1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 Alignment = CS->getParamAlignment(AttrIdx); 81 } 82 83 /// Generate a libcall taking the given operands as arguments and returning a 84 /// result of type RetVT. 85 std::pair<SDValue, SDValue> 86 TargetLowering::makeLibCall(SelectionDAG &DAG, 87 RTLIB::Libcall LC, EVT RetVT, 88 const SDValue *Ops, unsigned NumOps, 89 bool isSigned, SDLoc dl, 90 bool doesNotReturn, 91 bool isReturnValueUsed) const { 92 TargetLowering::ArgListTy Args; 93 Args.reserve(NumOps); 94 95 TargetLowering::ArgListEntry Entry; 96 for (unsigned i = 0; i != NumOps; ++i) { 97 Entry.Node = Ops[i]; 98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 99 Entry.isSExt = shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned); 100 Entry.isZExt = !shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned); 101 Args.push_back(Entry); 102 } 103 if (LC == RTLIB::UNKNOWN_LIBCALL) 104 report_fatal_error("Unsupported library call operation!"); 105 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 106 107 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 108 TargetLowering::CallLoweringInfo CLI(DAG); 109 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 110 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 111 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 112 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 113 .setSExtResult(signExtend).setZExtResult(!signExtend); 114 return LowerCallTo(CLI); 115 } 116 117 118 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 119 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 120 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 121 SDValue &NewLHS, SDValue &NewRHS, 122 ISD::CondCode &CCCode, 123 SDLoc dl) const { 124 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 125 && "Unsupported setcc type!"); 126 127 // Expand into one or more soft-fp libcall(s). 128 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 129 switch (CCCode) { 130 case ISD::SETEQ: 131 case ISD::SETOEQ: 132 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 133 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 134 break; 135 case ISD::SETNE: 136 case ISD::SETUNE: 137 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 138 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 139 break; 140 case ISD::SETGE: 141 case ISD::SETOGE: 142 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 143 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 144 break; 145 case ISD::SETLT: 146 case ISD::SETOLT: 147 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 148 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 149 break; 150 case ISD::SETLE: 151 case ISD::SETOLE: 152 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 153 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 154 break; 155 case ISD::SETGT: 156 case ISD::SETOGT: 157 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 158 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 159 break; 160 case ISD::SETUO: 161 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 162 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 163 break; 164 case ISD::SETO: 165 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 166 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 167 break; 168 default: 169 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 170 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 171 switch (CCCode) { 172 case ISD::SETONE: 173 // SETONE = SETOLT | SETOGT 174 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 175 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 176 // Fallthrough 177 case ISD::SETUGT: 178 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 179 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 180 break; 181 case ISD::SETUGE: 182 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 183 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 184 break; 185 case ISD::SETULT: 186 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 187 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 188 break; 189 case ISD::SETULE: 190 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 191 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 192 break; 193 case ISD::SETUEQ: 194 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 195 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 196 break; 197 default: llvm_unreachable("Do not know how to soften this setcc!"); 198 } 199 } 200 201 // Use the target specific return value for comparions lib calls. 202 EVT RetVT = getCmpLibcallReturnType(); 203 SDValue Ops[2] = { NewLHS, NewRHS }; 204 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 205 dl).first; 206 NewRHS = DAG.getConstant(0, dl, RetVT); 207 CCCode = getCmpLibcallCC(LC1); 208 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 209 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 210 getSetCCResultType(*DAG.getContext(), RetVT), 211 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 212 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 213 dl).first; 214 NewLHS = DAG.getNode(ISD::SETCC, dl, 215 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 216 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 217 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 218 NewRHS = SDValue(); 219 } 220 } 221 222 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 223 /// current function. The returned value is a member of the 224 /// MachineJumpTableInfo::JTEntryKind enum. 225 unsigned TargetLowering::getJumpTableEncoding() const { 226 // In non-pic modes, just use the address of a block. 