1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 KnownBits &Known, 610 TargetLoweringOpt &TLO, 611 unsigned Depth, 612 bool AssumeSingleUse) const { 613 EVT VT = Op.getValueType(); 614 615 // TODO: We can probably do more work on calculating the known bits and 616 // simplifying the operations for scalable vectors, but for now we just 617 // bail out. 618 if (VT.isScalableVector()) { 619 // Pretend we don't know anything for now. 620 Known = KnownBits(DemandedBits.getBitWidth()); 621 return false; 622 } 623 624 APInt DemandedElts = VT.isVector() 625 ? APInt::getAllOnes(VT.getVectorNumElements()) 626 : APInt(1, 1); 627 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 628 AssumeSingleUse); 629 } 630 631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 632 // TODO: Under what circumstances can we create nodes? Constant folding? 633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 635 SelectionDAG &DAG, unsigned Depth) const { 636 // Limit search depth. 637 if (Depth >= SelectionDAG::MaxRecursionDepth) 638 return SDValue(); 639 640 // Ignore UNDEFs. 641 if (Op.isUndef()) 642 return SDValue(); 643 644 // Not demanding any bits/elts from Op. 645 if (DemandedBits == 0 || DemandedElts == 0) 646 return DAG.getUNDEF(Op.getValueType()); 647 648 unsigned NumElts = DemandedElts.getBitWidth(); 649 unsigned BitWidth = DemandedBits.getBitWidth(); 650 KnownBits LHSKnown, RHSKnown; 651 switch (Op.getOpcode()) { 652 case ISD::BITCAST: { 653 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 654 EVT SrcVT = Src.getValueType(); 655 EVT DstVT = Op.getValueType(); 656 if (SrcVT == DstVT) 657 return Src; 658 659 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 660 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 661 if (NumSrcEltBits == NumDstEltBits) 662 if (SDValue V = SimplifyMultipleUseDemandedBits( 663 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 664 return DAG.getBitcast(DstVT, V); 665 666 // TODO - bigendian once we have test coverage. 667 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 668 DAG.getDataLayout().isLittleEndian()) { 669 unsigned Scale = NumDstEltBits / NumSrcEltBits; 670 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 671 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 672 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 673 for (unsigned i = 0; i != Scale; ++i) { 674 unsigned Offset = i * NumSrcEltBits; 675 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 676 if (!Sub.isZero()) { 677 DemandedSrcBits |= Sub; 678 for (unsigned j = 0; j != NumElts; ++j) 679 if (DemandedElts[j]) 680 DemandedSrcElts.setBit((j * Scale) + i); 681 } 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 // TODO - bigendian once we have test coverage. 690 if ((NumSrcEltBits % NumDstEltBits) == 0 && 691 DAG.getDataLayout().isLittleEndian()) { 692 unsigned Scale = NumSrcEltBits / NumDstEltBits; 693 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 694 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 695 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 696 for (unsigned i = 0; i != NumElts; ++i) 697 if (DemandedElts[i]) { 698 unsigned Offset = (i % Scale) * NumDstEltBits; 699 DemandedSrcBits.insertBits(DemandedBits, Offset); 700 DemandedSrcElts.setBit(i / Scale); 701 } 702 703 if (SDValue V = SimplifyMultipleUseDemandedBits( 704 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 705 return DAG.getBitcast(DstVT, V); 706 } 707 708 break; 709 } 710 case ISD::AND: { 711 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 712 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 713 714 // If all of the demanded bits are known 1 on one side, return the other. 715 // These bits cannot contribute to the result of the 'and' in this 716 // context. 717 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 718 return Op.getOperand(0); 719 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 720 return Op.getOperand(1); 721 break; 722 } 723 case ISD::OR: { 724 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 725 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 726 727 // If all of the demanded bits are known zero on one side, return the 728 // other. These bits cannot contribute to the result of the 'or' in this 729 // context. 730 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 731 return Op.getOperand(0); 732 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 733 return Op.getOperand(1); 734 break; 735 } 736 case ISD::XOR: { 737 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 738 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 739 740 // If all of the demanded bits are known zero on one side, return the 741 // other. 742 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 743 return Op.getOperand(0); 744 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 745 return Op.getOperand(1); 746 break; 747 } 748 case ISD::SHL: { 749 // If we are only demanding sign bits then we can use the shift source 750 // directly. 751 if (const APInt *MaxSA = 752 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 753 SDValue Op0 = Op.getOperand(0); 754 unsigned ShAmt = MaxSA->getZExtValue(); 755 unsigned NumSignBits = 756 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 757 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 758 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 759 return Op0; 760 } 761 break; 762 } 763 case ISD::SETCC: { 764 SDValue Op0 = Op.getOperand(0); 765 SDValue Op1 = Op.getOperand(1); 766 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 767 // If (1) we only need the sign-bit, (2) the setcc operands are the same 768 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 769 // -1, we may be able to bypass the setcc. 770 if (DemandedBits.isSignMask() && 771 Op0.getScalarValueSizeInBits() == BitWidth && 772 getBooleanContents(Op0.getValueType()) == 773 BooleanContent::ZeroOrNegativeOneBooleanContent) { 774 // If we're testing X < 0, then this compare isn't needed - just use X! 775 // FIXME: We're limiting to integer types here, but this should also work 776 // if we don't care about FP signed-zero. The use of SETLT with FP means 777 // that we don't care about NaNs. 778 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 779 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 780 return Op0; 781 } 782 break; 783 } 784 case ISD::SIGN_EXTEND_INREG: { 785 // If none of the extended bits are demanded, eliminate the sextinreg. 786 SDValue Op0 = Op.getOperand(0); 787 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 788 unsigned ExBits = ExVT.getScalarSizeInBits(); 789 if (DemandedBits.getActiveBits() <= ExBits) 790 return Op0; 791 // If the input is already sign extended, just drop the extension. 792 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 793 if (NumSignBits >= (BitWidth - ExBits + 1)) 794 return Op0; 795 break; 796 } 797 case ISD::ANY_EXTEND_VECTOR_INREG: 798 case ISD::SIGN_EXTEND_VECTOR_INREG: 799 case ISD::ZERO_EXTEND_VECTOR_INREG: { 800 // If we only want the lowest element and none of extended bits, then we can 801 // return the bitcasted source vector. 802 SDValue Src = Op.getOperand(0); 803 EVT SrcVT = Src.getValueType(); 804 EVT DstVT = Op.getValueType(); 805 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 806 DAG.getDataLayout().isLittleEndian() && 807 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 808 return DAG.getBitcast(DstVT, Src); 809 } 810 break; 811 } 812 case ISD::INSERT_VECTOR_ELT: { 813 // If we don't demand the inserted element, return the base vector. 814 SDValue Vec = Op.getOperand(0); 815 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 816 EVT VecVT = Vec.getValueType(); 817 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 818 !DemandedElts[CIdx->getZExtValue()]) 819 return Vec; 820 break; 821 } 822 case ISD::INSERT_SUBVECTOR: { 823 SDValue Vec = Op.getOperand(0); 824 SDValue Sub = Op.getOperand(1); 825 uint64_t Idx = Op.getConstantOperandVal(2); 826 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 827 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 828 // If we don't demand the inserted subvector, return the base vector. 829 if (DemandedSubElts == 0) 830 return Vec; 831 // If this simply widens the lowest subvector, see if we can do it earlier. 832 if (Idx == 0 && Vec.isUndef()) { 833 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 834 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 835 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 836 Op.getOperand(0), NewSub, Op.getOperand(2)); 837 } 838 break; 839 } 840 case ISD::VECTOR_SHUFFLE: { 841 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 842 843 // If all the demanded elts are from one operand and are inline, 844 // then we can use the operand directly. 845 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 846 for (unsigned i = 0; i != NumElts; ++i) { 847 int M = ShuffleMask[i]; 848 if (M < 0 || !DemandedElts[i]) 849 continue; 850 AllUndef = false; 851 IdentityLHS &= (M == (int)i); 852 IdentityRHS &= ((M - NumElts) == i); 853 } 854 855 if (AllUndef) 856 return DAG.getUNDEF(Op.getValueType()); 857 if (IdentityLHS) 858 return Op.getOperand(0); 859 if (IdentityRHS) 860 return Op.getOperand(1); 861 break; 862 } 863 default: 864 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 865 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 866 Op, DemandedBits, DemandedElts, DAG, Depth)) 867 return V; 868 break; 869 } 870 return SDValue(); 871 } 872 873 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 874 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 875 unsigned Depth) const { 876 EVT VT = Op.getValueType(); 877 APInt DemandedElts = VT.isVector() 878 ? APInt::getAllOnes(VT.getVectorNumElements()) 879 : APInt(1, 1); 880 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 881 Depth); 882 } 883 884 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 885 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 886 unsigned Depth) const { 887 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 888 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 889 Depth); 890 } 891 892 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 893 /// result of Op are ever used downstream. If we can use this information to 894 /// simplify Op, create a new simplified DAG node and return true, returning the 895 /// original and new nodes in Old and New. Otherwise, analyze the expression and 896 /// return a mask of Known bits for the expression (used to simplify the 897 /// caller). The Known bits may only be accurate for those bits in the 898 /// OriginalDemandedBits and OriginalDemandedElts. 899 bool TargetLowering::SimplifyDemandedBits( 900 SDValue Op, const APInt &OriginalDemandedBits, 901 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 902 unsigned Depth, bool AssumeSingleUse) const { 903 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 904 assert(Op.getScalarValueSizeInBits() == BitWidth && 905 "Mask size mismatches value type size!"); 906 907 // Don't know anything. 908 Known = KnownBits(BitWidth); 909 910 // TODO: We can probably do more work on calculating the known bits and 911 // simplifying the operations for scalable vectors, but for now we just 912 // bail out. 913 if (Op.getValueType().isScalableVector()) 914 return false; 915 916 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 917 assert((!Op.getValueType().isVector() || 918 NumElts == Op.getValueType().getVectorNumElements()) && 919 "Unexpected vector size"); 920 921 APInt DemandedBits = OriginalDemandedBits; 922 APInt DemandedElts = OriginalDemandedElts; 923 SDLoc dl(Op); 924 auto &DL = TLO.DAG.getDataLayout(); 925 926 // Undef operand. 927 if (Op.isUndef()) 928 return false; 929 930 if (Op.getOpcode() == ISD::Constant) { 931 // We know all of the bits for a constant! 932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 933 return false; 934 } 935 936 if (Op.getOpcode() == ISD::ConstantFP) { 937 // We know all of the bits for a floating point constant! 938 Known = KnownBits::makeConstant( 939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 940 return false; 941 } 942 943 // Other users may use these bits. 944 EVT VT = Op.getValueType(); 945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 946 if (Depth != 0) { 947 // If not at the root, Just compute the Known bits to 948 // simplify things downstream. 949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 950 return false; 951 } 952 // If this is the root being simplified, allow it to have multiple uses, 953 // just set the DemandedBits/Elts to all bits. 954 DemandedBits = APInt::getAllOnes(BitWidth); 955 DemandedElts = APInt::getAllOnes(NumElts); 956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 957 // Not demanding any bits/elts from Op. 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 960 // Limit search depth. 961 return false; 962 } 963 964 KnownBits Known2; 965 switch (Op.getOpcode()) { 966 case ISD::TargetConstant: 967 llvm_unreachable("Can't simplify this node"); 968 case ISD::SCALAR_TO_VECTOR: { 969 if (!DemandedElts[0]) 970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 971 972 KnownBits SrcKnown; 973 SDValue Src = Op.getOperand(0); 974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 977 return true; 978 979 // Upper elements are undef, so only get the knownbits if we just demand 980 // the bottom element. 981 if (DemandedElts == 1) 982 Known = SrcKnown.anyextOrTrunc(BitWidth); 983 break; 984 } 985 case ISD::BUILD_VECTOR: 986 // Collect the known bits that are shared by every demanded element. 987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 989 return false; // Don't fall through, will infinitely loop. 990 case ISD::LOAD: { 991 auto *LD = cast<LoadSDNode>(Op); 992 if (getTargetConstantFromLoad(LD)) { 993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 994 return false; // Don't fall through, will infinitely loop. 995 } 996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 997 // If this is a ZEXTLoad and we are looking at the loaded value. 998 EVT MemVT = LD->getMemoryVT(); 999 unsigned MemBits = MemVT.getScalarSizeInBits(); 1000 Known.Zero.setBitsFrom(MemBits); 1001 return false; // Don't fall through, will infinitely loop. 1002 } 1003 break; 1004 } 1005 case ISD::INSERT_VECTOR_ELT: { 1006 SDValue Vec = Op.getOperand(0); 1007 SDValue Scl = Op.getOperand(1); 1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1009 EVT VecVT = Vec.getValueType(); 1010 1011 // If index isn't constant, assume we need all vector elements AND the 1012 // inserted element. 1013 APInt DemandedVecElts(DemandedElts); 1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1015 unsigned Idx = CIdx->getZExtValue(); 1016 DemandedVecElts.clearBit(Idx); 1017 1018 // Inserted element is not required. 1019 if (!DemandedElts[Idx]) 1020 return TLO.CombineTo(Op, Vec); 1021 } 1022 1023 KnownBits KnownScl; 1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1027 return true; 1028 1029 Known = KnownScl.anyextOrTrunc(BitWidth); 1030 1031 KnownBits KnownVec; 1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1033 Depth + 1)) 1034 return true; 1035 1036 if (!!DemandedVecElts) 1037 Known = KnownBits::commonBits(Known, KnownVec); 1038 1039 return false; 1040 } 1041 case ISD::INSERT_SUBVECTOR: { 1042 // Demand any elements from the subvector and the remainder from the src its 1043 // inserted into. 1044 SDValue Src = Op.getOperand(0); 1045 SDValue Sub = Op.getOperand(1); 1046 uint64_t Idx = Op.getConstantOperandVal(2); 1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1049 APInt DemandedSrcElts = DemandedElts; 1050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1051 1052 KnownBits KnownSub, KnownSrc; 1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1054 Depth + 1)) 1055 return true; 1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1057 Depth + 1)) 1058 return true; 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 if (!!DemandedSubElts) 1063 Known = KnownBits::commonBits(Known, KnownSub); 1064 if (!!DemandedSrcElts) 1065 Known = KnownBits::commonBits(Known, KnownSrc); 1066 1067 // Attempt to avoid multi-use src if we don't need anything from it. 1068 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1069 !DemandedSrcElts.isAllOnes()) { 1070 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1074 if (NewSub || NewSrc) { 1075 NewSub = NewSub ? NewSub : Sub; 1076 NewSrc = NewSrc ? NewSrc : Src; 1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1078 Op.getOperand(2)); 1079 return TLO.CombineTo(Op, NewOp); 1080 } 1081 } 1082 break; 1083 } 1084 case ISD::EXTRACT_SUBVECTOR: { 1085 // Offset the demanded elts by the subvector index. 1086 SDValue Src = Op.getOperand(0); 1087 if (Src.getValueType().isScalableVector()) 1088 break; 1089 uint64_t Idx = Op.getConstantOperandVal(1); 1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1092 1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 1097 // Attempt to avoid multi-use src if we don't need anything from it. 1098 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1101 if (DemandedSrc) { 1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1103 Op.getOperand(1)); 1104 return TLO.CombineTo(Op, NewOp); 1105 } 1106 } 1107 break; 1108 } 1109 case ISD::CONCAT_VECTORS: { 1110 Known.Zero.setAllBits(); 1111 Known.One.setAllBits(); 1112 EVT SubVT = Op.getOperand(0).getValueType(); 1113 unsigned NumSubVecs = Op.getNumOperands(); 1114 unsigned NumSubElts = SubVT.getVectorNumElements(); 1115 for (unsigned i = 0; i != NumSubVecs; ++i) { 1116 APInt DemandedSubElts = 1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1119 Known2, TLO, Depth + 1)) 1120 return true; 1121 // Known bits are shared by every demanded subvector element. 1122 if (!!DemandedSubElts) 1123 Known = KnownBits::commonBits(Known, Known2); 1124 } 1125 break; 1126 } 1127 case ISD::VECTOR_SHUFFLE: { 1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1129 1130 // Collect demanded elements from shuffle operands.. 1131 APInt DemandedLHS(NumElts, 0); 1132 APInt DemandedRHS(NumElts, 0); 1133 for (unsigned i = 0; i != NumElts; ++i) { 1134 if (!DemandedElts[i]) 1135 continue; 1136 int M = ShuffleMask[i]; 1137 if (M < 0) { 1138 // For UNDEF elements, we don't know anything about the common state of 1139 // the shuffle result. 1140 DemandedLHS.clearAllBits(); 1141 DemandedRHS.clearAllBits(); 1142 break; 1143 } 1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1145 if (M < (int)NumElts) 1146 DemandedLHS.setBit(M); 1147 else 1148 DemandedRHS.setBit(M - NumElts); 1149 } 1150 1151 if (!!DemandedLHS || !!DemandedRHS) { 1152 SDValue Op0 = Op.getOperand(0); 1153 SDValue Op1 = Op.getOperand(1); 1154 1155 Known.Zero.setAllBits(); 1156 Known.One.setAllBits(); 1157 if (!!DemandedLHS) { 1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1159 Depth + 1)) 1160 return true; 1161 Known = KnownBits::commonBits(Known, Known2); 1162 } 1163 if (!!DemandedRHS) { 1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1165 Depth + 1)) 1166 return true; 1167 Known = KnownBits::commonBits(Known, Known2); 1168 } 1169 1170 // Attempt to avoid multi-use ops if we don't need anything from them. 1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1175 if (DemandedOp0 || DemandedOp1) { 1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1179 return TLO.CombineTo(Op, NewOp); 1180 } 1181 } 1182 break; 1183 } 1184 case ISD::AND: { 1185 SDValue Op0 = Op.getOperand(0); 1186 SDValue Op1 = Op.getOperand(1); 1187 1188 // If the RHS is a constant, check to see if the LHS would be zero without 1189 // using the bits from the RHS. Below, we use knowledge about the RHS to 1190 // simplify the LHS, here we're using information from the LHS to simplify 1191 // the RHS. 1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1193 // Do not increment Depth here; that can cause an infinite loop. 1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1195 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1196 if ((LHSKnown.Zero & DemandedBits) == 1197 (~RHSC->getAPIntValue() & DemandedBits)) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 // If any of the set bits in the RHS are known zero on the LHS, shrink 1201 // the constant. 1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1203 DemandedElts, TLO)) 1204 return true; 1205 1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1207 // constant, but if this 'and' is only clearing bits that were just set by 1208 // the xor, then this 'and' can be eliminated by shrinking the mask of 1209 // the xor. For example, for a 32-bit X: 1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1212 LHSKnown.One == ~RHSC->getAPIntValue()) { 1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1214 return TLO.CombineTo(Op, Xor); 1215 } 1216 } 1217 1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1219 Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1223 Known2, TLO, Depth + 1)) 1224 return true; 1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1226 1227 // Attempt to avoid multi-use ops if we don't need anything from them. 1228 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1233 if (DemandedOp0 || DemandedOp1) { 1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1237 return TLO.CombineTo(Op, NewOp); 1238 } 1239 } 1240 1241 // If all of the demanded bits are known one on one side, return the other. 1242 // These bits cannot contribute to the result of the 'and'. 1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1244 return TLO.CombineTo(Op, Op0); 1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1246 return TLO.CombineTo(Op, Op1); 1247 // If all of the demanded bits in the inputs are known zeros, return zero. 1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1250 // If the RHS is a constant, see if we can simplify it. 1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1252 TLO)) 1253 return true; 1254 // If the operation can be done in a smaller type, do so. 1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1256 return true; 1257 1258 Known &= Known2; 1259 break; 1260 } 1261 case ISD::OR: { 1262 SDValue Op0 = Op.getOperand(0); 1263 SDValue Op1 = Op.getOperand(1); 1264 1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1270 Known2, TLO, Depth + 1)) 1271 return true; 1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1273 1274 // Attempt to avoid multi-use ops if we don't need anything from them. 1275 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1280 if (DemandedOp0 || DemandedOp1) { 1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1284 return TLO.CombineTo(Op, NewOp); 1285 } 1286 } 1287 1288 // If all of the demanded bits are known zero on one side, return the other. 1289 // These bits cannot contribute to the result of the 'or'. 1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1291 return TLO.CombineTo(Op, Op0); 1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1293 return TLO.CombineTo(Op, Op1); 1294 // If the RHS is a constant, see if we can simplify it. 1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1296 return true; 1297 // If the operation can be done in a smaller type, do so. 1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1299 return true; 1300 1301 Known |= Known2; 1302 break; 1303 } 1304 case ISD::XOR: { 1305 SDValue Op0 = Op.getOperand(0); 1306 SDValue Op1 = Op.getOperand(1); 1307 1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1313 Depth + 1)) 1314 return true; 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1323 if (DemandedOp0 || DemandedOp1) { 1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1327 return TLO.CombineTo(Op, NewOp); 1328 } 1329 } 1330 1331 // If all of the demanded bits are known zero on one side, return the other. 1332 // These bits cannot contribute to the result of the 'xor'. 1333 if (DemandedBits.isSubsetOf(Known.Zero)) 1334 return TLO.CombineTo(Op, Op0); 1335 if (DemandedBits.isSubsetOf(Known2.Zero)) 1336 return TLO.CombineTo(Op, Op1); 1337 // If the operation can be done in a smaller type, do so. 1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1339 return true; 1340 1341 // If all of the unknown bits are known to be zero on one side or the other 1342 // turn this into an *inclusive* or. 1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1346 1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1348 if (C) { 1349 // If one side is a constant, and all of the set bits in the constant are 1350 // also known set on the other side, turn this into an AND, as we know 1351 // the bits will be cleared. 1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1353 // NB: it is okay if more bits are known than are requested 1354 if (C->getAPIntValue() == Known2.One) { 1355 SDValue ANDC = 1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1358 } 1359 1360 // If the RHS is a constant, see if we can change it. Don't alter a -1 1361 // constant because that's a 'not' op, and that is better for combining 1362 // and codegen. 1363 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnes()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOne()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 1729 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1730 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1731 return TLO.CombineTo(Op, Op0); 1732 1733 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1734 if (isPowerOf2_32(BitWidth)) { 1735 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1736 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1737 Depth + 1)) 1738 return true; 1739 } 1740 break; 1741 } 1742 case ISD::UMIN: { 1743 // Check if one arg is always less than (or equal) to the other arg. 1744 SDValue Op0 = Op.getOperand(0); 1745 SDValue Op1 = Op.getOperand(1); 1746 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1747 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1748 Known = KnownBits::umin(Known0, Known1); 1749 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1750 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1751 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1752 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1753 break; 1754 } 1755 case ISD::UMAX: { 1756 // Check if one arg is always greater than (or equal) to the other arg. 1757 SDValue Op0 = Op.getOperand(0); 1758 SDValue Op1 = Op.getOperand(1); 1759 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1760 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1761 Known = KnownBits::umax(Known0, Known1); 1762 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1763 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1764 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1765 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1766 break; 1767 } 1768 case ISD::BITREVERSE: { 1769 SDValue Src = Op.getOperand(0); 1770 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1771 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1772 Depth + 1)) 1773 return true; 1774 Known.One = Known2.One.reverseBits(); 1775 Known.Zero = Known2.Zero.reverseBits(); 1776 break; 1777 } 1778 case ISD::BSWAP: { 1779 SDValue Src = Op.getOperand(0); 1780 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1781 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1782 Depth + 1)) 1783 return true; 1784 Known.One = Known2.One.byteSwap(); 1785 Known.Zero = Known2.Zero.byteSwap(); 1786 break; 1787 } 1788 case ISD::CTPOP: { 1789 // If only 1 bit is demanded, replace with PARITY as long as we're before 1790 // op legalization. 1791 // FIXME: Limit to scalars for now. 1792 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1793 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1794 Op.getOperand(0))); 1795 1796 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1797 break; 1798 } 1799 case ISD::SIGN_EXTEND_INREG: { 1800 SDValue Op0 = Op.getOperand(0); 1801 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1802 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1803 1804 // If we only care about the highest bit, don't bother shifting right. 1805 if (DemandedBits.isSignMask()) { 1806 unsigned MinSignedBits = 1807 TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1); 1808 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1809 // However if the input is already sign extended we expect the sign 1810 // extension to be dropped altogether later and do not simplify. 1811 if (!AlreadySignExtended) { 1812 // Compute the correct shift amount type, which must be getShiftAmountTy 1813 // for scalar types after legalization. 1814 EVT ShiftAmtTy = VT; 1815 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1816 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1817 1818 SDValue ShiftAmt = 1819 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1820 return TLO.CombineTo(Op, 1821 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1822 } 1823 } 1824 1825 // If none of the extended bits are demanded, eliminate the sextinreg. 1826 if (DemandedBits.getActiveBits() <= ExVTBits) 1827 return TLO.CombineTo(Op, Op0); 1828 1829 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1830 1831 // Since the sign extended bits are demanded, we know that the sign 1832 // bit is demanded. 1833 InputDemandedBits.setBit(ExVTBits - 1); 1834 1835 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1836 return true; 1837 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1838 1839 // If the sign bit of the input is known set or clear, then we know the 1840 // top bits of the result. 1841 1842 // If the input sign bit is known zero, convert this into a zero extension. 1843 if (Known.Zero[ExVTBits - 1]) 1844 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1845 1846 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1847 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1848 Known.One.setBitsFrom(ExVTBits); 1849 Known.Zero &= Mask; 1850 } else { // Input sign bit unknown 1851 Known.Zero &= Mask; 1852 Known.One &= Mask; 1853 } 1854 break; 1855 } 1856 case ISD::BUILD_PAIR: { 1857 EVT HalfVT = Op.getOperand(0).getValueType(); 1858 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1859 1860 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1861 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1862 1863 KnownBits KnownLo, KnownHi; 1864 1865 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1866 return true; 1867 1868 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1869 return true; 1870 1871 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1872 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1873 1874 Known.One = KnownLo.One.zext(BitWidth) | 1875 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1876 break; 1877 } 1878 case ISD::ZERO_EXTEND: 1879 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1880 SDValue Src = Op.getOperand(0); 1881 EVT SrcVT = Src.getValueType(); 1882 unsigned InBits = SrcVT.getScalarSizeInBits(); 1883 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1884 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1885 1886 // If none of the top bits are demanded, convert this into an any_extend. 1887 if (DemandedBits.getActiveBits() <= InBits) { 1888 // If we only need the non-extended bits of the bottom element 1889 // then we can just bitcast to the result. 1890 if (IsVecInReg && DemandedElts == 1 && 1891 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1892 TLO.DAG.getDataLayout().isLittleEndian()) 1893 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1894 1895 unsigned Opc = 1896 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1897 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1898 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1899 } 1900 1901 APInt InDemandedBits = DemandedBits.trunc(InBits); 1902 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1903 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1904 Depth + 1)) 1905 return true; 1906 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1907 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1908 Known = Known.zext(BitWidth); 1909 1910 // Attempt to avoid multi-use ops if we don't need anything from them. 1911 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1912 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1913 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1914 break; 1915 } 1916 case ISD::SIGN_EXTEND: 1917 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1918 SDValue Src = Op.getOperand(0); 1919 EVT SrcVT = Src.getValueType(); 1920 unsigned InBits = SrcVT.getScalarSizeInBits(); 1921 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1922 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1923 1924 // If none of the top bits are demanded, convert this into an any_extend. 1925 if (DemandedBits.getActiveBits() <= InBits) { 1926 // If we only need the non-extended bits of the bottom element 1927 // then we can just bitcast to the result. 1928 if (IsVecInReg && DemandedElts == 1 && 1929 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1930 TLO.DAG.getDataLayout().isLittleEndian()) 1931 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1932 1933 unsigned Opc = 1934 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1935 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1936 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1937 } 1938 1939 APInt InDemandedBits = DemandedBits.trunc(InBits); 1940 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1941 1942 // Since some of the sign extended bits are demanded, we know that the sign 1943 // bit is demanded. 1944 InDemandedBits.setBit(InBits - 1); 1945 1946 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1947 Depth + 1)) 1948 return true; 1949 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1950 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1951 1952 // If the sign bit is known one, the top bits match. 1953 Known = Known.sext(BitWidth); 1954 1955 // If the sign bit is known zero, convert this to a zero extend. 1956 if (Known.isNonNegative()) { 1957 unsigned Opc = 1958 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1959 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1960 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1961 } 1962 1963 // Attempt to avoid multi-use ops if we don't need anything from them. 1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1967 break; 1968 } 1969 case ISD::ANY_EXTEND: 1970 case ISD::ANY_EXTEND_VECTOR_INREG: { 1971 SDValue Src = Op.getOperand(0); 1972 EVT SrcVT = Src.getValueType(); 1973 unsigned InBits = SrcVT.getScalarSizeInBits(); 1974 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1975 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1976 1977 // If we only need the bottom element then we can just bitcast. 1978 // TODO: Handle ANY_EXTEND? 1979 if (IsVecInReg && DemandedElts == 1 && 1980 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1981 TLO.DAG.getDataLayout().isLittleEndian()) 1982 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1983 1984 APInt InDemandedBits = DemandedBits.trunc(InBits); 1985 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1986 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1987 Depth + 1)) 1988 return true; 1989 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1990 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1991 Known = Known.anyext(BitWidth); 1992 1993 // Attempt to avoid multi-use ops if we don't need anything from them. 1994 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1995 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1996 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1997 break; 1998 } 1999 case ISD::TRUNCATE: { 2000 SDValue Src = Op.getOperand(0); 2001 2002 // Simplify the input, using demanded bit information, and compute the known 2003 // zero/one bits live out. 2004 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2005 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2006 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2007 Depth + 1)) 2008 return true; 2009 Known = Known.trunc(BitWidth); 2010 2011 // Attempt to avoid multi-use ops if we don't need anything from them. 2012 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2013 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2014 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2015 2016 // If the input is only used by this truncate, see if we can shrink it based 2017 // on the known demanded bits. 2018 if (Src.getNode()->hasOneUse()) { 2019 switch (Src.getOpcode()) { 2020 default: 2021 break; 2022 case ISD::SRL: 2023 // Shrink SRL by a constant if none of the high bits shifted in are 2024 // demanded. 2025 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2026 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2027 // undesirable. 2028 break; 2029 2030 const APInt *ShAmtC = 2031 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2032 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2033 break; 2034 uint64_t ShVal = ShAmtC->getZExtValue(); 2035 2036 APInt HighBits = 2037 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2038 HighBits.lshrInPlace(ShVal); 2039 HighBits = HighBits.trunc(BitWidth); 2040 2041 if (!