConstraintVT.getSizeInBits() !=
4780                    Input.ConstraintVT.getSizeInBits())) {
4781                 weightSum = -1; // Can't match.
4782                 break;
4783               }
4784             }
4785           }
4786           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4787           if (weight == -1) {
4788             weightSum = -1;
4789             break;
4790           }
4791           weightSum += weight;
4792         }
4793         // Update best.
4794         if (weightSum > bestWeight) {
4795           bestWeight = weightSum;
4796           bestMAIndex = maIndex;
4797         }
4798       }
4799 
4800       // Now select chosen alternative in each constraint.
4801       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4802            cIndex != eIndex; ++cIndex) {
4803         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4804         if (cInfo.Type == InlineAsm::isClobber)
4805           continue;
4806         cInfo.selectAlternative(bestMAIndex);
4807       }
4808     }
4809   }
4810 
4811   // Check and hook up tied operands, choose constraint code to use.
4812   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4813        cIndex != eIndex; ++cIndex) {
4814     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4815 
4816     // If this is an output operand with a matching input operand, look up the
4817     // matching input. If their types mismatch, e.g. one is an integer, the
4818     // other is floating point, or their sizes are different, flag it as an
4819     // error.
4820     if (OpInfo.hasMatchingInput()) {
4821       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4822 
4823       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4824         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4825             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4826                                          OpInfo.ConstraintVT);
4827         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4828             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4829                                          Input.ConstraintVT);
4830         if ((OpInfo.ConstraintVT.isInteger() !=
4831              Input.ConstraintVT.isInteger()) ||
4832             (MatchRC.second != InputRC.second)) {
4833           report_fatal_error("Unsupported asm: input constraint"
4834                              " with a matching output constraint of"
4835                              " incompatible type!");
4836         }
4837       }
4838     }
4839   }
4840 
4841   return ConstraintOperands;
4842 }
4843 
4844 /// Return an integer indicating how general CT is.
4845 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4846   switch (CT) {
4847   case TargetLowering::C_Immediate:
4848   case TargetLowering::C_Other:
4849   case TargetLowering::C_Unknown:
4850     return 0;
4851   case TargetLowering::C_Register:
4852     return 1;
4853   case TargetLowering::C_RegisterClass:
4854     return 2;
4855   case TargetLowering::C_Memory:
4856     return 3;
4857   }
4858   llvm_unreachable("Invalid constraint type");
4859 }
4860 
4861 /// Examine constraint type and operand type and determine a weight value.
4862 /// This object must already have been set up with the operand type
4863 /// and the current alternative constraint selected.
4864 TargetLowering::ConstraintWeight
4865   TargetLowering::getMultipleConstraintMatchWeight(
4866     AsmOperandInfo &info, int maIndex) const {
4867   InlineAsm::ConstraintCodeVector *rCodes;
4868   if (maIndex >= (int)info.multipleAlternatives.size())
4869     rCodes = &info.Codes;
4870   else
4871     rCodes = &info.multipleAlternatives[maIndex].Codes;
4872   ConstraintWeight BestWeight = CW_Invalid;
4873 
4874   // Loop over the options, keeping track of the most general one.
4875   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4876     ConstraintWeight weight =
4877       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4878     if (weight > BestWeight)
4879       BestWeight = weight;
4880   }
4881 
4882   return BestWeight;
4883 }
4884 
4885 /// Examine constraint type and operand type and determine a weight value.
4886 /// This object must already have been set up with the operand type
4887 /// and the current alternative constraint selected.
4888 TargetLowering::ConstraintWeight
4889   TargetLowering::getSingleConstraintMatchWeight(
4890     AsmOperandInfo &info, const char *constraint) const {
4891   ConstraintWeight weight = CW_Invalid;
4892   Value *CallOperandVal = info.CallOperandVal;
4893     // If we don't have a value, we can't do a match,
4894     // but allow it at the lowest weight.
4895   if (!CallOperandVal)
4896     return CW_Default;
4897   // Look at the constraint type.
4898   switch (*constraint) {
4899     case 'i': // immediate integer.
4900     case 'n': // immediate integer with a known value.
4901       if (isa<ConstantInt>(CallOperandVal))
4902         weight = CW_Constant;
4903       break;
4904     case 's': // non-explicit intregal immediate.
4905       if (isa<GlobalValue>(CallOperandVal))
4906         weight = CW_Constant;
4907       break;
4908     case 'E': // immediate float if host format.
4909     case 'F': // immediate float.
4910       if (isa<ConstantFP>(CallOperandVal))
4911         weight = CW_Constant;
4912       break;
4913     case '<': // memory operand with autodecrement.
4914     case '>': // memory operand with autoincrement.
4915     case 'm': // memory operand.
4916     case 'o': // offsettable memory operand
4917     case 'V': // non-offsettable memory operand
4918       weight = CW_Memory;
4919       break;
4920     case 'r': // general register.
4921     case 'g': // general register, memory operand or immediate integer.
4922               // note: Clang converts "g" to "imr".
4923       if (CallOperandVal->getType()->isIntegerTy())
4924         weight = CW_Register;
4925       break;
4926     case 'X': // any operand.
4927   default:
4928     weight = CW_Default;
4929     break;
4930   }
4931   return weight;
4932 }
4933 
4934 /// If there are multiple different constraints that we could pick for this
4935 /// operand (e.g. "imr") try to pick the 'best' one.
4936 /// This is somewhat tricky: constraints fall into four classes:
4937 ///    Other         -> immediates and magic values
4938 ///    Register      -> one specific register
4939 ///    RegisterClass -> a group of regs
4940 ///    Memory        -> memory
4941 /// Ideally, we would pick the most specific constraint possible: if we have
4942 /// something that fits into a register, we would pick it.  The problem here
4943 /// is that if we have something that could either be in a register or in
4944 /// memory that use of the register could cause selection of *other*
4945 /// operands to fail: they might only succeed if we pick memory.  Because of
4946 /// this the heuristic we use is:
4947 ///
4948 ///  1) If there is an 'other' constraint, and if the operand is valid for
4949 ///     that constraint, use it.  This makes us take advantage of 'i'
4950 ///     constraints when available.
4951 ///  2) Otherwise, pick the most general constraint present.  This prefers
4952 ///     'm' over 'r', for example.
4953 ///
4954 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4955                              const TargetLowering &TLI,
4956                              SDValue Op, SelectionDAG *DAG) {
4957   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4958   unsigned BestIdx = 0;
4959   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4960   int BestGenerality = -1;
4961 
4962   // Loop over the options, keeping track of the most general one.
4963   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4964     TargetLowering::ConstraintType CType =
4965       TLI.getConstraintType(OpInfo.Codes[i]);
4966 
4967     // Indirect 'other' or 'immediate' constraints are not allowed.
4968     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4969                                CType == TargetLowering::C_Register ||
4970                                CType == TargetLowering::C_RegisterClass))
4971       continue;
4972 
4973     // If this is an 'other' or 'immediate' constraint, see if the operand is
4974     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4975     // the operand is an integer in the range [0..31] we want to use I (saving a
4976     // load of a register), otherwise we must use 'r'.
4977     if ((CType == TargetLowering::C_Other ||
4978          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4979       assert(OpInfo.Codes[i].size() == 1 &&
4980              "Unhandled multi-letter 'other' constraint");
4981       std::vector<SDValue> ResultOps;
4982       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4983                                        ResultOps, *DAG);
4984       if (!ResultOps.empty()) {
4985         BestType = CType;
4986         BestIdx = i;
4987         break;
4988       }
4989     }
4990 
4991     // Things with matching constraints can only be registers, per gcc
4992     // documentation.  This mainly affects "g" constraints.
4993     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4994       continue;
4995 
4996     // This constraint letter is more general than the previous one, use it.
4997     int Generality = getConstraintGenerality(CType);
4998     if (Generality > BestGenerality) {
4999       BestType = CType;
5000       BestIdx = i;
5001       BestGenerality = Generality;
5002     }
5003   }
5004 
5005   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5006   OpInfo.ConstraintType = BestType;
5007 }
5008 
5009 /// Determines the constraint code and constraint type to use for the specific
5010 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5011 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5012                                             SDValue Op,
5013                                             SelectionDAG *DAG) const {
5014   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5015 
5016   // Single-letter constraints ('r') are very common.
5017   if (OpInfo.Codes.size() == 1) {
5018     OpInfo.ConstraintCode = OpInfo.Codes[0];
5019     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5020   } else {
5021     ChooseConstraint(OpInfo, *this, Op, DAG);
5022   }
5023 
5024   // 'X' matches anything.
5025   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5026     // Labels and constants are handled elsewhere ('X' is the only thing
5027     // that matches labels).  For Functions, the type here is the type of
5028     // the result, which is not what we want to look at; leave them alone.
5029     Value *v = OpInfo.CallOperandVal;
5030     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5031       OpInfo.CallOperandVal = v;
5032       return;
5033     }
5034 
5035     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5036       return;
5037 
5038     // Otherwise, try to resolve it to something we know about by looking at
5039     // the actual operand type.
5040     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5041       OpInfo.ConstraintCode = Repl;
5042       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5043     }
5044   }
5045 }
5046 
5047 /// Given an exact SDIV by a constant, create a multiplication
5048 /// with the multiplicative inverse of the constant.
5049 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5050                               const SDLoc &dl, SelectionDAG &DAG,
5051                               SmallVectorImpl<SDNode *> &Created) {
5052   SDValue Op0 = N->getOperand(0);
5053   SDValue Op1 = N->getOperand(1);
5054   EVT VT = N->getValueType(0);
5055   EVT SVT = VT.getScalarType();
5056   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5057   EVT ShSVT = ShVT.getScalarType();
5058 
5059   bool UseSRA = false;
5060   SmallVector<SDValue, 16> Shifts, Factors;
5061 
5062   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5063     if (C->isZero())
5064       return false;
5065     APInt Divisor = C->getAPIntValue();
5066     unsigned Shift = Divisor.countTrailingZeros();
5067     if (Shift) {
5068       Divisor.ashrInPlace(Shift);
5069       UseSRA = true;
5070     }
5071     // Calculate the multiplicative inverse, using Newton's method.
5072     APInt t;
5073     APInt Factor = Divisor;
5074     while ((t = Divisor * Factor) != 1)
5075       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5076     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5077     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5078     return true;
5079   };
5080 
5081   // Collect all magic values from the build vector.
5082   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5083     return SDValue();
5084 
5085   SDValue Shift, Factor;
5086   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5087     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5088     Factor = DAG.getBuildVector(VT, dl, Factors);
5089   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5090     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5091            "Expected matchUnaryPredicate to return one element for scalable "
5092            "vectors");
5093     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5094     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5095   } else {
5096     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5097     Shift = Shifts[0];
5098     Factor = Factors[0];
5099   }
5100 
5101   SDValue Res = Op0;
5102 
5103   // Shift the value upfront if it is even, so the LSB is one.
5104   if (UseSRA) {
5105     // TODO: For UDIV use SRL instead of SRA.
5106     SDNodeFlags Flags;
5107     Flags.setExact(true);
5108     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5109     Created.push_back(Res.getNode());
5110   }
5111 
5112   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5113 }
5114 
5115 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5116                               SelectionDAG &DAG,
5117                               SmallVectorImpl<SDNode *> &Created) const {
5118   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5119   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5120   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5121     return SDValue(N, 0); // Lower SDIV as SDIV
5122   return SDValue();
5123 }
5124 
5125 /// Given an ISD::SDIV node expressing a divide by constant,
5126 /// return a DAG expression to select that will generate the same value by
5127 /// multiplying by a magic number.
5128 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5129 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5130                                   bool IsAfterLegalization,
5131                                   SmallVectorImpl<SDNode *> &Created) const {
5132   SDLoc dl(N);
5133   EVT VT = N->getValueType(0);
5134   EVT SVT = VT.getScalarType();
5135   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5136   EVT ShSVT = ShVT.getScalarType();
5137   unsigned EltBits = VT.getScalarSizeInBits();
5138   EVT MulVT;
5139 
5140   // Check to see if we can do this.
5141   // FIXME: We should be more aggressive here.
5142   if (!isTypeLegal(VT)) {
5143     // Limit this to simple scalars for now.
5144     if (VT.isVector() || !VT.isSimple())
5145       return SDValue();
5146 
5147     // If this type will be promoted to a large enough type with a legal
5148     // multiply operation, we can go ahead and do this transform.
5149     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5150       return SDValue();
5151 
5152     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5153     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5154         !isOperationLegal(ISD::MUL, MulVT))
5155       return SDValue();
5156   }
5157 
5158   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5159   if (N->getFlags().hasExact())
5160     return BuildExactSDIV(*this, N, dl, DAG, Created);
5161 
5162   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5163 
5164   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5165     if (C->isZero())
5166       return false;
5167 
5168     const APInt &Divisor = C->getAPIntValue();
5169     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5170     int NumeratorFactor = 0;
5171     int ShiftMask = -1;
5172 
5173     if (Divisor.isOne() || Divisor.isAllOnes()) {
5174       // If d is +1/-1, we just multiply the numerator by +1/-1.
5175       NumeratorFactor = Divisor.getSExtValue();
5176       magics.Magic = 0;
5177       magics.ShiftAmount = 0;
5178       ShiftMask = 0;
5179     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5180       // If d > 0 and m < 0, add the numerator.
5181       NumeratorFactor = 1;
5182     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5183       // If d < 0 and m > 0, subtract the numerator.
5184       NumeratorFactor = -1;
5185     }
5186 
5187     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5188     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5189     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5190     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5191     return true;
5192   };
5193 
5194   SDValue N0 = N->getOperand(0);
5195   SDValue N1 = N->getOperand(1);
5196 
5197   // Collect the shifts / magic values from each element.
5198   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5199     return SDValue();
5200 
5201   SDValue MagicFactor, Factor, Shift, ShiftMask;
5202   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5203     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5204     Factor = DAG.getBuildVector(VT, dl, Factors);
5205     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5206     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5207   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5208     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5209            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5210            "Expected matchUnaryPredicate to return one element for scalable "
5211            "vectors");
5212     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5213     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5214     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5215     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5216   } else {
5217     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5218     MagicFactor = MagicFactors[0];
5219     Factor = Factors[0];
5220     Shift = Shifts[0];
5221     ShiftMask = ShiftMasks[0];
5222   }
5223 
5224   // Multiply the numerator (operand 0) by the magic value.
5225   // FIXME: We should support doing a MUL in a wider type.
5226   auto GetMULHS = [&](SDValue X, SDValue Y) {
5227     // If the type isn't legal, use a wider mul of the the type calculated
5228     // earlier.
5229     if (!isTypeLegal(VT)) {
5230       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5231       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5232       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5233       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5234                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5235       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5236     }
5237 
5238     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5239       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5240     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5241       SDValue LoHi =
5242           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5243       return SDValue(LoHi.getNode(), 1);
5244     }
5245     return SDValue();
5246   };
5247 
5248   SDValue Q = GetMULHS(N0, MagicFactor);
5249   if (!Q)
5250     return SDValue();
5251 
5252   Created.push_back(Q.getNode());
5253 
5254   // (Optionally) Add/subtract the numerator using Factor.