227 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 228 return MachineJumpTableInfo::EK_BlockAddress; 229 230 // In PIC mode, if the target supports a GPRel32 directive, use it. 231 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 232 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 233 234 // Otherwise, use a label difference. 235 return MachineJumpTableInfo::EK_LabelDifference32; 236 } 237 238 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 239 SelectionDAG &DAG) const { 240 // If our PIC model is GP relative, use the global offset table as the base. 241 unsigned JTEncoding = getJumpTableEncoding(); 242 243 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 244 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 245 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 246 247 return Table; 248 } 249 250 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 251 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 252 /// MCExpr. 253 const MCExpr * 254 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 255 unsigned JTI,MCContext &Ctx) const{ 256 // The normal PIC reloc base is the label at the start of the jump table. 257 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 258 } 259 260 bool 261 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 262 // Assume that everything is safe in static mode. 263 if (getTargetMachine().getRelocationModel() == Reloc::Static) 264 return true; 265 266 // In dynamic-no-pic mode, assume that known defined values are safe. 267 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 268 GA && 269 !GA->getGlobal()->isDeclaration() && 270 !GA->getGlobal()->isWeakForLinker()) 271 return true; 272 273 // Otherwise assume nothing is safe. 274 return false; 275 } 276 277 //===----------------------------------------------------------------------===// 278 // Optimization Methods 279 //===----------------------------------------------------------------------===// 280 281 /// ShrinkDemandedConstant - Check to see if the specified operand of the 282 /// specified instruction is a constant integer. If so, check to see if there 283 /// are any bits set in the constant that are not demanded. If so, shrink the 284 /// constant and return true. 285 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 286 const APInt &Demanded) { 287 SDLoc dl(Op); 288 289 // FIXME: ISD::SELECT, ISD::SELECT_CC 290 switch (Op.getOpcode()) { 291 default: break; 292 case ISD::XOR: 293 case ISD::AND: 294 case ISD::OR: { 295 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 296 if (!C) return false; 297 298 if (Op.getOpcode() == ISD::XOR && 299 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 300 return false; 301 302 // if we can expand it to have all bits set, do it 303 if (C->getAPIntValue().intersects(~Demanded)) { 304 EVT VT = Op.getValueType(); 305 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 306 DAG.getConstant(Demanded & 307 C->getAPIntValue(), 308 dl, VT)); 309 return CombineTo(Op, New); 310 } 311 312 break; 313 } 314 } 315 316 return false; 317 } 318 319 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 320 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 321 /// cast, but it could be generalized for targets with other types of 322 /// implicit widening casts. 323 bool 324 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 325 unsigned BitWidth, 326 const APInt &Demanded, 327 SDLoc dl) { 328 assert(Op.getNumOperands() == 2 && 329 "ShrinkDemandedOp only supports binary operators!"); 330 assert(Op.getNode()->getNumValues() == 1 && 331 "ShrinkDemandedOp only supports nodes with one result!"); 332 333 // Early return, as this function cannot handle vector types. 334 if (Op.getValueType().isVector()) 335 return false; 336 337 // Don't do this if the node has another user, which may require the 338 // full value. 339 if (!Op.getNode()->hasOneUse()) 340 return false; 341 342 // Search for the smallest integer type with free casts to and from 343 // Op's type. For expedience, just check power-of-2 integer types. 344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 345 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 346 unsigned SmallVTBits = DemandedSize; 347 if (!isPowerOf2_32(SmallVTBits)) 348 SmallVTBits = NextPowerOf2(SmallVTBits); 349 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 350 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 351 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 352 TLI.isZExtFree(SmallVT, Op.getValueType())) { 353 // We found a type with free casts. 354 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 355 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 356 Op.getNode()->getOperand(0)), 357 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 358 Op.getNode()->getOperand(1))); 359 bool NeedZext = DemandedSize > SmallVTBits; 360 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 361 dl, Op.getValueType(), X); 362 return CombineTo(Op, Z); 363 } 364 } 365 return false; 366 } 367 368 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 369 /// DemandedMask bits of the result of Op are ever used downstream. If we can 370 /// use this information to simplify Op, create a new simplified DAG node and 371 /// return true, returning the original and new nodes in Old and New. Otherwise, 372 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 373 /// the expression (used to simplify the caller). The KnownZero/One bits may 374 /// only be accurate for those bits in the DemandedMask. 