(HighBits & DemandedBits)) { 2042 // None of the shifted in bits are needed. Add a truncate of the 2043 // shift input, then shift it. 2044 SDValue NewShAmt = TLO.DAG.getConstant( 2045 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2046 SDValue NewTrunc = 2047 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2048 return TLO.CombineTo( 2049 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2050 } 2051 break; 2052 } 2053 } 2054 2055 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2056 break; 2057 } 2058 case ISD::AssertZext: { 2059 // AssertZext demands all of the high bits, plus any of the low bits 2060 // demanded by its users. 2061 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2062 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2063 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2064 TLO, Depth + 1)) 2065 return true; 2066 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2067 2068 Known.Zero |= ~InMask; 2069 break; 2070 } 2071 case ISD::EXTRACT_VECTOR_ELT: { 2072 SDValue Src = Op.getOperand(0); 2073 SDValue Idx = Op.getOperand(1); 2074 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2075 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2076 2077 if (SrcEltCnt.isScalable()) 2078 return false; 2079 2080 // Demand the bits from every vector element without a constant index. 2081 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2082 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2083 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2084 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2085 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2086 2087 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2088 // anything about the extended bits. 2089 APInt DemandedSrcBits = DemandedBits; 2090 if (BitWidth > EltBitWidth) 2091 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2092 2093 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2094 Depth + 1)) 2095 return true; 2096 2097 // Attempt to avoid multi-use ops if we don't need anything from them. 2098 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2099 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2100 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2101 SDValue NewOp = 2102 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2103 return TLO.CombineTo(Op, NewOp); 2104 } 2105 } 2106 2107 Known = Known2; 2108 if (BitWidth > EltBitWidth) 2109 Known = Known.anyext(BitWidth); 2110 break; 2111 } 2112 case ISD::BITCAST: { 2113 SDValue Src = Op.getOperand(0); 2114 EVT SrcVT = Src.getValueType(); 2115 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2116 2117 // If this is an FP->Int bitcast and if the sign bit is the only 2118 // thing demanded, turn this into a FGETSIGN. 2119 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2120 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2121 SrcVT.isFloatingPoint()) { 2122 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2123 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2124 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2125 SrcVT != MVT::f128) { 2126 // Cannot eliminate/lower SHL for f128 yet. 2127 EVT Ty = OpVTLegal ? VT : MVT::i32; 2128 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2129 // place. We expect the SHL to be eliminated by other optimizations. 2130 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2131 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2132 if (!OpVTLegal && OpVTSizeInBits > 32) 2133 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2134 unsigned ShVal = Op.getValueSizeInBits() - 1; 2135 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2136 return TLO.CombineTo(Op, 2137 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2138 } 2139 } 2140 2141 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2142 // Demand the elt/bit if any of the original elts/bits are demanded. 2143 // TODO - bigendian once we have test coverage. 2144 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2145 TLO.DAG.getDataLayout().isLittleEndian()) { 2146 unsigned Scale = BitWidth / NumSrcEltBits; 2147 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2148 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2149 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2150 for (unsigned i = 0; i != Scale; ++i) { 2151 unsigned Offset = i * NumSrcEltBits; 2152 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2153 if (!Sub.isZero()) { 2154 DemandedSrcBits |= Sub; 2155 for (unsigned j = 0; j != NumElts; ++j) 2156 if (DemandedElts[j]) 2157 DemandedSrcElts.setBit((j * Scale) + i); 2158 } 2159 } 2160 2161 APInt KnownSrcUndef, KnownSrcZero; 2162 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2163 KnownSrcZero, TLO, Depth + 1)) 2164 return true; 2165 2166 KnownBits KnownSrcBits; 2167 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2168 KnownSrcBits, TLO, Depth + 1)) 2169 return true; 2170 } else if ((NumSrcEltBits % BitWidth) == 0 && 2171 TLO.DAG.getDataLayout().isLittleEndian()) { 2172 unsigned Scale = NumSrcEltBits / BitWidth; 2173 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2174 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2175 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2176 for (unsigned i = 0; i != NumElts; ++i) 2177 if (DemandedElts[i]) { 2178 unsigned Offset = (i % Scale) * BitWidth; 2179 DemandedSrcBits.insertBits(DemandedBits, Offset); 2180 DemandedSrcElts.setBit(i / Scale); 2181 } 2182 2183 if (SrcVT.isVector()) { 2184 APInt KnownSrcUndef, KnownSrcZero; 2185 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2186 KnownSrcZero, TLO, Depth + 1)) 2187 return true; 2188 } 2189 2190 KnownBits KnownSrcBits; 2191 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2192 KnownSrcBits, TLO, Depth + 1)) 2193 return true; 2194 } 2195 2196 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2197 // recursive call where Known may be useful to the caller. 2198 if (Depth > 0) { 2199 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2200 return false; 2201 } 2202 break; 2203 } 2204 case ISD::ADD: 2205 case ISD::MUL: 2206 case ISD::SUB: { 2207 // Add, Sub, and Mul don't demand any bits in positions beyond that 2208 // of the highest bit demanded of them. 2209 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2210 SDNodeFlags Flags = Op.getNode()->getFlags(); 2211 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2212 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2213 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2214 Depth + 1) || 2215 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2216 Depth + 1) || 2217 // See if the operation should be performed at a smaller bit width. 2218 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2219 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2220 // Disable the nsw and nuw flags. We can no longer guarantee that we 2221 // won't wrap after simplification. 2222 Flags.setNoSignedWrap(false); 2223 Flags.setNoUnsignedWrap(false); 2224 SDValue NewOp = 2225 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2226 return TLO.CombineTo(Op, NewOp); 2227 } 2228 return true; 2229 } 2230 2231 // Attempt to avoid multi-use ops if we don't need anything from them. 2232 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2233 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2234 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2235 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2236 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2237 if (DemandedOp0 || DemandedOp1) { 2238 Flags.setNoSignedWrap(false); 2239 Flags.setNoUnsignedWrap(false); 2240 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2241 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2242 SDValue NewOp = 2243 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2244 return TLO.CombineTo(Op, NewOp); 2245 } 2246 } 2247 2248 // If we have a constant operand, we may be able to turn it into -1 if we 2249 // do not demand the high bits. This can make the constant smaller to 2250 // encode, allow more general folding, or match specialized instruction 2251 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2252 // is probably not useful (and could be detrimental). 2253 ConstantSDNode *C = isConstOrConstSplat(Op1); 2254 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2255 if (C && !C->isAllOnes() && !C->isOne() && 2256 (C->getAPIntValue() | HighMask).isAllOnes()) { 2257 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2258 // Disable the nsw and nuw flags. We can no longer guarantee that we 2259 // won't wrap after simplification. 2260 Flags.setNoSignedWrap(false); 2261 Flags.setNoUnsignedWrap(false); 2262 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2263 return TLO.CombineTo(Op, NewOp); 2264 } 2265 2266 LLVM_FALLTHROUGH; 2267 } 2268 default: 2269 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2270 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2271 Known, TLO, Depth)) 2272 return true; 2273 break; 2274 } 2275 2276 // Just use computeKnownBits to compute output bits. 2277 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2278 break; 2279 } 2280 2281 // If we know the value of all of the demanded bits, return this as a 2282 // constant. 2283 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2284 // Avoid folding to a constant if any OpaqueConstant is involved. 2285 const SDNode *N = Op.getNode(); 2286 for (SDNode *Op : 2287 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2288 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2289 if (C->isOpaque()) 2290 return false; 2291 } 2292 if (VT.isInteger()) 2293 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2294 if (VT.isFloatingPoint()) 2295 return TLO.CombineTo( 2296 Op, 2297 TLO.DAG.getConstantFP( 2298 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2299 } 2300 2301 return false; 2302 } 2303 2304 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2305 const APInt &DemandedElts, 2306 APInt &KnownUndef, 2307 APInt &KnownZero, 2308 DAGCombinerInfo &DCI) const { 2309 SelectionDAG &DAG = DCI.DAG; 2310 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2311 !DCI.isBeforeLegalizeOps()); 2312 2313 bool Simplified = 2314 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2315 if (Simplified) { 2316 DCI.AddToWorklist(Op.getNode()); 2317 DCI.CommitTargetLoweringOpt(TLO); 2318 } 2319 2320 return Simplified; 2321 } 2322 2323 /// Given a vector binary operation and known undefined elements for each input 2324 /// operand, compute whether each element of the output is undefined. 2325 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2326 const APInt &UndefOp0, 2327 const APInt &UndefOp1) { 2328 EVT VT = BO.getValueType(); 2329 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2330 "Vector binop only"); 2331 2332 EVT EltVT = VT.getVectorElementType(); 2333 unsigned NumElts = VT.getVectorNumElements(); 2334 assert(UndefOp0.getBitWidth() == NumElts && 2335 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2336 2337 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2338 const APInt &UndefVals) { 2339 if (UndefVals[Index]) 2340 return DAG.getUNDEF(EltVT); 2341 2342 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2343 // Try hard to make sure that the getNode() call is not creating temporary 2344 // nodes. Ignore opaque integers because they do not constant fold. 2345 SDValue Elt = BV->getOperand(Index); 2346 auto *C = dyn_cast<ConstantSDNode>(Elt); 2347 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2348 return Elt; 2349 } 2350 2351 return SDValue(); 2352 }; 2353 2354 APInt KnownUndef = APInt::getZero(NumElts); 2355 for (unsigned i = 0; i != NumElts; ++i) { 2356 // If both inputs for this element are either constant or undef and match 2357 // the element type, compute the constant/undef result for this element of 2358 // the vector. 2359 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2360 // not handle FP constants. The code within getNode() should be refactored 2361 // to avoid the danger of creating a bogus temporary node here. 2362 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2363 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2364 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2365 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2366 KnownUndef.setBit(i); 2367 } 2368 return KnownUndef; 2369 } 2370 2371 bool TargetLowering::SimplifyDemandedVectorElts( 2372 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2373 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2374 bool AssumeSingleUse) const { 2375 EVT VT = Op.getValueType(); 2376 unsigned Opcode = Op.getOpcode(); 2377 APInt DemandedElts = OriginalDemandedElts; 2378 unsigned NumElts = DemandedElts.getBitWidth(); 2379 assert(VT.isVector() && "Expected vector op"); 2380 2381 KnownUndef = KnownZero = APInt::getZero(NumElts); 2382 2383 // TODO: For now we assume we know nothing about scalable vectors. 2384 if (VT.isScalableVector()) 2385 return false; 2386 2387 assert(VT.getVectorNumElements() == NumElts && 2388 "Mask size mismatches value type element count!"); 2389 2390 // Undef operand. 2391 if (Op.isUndef()) { 2392 KnownUndef.setAllBits(); 2393 return false; 2394 } 2395 2396 // If Op has other users, assume that all elements are needed. 2397 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2398 DemandedElts.setAllBits(); 2399 2400 // Not demanding any elements from Op. 2401 if (DemandedElts == 0) { 2402 KnownUndef.setAllBits(); 2403 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2404 } 2405 2406 // Limit search depth. 2407 if (Depth >= SelectionDAG::MaxRecursionDepth) 2408 return false; 2409 2410 SDLoc DL(Op); 2411 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2412 2413 // Helper for demanding the specified elements and all the bits of both binary 2414 // operands. 2415 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2416 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2417 TLO.DAG, Depth + 1); 2418 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2419 TLO.DAG, Depth + 1); 2420 if (NewOp0 || NewOp1) { 2421 SDValue NewOp = TLO.DAG.getNode( 2422 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2423 return TLO.CombineTo(Op, NewOp); 2424 } 2425 return false; 2426 }; 2427 2428 switch (Opcode) { 2429 case ISD::SCALAR_TO_VECTOR: { 2430 if (!DemandedElts[0]) { 2431 KnownUndef.setAllBits(); 2432 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2433 } 2434 SDValue ScalarSrc = Op.getOperand(0); 2435 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2436 SDValue Src = ScalarSrc.getOperand(0); 2437 SDValue Idx = ScalarSrc.getOperand(1); 2438 EVT SrcVT = Src.getValueType(); 2439 2440 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2441 2442 if (SrcEltCnt.isScalable()) 2443 return false; 2444 2445 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2446 if (isNullConstant(Idx)) { 2447 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2448 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2449 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2450 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2451 TLO, Depth + 1)) 2452 return true; 2453 } 2454 } 2455 KnownUndef.setHighBits(NumElts - 1); 2456 break; 2457 } 2458 case ISD::BITCAST: { 2459 SDValue Src = Op.getOperand(0); 2460 EVT SrcVT = Src.getValueType(); 2461 2462 // We only handle vectors here. 2463 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2464 if (!SrcVT.isVector()) 2465 break; 2466 2467 // Fast handling of 'identity' bitcasts. 2468 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2469 if (NumSrcElts == NumElts) 2470 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2471 KnownZero, TLO, Depth + 1); 2472 2473 APInt SrcDemandedElts, SrcZero, SrcUndef; 2474 2475 // Bitcast from 'large element' src vector to 'small element' vector, we 2476 // must demand a source element if any DemandedElt maps to it. 2477 if ((NumElts % NumSrcElts) == 0) { 2478 unsigned Scale = NumElts / NumSrcElts; 2479 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2480 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2481 TLO, Depth + 1)) 2482 return true; 2483 2484 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2485 // of the large element. 2486 // TODO - bigendian once we have test coverage. 2487 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2488 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2489 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2490 for (unsigned i = 0; i != NumElts; ++i) 2491 if (DemandedElts[i]) { 2492 unsigned Ofs = (i % Scale) * EltSizeInBits; 2493 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2494 } 2495 2496 KnownBits Known; 2497 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2498 TLO, Depth + 1)) 2499 return true; 2500 } 2501 2502 // If the src element is zero/undef then all the output elements will be - 2503 // only demanded elements are guaranteed to be correct. 2504 for (unsigned i = 0; i != NumSrcElts; ++i) { 2505 if (SrcDemandedElts[i]) { 2506 if (SrcZero[i]) 2507 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2508 if (SrcUndef[i]) 2509 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2510 } 2511 } 2512 } 2513 2514 // Bitcast from 'small element' src vector to 'large element' vector, we 2515 // demand all smaller source elements covered by the larger demanded element 2516 // of this vector. 2517 if ((NumSrcElts % NumElts) == 0) { 2518 unsigned Scale = NumSrcElts / NumElts; 2519 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2520 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2521 TLO, Depth + 1)) 2522 return true; 2523 2524 // If all the src elements covering an output element are zero/undef, then 2525 // the output element will be as well, assuming it was demanded. 2526 for (unsigned i = 0; i != NumElts; ++i) { 2527 if (DemandedElts[i]) { 2528 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2529 KnownZero.setBit(i); 2530 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2531 KnownUndef.setBit(i); 2532 } 2533 } 2534 } 2535 break; 2536 } 2537 case ISD::BUILD_VECTOR: { 2538 // Check all elements and simplify any unused elements with UNDEF. 2539 if (!DemandedElts.isAllOnes()) { 2540 // Don't simplify BROADCASTS. 2541 if (llvm::any_of(Op->op_values(), 2542 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2543 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2544 bool Updated = false; 2545 for (unsigned i = 0; i != NumElts; ++i) { 2546 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2547 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2548 KnownUndef.setBit(i); 2549 Updated = true; 2550 } 2551 } 2552 if (Updated) 2553 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2554 } 2555 } 2556 for (unsigned i = 0; i != NumElts; ++i) { 2557 SDValue SrcOp = Op.getOperand(i); 2558 if (SrcOp.isUndef()) { 2559 KnownUndef.setBit(i); 2560 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2561 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2562 KnownZero.setBit(i); 2563 } 2564 } 2565 break; 2566 } 2567 case ISD::CONCAT_VECTORS: { 2568 EVT SubVT = Op.getOperand(0).getValueType(); 2569 unsigned NumSubVecs = Op.getNumOperands(); 2570 unsigned NumSubElts = SubVT.getVectorNumElements(); 2571 for (unsigned i = 0; i != NumSubVecs; ++i) { 2572 SDValue SubOp = Op.getOperand(i); 2573 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2574 APInt SubUndef, SubZero; 2575 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2576 Depth + 1)) 2577 return true; 2578 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2579 KnownZero.insertBits(SubZero, i * NumSubElts); 2580 } 2581 break; 2582 } 2583 case ISD::INSERT_SUBVECTOR: { 2584 // Demand any elements from the subvector and the remainder from the src its 2585 // inserted into. 2586 SDValue Src = Op.getOperand(0); 2587 SDValue Sub = Op.getOperand(1); 2588 uint64_t Idx = Op.getConstantOperandVal(2); 2589 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2590 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2591 APInt DemandedSrcElts = DemandedElts; 2592 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2593 2594 APInt SubUndef, SubZero; 2595 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2596 Depth + 1)) 2597 return true; 2598 2599 // If none of the src operand elements are demanded, replace it with undef. 2600 if (!DemandedSrcElts && !Src.isUndef()) 2601 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2602 TLO.DAG.getUNDEF(VT), Sub, 2603 Op.getOperand(2))); 2604 2605 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2606 TLO, Depth + 1)) 2607 return true; 2608 KnownUndef.insertBits(SubUndef, Idx); 2609 KnownZero.insertBits(SubZero, Idx); 2610 2611 // Attempt to avoid multi-use ops if we don't need anything from them. 2612 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2613 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2614 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2615 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2616 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2617 if (NewSrc || NewSub) { 2618 NewSrc = NewSrc ? NewSrc : Src; 2619 NewSub = NewSub ? NewSub : Sub; 2620 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2621 NewSub, Op.getOperand(2)); 2622 return TLO.CombineTo(Op, NewOp); 2623 } 2624 } 2625 break; 2626 } 2627 case ISD::EXTRACT_SUBVECTOR: { 2628 // Offset the demanded elts by the subvector index. 2629 SDValue Src = Op.getOperand(0); 2630 if (Src.getValueType().isScalableVector()) 2631 break; 2632 uint64_t Idx = Op.getConstantOperandVal(1); 2633 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2634 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2635 2636 APInt SrcUndef, SrcZero; 2637 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2638 Depth + 1)) 2639 return true; 2640 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2641 KnownZero = SrcZero.extractBits(NumElts, Idx); 2642 2643 // Attempt to avoid multi-use ops if we don't need anything from them. 2644 if (!DemandedElts.isAllOnes()) { 2645 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2646 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2647 if (NewSrc) { 2648 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2649 Op.getOperand(1)); 2650 return TLO.CombineTo(Op, NewOp); 2651 } 2652 } 2653 break; 2654 } 2655 case ISD::INSERT_VECTOR_ELT: { 2656 SDValue Vec = Op.getOperand(0); 2657 SDValue Scl = Op.getOperand(1); 2658 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2659 2660 // For a legal, constant insertion index, if we don't need this insertion 2661 // then strip it, else remove it from the demanded elts. 2662 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2663 unsigned Idx = CIdx->getZExtValue(); 2664 if (!DemandedElts[Idx]) 2665 return TLO.CombineTo(Op, Vec); 2666 2667 APInt DemandedVecElts(DemandedElts); 2668 DemandedVecElts.clearBit(Idx); 2669 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2670 KnownZero, TLO, Depth + 1)) 2671 return true; 2672 2673 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2674 2675 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2676 break; 2677 } 2678 2679 APInt VecUndef, VecZero; 2680 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2681 Depth + 1)) 2682 return true; 2683 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2684 break; 2685 } 2686 case ISD::VSELECT: { 2687 // Try to transform the select condition based on the current demanded 2688 // elements. 2689 // TODO: If a condition element is undef, we can choose from one arm of the 2690 // select (and if one arm is undef, then we can propagate that to the 2691 // result). 2692 // TODO - add support for constant vselect masks (see IR version of this). 2693 APInt UnusedUndef, UnusedZero; 2694 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2695 UnusedZero, TLO, Depth + 1)) 2696 return true; 2697 2698 // See if we can simplify either vselect operand. 2699 APInt DemandedLHS(DemandedElts); 2700 APInt DemandedRHS(DemandedElts); 2701 APInt UndefLHS, ZeroLHS; 2702 APInt UndefRHS, ZeroRHS; 2703 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2704 ZeroLHS, TLO, Depth + 1)) 2705 return true; 2706 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2707 ZeroRHS, TLO, Depth + 1)) 2708 return true; 2709 2710 KnownUndef = UndefLHS & UndefRHS; 2711 KnownZero = ZeroLHS & ZeroRHS; 2712 break; 2713 } 2714 case ISD::VECTOR_SHUFFLE: { 2715 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2716 2717 // Collect demanded elements from shuffle operands.. 2718 APInt DemandedLHS(NumElts, 0); 2719 APInt DemandedRHS(NumElts, 0); 2720 for (unsigned i = 0; i != NumElts; ++i) { 2721 int M = ShuffleMask[i]; 2722 if (M < 0 || !DemandedElts[i]) 2723 continue; 2724 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2725 if (M < (int)NumElts) 2726 DemandedLHS.setBit(M); 2727 else 2728 DemandedRHS.setBit(M - NumElts); 2729 } 2730 2731 // See if we can simplify either shuffle operand. 2732 APInt UndefLHS, ZeroLHS; 2733 APInt UndefRHS, ZeroRHS; 2734 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2735 ZeroLHS, TLO, Depth + 1)) 2736 return true; 2737 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2738 ZeroRHS, TLO, Depth + 1)) 2739 return true; 2740 2741 // Simplify mask using undef elements from LHS/RHS. 2742 bool Updated = false; 2743 bool IdentityLHS = true, IdentityRHS = true; 2744 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2745 for (unsigned i = 0; i != NumElts; ++i) { 2746 int &M = NewMask[i]; 2747 if (M < 0) 2748 continue; 2749 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2750 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2751 Updated = true; 2752 M = -1; 2753 } 2754 IdentityLHS &= (M < 0) || (M == (int)i); 2755 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2756 } 2757 2758 // Update legal shuffle masks based on demanded elements if it won't reduce 2759 // to Identity which can cause premature removal of the shuffle mask. 2760 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2761 SDValue LegalShuffle = 2762 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2763 NewMask, TLO.DAG); 2764 if (LegalShuffle) 2765 return TLO.CombineTo(Op, LegalShuffle); 2766 } 2767 2768 // Propagate undef/zero elements from LHS/RHS. 2769 for (unsigned i = 0; i != NumElts; ++i) { 2770 int M = ShuffleMask[i]; 2771 if (M < 0) { 2772 KnownUndef.setBit(i); 2773 } else if (M < (int)NumElts) { 2774 if (UndefLHS[M]) 2775 KnownUndef.setBit(i); 2776 if (ZeroLHS[M]) 2777 KnownZero.setBit(i); 2778 } else { 2779 if (UndefRHS[M - NumElts]) 2780 KnownUndef.setBit(i); 2781 if (ZeroRHS[M - NumElts]) 2782 KnownZero.setBit(i); 2783 } 2784 } 2785 break; 2786 } 2787 case ISD::ANY_EXTEND_VECTOR_INREG: 2788 case ISD::SIGN_EXTEND_VECTOR_INREG: 2789 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2790 APInt SrcUndef, SrcZero; 2791 SDValue Src = Op.getOperand(0); 2792 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2793 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2794 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2795 Depth + 1)) 2796 return true; 2797 KnownZero = SrcZero.zextOrTrunc(NumElts); 2798 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2799 2800 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2801 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2802 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2803 // aext - if we just need the bottom element then we can bitcast. 2804 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2805 } 2806 2807 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2808 // zext(undef) upper bits are guaranteed to be zero. 2809 if (DemandedElts.isSubsetOf(KnownUndef)) 2810 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2811 KnownUndef.clearAllBits(); 2812 } 2813 break; 2814 } 2815 2816 // TODO: There are more binop opcodes that could be handled here - MIN, 2817 // MAX, saturated math, etc. 2818 case ISD::OR: 2819 case ISD::XOR: 2820 case ISD::ADD: 2821 case ISD::SUB: 2822 case ISD::FADD: 2823 case ISD::FSUB: 2824 case ISD::FMUL: 2825 case ISD::FDIV: 2826 case ISD::FREM: { 2827 SDValue Op0 = Op.getOperand(0); 2828 SDValue Op1 = Op.getOperand(1); 2829 2830 APInt UndefRHS, ZeroRHS; 2831 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2832 Depth + 1)) 2833 return true; 2834 APInt UndefLHS, ZeroLHS; 2835 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2836 Depth + 1)) 2837 return true; 2838 2839 KnownZero = ZeroLHS & ZeroRHS; 2840 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2841 2842 // Attempt to avoid multi-use ops if we don't need anything from them. 2843 // TODO - use KnownUndef to relax the demandedelts? 2844 if (!DemandedElts.isAllOnes()) 2845 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2846 return true; 2847 break; 2848 } 2849 case ISD::SHL: 2850 case ISD::SRL: 2851 case ISD::SRA: 2852 case ISD::ROTL: 2853 case ISD::ROTR: { 2854 SDValue Op0 = Op.getOperand(0); 2855 SDValue Op1 = Op.getOperand(1); 2856 2857 APInt UndefRHS, ZeroRHS; 2858 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2859 Depth + 1)) 2860 return true; 2861 APInt UndefLHS, ZeroLHS; 2862 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2863 Depth + 1)) 2864 return true; 2865 2866 KnownZero = ZeroLHS; 2867 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2868 2869 // Attempt to avoid multi-use ops if we don't need anything from them. 2870 // TODO - use KnownUndef to relax the demandedelts? 2871 if (!DemandedElts.isAllOnes()) 2872 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2873 return true; 2874 break; 2875 } 2876 case ISD::MUL: 2877 case ISD::AND: { 2878 SDValue Op0 = Op.getOperand(0); 2879 SDValue Op1 = Op.getOperand(1); 2880 2881 APInt SrcUndef, SrcZero; 2882 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2883 Depth + 1)) 2884 return true; 2885 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2886 TLO, Depth + 1)) 2887 return true; 2888 2889 // If either side has a zero element, then the result element is zero, even 2890 // if the other is an UNDEF. 2891 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2892 // and then handle 'and' nodes with the rest of the binop opcodes. 2893 KnownZero |= SrcZero; 2894 KnownUndef &= SrcUndef; 2895 KnownUndef &= ~KnownZero; 2896 2897 // Attempt to avoid multi-use ops if we don't need anything from them. 2898 // TODO - use KnownUndef to relax the demandedelts? 2899 if (!DemandedElts.isAllOnes()) 2900 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2901 return true; 2902 break; 2903 } 2904 case ISD::TRUNCATE: 2905 case ISD::SIGN_EXTEND: 2906 case ISD::ZERO_EXTEND: 2907 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2908 KnownZero, TLO, Depth + 1)) 2909 return true; 2910 2911 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2912 // zext(undef) upper bits are guaranteed to be zero. 2913 if (DemandedElts.isSubsetOf(KnownUndef)) 2914 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2915 KnownUndef.clearAllBits(); 2916 } 2917 break; 2918 default: { 2919 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2920 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2921 KnownZero, TLO, Depth)) 2922 return true; 2923 } else { 2924 KnownBits Known; 2925 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 2926 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2927 TLO, Depth, AssumeSingleUse)) 2928 return true; 2929 } 2930 break; 2931 } 2932 } 2933 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2934 2935 // Constant fold all undef cases. 2936 // TODO: Handle zero cases as well. 2937 if (DemandedElts.isSubsetOf(KnownUndef)) 2938 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2939 2940 return false; 2941 } 2942 2943 /// Determine which of the bits specified in Mask are known to be either zero or 2944 /// one and return them in the Known. 2945 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2946 KnownBits &Known, 2947 const APInt &DemandedElts, 2948 const SelectionDAG &DAG, 2949 unsigned Depth) const { 2950 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2951 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2952 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2953 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2954 "Should use MaskedValueIsZero if you don't know whether Op" 2955 " is a target node!"); 2956 Known.resetAll(); 2957 } 2958 2959 void TargetLowering::computeKnownBitsForTargetInstr( 2960 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2961 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2962 unsigned Depth) const { 2963 Known.resetAll(); 2964 } 2965 2966 void TargetLowering::computeKnownBitsForFrameIndex( 2967 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2968 // The low bits are known zero if the pointer is aligned. 2969 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2970 } 2971 2972 Align TargetLowering::computeKnownAlignForTargetInstr( 2973 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2974 unsigned Depth) const { 2975 return Align(1); 2976 } 2977 2978 /// This method can be implemented by targets that want to expose additional 2979 /// information about sign bits to the DAG Combiner. 2980 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2981 const APInt &, 2982 const SelectionDAG &, 2983 unsigned Depth) const { 2984 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2985 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2986 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2987 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2988 "Should use ComputeNumSignBits if you don't know whether Op" 2989 " is a target node!"); 2990 return 1; 2991 } 2992 2993 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2994 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2995 const MachineRegisterInfo &MRI, unsigned Depth) const { 2996 return 1; 2997 } 2998 2999 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3000 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3001 TargetLoweringOpt &TLO, unsigned Depth) const { 3002 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3003 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3004 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3005 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3006 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3007 " is a target node!"); 3008 return false; 3009 } 3010 3011 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3012 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3013 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3014 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3015 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3016 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3017 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3018 "Should use SimplifyDemandedBits if you don't know whether Op" 3019 " is a target node!"); 3020 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3021 return false; 3022 } 3023 3024 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3025 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3026 SelectionDAG &DAG, unsigned Depth) const { 3027 assert( 3028 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3029 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3030 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3031 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3032 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3033 " is a target node!"); 3034 return SDValue(); 3035 } 3036 3037 SDValue 3038 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3039 SDValue N1, MutableArrayRef<int> Mask, 3040 SelectionDAG &DAG) const { 3041 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3042 if (!LegalMask) { 3043 std::swap(N0, N1); 3044 ShuffleVectorSDNode::commuteMask(Mask); 3045 LegalMask = isShuffleMaskLegal(Mask, VT); 3046 } 3047 3048 if (!LegalMask) 3049 return SDValue(); 3050 3051 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3052 } 3053 3054 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3055 return nullptr; 3056 } 3057 3058 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3059 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3060 bool PoisonOnly, unsigned Depth) const { 3061 assert( 3062 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3063 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3064 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3065 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3066 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3067 " is a target node!"); 3068 return false; 3069 } 3070 3071 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3072 const SelectionDAG &DAG, 3073 bool SNaN, 3074 unsigned Depth) const { 3075 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3076 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3077 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3078 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3079 "Should use isKnownNeverNaN if you don't know whether Op" 3080 " is a target node!"); 3081 return false; 3082 } 3083 3084 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3085 // work with truncating build vectors and vectors with elements of less than 3086 // 8 bits. 3087 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3088 if (!N) 3089 return false; 3090 3091 APInt CVal; 3092 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3093 CVal = CN->getAPIntValue(); 3094 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3095 auto *CN = BV->getConstantSplatNode(); 3096 if (!CN) 3097 return false; 3098 3099 // If this is a truncating build vector, truncate the splat value. 