5255   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5256   Created.push_back(Factor.getNode());
5257   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5258   Created.push_back(Q.getNode());
5259 
5260   // Shift right algebraic by shift value.
5261   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5262   Created.push_back(Q.getNode());
5263 
5264   // Extract the sign bit, mask it and add it to the quotient.
5265   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5266   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5267   Created.push_back(T.getNode());
5268   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5269   Created.push_back(T.getNode());
5270   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5271 }
5272 
5273 /// Given an ISD::UDIV node expressing a divide by constant,
5274 /// return a DAG expression to select that will generate the same value by
5275 /// multiplying by a magic number.
5276 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5277 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5278                                   bool IsAfterLegalization,
5279                                   SmallVectorImpl<SDNode *> &Created) const {
5280   SDLoc dl(N);
5281   EVT VT = N->getValueType(0);
5282   EVT SVT = VT.getScalarType();
5283   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5284   EVT ShSVT = ShVT.getScalarType();
5285   unsigned EltBits = VT.getScalarSizeInBits();
5286   EVT MulVT;
5287 
5288   // Check to see if we can do this.
5289   // FIXME: We should be more aggressive here.
5290   if (!isTypeLegal(VT)) {
5291     // Limit this to simple scalars for now.
5292     if (VT.isVector() || !VT.isSimple())
5293       return SDValue();
5294 
5295     // If this type will be promoted to a large enough type with a legal
5296     // multiply operation, we can go ahead and do this transform.
5297     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5298       return SDValue();
5299 
5300     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5301     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5302         !isOperationLegal(ISD::MUL, MulVT))
5303       return SDValue();
5304   }
5305 
5306   bool UseNPQ = false;
5307   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5308 
5309   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5310     if (C->isZero())
5311       return false;
5312     // FIXME: We should use a narrower constant when the upper
5313     // bits are known to be zero.
5314     const APInt& Divisor = C->getAPIntValue();
5315     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5316     unsigned PreShift = 0, PostShift = 0;
5317 
5318     // If the divisor is even, we can avoid using the expensive fixup by
5319     // shifting the divided value upfront.
5320     if (magics.IsAdd != 0 && !Divisor[0]) {
5321       PreShift = Divisor.countTrailingZeros();
5322       // Get magic number for the shifted divisor.
5323       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5324       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5325     }
5326 
5327     APInt Magic = magics.Magic;
5328 
5329     unsigned SelNPQ;
5330     if (magics.IsAdd == 0 || Divisor.isOne()) {
5331       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5332              "We shouldn't generate an undefined shift!");
5333       PostShift = magics.ShiftAmount;
5334       SelNPQ = false;
5335     } else {
5336       PostShift = magics.ShiftAmount - 1;
5337       SelNPQ = true;
5338     }
5339 
5340     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5341     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5342     NPQFactors.push_back(
5343         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5344                                : APInt::getZero(EltBits),
5345                         dl, SVT));
5346     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5347     UseNPQ |= SelNPQ;
5348     return true;
5349   };
5350 
5351   SDValue N0 = N->getOperand(0);
5352   SDValue N1 = N->getOperand(1);
5353 
5354   // Collect the shifts/magic values from each element.
5355   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5356     return SDValue();
5357 
5358   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5359   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5360     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5361     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5362     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5363     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5364   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5365     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5366            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5367            "Expected matchUnaryPredicate to return one for scalable vectors");
5368     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5369     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5370     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5371     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5372   } else {
5373     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5374     PreShift = PreShifts[0];
5375     MagicFactor = MagicFactors[0];
5376     PostShift = PostShifts[0];
5377   }
5378 
5379   SDValue Q = N0;
5380   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5381   Created.push_back(Q.getNode());
5382 
5383   // FIXME: We should support doing a MUL in a wider type.
5384   auto GetMULHU = [&](SDValue X, SDValue Y) {
5385     // If the type isn't legal, use a wider mul of the the type calculated
5386     // earlier.
5387     if (!isTypeLegal(VT)) {
5388       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5389       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5390       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5391       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5392                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5393       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5394     }
5395 
5396     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5397       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5398     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5399       SDValue LoHi =
5400           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5401       return SDValue(LoHi.getNode(), 1);
5402     }
5403     return SDValue(); // No mulhu or equivalent
5404   };
5405 
5406   // Multiply the numerator (operand 0) by the magic value.
5407   Q = GetMULHU(Q, MagicFactor);
5408   if (!Q)
5409     return SDValue();
5410 
5411   Created.push_back(Q.getNode());
5412 
5413   if (UseNPQ) {
5414     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5415     Created.push_back(NPQ.getNode());
5416 
5417     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5418     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5419     if (VT.isVector())
5420       NPQ = GetMULHU(NPQ, NPQFactor);
5421     else
5422       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5423 
5424     Created.push_back(NPQ.getNode());
5425 
5426     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5427     Created.push_back(Q.getNode());
5428   }
5429 
5430   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5431   Created.push_back(Q.getNode());
5432 
5433   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5434 
5435   SDValue One = DAG.getConstant(1, dl, VT);
5436   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5437   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5438 }
5439 
5440 /// If all values in Values that *don't* match the predicate are same 'splat'
5441 /// value, then replace all values with that splat value.
5442 /// Else, if AlternativeReplacement was provided, then replace all values that
5443 /// do match predicate with AlternativeReplacement value.
5444 static void
5445 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5446                           std::function<bool(SDValue)> Predicate,
5447                           SDValue AlternativeReplacement = SDValue()) {
5448   SDValue Replacement;
5449   // Is there a value for which the Predicate does *NOT* match? What is it?
5450   auto SplatValue = llvm::find_if_not(Values, Predicate);
5451   if (SplatValue != Values.end()) {
5452     // Does Values consist only of SplatValue's and values matching Predicate?
5453     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5454           return Value == *SplatValue || Predicate(Value);
5455         })) // Then we shall replace values matching predicate with SplatValue.
5456       Replacement = *SplatValue;
5457   }
5458   if (!Replacement) {
5459     // Oops, we did not find the "baseline" splat value.
5460     if (!AlternativeReplacement)
5461       return; // Nothing to do.
5462     // Let's replace with provided value then.
5463     Replacement = AlternativeReplacement;
5464   }
5465   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5466 }
5467 
5468 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5469 /// where the divisor is constant and the comparison target is zero,
5470 /// return a DAG expression that will generate the same comparison result
5471 /// using only multiplications, additions and shifts/rotations.
5472 /// Ref: "Hacker's Delight" 10-17.
5473 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5474                                         SDValue CompTargetNode,
5475                                         ISD::CondCode Cond,
5476                                         DAGCombinerInfo &DCI,
5477                                         const SDLoc &DL) const {
5478   SmallVector<SDNode *, 5> Built;
5479   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5480                                          DCI, DL, Built)) {
5481     for (SDNode *N : Built)
5482       DCI.AddToWorklist(N);
5483     return Folded;
5484   }
5485 
5486   return SDValue();
5487 }
5488 
5489 SDValue
5490 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5491                                   SDValue CompTargetNode, ISD::CondCode Cond,
5492                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5493                                   SmallVectorImpl<SDNode *> &Created) const {
5494   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5495   // - D must be constant, with D = D0 * 2^K where D0 is odd
5496   // - P is the multiplicative inverse of D0 modulo 2^W
5497   // - Q = floor(((2^W) - 1) / D)
5498   // where W is the width of the common type of N and D.
5499   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5500          "Only applicable for (in)equality comparisons.");
5501 
5502   SelectionDAG &DAG = DCI.DAG;
5503 
5504   EVT VT = REMNode.getValueType();
5505   EVT SVT = VT.getScalarType();
5506   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5507   EVT ShSVT = ShVT.getScalarType();
5508 
5509   // If MUL is unavailable, we cannot proceed in any case.
5510   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5511     return SDValue();
5512 
5513   bool ComparingWithAllZeros = true;
5514   bool AllComparisonsWithNonZerosAreTautological = true;
5515   bool HadTautologicalLanes = false;
5516   bool AllLanesAreTautological = true;
5517   bool HadEvenDivisor = false;
5518   bool AllDivisorsArePowerOfTwo = true;
5519   bool HadTautologicalInvertedLanes = false;
5520   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5521 
5522   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5523     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5524     if (CDiv->isZero())
5525       return false;
5526 
5527     const APInt &D = CDiv->getAPIntValue();
5528     const APInt &Cmp = CCmp->getAPIntValue();
5529 
5530     ComparingWithAllZeros &= Cmp.isZero();
5531 
5532     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5533     // if C2 is not less than C1, the comparison is always false.
5534     // But we will only be able to produce the comparison that will give the
5535     // opposive tautological answer. So this lane would need to be fixed up.
5536     bool TautologicalInvertedLane = D.ule(Cmp);
5537     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5538 
5539     // If all lanes are tautological (either all divisors are ones, or divisor
5540     // is not greater than the constant we are comparing with),
5541     // we will prefer to avoid the fold.
5542     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5543     HadTautologicalLanes |= TautologicalLane;
5544     AllLanesAreTautological &= TautologicalLane;
5545 
5546     // If we are comparing with non-zero, we need'll need  to subtract said
5547     // comparison value from the LHS. But there is no point in doing that if
5548     // every lane where we are comparing with non-zero is tautological..
5549     if (!Cmp.isZero())
5550       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5551 
5552     // Decompose D into D0 * 2^K
5553     unsigned K = D.countTrailingZeros();
5554     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5555     APInt D0 = D.lshr(K);
5556 
5557     // D is even if it has trailing zeros.
5558     HadEvenDivisor |= (K != 0);
5559     // D is a power-of-two if D0 is one.
5560     // If all divisors are power-of-two, we will prefer to avoid the fold.
5561     AllDivisorsArePowerOfTwo &= D0.isOne();
5562 
5563     // P = inv(D0, 2^W)
5564     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5565     unsigned W = D.getBitWidth();
5566     APInt P = D0.zext(W + 1)
5567                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5568                   .trunc(W);
5569     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5570     assert((D0 * P).isOne() && "Multiplicative inverse sanity check.");
5571 
5572     // Q = floor((2^W - 1) u/ D)
5573     // R = ((2^W - 1) u% D)
5574     APInt Q, R;
5575     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5576 
5577     // If we are comparing with zero, then that comparison constant is okay,
5578     // else it may need to be one less than that.
5579     if (Cmp.ugt(R))
5580       Q -= 1;
5581 
5582     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5583            "We are expecting that K is always less than all-ones for ShSVT");
5584 
5585     // If the lane is tautological the result can be constant-folded.
5586     if (TautologicalLane) {
5587       // Set P and K amount to a bogus values so we can try to splat them.
5588       P = 0;
5589       K = -1;
5590       // And ensure that comparison constant is tautological,
5591       // it will always compare true/false.
5592       Q = -1;
5593     }
5594 
5595     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5596     KAmts.push_back(
5597         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5598     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5599     return true;
5600   };
5601 
5602   SDValue N = REMNode.getOperand(0);
5603   SDValue D = REMNode.getOperand(1);
5604 
5605   // Collect the values from each element.
5606   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5607     return SDValue();
5608 
5609   // If all lanes are tautological, the result can be constant-folded.
5610   if (AllLanesAreTautological)
5611     return SDValue();
5612 
5613   // If this is a urem by a powers-of-two, avoid the fold since it can be
5614   // best implemented as a bit test.
5615   if (AllDivisorsArePowerOfTwo)
5616     return SDValue();
5617 
5618   SDValue PVal, KVal, QVal;
5619   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5620     if (HadTautologicalLanes) {
5621       // Try to turn PAmts into a splat, since we don't care about the values
5622       // that are currently '0'. If we can't, just keep '0'`s.
5623       turnVectorIntoSplatVector(PAmts, isNullConstant);
5624       // Try to turn KAmts into a splat, since we don't care about the values
5625       // that are currently '-1'. If we can't, change them to '0'`s.
5626       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5627                                 DAG.getConstant(0, DL, ShSVT));
5628     }
5629 
5630     PVal = DAG.getBuildVector(VT, DL, PAmts);
5631     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5632     QVal = DAG.getBuildVector(VT, DL, QAmts);
5633   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5634     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5635            "Expected matchBinaryPredicate to return one element for "
5636            "SPLAT_VECTORs");
5637     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5638     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5639     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5640   } else {
5641     PVal = PAmts[0];
5642     KVal = KAmts[0];
5643     QVal = QAmts[0];
5644   }
5645 
5646   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5647     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5648       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5649     assert(CompTargetNode.getValueType() == N.getValueType() &&
5650            "Expecting that the types on LHS and RHS of comparisons match.");
5651     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5652   }
5653 
5654   // (mul N, P)
5655   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5656   Created.push_back(Op0.getNode());
5657 
5658   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5659   // divisors as a performance improvement, since rotating by 0 is a no-op.
5660   if (HadEvenDivisor) {
5661     // We need ROTR to do this.
5662     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5663       return SDValue();
5664     // UREM: (rotr (mul N, P), K)
5665     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5666     Created.push_back(Op0.getNode());
5667   }
5668 
5669   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5670   SDValue NewCC =
5671       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5672                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5673   if (!HadTautologicalInvertedLanes)
5674     return NewCC;
5675 
5676   // If any lanes previously compared always-false, the NewCC will give
5677   // always-true result for them, so we need to fixup those lanes.
5678   // Or the other way around for inequality predicate.
5679   assert(VT.isVector() && "Can/should only get here for vectors.");
5680   Created.push_back(NewCC.getNode());
5681 
5682   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5683   // if C2 is not less than C1, the comparison is always false.
5684   // But we have produced the comparison that will give the
5685   // opposive tautological answer. So these lanes would need to be fixed up.
5686   SDValue TautologicalInvertedChannels =
5687       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5688   Created.push_back(TautologicalInvertedChannels.getNode());
5689 
5690   // NOTE: we avoid letting illegal types through even if we're before legalize
5691   // ops – legalization has a hard time producing good code for this.
5692   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5693     // If we have a vector select, let's replace the comparison results in the
5694     // affected lanes with the correct tautological result.
5695     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5696                                               DL, SETCCVT, SETCCVT);
5697     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5698                        Replacement, NewCC);
5699   }
5700 
5701   // Else, we can just invert the comparison result in the appropriate lanes.
5702   //
5703   // NOTE: see the note above VSELECT above.
5704   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5705     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5706                        TautologicalInvertedChannels);
5707 
5708   return SDValue(); // Don't know how to lower.
5709 }
5710 
5711 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5712 /// where the divisor is constant and the comparison target is zero,
5713 /// return a DAG expression that will generate the same comparison result
5714 /// using only multiplications, additions and shifts/rotations.
5715 /// Ref: "Hacker's Delight" 10-17.