375 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 376 const APInt &DemandedMask, 377 APInt &KnownZero, 378 APInt &KnownOne, 379 TargetLoweringOpt &TLO, 380 unsigned Depth) const { 381 unsigned BitWidth = DemandedMask.getBitWidth(); 382 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 383 "Mask size mismatches value type size!"); 384 APInt NewMask = DemandedMask; 385 SDLoc dl(Op); 386 387 // Don't know anything. 388 KnownZero = KnownOne = APInt(BitWidth, 0); 389 390 // Other users may use these bits. 391 if (!Op.getNode()->hasOneUse()) { 392 if (Depth != 0) { 393 // If not at the root, Just compute the KnownZero/KnownOne bits to 394 // simplify things downstream. 395 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 396 return false; 397 } 398 // If this is the root being simplified, allow it to have multiple uses, 399 // just set the NewMask to all bits. 400 NewMask = APInt::getAllOnesValue(BitWidth); 401 } else if (DemandedMask == 0) { 402 // Not demanding any bits from Op. 403 if (Op.getOpcode() != ISD::UNDEF) 404 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 405 return false; 406 } else if (Depth == 6) { // Limit search depth. 407 return false; 408 } 409 410 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 411 switch (Op.getOpcode()) { 412 case ISD::Constant: 413 // We know all of the bits for a constant! 414 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 415 KnownZero = ~KnownOne; 416 return false; // Don't fall through, will infinitely loop. 417 case ISD::AND: 418 // If the RHS is a constant, check to see if the LHS would be zero without 419 // using the bits from the RHS. Below, we use knowledge about the RHS to 420 // simplify the LHS, here we're using information from the LHS to simplify 421 // the RHS. 422 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 423 APInt LHSZero, LHSOne; 424 // Do not increment Depth here; that can cause an infinite loop. 425 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 426 // If the LHS already has zeros where RHSC does, this and is dead. 427 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 428 return TLO.CombineTo(Op, Op.getOperand(0)); 429 // If any of the set bits in the RHS are known zero on the LHS, shrink 430 // the constant. 431 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 432 return true; 433 } 434 435 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 436 KnownOne, TLO, Depth+1)) 437 return true; 438 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 439 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 440 KnownZero2, KnownOne2, TLO, Depth+1)) 441 return true; 442 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 443 444 // If all of the demanded bits are known one on one side, return the other. 445 // These bits cannot contribute to the result of the 'and'. 446 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 447 return TLO.CombineTo(Op, Op.getOperand(0)); 448 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 449 return TLO.CombineTo(Op, Op.getOperand(1)); 450 // If all of the demanded bits in the inputs are known zeros, return zero. 451 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 452 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 453 // If the RHS is a constant, see if we can simplify it. 454 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 455 return true; 456 // If the operation can be done in a smaller type, do so. 457 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 458 return true; 459 460 // Output known-1 bits are only known if set in both the LHS & RHS. 461 KnownOne &= KnownOne2; 462 // Output known-0 are known to be clear if zero in either the LHS | RHS. 463 KnownZero |= KnownZero2; 464 break; 465 case ISD::OR: 466 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 467 KnownOne, TLO, Depth+1)) 468 return true; 469 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 470 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 471 KnownZero2, KnownOne2, TLO, Depth+1)) 472 return true; 473 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 474 475 // If all of the demanded bits are known zero on one side, return the other. 476 // These bits cannot contribute to the result of the 'or'. 