3100 // Otherwise, we may fail to match the expected values below. 3101 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3102 CVal = CN->getAPIntValue(); 3103 if (BVEltWidth < CVal.getBitWidth()) 3104 CVal = CVal.trunc(BVEltWidth); 3105 } else { 3106 return false; 3107 } 3108 3109 switch (getBooleanContents(N->getValueType(0))) { 3110 case UndefinedBooleanContent: 3111 return CVal[0]; 3112 case ZeroOrOneBooleanContent: 3113 return CVal.isOne(); 3114 case ZeroOrNegativeOneBooleanContent: 3115 return CVal.isAllOnes(); 3116 } 3117 3118 llvm_unreachable("Invalid boolean contents"); 3119 } 3120 3121 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3122 if (!N) 3123 return false; 3124 3125 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3126 if (!CN) { 3127 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3128 if (!BV) 3129 return false; 3130 3131 // Only interested in constant splats, we don't care about undef 3132 // elements in identifying boolean constants and getConstantSplatNode 3133 // returns NULL if all ops are undef; 3134 CN = BV->getConstantSplatNode(); 3135 if (!CN) 3136 return false; 3137 } 3138 3139 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3140 return !CN->getAPIntValue()[0]; 3141 3142 return CN->isZero(); 3143 } 3144 3145 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3146 bool SExt) const { 3147 if (VT == MVT::i1) 3148 return N->isOne(); 3149 3150 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3151 switch (Cnt) { 3152 case TargetLowering::ZeroOrOneBooleanContent: 3153 // An extended value of 1 is always true, unless its original type is i1, 3154 // in which case it will be sign extended to -1. 3155 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3156 case TargetLowering::UndefinedBooleanContent: 3157 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3158 return N->isAllOnes() && SExt; 3159 } 3160 llvm_unreachable("Unexpected enumeration."); 3161 } 3162 3163 /// This helper function of SimplifySetCC tries to optimize the comparison when 3164 /// either operand of the SetCC node is a bitwise-and instruction. 3165 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3166 ISD::CondCode Cond, const SDLoc &DL, 3167 DAGCombinerInfo &DCI) const { 3168 // Match these patterns in any of their permutations: 3169 // (X & Y) == Y 3170 // (X & Y) != Y 3171 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3172 std::swap(N0, N1); 3173 3174 EVT OpVT = N0.getValueType(); 3175 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3176 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3177 return SDValue(); 3178 3179 SDValue X, Y; 3180 if (N0.getOperand(0) == N1) { 3181 X = N0.getOperand(1); 3182 Y = N0.getOperand(0); 3183 } else if (N0.getOperand(1) == N1) { 3184 X = N0.getOperand(0); 3185 Y = N0.getOperand(1); 3186 } else { 3187 return SDValue(); 3188 } 3189 3190 SelectionDAG &DAG = DCI.DAG; 3191 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3192 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3193 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3194 // Note that where Y is variable and is known to have at most one bit set 3195 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3196 // equivalent when Y == 0. 3197 assert(OpVT.isInteger()); 3198 Cond = ISD::getSetCCInverse(Cond, OpVT); 3199 if (DCI.isBeforeLegalizeOps() || 3200 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3201 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3202 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3203 // If the target supports an 'and-not' or 'and-complement' logic operation, 3204 // try to use that to make a comparison operation more efficient. 3205 // But don't do this transform if the mask is a single bit because there are 3206 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3207 // 'rlwinm' on PPC). 3208 3209 // Bail out if the compare operand that we want to turn into a zero is 3210 // already a zero (otherwise, infinite loop). 3211 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3212 if (YConst && YConst->isZero()) 3213 return SDValue(); 3214 3215 // Transform this into: ~X & Y == 0. 3216 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3217 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3218 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3219 } 3220 3221 return SDValue(); 3222 } 3223 3224 /// There are multiple IR patterns that could be checking whether certain 3225 /// truncation of a signed number would be lossy or not. The pattern which is 3226 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3227 /// We are looking for the following pattern: (KeptBits is a constant) 3228 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3229 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3230 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3231 /// We will unfold it into the natural trunc+sext pattern: 3232 /// ((%x << C) a>> C) dstcond %x 3233 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3234 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3235 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3236 const SDLoc &DL) const { 3237 // We must be comparing with a constant. 3238 ConstantSDNode *C1; 3239 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3240 return SDValue(); 3241 3242 // N0 should be: add %x, (1 << (KeptBits-1)) 3243 if (N0->getOpcode() != ISD::ADD) 3244 return SDValue(); 3245 3246 // And we must be 'add'ing a constant. 3247 ConstantSDNode *C01; 3248 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3249 return SDValue(); 3250 3251 SDValue X = N0->getOperand(0); 3252 EVT XVT = X.getValueType(); 3253 3254 // Validate constants ... 3255 3256 APInt I1 = C1->getAPIntValue(); 3257 3258 ISD::CondCode NewCond; 3259 if (Cond == ISD::CondCode::SETULT) { 3260 NewCond = ISD::CondCode::SETEQ; 3261 } else if (Cond == ISD::CondCode::SETULE) { 3262 NewCond = ISD::CondCode::SETEQ; 3263 // But need to 'canonicalize' the constant. 3264 I1 += 1; 3265 } else if (Cond == ISD::CondCode::SETUGT) { 3266 NewCond = ISD::CondCode::SETNE; 3267 // But need to 'canonicalize' the constant. 3268 I1 += 1; 3269 } else if (Cond == ISD::CondCode::SETUGE) { 3270 NewCond = ISD::CondCode::SETNE; 3271 } else 3272 return SDValue(); 3273 3274 APInt I01 = C01->getAPIntValue(); 3275 3276 auto checkConstants = [&I1, &I01]() -> bool { 3277 // Both of them must be power-of-two, and the constant from setcc is bigger. 3278 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3279 }; 3280 3281 if (checkConstants()) { 3282 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3283 } else { 3284 // What if we invert constants? (and the target predicate) 3285 I1.negate(); 3286 I01.negate(); 3287 assert(XVT.isInteger()); 3288 NewCond = getSetCCInverse(NewCond, XVT); 3289 if (!checkConstants()) 3290 return SDValue(); 3291 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3292 } 3293 3294 // They are power-of-two, so which bit is set? 3295 const unsigned KeptBits = I1.logBase2(); 3296 const unsigned KeptBitsMinusOne = I01.logBase2(); 3297 3298 // Magic! 3299 if (KeptBits != (KeptBitsMinusOne + 1)) 3300 return SDValue(); 3301 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3302 3303 // We don't want to do this in every single case. 3304 SelectionDAG &DAG = DCI.DAG; 3305 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3306 XVT, KeptBits)) 3307 return SDValue(); 3308 3309 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3310 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3311 3312 // Unfold into: ((%x << C) a>> C) cond %x 3313 // Where 'cond' will be either 'eq' or 'ne'. 3314 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3315 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3316 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3317 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3318 3319 return T2; 3320 } 3321 3322 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3323 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3324 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3325 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3326 assert(isConstOrConstSplat(N1C) && 3327 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3328 "Should be a comparison with 0."); 3329 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3330 "Valid only for [in]equality comparisons."); 3331 3332 unsigned NewShiftOpcode; 3333 SDValue X, C, Y; 3334 3335 SelectionDAG &DAG = DCI.DAG; 3336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3337 3338 // Look for '(C l>>/<< Y)'. 3339 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3340 // The shift should be one-use. 3341 if (!V.hasOneUse()) 3342 return false; 3343 unsigned OldShiftOpcode = V.getOpcode(); 3344 switch (OldShiftOpcode) { 3345 case ISD::SHL: 3346 NewShiftOpcode = ISD::SRL; 3347 break; 3348 case ISD::SRL: 3349 NewShiftOpcode = ISD::SHL; 3350 break; 3351 default: 3352 return false; // must be a logical shift. 3353 } 3354 // We should be shifting a constant. 3355 // FIXME: best to use isConstantOrConstantVector(). 3356 C = V.getOperand(0); 3357 ConstantSDNode *CC = 3358 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3359 if (!CC) 3360 return false; 3361 Y = V.getOperand(1); 3362 3363 ConstantSDNode *XC = 3364 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3365 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3366 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3367 }; 3368 3369 // LHS of comparison should be an one-use 'and'. 3370 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3371 return SDValue(); 3372 3373 X = N0.getOperand(0); 3374 SDValue Mask = N0.getOperand(1); 3375 3376 // 'and' is commutative! 3377 if (!Match(Mask)) { 3378 std::swap(X, Mask); 3379 if (!Match(Mask)) 3380 return SDValue(); 3381 } 3382 3383 EVT VT = X.getValueType(); 3384 3385 // Produce: 3386 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3387 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3388 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3389 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3390 return T2; 3391 } 3392 3393 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3394 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3395 /// handle the commuted versions of these patterns. 3396 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3397 ISD::CondCode Cond, const SDLoc &DL, 3398 DAGCombinerInfo &DCI) const { 3399 unsigned BOpcode = N0.getOpcode(); 3400 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3401 "Unexpected binop"); 3402 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3403 3404 // (X + Y) == X --> Y == 0 3405 // (X - Y) == X --> Y == 0 3406 // (X ^ Y) == X --> Y == 0 3407 SelectionDAG &DAG = DCI.DAG; 3408 EVT OpVT = N0.getValueType(); 3409 SDValue X = N0.getOperand(0); 3410 SDValue Y = N0.getOperand(1); 3411 if (X == N1) 3412 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3413 3414 if (Y != N1) 3415 return SDValue(); 3416 3417 // (X + Y) == Y --> X == 0 3418 // (X ^ Y) == Y --> X == 0 3419 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3420 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3421 3422 // The shift would not be valid if the operands are boolean (i1). 3423 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3424 return SDValue(); 3425 3426 // (X - Y) == Y --> X == Y << 1 3427 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3428 !DCI.isBeforeLegalize()); 3429 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3430 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3431 if (!DCI.isCalledByLegalizer()) 3432 DCI.AddToWorklist(YShl1.getNode()); 3433 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3434 } 3435 3436 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3437 SDValue N0, const APInt &C1, 3438 ISD::CondCode Cond, const SDLoc &dl, 3439 SelectionDAG &DAG) { 3440 // Look through truncs that don't change the value of a ctpop. 3441 // FIXME: Add vector support? Need to be careful with setcc result type below. 3442 SDValue CTPOP = N0; 3443 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3444 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3445 CTPOP = N0.getOperand(0); 3446 3447 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3448 return SDValue(); 3449 3450 EVT CTVT = CTPOP.getValueType(); 3451 SDValue CTOp = CTPOP.getOperand(0); 3452 3453 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3454 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3455 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3456 return SDValue(); 3457 3458 // (ctpop x) u< 2 -> (x & x-1) == 0 3459 // (ctpop x) u> 1 -> (x & x-1) != 0 3460 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3461 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3462 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3463 return SDValue(); 3464 if (C1 == 0 && (Cond == ISD::SETULT)) 3465 return SDValue(); // This is handled elsewhere. 3466 3467 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3468 3469 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3470 SDValue Result = CTOp; 3471 for (unsigned i = 0; i < Passes; i++) { 3472 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3473 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3474 } 3475 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3476 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3477 } 3478 3479 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3480 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3481 // For scalars, keep CTPOP if it is legal or custom. 3482 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3483 return SDValue(); 3484 // This is based on X86's custom lowering for CTPOP which produces more 3485 // instructions than the expansion here. 3486 3487 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3488 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3489 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3490 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3491 assert(CTVT.isInteger()); 3492 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3493 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3494 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3495 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3496 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3497 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3498 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3499 } 3500 3501 return SDValue(); 3502 } 3503 3504 /// Try to simplify a setcc built with the specified operands and cc. If it is 3505 /// unable to simplify it, return a null SDValue. 3506 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3507 ISD::CondCode Cond, bool foldBooleans, 3508 DAGCombinerInfo &DCI, 3509 const SDLoc &dl) const { 3510 SelectionDAG &DAG = DCI.DAG; 3511 const DataLayout &Layout = DAG.getDataLayout(); 3512 EVT OpVT = N0.getValueType(); 3513 3514 // Constant fold or commute setcc. 3515 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3516 return Fold; 3517 3518 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3519 // TODO: Handle non-splat vector constants. All undef causes trouble. 3520 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3521 // infinite loop here when we encounter one. 3522 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3523 if (isConstOrConstSplat(N0) && 3524 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3525 (DCI.isBeforeLegalizeOps() || 3526 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3527 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3528 3529 // If we have a subtract with the same 2 non-constant operands as this setcc 3530 // -- but in reverse order -- then try to commute the operands of this setcc 3531 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3532 // instruction on some targets. 3533 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3534 (DCI.isBeforeLegalizeOps() || 3535 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3536 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3537 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3538 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3539 3540 if (auto *N1C = isConstOrConstSplat(N1)) { 3541 const APInt &C1 = N1C->getAPIntValue(); 3542 3543 // Optimize some CTPOP cases. 3544 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3545 return V; 3546 3547 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3548 // equality comparison, then we're just comparing whether X itself is 3549 // zero. 3550 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3551 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3552 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3553 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3554 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3555 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3556 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3557 // (srl (ctlz x), 5) == 0 -> X != 0 3558 // (srl (ctlz x), 5) != 1 -> X != 0 3559 Cond = ISD::SETNE; 3560 } else { 3561 // (srl (ctlz x), 5) != 0 -> X == 0 3562 // (srl (ctlz x), 5) == 1 -> X == 0 3563 Cond = ISD::SETEQ; 3564 } 3565 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3566 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3567 Cond); 3568 } 3569 } 3570 } 3571 } 3572 3573 // FIXME: Support vectors. 3574 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3575 const APInt &C1 = N1C->getAPIntValue(); 3576 3577 // (zext x) == C --> x == (trunc C) 3578 // (sext x) == C --> x == (trunc C) 3579 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3580 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3581 unsigned MinBits = N0.getValueSizeInBits(); 3582 SDValue PreExt; 3583 bool Signed = false; 3584 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3585 // ZExt 3586 MinBits = N0->getOperand(0).getValueSizeInBits(); 3587 PreExt = N0->getOperand(0); 3588 } else if (N0->getOpcode() == ISD::AND) { 3589 // DAGCombine turns costly ZExts into ANDs 3590 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3591 if ((C->getAPIntValue()+1).isPowerOf2()) { 3592 MinBits = C->getAPIntValue().countTrailingOnes(); 3593 PreExt = N0->getOperand(0); 3594 } 3595 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3596 // SExt 3597 MinBits = N0->getOperand(0).getValueSizeInBits(); 3598 PreExt = N0->getOperand(0); 3599 Signed = true; 3600 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3601 // ZEXTLOAD / SEXTLOAD 3602 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3603 MinBits = LN0->getMemoryVT().getSizeInBits(); 3604 PreExt = N0; 3605 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3606 Signed = true; 3607 MinBits = LN0->getMemoryVT().getSizeInBits(); 3608 PreExt = N0; 3609 } 3610 } 3611 3612 // Figure out how many bits we need to preserve this constant. 3613 unsigned ReqdBits = Signed ? 3614 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3615 C1.getActiveBits(); 3616 3617 // Make sure we're not losing bits from the constant. 3618 if (MinBits > 0 && 3619 MinBits < C1.getBitWidth() && 3620 MinBits >= ReqdBits) { 3621 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3622 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3623 // Will get folded away. 3624 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3625 if (MinBits == 1 && C1 == 1) 3626 // Invert the condition. 3627 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3628 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3629 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3630 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3631 } 3632 3633 // If truncating the setcc operands is not desirable, we can still 3634 // simplify the expression in some cases: 3635 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3636 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3637 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3638 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3639 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3640 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3641 SDValue TopSetCC = N0->getOperand(0); 3642 unsigned N0Opc = N0->getOpcode(); 3643 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3644 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3645 TopSetCC.getOpcode() == ISD::SETCC && 3646 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3647 (isConstFalseVal(N1C) || 3648 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3649 3650 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3651 (!N1C->isZero() && Cond == ISD::SETNE); 3652 3653 if (!Inverse) 3654 return TopSetCC; 3655 3656 ISD::CondCode InvCond = ISD::getSetCCInverse( 3657 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3658 TopSetCC.getOperand(0).getValueType()); 3659 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3660 TopSetCC.getOperand(1), 3661 InvCond); 3662 } 3663 } 3664 } 3665 3666 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3667 // equality or unsigned, and all 1 bits of the const are in the same 3668 // partial word, see if we can shorten the load. 3669 if (DCI.isBeforeLegalize() && 3670 !ISD::isSignedIntSetCC(Cond) && 3671 N0.getOpcode() == ISD::AND && C1 == 0 && 3672 N0.getNode()->hasOneUse() && 3673 isa<LoadSDNode>(N0.getOperand(0)) && 3674 N0.getOperand(0).getNode()->hasOneUse() && 3675 isa<ConstantSDNode>(N0.getOperand(1))) { 3676 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3677 APInt bestMask; 3678 unsigned bestWidth = 0, bestOffset = 0; 3679 if (Lod->isSimple() && Lod->isUnindexed()) { 3680 unsigned origWidth = N0.getValueSizeInBits(); 3681 unsigned maskWidth = origWidth; 3682 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3683 // 8 bits, but have to be careful... 3684 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3685 origWidth = Lod->getMemoryVT().getSizeInBits(); 3686 const APInt &Mask = N0.getConstantOperandAPInt(1); 3687 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3688 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3689 for (unsigned offset=0; offset<origWidth/width; offset++) { 3690 if (Mask.isSubsetOf(newMask)) { 3691 if (Layout.isLittleEndian()) 3692 bestOffset = (uint64_t)offset * (width/8); 3693 else 3694 bestOffset = (origWidth/width - offset - 1) * (width/8); 3695 bestMask = Mask.lshr(offset * (width/8) * 8); 3696 bestWidth = width; 3697 break; 3698 } 3699 newMask <<= width; 3700 } 3701 } 3702 } 3703 if (bestWidth) { 3704 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3705 if (newVT.isRound() && 3706 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3707 SDValue Ptr = Lod->getBasePtr(); 3708 if (bestOffset != 0) 3709 Ptr = 3710 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3711 SDValue NewLoad = 3712 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3713 Lod->getPointerInfo().getWithOffset(bestOffset), 3714 Lod->getOriginalAlign()); 3715 return DAG.getSetCC(dl, VT, 3716 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3717 DAG.getConstant(bestMask.trunc(bestWidth), 3718 dl, newVT)), 3719 DAG.getConstant(0LL, dl, newVT), Cond); 3720 } 3721 } 3722 } 3723 3724 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3725 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3726 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3727 3728 // If the comparison constant has bits in the upper part, the 3729 // zero-extended value could never match. 3730 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3731 C1.getBitWidth() - InSize))) { 3732 switch (Cond) { 3733 case ISD::SETUGT: 3734 case ISD::SETUGE: 3735 case ISD::SETEQ: 3736 return DAG.getConstant(0, dl, VT); 3737 case ISD::SETULT: 3738 case ISD::SETULE: 3739 case ISD::SETNE: 3740 return DAG.getConstant(1, dl, VT); 3741 case ISD::SETGT: 3742 case ISD::SETGE: 3743 // True if the sign bit of C1 is set. 3744 return DAG.getConstant(C1.isNegative(), dl, VT); 3745 case ISD::SETLT: 3746 case ISD::SETLE: 3747 // True if the sign bit of C1 isn't set. 3748 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3749 default: 3750 break; 3751 } 3752 } 3753 3754 // Otherwise, we can perform the comparison with the low bits. 3755 switch (Cond) { 3756 case ISD::SETEQ: 3757 case ISD::SETNE: 3758 case ISD::SETUGT: 3759 case ISD::SETUGE: 3760 case ISD::SETULT: 3761 case ISD::SETULE: { 3762 EVT newVT = N0.getOperand(0).getValueType(); 3763 if (DCI.isBeforeLegalizeOps() || 3764 (isOperationLegal(ISD::SETCC, newVT) && 3765 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3766 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3767 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3768 3769 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3770 NewConst, Cond); 3771 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3772 } 3773 break; 3774 } 3775 default: 3776 break; // todo, be more careful with signed comparisons 3777 } 3778 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3779 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3780 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3781 OpVT)) { 3782 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3783 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3784 EVT ExtDstTy = N0.getValueType(); 3785 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3786 3787 // If the constant doesn't fit into the number of bits for the source of 3788 // the sign extension, it is impossible for both sides to be equal. 3789 if (C1.getMinSignedBits() > ExtSrcTyBits) 3790 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3791 3792 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3793 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3794 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3795 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3796 DAG.getConstant(Imm, dl, ExtDstTy)); 3797 if (!DCI.isCalledByLegalizer()) 3798 DCI.AddToWorklist(ZextOp.getNode()); 3799 // Otherwise, make this a use of a zext. 3800 return DAG.getSetCC(dl, VT, ZextOp, 3801 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3802 } else if ((N1C->isZero() || N1C->isOne()) && 3803 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3804 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3805 if (N0.getOpcode() == ISD::SETCC && 3806 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3807 (N0.getValueType() == MVT::i1 || 3808 getBooleanContents(N0.getOperand(0).getValueType()) == 3809 ZeroOrOneBooleanContent)) { 3810 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3811 if (TrueWhenTrue) 3812 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3813 // Invert the condition. 3814 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3815 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3816 if (DCI.isBeforeLegalizeOps() || 3817 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3818 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3819 } 3820 3821 if ((N0.getOpcode() == ISD::XOR || 3822 (N0.getOpcode() == ISD::AND && 3823 N0.getOperand(0).getOpcode() == ISD::XOR && 3824 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3825 isOneConstant(N0.getOperand(1))) { 3826 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3827 // can only do this if the top bits are known zero. 3828 unsigned BitWidth = N0.getValueSizeInBits(); 3829 if (DAG.MaskedValueIsZero(N0, 3830 APInt::getHighBitsSet(BitWidth, 3831 BitWidth-1))) { 3832 // Okay, get the un-inverted input value. 3833 SDValue Val; 3834 if (N0.getOpcode() == ISD::XOR) { 3835 Val = N0.getOperand(0); 3836 } else { 3837 assert(N0.getOpcode() == ISD::AND && 3838 N0.getOperand(0).getOpcode() == ISD::XOR); 3839 // ((X^1)&1)^1 -> X & 1 3840 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3841 N0.getOperand(0).getOperand(0), 3842 N0.getOperand(1)); 3843 } 3844 3845 return DAG.getSetCC(dl, VT, Val, N1, 3846 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3847 } 3848 } else if (N1C->isOne()) { 3849 SDValue Op0 = N0; 3850 if (Op0.getOpcode() == ISD::TRUNCATE) 3851 Op0 = Op0.getOperand(0); 3852 3853 if ((Op0.getOpcode() == ISD::XOR) && 3854 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3855 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3856 SDValue XorLHS = Op0.getOperand(0); 3857 SDValue XorRHS = Op0.getOperand(1); 3858 // Ensure that the input setccs return an i1 type or 0/1 value. 3859 if (Op0.getValueType() == MVT::i1 || 3860 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3861 ZeroOrOneBooleanContent && 3862 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3863 ZeroOrOneBooleanContent)) { 3864 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3865 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3866 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3867 } 3868 } 3869 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3870 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3871 if (Op0.getValueType().bitsGT(VT)) 3872 Op0 = DAG.getNode(ISD::AND, dl, VT, 3873 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3874 DAG.getConstant(1, dl, VT)); 3875 else if (Op0.getValueType().bitsLT(VT)) 3876 Op0 = DAG.getNode(ISD::AND, dl, VT, 3877 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3878 DAG.getConstant(1, dl, VT)); 3879 3880 return DAG.getSetCC(dl, VT, Op0, 3881 DAG.getConstant(0, dl, Op0.getValueType()), 3882 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3883 } 3884 if (Op0.getOpcode() == ISD::AssertZext && 3885 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3886 return DAG.getSetCC(dl, VT, Op0, 3887 DAG.getConstant(0, dl, Op0.getValueType()), 3888 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3889 } 3890 } 3891 3892 // Given: 3893 // icmp eq/ne (urem %x, %y), 0 3894 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3895 // icmp eq/ne %x, 0 3896 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 3897 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3898 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3899 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3900 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3901 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3902 } 3903 3904 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3905 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3906 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3907 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3908 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 3909 N1C && N1C->isAllOnes()) { 3910 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3911 DAG.getConstant(0, dl, OpVT), 3912 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 3913 } 3914 3915 if (SDValue V = 3916 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3917 return V; 3918 } 3919 3920 // These simplifications apply to splat vectors as well. 3921 // TODO: Handle more splat vector cases. 3922 if (auto *N1C = isConstOrConstSplat(N1)) { 3923 const APInt &C1 = N1C->getAPIntValue(); 3924 3925 APInt MinVal, MaxVal; 3926 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3927 if (ISD::isSignedIntSetCC(Cond)) { 3928 MinVal = APInt::getSignedMinValue(OperandBitSize); 3929 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3930 } else { 3931 MinVal = APInt::getMinValue(OperandBitSize); 3932 MaxVal = APInt::getMaxValue(OperandBitSize); 3933 } 3934 3935 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3936 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3937 // X >= MIN --> true 3938 if (C1 == MinVal) 3939 return DAG.getBoolConstant(true, dl, VT, OpVT); 3940 3941 if (!VT.isVector()) { // TODO: Support this for vectors. 3942 // X >= C0 --> X > (C0 - 1) 3943 APInt C = C1 - 1; 3944 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3945 if ((DCI.isBeforeLegalizeOps() || 3946 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3947 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3948 isLegalICmpImmediate(C.getSExtValue())))) { 3949 return DAG.getSetCC(dl, VT, N0, 3950 DAG.getConstant(C, dl, N1.getValueType()), 3951 NewCC); 3952 } 3953 } 3954 } 3955 3956 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3957 // X <= MAX --> true 3958 if (C1 == MaxVal) 3959 return DAG.getBoolConstant(true, dl, VT, OpVT); 3960 3961 // X <= C0 --> X < (C0 + 1) 3962 if (!VT.isVector()) { // TODO: Support this for vectors. 3963 APInt C = C1 + 1; 3964 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3965 if ((DCI.isBeforeLegalizeOps() || 3966 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3967 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3968 isLegalICmpImmediate(C.getSExtValue())))) { 3969 return DAG.getSetCC(dl, VT, N0, 3970 DAG.getConstant(C, dl, N1.getValueType()), 3971 NewCC); 3972 } 3973 } 3974 } 3975 3976 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3977 if (C1 == MinVal) 3978 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3979 3980 // TODO: Support this for vectors after legalize ops. 3981 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3982 // Canonicalize setlt X, Max --> setne X, Max 3983 if (C1 == MaxVal) 3984 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3985 3986 // If we have setult X, 1, turn it into seteq X, 0 3987 if (C1 == MinVal+1) 3988 return DAG.getSetCC(dl, VT, N0, 3989 DAG.getConstant(MinVal, dl, N0.getValueType()), 3990 ISD::SETEQ); 3991 } 3992 } 3993 3994 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3995 if (C1 == MaxVal) 3996 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3997 3998 // TODO: Support this for vectors after legalize ops. 3999 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4000 // Canonicalize setgt X, Min --> setne X, Min 4001 if (C1 == MinVal) 4002 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4003 4004 // If we have setugt X, Max-1, turn it into seteq X, Max 4005 if (C1 == MaxVal-1) 4006 return DAG.getSetCC(dl, VT, N0, 4007 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4008 ISD::SETEQ); 4009 } 4010 } 4011 4012 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4013 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4014 if (C1.isZero()) 4015 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4016 VT, N0, N1, Cond, DCI, dl)) 4017 return CC; 4018 4019 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4020 // For example, when high 32-bits of i64 X are known clear: 4021 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4022 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4023 bool CmpZero = N1C->getAPIntValue().isZero(); 4024 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4025 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4026 // Match or(lo,shl(hi,bw/2)) pattern. 4027 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4028 unsigned EltBits = V.getScalarValueSizeInBits(); 4029 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4030 return false; 4031 SDValue LHS = V.getOperand(0); 4032 SDValue RHS = V.getOperand(1); 4033 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4034 // Unshifted element must have zero upperbits. 4035 if (RHS.getOpcode() == ISD::SHL && 4036 isa<ConstantSDNode>(RHS.getOperand(1)) && 4037 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4038 DAG.MaskedValueIsZero(LHS, HiBits)) { 4039 Lo = LHS; 4040 Hi = RHS.getOperand(0); 4041 return true; 4042 } 4043 if (LHS.getOpcode() == ISD::SHL && 4044 isa<ConstantSDNode>(LHS.getOperand(1)) && 4045 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4046 DAG.MaskedValueIsZero(RHS, HiBits)) { 4047 Lo = RHS; 4048 Hi = LHS.getOperand(0); 4049 return true; 4050 } 4051 return false; 4052 }; 4053 4054 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4055 unsigned EltBits = N0.getScalarValueSizeInBits(); 4056 unsigned HalfBits = EltBits / 2; 4057 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4058 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4059 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4060 SDValue NewN0 = 4061 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4062 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4063 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4064 }; 4065 4066 SDValue Lo, Hi; 4067 if (IsConcat(N0, Lo, Hi)) 4068 return MergeConcat(Lo, Hi); 4069 4070 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4071 SDValue Lo0, Lo1, Hi0, Hi1; 4072 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4073 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4074 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4075 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4076 } 4077 } 4078 } 4079 } 4080 4081 // If we have "setcc X, C0", check to see if we can shrink the immediate 4082 // by changing cc. 4083 // TODO: Support this for vectors after legalize ops. 4084 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4085 // SETUGT X, SINTMAX -> SETLT X, 0 4086 // SETUGE X, SINTMIN -> SETLT X, 0 4087 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4088 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4089 return DAG.getSetCC(dl, VT, N0, 4090 DAG.getConstant(0, dl, N1.getValueType()), 4091 ISD::SETLT); 4092 4093 // SETULT X, SINTMIN -> SETGT X, -1 4094 // SETULE X, SINTMAX -> SETGT X, -1 4095 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4096 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4097 return DAG.getSetCC(dl, VT, N0, 4098 DAG.getAllOnesConstant(dl, N1.getValueType()), 4099 ISD::SETGT); 4100 } 4101 } 4102 4103 // Back to non-vector simplifications. 