5716 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5717                                         SDValue CompTargetNode,
5718                                         ISD::CondCode Cond,
5719                                         DAGCombinerInfo &DCI,
5720                                         const SDLoc &DL) const {
5721   SmallVector<SDNode *, 7> Built;
5722   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5723                                          DCI, DL, Built)) {
5724     assert(Built.size() <= 7 && "Max size prediction failed.");
5725     for (SDNode *N : Built)
5726       DCI.AddToWorklist(N);
5727     return Folded;
5728   }
5729 
5730   return SDValue();
5731 }
5732 
5733 SDValue
5734 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5735                                   SDValue CompTargetNode, ISD::CondCode Cond,
5736                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5737                                   SmallVectorImpl<SDNode *> &Created) const {
5738   // Fold:
5739   //   (seteq/ne (srem N, D), 0)
5740   // To:
5741   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5742   //
5743   // - D must be constant, with D = D0 * 2^K where D0 is odd
5744   // - P is the multiplicative inverse of D0 modulo 2^W
5745   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5746   // - Q = floor((2 * A) / (2^K))
5747   // where W is the width of the common type of N and D.
5748   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5749          "Only applicable for (in)equality comparisons.");
5750 
5751   SelectionDAG &DAG = DCI.DAG;
5752 
5753   EVT VT = REMNode.getValueType();
5754   EVT SVT = VT.getScalarType();
5755   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5756   EVT ShSVT = ShVT.getScalarType();
5757 
5758   // If we are after ops legalization, and MUL is unavailable, we can not
5759   // proceed.
5760   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5761     return SDValue();
5762 
5763   // TODO: Could support comparing with non-zero too.
5764   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5765   if (!CompTarget || !CompTarget->isZero())
5766     return SDValue();
5767 
5768   bool HadIntMinDivisor = false;
5769   bool HadOneDivisor = false;
5770   bool AllDivisorsAreOnes = true;
5771   bool HadEvenDivisor = false;
5772   bool NeedToApplyOffset = false;
5773   bool AllDivisorsArePowerOfTwo = true;
5774   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5775 
5776   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5777     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5778     if (C->isZero())
5779       return false;
5780 
5781     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5782 
5783     // WARNING: this fold is only valid for positive divisors!
5784     APInt D = C->getAPIntValue();
5785     if (D.isNegative())
5786       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5787 
5788     HadIntMinDivisor |= D.isMinSignedValue();
5789 
5790     // If all divisors are ones, we will prefer to avoid the fold.
5791     HadOneDivisor |= D.isOne();
5792     AllDivisorsAreOnes &= D.isOne();
5793 
5794     // Decompose D into D0 * 2^K
5795     unsigned K = D.countTrailingZeros();
5796     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5797     APInt D0 = D.lshr(K);
5798 
5799     if (!D.isMinSignedValue()) {
5800       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5801       // we don't care about this lane in this fold, we'll special-handle it.
5802       HadEvenDivisor |= (K != 0);
5803     }
5804 
5805     // D is a power-of-two if D0 is one. This includes INT_MIN.
5806     // If all divisors are power-of-two, we will prefer to avoid the fold.
5807     AllDivisorsArePowerOfTwo &= D0.isOne();
5808 
5809     // P = inv(D0, 2^W)
5810     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5811     unsigned W = D.getBitWidth();
5812     APInt P = D0.zext(W + 1)
5813                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5814                   .trunc(W);
5815     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5816     assert((D0 * P).isOne() && "Multiplicative inverse sanity check.");
5817 
5818     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5819     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5820     A.clearLowBits(K);
5821 
5822     if (!D.isMinSignedValue()) {
5823       // If divisor INT_MIN, then we don't care about this lane in this fold,
5824       // we'll special-handle it.
5825       NeedToApplyOffset |= A != 0;
5826     }
5827 
5828     // Q = floor((2 * A) / (2^K))
5829     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5830 
5831     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5832            "We are expecting that A is always less than all-ones for SVT");
5833     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5834            "We are expecting that K is always less than all-ones for ShSVT");
5835 
5836     // If the divisor is 1 the result can be constant-folded. Likewise, we
5837     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5838     if (D.isOne()) {
5839       // Set P, A and K to a bogus values so we can try to splat them.
5840       P = 0;
5841       A = -1;
5842       K = -1;
5843 
5844       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5845       Q = -1;
5846     }
5847 
5848     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5849     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5850     KAmts.push_back(
5851         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5852     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5853     return true;
5854   };
5855 
5856   SDValue N = REMNode.getOperand(0);
5857   SDValue D = REMNode.getOperand(1);
5858 
5859   // Collect the values from each element.
5860   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5861     return SDValue();
5862 
5863   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5864   if (AllDivisorsAreOnes)
5865     return SDValue();
5866 
5867   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5868   // since it can be best implemented as a bit test.
5869   if (AllDivisorsArePowerOfTwo)
5870     return SDValue();
5871 
5872   SDValue PVal, AVal, KVal, QVal;
5873   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5874     if (HadOneDivisor) {
5875       // Try to turn PAmts into a splat, since we don't care about the values
5876       // that are currently '0'. If we can't, just keep '0'`s.
5877       turnVectorIntoSplatVector(PAmts, isNullConstant);
5878       // Try to turn AAmts into a splat, since we don't care about the
5879       // values that are currently '-1'. If we can't, change them to '0'`s.
5880       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5881                                 DAG.getConstant(0, DL, SVT));
5882       // Try to turn KAmts into a splat, since we don't care about the values
5883       // that are currently '-1'. If we can't, change them to '0'`s.
5884       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5885                                 DAG.getConstant(0, DL, ShSVT));
5886     }
5887 
5888     PVal = DAG.getBuildVector(VT, DL, PAmts);
5889     AVal = DAG.getBuildVector(VT, DL, AAmts);
5890     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5891     QVal = DAG.getBuildVector(VT, DL, QAmts);
5892   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5893     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5894            QAmts.size() == 1 &&
5895            "Expected matchUnaryPredicate to return one element for scalable "
5896            "vectors");
5897     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5898     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5899     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5900     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5901   } else {
5902     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5903     PVal = PAmts[0];
5904     AVal = AAmts[0];
5905     KVal = KAmts[0];
5906     QVal = QAmts[0];
5907   }
5908 
5909   // (mul N, P)
5910   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5911   Created.push_back(Op0.getNode());
5912 
5913   if (NeedToApplyOffset) {
5914     // We need ADD to do this.
5915     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5916       return SDValue();
5917 
5918     // (add (mul N, P), A)
5919     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5920     Created.push_back(Op0.getNode());
5921   }
5922 
5923   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5924   // divisors as a performance improvement, since rotating by 0 is a no-op.
5925   if (HadEvenDivisor) {
5926     // We need ROTR to do this.
5927     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5928       return SDValue();
5929     // SREM: (rotr (add (mul N, P), A), K)
5930     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5931     Created.push_back(Op0.getNode());
5932   }
5933 
5934   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5935   SDValue Fold =
5936       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5937                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5938 
5939   // If we didn't have lanes with INT_MIN divisor, then we're done.
5940   if (!HadIntMinDivisor)
5941     return Fold;
5942 
5943   // That fold is only valid for positive divisors. Which effectively means,
5944   // it is invalid for INT_MIN divisors. So if we have such a lane,
5945   // we must fix-up results for said lanes.
5946   assert(VT.isVector() && "Can/should only get here for vectors.");
5947 
5948   // NOTE: we avoid letting illegal types through even if we're before legalize
5949   // ops – legalization has a hard time producing good code for the code that
5950   // follows.
5951   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5952       !isOperationLegalOrCustom(ISD::AND, VT) ||
5953       !isOperationLegalOrCustom(Cond, VT) ||
5954       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
5955     return SDValue();
5956 
5957   Created.push_back(Fold.getNode());
5958 
5959   SDValue IntMin = DAG.getConstant(
5960       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5961   SDValue IntMax = DAG.getConstant(
5962       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5963   SDValue Zero =
5964       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
5965 
5966   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5967   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5968   Created.push_back(DivisorIsIntMin.getNode());
5969 
5970   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5971   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5972   Created.push_back(Masked.getNode());
5973   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5974   Created.push_back(MaskedIsZero.getNode());
5975 
5976   // To produce final result we need to blend 2 vectors: 'SetCC' and
5977   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5978   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5979   // constant-folded, select can get lowered to a shuffle with constant mask.
5980   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
5981                                 MaskedIsZero, Fold);
5982 
5983   return Blended;
5984 }
5985 
5986 bool TargetLowering::
5987 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5988   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5989     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5990                                 "be a constant integer");
5991     return true;
5992   }
5993 
5994   return false;
5995 }
5996 
5997 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5998                                          const DenormalMode &Mode) const {
5999   SDLoc DL(Op);
6000   EVT VT = Op.getValueType();
6001   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6002   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6003   // Testing it with denormal inputs to avoid wrong estimate.
6004   if (Mode.Input == DenormalMode::IEEE) {
6005     // This is specifically a check for the handling of denormal inputs,
6006     // not the result.
6007 
6008     // Test = fabs(X) < SmallestNormal
6009     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6010     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6011     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6012     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6013     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6014   }
6015   // Test = X == 0.0
6016   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6017 }
6018 
6019 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6020                                              bool LegalOps, bool OptForSize,
6021                                              NegatibleCost &Cost,
6022                                              unsigned Depth) const {
6023   // fneg is removable even if it has multiple uses.
6024   if (Op.getOpcode() == ISD::FNEG) {
6025     Cost = NegatibleCost::Cheaper;
6026     return Op.getOperand(0);
6027   }
6028 
6029   // Don't recurse exponentially.
6030   if (Depth > SelectionDAG::MaxRecursionDepth)
6031     return SDValue();
6032 
6033   // Pre-increment recursion depth for use in recursive calls.
6034   ++Depth;
6035   const SDNodeFlags Flags = Op->getFlags();
6036   const TargetOptions &Options = DAG.getTarget().Options;
6037   EVT VT = Op.getValueType();
6038   unsigned Opcode = Op.getOpcode();
6039 
6040   // Don't allow anything with multiple uses unless we know it is free.
6041   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6042     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6043                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6044     if (!IsFreeExtend)
6045       return SDValue();
6046   }
6047 
6048   auto RemoveDeadNode = [&](SDValue N) {
6049     if (N && N.getNode()->use_empty())
6050       DAG.RemoveDeadNode(N.getNode());
6051   };
6052 
6053   SDLoc DL(Op);
6054 
6055   // Because getNegatedExpression can delete nodes we need a handle to keep
6056   // temporary nodes alive in case the recursion manages to create an identical
6057   // node.
6058   std::list<HandleSDNode> Handles;
6059 
6060   switch (Opcode) {
6061   case ISD::ConstantFP: {
6062     // Don't invert constant FP values after legalization unless the target says
6063     // the negated constant is legal.
6064     bool IsOpLegal =
6065         isOperationLegal(ISD::ConstantFP, VT) ||
6066         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6067                      OptForSize);
6068 
6069     if (LegalOps && !IsOpLegal)
6070       break;
6071 
6072     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6073     V.changeSign();
6074     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6075 
6076     // If we already have the use of the negated floating constant, it is free
6077     // to negate it even it has multiple uses.
6078     if (!Op.hasOneUse() && CFP.use_empty())
6079       break;
6080     Cost = NegatibleCost::Neutral;
6081     return CFP;
6082   }
6083   case ISD::BUILD_VECTOR: {
6084     // Only permit BUILD_VECTOR of constants.
6085     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6086           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6087         }))
6088       break;
6089 
6090     bool IsOpLegal =
6091         (isOperationLegal(ISD::ConstantFP, VT) &&
6092          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6093         llvm::all_of(Op->op_values(), [&](SDValue N) {
6094           return N.isUndef() ||
6095                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6096                               OptForSize);
6097         });
6098 
6099     if (LegalOps && !IsOpLegal)
6100       break;
6101 
6102     SmallVector<SDValue, 4> Ops;
6103     for (SDValue C : Op->op_values()) {
6104       if (C.isUndef()) {
6105         Ops.push_back(C);
6106         continue;
6107       }
6108       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6109       V.changeSign();
6110       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6111     }
6112     Cost = NegatibleCost::Neutral;
6113     return DAG.getBuildVector(VT, DL, Ops);
6114   }
6115   case ISD::FADD: {
6116     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6117       break;
6118 
6119     // After operation legalization, it might not be legal to create new FSUBs.
6120     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6121       break;
6122     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6123 
6124     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6125     NegatibleCost CostX = NegatibleCost::Expensive;
6126     SDValue NegX =
6127         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6128     // Prevent this node from being deleted by the next call.
6129     if (NegX)
6130       Handles.emplace_back(NegX);
6131 
6132     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6133     NegatibleCost CostY = NegatibleCost::Expensive;
6134     SDValue NegY =
6135         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6136 
6137     // We're done with the handles.
6138     Handles.clear();
6139 
6140     // Negate the X if its cost is less or equal than Y.
6141     if (NegX && (CostX <= CostY)) {
6142       Cost = CostX;
6143       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6144       if (NegY != N)
6145         RemoveDeadNode(NegY);
6146       return N;
6147     }
6148 
6149     // Negate the Y if it is not expensive.
6150     if (NegY) {
6151       Cost = CostY;
6152       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6153       if (NegX != N)
6154         RemoveDeadNode(NegX);
6155       return N;
6156     }
6157     break;
6158   }
6159   case ISD::FSUB: {
6160     // We can't turn -(A-B) into B-A when we honor signed zeros.
6161     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6162       break;
6163 
6164     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6165     // fold (fneg (fsub 0, Y)) -> Y
6166     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6167       if (C->isZero()) {
6168         Cost = NegatibleCost::Cheaper;
6169         return Y;
6170       }
6171 
6172     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6173     Cost = NegatibleCost::Neutral;
6174     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6175   }
6176   case ISD::FMUL:
6177   case ISD::FDIV: {
6178     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6179 
6180     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6181     NegatibleCost CostX = NegatibleCost::Expensive;
6182     SDValue NegX =
6183         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6184     // Prevent this node from being deleted by the next call.
6185     if (NegX)
6186       Handles.emplace_back(NegX);
6187 
6188     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6189     NegatibleCost CostY = NegatibleCost::Expensive;
6190     SDValue NegY =
6191         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6192 
6193     // We're done with the handles.
6194     Handles.clear();
6195 
6196     // Negate the X if its cost is less or equal than Y.
6197     if (NegX && (CostX <= CostY)) {
6198       Cost = CostX;
6199       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6200       if (NegY != N)
6201         RemoveDeadNode(NegY);
6202       return N;
6203     }
6204 
6205     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6206     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6207       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6208         break;
6209 
6210     // Negate the Y if it is not expensive.
6211     if (NegY) {
6212       Cost = CostY;
6213       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6214       if (NegX != N)
6215         RemoveDeadNode(NegX);
6216       return N;
6217     }
6218     break;
6219   }
6220   case ISD::FMA:
6221   case ISD::FMAD: {
6222     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6223       break;
6224 
6225     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6226     NegatibleCost CostZ = NegatibleCost::Expensive;
6227     SDValue NegZ =
6228         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6229     // Give up if fail to negate the Z.
6230     if (!NegZ)
6231       break;
6232 
6233     // Prevent this node from being deleted by the next two calls.