477 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 478 return TLO.CombineTo(Op, Op.getOperand(0)); 479 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 480 return TLO.CombineTo(Op, Op.getOperand(1)); 481 // If all of the potentially set bits on one side are known to be set on 482 // the other side, just use the 'other' side. 483 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 484 return TLO.CombineTo(Op, Op.getOperand(0)); 485 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 486 return TLO.CombineTo(Op, Op.getOperand(1)); 487 // If the RHS is a constant, see if we can simplify it. 488 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 489 return true; 490 // If the operation can be done in a smaller type, do so. 491 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 492 return true; 493 494 // Output known-0 bits are only known if clear in both the LHS & RHS. 495 KnownZero &= KnownZero2; 496 // Output known-1 are known to be set if set in either the LHS | RHS. 497 KnownOne |= KnownOne2; 498 break; 499 case ISD::XOR: 500 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 501 KnownOne, TLO, Depth+1)) 502 return true; 503 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 504 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 505 KnownOne2, TLO, Depth+1)) 506 return true; 507 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 508 509 // If all of the demanded bits are known zero on one side, return the other. 510 // These bits cannot contribute to the result of the 'xor'. 511 if ((KnownZero & NewMask) == NewMask) 512 return TLO.CombineTo(Op, Op.getOperand(0)); 513 if ((KnownZero2 & NewMask) == NewMask) 514 return TLO.CombineTo(Op, Op.getOperand(1)); 515 // If the operation can be done in a smaller type, do so. 516 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 517 return true; 518 519 // If all of the unknown bits are known to be zero on one side or the other 520 // (but not both) turn this into an *inclusive* or. 521 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 522 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 523 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 524 Op.getOperand(0), 525 Op.getOperand(1))); 526 527 // Output known-0 bits are known if clear or set in both the LHS & RHS. 528 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 529 // Output known-1 are known to be set if set in only one of the LHS, RHS. 530 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 531 532 // If all of the demanded bits on one side are known, and all of the set 533 // bits on that side are also known to be set on the other side, turn this 534 // into an AND, as we know the bits will be cleared. 535 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 536 // NB: it is okay if more bits are known than are requested 537 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 538 if (KnownOne == KnownOne2) { // set bits are the same on both sides 539 EVT VT = Op.getValueType(); 540 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 541 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 542 Op.getOperand(0), ANDC)); 543 } 544 } 545 546 // If the RHS is a constant, see if we can simplify it. 547 // for XOR, we prefer to force bits to 1 if they will make a -1. 548 // if we can't force bits, try to shrink constant 549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 550 APInt Expanded = C->getAPIntValue() | (~NewMask); 551 // if we can expand it to have all bits set, do it 552 if (Expanded.isAllOnesValue()) { 553 if (Expanded != C->getAPIntValue()) { 554 EVT VT = Op.getValueType(); 555 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 556 TLO.DAG.getConstant(Expanded, dl, VT)); 557 return TLO.CombineTo(Op, New); 558 } 559 // if it already has all the bits set, nothing to change 560 // but don't shrink either! 561 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 562 return true; 563 } 564 } 565 566 KnownZero = KnownZeroOut; 567 KnownOne = KnownOneOut; 568 break; 569 case ISD::SELECT: 570 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 571 KnownOne, TLO, Depth+1)) 572 return true; 573 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 574 KnownOne2, TLO, Depth+1)) 575 return true; 576 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 577 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 578 579 // If the operands are constants, see if we can simplify them. 580 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 581 return true; 582 583 // Only known if known in both the LHS and RHS. 584 KnownOne &= KnownOne2; 585 KnownZero &= KnownZero2; 586 break; 587 case ISD::SELECT_CC: 588 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 589 KnownOne, TLO, Depth+1)) 590 return true; 591 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 592 KnownOne2, TLO, Depth+1)) 593 return true; 594 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 595 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 596 597 // If the operands are constants, see if we can simplify them. 598 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 599 return true; 600 601 // Only known if known in both the LHS and RHS. 602 KnownOne &= KnownOne2; 603 KnownZero &= KnownZero2; 604 break; 605 case ISD::SHL: 606 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 607 unsigned ShAmt = SA->getZExtValue(); 608 SDValue InOp = Op.getOperand(0); 609 610 // If the shift count is an invalid immediate, don't do anything. 611 if (ShAmt >= BitWidth) 612 break; 613 614 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 615 // single shift. We can do this if the bottom bits (which are shifted 616 // out) are never demanded. 