4104 // TODO: Can we do these for vector splats? 4105 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4107 const APInt &C1 = N1C->getAPIntValue(); 4108 EVT ShValTy = N0.getValueType(); 4109 4110 // Fold bit comparisons when we can. This will result in an 4111 // incorrect value when boolean false is negative one, unless 4112 // the bitsize is 1 in which case the false value is the same 4113 // in practice regardless of the representation. 4114 if ((VT.getSizeInBits() == 1 || 4115 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4116 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4117 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4118 N0.getOpcode() == ISD::AND) { 4119 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4120 EVT ShiftTy = 4121 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4122 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4123 // Perform the xform if the AND RHS is a single bit. 4124 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4125 if (AndRHS->getAPIntValue().isPowerOf2() && 4126 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4127 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4128 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4129 DAG.getConstant(ShCt, dl, ShiftTy))); 4130 } 4131 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4132 // (X & 8) == 8 --> (X & 8) >> 3 4133 // Perform the xform if C1 is a single bit. 4134 unsigned ShCt = C1.logBase2(); 4135 if (C1.isPowerOf2() && 4136 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4137 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4138 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4139 DAG.getConstant(ShCt, dl, ShiftTy))); 4140 } 4141 } 4142 } 4143 } 4144 4145 if (C1.getMinSignedBits() <= 64 && 4146 !isLegalICmpImmediate(C1.getSExtValue())) { 4147 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4148 // (X & -256) == 256 -> (X >> 8) == 1 4149 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4150 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4151 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4152 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4153 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4154 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4155 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4156 SDValue Shift = 4157 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4158 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4159 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4160 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4161 } 4162 } 4163 } 4164 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4165 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4166 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4167 // X < 0x100000000 -> (X >> 32) < 1 4168 // X >= 0x100000000 -> (X >> 32) >= 1 4169 // X <= 0x0ffffffff -> (X >> 32) < 1 4170 // X > 0x0ffffffff -> (X >> 32) >= 1 4171 unsigned ShiftBits; 4172 APInt NewC = C1; 4173 ISD::CondCode NewCond = Cond; 4174 if (AdjOne) { 4175 ShiftBits = C1.countTrailingOnes(); 4176 NewC = NewC + 1; 4177 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4178 } else { 4179 ShiftBits = C1.countTrailingZeros(); 4180 } 4181 NewC.lshrInPlace(ShiftBits); 4182 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4183 isLegalICmpImmediate(NewC.getSExtValue()) && 4184 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4185 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4186 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4187 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4188 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4189 } 4190 } 4191 } 4192 } 4193 4194 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4195 auto *CFP = cast<ConstantFPSDNode>(N1); 4196 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4197 4198 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4199 // constant if knowing that the operand is non-nan is enough. We prefer to 4200 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4201 // materialize 0.0. 4202 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4203 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4204 4205 // setcc (fneg x), C -> setcc swap(pred) x, -C 4206 if (N0.getOpcode() == ISD::FNEG) { 4207 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4208 if (DCI.isBeforeLegalizeOps() || 4209 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4210 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4211 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4212 } 4213 } 4214 4215 // If the condition is not legal, see if we can find an equivalent one 4216 // which is legal. 4217 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4218 // If the comparison was an awkward floating-point == or != and one of 4219 // the comparison operands is infinity or negative infinity, convert the 4220 // condition to a less-awkward <= or >=. 4221 if (CFP->getValueAPF().isInfinity()) { 4222 bool IsNegInf = CFP->getValueAPF().isNegative(); 4223 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4224 switch (Cond) { 4225 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4226 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4227 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4228 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4229 default: break; 4230 } 4231 if (NewCond != ISD::SETCC_INVALID && 4232 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4233 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4234 } 4235 } 4236 } 4237 4238 if (N0 == N1) { 4239 // The sext(setcc()) => setcc() optimization relies on the appropriate 4240 // constant being emitted. 4241 assert(!N0.getValueType().isInteger() && 4242 "Integer types should be handled by FoldSetCC"); 4243 4244 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4245 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4246 if (UOF == 2) // FP operators that are undefined on NaNs. 4247 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4248 if (UOF == unsigned(EqTrue)) 4249 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4250 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4251 // if it is not already. 4252 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4253 if (NewCond != Cond && 4254 (DCI.isBeforeLegalizeOps() || 4255 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4256 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4257 } 4258 4259 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4260 N0.getValueType().isInteger()) { 4261 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4262 N0.getOpcode() == ISD::XOR) { 4263 // Simplify (X+Y) == (X+Z) --> Y == Z 4264 if (N0.getOpcode() == N1.getOpcode()) { 4265 if (N0.getOperand(0) == N1.getOperand(0)) 4266 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4267 if (N0.getOperand(1) == N1.getOperand(1)) 4268 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4269 if (isCommutativeBinOp(N0.getOpcode())) { 4270 // If X op Y == Y op X, try other combinations. 4271 if (N0.getOperand(0) == N1.getOperand(1)) 4272 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4273 Cond); 4274 if (N0.getOperand(1) == N1.getOperand(0)) 4275 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4276 Cond); 4277 } 4278 } 4279 4280 // If RHS is a legal immediate value for a compare instruction, we need 4281 // to be careful about increasing register pressure needlessly. 4282 bool LegalRHSImm = false; 4283 4284 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4285 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4286 // Turn (X+C1) == C2 --> X == C2-C1 4287 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4288 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4289 DAG.getConstant(RHSC->getAPIntValue()- 4290 LHSR->getAPIntValue(), 4291 dl, N0.getValueType()), Cond); 4292 } 4293 4294 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4295 if (N0.getOpcode() == ISD::XOR) 4296 // If we know that all of the inverted bits are zero, don't bother 4297 // performing the inversion. 4298 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4299 return 4300 DAG.getSetCC(dl, VT, N0.getOperand(0), 4301 DAG.getConstant(LHSR->getAPIntValue() ^ 4302 RHSC->getAPIntValue(), 4303 dl, N0.getValueType()), 4304 Cond); 4305 } 4306 4307 // Turn (C1-X) == C2 --> X == C1-C2 4308 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4309 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4310 return 4311 DAG.getSetCC(dl, VT, N0.getOperand(1), 4312 DAG.getConstant(SUBC->getAPIntValue() - 4313 RHSC->getAPIntValue(), 4314 dl, N0.getValueType()), 4315 Cond); 4316 } 4317 } 4318 4319 // Could RHSC fold directly into a compare? 4320 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4321 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4322 } 4323 4324 // (X+Y) == X --> Y == 0 and similar folds. 4325 // Don't do this if X is an immediate that can fold into a cmp 4326 // instruction and X+Y has other uses. It could be an induction variable 4327 // chain, and the transform would increase register pressure. 4328 if (!LegalRHSImm || N0.hasOneUse()) 4329 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4330 return V; 4331 } 4332 4333 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4334 N1.getOpcode() == ISD::XOR) 4335 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4336 return V; 4337 4338 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4339 return V; 4340 } 4341 4342 // Fold remainder of division by a constant. 4343 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4344 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4345 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4346 4347 // When division is cheap or optimizing for minimum size, 4348 // fall through to DIVREM creation by skipping this fold. 4349 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4350 if (N0.getOpcode() == ISD::UREM) { 4351 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4352 return Folded; 4353 } else if (N0.getOpcode() == ISD::SREM) { 4354 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4355 return Folded; 4356 } 4357 } 4358 } 4359 4360 // Fold away ALL boolean setcc's. 4361 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4362 SDValue Temp; 4363 switch (Cond) { 4364 default: llvm_unreachable("Unknown integer setcc!"); 4365 case ISD::SETEQ: // X == Y -> ~(X^Y) 4366 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4367 N0 = DAG.getNOT(dl, Temp, OpVT); 4368 if (!DCI.isCalledByLegalizer()) 4369 DCI.AddToWorklist(Temp.getNode()); 4370 break; 4371 case ISD::SETNE: // X != Y --> (X^Y) 4372 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4373 break; 4374 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4375 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4376 Temp = DAG.getNOT(dl, N0, OpVT); 4377 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4378 if (!DCI.isCalledByLegalizer()) 4379 DCI.AddToWorklist(Temp.getNode()); 4380 break; 4381 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4382 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4383 Temp = DAG.getNOT(dl, N1, OpVT); 4384 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4385 if (!DCI.isCalledByLegalizer()) 4386 DCI.AddToWorklist(Temp.getNode()); 4387 break; 4388 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4389 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4390 Temp = DAG.getNOT(dl, N0, OpVT); 4391 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4392 if (!DCI.isCalledByLegalizer()) 4393 DCI.AddToWorklist(Temp.getNode()); 4394 break; 4395 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4396 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4397 Temp = DAG.getNOT(dl, N1, OpVT); 4398 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4399 break; 4400 } 4401 if (VT.getScalarType() != MVT::i1) { 4402 if (!DCI.isCalledByLegalizer()) 4403 DCI.AddToWorklist(N0.getNode()); 4404 // FIXME: If running after legalize, we probably can't do this. 4405 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4406 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4407 } 4408 return N0; 4409 } 4410 4411 // Could not fold it. 4412 return SDValue(); 4413 } 4414 4415 /// Returns true (and the GlobalValue and the offset) if the node is a 4416 /// GlobalAddress + offset. 4417 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4418 int64_t &Offset) const { 4419 4420 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4421 4422 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4423 GA = GASD->getGlobal(); 4424 Offset += GASD->getOffset(); 4425 return true; 4426 } 4427 4428 if (N->getOpcode() == ISD::ADD) { 4429 SDValue N1 = N->getOperand(0); 4430 SDValue N2 = N->getOperand(1); 4431 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4432 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4433 Offset += V->getSExtValue(); 4434 return true; 4435 } 4436 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4437 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4438 Offset += V->getSExtValue(); 4439 return true; 4440 } 4441 } 4442 } 4443 4444 return false; 4445 } 4446 4447 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4448 DAGCombinerInfo &DCI) const { 4449 // Default implementation: no optimization. 4450 return SDValue(); 4451 } 4452 4453 //===----------------------------------------------------------------------===// 4454 // Inline Assembler Implementation Methods 4455 //===----------------------------------------------------------------------===// 4456 4457 TargetLowering::ConstraintType 4458 TargetLowering::getConstraintType(StringRef Constraint) const { 4459 unsigned S = Constraint.size(); 4460 4461 if (S == 1) { 4462 switch (Constraint[0]) { 4463 default: break; 4464 case 'r': 4465 return C_RegisterClass; 4466 case 'm': // memory 4467 case 'o': // offsetable 4468 case 'V': // not offsetable 4469 return C_Memory; 4470 case 'n': // Simple Integer 4471 case 'E': // Floating Point Constant 4472 case 'F': // Floating Point Constant 4473 return C_Immediate; 4474 case 'i': // Simple Integer or Relocatable Constant 4475 case 's': // Relocatable Constant 4476 case 'p': // Address. 4477 case 'X': // Allow ANY value. 4478 case 'I': // Target registers. 4479 case 'J': 4480 case 'K': 4481 case 'L': 4482 case 'M': 4483 case 'N': 4484 case 'O': 4485 case 'P': 4486 case '<': 4487 case '>': 4488 return C_Other; 4489 } 4490 } 4491 4492 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4493 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4494 return C_Memory; 4495 return C_Register; 4496 } 4497 return C_Unknown; 4498 } 4499 4500 /// Try to replace an X constraint, which matches anything, with another that 4501 /// has more specific requirements based on the type of the corresponding 4502 /// operand. 4503 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4504 if (ConstraintVT.isInteger()) 4505 return "r"; 4506 if (ConstraintVT.isFloatingPoint()) 4507 return "f"; // works for many targets 4508 return nullptr; 4509 } 4510 4511 SDValue TargetLowering::LowerAsmOutputForConstraint( 4512 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4513 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4514 return SDValue(); 4515 } 4516 4517 /// Lower the specified operand into the Ops vector. 4518 /// If it is invalid, don't add anything to Ops. 4519 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4520 std::string &Constraint, 4521 std::vector<SDValue> &Ops, 4522 SelectionDAG &DAG) const { 4523 4524 if (Constraint.length() > 1) return; 4525 4526 char ConstraintLetter = Constraint[0]; 4527 switch (ConstraintLetter) { 4528 default: break; 4529 case 'X': // Allows any operand; labels (basic block) use this. 4530 if (Op.getOpcode() == ISD::BasicBlock || 4531 Op.getOpcode() == ISD::TargetBlockAddress) { 4532 Ops.push_back(Op); 4533 return; 4534 } 4535 LLVM_FALLTHROUGH; 4536 case 'i': // Simple Integer or Relocatable Constant 4537 case 'n': // Simple Integer 4538 case 's': { // Relocatable Constant 4539 4540 GlobalAddressSDNode *GA; 4541 ConstantSDNode *C; 4542 BlockAddressSDNode *BA; 4543 uint64_t Offset = 0; 4544 4545 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4546 // etc., since getelementpointer is variadic. We can't use 4547 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4548 // while in this case the GA may be furthest from the root node which is 4549 // likely an ISD::ADD. 4550 while (1) { 4551 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4552 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4553 GA->getValueType(0), 4554 Offset + GA->getOffset())); 4555 return; 4556 } 4557 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4558 // gcc prints these as sign extended. Sign extend value to 64 bits 4559 // now; without this it would get ZExt'd later in 4560 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4561 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4562 BooleanContent BCont = getBooleanContents(MVT::i64); 4563 ISD::NodeType ExtOpc = 4564 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4565 int64_t ExtVal = 4566 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4567 Ops.push_back( 4568 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4569 return; 4570 } 4571 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4572 Ops.push_back(DAG.getTargetBlockAddress( 4573 BA->getBlockAddress(), BA->getValueType(0), 4574 Offset + BA->getOffset(), BA->getTargetFlags())); 4575 return; 4576 } 4577 const unsigned OpCode = Op.getOpcode(); 4578 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4579 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4580 Op = Op.getOperand(1); 4581 // Subtraction is not commutative. 4582 else if (OpCode == ISD::ADD && 4583 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4584 Op = Op.getOperand(0); 4585 else 4586 return; 4587 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4588 continue; 4589 } 4590 return; 4591 } 4592 break; 4593 } 4594 } 4595 } 4596 4597 std::pair<unsigned, const TargetRegisterClass *> 4598 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4599 StringRef Constraint, 4600 MVT VT) const { 4601 if (Constraint.empty() || Constraint[0] != '{') 4602 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4603 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4604 4605 // Remove the braces from around the name. 4606 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4607 4608 std::pair<unsigned, const TargetRegisterClass *> R = 4609 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4610 4611 // Figure out which register class contains this reg. 4612 for (const TargetRegisterClass *RC : RI->regclasses()) { 4613 // If none of the value types for this register class are valid, we 4614 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4615 if (!isLegalRC(*RI, *RC)) 4616 continue; 4617 4618 for (const MCPhysReg &PR : *RC) { 4619 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4620 std::pair<unsigned, const TargetRegisterClass *> S = 4621 std::make_pair(PR, RC); 4622 4623 // If this register class has the requested value type, return it, 4624 // otherwise keep searching and return the first class found 4625 // if no other is found which explicitly has the requested type. 4626 if (RI->isTypeLegalForClass(*RC, VT)) 4627 return S; 4628 if (!R.second) 4629 R = S; 4630 } 4631 } 4632 } 4633 4634 return R; 4635 } 4636 4637 //===----------------------------------------------------------------------===// 4638 // Constraint Selection. 4639 4640 /// Return true of this is an input operand that is a matching constraint like 4641 /// "4". 4642 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4643 assert(!ConstraintCode.empty() && "No known constraint!"); 4644 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4645 } 4646 4647 /// If this is an input matching constraint, this method returns the output 4648 /// operand it matches. 4649 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4650 assert(!ConstraintCode.empty() && "No known constraint!"); 4651 return atoi(ConstraintCode.c_str()); 4652 } 4653 4654 /// Split up the constraint string from the inline assembly value into the 4655 /// specific constraints and their prefixes, and also tie in the associated 4656 /// operand values. 4657 /// If this returns an empty vector, and if the constraint string itself 4658 /// isn't empty, there was an error parsing. 4659 TargetLowering::AsmOperandInfoVector 4660 TargetLowering::ParseConstraints(const DataLayout &DL, 4661 const TargetRegisterInfo *TRI, 4662 const CallBase &Call) const { 4663 /// Information about all of the constraints. 4664 AsmOperandInfoVector ConstraintOperands; 4665 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4666 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4667 4668 // Do a prepass over the constraints, canonicalizing them, and building up the 4669 // ConstraintOperands list. 4670 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4671 unsigned ResNo = 0; // ResNo - The result number of the next output. 4672 4673 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4674 ConstraintOperands.emplace_back(std::move(CI)); 4675 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4676 4677 // Update multiple alternative constraint count. 4678 if (OpInfo.multipleAlternatives.size() > maCount) 4679 maCount = OpInfo.multipleAlternatives.size(); 4680 4681 OpInfo.ConstraintVT = MVT::Other; 4682 4683 // Compute the value type for each operand. 4684 switch (OpInfo.Type) { 4685 case InlineAsm::isOutput: 4686 // Indirect outputs just consume an argument. 4687 if (OpInfo.isIndirect) { 4688 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4689 break; 4690 } 4691 4692 // The return value of the call is this value. As such, there is no 4693 // corresponding argument. 4694 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4695 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4696 OpInfo.ConstraintVT = 4697 getSimpleValueType(DL, STy->getElementType(ResNo)); 4698 } else { 4699 assert(ResNo == 0 && "Asm only has one result!"); 4700 OpInfo.ConstraintVT = 4701 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4702 } 4703 ++ResNo; 4704 break; 4705 case InlineAsm::isInput: 4706 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4707 break; 4708 case InlineAsm::isClobber: 4709 // Nothing to do. 4710 break; 4711 } 4712 4713 if (OpInfo.CallOperandVal) { 4714 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4715 if (OpInfo.isIndirect) { 4716 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4717 if (!PtrTy) 4718 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4719 OpTy = PtrTy->getElementType(); 4720 } 4721 4722 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4723 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4724 if (STy->getNumElements() == 1) 4725 OpTy = STy->getElementType(0); 4726 4727 // If OpTy is not a single value, it may be a struct/union that we 4728 // can tile with integers. 4729 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4730 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4731 switch (BitSize) { 4732 default: break; 4733 case 1: 4734 case 8: 4735 case 16: 4736 case 32: 4737 case 64: 4738 case 128: 4739 OpInfo.ConstraintVT = 4740 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4741 break; 4742 } 4743 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4744 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4745 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4746 } else { 4747 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4748 } 4749 } 4750 } 4751 4752 // If we have multiple alternative constraints, select the best alternative. 4753 if (!ConstraintOperands.empty()) { 4754 if (maCount) { 4755 unsigned bestMAIndex = 0; 4756 int bestWeight = -1; 4757 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4758 int weight = -1; 4759 unsigned maIndex; 4760 // Compute the sums of the weights for each alternative, keeping track 4761 // of the best (highest weight) one so far. 4762 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4763 int weightSum = 0; 4764 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4765 cIndex != eIndex; ++cIndex) { 4766 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4767 if (OpInfo.Type == InlineAsm::isClobber) 4768 continue; 4769 4770 // If this is an output operand with a matching input operand, 4771 // look up the matching input. If their types mismatch, e.g. one 4772 // is an integer, the other is floating point, or their sizes are 4773 // different, flag it as an maCantMatch. 4774 if (OpInfo.hasMatchingInput()) { 4775 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4776 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4777 if ((OpInfo.ConstraintVT.isInteger() != 4778 Input.ConstraintVT.isInteger()) || 4779 (OpInfo.ConstraintVT.getSizeInBits() != 4780 Input.ConstraintVT.getSizeInBits())) { 4781 weightSum = -1; // Can't match. 4782 break; 4783 } 4784 } 4785 } 4786 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4787 if (weight == -1) { 4788 weightSum = -1; 4789 break; 4790 } 4791 weightSum += weight; 4792 } 4793 // Update best. 4794 if (weightSum > bestWeight) { 4795 bestWeight = weightSum; 4796 bestMAIndex = maIndex; 4797 } 4798 } 4799 4800 // Now select chosen alternative in each constraint. 4801 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4802 cIndex != eIndex; ++cIndex) { 4803 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4804 if (cInfo.Type == InlineAsm::isClobber) 4805 continue; 4806 cInfo.selectAlternative(bestMAIndex); 4807 } 4808 } 4809 } 4810 4811 // Check and hook up tied operands, choose constraint code to use. 4812 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4813 cIndex != eIndex; ++cIndex) { 4814 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4815 4816 // If this is an output operand with a matching input operand, look up the 4817 // matching input. If their types mismatch, e.g. one is an integer, the 4818 // other is floating point, or their sizes are different, flag it as an 4819 // error. 4820 if (OpInfo.hasMatchingInput()) { 4821 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4822 4823 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4824 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4825 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4826 OpInfo.ConstraintVT); 4827 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4828 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4829 Input.ConstraintVT); 4830 if ((OpInfo.ConstraintVT.isInteger() != 4831 Input.ConstraintVT.isInteger()) || 4832 (MatchRC.second != InputRC.second)) { 4833 report_fatal_error("Unsupported asm: input constraint" 4834 " with a matching output constraint of" 4835 " incompatible type!"); 4836 } 4837 } 4838 } 4839 } 4840 4841 return ConstraintOperands; 4842 } 4843 4844 /// Return an integer indicating how general CT is. 4845 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4846 switch (CT) { 4847 case TargetLowering::C_Immediate: 4848 case TargetLowering::C_Other: 4849 case TargetLowering::C_Unknown: 4850 return 0; 4851 case TargetLowering::C_Register: 4852 return 1; 4853 case TargetLowering::C_RegisterClass: 4854 return 2; 4855 case TargetLowering::C_Memory: 4856 return 3; 4857 } 4858 llvm_unreachable("Invalid constraint type"); 4859 } 4860 4861 /// Examine constraint type and operand type and determine a weight value. 4862 /// This object must already have been set up with the operand type 4863 /// and the current alternative constraint selected. 4864 TargetLowering::ConstraintWeight 4865 TargetLowering::getMultipleConstraintMatchWeight( 4866 AsmOperandInfo &info, int maIndex) const { 4867 InlineAsm::ConstraintCodeVector *rCodes; 4868 if (maIndex >= (int)info.multipleAlternatives.size()) 4869 rCodes = &info.Codes; 4870 else 4871 rCodes = &info.multipleAlternatives[maIndex].Codes; 4872 ConstraintWeight BestWeight = CW_Invalid; 4873 4874 // Loop over the options, keeping track of the most general one. 4875 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4876 ConstraintWeight weight = 4877 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4878 if (weight > BestWeight) 4879 BestWeight = weight; 4880 } 4881 4882 return BestWeight; 4883 } 4884 4885 /// Examine constraint type and operand type and determine a weight value. 4886 /// This object must already have been set up with the operand type 4887 /// and the current alternative constraint selected. 4888 TargetLowering::ConstraintWeight 4889 TargetLowering::getSingleConstraintMatchWeight( 4890 AsmOperandInfo &info, const char *constraint) const { 4891 ConstraintWeight weight = CW_Invalid; 4892 Value *CallOperandVal = info.CallOperandVal; 4893 // If we don't have a value, we can't do a match, 4894 // but allow it at the lowest weight. 4895 if (!CallOperandVal) 4896 return CW_Default; 4897 // Look at the constraint type. 4898 switch (*constraint) { 4899 case 'i': // immediate integer. 4900 case 'n': // immediate integer with a known value. 4901 if (isa<ConstantInt>(CallOperandVal)) 4902 weight = CW_Constant; 4903 break; 4904 case 's': // non-explicit intregal immediate. 4905 if (isa<GlobalValue>(CallOperandVal)) 4906 weight = CW_Constant; 4907 break; 4908 case 'E': // immediate float if host format. 4909 case 'F': // immediate float. 4910 if (isa<ConstantFP>(CallOperandVal)) 4911 weight = CW_Constant; 4912 break; 4913 case '<': // memory operand with autodecrement. 4914 case '>': // memory operand with autoincrement. 4915 case 'm': // memory operand. 4916 case 'o': // offsettable memory operand 4917 case 'V': // non-offsettable memory operand 4918 weight = CW_Memory; 4919 break; 4920 case 'r': // general register. 4921 case 'g': // general register, memory operand or immediate integer. 4922 // note: Clang converts "g" to "imr". 4923 if (CallOperandVal->getType()->isIntegerTy()) 4924 weight = CW_Register; 4925 break; 4926 case 'X': // any operand. 4927 default: 4928 weight = CW_Default; 4929 break; 4930 } 4931 return weight; 4932 } 4933 4934 /// If there are multiple different constraints that we could pick for this 4935 /// operand (e.g. "imr") try to pick the 'best' one. 4936 /// This is somewhat tricky: constraints fall into four classes: 4937 /// Other -> immediates and magic values 4938 /// Register -> one specific register 4939 /// RegisterClass -> a group of regs 4940 /// Memory -> memory 4941 /// Ideally, we would pick the most specific constraint possible: if we have 4942 /// something that fits into a register, we would pick it. The problem here 4943 /// is that if we have something that could either be in a register or in 4944 /// memory that use of the register could cause selection of *other* 4945 /// operands to fail: they might only succeed if we pick memory. Because of 4946 /// this the heuristic we use is: 4947 /// 4948 /// 1) If there is an 'other' constraint, and if the operand is valid for 4949 /// that constraint, use it. This makes us take advantage of 'i' 4950 /// constraints when available. 4951 /// 2) Otherwise, pick the most general constraint present. This prefers 4952 /// 'm' over 'r', for example. 4953 /// 4954 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4955 const TargetLowering &TLI, 4956 SDValue Op, SelectionDAG *DAG) { 4957 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4958 unsigned BestIdx = 0; 4959 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4960 int BestGenerality = -1; 4961 4962 // Loop over the options, keeping track of the most general one. 4963 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4964 TargetLowering::ConstraintType CType = 4965 TLI.getConstraintType(OpInfo.Codes[i]); 4966 4967 // Indirect 'other' or 'immediate' constraints are not allowed. 4968 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4969 CType == TargetLowering::C_Register || 4970 CType == TargetLowering::C_RegisterClass)) 4971 continue; 4972 4973 // If this is an 'other' or 'immediate' constraint, see if the operand is 4974 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4975 // the operand is an integer in the range [0..31] we want to use I (saving a 4976 // load of a register), otherwise we must use 'r'. 4977 if ((CType == TargetLowering::C_Other || 4978 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4979 assert(OpInfo.Codes[i].size() == 1 && 4980 "Unhandled multi-letter 'other' constraint"); 4981 std::vector<SDValue> ResultOps; 4982 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4983 ResultOps, *DAG); 4984 if (!ResultOps.empty()) { 4985 BestType = CType; 4986 BestIdx = i; 4987 break; 4988 } 4989 } 4990 4991 // Things with matching constraints can only be registers, per gcc 4992 // documentation. This mainly affects "g" constraints. 4993 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4994 continue; 4995 4996 // This constraint letter is more general than the previous one, use it. 4997 int Generality = getConstraintGenerality(CType); 4998 if (Generality > BestGenerality) { 4999 BestType = CType; 5000 BestIdx = i; 5001 BestGenerality = Generality; 5002 } 5003 } 5004 5005 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5006 OpInfo.ConstraintType = BestType; 5007 } 5008 5009 /// Determines the constraint code and constraint type to use for the specific 5010 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5011 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5012 SDValue Op, 5013 SelectionDAG *DAG) const { 5014 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5015 5016 // Single-letter constraints ('r') are very common. 5017 if (OpInfo.Codes.size() == 1) { 5018 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5019 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5020 } else { 5021 ChooseConstraint(OpInfo, *this, Op, DAG); 5022 } 5023 5024 // 'X' matches anything. 5025 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5026 // Labels and constants are handled elsewhere ('X' is the only thing 5027 // that matches labels). For Functions, the type here is the type of 5028 // the result, which is not what we want to look at; leave them alone. 5029 Value *v = OpInfo.CallOperandVal; 5030 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5031 OpInfo.CallOperandVal = v; 5032 return; 5033 } 5034 5035 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5036 return; 5037 5038 // Otherwise, try to resolve it to something we know about by looking at 5039 // the actual operand type. 5040 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5041 OpInfo.ConstraintCode = Repl; 5042 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5043 } 5044 } 5045 } 5046 5047 /// Given an exact SDIV by a constant, create a multiplication 5048 /// with the multiplicative inverse of the constant. 5049 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5050 const SDLoc &dl, SelectionDAG &DAG, 5051 SmallVectorImpl<SDNode *> &Created) { 5052 SDValue Op0 = N->getOperand(0); 5053 SDValue Op1 = N->getOperand(1); 5054 EVT VT = N->getValueType(0); 5055 EVT SVT = VT.getScalarType(); 5056 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5057 EVT ShSVT = ShVT.getScalarType(); 5058 5059 bool UseSRA = false; 5060 SmallVector<SDValue, 16> Shifts, Factors; 5061 5062 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5063 if (C->isZero()) 5064 return false; 5065 APInt Divisor = C->getAPIntValue(); 5066 unsigned Shift = Divisor.countTrailingZeros(); 5067 if (Shift) { 5068 Divisor.ashrInPlace(Shift); 5069 UseSRA = true; 5070 } 5071 // Calculate the multiplicative inverse, using Newton's method. 5072 APInt t; 5073 APInt Factor = Divisor; 5074 while ((t = Divisor * Factor) != 1) 5075 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5076 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5077 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5078 return true; 5079 }; 5080 5081 // Collect all magic values from the build vector. 