6234     Handles.emplace_back(NegZ);
6235 
6236     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6237     NegatibleCost CostX = NegatibleCost::Expensive;
6238     SDValue NegX =
6239         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6240     // Prevent this node from being deleted by the next call.
6241     if (NegX)
6242       Handles.emplace_back(NegX);
6243 
6244     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6245     NegatibleCost CostY = NegatibleCost::Expensive;
6246     SDValue NegY =
6247         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6248 
6249     // We're done with the handles.
6250     Handles.clear();
6251 
6252     // Negate the X if its cost is less or equal than Y.
6253     if (NegX && (CostX <= CostY)) {
6254       Cost = std::min(CostX, CostZ);
6255       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6256       if (NegY != N)
6257         RemoveDeadNode(NegY);
6258       return N;
6259     }
6260 
6261     // Negate the Y if it is not expensive.
6262     if (NegY) {
6263       Cost = std::min(CostY, CostZ);
6264       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6265       if (NegX != N)
6266         RemoveDeadNode(NegX);
6267       return N;
6268     }
6269     break;
6270   }
6271 
6272   case ISD::FP_EXTEND:
6273   case ISD::FSIN:
6274     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6275                                             OptForSize, Cost, Depth))
6276       return DAG.getNode(Opcode, DL, VT, NegV);
6277     break;
6278   case ISD::FP_ROUND:
6279     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6280                                             OptForSize, Cost, Depth))
6281       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6282     break;
6283   }
6284 
6285   return SDValue();
6286 }
6287 
6288 //===----------------------------------------------------------------------===//
6289 // Legalization Utilities
6290 //===----------------------------------------------------------------------===//
6291 
6292 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6293                                     SDValue LHS, SDValue RHS,
6294                                     SmallVectorImpl<SDValue> &Result,
6295                                     EVT HiLoVT, SelectionDAG &DAG,
6296                                     MulExpansionKind Kind, SDValue LL,
6297                                     SDValue LH, SDValue RL, SDValue RH) const {
6298   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6299          Opcode == ISD::SMUL_LOHI);
6300 
6301   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6302                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6303   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6304                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6305   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6306                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6307   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6308                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6309 
6310   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6311     return false;
6312 
6313   unsigned OuterBitSize = VT.getScalarSizeInBits();
6314   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6315 
6316   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6317   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6318          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6319 
6320   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6321   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6322                           bool Signed) -> bool {
6323     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6324       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6325       Hi = SDValue(Lo.getNode(), 1);
6326       return true;
6327     }
6328     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6329       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6330       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6331       return true;
6332     }
6333     return false;
6334   };
6335 
6336   SDValue Lo, Hi;
6337 
6338   if (!LL.getNode() && !RL.getNode() &&
6339       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6340     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6341     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6342   }
6343 
6344   if (!LL.getNode())
6345     return false;
6346 
6347   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6348   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6349       DAG.MaskedValueIsZero(RHS, HighMask)) {
6350     // The inputs are both zero-extended.
6351     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6352       Result.push_back(Lo);
6353       Result.push_back(Hi);
6354       if (Opcode != ISD::MUL) {
6355         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6356         Result.push_back(Zero);
6357         Result.push_back(Zero);
6358       }
6359       return true;
6360     }
6361   }
6362 
6363   if (!VT.isVector() && Opcode == ISD::MUL &&
6364       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6365       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6366     // The input values are both sign-extended.
6367     // TODO non-MUL case?
6368     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6369       Result.push_back(Lo);
6370       Result.push_back(Hi);
6371       return true;
6372     }
6373   }
6374 
6375   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6376   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6377   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6378     // FIXME getShiftAmountTy does not always return a sensible result when VT
6379     // is an illegal type, and so the type may be too small to fit the shift
6380     // amount. Override it with i32. The shift will have to be legalized.
6381     ShiftAmountTy = MVT::i32;
6382   }
6383   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6384 
6385   if (!LH.getNode() && !RH.getNode() &&
6386       isOperationLegalOrCustom(ISD::SRL, VT) &&
6387       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6388     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6389     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6390     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6391     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6392   }
6393 
6394   if (!LH.getNode())
6395     return false;
6396 
6397   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6398     return false;
6399 
6400   Result.push_back(Lo);
6401 
6402   if (Opcode == ISD::MUL) {
6403     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6404     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6405     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6406     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6407     Result.push_back(Hi);
6408     return true;
6409   }
6410 
6411   // Compute the full width result.
6412   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6413     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6414     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6415     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6416     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6417   };
6418 
6419   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6420   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6421     return false;
6422 
6423   // This is effectively the add part of a multiply-add of half-sized operands,
6424   // so it cannot overflow.
6425   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6426 
6427   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6428     return false;
6429 
6430   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6431   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6432 
6433   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6434                   isOperationLegalOrCustom(ISD::ADDE, VT));
6435   if (UseGlue)
6436     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6437                        Merge(Lo, Hi));
6438   else
6439     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6440                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6441 
6442   SDValue Carry = Next.getValue(1);
6443   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6444   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6445 
6446   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6447     return false;
6448 
6449   if (UseGlue)
6450     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6451                      Carry);
6452   else
6453     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6454                      Zero, Carry);
6455 
6456   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6457 
6458   if (Opcode == ISD::SMUL_LOHI) {
6459     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6460                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6461     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6462 
6463     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6464                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6465     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6466   }
6467 
6468   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6469   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6470   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6471   return true;
6472 }
6473 
6474 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6475                                SelectionDAG &DAG, MulExpansionKind Kind,
6476                                SDValue LL, SDValue LH, SDValue RL,
6477                                SDValue RH) const {
6478   SmallVector<SDValue, 2> Result;
6479   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6480                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6481                            DAG, Kind, LL, LH, RL, RH);
6482   if (Ok) {
6483     assert(Result.size() == 2);
6484     Lo = Result[0];
6485     Hi = Result[1];
6486   }
6487   return Ok;
6488 }
6489 
6490 // Check that (every element of) Z is undef or not an exact multiple of BW.
6491 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6492   return ISD::matchUnaryPredicate(
6493       Z,
6494       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6495       true);
6496 }
6497 
6498 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6499                                        SelectionDAG &DAG) const {
6500   EVT VT = Node->getValueType(0);
6501 
6502   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6503                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6504                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6505                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6506     return false;
6507 
6508   SDValue X = Node->getOperand(0);
6509   SDValue Y = Node->getOperand(1);
6510   SDValue Z = Node->getOperand(2);
6511 
6512   unsigned BW = VT.getScalarSizeInBits();
6513   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6514   SDLoc DL(SDValue(Node, 0));
6515 
6516   EVT ShVT = Z.getValueType();
6517 
6518   // If a funnel shift in the other direction is more supported, use it.
6519   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6520   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6521       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6522     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6523       // fshl X, Y, Z -> fshr X, Y, -Z
6524       // fshr X, Y, Z -> fshl X, Y, -Z
6525       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6526       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6527     } else {
6528       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6529       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6530       SDValue One = DAG.getConstant(1, DL, ShVT);
6531       if (IsFSHL) {
6532         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6533         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6534       } else {
6535         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6536         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6537       }
6538       Z = DAG.getNOT(DL, Z, ShVT);
6539     }
6540     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6541     return true;
6542   }
6543 
6544   SDValue ShX, ShY;
6545   SDValue ShAmt, InvShAmt;
6546   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6547     // fshl: X << C | Y >> (BW - C)
6548     // fshr: X << (BW - C) | Y >> C
6549     // where C = Z % BW is not zero
6550     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6551     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6552     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6553     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6554     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6555   } else {
6556     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6557     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6558     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6559     if (isPowerOf2_32(BW)) {
6560       // Z % BW -> Z & (BW - 1)
6561       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6562       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6563       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6564     } else {
6565       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6566       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6567       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6568     }
6569 
6570     SDValue One = DAG.getConstant(1, DL, ShVT);
6571     if (IsFSHL) {
6572       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6573       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6574       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6575     } else {
6576       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6577       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6578       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6579     }
6580   }
6581   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6582   return true;
6583 }
6584 
6585 // TODO: Merge with expandFunnelShift.
6586 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6587                                SDValue &Result, SelectionDAG &DAG) const {
6588   EVT VT = Node->getValueType(0);
6589   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6590   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6591   SDValue Op0 = Node->getOperand(0);
6592   SDValue Op1 = Node->getOperand(1);
6593   SDLoc DL(SDValue(Node, 0));
6594 
6595   EVT ShVT = Op1.getValueType();
6596   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6597 
6598   // If a rotate in the other direction is supported, use it.
6599   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6600   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6601     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6602     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6603     return true;
6604   }
6605 
6606   if (!AllowVectorOps && VT.isVector() &&
6607       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6608        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6609        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6610        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6611        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6612     return false;
6613 
6614   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6615   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6616   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6617   SDValue ShVal;
6618   SDValue HsVal;
6619   if (isPowerOf2_32(EltSizeInBits)) {
6620     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6621     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6622     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6623     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6624     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6625     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6626     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6627   } else {
6628     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6629     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6630     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6631     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6632     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6633     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6634     SDValue One = DAG.getConstant(1, DL, ShVT);
6635     HsVal =
6636         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6637   }
6638   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6639   return true;
6640 }
6641 
6642 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6643                                       SelectionDAG &DAG) const {
6644   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6645   EVT VT = Node->getValueType(0);
6646   unsigned VTBits = VT.getScalarSizeInBits();
6647   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6648 
6649   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6650   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6651   SDValue ShOpLo = Node->getOperand(0);
6652   SDValue ShOpHi = Node->getOperand(1);
6653   SDValue ShAmt = Node->getOperand(2);
6654   EVT ShAmtVT = ShAmt.getValueType();
6655   EVT ShAmtCCVT =
6656       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6657   SDLoc dl(Node);
6658 
6659   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6660   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6661   // away during isel.
6662   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6663                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6664   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6665                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6666                        : DAG.getConstant(0, dl, VT);
6667 
6668   SDValue Tmp2, Tmp3;
6669   if (IsSHL) {
6670     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6671     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6672   } else {
6673     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6674     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6675   }
6676 
6677   // If the shift amount is larger or equal than the width of a part we don't
6678   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6679   // values for large shift amounts.
6680   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6681                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6682   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6683                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6684 
6685   if (IsSHL) {
6686     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6687     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6688   } else {
6689     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6690     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6691   }
6692 }
6693 
6694 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6695                                       SelectionDAG &DAG) const {
6696   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6697   SDValue Src = Node->getOperand(OpNo);
6698   EVT SrcVT = Src.getValueType();
6699   EVT DstVT = Node->getValueType(0);
6700   SDLoc dl(SDValue(Node, 0));
6701 
6702   // FIXME: Only f32 to i64 conversions are supported.
6703   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6704     return false;
6705 
6706   if (Node->isStrictFPOpcode())
6707     // When a NaN is converted to an integer a trap is allowed. We can't
6708     // use this expansion here because it would eliminate that trap. Other
6709     // traps are also allowed and cannot be eliminated. See
6710     // IEEE 754-2008 sec 5.8.
6711     return false;
6712 
6713   // Expand f32 -> i64 conversion
6714   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6715   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6716   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6717   EVT IntVT = SrcVT.changeTypeToInteger();
6718   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6719 
6720   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6721   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6722   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6723   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6724   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6725   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6726 
6727   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6728 
6729   SDValue ExponentBits = DAG.getNode(
6730       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6731       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6732   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6733 
6734   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6735                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6736                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6737   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6738 
6739   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6740                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6741                           DAG.getConstant(0x00800000, dl, IntVT));
6742 
6743   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6744 
6745   R = DAG.getSelectCC(
6746       dl, Exponent, ExponentLoBit,
6747       DAG.getNode(ISD::SHL, dl, DstVT, R,
6748                   DAG.getZExtOrTrunc(
6749                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6750                       dl, IntShVT)),
6751       DAG.getNode(ISD::SRL, dl, DstVT, R,
6752                   DAG.getZExtOrTrunc(
6753                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6754                       dl, IntShVT)),
6755       ISD::SETGT);
6756 
6757   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6758                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6759 
6760   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6761                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6762   return true;
6763 }
6764 
6765 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6766                                       SDValue &Chain,
6767                                       SelectionDAG &DAG) const {
6768   SDLoc dl(SDValue(Node, 0));
6769   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6770   SDValue Src = Node->getOperand(OpNo);
6771 
6772   EVT SrcVT = Src.getValueType();
6773   EVT DstVT = Node->getValueType(0);
6774   EVT SetCCVT =
6775       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6776   EVT DstSetCCVT =
6777       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6778 
6779   // Only expand vector types if we have the appropriate vector bit operations.
6780   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6781                                                    ISD::FP_TO_SINT;
6782   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6783                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6784     return false;
6785 
6786   // If the maximum float value is smaller then the signed integer range,
6787   // the destination signmask can't be represented by the float, so we can
6788   // just use FP_TO_SINT directly.
6789   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6790   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6791   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6792   if (APFloat::opOverflow &
6793       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6794     if (Node->isStrictFPOpcode()) {
6795       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6796                            { Node->getOperand(0), Src });
6797       Chain = Result.getValue(1);
6798     } else
6799       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6800     return true;
6801   }
6802 
6803   // Don't expand it if there isn't cheap fsub instruction.
6804   if (!isOperationLegalOrCustom(
6805           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6806     return false;
6807 
6808   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6809   SDValue Sel;
6810 
6811   if (Node->isStrictFPOpcode()) {
6812     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6813                        Node->getOperand(0), /*IsSignaling*/ true);
6814     Chain = Sel.getValue(1);
6815   } else {
6816     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6817   }
6818 
6819   bool Strict = Node->isStrictFPOpcode() ||
6820                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6821 
6822   if (Strict) {
6823     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6824     // signmask then offset (the result of which should be fully representable).
6825     // Sel = Src < 0x8000000000000000
6826     // FltOfs = select Sel, 0, 0x8000000000000000
6827     // IntOfs = select Sel, 0, 0x8000000000000000
6828     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6829 
6830     // TODO: Should any fast-math-flags be set for the FSUB?
6831     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6832                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6833     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6834     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6835                                    DAG.getConstant(0, dl, DstVT),
6836                                    DAG.getConstant(SignMask, dl, DstVT));
6837     SDValue SInt;
6838     if (Node->isStrictFPOpcode()) {
6839       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6840                                 { Chain, Src, FltOfs });
6841       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6842                          { Val.getValue(1), Val });
6843       Chain = SInt.getValue(1);
6844     } else {
6845       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6846       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6847     }
6848     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6849   } else {
6850     // Expand based on maximum range of FP_TO_SINT:
6851     // True = fp_to_sint(Src)
6852     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6853     // Result = select (Src < 0x8000000000000000), True, False
6854 
6855     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6856     // TODO: Should any fast-math-flags be set for the FSUB?
6857     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6858                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6859     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6860                         DAG.getConstant(SignMask, dl, DstVT));
6861     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6862     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6863   }
6864   return true;
6865 }
6866 
6867 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6868                                       SDValue &Chain,
6869                                       SelectionDAG &DAG) const {
6870   // This transform is not correct for converting 0 when rounding mode is set
6871   // to round toward negative infinity which will produce -0.0. So disable under
6872   // strictfp.