5082 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5083 return SDValue(); 5084 5085 SDValue Shift, Factor; 5086 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5087 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5088 Factor = DAG.getBuildVector(VT, dl, Factors); 5089 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5090 assert(Shifts.size() == 1 && Factors.size() == 1 && 5091 "Expected matchUnaryPredicate to return one element for scalable " 5092 "vectors"); 5093 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5094 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5095 } else { 5096 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5097 Shift = Shifts[0]; 5098 Factor = Factors[0]; 5099 } 5100 5101 SDValue Res = Op0; 5102 5103 // Shift the value upfront if it is even, so the LSB is one. 5104 if (UseSRA) { 5105 // TODO: For UDIV use SRL instead of SRA. 5106 SDNodeFlags Flags; 5107 Flags.setExact(true); 5108 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5109 Created.push_back(Res.getNode()); 5110 } 5111 5112 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5113 } 5114 5115 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5116 SelectionDAG &DAG, 5117 SmallVectorImpl<SDNode *> &Created) const { 5118 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5119 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5120 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5121 return SDValue(N, 0); // Lower SDIV as SDIV 5122 return SDValue(); 5123 } 5124 5125 /// Given an ISD::SDIV node expressing a divide by constant, 5126 /// return a DAG expression to select that will generate the same value by 5127 /// multiplying by a magic number. 5128 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5129 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5130 bool IsAfterLegalization, 5131 SmallVectorImpl<SDNode *> &Created) const { 5132 SDLoc dl(N); 5133 EVT VT = N->getValueType(0); 5134 EVT SVT = VT.getScalarType(); 5135 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5136 EVT ShSVT = ShVT.getScalarType(); 5137 unsigned EltBits = VT.getScalarSizeInBits(); 5138 EVT MulVT; 5139 5140 // Check to see if we can do this. 5141 // FIXME: We should be more aggressive here. 5142 if (!isTypeLegal(VT)) { 5143 // Limit this to simple scalars for now. 5144 if (VT.isVector() || !VT.isSimple()) 5145 return SDValue(); 5146 5147 // If this type will be promoted to a large enough type with a legal 5148 // multiply operation, we can go ahead and do this transform. 5149 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5150 return SDValue(); 5151 5152 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5153 if (MulVT.getSizeInBits() < (2 * EltBits) || 5154 !isOperationLegal(ISD::MUL, MulVT)) 5155 return SDValue(); 5156 } 5157 5158 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5159 if (N->getFlags().hasExact()) 5160 return BuildExactSDIV(*this, N, dl, DAG, Created); 5161 5162 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5163 5164 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5165 if (C->isZero()) 5166 return false; 5167 5168 const APInt &Divisor = C->getAPIntValue(); 5169 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5170 int NumeratorFactor = 0; 5171 int ShiftMask = -1; 5172 5173 if (Divisor.isOne() || Divisor.isAllOnes()) { 5174 // If d is +1/-1, we just multiply the numerator by +1/-1. 5175 NumeratorFactor = Divisor.getSExtValue(); 5176 magics.Magic = 0; 5177 magics.ShiftAmount = 0; 5178 ShiftMask = 0; 5179 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5180 // If d > 0 and m < 0, add the numerator. 5181 NumeratorFactor = 1; 5182 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5183 // If d < 0 and m > 0, subtract the numerator. 5184 NumeratorFactor = -1; 5185 } 5186 5187 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5188 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5189 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5190 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5191 return true; 5192 }; 5193 5194 SDValue N0 = N->getOperand(0); 5195 SDValue N1 = N->getOperand(1); 5196 5197 // Collect the shifts / magic values from each element. 5198 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5199 return SDValue(); 5200 5201 SDValue MagicFactor, Factor, Shift, ShiftMask; 5202 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5203 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5204 Factor = DAG.getBuildVector(VT, dl, Factors); 5205 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5206 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5207 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5208 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5209 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5210 "Expected matchUnaryPredicate to return one element for scalable " 5211 "vectors"); 5212 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5213 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5214 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5215 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5216 } else { 5217 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5218 MagicFactor = MagicFactors[0]; 5219 Factor = Factors[0]; 5220 Shift = Shifts[0]; 5221 ShiftMask = ShiftMasks[0]; 5222 } 5223 5224 // Multiply the numerator (operand 0) by the magic value. 5225 // FIXME: We should support doing a MUL in a wider type. 5226 auto GetMULHS = [&](SDValue X, SDValue Y) { 5227 // If the type isn't legal, use a wider mul of the the type calculated 5228 // earlier. 5229 if (!isTypeLegal(VT)) { 5230 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5231 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5232 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5233 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5234 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5235 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5236 } 5237 5238 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5239 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5240 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5241 SDValue LoHi = 5242 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5243 return SDValue(LoHi.getNode(), 1); 5244 } 5245 return SDValue(); 5246 }; 5247 5248 SDValue Q = GetMULHS(N0, MagicFactor); 5249 if (!Q) 5250 return SDValue(); 5251 5252 Created.push_back(Q.getNode()); 5253 5254 // (Optionally) Add/subtract the numerator using Factor. 5255 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5256 Created.push_back(Factor.getNode()); 5257 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5258 Created.push_back(Q.getNode()); 5259 5260 // Shift right algebraic by shift value. 5261 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5262 Created.push_back(Q.getNode()); 5263 5264 // Extract the sign bit, mask it and add it to the quotient. 5265 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5266 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5267 Created.push_back(T.getNode()); 5268 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5269 Created.push_back(T.getNode()); 5270 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5271 } 5272 5273 /// Given an ISD::UDIV node expressing a divide by constant, 5274 /// return a DAG expression to select that will generate the same value by 5275 /// multiplying by a magic number. 5276 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5277 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5278 bool IsAfterLegalization, 5279 SmallVectorImpl<SDNode *> &Created) const { 5280 SDLoc dl(N); 5281 EVT VT = N->getValueType(0); 5282 EVT SVT = VT.getScalarType(); 5283 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5284 EVT ShSVT = ShVT.getScalarType(); 5285 unsigned EltBits = VT.getScalarSizeInBits(); 5286 EVT MulVT; 5287 5288 // Check to see if we can do this. 5289 // FIXME: We should be more aggressive here. 5290 if (!isTypeLegal(VT)) { 5291 // Limit this to simple scalars for now. 5292 if (VT.isVector() || !VT.isSimple()) 5293 return SDValue(); 5294 5295 // If this type will be promoted to a large enough type with a legal 5296 // multiply operation, we can go ahead and do this transform. 5297 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5298 return SDValue(); 5299 5300 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5301 if (MulVT.getSizeInBits() < (2 * EltBits) || 5302 !isOperationLegal(ISD::MUL, MulVT)) 5303 return SDValue(); 5304 } 5305 5306 bool UseNPQ = false; 5307 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5308 5309 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5310 if (C->isZero()) 5311 return false; 5312 // FIXME: We should use a narrower constant when the upper 5313 // bits are known to be zero. 5314 const APInt& Divisor = C->getAPIntValue(); 5315 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5316 unsigned PreShift = 0, PostShift = 0; 5317 5318 // If the divisor is even, we can avoid using the expensive fixup by 5319 // shifting the divided value upfront. 5320 if (magics.IsAdd != 0 && !Divisor[0]) { 5321 PreShift = Divisor.countTrailingZeros(); 5322 // Get magic number for the shifted divisor. 5323 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5324 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5325 } 5326 5327 APInt Magic = magics.Magic; 5328 5329 unsigned SelNPQ; 5330 if (magics.IsAdd == 0 || Divisor.isOne()) { 5331 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5332 "We shouldn't generate an undefined shift!"); 5333 PostShift = magics.ShiftAmount; 5334 SelNPQ = false; 5335 } else { 5336 PostShift = magics.ShiftAmount - 1; 5337 SelNPQ = true; 5338 } 5339 5340 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5341 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5342 NPQFactors.push_back( 5343 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5344 : APInt::getZero(EltBits), 5345 dl, SVT)); 5346 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5347 UseNPQ |= SelNPQ; 5348 return true; 5349 }; 5350 5351 SDValue N0 = N->getOperand(0); 5352 SDValue N1 = N->getOperand(1); 5353 5354 // Collect the shifts/magic values from each element. 5355 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5356 return SDValue(); 5357 5358 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5359 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5360 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5361 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5362 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5363 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5364 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5365 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5366 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5367 "Expected matchUnaryPredicate to return one for scalable vectors"); 5368 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5369 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5370 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5371 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5372 } else { 5373 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5374 PreShift = PreShifts[0]; 5375 MagicFactor = MagicFactors[0]; 5376 PostShift = PostShifts[0]; 5377 } 5378 5379 SDValue Q = N0; 5380 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5381 Created.push_back(Q.getNode()); 5382 5383 // FIXME: We should support doing a MUL in a wider type. 5384 auto GetMULHU = [&](SDValue X, SDValue Y) { 5385 // If the type isn't legal, use a wider mul of the the type calculated 5386 // earlier. 5387 if (!isTypeLegal(VT)) { 5388 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5389 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5390 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5391 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5392 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5393 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5394 } 5395 5396 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5397 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5398 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5399 SDValue LoHi = 5400 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5401 return SDValue(LoHi.getNode(), 1); 5402 } 5403 return SDValue(); // No mulhu or equivalent 5404 }; 5405 5406 // Multiply the numerator (operand 0) by the magic value. 5407 Q = GetMULHU(Q, MagicFactor); 5408 if (!Q) 5409 return SDValue(); 5410 5411 Created.push_back(Q.getNode()); 5412 5413 if (UseNPQ) { 5414 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5415 Created.push_back(NPQ.getNode()); 5416 5417 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5418 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5419 if (VT.isVector()) 5420 NPQ = GetMULHU(NPQ, NPQFactor); 5421 else 5422 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5423 5424 Created.push_back(NPQ.getNode()); 5425 5426 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5427 Created.push_back(Q.getNode()); 5428 } 5429 5430 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5431 Created.push_back(Q.getNode()); 5432 5433 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5434 5435 SDValue One = DAG.getConstant(1, dl, VT); 5436 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5437 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5438 } 5439 5440 /// If all values in Values that *don't* match the predicate are same 'splat' 5441 /// value, then replace all values with that splat value. 5442 /// Else, if AlternativeReplacement was provided, then replace all values that 5443 /// do match predicate with AlternativeReplacement value. 5444 static void 5445 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5446 std::function<bool(SDValue)> Predicate, 5447 SDValue AlternativeReplacement = SDValue()) { 5448 SDValue Replacement; 5449 // Is there a value for which the Predicate does *NOT* match? What is it? 5450 auto SplatValue = llvm::find_if_not(Values, Predicate); 5451 if (SplatValue != Values.end()) { 5452 // Does Values consist only of SplatValue's and values matching Predicate? 5453 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5454 return Value == *SplatValue || Predicate(Value); 5455 })) // Then we shall replace values matching predicate with SplatValue. 5456 Replacement = *SplatValue; 5457 } 5458 if (!Replacement) { 5459 // Oops, we did not find the "baseline" splat value. 5460 if (!AlternativeReplacement) 5461 return; // Nothing to do. 5462 // Let's replace with provided value then. 5463 Replacement = AlternativeReplacement; 5464 } 5465 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5466 } 5467 5468 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5469 /// where the divisor is constant and the comparison target is zero, 5470 /// return a DAG expression that will generate the same comparison result 5471 /// using only multiplications, additions and shifts/rotations. 5472 /// Ref: "Hacker's Delight" 10-17. 5473 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5474 SDValue CompTargetNode, 5475 ISD::CondCode Cond, 5476 DAGCombinerInfo &DCI, 5477 const SDLoc &DL) const { 5478 SmallVector<SDNode *, 5> Built; 5479 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5480 DCI, DL, Built)) { 5481 for (SDNode *N : Built) 5482 DCI.AddToWorklist(N); 5483 return Folded; 5484 } 5485 5486 return SDValue(); 5487 } 5488 5489 SDValue 5490 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5491 SDValue CompTargetNode, ISD::CondCode Cond, 5492 DAGCombinerInfo &DCI, const SDLoc &DL, 5493 SmallVectorImpl<SDNode *> &Created) const { 5494 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5495 // - D must be constant, with D = D0 * 2^K where D0 is odd 5496 // - P is the multiplicative inverse of D0 modulo 2^W 5497 // - Q = floor(((2^W) - 1) / D) 5498 // where W is the width of the common type of N and D. 5499 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5500 "Only applicable for (in)equality comparisons."); 5501 5502 SelectionDAG &DAG = DCI.DAG; 5503 5504 EVT VT = REMNode.getValueType(); 5505 EVT SVT = VT.getScalarType(); 5506 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5507 EVT ShSVT = ShVT.getScalarType(); 5508 5509 // If MUL is unavailable, we cannot proceed in any case. 5510 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5511 return SDValue(); 5512 5513 bool ComparingWithAllZeros = true; 5514 bool AllComparisonsWithNonZerosAreTautological = true; 5515 bool HadTautologicalLanes = false; 5516 bool AllLanesAreTautological = true; 5517 bool HadEvenDivisor = false; 5518 bool AllDivisorsArePowerOfTwo = true; 5519 bool HadTautologicalInvertedLanes = false; 5520 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5521 5522 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5523 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5524 if (CDiv->isZero()) 5525 return false; 5526 5527 const APInt &D = CDiv->getAPIntValue(); 5528 const APInt &Cmp = CCmp->getAPIntValue(); 5529 5530 ComparingWithAllZeros &= Cmp.isZero(); 5531 5532 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5533 // if C2 is not less than C1, the comparison is always false. 5534 // But we will only be able to produce the comparison that will give the 5535 // opposive tautological answer. So this lane would need to be fixed up. 5536 bool TautologicalInvertedLane = D.ule(Cmp); 5537 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5538 5539 // If all lanes are tautological (either all divisors are ones, or divisor 5540 // is not greater than the constant we are comparing with), 5541 // we will prefer to avoid the fold. 5542 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5543 HadTautologicalLanes |= TautologicalLane; 5544 AllLanesAreTautological &= TautologicalLane; 5545 5546 // If we are comparing with non-zero, we need'll need to subtract said 5547 // comparison value from the LHS. But there is no point in doing that if 5548 // every lane where we are comparing with non-zero is tautological.. 5549 if (!Cmp.isZero()) 5550 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5551 5552 // Decompose D into D0 * 2^K 5553 unsigned K = D.countTrailingZeros(); 5554 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5555 APInt D0 = D.lshr(K); 5556 5557 // D is even if it has trailing zeros. 5558 HadEvenDivisor |= (K != 0); 5559 // D is a power-of-two if D0 is one. 5560 // If all divisors are power-of-two, we will prefer to avoid the fold. 5561 AllDivisorsArePowerOfTwo &= D0.isOne(); 5562 5563 // P = inv(D0, 2^W) 5564 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5565 unsigned W = D.getBitWidth(); 5566 APInt P = D0.zext(W + 1) 5567 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5568 .trunc(W); 5569 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5570 assert((D0 * P).isOne() && "Multiplicative inverse sanity check."); 5571 5572 // Q = floor((2^W - 1) u/ D) 5573 // R = ((2^W - 1) u% D) 5574 APInt Q, R; 5575 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5576 5577 // If we are comparing with zero, then that comparison constant is okay, 5578 // else it may need to be one less than that. 5579 if (Cmp.ugt(R)) 5580 Q -= 1; 5581 5582 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5583 "We are expecting that K is always less than all-ones for ShSVT"); 5584 5585 // If the lane is tautological the result can be constant-folded. 5586 if (TautologicalLane) { 5587 // Set P and K amount to a bogus values so we can try to splat them. 5588 P = 0; 5589 K = -1; 5590 // And ensure that comparison constant is tautological, 5591 // it will always compare true/false. 5592 Q = -1; 5593 } 5594 5595 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5596 KAmts.push_back( 5597 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5598 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5599 return true; 5600 }; 5601 5602 SDValue N = REMNode.getOperand(0); 5603 SDValue D = REMNode.getOperand(1); 5604 5605 // Collect the values from each element. 5606 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5607 return SDValue(); 5608 5609 // If all lanes are tautological, the result can be constant-folded. 5610 if (AllLanesAreTautological) 5611 return SDValue(); 5612 5613 // If this is a urem by a powers-of-two, avoid the fold since it can be 5614 // best implemented as a bit test. 5615 if (AllDivisorsArePowerOfTwo) 5616 return SDValue(); 5617 5618 SDValue PVal, KVal, QVal; 5619 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5620 if (HadTautologicalLanes) { 5621 // Try to turn PAmts into a splat, since we don't care about the values 5622 // that are currently '0'. If we can't, just keep '0'`s. 5623 turnVectorIntoSplatVector(PAmts, isNullConstant); 5624 // Try to turn KAmts into a splat, since we don't care about the values 5625 // that are currently '-1'. If we can't, change them to '0'`s. 5626 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5627 DAG.getConstant(0, DL, ShSVT)); 5628 } 5629 5630 PVal = DAG.getBuildVector(VT, DL, PAmts); 5631 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5632 QVal = DAG.getBuildVector(VT, DL, QAmts); 5633 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5634 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5635 "Expected matchBinaryPredicate to return one element for " 5636 "SPLAT_VECTORs"); 5637 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5638 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5639 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5640 } else { 5641 PVal = PAmts[0]; 5642 KVal = KAmts[0]; 5643 QVal = QAmts[0]; 5644 } 5645 5646 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5647 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5648 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5649 assert(CompTargetNode.getValueType() == N.getValueType() && 5650 "Expecting that the types on LHS and RHS of comparisons match."); 5651 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5652 } 5653 5654 // (mul N, P) 5655 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5656 Created.push_back(Op0.getNode()); 5657 5658 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5659 // divisors as a performance improvement, since rotating by 0 is a no-op. 5660 if (HadEvenDivisor) { 5661 // We need ROTR to do this. 5662 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5663 return SDValue(); 5664 // UREM: (rotr (mul N, P), K) 5665 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5666 Created.push_back(Op0.getNode()); 5667 } 5668 5669 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5670 SDValue NewCC = 5671 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5672 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5673 if (!HadTautologicalInvertedLanes) 5674 return NewCC; 5675 5676 // If any lanes previously compared always-false, the NewCC will give 5677 // always-true result for them, so we need to fixup those lanes. 5678 // Or the other way around for inequality predicate. 5679 assert(VT.isVector() && "Can/should only get here for vectors."); 5680 Created.push_back(NewCC.getNode()); 5681 5682 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5683 // if C2 is not less than C1, the comparison is always false. 5684 // But we have produced the comparison that will give the 5685 // opposive tautological answer. So these lanes would need to be fixed up. 5686 SDValue TautologicalInvertedChannels = 5687 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5688 Created.push_back(TautologicalInvertedChannels.getNode()); 5689 5690 // NOTE: we avoid letting illegal types through even if we're before legalize 5691 // ops – legalization has a hard time producing good code for this. 5692 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5693 // If we have a vector select, let's replace the comparison results in the 5694 // affected lanes with the correct tautological result. 5695 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5696 DL, SETCCVT, SETCCVT); 5697 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5698 Replacement, NewCC); 5699 } 5700 5701 // Else, we can just invert the comparison result in the appropriate lanes. 5702 // 5703 // NOTE: see the note above VSELECT above. 5704 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5705 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5706 TautologicalInvertedChannels); 5707 5708 return SDValue(); // Don't know how to lower. 5709 } 5710 5711 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5712 /// where the divisor is constant and the comparison target is zero, 5713 /// return a DAG expression that will generate the same comparison result 5714 /// using only multiplications, additions and shifts/rotations. 5715 /// Ref: "Hacker's Delight" 10-17. 5716 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5717 SDValue CompTargetNode, 5718 ISD::CondCode Cond, 5719 DAGCombinerInfo &DCI, 5720 const SDLoc &DL) const { 5721 SmallVector<SDNode *, 7> Built; 5722 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5723 DCI, DL, Built)) { 5724 assert(Built.size() <= 7 && "Max size prediction failed."); 5725 for (SDNode *N : Built) 5726 DCI.AddToWorklist(N); 5727 return Folded; 5728 } 5729 5730 return SDValue(); 5731 } 5732 5733 SDValue 5734 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5735 SDValue CompTargetNode, ISD::CondCode Cond, 5736 DAGCombinerInfo &DCI, const SDLoc &DL, 5737 SmallVectorImpl<SDNode *> &Created) const { 5738 // Fold: 5739 // (seteq/ne (srem N, D), 0) 5740 // To: 5741 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5742 // 5743 // - D must be constant, with D = D0 * 2^K where D0 is odd 5744 // - P is the multiplicative inverse of D0 modulo 2^W 5745 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5746 // - Q = floor((2 * A) / (2^K)) 5747 // where W is the width of the common type of N and D. 5748 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5749 "Only applicable for (in)equality comparisons."); 5750 5751 SelectionDAG &DAG = DCI.DAG; 5752 5753 EVT VT = REMNode.getValueType(); 5754 EVT SVT = VT.getScalarType(); 5755 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5756 EVT ShSVT = ShVT.getScalarType(); 5757 5758 // If we are after ops legalization, and MUL is unavailable, we can not 5759 // proceed. 5760 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5761 return SDValue(); 5762 5763 // TODO: Could support comparing with non-zero too. 5764 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5765 if (!CompTarget || !CompTarget->isZero()) 5766 return SDValue(); 5767 5768 bool HadIntMinDivisor = false; 5769 bool HadOneDivisor = false; 5770 bool AllDivisorsAreOnes = true; 5771 bool HadEvenDivisor = false; 5772 bool NeedToApplyOffset = false; 5773 bool AllDivisorsArePowerOfTwo = true; 5774 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5775 5776 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5777 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5778 if (C->isZero()) 5779 return false; 5780 5781 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5782 5783 // WARNING: this fold is only valid for positive divisors! 5784 APInt D = C->getAPIntValue(); 5785 if (D.isNegative()) 5786 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5787 5788 HadIntMinDivisor |= D.isMinSignedValue(); 5789 5790 // If all divisors are ones, we will prefer to avoid the fold. 5791 HadOneDivisor |= D.isOne(); 5792 AllDivisorsAreOnes &= D.isOne(); 5793 5794 // Decompose D into D0 * 2^K 5795 unsigned K = D.countTrailingZeros(); 5796 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5797 APInt D0 = D.lshr(K); 5798 5799 if (!D.isMinSignedValue()) { 5800 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5801 // we don't care about this lane in this fold, we'll special-handle it. 5802 HadEvenDivisor |= (K != 0); 5803 } 5804 5805 // D is a power-of-two if D0 is one. This includes INT_MIN. 5806 // If all divisors are power-of-two, we will prefer to avoid the fold. 5807 AllDivisorsArePowerOfTwo &= D0.isOne(); 5808 5809 // P = inv(D0, 2^W) 5810 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5811 unsigned W = D.getBitWidth(); 5812 APInt P = D0.zext(W + 1) 5813 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5814 .trunc(W); 5815 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5816 assert((D0 * P).isOne() && "Multiplicative inverse sanity check."); 5817 5818 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5819 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5820 A.clearLowBits(K); 5821 5822 if (!D.isMinSignedValue()) { 5823 // If divisor INT_MIN, then we don't care about this lane in this fold, 5824 // we'll special-handle it. 5825 NeedToApplyOffset |= A != 0; 5826 } 5827 5828 // Q = floor((2 * A) / (2^K)) 5829 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5830 5831 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5832 "We are expecting that A is always less than all-ones for SVT"); 5833 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5834 "We are expecting that K is always less than all-ones for ShSVT"); 5835 5836 // If the divisor is 1 the result can be constant-folded. Likewise, we 5837 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5838 if (D.isOne()) { 5839 // Set P, A and K to a bogus values so we can try to splat them. 5840 P = 0; 5841 A = -1; 5842 K = -1; 5843 5844 // x ?% 1 == 0 <--> true <--> x u<= -1 5845 Q = -1; 5846 } 5847 5848 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5849 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5850 KAmts.push_back( 5851 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5852 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5853 return true; 5854 }; 5855 5856 SDValue N = REMNode.getOperand(0); 5857 SDValue D = REMNode.getOperand(1); 5858 5859 // Collect the values from each element. 5860 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5861 return SDValue(); 5862 5863 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5864 if (AllDivisorsAreOnes) 5865 return SDValue(); 5866 5867 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5868 // since it can be best implemented as a bit test. 5869 if (AllDivisorsArePowerOfTwo) 5870 return SDValue(); 5871 5872 SDValue PVal, AVal, KVal, QVal; 5873 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5874 if (HadOneDivisor) { 5875 // Try to turn PAmts into a splat, since we don't care about the values 5876 // that are currently '0'. If we can't, just keep '0'`s. 5877 turnVectorIntoSplatVector(PAmts, isNullConstant); 5878 // Try to turn AAmts into a splat, since we don't care about the 5879 // values that are currently '-1'. If we can't, change them to '0'`s. 5880 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5881 DAG.getConstant(0, DL, SVT)); 5882 // Try to turn KAmts into a splat, since we don't care about the values 5883 // that are currently '-1'. If we can't, change them to '0'`s. 5884 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5885 DAG.getConstant(0, DL, ShSVT)); 5886 } 5887 5888 PVal = DAG.getBuildVector(VT, DL, PAmts); 5889 AVal = DAG.getBuildVector(VT, DL, AAmts); 5890 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5891 QVal = DAG.getBuildVector(VT, DL, QAmts); 5892 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5893 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5894 QAmts.size() == 1 && 5895 "Expected matchUnaryPredicate to return one element for scalable " 5896 "vectors"); 5897 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5898 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5899 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5900 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5901 } else { 5902 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5903 PVal = PAmts[0]; 5904 AVal = AAmts[0]; 5905 KVal = KAmts[0]; 5906 QVal = QAmts[0]; 5907 } 5908 5909 // (mul N, P) 5910 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5911 Created.push_back(Op0.getNode()); 5912 5913 if (NeedToApplyOffset) { 5914 // We need ADD to do this. 5915 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5916 return SDValue(); 5917 5918 // (add (mul N, P), A) 5919 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5920 Created.push_back(Op0.getNode()); 5921 } 5922 5923 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5924 // divisors as a performance improvement, since rotating by 0 is a no-op. 5925 if (HadEvenDivisor) { 5926 // We need ROTR to do this. 5927 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5928 return SDValue(); 5929 // SREM: (rotr (add (mul N, P), A), K) 5930 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5931 Created.push_back(Op0.getNode()); 5932 } 5933 5934 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5935 SDValue Fold = 5936 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5937 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5938 5939 // If we didn't have lanes with INT_MIN divisor, then we're done. 5940 if (!HadIntMinDivisor) 5941 return Fold; 5942 5943 // That fold is only valid for positive divisors. Which effectively means, 5944 // it is invalid for INT_MIN divisors. So if we have such a lane, 5945 // we must fix-up results for said lanes. 5946 assert(VT.isVector() && "Can/should only get here for vectors."); 5947 5948 // NOTE: we avoid letting illegal types through even if we're before legalize 5949 // ops – legalization has a hard time producing good code for the code that 5950 // follows. 5951 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5952 !isOperationLegalOrCustom(ISD::AND, VT) || 5953 !isOperationLegalOrCustom(Cond, VT) || 5954 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 5955 return SDValue(); 5956 5957 Created.push_back(Fold.getNode()); 5958 5959 SDValue IntMin = DAG.getConstant( 5960 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5961 SDValue IntMax = DAG.getConstant( 5962 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5963 SDValue Zero = 5964 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 5965 5966 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5967 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5968 Created.push_back(DivisorIsIntMin.getNode()); 5969 5970 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5971 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5972 Created.push_back(Masked.getNode()); 5973 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5974 Created.push_back(MaskedIsZero.getNode()); 5975 5976 // To produce final result we need to blend 2 vectors: 'SetCC' and 5977 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5978 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5979 // constant-folded, select can get lowered to a shuffle with constant mask. 5980 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 5981 MaskedIsZero, Fold); 5982 5983 return Blended; 5984 } 5985 5986 bool TargetLowering:: 5987 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5988 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5989 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5990 "be a constant integer"); 5991 return true; 5992 } 5993 5994 return false; 5995 } 5996 5997 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 5998 const DenormalMode &Mode) const { 5999 SDLoc DL(Op); 6000 EVT VT = Op.getValueType(); 6001 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6002 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6003 // Testing it with denormal inputs to avoid wrong estimate. 6004 if (Mode.Input == DenormalMode::IEEE) { 6005 // This is specifically a check for the handling of denormal inputs, 6006 // not the result. 6007 6008 // Test = fabs(X) < SmallestNormal 6009 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6010 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6011 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6012 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6013 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6014 } 6015 // Test = X == 0.0 6016 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6017 } 6018 6019 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6020 bool LegalOps, bool OptForSize, 6021 NegatibleCost &Cost, 6022 unsigned Depth) const { 6023 // fneg is removable even if it has multiple uses. 6024 if (Op.getOpcode() == ISD::FNEG) { 6025 Cost = NegatibleCost::Cheaper; 6026 return Op.getOperand(0); 6027 } 6028 6029 // Don't recurse exponentially. 6030 if (Depth > SelectionDAG::MaxRecursionDepth) 6031 return SDValue(); 6032 6033 // Pre-increment recursion depth for use in recursive calls. 6034 ++Depth; 6035 const SDNodeFlags Flags = Op->getFlags(); 6036 const TargetOptions &Options = DAG.getTarget().Options; 6037 EVT VT = Op.getValueType(); 6038 unsigned Opcode = Op.getOpcode(); 6039 6040 // Don't allow anything with multiple uses unless we know it is free. 6041 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6042 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6043 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6044 if (!IsFreeExtend) 6045 return SDValue(); 6046 } 6047 6048 auto RemoveDeadNode = [&](SDValue N) { 6049 if (N && N.getNode()->use_empty()) 6050 DAG.RemoveDeadNode(N.getNode()); 6051 }; 6052 6053 SDLoc DL(Op); 6054 6055 // Because getNegatedExpression can delete nodes we need a handle to keep 6056 // temporary nodes alive in case the recursion manages to create an identical 6057 // node. 6058 std::list<HandleSDNode> Handles; 6059 6060 switch (Opcode) { 6061 case ISD::ConstantFP: { 6062 // Don't invert constant FP values after legalization unless the target says 6063 // the negated constant is legal. 6064 bool IsOpLegal = 6065 isOperationLegal(ISD::ConstantFP, VT) || 6066 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6067 OptForSize); 6068 6069 if (LegalOps && !IsOpLegal) 6070 break; 6071 6072 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6073 V.changeSign(); 6074 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6075 6076 // If we already have the use of the negated floating constant, it is free 6077 // to negate it even it has multiple uses. 6078 if (!Op.hasOneUse() && CFP.use_empty()) 6079 break; 6080 Cost = NegatibleCost::Neutral; 6081 return CFP; 6082 } 6083 case ISD::BUILD_VECTOR: { 6084 // Only permit BUILD_VECTOR of constants. 6085 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6086 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6087 })) 6088 break; 6089 6090 bool IsOpLegal = 6091 (isOperationLegal(ISD::ConstantFP, VT) && 6092 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6093 llvm::all_of(Op->op_values(), [&](SDValue N) { 6094 return N.isUndef() || 6095 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6096 OptForSize); 6097 }); 6098 6099 if (LegalOps && !IsOpLegal) 6100 break; 6101 6102 SmallVector<SDValue, 4> Ops; 6103 for (SDValue C : Op->op_values()) { 6104 if (C.isUndef()) { 6105 Ops.push_back(C); 6106 continue; 6107 } 6108 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6109 V.changeSign(); 6110 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6111 } 6112 Cost = NegatibleCost::Neutral; 6113 return DAG.getBuildVector(VT, DL, Ops); 6114 } 6115 case ISD::FADD: { 6116 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6117 break; 6118 6119 // After operation legalization, it might not be legal to create new FSUBs. 6120 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6121 break; 6122 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6123 6124 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6125 NegatibleCost CostX = NegatibleCost::Expensive; 6126 SDValue NegX = 6127 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6128 // Prevent this node from being deleted by the next call. 6129 if (NegX) 6130 Handles.emplace_back(NegX); 6131 6132 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6133 NegatibleCost CostY = NegatibleCost::Expensive; 6134 SDValue NegY = 6135 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6136 6137 // We're done with the handles. 6138 Handles.clear(); 6139 6140 // Negate the X if its cost is less or equal than Y. 6141 if (NegX && (CostX <= CostY)) { 6142 Cost = CostX; 6143 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6144 if (NegY != N) 6145 RemoveDeadNode(NegY); 6146 return N; 6147 } 6148 6149 // Negate the Y if it is not expensive. 6150 if (NegY) { 6151 Cost = CostY; 6152 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6153 if (NegX != N) 6154 RemoveDeadNode(NegX); 6155 return N; 6156 } 6157 break; 6158 } 6159 case ISD::FSUB: { 6160 // We can't turn -(A-B) into B-A when we honor signed zeros. 6161 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6162 break; 6163 6164 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6165 // fold (fneg (fsub 0, Y)) -> Y 6166 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6167 if (C->isZero()) { 6168 Cost = NegatibleCost::Cheaper; 6169 return Y; 6170 } 6171 6172 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6173 Cost = NegatibleCost::Neutral; 6174 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6175 } 6176 case ISD::FMUL: 6177 case ISD::FDIV: { 6178 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6179 6180 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6181 NegatibleCost CostX = NegatibleCost::Expensive; 6182 SDValue NegX = 6183 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6184 // Prevent this node from being deleted by the next call. 6185 if (NegX) 6186 Handles.emplace_back(NegX); 6187 6188 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6189 NegatibleCost CostY = NegatibleCost::Expensive; 6190 SDValue NegY = 6191 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6192 6193 // We're done with the handles. 6194 Handles.clear(); 6195 6196 // Negate the X if its cost is less or equal than Y. 6197 if (NegX && (CostX <= CostY)) { 6198 Cost = CostX; 6199 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6200 if (NegY != N) 6201 RemoveDeadNode(NegY); 6202 return N; 6203 } 6204 6205 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6206 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6207 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6208 break; 6209 6210 // Negate the Y if it is not expensive. 6211 if (NegY) { 6212 Cost = CostY; 6213 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6214 if (NegX != N) 6215 RemoveDeadNode(NegX); 6216 return N; 6217 } 6218 break; 6219 } 6220 case ISD::FMA: 6221 case ISD::FMAD: { 6222 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6223 break; 6224 6225 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6226 NegatibleCost CostZ = NegatibleCost::Expensive; 6227 SDValue NegZ = 6228 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6229 // Give up if fail to negate the Z. 6230 if (!NegZ) 6231 break; 6232 6233 // Prevent this node from being deleted by the next two calls. 6234 Handles.emplace_back(NegZ); 6235 6236 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6237 NegatibleCost CostX = NegatibleCost::Expensive; 6238 SDValue NegX = 6239 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6240 // Prevent this node from being deleted by the next call. 6241 if (NegX) 6242 Handles.emplace_back(NegX); 6243 6244 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6245 NegatibleCost CostY = NegatibleCost::Expensive; 6246 SDValue NegY = 6247 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6248 6249 // We're done with the handles. 6250 Handles.clear(); 6251 6252 // Negate the X if its cost is less or equal than Y. 6253 if (NegX && (CostX <= CostY)) { 6254 Cost = std::min(CostX, CostZ); 6255 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6256 if (NegY != N) 6257 RemoveDeadNode(NegY); 6258 return N; 6259 } 6260 6261 // Negate the Y if it is not expensive. 6262 if (NegY) { 6263 Cost = std::min(CostY, CostZ); 6264 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6265 if (NegX != N) 6266 RemoveDeadNode(NegX); 6267 return N; 6268 } 6269 break; 6270 } 6271 6272 case ISD::FP_EXTEND: 6273 case ISD::FSIN: 6274 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6275 OptForSize, Cost, Depth)) 6276 return DAG.getNode(Opcode, DL, VT, NegV); 6277 break; 6278 case ISD::FP_ROUND: 6279 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6280 OptForSize, Cost, Depth)) 6281 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6282 break; 6283 } 6284 6285 return SDValue(); 6286 } 6287 6288 //===----------------------------------------------------------------------===// 6289 // Legalization Utilities 6290 //===----------------------------------------------------------------------===// 6291 6292 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6293 SDValue LHS, SDValue RHS, 6294 SmallVectorImpl<SDValue> &Result, 6295 EVT HiLoVT, SelectionDAG &DAG, 6296 MulExpansionKind Kind, SDValue LL, 6297 SDValue LH, SDValue RL, SDValue RH) const { 6298 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6299 Opcode == ISD::SMUL_LOHI); 6300 6301 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6302 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6303 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6304 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6305 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6306 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6307 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6308 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6309 6310 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6311 return false; 6312 6313 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6314 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6315 6316 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6317 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6318 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6319 6320 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6321 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6322 bool Signed) -> bool { 6323 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6324 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6325 Hi = SDValue(Lo.getNode(), 1); 6326 return true; 6327 } 6328 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6329 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6330 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6331 return true; 6332 } 6333 return false; 6334 }; 6335 6336 SDValue Lo, Hi; 6337 6338 if (!LL.getNode() && !RL.getNode() && 6339 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6340 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6341 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6342 } 6343 6344 if (!LL.getNode()) 6345 return false; 6346 6347 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6348 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6349 DAG.MaskedValueIsZero(RHS, HighMask)) { 6350 // The inputs are both zero-extended. 6351 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6352 Result.push_back(Lo); 6353 Result.push_back(Hi); 6354 if (Opcode != ISD::MUL) { 6355 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6356 Result.push_back(Zero); 6357 Result.push_back(Zero); 6358 } 6359 return true; 6360 } 6361 } 6362 6363 if (!VT.isVector() && Opcode == ISD::MUL && 6364 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6365 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6366 // The input values are both sign-extended. 6367 // TODO non-MUL case? 6368 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6369 Result.push_back(Lo); 6370 Result.push_back(Hi); 6371 return true; 6372 } 6373 } 6374 6375 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6376 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6377 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6378 // FIXME getShiftAmountTy does not always return a sensible result when VT 6379 // is an illegal type, and so the type may be too small to fit the shift 6380 // amount. Override it with i32. The shift will have to be legalized. 6381 ShiftAmountTy = MVT::i32; 6382 } 6383 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6384 6385 if (!LH.getNode() && !RH.getNode() && 6386 isOperationLegalOrCustom(ISD::SRL, VT) && 6387 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6388 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6389 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6390 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6391 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6392 } 6393 6394 if (!LH.getNode()) 6395 return false; 6396 6397 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6398 return false; 6399 6400 Result.push_back(Lo); 6401 6402 if (Opcode == ISD::MUL) { 6403 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6404 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6405 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6406 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6407 Result.push_back(Hi); 6408 return true; 6409 } 6410 6411 // Compute the full width result. 6412 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6413 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6414 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6415 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6416 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6417 }; 6418 6419 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6420 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6421 return false; 6422 6423 // This is effectively the add part of a multiply-add of half-sized operands, 6424 // so it cannot overflow. 6425 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6426 6427 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6428 return false; 6429 6430 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6431 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6432 6433 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6434 isOperationLegalOrCustom(ISD::ADDE, VT)); 6435 if (UseGlue) 6436 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6437 Merge(Lo, Hi)); 6438 else 6439 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6440 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6441 6442 SDValue Carry = Next.getValue(1); 6443 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6444 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6445 6446 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6447 return false; 6448 6449 if (UseGlue) 6450 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6451 Carry); 6452 else 6453 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6454 Zero, Carry); 6455 6456 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6457 6458 if (Opcode == ISD::SMUL_LOHI) { 6459 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6460 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6461 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6462 6463 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6464 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6465 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6466 } 6467 6468 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6469 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6470 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6471 return true; 6472 } 6473 6474 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6475 SelectionDAG &DAG, MulExpansionKind Kind, 6476 SDValue LL, SDValue LH, SDValue RL, 6477 SDValue RH) const { 6478 SmallVector<SDValue, 2> Result; 6479 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6480 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6481 DAG, Kind, LL, LH, RL, RH); 6482 if (Ok) { 6483 assert(Result.size() == 2); 6484 Lo = Result[0]; 6485 Hi = Result[1]; 6486 } 6487 return Ok; 6488 } 6489 6490 // Check that (every element of) Z is undef or not an exact multiple of BW. 6491 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6492 return ISD::matchUnaryPredicate( 6493 Z, 6494 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6495 true); 6496 } 6497 6498 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6499 SelectionDAG &DAG) const { 6500 EVT VT = Node->getValueType(0); 6501 6502 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6503 !isOperationLegalOrCustom(ISD::SRL, VT) || 6504 !isOperationLegalOrCustom(ISD::SUB, VT) || 6505 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6506 return false; 6507 6508 SDValue X = Node->getOperand(0); 6509 SDValue Y = Node->getOperand(1); 6510 SDValue Z = Node->getOperand(2); 6511 6512 unsigned BW = VT.getScalarSizeInBits(); 6513 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6514 SDLoc DL(SDValue(Node, 0)); 6515 6516 EVT ShVT = Z.getValueType(); 6517 6518 // If a funnel shift in the other direction is more supported, use it. 6519 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6520 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6521 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6522 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6523 // fshl X, Y, Z -> fshr X, Y, -Z 6524 // fshr X, Y, Z -> fshl X, Y, -Z 6525 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6526 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6527 } else { 6528 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6529 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6530 SDValue One = DAG.getConstant(1, DL, ShVT); 6531 if (IsFSHL) { 6532 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6533 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6534 } else { 6535 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6536 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6537 } 6538 Z = DAG.getNOT(DL, Z, ShVT); 6539 } 6540 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6541 return true; 6542 } 6543 6544 SDValue ShX, ShY; 6545 SDValue ShAmt, InvShAmt; 6546 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6547 // fshl: X << C | Y >> (BW - C) 6548 // fshr: X << (BW - C) | Y >> C 6549 // where C = Z % BW is not zero 6550 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6551 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6552 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6553 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6554 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6555 } else { 6556 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6557 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6558 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6559 if (isPowerOf2_32(BW)) { 6560 // Z % BW -> Z & (BW - 1) 6561 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6562 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6563 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6564 } else { 6565 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6566 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6567 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6568 } 6569 6570 SDValue One = DAG.getConstant(1, DL, ShVT); 6571 if (IsFSHL) { 6572 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6573 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6574 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6575 } else { 6576 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6577 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6578 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6579 } 6580 } 6581 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6582 return true; 6583 } 6584 6585 // TODO: Merge with expandFunnelShift. 6586 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6587 SDValue &Result, SelectionDAG &DAG) const { 6588 EVT VT = Node->getValueType(0); 6589 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6590 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6591 SDValue Op0 = Node->getOperand(0); 6592 SDValue Op1 = Node->getOperand(1); 6593 SDLoc DL(SDValue(Node, 0)); 6594 6595 EVT ShVT = Op1.getValueType(); 6596 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6597 6598 // If a rotate in the other direction is supported, use it. 6599 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6600 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6601 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6602 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6603 return true; 6604 } 6605 6606 if (!AllowVectorOps && VT.isVector() && 6607 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6608 !isOperationLegalOrCustom(ISD::SRL, VT) || 6609 !isOperationLegalOrCustom(ISD::SUB, VT) || 6610 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6611 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6612 return false; 6613 6614 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6615 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6616 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6617 SDValue ShVal; 6618 SDValue HsVal; 6619 if (isPowerOf2_32(EltSizeInBits)) { 6620 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6621 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6622 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6623 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6624 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6625 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6626 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6627 } else { 6628 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6629 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6630 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6631 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6632 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6633 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6634 SDValue One = DAG.getConstant(1, DL, ShVT); 6635 HsVal = 6636 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6637 } 6638 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6639 return true; 6640 } 6641 6642 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6643 SelectionDAG &DAG) const { 6644 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6645 EVT VT = Node->getValueType(0); 6646 unsigned VTBits = VT.getScalarSizeInBits(); 6647 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6648 6649 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6650 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6651 SDValue ShOpLo = Node->getOperand(0); 6652 SDValue ShOpHi = Node->getOperand(1); 6653 SDValue ShAmt = Node->getOperand(2); 6654 EVT ShAmtVT = ShAmt.getValueType(); 6655 EVT ShAmtCCVT = 6656 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6657 SDLoc dl(Node); 6658 6659 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6660 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6661 // away during isel. 6662 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6663 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6664 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6665 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6666 : DAG.getConstant(0, dl, VT); 6667 6668 SDValue Tmp2, Tmp3; 6669 if (IsSHL) { 6670 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6671 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6672 } else { 6673 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6674 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6675 } 6676 6677 // If the shift amount is larger or equal than the width of a part we don't 6678 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6679 // values for large shift amounts. 6680 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6681 DAG.getConstant(VTBits, dl, ShAmtVT)); 6682 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6683 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6684 6685 if (IsSHL) { 6686 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6687 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6688 } else { 6689 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6690 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6691 } 6692 } 6693 6694 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6695 SelectionDAG &DAG) const { 6696 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6697 SDValue Src = Node->getOperand(OpNo); 6698 EVT SrcVT = Src.getValueType(); 6699 EVT DstVT = Node->getValueType(0); 6700 SDLoc dl(SDValue(Node, 0)); 6701 6702 // FIXME: Only f32 to i64 conversions are supported. 6703 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6704 return false; 6705 6706 if (Node->isStrictFPOpcode()) 6707 // When a NaN is converted to an integer a trap is allowed. We can't 6708 // use this expansion here because it would eliminate that trap. Other 6709 // traps are also allowed and cannot be eliminated. See 6710 // IEEE 754-2008 sec 5.8. 6711 return false; 6712 6713 // Expand f32 -> i64 conversion 6714 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6715 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6716 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6717 EVT IntVT = SrcVT.changeTypeToInteger(); 6718 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6719 6720 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6721 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6722 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6723 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6724 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6725 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6726 6727 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6728 6729 SDValue ExponentBits = DAG.getNode( 6730 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6731 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6732 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6733 6734 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6735 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6736 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6737 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6738 6739 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6740 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6741 DAG.getConstant(0x00800000, dl, IntVT)); 6742 6743 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6744 6745 R = DAG.getSelectCC( 6746 dl, Exponent, ExponentLoBit, 6747 DAG.getNode(ISD::SHL, dl, DstVT, R, 6748 DAG.getZExtOrTrunc( 6749 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6750 dl, IntShVT)), 6751 DAG.getNode(ISD::SRL, dl, DstVT, R, 6752 DAG.getZExtOrTrunc( 6753 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6754 dl, IntShVT)), 6755 ISD::SETGT); 6756 6757 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6758 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6759 6760 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6761 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6762 return true; 6763 } 6764 6765 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6766 SDValue &Chain, 6767 SelectionDAG &DAG) const { 6768 SDLoc dl(SDValue(Node, 0)); 6769 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6770 SDValue Src = Node->getOperand(OpNo); 6771 6772 EVT SrcVT = Src.getValueType(); 6773 EVT DstVT = Node->getValueType(0); 6774 EVT SetCCVT = 6775 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6776 EVT DstSetCCVT = 6777 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6778 6779 // Only expand vector types if we have the appropriate vector bit operations. 6780 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6781 ISD::FP_TO_SINT; 6782 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6783 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6784 return false; 6785 6786 // If the maximum float value is smaller then the signed integer range, 6787 // the destination signmask can't be represented by the float, so we can 6788 // just use FP_TO_SINT directly. 6789 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6790 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6791 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6792 if (APFloat::opOverflow & 6793 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6794 if (Node->isStrictFPOpcode()) { 6795 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6796 { Node->getOperand(0), Src }); 6797 Chain = Result.getValue(1); 6798 } else 6799 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6800 return true; 6801 } 6802 6803 // Don't expand it if there isn't cheap fsub instruction. 6804 if (!isOperationLegalOrCustom( 6805 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6806 return false; 6807 6808 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6809 SDValue Sel; 6810 6811 if (Node->isStrictFPOpcode()) { 6812 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6813 Node->getOperand(0), /*IsSignaling*/ true); 6814 Chain = Sel.getValue(1); 6815 } else { 6816 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6817 } 6818 6819 bool Strict = Node->isStrictFPOpcode() || 6820 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6821 6822 if (Strict) { 6823 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6824 // signmask then offset (the result of which should be fully representable). 6825 // Sel = Src < 0x8000000000000000 6826 // FltOfs = select Sel, 0, 0x8000000000000000 6827 // IntOfs = select Sel, 0, 0x8000000000000000 6828 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6829 6830 // TODO: Should any fast-math-flags be set for the FSUB? 6831 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6832 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6833 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6834 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6835 DAG.getConstant(0, dl, DstVT), 6836 DAG.getConstant(SignMask, dl, DstVT)); 6837 SDValue SInt; 6838 if (Node->isStrictFPOpcode()) { 6839 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6840 { Chain, Src, FltOfs }); 6841 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6842 { Val.getValue(1), Val }); 6843 Chain = SInt.getValue(1); 6844 } else { 6845 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6846 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6847 } 6848 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6849 } else { 6850 // Expand based on maximum range of FP_TO_SINT: 6851 // True = fp_to_sint(Src) 6852 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6853 // Result = select (Src < 0x8000000000000000), True, False 6854 6855 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6856 // TODO: Should any fast-math-flags be set for the FSUB? 6857 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6858 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6859 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6860 DAG.getConstant(SignMask, dl, DstVT)); 6861 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6862 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6863 } 6864 return true; 6865 } 6866 6867 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6868 SDValue &Chain, 6869 SelectionDAG &DAG) const { 6870 // This transform is not correct for converting 0 when rounding mode is set 6871 // to round toward negative infinity which will produce -0.0. So disable under 6872 // strictfp. 6873 if (Node->isStrictFPOpcode()) 6874 return false; 6875 6876 SDValue Src = Node->getOperand(0); 6877 EVT SrcVT = Src.getValueType(); 6878 EVT DstVT = Node->getValueType(0); 6879 6880 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6881 return false; 6882 6883 // Only expand vector types if we have the appropriate vector bit operations. 6884 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6885 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6886 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6887 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6888 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6889 return false; 6890 6891 SDLoc dl(SDValue(Node, 0)); 6892 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6893 6894 // Implementation of unsigned i64 to f64 following the algorithm in 6895 // __floatundidf in compiler_rt. This implementation performs rounding 6896 // correctly in all rounding modes with the exception of converting 0 6897 // when rounding toward negative infinity. In that case the fsub will produce 6898 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6899 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6900 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6901 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6902 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6903 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6904 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6905 6906 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6907 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6908 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6909 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6910 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6911 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6912 SDValue HiSub = 6913 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6914 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6915 return true; 6916 } 6917 6918 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6919 SelectionDAG &DAG) const { 6920 SDLoc dl(Node); 6921 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6922 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6923 EVT VT = Node->getValueType(0); 6924 6925 if (VT.isScalableVector()) 6926 report_fatal_error( 6927 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6928 6929 if (isOperationLegalOrCustom(NewOp, VT)) { 6930 SDValue Quiet0 = Node->getOperand(0); 6931 SDValue Quiet1 = Node->getOperand(1); 6932 6933 if (!Node->getFlags().hasNoNaNs()) { 6934 // Insert canonicalizes if it's possible we need to quiet to get correct 6935 // sNaN behavior. 6936 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6937 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6938 Node->getFlags()); 6939 } 6940 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6941 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6942 Node->getFlags()); 6943 } 6944 } 6945 6946 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6947 } 6948 6949 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6950 // instead if there are no NaNs. 6951 if (Node->getFlags().hasNoNaNs()) { 6952 unsigned IEEE2018Op = 6953 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6954 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6955 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6956 Node->getOperand(1), Node->getFlags()); 6957 } 6958 } 6959 6960 // If none of the above worked, but there are no NaNs, then expand to 6961 // a compare/select sequence. This is required for correctness since 6962 // InstCombine might have canonicalized a fcmp+select sequence to a 6963 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6964 // expansion to libcall, we might introduce a link-time dependency 6965 // on libm into a file that originally did not have one. 6966 if (Node->getFlags().hasNoNaNs()) { 6967 ISD::CondCode Pred = 6968 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6969 SDValue Op1 = Node->getOperand(0); 6970 SDValue Op2 = Node->getOperand(1); 6971 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6972 // Copy FMF flags, but always set the no-signed-zeros flag 6973 // as this is implied by the FMINNUM/FMAXNUM semantics. 6974 SDNodeFlags Flags = Node->getFlags(); 6975 Flags.setNoSignedZeros(true); 6976 SelCC->setFlags(Flags); 6977 return SelCC; 6978 } 6979 6980 return SDValue(); 6981 } 6982 6983 // Only expand vector types if we have the appropriate vector bit operations. 6984 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 6985 assert(VT.isVector() && "Expected vector type"); 6986 unsigned Len = VT.getScalarSizeInBits(); 6987 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 6988 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 6989 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 6990 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 6991 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 6992 } 6993 6994 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 6995 SDLoc dl(Node); 6996 EVT VT = Node->getValueType(0); 6997 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6998 SDValue Op = Node->getOperand(0); 6999 unsigned Len = VT.getScalarSizeInBits(); 7000 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7001 7002 // TODO: Add support for irregular type lengths. 7003 if (!(Len <= 128 && Len % 8 == 0)) 7004 return SDValue(); 7005 7006 // Only expand vector types if we have the appropriate vector bit operations. 7007 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7008 return SDValue(); 7009 7010 // This is the "best" algorithm from 7011 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7012 SDValue Mask55 = 7013 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7014 SDValue Mask33 = 7015 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7016 SDValue Mask0F = 7017 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7018 SDValue Mask01 = 7019 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7020 7021 // v = v - ((v >> 1) & 0x55555555...) 7022 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7023 DAG.getNode(ISD::AND, dl, VT, 7024 DAG.getNode(ISD::SRL, dl, VT, Op, 7025 DAG.getConstant(1, dl, ShVT)), 7026 Mask55)); 7027 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7028 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7029 DAG.getNode(ISD::AND, dl, VT, 7030 DAG.getNode(ISD::SRL, dl, VT, Op, 7031 DAG.getConstant(2, dl, ShVT)), 7032 Mask33)); 7033 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7034 Op = DAG.getNode(ISD::AND, dl, VT, 7035 DAG.getNode(ISD::ADD, dl, VT, Op, 7036 DAG.getNode(ISD::SRL, dl, VT, Op, 7037 DAG.getConstant(4, dl, ShVT))), 7038 Mask0F); 7039 // v = (v * 0x01010101...) >> (Len - 8) 7040 if (Len > 8) 7041 Op = 7042 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7043 DAG.getConstant(Len - 8, dl, ShVT)); 7044 7045 return Op; 7046 } 7047 7048 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7049 SDLoc dl(Node); 7050 EVT VT = Node->getValueType(0); 7051 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7052 SDValue Op = Node->getOperand(0); 7053 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7054 7055 // If the non-ZERO_UNDEF version is supported we can use that instead. 