6873   if (Node->isStrictFPOpcode())
6874     return false;
6875 
6876   SDValue Src = Node->getOperand(0);
6877   EVT SrcVT = Src.getValueType();
6878   EVT DstVT = Node->getValueType(0);
6879 
6880   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6881     return false;
6882 
6883   // Only expand vector types if we have the appropriate vector bit operations.
6884   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6885                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6886                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6887                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6888                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6889     return false;
6890 
6891   SDLoc dl(SDValue(Node, 0));
6892   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6893 
6894   // Implementation of unsigned i64 to f64 following the algorithm in
6895   // __floatundidf in compiler_rt.  This implementation performs rounding
6896   // correctly in all rounding modes with the exception of converting 0
6897   // when rounding toward negative infinity. In that case the fsub will produce
6898   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6899   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6900   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6901       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6902   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6903   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6904   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6905 
6906   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6907   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6908   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6909   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6910   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6911   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6912   SDValue HiSub =
6913       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6914   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6915   return true;
6916 }
6917 
6918 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6919                                               SelectionDAG &DAG) const {
6920   SDLoc dl(Node);
6921   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6922     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6923   EVT VT = Node->getValueType(0);
6924 
6925   if (VT.isScalableVector())
6926     report_fatal_error(
6927         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6928 
6929   if (isOperationLegalOrCustom(NewOp, VT)) {
6930     SDValue Quiet0 = Node->getOperand(0);
6931     SDValue Quiet1 = Node->getOperand(1);
6932 
6933     if (!Node->getFlags().hasNoNaNs()) {
6934       // Insert canonicalizes if it's possible we need to quiet to get correct
6935       // sNaN behavior.
6936       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6937         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6938                              Node->getFlags());
6939       }
6940       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6941         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6942                              Node->getFlags());
6943       }
6944     }
6945 
6946     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6947   }
6948 
6949   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6950   // instead if there are no NaNs.
6951   if (Node->getFlags().hasNoNaNs()) {
6952     unsigned IEEE2018Op =
6953         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6954     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6955       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6956                          Node->getOperand(1), Node->getFlags());
6957     }
6958   }
6959 
6960   // If none of the above worked, but there are no NaNs, then expand to
6961   // a compare/select sequence.  This is required for correctness since
6962   // InstCombine might have canonicalized a fcmp+select sequence to a
6963   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6964   // expansion to libcall, we might introduce a link-time dependency
6965   // on libm into a file that originally did not have one.
6966   if (Node->getFlags().hasNoNaNs()) {
6967     ISD::CondCode Pred =
6968         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6969     SDValue Op1 = Node->getOperand(0);
6970     SDValue Op2 = Node->getOperand(1);
6971     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6972     // Copy FMF flags, but always set the no-signed-zeros flag
6973     // as this is implied by the FMINNUM/FMAXNUM semantics.
6974     SDNodeFlags Flags = Node->getFlags();
6975     Flags.setNoSignedZeros(true);
6976     SelCC->setFlags(Flags);
6977     return SelCC;
6978   }
6979 
6980   return SDValue();
6981 }
6982 
6983 // Only expand vector types if we have the appropriate vector bit operations.
6984 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
6985   assert(VT.isVector() && "Expected vector type");
6986   unsigned Len = VT.getScalarSizeInBits();
6987   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
6988          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
6989          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
6990          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
6991          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
6992 }
6993 
6994 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
6995   SDLoc dl(Node);
6996   EVT VT = Node->getValueType(0);
6997   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6998   SDValue Op = Node->getOperand(0);
6999   unsigned Len = VT.getScalarSizeInBits();
7000   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7001 
7002   // TODO: Add support for irregular type lengths.
7003   if (!(Len <= 128 && Len % 8 == 0))
7004     return SDValue();
7005 
7006   // Only expand vector types if we have the appropriate vector bit operations.
7007   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7008     return SDValue();
7009 
7010   // This is the "best" algorithm from
7011   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7012   SDValue Mask55 =
7013       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7014   SDValue Mask33 =
7015       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7016   SDValue Mask0F =
7017       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7018   SDValue Mask01 =
7019       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7020 
7021   // v = v - ((v >> 1) & 0x55555555...)
7022   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7023                    DAG.getNode(ISD::AND, dl, VT,
7024                                DAG.getNode(ISD::SRL, dl, VT, Op,
7025                                            DAG.getConstant(1, dl, ShVT)),
7026                                Mask55));
7027   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7028   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7029                    DAG.getNode(ISD::AND, dl, VT,
7030                                DAG.getNode(ISD::SRL, dl, VT, Op,
7031                                            DAG.getConstant(2, dl, ShVT)),
7032                                Mask33));
7033   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7034   Op = DAG.getNode(ISD::AND, dl, VT,
7035                    DAG.getNode(ISD::ADD, dl, VT, Op,
7036                                DAG.getNode(ISD::SRL, dl, VT, Op,
7037                                            DAG.getConstant(4, dl, ShVT))),
7038                    Mask0F);
7039   // v = (v * 0x01010101...) >> (Len - 8)
7040   if (Len > 8)
7041     Op =
7042         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7043                     DAG.getConstant(Len - 8, dl, ShVT));
7044 
7045   return Op;
7046 }
7047 
7048 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7049   SDLoc dl(Node);
7050   EVT VT = Node->getValueType(0);
7051   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7052   SDValue Op = Node->getOperand(0);
7053   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7054 
7055   // If the non-ZERO_UNDEF version is supported we can use that instead.
7056   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7057       isOperationLegalOrCustom(ISD::CTLZ, VT))
7058     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7059 
7060   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7061   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7062     EVT SetCCVT =
7063         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7064     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7065     SDValue Zero = DAG.getConstant(0, dl, VT);
7066     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7067     return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7068                        DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7069   }
7070 
7071   // Only expand vector types if we have the appropriate vector bit operations.
7072   // This includes the operations needed to expand CTPOP if it isn't supported.
7073   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7074                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7075                          !canExpandVectorCTPOP(*this, VT)) ||
7076                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7077                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7078     return SDValue();
7079 
7080   // for now, we do this:
7081   // x = x | (x >> 1);
7082   // x = x | (x >> 2);
7083   // ...
7084   // x = x | (x >>16);
7085   // x = x | (x >>32); // for 64-bit input
7086   // return popcount(~x);
7087   //
7088   // Ref: "Hacker's Delight" by Henry Warren
7089   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7090     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7091     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7092                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7093   }
7094   Op = DAG.getNOT(dl, Op, VT);
7095   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7096 }
7097 
7098 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7099   SDLoc dl(Node);
7100   EVT VT = Node->getValueType(0);
7101   SDValue Op = Node->getOperand(0);
7102   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7103 
7104   // If the non-ZERO_UNDEF version is supported we can use that instead.
7105   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7106       isOperationLegalOrCustom(ISD::CTTZ, VT))
7107     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7108 
7109   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7110   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7111     EVT SetCCVT =
7112         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7113     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7114     SDValue Zero = DAG.getConstant(0, dl, VT);
7115     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7116     return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7117                        DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7118   }
7119 
7120   // Only expand vector types if we have the appropriate vector bit operations.
7121   // This includes the operations needed to expand CTPOP if it isn't supported.
7122   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7123                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7124                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7125                          !canExpandVectorCTPOP(*this, VT)) ||
7126                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7127                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7128                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7129     return SDValue();
7130 
7131   // for now, we use: { return popcount(~x & (x - 1)); }
7132   // unless the target has ctlz but not ctpop, in which case we use:
7133   // { return 32 - nlz(~x & (x-1)); }
7134   // Ref: "Hacker's Delight" by Henry Warren
7135   SDValue Tmp = DAG.getNode(
7136       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7137       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7138 
7139   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7140   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7141     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7142                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7143   }
7144 
7145   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7146 }
7147 
7148 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7149                                   bool IsNegative) const {
7150   SDLoc dl(N);
7151   EVT VT = N->getValueType(0);
7152   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7153   SDValue Op = N->getOperand(0);
7154 
7155   // abs(x) -> smax(x,sub(0,x))
7156   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7157       isOperationLegal(ISD::SMAX, VT)) {
7158     SDValue Zero = DAG.getConstant(0, dl, VT);
7159     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7160                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7161   }
7162 
7163   // abs(x) -> umin(x,sub(0,x))
7164   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7165       isOperationLegal(ISD::UMIN, VT)) {
7166     SDValue Zero = DAG.getConstant(0, dl, VT);
7167     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7168                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7169   }
7170 
7171   // 0 - abs(x) -> smin(x, sub(0,x))
7172   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7173       isOperationLegal(ISD::SMIN, VT)) {
7174     SDValue Zero = DAG.getConstant(0, dl, VT);
7175     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7176                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7177   }
7178 
7179   // Only expand vector types if we have the appropriate vector operations.
7180   if (VT.isVector() &&
7181       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7182        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7183        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7184        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7185     return SDValue();
7186 
7187   SDValue Shift =
7188       DAG.getNode(ISD::SRA, dl, VT, Op,
7189                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7190   if (!IsNegative) {
7191     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7192     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7193   }
7194 
7195   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7196   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7197   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7198 }
7199 
7200 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7201   SDLoc dl(N);
7202   EVT VT = N->getValueType(0);
7203   SDValue Op = N->getOperand(0);
7204 
7205   if (!VT.isSimple())
7206     return SDValue();
7207 
7208   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7209   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7210   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7211   default:
7212     return SDValue();
7213   case MVT::i16:
7214     // Use a rotate by 8. This can be further expanded if necessary.
7215     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7216   case MVT::i32:
7217     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7218     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7219     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7220     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7221     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7222                        DAG.getConstant(0xFF0000, dl, VT));
7223     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7224     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7225     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7226     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7227   case MVT::i64:
7228     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7229     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7230     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7231     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7232     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7233     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7234     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7235     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7236     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7237                        DAG.getConstant(255ULL<<48, dl, VT));
7238     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7239                        DAG.getConstant(255ULL<<40, dl, VT));
7240     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7241                        DAG.getConstant(255ULL<<32, dl, VT));
7242     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7243                        DAG.getConstant(255ULL<<24, dl, VT));
7244     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7245                        DAG.getConstant(255ULL<<16, dl, VT));
7246     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7247                        DAG.getConstant(255ULL<<8 , dl, VT));
7248     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7249     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7250     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7251     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7252     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7253     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7254     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7255   }
7256 }
7257 
7258 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7259   SDLoc dl(N);
7260   EVT VT = N->getValueType(0);
7261   SDValue Op = N->getOperand(0);
7262   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7263   unsigned Sz = VT.getScalarSizeInBits();
7264 
7265   SDValue Tmp, Tmp2, Tmp3;
7266 
7267   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7268   // and finally the i1 pairs.
7269   // TODO: We can easily support i4/i2 legal types if any target ever does.
7270   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7271     // Create the masks - repeating the pattern every byte.
7272     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7273     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7274     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7275 
7276     // BSWAP if the type is wider than a single byte.
7277     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7278 
7279     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7280     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7281     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7282     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7283     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7284     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7285 
7286     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7287     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7288     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7289     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7290     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7291     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7292 
7293     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7294     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7295     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7296     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7297     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7298     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7299     return Tmp;
7300   }
7301 
7302   Tmp = DAG.getConstant(0, dl, VT);
7303   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7304     if (I < J)
7305       Tmp2 =
7306           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7307     else
7308       Tmp2 =
7309           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7310 
7311     APInt Shift(Sz, 1);
7312     Shift <<= J;
7313     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7314     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7315   }
7316 
7317   return Tmp;
7318 }
7319 
7320 std::pair<SDValue, SDValue>
7321 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7322                                     SelectionDAG &DAG) const {
7323   SDLoc SL(LD);
7324   SDValue Chain = LD->getChain();
7325   SDValue BasePTR = LD->getBasePtr();
7326   EVT SrcVT = LD->getMemoryVT();
7327   EVT DstVT = LD->getValueType(0);
7328   ISD::LoadExtType ExtType = LD->getExtensionType();
7329 
7330   if (SrcVT.isScalableVector())
7331     report_fatal_error("Cannot scalarize scalable vector loads");
7332 
7333   unsigned NumElem = SrcVT.getVectorNumElements();
7334 
7335   EVT SrcEltVT = SrcVT.getScalarType();
7336   EVT DstEltVT = DstVT.getScalarType();
7337 
7338   // A vector must always be stored in memory as-is, i.e. without any padding
7339   // between the elements, since various code depend on it, e.g. in the
7340   // handling of a bitcast of a vector type to int, which may be done with a
7341   // vector store followed by an integer load. A vector that does not have
7342   // elements that are byte-sized must therefore be stored as an integer
7343   // built out of the extracted vector elements.
7344   if (!SrcEltVT.isByteSized()) {
7345     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7346     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7347 
7348     unsigned NumSrcBits = SrcVT.getSizeInBits();
7349     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7350 
7351     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7352     SDValue SrcEltBitMask = DAG.getConstant(
7353         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7354 
7355     // Load the whole vector and avoid masking off the top bits as it makes
7356     // the codegen worse.
7357     SDValue Load =
7358         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7359                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7360                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7361 
7362     SmallVector<SDValue, 8> Vals;
7363     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7364       unsigned ShiftIntoIdx =
7365           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7366       SDValue ShiftAmount =
7367           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7368                                      LoadVT, SL, /*LegalTypes=*/false);
7369       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7370       SDValue Elt =
7371           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7372       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7373 
7374       if (ExtType != ISD::NON_EXTLOAD) {
7375         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7376         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7377       }
7378 
7379       Vals.push_back(Scalar);
7380     }
7381 
7382     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7383     return std::make_pair(Value, Load.getValue(1));
7384   }
7385 
7386   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7387   assert(SrcEltVT.isByteSized());
7388 
7389   SmallVector<SDValue, 8> Vals;
7390   SmallVector<SDValue, 8> LoadChains;
7391 
7392   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7393     SDValue ScalarLoad =
7394         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7395                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7396                        SrcEltVT, LD->getOriginalAlign(),
7397                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7398 
7399     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7400 
7401     Vals.push_back(ScalarLoad.getValue(0));
7402     LoadChains.push_back(ScalarLoad.getValue(1));
7403   }
7404 
7405   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7406   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7407 
7408   return std::make_pair(Value, NewChain);
7409 }
7410 
7411 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7412                                              SelectionDAG &DAG) const {
7413   SDLoc SL(ST);
7414 
7415   SDValue Chain = ST->getChain();
7416   SDValue BasePtr = ST->getBasePtr();
7417   SDValue Value = ST->getValue();
7418   EVT StVT = ST->getMemoryVT();
7419 
7420   if (StVT.isScalableVector())
7421     report_fatal_error("Cannot scalarize scalable vector stores");
7422 
7423   // The type of the data we want to save
7424   EVT RegVT = Value.getValueType();
7425   EVT RegSclVT = RegVT.getScalarType();
7426 
7427   // The type of data as saved in memory.