7056 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7057 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7058 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7059 7060 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7061 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7062 EVT SetCCVT = 7063 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7064 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7065 SDValue Zero = DAG.getConstant(0, dl, VT); 7066 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7067 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7068 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7069 } 7070 7071 // Only expand vector types if we have the appropriate vector bit operations. 7072 // This includes the operations needed to expand CTPOP if it isn't supported. 7073 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7074 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7075 !canExpandVectorCTPOP(*this, VT)) || 7076 !isOperationLegalOrCustom(ISD::SRL, VT) || 7077 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7078 return SDValue(); 7079 7080 // for now, we do this: 7081 // x = x | (x >> 1); 7082 // x = x | (x >> 2); 7083 // ... 7084 // x = x | (x >>16); 7085 // x = x | (x >>32); // for 64-bit input 7086 // return popcount(~x); 7087 // 7088 // Ref: "Hacker's Delight" by Henry Warren 7089 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7090 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7091 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7092 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7093 } 7094 Op = DAG.getNOT(dl, Op, VT); 7095 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7096 } 7097 7098 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7099 SDLoc dl(Node); 7100 EVT VT = Node->getValueType(0); 7101 SDValue Op = Node->getOperand(0); 7102 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7103 7104 // If the non-ZERO_UNDEF version is supported we can use that instead. 7105 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7106 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7107 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7108 7109 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7110 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7111 EVT SetCCVT = 7112 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7113 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7114 SDValue Zero = DAG.getConstant(0, dl, VT); 7115 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7116 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7117 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7118 } 7119 7120 // Only expand vector types if we have the appropriate vector bit operations. 7121 // This includes the operations needed to expand CTPOP if it isn't supported. 7122 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7123 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7124 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7125 !canExpandVectorCTPOP(*this, VT)) || 7126 !isOperationLegalOrCustom(ISD::SUB, VT) || 7127 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7128 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7129 return SDValue(); 7130 7131 // for now, we use: { return popcount(~x & (x - 1)); } 7132 // unless the target has ctlz but not ctpop, in which case we use: 7133 // { return 32 - nlz(~x & (x-1)); } 7134 // Ref: "Hacker's Delight" by Henry Warren 7135 SDValue Tmp = DAG.getNode( 7136 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7137 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7138 7139 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7140 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7141 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7142 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7143 } 7144 7145 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7146 } 7147 7148 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7149 bool IsNegative) const { 7150 SDLoc dl(N); 7151 EVT VT = N->getValueType(0); 7152 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7153 SDValue Op = N->getOperand(0); 7154 7155 // abs(x) -> smax(x,sub(0,x)) 7156 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7157 isOperationLegal(ISD::SMAX, VT)) { 7158 SDValue Zero = DAG.getConstant(0, dl, VT); 7159 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7160 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7161 } 7162 7163 // abs(x) -> umin(x,sub(0,x)) 7164 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7165 isOperationLegal(ISD::UMIN, VT)) { 7166 SDValue Zero = DAG.getConstant(0, dl, VT); 7167 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7168 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7169 } 7170 7171 // 0 - abs(x) -> smin(x, sub(0,x)) 7172 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7173 isOperationLegal(ISD::SMIN, VT)) { 7174 SDValue Zero = DAG.getConstant(0, dl, VT); 7175 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7176 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7177 } 7178 7179 // Only expand vector types if we have the appropriate vector operations. 7180 if (VT.isVector() && 7181 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7182 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7183 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7184 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7185 return SDValue(); 7186 7187 SDValue Shift = 7188 DAG.getNode(ISD::SRA, dl, VT, Op, 7189 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7190 if (!IsNegative) { 7191 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7192 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7193 } 7194 7195 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7196 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7197 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7198 } 7199 7200 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7201 SDLoc dl(N); 7202 EVT VT = N->getValueType(0); 7203 SDValue Op = N->getOperand(0); 7204 7205 if (!VT.isSimple()) 7206 return SDValue(); 7207 7208 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7209 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7210 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7211 default: 7212 return SDValue(); 7213 case MVT::i16: 7214 // Use a rotate by 8. This can be further expanded if necessary. 7215 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7216 case MVT::i32: 7217 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7218 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7219 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7220 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7221 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7222 DAG.getConstant(0xFF0000, dl, VT)); 7223 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7224 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7225 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7226 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7227 case MVT::i64: 7228 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7229 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7230 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7231 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7232 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7233 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7234 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7235 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7236 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7237 DAG.getConstant(255ULL<<48, dl, VT)); 7238 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7239 DAG.getConstant(255ULL<<40, dl, VT)); 7240 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7241 DAG.getConstant(255ULL<<32, dl, VT)); 7242 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7243 DAG.getConstant(255ULL<<24, dl, VT)); 7244 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7245 DAG.getConstant(255ULL<<16, dl, VT)); 7246 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7247 DAG.getConstant(255ULL<<8 , dl, VT)); 7248 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7249 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7250 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7251 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7252 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7253 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7254 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7255 } 7256 } 7257 7258 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7259 SDLoc dl(N); 7260 EVT VT = N->getValueType(0); 7261 SDValue Op = N->getOperand(0); 7262 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7263 unsigned Sz = VT.getScalarSizeInBits(); 7264 7265 SDValue Tmp, Tmp2, Tmp3; 7266 7267 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7268 // and finally the i1 pairs. 7269 // TODO: We can easily support i4/i2 legal types if any target ever does. 7270 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7271 // Create the masks - repeating the pattern every byte. 7272 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7273 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7274 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7275 7276 // BSWAP if the type is wider than a single byte. 7277 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7278 7279 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7280 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7281 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7282 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7283 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7284 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7285 7286 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7287 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7288 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7289 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7290 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7291 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7292 7293 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7294 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7295 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7296 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7297 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7298 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7299 return Tmp; 7300 } 7301 7302 Tmp = DAG.getConstant(0, dl, VT); 7303 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7304 if (I < J) 7305 Tmp2 = 7306 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7307 else 7308 Tmp2 = 7309 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7310 7311 APInt Shift(Sz, 1); 7312 Shift <<= J; 7313 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7314 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7315 } 7316 7317 return Tmp; 7318 } 7319 7320 std::pair<SDValue, SDValue> 7321 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7322 SelectionDAG &DAG) const { 7323 SDLoc SL(LD); 7324 SDValue Chain = LD->getChain(); 7325 SDValue BasePTR = LD->getBasePtr(); 7326 EVT SrcVT = LD->getMemoryVT(); 7327 EVT DstVT = LD->getValueType(0); 7328 ISD::LoadExtType ExtType = LD->getExtensionType(); 7329 7330 if (SrcVT.isScalableVector()) 7331 report_fatal_error("Cannot scalarize scalable vector loads"); 7332 7333 unsigned NumElem = SrcVT.getVectorNumElements(); 7334 7335 EVT SrcEltVT = SrcVT.getScalarType(); 7336 EVT DstEltVT = DstVT.getScalarType(); 7337 7338 // A vector must always be stored in memory as-is, i.e. without any padding 7339 // between the elements, since various code depend on it, e.g. in the 7340 // handling of a bitcast of a vector type to int, which may be done with a 7341 // vector store followed by an integer load. A vector that does not have 7342 // elements that are byte-sized must therefore be stored as an integer 7343 // built out of the extracted vector elements. 7344 if (!SrcEltVT.isByteSized()) { 7345 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7346 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7347 7348 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7349 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7350 7351 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7352 SDValue SrcEltBitMask = DAG.getConstant( 7353 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7354 7355 // Load the whole vector and avoid masking off the top bits as it makes 7356 // the codegen worse. 7357 SDValue Load = 7358 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7359 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7360 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7361 7362 SmallVector<SDValue, 8> Vals; 7363 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7364 unsigned ShiftIntoIdx = 7365 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7366 SDValue ShiftAmount = 7367 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7368 LoadVT, SL, /*LegalTypes=*/false); 7369 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7370 SDValue Elt = 7371 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7372 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7373 7374 if (ExtType != ISD::NON_EXTLOAD) { 7375 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7376 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7377 } 7378 7379 Vals.push_back(Scalar); 7380 } 7381 7382 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7383 return std::make_pair(Value, Load.getValue(1)); 7384 } 7385 7386 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7387 assert(SrcEltVT.isByteSized()); 7388 7389 SmallVector<SDValue, 8> Vals; 7390 SmallVector<SDValue, 8> LoadChains; 7391 7392 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7393 SDValue ScalarLoad = 7394 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7395 LD->getPointerInfo().getWithOffset(Idx * Stride), 7396 SrcEltVT, LD->getOriginalAlign(), 7397 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7398 7399 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7400 7401 Vals.push_back(ScalarLoad.getValue(0)); 7402 LoadChains.push_back(ScalarLoad.getValue(1)); 7403 } 7404 7405 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7406 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7407 7408 return std::make_pair(Value, NewChain); 7409 } 7410 7411 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7412 SelectionDAG &DAG) const { 7413 SDLoc SL(ST); 7414 7415 SDValue Chain = ST->getChain(); 7416 SDValue BasePtr = ST->getBasePtr(); 7417 SDValue Value = ST->getValue(); 7418 EVT StVT = ST->getMemoryVT(); 7419 7420 if (StVT.isScalableVector()) 7421 report_fatal_error("Cannot scalarize scalable vector stores"); 7422 7423 // The type of the data we want to save 7424 EVT RegVT = Value.getValueType(); 7425 EVT RegSclVT = RegVT.getScalarType(); 7426 7427 // The type of data as saved in memory. 7428 EVT MemSclVT = StVT.getScalarType(); 7429 7430 unsigned NumElem = StVT.getVectorNumElements(); 7431 7432 // A vector must always be stored in memory as-is, i.e. without any padding 7433 // between the elements, since various code depend on it, e.g. in the 7434 // handling of a bitcast of a vector type to int, which may be done with a 7435 // vector store followed by an integer load. A vector that does not have 7436 // elements that are byte-sized must therefore be stored as an integer 7437 // built out of the extracted vector elements. 7438 if (!MemSclVT.isByteSized()) { 7439 unsigned NumBits = StVT.getSizeInBits(); 7440 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7441 7442 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7443 7444 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7445 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7446 DAG.getVectorIdxConstant(Idx, SL)); 7447 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7448 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7449 unsigned ShiftIntoIdx = 7450 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7451 SDValue ShiftAmount = 7452 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7453 SDValue ShiftedElt = 7454 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7455 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7456 } 7457 7458 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7459 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7460 ST->getAAInfo()); 7461 } 7462 7463 // Store Stride in bytes 7464 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7465 assert(Stride && "Zero stride!"); 7466 // Extract each of the elements from the original vector and save them into 7467 // memory individually. 7468 SmallVector<SDValue, 8> Stores; 7469 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7470 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7471 DAG.getVectorIdxConstant(Idx, SL)); 7472 7473 SDValue Ptr = 7474 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7475 7476 // This scalar TruncStore may be illegal, but we legalize it later. 7477 SDValue Store = DAG.getTruncStore( 7478 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7479 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7480 ST->getAAInfo()); 7481 7482 Stores.push_back(Store); 7483 } 7484 7485 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7486 } 7487 7488 std::pair<SDValue, SDValue> 7489 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7490 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7491 "unaligned indexed loads not implemented!"); 7492 SDValue Chain = LD->getChain(); 7493 SDValue Ptr = LD->getBasePtr(); 7494 EVT VT = LD->getValueType(0); 7495 EVT LoadedVT = LD->getMemoryVT(); 7496 SDLoc dl(LD); 7497 auto &MF = DAG.getMachineFunction(); 7498 7499 if (VT.isFloatingPoint() || VT.isVector()) { 7500 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7501 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7502 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7503 LoadedVT.isVector()) { 7504 // Scalarize the load and let the individual components be handled. 7505 return scalarizeVectorLoad(LD, DAG); 7506 } 7507 7508 // Expand to a (misaligned) integer load of the same size, 7509 // then bitconvert to floating point or vector. 7510 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7511 LD->getMemOperand()); 7512 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7513 if (LoadedVT != VT) 7514 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7515 ISD::ANY_EXTEND, dl, VT, Result); 7516 7517 return std::make_pair(Result, newLoad.getValue(1)); 7518 } 7519 7520 // Copy the value to a (aligned) stack slot using (unaligned) integer 7521 // loads and stores, then do a (aligned) load from the stack slot. 7522 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7523 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7524 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7525 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7526 7527 // Make sure the stack slot is also aligned for the register type. 7528 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7529 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7530 SmallVector<SDValue, 8> Stores; 7531 SDValue StackPtr = StackBase; 7532 unsigned Offset = 0; 7533 7534 EVT PtrVT = Ptr.getValueType(); 7535 EVT StackPtrVT = StackPtr.getValueType(); 7536 7537 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7538 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7539 7540 // Do all but one copies using the full register width. 7541 for (unsigned i = 1; i < NumRegs; i++) { 7542 // Load one integer register's worth from the original location. 7543 SDValue Load = DAG.getLoad( 7544 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7545 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7546 LD->getAAInfo()); 7547 // Follow the load with a store to the stack slot. Remember the store. 7548 Stores.push_back(DAG.getStore( 7549 Load.getValue(1), dl, Load, StackPtr, 7550 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7551 // Increment the pointers. 7552 Offset += RegBytes; 7553 7554 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7555 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7556 } 7557 7558 // The last copy may be partial. Do an extending load. 7559 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7560 8 * (LoadedBytes - Offset)); 7561 SDValue Load = 7562 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7563 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7564 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7565 LD->getAAInfo()); 7566 // Follow the load with a store to the stack slot. Remember the store. 7567 // On big-endian machines this requires a truncating store to ensure 7568 // that the bits end up in the right place. 7569 Stores.push_back(DAG.getTruncStore( 7570 Load.getValue(1), dl, Load, StackPtr, 7571 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7572 7573 // The order of the stores doesn't matter - say it with a TokenFactor. 7574 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7575 7576 // Finally, perform the original load only redirected to the stack slot. 7577 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7578 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7579 LoadedVT); 7580 7581 // Callers expect a MERGE_VALUES node. 7582 return std::make_pair(Load, TF); 7583 } 7584 7585 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7586 "Unaligned load of unsupported type."); 7587 7588 // Compute the new VT that is half the size of the old one. This is an 7589 // integer MVT. 7590 unsigned NumBits = LoadedVT.getSizeInBits(); 7591 EVT NewLoadedVT; 7592 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7593 NumBits >>= 1; 7594 7595 Align Alignment = LD->getOriginalAlign(); 7596 unsigned IncrementSize = NumBits / 8; 7597 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7598 7599 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7600 if (HiExtType == ISD::NON_EXTLOAD) 7601 HiExtType = ISD::ZEXTLOAD; 7602 7603 // Load the value in two parts 7604 SDValue Lo, Hi; 7605 if (DAG.getDataLayout().isLittleEndian()) { 7606 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7607 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7608 LD->getAAInfo()); 7609 7610 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7611 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7612 LD->getPointerInfo().getWithOffset(IncrementSize), 7613 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7614 LD->getAAInfo()); 7615 } else { 7616 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7617 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7618 LD->getAAInfo()); 7619 7620 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7621 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7622 LD->getPointerInfo().getWithOffset(IncrementSize), 7623 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7624 LD->getAAInfo()); 7625 } 7626 7627 // aggregate the two parts 7628 SDValue ShiftAmount = 7629 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7630 DAG.getDataLayout())); 7631 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7632 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7633 7634 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7635 Hi.getValue(1)); 7636 7637 return std::make_pair(Result, TF); 7638 } 7639 7640 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7641 SelectionDAG &DAG) const { 7642 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7643 "unaligned indexed stores not implemented!"); 7644 SDValue Chain = ST->getChain(); 7645 SDValue Ptr = ST->getBasePtr(); 7646 SDValue Val = ST->getValue(); 7647 EVT VT = Val.getValueType(); 7648 Align Alignment = ST->getOriginalAlign(); 7649 auto &MF = DAG.getMachineFunction(); 7650 EVT StoreMemVT = ST->getMemoryVT(); 7651 7652 SDLoc dl(ST); 7653 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7654 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7655 if (isTypeLegal(intVT)) { 7656 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7657 StoreMemVT.isVector()) { 7658 // Scalarize the store and let the individual components be handled. 7659 SDValue Result = scalarizeVectorStore(ST, DAG); 7660 return Result; 7661 } 7662 // Expand to a bitconvert of the value to the integer type of the 7663 // same size, then a (misaligned) int store. 7664 // FIXME: Does not handle truncating floating point stores! 7665 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7666 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7667 Alignment, ST->getMemOperand()->getFlags()); 7668 return Result; 7669 } 7670 // Do a (aligned) store to a stack slot, then copy from the stack slot 7671 // to the final destination using (unaligned) integer loads and stores. 7672 MVT RegVT = getRegisterType( 7673 *DAG.getContext(), 7674 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7675 EVT PtrVT = Ptr.getValueType(); 7676 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7677 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7678 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7679 7680 // Make sure the stack slot is also aligned for the register type. 7681 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7682 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7683 7684 // Perform the original store, only redirected to the stack slot. 7685 SDValue Store = DAG.getTruncStore( 7686 Chain, dl, Val, StackPtr, 7687 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7688 7689 EVT StackPtrVT = StackPtr.getValueType(); 7690 7691 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7692 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7693 SmallVector<SDValue, 8> Stores; 7694 unsigned Offset = 0; 7695 7696 // Do all but one copies using the full register width. 7697 for (unsigned i = 1; i < NumRegs; i++) { 7698 // Load one integer register's worth from the stack slot. 7699 SDValue Load = DAG.getLoad( 7700 RegVT, dl, Store, StackPtr, 7701 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7702 // Store it to the final location. Remember the store. 7703 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7704 ST->getPointerInfo().getWithOffset(Offset), 7705 ST->getOriginalAlign(), 7706 ST->getMemOperand()->getFlags())); 7707 // Increment the pointers. 7708 Offset += RegBytes; 7709 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7710 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7711 } 7712 7713 // The last store may be partial. Do a truncating store. On big-endian 7714 // machines this requires an extending load from the stack slot to ensure 7715 // that the bits are in the right place. 7716 EVT LoadMemVT = 7717 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7718 7719 // Load from the stack slot. 7720 SDValue Load = DAG.getExtLoad( 7721 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7722 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7723 7724 Stores.push_back( 7725 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7726 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7727 ST->getOriginalAlign(), 7728 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7729 // The order of the stores doesn't matter - say it with a TokenFactor. 7730 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7731 return Result; 7732 } 7733 7734 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7735 "Unaligned store of unknown type."); 7736 // Get the half-size VT 7737 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7738 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7739 unsigned IncrementSize = NumBits / 8; 7740 7741 // Divide the stored value in two parts. 7742 SDValue ShiftAmount = DAG.getConstant( 7743 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7744 SDValue Lo = Val; 7745 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7746 7747 // Store the two parts 7748 SDValue Store1, Store2; 7749 Store1 = DAG.getTruncStore(Chain, dl, 7750 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7751 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7752 ST->getMemOperand()->getFlags()); 7753 7754 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7755 Store2 = DAG.getTruncStore( 7756 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7757 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7758 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7759 7760 SDValue Result = 7761 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7762 return Result; 7763 } 7764 7765 SDValue 7766 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7767 const SDLoc &DL, EVT DataVT, 7768 SelectionDAG &DAG, 7769 bool IsCompressedMemory) const { 7770 SDValue Increment; 7771 EVT AddrVT = Addr.getValueType(); 7772 EVT MaskVT = Mask.getValueType(); 7773 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7774 "Incompatible types of Data and Mask"); 7775 if (IsCompressedMemory) { 7776 if (DataVT.isScalableVector()) 7777 report_fatal_error( 7778 "Cannot currently handle compressed memory with scalable vectors"); 7779 // Incrementing the pointer according to number of '1's in the mask. 7780 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7781 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7782 if (MaskIntVT.getSizeInBits() < 32) { 7783 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7784 MaskIntVT = MVT::i32; 7785 } 7786 7787 // Count '1's with POPCNT. 7788 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7789 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7790 // Scale is an element size in bytes. 7791 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7792 AddrVT); 7793 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7794 } else if (DataVT.isScalableVector()) { 7795 Increment = DAG.getVScale(DL, AddrVT, 7796 APInt(AddrVT.getFixedSizeInBits(), 7797 DataVT.getStoreSize().getKnownMinSize())); 7798 } else 7799 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7800 7801 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7802 } 7803 7804 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7805 EVT VecVT, const SDLoc &dl, 7806 ElementCount SubEC) { 7807 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7808 "Cannot index a scalable vector within a fixed-width vector"); 7809 7810 unsigned NElts = VecVT.getVectorMinNumElements(); 7811 unsigned NumSubElts = SubEC.getKnownMinValue(); 7812 EVT IdxVT = Idx.getValueType(); 7813 7814 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7815 // If this is a constant index and we know the value plus the number of the 7816 // elements in the subvector minus one is less than the minimum number of 7817 // elements then it's safe to return Idx. 7818 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7819 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7820 return Idx; 7821 SDValue VS = 7822 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7823 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7824 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7825 DAG.getConstant(NumSubElts, dl, IdxVT)); 7826 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7827 } 7828 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7829 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7830 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7831 DAG.getConstant(Imm, dl, IdxVT)); 7832 } 7833 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7834 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7835 DAG.getConstant(MaxIndex, dl, IdxVT)); 7836 } 7837 7838 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7839 SDValue VecPtr, EVT VecVT, 7840 SDValue Index) const { 7841 return getVectorSubVecPointer( 7842 DAG, VecPtr, VecVT, 7843 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7844 Index); 7845 } 7846 7847 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7848 SDValue VecPtr, EVT VecVT, 7849 EVT SubVecVT, 7850 SDValue Index) const { 7851 SDLoc dl(Index); 7852 // Make sure the index type is big enough to compute in. 7853 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7854 7855 EVT EltVT = VecVT.getVectorElementType(); 7856 7857 // Calculate the element offset and add it to the pointer. 7858 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7859 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7860 "Converting bits to bytes lost precision"); 7861 assert(SubVecVT.getVectorElementType() == EltVT && 7862 "Sub-vector must be a vector with matching element type"); 7863 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7864 SubVecVT.getVectorElementCount()); 7865 7866 EVT IdxVT = Index.getValueType(); 7867 if (SubVecVT.isScalableVector()) 7868 Index = 7869 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7870 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7871 7872 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7873 DAG.getConstant(EltSize, dl, IdxVT)); 7874 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7875 } 7876 7877 //===----------------------------------------------------------------------===// 7878 // Implementation of Emulated TLS Model 7879 //===----------------------------------------------------------------------===// 7880 7881 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7882 SelectionDAG &DAG) const { 7883 // Access to address of TLS varialbe xyz is lowered to a function call: 7884 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7885 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7886 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7887 SDLoc dl(GA); 7888 7889 ArgListTy Args; 7890 ArgListEntry Entry; 7891 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7892 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7893 StringRef EmuTlsVarName(NameString); 7894 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7895 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7896 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7897 Entry.Ty = VoidPtrType; 7898 Args.push_back(Entry); 7899 7900 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7901 7902 TargetLowering::CallLoweringInfo CLI(DAG); 7903 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7904 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7905 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7906 7907 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7908 // At last for X86 targets, maybe good for other targets too? 7909 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7910 MFI.setAdjustsStack(true); // Is this only for X86 target? 7911 MFI.setHasCalls(true); 7912 7913 assert((GA->getOffset() == 0) && 7914 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7915 return CallResult.first; 7916 } 7917 7918 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7919 SelectionDAG &DAG) const { 7920 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7921 if (!isCtlzFast()) 7922 return SDValue(); 7923 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7924 SDLoc dl(Op); 7925 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7926 if (C->isZero() && CC == ISD::SETEQ) { 7927 EVT VT = Op.getOperand(0).getValueType(); 7928 SDValue Zext = Op.getOperand(0); 7929 if (VT.bitsLT(MVT::i32)) { 7930 VT = MVT::i32; 7931 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7932 } 7933 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7934 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7935 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7936 DAG.getConstant(Log2b, dl, MVT::i32)); 7937 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7938 } 7939 } 7940 return SDValue(); 7941 } 7942 7943 // Convert redundant addressing modes (e.g. scaling is redundant 7944 // when accessing bytes). 7945 ISD::MemIndexType 7946 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7947 SDValue Offsets) const { 7948 bool IsScaledIndex = 7949 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7950 bool IsSignedIndex = 7951 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7952 7953 // Scaling is unimportant for bytes, canonicalize to unscaled. 7954 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 7955 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7956 7957 return IndexType; 7958 } 7959 7960 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7961 SDValue Op0 = Node->getOperand(0); 7962 SDValue Op1 = Node->getOperand(1); 7963 EVT VT = Op0.getValueType(); 7964 unsigned Opcode = Node->getOpcode(); 7965 SDLoc DL(Node); 7966 7967 // umin(x,y) -> sub(x,usubsat(x,y)) 7968 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7969 isOperationLegal(ISD::USUBSAT, VT)) { 7970 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7971 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7972 } 7973 7974 // umax(x,y) -> add(x,usubsat(y,x)) 7975 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7976 isOperationLegal(ISD::USUBSAT, VT)) { 7977 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7978 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7979 } 7980 7981 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7982 ISD::CondCode CC; 7983 switch (Opcode) { 7984 default: llvm_unreachable("How did we get here?"); 7985 case ISD::SMAX: CC = ISD::SETGT; break; 7986 case ISD::SMIN: CC = ISD::SETLT; break; 7987 case ISD::UMAX: CC = ISD::SETUGT; break; 7988 case ISD::UMIN: CC = ISD::SETULT; break; 7989 } 7990 7991 // FIXME: Should really try to split the vector in case it's legal on a 7992 // subvector. 