7428   EVT MemSclVT = StVT.getScalarType();
7429 
7430   unsigned NumElem = StVT.getVectorNumElements();
7431 
7432   // A vector must always be stored in memory as-is, i.e. without any padding
7433   // between the elements, since various code depend on it, e.g. in the
7434   // handling of a bitcast of a vector type to int, which may be done with a
7435   // vector store followed by an integer load. A vector that does not have
7436   // elements that are byte-sized must therefore be stored as an integer
7437   // built out of the extracted vector elements.
7438   if (!MemSclVT.isByteSized()) {
7439     unsigned NumBits = StVT.getSizeInBits();
7440     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7441 
7442     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7443 
7444     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7445       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7446                                 DAG.getVectorIdxConstant(Idx, SL));
7447       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7448       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7449       unsigned ShiftIntoIdx =
7450           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7451       SDValue ShiftAmount =
7452           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7453       SDValue ShiftedElt =
7454           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7455       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7456     }
7457 
7458     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7459                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7460                         ST->getAAInfo());
7461   }
7462 
7463   // Store Stride in bytes
7464   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7465   assert(Stride && "Zero stride!");
7466   // Extract each of the elements from the original vector and save them into
7467   // memory individually.
7468   SmallVector<SDValue, 8> Stores;
7469   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7470     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7471                               DAG.getVectorIdxConstant(Idx, SL));
7472 
7473     SDValue Ptr =
7474         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7475 
7476     // This scalar TruncStore may be illegal, but we legalize it later.
7477     SDValue Store = DAG.getTruncStore(
7478         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7479         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7480         ST->getAAInfo());
7481 
7482     Stores.push_back(Store);
7483   }
7484 
7485   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7486 }
7487 
7488 std::pair<SDValue, SDValue>
7489 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7490   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7491          "unaligned indexed loads not implemented!");
7492   SDValue Chain = LD->getChain();
7493   SDValue Ptr = LD->getBasePtr();
7494   EVT VT = LD->getValueType(0);
7495   EVT LoadedVT = LD->getMemoryVT();
7496   SDLoc dl(LD);
7497   auto &MF = DAG.getMachineFunction();
7498 
7499   if (VT.isFloatingPoint() || VT.isVector()) {
7500     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7501     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7502       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7503           LoadedVT.isVector()) {
7504         // Scalarize the load and let the individual components be handled.
7505         return scalarizeVectorLoad(LD, DAG);
7506       }
7507 
7508       // Expand to a (misaligned) integer load of the same size,
7509       // then bitconvert to floating point or vector.
7510       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7511                                     LD->getMemOperand());
7512       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7513       if (LoadedVT != VT)
7514         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7515                              ISD::ANY_EXTEND, dl, VT, Result);
7516 
7517       return std::make_pair(Result, newLoad.getValue(1));
7518     }
7519 
7520     // Copy the value to a (aligned) stack slot using (unaligned) integer
7521     // loads and stores, then do a (aligned) load from the stack slot.
7522     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7523     unsigned LoadedBytes = LoadedVT.getStoreSize();
7524     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7525     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7526 
7527     // Make sure the stack slot is also aligned for the register type.
7528     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7529     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7530     SmallVector<SDValue, 8> Stores;
7531     SDValue StackPtr = StackBase;
7532     unsigned Offset = 0;
7533 
7534     EVT PtrVT = Ptr.getValueType();
7535     EVT StackPtrVT = StackPtr.getValueType();
7536 
7537     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7538     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7539 
7540     // Do all but one copies using the full register width.
7541     for (unsigned i = 1; i < NumRegs; i++) {
7542       // Load one integer register's worth from the original location.
7543       SDValue Load = DAG.getLoad(
7544           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7545           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7546           LD->getAAInfo());
7547       // Follow the load with a store to the stack slot.  Remember the store.
7548       Stores.push_back(DAG.getStore(
7549           Load.getValue(1), dl, Load, StackPtr,
7550           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7551       // Increment the pointers.
7552       Offset += RegBytes;
7553 
7554       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7555       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7556     }
7557 
7558     // The last copy may be partial.  Do an extending load.
7559     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7560                                   8 * (LoadedBytes - Offset));
7561     SDValue Load =
7562         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7563                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7564                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7565                        LD->getAAInfo());
7566     // Follow the load with a store to the stack slot.  Remember the store.
7567     // On big-endian machines this requires a truncating store to ensure
7568     // that the bits end up in the right place.
7569     Stores.push_back(DAG.getTruncStore(
7570         Load.getValue(1), dl, Load, StackPtr,
7571         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7572 
7573     // The order of the stores doesn't matter - say it with a TokenFactor.
7574     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7575 
7576     // Finally, perform the original load only redirected to the stack slot.
7577     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7578                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7579                           LoadedVT);
7580 
7581     // Callers expect a MERGE_VALUES node.
7582     return std::make_pair(Load, TF);
7583   }
7584 
7585   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7586          "Unaligned load of unsupported type.");
7587 
7588   // Compute the new VT that is half the size of the old one.  This is an
7589   // integer MVT.
7590   unsigned NumBits = LoadedVT.getSizeInBits();
7591   EVT NewLoadedVT;
7592   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7593   NumBits >>= 1;
7594 
7595   Align Alignment = LD->getOriginalAlign();
7596   unsigned IncrementSize = NumBits / 8;
7597   ISD::LoadExtType HiExtType = LD->getExtensionType();
7598 
7599   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7600   if (HiExtType == ISD::NON_EXTLOAD)
7601     HiExtType = ISD::ZEXTLOAD;
7602 
7603   // Load the value in two parts
7604   SDValue Lo, Hi;
7605   if (DAG.getDataLayout().isLittleEndian()) {
7606     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7607                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7608                         LD->getAAInfo());
7609 
7610     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7611     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7612                         LD->getPointerInfo().getWithOffset(IncrementSize),
7613                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7614                         LD->getAAInfo());
7615   } else {
7616     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7617                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7618                         LD->getAAInfo());
7619 
7620     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7621     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7622                         LD->getPointerInfo().getWithOffset(IncrementSize),
7623                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7624                         LD->getAAInfo());
7625   }
7626 
7627   // aggregate the two parts
7628   SDValue ShiftAmount =
7629       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7630                                                     DAG.getDataLayout()));
7631   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7632   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7633 
7634   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7635                              Hi.getValue(1));
7636 
7637   return std::make_pair(Result, TF);
7638 }
7639 
7640 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7641                                              SelectionDAG &DAG) const {
7642   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7643          "unaligned indexed stores not implemented!");
7644   SDValue Chain = ST->getChain();
7645   SDValue Ptr = ST->getBasePtr();
7646   SDValue Val = ST->getValue();
7647   EVT VT = Val.getValueType();
7648   Align Alignment = ST->getOriginalAlign();
7649   auto &MF = DAG.getMachineFunction();
7650   EVT StoreMemVT = ST->getMemoryVT();
7651 
7652   SDLoc dl(ST);
7653   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7654     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7655     if (isTypeLegal(intVT)) {
7656       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7657           StoreMemVT.isVector()) {
7658         // Scalarize the store and let the individual components be handled.
7659         SDValue Result = scalarizeVectorStore(ST, DAG);
7660         return Result;
7661       }
7662       // Expand to a bitconvert of the value to the integer type of the
7663       // same size, then a (misaligned) int store.
7664       // FIXME: Does not handle truncating floating point stores!
7665       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7666       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7667                             Alignment, ST->getMemOperand()->getFlags());
7668       return Result;
7669     }
7670     // Do a (aligned) store to a stack slot, then copy from the stack slot
7671     // to the final destination using (unaligned) integer loads and stores.
7672     MVT RegVT = getRegisterType(
7673         *DAG.getContext(),
7674         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7675     EVT PtrVT = Ptr.getValueType();
7676     unsigned StoredBytes = StoreMemVT.getStoreSize();
7677     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7678     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7679 
7680     // Make sure the stack slot is also aligned for the register type.
7681     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7682     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7683 
7684     // Perform the original store, only redirected to the stack slot.
7685     SDValue Store = DAG.getTruncStore(
7686         Chain, dl, Val, StackPtr,
7687         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7688 
7689     EVT StackPtrVT = StackPtr.getValueType();
7690 
7691     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7692     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7693     SmallVector<SDValue, 8> Stores;
7694     unsigned Offset = 0;
7695 
7696     // Do all but one copies using the full register width.
7697     for (unsigned i = 1; i < NumRegs; i++) {
7698       // Load one integer register's worth from the stack slot.
7699       SDValue Load = DAG.getLoad(
7700           RegVT, dl, Store, StackPtr,
7701           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7702       // Store it to the final location.  Remember the store.
7703       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7704                                     ST->getPointerInfo().getWithOffset(Offset),
7705                                     ST->getOriginalAlign(),
7706                                     ST->getMemOperand()->getFlags()));
7707       // Increment the pointers.
7708       Offset += RegBytes;
7709       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7710       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7711     }
7712 
7713     // The last store may be partial.  Do a truncating store.  On big-endian
7714     // machines this requires an extending load from the stack slot to ensure
7715     // that the bits are in the right place.
7716     EVT LoadMemVT =
7717         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7718 
7719     // Load from the stack slot.
7720     SDValue Load = DAG.getExtLoad(
7721         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7722         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7723 
7724     Stores.push_back(
7725         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7726                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7727                           ST->getOriginalAlign(),
7728                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7729     // The order of the stores doesn't matter - say it with a TokenFactor.
7730     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7731     return Result;
7732   }
7733 
7734   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7735          "Unaligned store of unknown type.");
7736   // Get the half-size VT
7737   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7738   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7739   unsigned IncrementSize = NumBits / 8;
7740 
7741   // Divide the stored value in two parts.
7742   SDValue ShiftAmount = DAG.getConstant(
7743       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7744   SDValue Lo = Val;
7745   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7746 
7747   // Store the two parts
7748   SDValue Store1, Store2;
7749   Store1 = DAG.getTruncStore(Chain, dl,
7750                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7751                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7752                              ST->getMemOperand()->getFlags());
7753 
7754   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7755   Store2 = DAG.getTruncStore(
7756       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7757       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7758       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7759 
7760   SDValue Result =
7761       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7762   return Result;
7763 }
7764 
7765 SDValue
7766 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7767                                        const SDLoc &DL, EVT DataVT,
7768                                        SelectionDAG &DAG,
7769                                        bool IsCompressedMemory) const {
7770   SDValue Increment;
7771   EVT AddrVT = Addr.getValueType();
7772   EVT MaskVT = Mask.getValueType();
7773   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7774          "Incompatible types of Data and Mask");
7775   if (IsCompressedMemory) {
7776     if (DataVT.isScalableVector())
7777       report_fatal_error(
7778           "Cannot currently handle compressed memory with scalable vectors");
7779     // Incrementing the pointer according to number of '1's in the mask.
7780     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7781     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7782     if (MaskIntVT.getSizeInBits() < 32) {
7783       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7784       MaskIntVT = MVT::i32;
7785     }
7786 
7787     // Count '1's with POPCNT.
7788     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7789     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7790     // Scale is an element size in bytes.
7791     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7792                                     AddrVT);
7793     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7794   } else if (DataVT.isScalableVector()) {
7795     Increment = DAG.getVScale(DL, AddrVT,
7796                               APInt(AddrVT.getFixedSizeInBits(),
7797                                     DataVT.getStoreSize().getKnownMinSize()));
7798   } else
7799     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7800 
7801   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7802 }
7803 
7804 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7805                                        EVT VecVT, const SDLoc &dl,
7806                                        ElementCount SubEC) {
7807   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7808          "Cannot index a scalable vector within a fixed-width vector");
7809 
7810   unsigned NElts = VecVT.getVectorMinNumElements();
7811   unsigned NumSubElts = SubEC.getKnownMinValue();
7812   EVT IdxVT = Idx.getValueType();
7813 
7814   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7815     // If this is a constant index and we know the value plus the number of the
7816     // elements in the subvector minus one is less than the minimum number of
7817     // elements then it's safe to return Idx.
7818     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7819       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7820         return Idx;
7821     SDValue VS =
7822         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7823     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7824     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7825                               DAG.getConstant(NumSubElts, dl, IdxVT));
7826     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7827   }
7828   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7829     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7830     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7831                        DAG.getConstant(Imm, dl, IdxVT));
7832   }
7833   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7834   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7835                      DAG.getConstant(MaxIndex, dl, IdxVT));
7836 }
7837 
7838 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7839                                                 SDValue VecPtr, EVT VecVT,
7840                                                 SDValue Index) const {
7841   return getVectorSubVecPointer(
7842       DAG, VecPtr, VecVT,
7843       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7844       Index);
7845 }
7846 
7847 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7848                                                SDValue VecPtr, EVT VecVT,
7849                                                EVT SubVecVT,
7850                                                SDValue Index) const {
7851   SDLoc dl(Index);
7852   // Make sure the index type is big enough to compute in.
7853   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7854 
7855   EVT EltVT = VecVT.getVectorElementType();
7856 
7857   // Calculate the element offset and add it to the pointer.
7858   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7859   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7860          "Converting bits to bytes lost precision");
7861   assert(SubVecVT.getVectorElementType() == EltVT &&
7862          "Sub-vector must be a vector with matching element type");
7863   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7864                                   SubVecVT.getVectorElementCount());
7865 
7866   EVT IdxVT = Index.getValueType();
7867   if (SubVecVT.isScalableVector())
7868     Index =
7869         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7870                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7871 
7872   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7873                       DAG.getConstant(EltSize, dl, IdxVT));
7874   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7875 }
7876 
7877 //===----------------------------------------------------------------------===//
7878 // Implementation of Emulated TLS Model
7879 //===----------------------------------------------------------------------===//
7880 
7881 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7882                                                 SelectionDAG &DAG) const {
7883   // Access to address of TLS varialbe xyz is lowered to a function call:
7884   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7885   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7886   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7887   SDLoc dl(GA);
7888 
7889   ArgListTy Args;
7890   ArgListEntry Entry;
7891   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7892   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7893   StringRef EmuTlsVarName(NameString);
7894   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7895   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7896   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7897   Entry.Ty = VoidPtrType;
7898   Args.push_back(Entry);
7899 
7900   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7901 
7902   TargetLowering::CallLoweringInfo CLI(DAG);
7903   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7904   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7905   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7906 
7907   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7908   // At last for X86 targets, maybe good for other targets too?
7909   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7910   MFI.setAdjustsStack(true); // Is this only for X86 target?
7911   MFI.setHasCalls(true);
7912 
7913   assert((GA->getOffset() == 0) &&
7914          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7915   return CallResult.first;
7916 }
7917 
7918 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7919                                                 SelectionDAG &DAG) const {
7920   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7921   if (!isCtlzFast())
7922     return SDValue();
7923   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7924   SDLoc dl(Op);
7925   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7926     if (C->isZero() && CC == ISD::SETEQ) {
7927       EVT VT = Op.getOperand(0).getValueType();
7928       SDValue Zext = Op.getOperand(0);
7929       if (VT.bitsLT(MVT::i32)) {
7930         VT = MVT::i32;
7931         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7932       }
7933       unsigned Log2b = Log2_32(VT.getSizeInBits());
7934       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7935       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7936                                 DAG.getConstant(Log2b, dl, MVT::i32));
7937       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7938     }
7939   }
7940   return SDValue();
7941 }
7942 
7943 // Convert redundant addressing modes (e.g. scaling is redundant
7944 // when accessing bytes).
7945 ISD::MemIndexType
7946 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7947                                       SDValue Offsets) const {
7948   bool IsScaledIndex =
7949       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7950   bool IsSignedIndex =
7951       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7952 
7953   // Scaling is unimportant for bytes, canonicalize to unscaled.
7954   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
7955     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7956 
7957   return IndexType;
7958 }
7959 
7960 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7961   SDValue Op0 = Node->getOperand(0);
7962   SDValue Op1 = Node->getOperand(1);
7963   EVT VT = Op0.getValueType();
7964   unsigned Opcode = Node->getOpcode();
7965   SDLoc DL(Node);
7966 
7967   // umin(x,y) -> sub(x,usubsat(x,y))
7968   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7969       isOperationLegal(ISD::USUBSAT, VT)) {
7970     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7971                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7972   }
7973 
7974   // umax(x,y) -> add(x,usubsat(y,x))
7975   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7976       isOperationLegal(ISD::USUBSAT, VT)) {
7977     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7978                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7979   }
7980 
7981   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7982   ISD::CondCode CC;
7983   switch (Opcode) {
7984   default: llvm_unreachable("How did we get here?");
7985   case ISD::SMAX: CC = ISD::SETGT; break;
7986   case ISD::SMIN: CC = ISD::SETLT; break;
7987   case ISD::UMAX: CC = ISD::SETUGT; break;
7988   case ISD::UMIN: CC = ISD::SETULT; break;
7989   }
7990 
7991   // FIXME: Should really try to split the vector in case it's legal on a
7992   // subvector.
7993   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7994     return DAG.UnrollVectorOp(Node);
7995 
7996   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7997   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7998 }
7999 
8000 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8001   unsigned Opcode = Node->getOpcode();
8002   SDValue LHS = Node->getOperand(0);
8003   SDValue RHS = Node->getOperand(1);
8004   EVT VT = LHS.getValueType();
8005   SDLoc dl(Node);
8006 
8007   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8008   assert(VT.isInteger() && "Expected operands to be integers");
8009 
8010   // usub.sat(a, b) -> umax(a, b) - b
8011   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8012     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8013     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8014   }
8015 
8016   // uadd.sat(a, b) -> umin(a, ~b) + b
8017   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8018     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8019     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8020     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8021   }
8022 
8023   unsigned OverflowOp;
8024   switch (Opcode) {
8025   case ISD::SADDSAT:
8026     OverflowOp = ISD::SADDO;
8027     break;
8028   case ISD::UADDSAT:
8029     OverflowOp = ISD::UADDO;
8030     break;
8031   case ISD::SSUBSAT:
8032     OverflowOp = ISD::SSUBO;
8033     break;
8034   case ISD::USUBSAT:
8035     OverflowOp = ISD::USUBO;
8036     break;
8037   default:
8038     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8039                      "addition or subtraction node.");
8040   }
8041 
8042   // FIXME: Should really try to split the vector in case it's legal on a
8043   // subvector.
8044   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8045     return DAG.UnrollVectorOp(Node);
8046 
8047   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8048   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8049   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8050   SDValue SumDiff = Result.getValue(0);
8051   SDValue Overflow = Result.getValue(1);
8052   SDValue Zero = DAG.getConstant(0, dl, VT);
8053   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8054 
8055   if (Opcode == ISD::UADDSAT) {
8056     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8057       // (LHS + RHS) | OverflowMask
8058       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8059       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8060     }
8061     // Overflow ? 0xffff.... : (LHS + RHS)
8062     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8063   }
8064 
8065   if (Opcode == ISD::USUBSAT) {
8066     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8067       // (LHS - RHS) & ~OverflowMask
8068       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8069       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8070       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8071     }
8072     // Overflow ? 0 : (LHS - RHS)
8073     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8074   }
8075 
8076   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8077   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8078   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8079   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8080                               DAG.getConstant(BitWidth - 1, dl, VT));
8081   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8082   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8083 }
8084 
8085 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8086   unsigned Opcode = Node->getOpcode();
8087   bool IsSigned = Opcode == ISD::SSHLSAT;
8088   SDValue LHS = Node->getOperand(0);
8089   SDValue RHS = Node->getOperand(1);
8090   EVT VT = LHS.getValueType();
8091   SDLoc dl(Node);
8092 
8093   assert((Node->getOpcode() == ISD::SSHLSAT ||
8094           Node->getOpcode() == ISD::USHLSAT) &&
8095           "Expected a SHLSAT opcode");
8096   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8097   assert(VT.isInteger() && "Expected operands to be integers");
8098 
8099   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8100 
8101   unsigned BW = VT.getScalarSizeInBits();
8102   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8103   SDValue Orig =
8104       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8105 
8106   SDValue SatVal;
8107   if (IsSigned) {
8108     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8109     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8110     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8111                              SatMin, SatMax, ISD::SETLT);
8112   } else {
8113     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8114   }
8115   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8116 
8117   return Result;
8118 }
8119 
8120 SDValue
8121 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8122   assert((Node->getOpcode() == ISD::SMULFIX ||
8123           Node->getOpcode() == ISD::UMULFIX ||
8124           Node->getOpcode() == ISD::SMULFIXSAT ||
8125           Node->getOpcode() == ISD::UMULFIXSAT) &&
8126          "Expected a fixed point multiplication opcode");
8127 
8128   SDLoc dl(Node);
8129   SDValue LHS = Node->getOperand(0);
8130   SDValue RHS = Node->getOperand(1);
8131   EVT VT = LHS.getValueType();
8132   unsigned Scale = Node->getConstantOperandVal(2);
8133   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8134                      Node->getOpcode() == ISD::UMULFIXSAT);
8135   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8136                  Node->getOpcode() == ISD::SMULFIXSAT);
8137   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8138   unsigned VTSize = VT.getScalarSizeInBits();
8139 
8140   if (!Scale) {
8141     // [us]mul.fix(a, b, 0) -> mul(a, b)
8142     if (!Saturating) {
8143       if (isOperationLegalOrCustom(ISD::MUL, VT))
8144         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8145     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8146       SDValue Result =
8147           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8148       SDValue Product = Result.getValue(0);
8149       SDValue Overflow = Result.getValue(1);
8150       SDValue Zero = DAG.getConstant(0, dl, VT);
8151 
8152       APInt MinVal = APInt::getSignedMinValue(VTSize);
8153       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8154       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8155       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8156       // Xor the inputs, if resulting sign bit is 0 the product will be
8157       // positive, else negative.
8158       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8159       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8160       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8161       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8162     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8163       SDValue Result =
8164           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8165       SDValue Product = Result.getValue(0);
8166       SDValue Overflow = Result.getValue(1);
8167 
8168       APInt MaxVal = APInt::getMaxValue(VTSize);
8169       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8170       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8171     }
8172   }
8173 
8174   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8175          "Expected scale to be less than the number of bits if signed or at "
8176          "most the number of bits if unsigned.");
8177   assert(LHS.getValueType() == RHS.getValueType() &&
8178          "Expected both operands to be the same type");
8179 
8180   // Get the upper and lower bits of the result.
8181   SDValue Lo, Hi;
8182   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8183   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8184   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8185     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8186     Lo = Result.getValue(0);
8187     Hi = Result.getValue(1);
8188   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8189     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8190     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8191   } else if (VT.isVector()) {
8192     return SDValue();
8193   } else {
8194     report_fatal_error("Unable to expand fixed point multiplication.");
8195   }
8196 
8197   if (Scale == VTSize)
8198     // Result is just the top half since we'd be shifting by the width of the
8199     // operand. Overflow impossible so this works for both UMULFIX and
8200     // UMULFIXSAT.
8201     return Hi;
8202 
8203   // The result will need to be shifted right by the scale since both operands
8204   // are scaled. The result is given to us in 2 halves, so we only want part of
8205   // both in the result.
8206   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8207   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8208                                DAG.getConstant(Scale, dl, ShiftTy));
8209   if (!Saturating)
8210     return Result;
8211 
8212   if (!Signed) {
8213     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8214     // widened multiplication) aren't all zeroes.
8215 
8216     // Saturate to max if ((Hi >> Scale) != 0),
8217     // which is the same as if (Hi > ((1 << Scale) - 1))
8218     APInt MaxVal = APInt::getMaxValue(VTSize);
8219     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8220                                       dl, VT);
8221     Result = DAG.getSelectCC(dl, Hi, LowMask,
8222                              DAG.getConstant(MaxVal, dl, VT), Result,
8223                              ISD::SETUGT);
8224 
8225     return Result;
8226   }
8227 
8228   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8229   // widened multiplication) aren't all ones or all zeroes.
8230 
8231   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8232   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8233 
8234   if (Scale == 0) {
8235     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8236                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8237     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8238     // Saturated to SatMin if wide product is negative, and SatMax if wide
8239     // product is positive ...
8240     SDValue Zero = DAG.getConstant(0, dl, VT);
8241     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8242                                                ISD::SETLT);
8243     // ... but only if we overflowed.
8244     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8245   }
8246 
8247   //  We handled Scale==0 above so all the bits to examine is in Hi.
8248 
8249   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8250   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8251   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8252                                     dl, VT);
8253   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8254   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8255   // which is the same as if (HI < (-1 << (Scale - 1))
8256   SDValue HighMask =
8257       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8258                       dl, VT);
8259   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8260   return Result;
8261 }
8262 
8263 SDValue
8264 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8265                                     SDValue LHS, SDValue RHS,
8266                                     unsigned Scale, SelectionDAG &DAG) const {
8267   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8268           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8269          "Expected a fixed point division opcode");
8270 
8271   EVT VT = LHS.getValueType();
8272   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8273   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8274   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8275 
8276   // If there is enough room in the type to upscale the LHS or downscale the
8277   // RHS before the division, we can perform it in this type without having to
8278   // resize. For signed operations, the LHS headroom is the number of
8279   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8280   // The headroom for the RHS is the number of trailing zeroes.
8281   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8282                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8283   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8284 
8285   // For signed saturating operations, we need to be able to detect true integer
8286   // division overflow; that is, when you have MIN / -EPS. However, this
8287   // is undefined behavior and if we emit divisions that could take such
8288   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8289   // example).
8290   // Avoid this by requiring an extra bit so that we never get this case.
8291   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8292   // signed saturating division, we need to emit a whopping 32-bit division.
8293   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8294     return SDValue();
8295 
8296   unsigned LHSShift = std::min(LHSLead, Scale);
8297   unsigned RHSShift = Scale - LHSShift;
8298 
8299   // At this point, we know that if we shift the LHS up by LHSShift and the
8300   // RHS down by RHSShift, we can emit a regular division with a final scaling
8301   // factor of Scale.
8302 
8303   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8304   if (LHSShift)
8305     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8306                       DAG.getConstant(LHSShift, dl, ShiftTy));
8307   if (RHSShift)
8308     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8309                       DAG.getConstant(RHSShift, dl, ShiftTy));
8310 
8311   SDValue Quot;
8312   if (Signed) {
8313     // For signed operations, if the resulting quotient is negative and the
8314     // remainder is nonzero, subtract 1 from the quotient to round towards
8315     // negative infinity.
8316     SDValue Rem;
8317     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8318     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8319     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8320     if (isTypeLegal(VT) &&
8321         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8322       Quot = DAG.getNode(ISD::SDIVREM, dl,
8323                          DAG.getVTList(VT, VT),
8324                          LHS, RHS);
8325       Rem = Quot.getValue(1);
8326       Quot = Quot.getValue(0);
8327     } else {
8328       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8329                          LHS, RHS);
8330       Rem = DAG.getNode(ISD::SREM, dl, VT,
8331                         LHS, RHS);
8332     }
8333     SDValue Zero = DAG.getConstant(0, dl, VT);
8334     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8335     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8336     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8337     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8338     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8339                                DAG.getConstant(1, dl, VT));
8340     Quot = DAG.getSelect(dl, VT,
8341                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8342                          Sub1, Quot);
8343   } else
8344     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8345                        LHS, RHS);
8346 
8347   return Quot;
8348 }
8349 
8350 void TargetLowering::expandUADDSUBO(
8351     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8352   SDLoc dl(Node);
8353   SDValue LHS = Node->getOperand(0);
8354   SDValue RHS = Node->getOperand(1);
8355   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8356 
8357   // If ADD/SUBCARRY is legal, use that instead.
8358   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8359   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8360     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8361     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8362                                     { LHS, RHS, CarryIn });
8363     Result = SDValue(NodeCarry.getNode(), 0);
8364     Overflow = SDValue(NodeCarry.getNode(), 1);
8365     return;
8366   }
8367 
8368   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8369                             LHS.getValueType(), LHS, RHS);
8370 
8371   EVT ResultType = Node->getValueType(1);
8372   EVT SetCCType = getSetCCResultType(
8373       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8374   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8375   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8376   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8377 }
8378 
8379 void TargetLowering::expandSADDSUBO(
8380     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8381   SDLoc dl(Node);
8382   SDValue LHS = Node->getOperand(0);
8383   SDValue RHS = Node->getOperand(1);
8384   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8385 
8386   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8387                             LHS.getValueType(), LHS, RHS);
8388 
8389   EVT ResultType = Node->getValueType(1);
8390   EVT OType = getSetCCResultType(
8391       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8392 
8393   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8394   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8395   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8396     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8397     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8398     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8399     return;
8400   }
8401 
8402   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8403 
8404   // For an addition, the result should be less than one of the operands (LHS)
8405   // if and only if the other operand (RHS) is negative, otherwise there will
8406   // be overflow.
8407   // For a subtraction, the result should be less than one of the operands
8408   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8409   // otherwise there will be overflow.
8410   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8411   SDValue ConditionRHS =
8412       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8413 
8414   Overflow = DAG.getBoolExtOrTrunc(
8415       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8416       ResultType, ResultType);
8417 }
8418 
8419 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8420                                 SDValue &Overflow, SelectionDAG &DAG) const {
8421   SDLoc dl(Node);
8422   EVT VT = Node->getValueType(0);
8423   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8424   SDValue LHS = Node->getOperand(0);
8425   SDValue RHS = Node->getOperand(1);
8426   bool isSigned = Node->getOpcode() == ISD::SMULO;
8427 
8428   // For power-of-two multiplications we can use a simpler shift expansion.
8429   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8430     const APInt &C = RHSC->getAPIntValue();
8431     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8432     if (C.isPowerOf2()) {
8433       // smulo(x, signed_min) is same as umulo(x, signed_min).