7993 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7994 return DAG.UnrollVectorOp(Node); 7995 7996 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7997 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7998 } 7999 8000 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8001 unsigned Opcode = Node->getOpcode(); 8002 SDValue LHS = Node->getOperand(0); 8003 SDValue RHS = Node->getOperand(1); 8004 EVT VT = LHS.getValueType(); 8005 SDLoc dl(Node); 8006 8007 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8008 assert(VT.isInteger() && "Expected operands to be integers"); 8009 8010 // usub.sat(a, b) -> umax(a, b) - b 8011 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8012 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8013 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8014 } 8015 8016 // uadd.sat(a, b) -> umin(a, ~b) + b 8017 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8018 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8019 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8020 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8021 } 8022 8023 unsigned OverflowOp; 8024 switch (Opcode) { 8025 case ISD::SADDSAT: 8026 OverflowOp = ISD::SADDO; 8027 break; 8028 case ISD::UADDSAT: 8029 OverflowOp = ISD::UADDO; 8030 break; 8031 case ISD::SSUBSAT: 8032 OverflowOp = ISD::SSUBO; 8033 break; 8034 case ISD::USUBSAT: 8035 OverflowOp = ISD::USUBO; 8036 break; 8037 default: 8038 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8039 "addition or subtraction node."); 8040 } 8041 8042 // FIXME: Should really try to split the vector in case it's legal on a 8043 // subvector. 8044 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8045 return DAG.UnrollVectorOp(Node); 8046 8047 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8048 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8049 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8050 SDValue SumDiff = Result.getValue(0); 8051 SDValue Overflow = Result.getValue(1); 8052 SDValue Zero = DAG.getConstant(0, dl, VT); 8053 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8054 8055 if (Opcode == ISD::UADDSAT) { 8056 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8057 // (LHS + RHS) | OverflowMask 8058 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8059 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8060 } 8061 // Overflow ? 0xffff.... : (LHS + RHS) 8062 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8063 } 8064 8065 if (Opcode == ISD::USUBSAT) { 8066 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8067 // (LHS - RHS) & ~OverflowMask 8068 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8069 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8070 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8071 } 8072 // Overflow ? 0 : (LHS - RHS) 8073 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8074 } 8075 8076 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8077 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8078 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8079 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8080 DAG.getConstant(BitWidth - 1, dl, VT)); 8081 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8082 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8083 } 8084 8085 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8086 unsigned Opcode = Node->getOpcode(); 8087 bool IsSigned = Opcode == ISD::SSHLSAT; 8088 SDValue LHS = Node->getOperand(0); 8089 SDValue RHS = Node->getOperand(1); 8090 EVT VT = LHS.getValueType(); 8091 SDLoc dl(Node); 8092 8093 assert((Node->getOpcode() == ISD::SSHLSAT || 8094 Node->getOpcode() == ISD::USHLSAT) && 8095 "Expected a SHLSAT opcode"); 8096 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8097 assert(VT.isInteger() && "Expected operands to be integers"); 8098 8099 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8100 8101 unsigned BW = VT.getScalarSizeInBits(); 8102 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8103 SDValue Orig = 8104 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8105 8106 SDValue SatVal; 8107 if (IsSigned) { 8108 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8109 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8110 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8111 SatMin, SatMax, ISD::SETLT); 8112 } else { 8113 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8114 } 8115 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8116 8117 return Result; 8118 } 8119 8120 SDValue 8121 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8122 assert((Node->getOpcode() == ISD::SMULFIX || 8123 Node->getOpcode() == ISD::UMULFIX || 8124 Node->getOpcode() == ISD::SMULFIXSAT || 8125 Node->getOpcode() == ISD::UMULFIXSAT) && 8126 "Expected a fixed point multiplication opcode"); 8127 8128 SDLoc dl(Node); 8129 SDValue LHS = Node->getOperand(0); 8130 SDValue RHS = Node->getOperand(1); 8131 EVT VT = LHS.getValueType(); 8132 unsigned Scale = Node->getConstantOperandVal(2); 8133 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8134 Node->getOpcode() == ISD::UMULFIXSAT); 8135 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8136 Node->getOpcode() == ISD::SMULFIXSAT); 8137 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8138 unsigned VTSize = VT.getScalarSizeInBits(); 8139 8140 if (!Scale) { 8141 // [us]mul.fix(a, b, 0) -> mul(a, b) 8142 if (!Saturating) { 8143 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8144 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8145 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8146 SDValue Result = 8147 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8148 SDValue Product = Result.getValue(0); 8149 SDValue Overflow = Result.getValue(1); 8150 SDValue Zero = DAG.getConstant(0, dl, VT); 8151 8152 APInt MinVal = APInt::getSignedMinValue(VTSize); 8153 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8154 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8155 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8156 // Xor the inputs, if resulting sign bit is 0 the product will be 8157 // positive, else negative. 8158 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8159 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8160 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8161 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8162 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8163 SDValue Result = 8164 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8165 SDValue Product = Result.getValue(0); 8166 SDValue Overflow = Result.getValue(1); 8167 8168 APInt MaxVal = APInt::getMaxValue(VTSize); 8169 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8170 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8171 } 8172 } 8173 8174 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8175 "Expected scale to be less than the number of bits if signed or at " 8176 "most the number of bits if unsigned."); 8177 assert(LHS.getValueType() == RHS.getValueType() && 8178 "Expected both operands to be the same type"); 8179 8180 // Get the upper and lower bits of the result. 8181 SDValue Lo, Hi; 8182 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8183 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8184 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8185 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8186 Lo = Result.getValue(0); 8187 Hi = Result.getValue(1); 8188 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8189 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8190 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8191 } else if (VT.isVector()) { 8192 return SDValue(); 8193 } else { 8194 report_fatal_error("Unable to expand fixed point multiplication."); 8195 } 8196 8197 if (Scale == VTSize) 8198 // Result is just the top half since we'd be shifting by the width of the 8199 // operand. Overflow impossible so this works for both UMULFIX and 8200 // UMULFIXSAT. 8201 return Hi; 8202 8203 // The result will need to be shifted right by the scale since both operands 8204 // are scaled. The result is given to us in 2 halves, so we only want part of 8205 // both in the result. 8206 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8207 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8208 DAG.getConstant(Scale, dl, ShiftTy)); 8209 if (!Saturating) 8210 return Result; 8211 8212 if (!Signed) { 8213 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8214 // widened multiplication) aren't all zeroes. 8215 8216 // Saturate to max if ((Hi >> Scale) != 0), 8217 // which is the same as if (Hi > ((1 << Scale) - 1)) 8218 APInt MaxVal = APInt::getMaxValue(VTSize); 8219 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8220 dl, VT); 8221 Result = DAG.getSelectCC(dl, Hi, LowMask, 8222 DAG.getConstant(MaxVal, dl, VT), Result, 8223 ISD::SETUGT); 8224 8225 return Result; 8226 } 8227 8228 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8229 // widened multiplication) aren't all ones or all zeroes. 8230 8231 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8232 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8233 8234 if (Scale == 0) { 8235 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8236 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8237 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8238 // Saturated to SatMin if wide product is negative, and SatMax if wide 8239 // product is positive ... 8240 SDValue Zero = DAG.getConstant(0, dl, VT); 8241 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8242 ISD::SETLT); 8243 // ... but only if we overflowed. 8244 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8245 } 8246 8247 // We handled Scale==0 above so all the bits to examine is in Hi. 8248 8249 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8250 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8251 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8252 dl, VT); 8253 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8254 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8255 // which is the same as if (HI < (-1 << (Scale - 1)) 8256 SDValue HighMask = 8257 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8258 dl, VT); 8259 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8260 return Result; 8261 } 8262 8263 SDValue 8264 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8265 SDValue LHS, SDValue RHS, 8266 unsigned Scale, SelectionDAG &DAG) const { 8267 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8268 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8269 "Expected a fixed point division opcode"); 8270 8271 EVT VT = LHS.getValueType(); 8272 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8273 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8274 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8275 8276 // If there is enough room in the type to upscale the LHS or downscale the 8277 // RHS before the division, we can perform it in this type without having to 8278 // resize. For signed operations, the LHS headroom is the number of 8279 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8280 // The headroom for the RHS is the number of trailing zeroes. 8281 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8282 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8283 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8284 8285 // For signed saturating operations, we need to be able to detect true integer 8286 // division overflow; that is, when you have MIN / -EPS. However, this 8287 // is undefined behavior and if we emit divisions that could take such 8288 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8289 // example). 8290 // Avoid this by requiring an extra bit so that we never get this case. 8291 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8292 // signed saturating division, we need to emit a whopping 32-bit division. 8293 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8294 return SDValue(); 8295 8296 unsigned LHSShift = std::min(LHSLead, Scale); 8297 unsigned RHSShift = Scale - LHSShift; 8298 8299 // At this point, we know that if we shift the LHS up by LHSShift and the 8300 // RHS down by RHSShift, we can emit a regular division with a final scaling 8301 // factor of Scale. 8302 8303 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8304 if (LHSShift) 8305 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8306 DAG.getConstant(LHSShift, dl, ShiftTy)); 8307 if (RHSShift) 8308 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8309 DAG.getConstant(RHSShift, dl, ShiftTy)); 8310 8311 SDValue Quot; 8312 if (Signed) { 8313 // For signed operations, if the resulting quotient is negative and the 8314 // remainder is nonzero, subtract 1 from the quotient to round towards 8315 // negative infinity. 8316 SDValue Rem; 8317 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8318 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8319 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8320 if (isTypeLegal(VT) && 8321 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8322 Quot = DAG.getNode(ISD::SDIVREM, dl, 8323 DAG.getVTList(VT, VT), 8324 LHS, RHS); 8325 Rem = Quot.getValue(1); 8326 Quot = Quot.getValue(0); 8327 } else { 8328 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8329 LHS, RHS); 8330 Rem = DAG.getNode(ISD::SREM, dl, VT, 8331 LHS, RHS); 8332 } 8333 SDValue Zero = DAG.getConstant(0, dl, VT); 8334 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8335 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8336 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8337 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8338 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8339 DAG.getConstant(1, dl, VT)); 8340 Quot = DAG.getSelect(dl, VT, 8341 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8342 Sub1, Quot); 8343 } else 8344 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8345 LHS, RHS); 8346 8347 return Quot; 8348 } 8349 8350 void TargetLowering::expandUADDSUBO( 8351 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8352 SDLoc dl(Node); 8353 SDValue LHS = Node->getOperand(0); 8354 SDValue RHS = Node->getOperand(1); 8355 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8356 8357 // If ADD/SUBCARRY is legal, use that instead. 8358 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8359 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8360 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8361 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8362 { LHS, RHS, CarryIn }); 8363 Result = SDValue(NodeCarry.getNode(), 0); 8364 Overflow = SDValue(NodeCarry.getNode(), 1); 8365 return; 8366 } 8367 8368 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8369 LHS.getValueType(), LHS, RHS); 8370 8371 EVT ResultType = Node->getValueType(1); 8372 EVT SetCCType = getSetCCResultType( 8373 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8374 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8375 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8376 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8377 } 8378 8379 void TargetLowering::expandSADDSUBO( 8380 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8381 SDLoc dl(Node); 8382 SDValue LHS = Node->getOperand(0); 8383 SDValue RHS = Node->getOperand(1); 8384 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8385 8386 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8387 LHS.getValueType(), LHS, RHS); 8388 8389 EVT ResultType = Node->getValueType(1); 8390 EVT OType = getSetCCResultType( 8391 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8392 8393 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8394 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8395 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8396 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8397 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8398 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8399 return; 8400 } 8401 8402 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8403 8404 // For an addition, the result should be less than one of the operands (LHS) 8405 // if and only if the other operand (RHS) is negative, otherwise there will 8406 // be overflow. 8407 // For a subtraction, the result should be less than one of the operands 8408 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8409 // otherwise there will be overflow. 8410 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8411 SDValue ConditionRHS = 8412 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8413 8414 Overflow = DAG.getBoolExtOrTrunc( 8415 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8416 ResultType, ResultType); 8417 } 8418 8419 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8420 SDValue &Overflow, SelectionDAG &DAG) const { 8421 SDLoc dl(Node); 8422 EVT VT = Node->getValueType(0); 8423 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8424 SDValue LHS = Node->getOperand(0); 8425 SDValue RHS = Node->getOperand(1); 8426 bool isSigned = Node->getOpcode() == ISD::SMULO; 8427 8428 // For power-of-two multiplications we can use a simpler shift expansion. 8429 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8430 const APInt &C = RHSC->getAPIntValue(); 8431 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8432 if (C.isPowerOf2()) { 8433 // smulo(x, signed_min) is same as umulo(x, signed_min). 8434 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8435 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8436 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8437 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8438 Overflow = DAG.getSetCC(dl, SetCCVT, 8439 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8440 dl, VT, Result, ShiftAmt), 8441 LHS, ISD::SETNE); 8442 return true; 8443 } 8444 } 8445 8446 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8447 if (VT.isVector()) 8448 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8449 VT.getVectorNumElements()); 8450 8451 SDValue BottomHalf; 8452 SDValue TopHalf; 8453 static const unsigned Ops[2][3] = 8454 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8455 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8456 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8457 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8458 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8459 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8460 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8461 RHS); 8462 TopHalf = BottomHalf.getValue(1); 8463 } else if (isTypeLegal(WideVT)) { 8464 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8465 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8466 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8467 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8468 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8469 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8470 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8471 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8472 } else { 8473 if (VT.isVector()) 8474 return false; 8475 8476 // We can fall back to a libcall with an illegal type for the MUL if we 8477 // have a libcall big enough. 8478 // Also, we can fall back to a division in some cases, but that's a big 8479 // performance hit in the general case. 8480 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8481 if (WideVT == MVT::i16) 8482 LC = RTLIB::MUL_I16; 8483 else if (WideVT == MVT::i32) 8484 LC = RTLIB::MUL_I32; 8485 else if (WideVT == MVT::i64) 8486 LC = RTLIB::MUL_I64; 8487 else if (WideVT == MVT::i128) 8488 LC = RTLIB::MUL_I128; 8489 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8490 8491 SDValue HiLHS; 8492 SDValue HiRHS; 8493 if (isSigned) { 8494 // The high part is obtained by SRA'ing all but one of the bits of low 8495 // part. 8496 unsigned LoSize = VT.getFixedSizeInBits(); 8497 HiLHS = 8498 DAG.getNode(ISD::SRA, dl, VT, LHS, 8499 DAG.getConstant(LoSize - 1, dl, 8500 getPointerTy(DAG.getDataLayout()))); 8501 HiRHS = 8502 DAG.getNode(ISD::SRA, dl, VT, RHS, 8503 DAG.getConstant(LoSize - 1, dl, 8504 getPointerTy(DAG.getDataLayout()))); 8505 } else { 8506 HiLHS = DAG.getConstant(0, dl, VT); 8507 HiRHS = DAG.getConstant(0, dl, VT); 8508 } 8509 8510 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8511 // pre-lowered to the correct types. This all depends upon WideVT not 8512 // being a legal type for the architecture and thus has to be split to 8513 // two arguments. 8514 SDValue Ret; 8515 TargetLowering::MakeLibCallOptions CallOptions; 8516 CallOptions.setSExt(isSigned); 8517 CallOptions.setIsPostTypeLegalization(true); 8518 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8519 // Halves of WideVT are packed into registers in different order 8520 // depending on platform endianness. This is usually handled by 8521 // the C calling convention, but we can't defer to it in 8522 // the legalizer. 8523 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8524 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8525 } else { 8526 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8527 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8528 } 8529 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8530 "Ret value is a collection of constituent nodes holding result."); 8531 if (DAG.getDataLayout().isLittleEndian()) { 8532 // Same as above. 8533 BottomHalf = Ret.getOperand(0); 8534 TopHalf = Ret.getOperand(1); 8535 } else { 8536 BottomHalf = Ret.getOperand(1); 8537 TopHalf = Ret.getOperand(0); 8538 } 8539 } 8540 8541 Result = BottomHalf; 8542 if (isSigned) { 8543 SDValue ShiftAmt = DAG.getConstant( 8544 VT.getScalarSizeInBits() - 1, dl, 8545 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8546 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8547 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8548 } else { 8549 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8550 DAG.getConstant(0, dl, VT), ISD::SETNE); 8551 } 8552 8553 // Truncate the result if SetCC returns a larger type than needed. 8554 EVT RType = Node->getValueType(1); 8555 if (RType.bitsLT(Overflow.getValueType())) 8556 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8557 8558 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8559 "Unexpected result type for S/UMULO legalization"); 8560 return true; 8561 } 8562 8563 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8564 SDLoc dl(Node); 8565 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8566 SDValue Op = Node->getOperand(0); 8567 EVT VT = Op.getValueType(); 8568 8569 if (VT.isScalableVector()) 8570 report_fatal_error( 8571 "Expanding reductions for scalable vectors is undefined."); 8572 8573 // Try to use a shuffle reduction for power of two vectors. 8574 if (VT.isPow2VectorType()) { 8575 while (VT.getVectorNumElements() > 1) { 8576 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8577 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8578 break; 8579 8580 SDValue Lo, Hi; 8581 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8582 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8583 VT = HalfVT; 8584 } 8585 } 8586 8587 EVT EltVT = VT.getVectorElementType(); 8588 unsigned NumElts = VT.getVectorNumElements(); 8589 8590 SmallVector<SDValue, 8> Ops; 8591 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8592 8593 SDValue Res = Ops[0]; 8594 for (unsigned i = 1; i < NumElts; i++) 8595 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8596 8597 // Result type may be wider than element type. 8598 if (EltVT != Node->getValueType(0)) 8599 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8600 return Res; 8601 } 8602 8603 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8604 SDLoc dl(Node); 8605 SDValue AccOp = Node->getOperand(0); 8606 SDValue VecOp = Node->getOperand(1); 8607 SDNodeFlags Flags = Node->getFlags(); 8608 8609 EVT VT = VecOp.getValueType(); 8610 EVT EltVT = VT.getVectorElementType(); 8611 8612 if (VT.isScalableVector()) 8613 report_fatal_error( 8614 "Expanding reductions for scalable vectors is undefined."); 8615 8616 unsigned NumElts = VT.getVectorNumElements(); 8617 8618 SmallVector<SDValue, 8> Ops; 8619 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8620 8621 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8622 8623 SDValue Res = AccOp; 8624 for (unsigned i = 0; i < NumElts; i++) 8625 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8626 8627 return Res; 8628 } 8629 8630 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8631 SelectionDAG &DAG) const { 8632 EVT VT = Node->getValueType(0); 8633 SDLoc dl(Node); 8634 bool isSigned = Node->getOpcode() == ISD::SREM; 8635 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8636 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8637 SDValue Dividend = Node->getOperand(0); 8638 SDValue Divisor = Node->getOperand(1); 8639 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8640 SDVTList VTs = DAG.getVTList(VT, VT); 8641 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8642 return true; 8643 } 8644 if (isOperationLegalOrCustom(DivOpc, VT)) { 8645 // X % Y -> X-X/Y*Y 8646 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8647 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8648 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8649 return true; 8650 } 8651 return false; 8652 } 8653 8654 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8655 SelectionDAG &DAG) const { 8656 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8657 SDLoc dl(SDValue(Node, 0)); 8658 SDValue Src = Node->getOperand(0); 8659 8660 // DstVT is the result type, while SatVT is the size to which we saturate 8661 EVT SrcVT = Src.getValueType(); 8662 EVT DstVT = Node->getValueType(0); 8663 8664 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8665 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8666 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8667 assert(SatWidth <= DstWidth && 8668 "Expected saturation width smaller than result width"); 8669 8670 // Determine minimum and maximum integer values and their corresponding 8671 // floating-point values. 8672 APInt MinInt, MaxInt; 8673 if (IsSigned) { 8674 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8675 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8676 } else { 8677 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8678 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8679 } 8680 8681 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8682 // libcall emission cannot handle this. Large result types will fail. 8683 if (SrcVT == MVT::f16) { 8684 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8685 SrcVT = Src.getValueType(); 8686 } 8687 8688 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8689 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8690 8691 APFloat::opStatus MinStatus = 8692 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8693 APFloat::opStatus MaxStatus = 8694 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8695 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8696 !(MaxStatus & APFloat::opStatus::opInexact); 8697 8698 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8699 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8700 8701 // If the integer bounds are exactly representable as floats and min/max are 8702 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8703 // of comparisons and selects. 8704 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8705 isOperationLegal(ISD::FMAXNUM, SrcVT); 8706 if (AreExactFloatBounds && MinMaxLegal) { 8707 SDValue Clamped = Src; 8708 8709 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8710 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8711 // Clamp by MaxFloat from above. NaN cannot occur. 8712 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8713 // Convert clamped value to integer. 8714 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8715 dl, DstVT, Clamped); 8716 8717 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8718 // which will cast to zero. 8719 if (!IsSigned) 8720 return FpToInt; 8721 8722 // Otherwise, select 0 if Src is NaN. 8723 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8724 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8725 ISD::CondCode::SETUO); 8726 } 8727 8728 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8729 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8730 8731 // Result of direct conversion. The assumption here is that the operation is 8732 // non-trapping and it's fine to apply it to an out-of-range value if we 8733 // select it away later. 8734 SDValue FpToInt = 8735 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8736 8737 SDValue Select = FpToInt; 8738 8739 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8740 // MinInt if Src is NaN. 8741 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8742 ISD::CondCode::SETULT); 8743 // If Src OGT MaxFloat, select MaxInt. 8744 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8745 ISD::CondCode::SETOGT); 8746 8747 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8748 // is already zero. 8749 if (!IsSigned) 8750 return Select; 8751 8752 // Otherwise, select 0 if Src is NaN. 8753 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8754 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8755 } 8756 8757 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8758 SelectionDAG &DAG) const { 8759 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8760 assert(Node->getValueType(0).isScalableVector() && 8761 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8762 8763 EVT VT = Node->getValueType(0); 8764 SDValue V1 = Node->getOperand(0); 8765 SDValue V2 = Node->getOperand(1); 8766 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8767 SDLoc DL(Node); 8768 8769 // Expand through memory thusly: 8770 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8771 // Store V1, Ptr 8772 // Store V2, Ptr + sizeof(V1) 8773 // If (Imm < 0) 8774 // TrailingElts = -Imm 8775 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8776 // else 8777 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8778 // Res = Load Ptr 8779 8780 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8781 8782 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8783 VT.getVectorElementCount() * 2); 8784 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8785 EVT PtrVT = StackPtr.getValueType(); 8786 auto &MF = DAG.getMachineFunction(); 8787 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8788 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8789 8790 // Store the lo part of CONCAT_VECTORS(V1, V2) 8791 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8792 // Store the hi part of CONCAT_VECTORS(V1, V2) 8793 SDValue OffsetToV2 = DAG.getVScale( 8794 DL, PtrVT, 8795 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8796 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8797 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8798 8799 if (Imm >= 0) { 8800 // Load back the required element. getVectorElementPointer takes care of 8801 // clamping the index if it's out-of-bounds. 8802 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8803 // Load the spliced result 8804 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8805 MachinePointerInfo::getUnknownStack(MF)); 8806 } 8807 8808 uint64_t TrailingElts = -Imm; 8809 8810 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8811 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8812 SDValue TrailingBytes = 8813 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8814 8815 if (TrailingElts > VT.getVectorMinNumElements()) { 8816 SDValue VLBytes = DAG.getVScale( 8817 DL, PtrVT, 8818 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8819 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8820 } 8821 8822 // Calculate the start address of the spliced result. 8823 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8824 8825 // Load the spliced result 8826 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8827 MachinePointerInfo::getUnknownStack(MF)); 8828 } 8829 8830 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8831 SDValue &LHS, SDValue &RHS, 8832 SDValue &CC, bool &NeedInvert, 8833 const SDLoc &dl, SDValue &Chain, 8834 bool IsSignaling) const { 8835 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8836 MVT OpVT = LHS.getSimpleValueType(); 8837 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8838 NeedInvert = false; 8839 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8840 default: 8841 llvm_unreachable("Unknown condition code action!"); 8842 case TargetLowering::Legal: 8843 // Nothing to do. 8844 break; 8845 case TargetLowering::Expand: { 8846 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8847 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8848 std::swap(LHS, RHS); 8849 CC = DAG.getCondCode(InvCC); 8850 return true; 8851 } 8852 // Swapping operands didn't work. Try inverting the condition. 8853 bool NeedSwap = false; 8854 InvCC = getSetCCInverse(CCCode, OpVT); 8855 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8856 // If inverting the condition is not enough, try swapping operands 8857 // on top of it. 8858 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8859 NeedSwap = true; 8860 } 8861 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8862 CC = DAG.getCondCode(InvCC); 8863 NeedInvert = true; 8864 if (NeedSwap) 8865 std::swap(LHS, RHS); 8866 return true; 8867 } 8868 8869 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8870 unsigned Opc = 0; 8871 switch (CCCode) { 8872 default: 8873 llvm_unreachable("Don't know how to expand this condition!"); 8874 case ISD::SETUO: 8875 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8876 CC1 = ISD::SETUNE; 8877 CC2 = ISD::SETUNE; 8878 Opc = ISD::OR; 8879 break; 8880 } 8881 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8882 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8883 NeedInvert = true; 8884 LLVM_FALLTHROUGH; 8885 case ISD::SETO: 8886 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8887 "If SETO is expanded, SETOEQ must be legal!"); 8888 CC1 = ISD::SETOEQ; 8889 CC2 = ISD::SETOEQ; 8890 Opc = ISD::AND; 8891 break; 8892 case ISD::SETONE: 8893 case ISD::SETUEQ: 8894 // If the SETUO or SETO CC isn't legal, we might be able to use 8895 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8896 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8897 // the operands. 8898 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8899 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8900 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8901 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8902 CC1 = ISD::SETOGT; 8903 CC2 = ISD::SETOLT; 8904 Opc = ISD::OR; 8905 NeedInvert = ((unsigned)CCCode & 0x8U); 8906 break; 8907 } 8908 LLVM_FALLTHROUGH; 8909 case ISD::SETOEQ: 8910 case ISD::SETOGT: 8911 case ISD::SETOGE: 8912 case ISD::SETOLT: 8913 case ISD::SETOLE: 8914 case ISD::SETUNE: 8915 case ISD::SETUGT: 8916 case ISD::SETUGE: 8917 case ISD::SETULT: 8918 case ISD::SETULE: 8919 // If we are floating point, assign and break, otherwise fall through. 8920 if (!OpVT.isInteger()) { 8921 // We can use the 4th bit to tell if we are the unordered 8922 // or ordered version of the opcode. 8923 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8924 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8925 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8926 break; 8927 } 8928 // Fallthrough if we are unsigned integer. 8929 LLVM_FALLTHROUGH; 8930 case ISD::SETLE: 8931 case ISD::SETGT: 8932 case ISD::SETGE: 8933 case ISD::SETLT: 8934 case ISD::SETNE: 8935 case ISD::SETEQ: 8936 // If all combinations of inverting the condition and swapping operands 8937 // didn't work then we have no means to expand the condition. 8938 llvm_unreachable("Don't know how to expand this condition!"); 8939 } 8940 8941 SDValue SetCC1, SetCC2; 8942 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8943 // If we aren't the ordered or unorder operation, 8944 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8945 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8946 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8947 } else { 8948 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8949 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8950 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8951 } 8952 if (Chain) 8953 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8954 SetCC2.getValue(1)); 8955 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8956 RHS = SDValue(); 8957 CC = SDValue(); 8958 return true; 8959 } 8960 } 8961 return false; 8962 } 8963