8434       bool UseArithShift = isSigned && !C.isMinSignedValue();
8435       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8436       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8437       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8438       Overflow = DAG.getSetCC(dl, SetCCVT,
8439           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8440                       dl, VT, Result, ShiftAmt),
8441           LHS, ISD::SETNE);
8442       return true;
8443     }
8444   }
8445 
8446   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8447   if (VT.isVector())
8448     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8449                               VT.getVectorNumElements());
8450 
8451   SDValue BottomHalf;
8452   SDValue TopHalf;
8453   static const unsigned Ops[2][3] =
8454       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8455         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8456   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8457     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8458     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8459   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8460     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8461                              RHS);
8462     TopHalf = BottomHalf.getValue(1);
8463   } else if (isTypeLegal(WideVT)) {
8464     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8465     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8466     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8467     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8468     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8469         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8470     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8471                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8472   } else {
8473     if (VT.isVector())
8474       return false;
8475 
8476     // We can fall back to a libcall with an illegal type for the MUL if we
8477     // have a libcall big enough.
8478     // Also, we can fall back to a division in some cases, but that's a big
8479     // performance hit in the general case.
8480     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8481     if (WideVT == MVT::i16)
8482       LC = RTLIB::MUL_I16;
8483     else if (WideVT == MVT::i32)
8484       LC = RTLIB::MUL_I32;
8485     else if (WideVT == MVT::i64)
8486       LC = RTLIB::MUL_I64;
8487     else if (WideVT == MVT::i128)
8488       LC = RTLIB::MUL_I128;
8489     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8490 
8491     SDValue HiLHS;
8492     SDValue HiRHS;
8493     if (isSigned) {
8494       // The high part is obtained by SRA'ing all but one of the bits of low
8495       // part.
8496       unsigned LoSize = VT.getFixedSizeInBits();
8497       HiLHS =
8498           DAG.getNode(ISD::SRA, dl, VT, LHS,
8499                       DAG.getConstant(LoSize - 1, dl,
8500                                       getPointerTy(DAG.getDataLayout())));
8501       HiRHS =
8502           DAG.getNode(ISD::SRA, dl, VT, RHS,
8503                       DAG.getConstant(LoSize - 1, dl,
8504                                       getPointerTy(DAG.getDataLayout())));
8505     } else {
8506         HiLHS = DAG.getConstant(0, dl, VT);
8507         HiRHS = DAG.getConstant(0, dl, VT);
8508     }
8509 
8510     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8511     // pre-lowered to the correct types. This all depends upon WideVT not
8512     // being a legal type for the architecture and thus has to be split to
8513     // two arguments.
8514     SDValue Ret;
8515     TargetLowering::MakeLibCallOptions CallOptions;
8516     CallOptions.setSExt(isSigned);
8517     CallOptions.setIsPostTypeLegalization(true);
8518     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8519       // Halves of WideVT are packed into registers in different order
8520       // depending on platform endianness. This is usually handled by
8521       // the C calling convention, but we can't defer to it in
8522       // the legalizer.
8523       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8524       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8525     } else {
8526       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8527       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8528     }
8529     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8530            "Ret value is a collection of constituent nodes holding result.");
8531     if (DAG.getDataLayout().isLittleEndian()) {
8532       // Same as above.
8533       BottomHalf = Ret.getOperand(0);
8534       TopHalf = Ret.getOperand(1);
8535     } else {
8536       BottomHalf = Ret.getOperand(1);
8537       TopHalf = Ret.getOperand(0);
8538     }
8539   }
8540 
8541   Result = BottomHalf;
8542   if (isSigned) {
8543     SDValue ShiftAmt = DAG.getConstant(
8544         VT.getScalarSizeInBits() - 1, dl,
8545         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8546     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8547     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8548   } else {
8549     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8550                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8551   }
8552 
8553   // Truncate the result if SetCC returns a larger type than needed.
8554   EVT RType = Node->getValueType(1);
8555   if (RType.bitsLT(Overflow.getValueType()))
8556     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8557 
8558   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8559          "Unexpected result type for S/UMULO legalization");
8560   return true;
8561 }
8562 
8563 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8564   SDLoc dl(Node);
8565   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8566   SDValue Op = Node->getOperand(0);
8567   EVT VT = Op.getValueType();
8568 
8569   if (VT.isScalableVector())
8570     report_fatal_error(
8571         "Expanding reductions for scalable vectors is undefined.");
8572 
8573   // Try to use a shuffle reduction for power of two vectors.
8574   if (VT.isPow2VectorType()) {
8575     while (VT.getVectorNumElements() > 1) {
8576       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8577       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8578         break;
8579 
8580       SDValue Lo, Hi;
8581       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8582       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8583       VT = HalfVT;
8584     }
8585   }
8586 
8587   EVT EltVT = VT.getVectorElementType();
8588   unsigned NumElts = VT.getVectorNumElements();
8589 
8590   SmallVector<SDValue, 8> Ops;
8591   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8592 
8593   SDValue Res = Ops[0];
8594   for (unsigned i = 1; i < NumElts; i++)
8595     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8596 
8597   // Result type may be wider than element type.
8598   if (EltVT != Node->getValueType(0))
8599     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8600   return Res;
8601 }
8602 
8603 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8604   SDLoc dl(Node);
8605   SDValue AccOp = Node->getOperand(0);
8606   SDValue VecOp = Node->getOperand(1);
8607   SDNodeFlags Flags = Node->getFlags();
8608 
8609   EVT VT = VecOp.getValueType();
8610   EVT EltVT = VT.getVectorElementType();
8611 
8612   if (VT.isScalableVector())
8613     report_fatal_error(
8614         "Expanding reductions for scalable vectors is undefined.");
8615 
8616   unsigned NumElts = VT.getVectorNumElements();
8617 
8618   SmallVector<SDValue, 8> Ops;
8619   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8620 
8621   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8622 
8623   SDValue Res = AccOp;
8624   for (unsigned i = 0; i < NumElts; i++)
8625     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8626 
8627   return Res;
8628 }
8629 
8630 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8631                                SelectionDAG &DAG) const {
8632   EVT VT = Node->getValueType(0);
8633   SDLoc dl(Node);
8634   bool isSigned = Node->getOpcode() == ISD::SREM;
8635   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8636   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8637   SDValue Dividend = Node->getOperand(0);
8638   SDValue Divisor = Node->getOperand(1);
8639   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8640     SDVTList VTs = DAG.getVTList(VT, VT);
8641     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8642     return true;
8643   }
8644   if (isOperationLegalOrCustom(DivOpc, VT)) {
8645     // X % Y -> X-X/Y*Y
8646     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8647     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8648     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8649     return true;
8650   }
8651   return false;
8652 }
8653 
8654 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8655                                             SelectionDAG &DAG) const {
8656   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8657   SDLoc dl(SDValue(Node, 0));
8658   SDValue Src = Node->getOperand(0);
8659 
8660   // DstVT is the result type, while SatVT is the size to which we saturate
8661   EVT SrcVT = Src.getValueType();
8662   EVT DstVT = Node->getValueType(0);
8663 
8664   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8665   unsigned SatWidth = SatVT.getScalarSizeInBits();
8666   unsigned DstWidth = DstVT.getScalarSizeInBits();
8667   assert(SatWidth <= DstWidth &&
8668          "Expected saturation width smaller than result width");
8669 
8670   // Determine minimum and maximum integer values and their corresponding
8671   // floating-point values.
8672   APInt MinInt, MaxInt;
8673   if (IsSigned) {
8674     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8675     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8676   } else {
8677     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8678     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8679   }
8680 
8681   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8682   // libcall emission cannot handle this. Large result types will fail.
8683   if (SrcVT == MVT::f16) {
8684     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8685     SrcVT = Src.getValueType();
8686   }
8687 
8688   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8689   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8690 
8691   APFloat::opStatus MinStatus =
8692       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8693   APFloat::opStatus MaxStatus =
8694       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8695   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8696                              !(MaxStatus & APFloat::opStatus::opInexact);
8697 
8698   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8699   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8700 
8701   // If the integer bounds are exactly representable as floats and min/max are
8702   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8703   // of comparisons and selects.
8704   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8705                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8706   if (AreExactFloatBounds && MinMaxLegal) {
8707     SDValue Clamped = Src;
8708 
8709     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8710     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8711     // Clamp by MaxFloat from above. NaN cannot occur.
8712     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8713     // Convert clamped value to integer.
8714     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8715                                   dl, DstVT, Clamped);
8716 
8717     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8718     // which will cast to zero.
8719     if (!IsSigned)
8720       return FpToInt;
8721 
8722     // Otherwise, select 0 if Src is NaN.
8723     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8724     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8725                            ISD::CondCode::SETUO);
8726   }
8727 
8728   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8729   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8730 
8731   // Result of direct conversion. The assumption here is that the operation is
8732   // non-trapping and it's fine to apply it to an out-of-range value if we
8733   // select it away later.
8734   SDValue FpToInt =
8735       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8736 
8737   SDValue Select = FpToInt;
8738 
8739   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8740   // MinInt if Src is NaN.
8741   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8742                            ISD::CondCode::SETULT);
8743   // If Src OGT MaxFloat, select MaxInt.
8744   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8745                            ISD::CondCode::SETOGT);
8746 
8747   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8748   // is already zero.
8749   if (!IsSigned)
8750     return Select;
8751 
8752   // Otherwise, select 0 if Src is NaN.
8753   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8754   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8755 }
8756 
8757 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8758                                            SelectionDAG &DAG) const {
8759   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8760   assert(Node->getValueType(0).isScalableVector() &&
8761          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8762 
8763   EVT VT = Node->getValueType(0);
8764   SDValue V1 = Node->getOperand(0);
8765   SDValue V2 = Node->getOperand(1);
8766   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8767   SDLoc DL(Node);
8768 
8769   // Expand through memory thusly:
8770   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8771   //  Store V1, Ptr
8772   //  Store V2, Ptr + sizeof(V1)
8773   //  If (Imm < 0)
8774   //    TrailingElts = -Imm
8775   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8776   //  else
8777   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8778   //  Res = Load Ptr
8779 
8780   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8781 
8782   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8783                                VT.getVectorElementCount() * 2);
8784   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8785   EVT PtrVT = StackPtr.getValueType();
8786   auto &MF = DAG.getMachineFunction();
8787   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8788   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8789 
8790   // Store the lo part of CONCAT_VECTORS(V1, V2)
8791   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8792   // Store the hi part of CONCAT_VECTORS(V1, V2)
8793   SDValue OffsetToV2 = DAG.getVScale(
8794       DL, PtrVT,
8795       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8796   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8797   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8798 
8799   if (Imm >= 0) {
8800     // Load back the required element. getVectorElementPointer takes care of
8801     // clamping the index if it's out-of-bounds.
8802     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8803     // Load the spliced result
8804     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8805                        MachinePointerInfo::getUnknownStack(MF));
8806   }
8807 
8808   uint64_t TrailingElts = -Imm;
8809 
8810   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8811   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8812   SDValue TrailingBytes =
8813       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8814 
8815   if (TrailingElts > VT.getVectorMinNumElements()) {
8816     SDValue VLBytes = DAG.getVScale(
8817         DL, PtrVT,
8818         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8819     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8820   }
8821 
8822   // Calculate the start address of the spliced result.
8823   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8824 
8825   // Load the spliced result
8826   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8827                      MachinePointerInfo::getUnknownStack(MF));
8828 }
8829 
8830 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8831                                            SDValue &LHS, SDValue &RHS,
8832                                            SDValue &CC, bool &NeedInvert,
8833                                            const SDLoc &dl, SDValue &Chain,
8834                                            bool IsSignaling) const {
8835   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8836   MVT OpVT = LHS.getSimpleValueType();
8837   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8838   NeedInvert = false;
8839   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8840   default:
8841     llvm_unreachable("Unknown condition code action!");
8842   case TargetLowering::Legal:
8843     // Nothing to do.
8844     break;
8845   case TargetLowering::Expand: {
8846     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8847     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8848       std::swap(LHS, RHS);
8849       CC = DAG.getCondCode(InvCC);
8850       return true;
8851     }
8852     // Swapping operands didn't work. Try inverting the condition.
8853     bool NeedSwap = false;
8854     InvCC = getSetCCInverse(CCCode, OpVT);
8855     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8856       // If inverting the condition is not enough, try swapping operands
8857       // on top of it.
8858       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8859       NeedSwap = true;
8860     }
8861     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8862       CC = DAG.getCondCode(InvCC);
8863       NeedInvert = true;
8864       if (NeedSwap)
8865         std::swap(LHS, RHS);
8866       return true;
8867     }
8868 
8869     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8870     unsigned Opc = 0;
8871     switch (CCCode) {
8872     default:
8873       llvm_unreachable("Don't know how to expand this condition!");
8874     case ISD::SETUO:
8875       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8876         CC1 = ISD::SETUNE;
8877         CC2 = ISD::SETUNE;
8878         Opc = ISD::OR;
8879         break;
8880       }
8881       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8882              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8883       NeedInvert = true;
8884       LLVM_FALLTHROUGH;
8885     case ISD::SETO:
8886       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8887              "If SETO is expanded, SETOEQ must be legal!");
8888       CC1 = ISD::SETOEQ;
8889       CC2 = ISD::SETOEQ;
8890       Opc = ISD::AND;
8891       break;
8892     case ISD::SETONE:
8893     case ISD::SETUEQ:
8894       // If the SETUO or SETO CC isn't legal, we might be able to use
8895       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8896       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8897       // the operands.
8898       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8899       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8900           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8901            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8902         CC1 = ISD::SETOGT;
8903         CC2 = ISD::SETOLT;
8904         Opc = ISD::OR;
8905         NeedInvert = ((unsigned)CCCode & 0x8U);
8906         break;
8907       }
8908       LLVM_FALLTHROUGH;
8909     case ISD::SETOEQ:
8910     case ISD::SETOGT:
8911     case ISD::SETOGE:
8912     case ISD::SETOLT:
8913     case ISD::SETOLE:
8914     case ISD::SETUNE:
8915     case ISD::SETUGT:
8916     case ISD::SETUGE:
8917     case ISD::SETULT:
8918     case ISD::SETULE:
8919       // If we are floating point, assign and break, otherwise fall through.
8920       if (!OpVT.isInteger()) {
8921         // We can use the 4th bit to tell if we are the unordered
8922         // or ordered version of the opcode.
8923         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8924         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8925         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8926         break;
8927       }
8928       // Fallthrough if we are unsigned integer.
8929       LLVM_FALLTHROUGH;
8930     case ISD::SETLE:
8931     case ISD::SETGT:
8932     case ISD::SETGE:
8933     case ISD::SETLT:
8934     case ISD::SETNE:
8935     case ISD::SETEQ:
8936       // If all combinations of inverting the condition and swapping operands
8937       // didn't work then we have no means to expand the condition.
8938       llvm_unreachable("Don't know how to expand this condition!");
8939     }
8940 
8941     SDValue SetCC1, SetCC2;
8942     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8943       // If we aren't the ordered or unorder operation,
8944       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8945       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8946       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8947     } else {
8948       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8949       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8950       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8951     }
8952     if (Chain)
8953       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
8954                           SetCC2.getValue(1));
8955     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
8956     RHS = SDValue();
8957     CC = SDValue();
8958     return true;
8959   }
8960   }
8961   return false;
8962 }
8963