617 if (InOp.getOpcode() == ISD::SRL && 618 isa<ConstantSDNode>(InOp.getOperand(1))) { 619 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 620 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 621 unsigned Opc = ISD::SHL; 622 int Diff = ShAmt-C1; 623 if (Diff < 0) { 624 Diff = -Diff; 625 Opc = ISD::SRL; 626 } 627 628 SDValue NewSA = 629 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 630 EVT VT = Op.getValueType(); 631 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 632 InOp.getOperand(0), NewSA)); 633 } 634 } 635 636 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 637 KnownZero, KnownOne, TLO, Depth+1)) 638 return true; 639 640 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 641 // are not demanded. This will likely allow the anyext to be folded away. 642 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 643 SDValue InnerOp = InOp.getNode()->getOperand(0); 644 EVT InnerVT = InnerOp.getValueType(); 645 unsigned InnerBits = InnerVT.getSizeInBits(); 646 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 647 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 648 EVT ShTy = getShiftAmountTy(InnerVT); 649 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 650 ShTy = InnerVT; 651 SDValue NarrowShl = 652 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 653 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 654 return 655 TLO.CombineTo(Op, 656 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 657 NarrowShl)); 658 } 659 // Repeat the SHL optimization above in cases where an extension 660 // intervenes: (shl (anyext (shr x, c1)), c2) to 661 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 662 // aren't demanded (as above) and that the shifted upper c1 bits of 663 // x aren't demanded. 664 if (InOp.hasOneUse() && 665 InnerOp.getOpcode() == ISD::SRL && 666 InnerOp.hasOneUse() && 667 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 668 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 669 ->getZExtValue(); 670 if (InnerShAmt < ShAmt && 671 InnerShAmt < InnerBits && 672 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 673 NewMask.trunc(ShAmt) == 0) { 674 SDValue NewSA = 675 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 676 Op.getOperand(1).getValueType()); 677 EVT VT = Op.getValueType(); 678 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 679 InnerOp.getOperand(0)); 680 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 681 NewExt, NewSA)); 682 } 683 } 684 } 685 686 KnownZero <<= SA->getZExtValue(); 687 KnownOne <<= SA->getZExtValue(); 688 // low bits known zero. 689 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 690 } 691 break; 692 case ISD::SRL: 693 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 694 EVT VT = Op.getValueType(); 695 unsigned ShAmt = SA->getZExtValue(); 696 unsigned VTSize = VT.getSizeInBits(); 697 SDValue InOp = Op.getOperand(0); 698 699 // If the shift count is an invalid immediate, don't do anything. 700 if (ShAmt >= BitWidth) 701 break; 702 703 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 704 // single shift. We can do this if the top bits (which are shifted out) 705 // are never demanded. 706 if (InOp.getOpcode() == ISD::SHL && 707 isa<ConstantSDNode>(InOp.getOperand(1))) { 708 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 709 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 710 unsigned Opc = ISD::SRL; 711 int Diff = ShAmt-C1; 712 if (Diff < 0) { 713 Diff = -Diff; 714 Opc = ISD::SHL; 715 } 716 717 SDValue NewSA = 718 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 719 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 720 InOp.getOperand(0), NewSA)); 721 } 722 } 723 724 // Compute the new bits that are at the top now. 725 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 726 KnownZero, KnownOne, TLO, Depth+1)) 727 return true; 728 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 729 KnownZero = KnownZero.lshr(ShAmt); 730 KnownOne = KnownOne.lshr(ShAmt); 731 732 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 733 KnownZero |= HighBits; // High bits known zero. 734 } 735 break; 736 case ISD::SRA: 737 // If this is an arithmetic shift right and only the low-bit is set, we can 738 // always convert this into a logical shr, even if the shift amount is 739 // variable. The low bit of the shift cannot be an input sign bit unless 740 // the shift amount is >= the size of the datatype, which is undefined. 741 if (NewMask == 1) 742 return TLO.CombineTo(Op, 743 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 744 Op.getOperand(0), Op.getOperand(1))); 745 746 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 747 EVT VT = Op.getValueType(); 748 unsigned ShAmt = SA->getZExtValue(); 749 750 // If the shift count is an invalid immediate, don't do anything. 751 if (ShAmt >= BitWidth) 752 break; 753 754 APInt InDemandedMask = (NewMask << ShAmt); 755 756 // If any of the demanded bits are produced by the sign extension, we also 757 // demand the input sign bit. 758 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 759 if (HighBits.intersects(NewMask)) 760 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 761 762 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 763 KnownZero, KnownOne, TLO, Depth+1)) 764 return true; 765 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 766 KnownZero = KnownZero.lshr(ShAmt); 767 KnownOne = KnownOne.lshr(ShAmt); 768 769 // Handle the sign bit, adjusted to where it is now in the mask. 770 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 771 772 // If the input sign bit is known to be zero, or if none of the top bits 773 // are demanded, turn this into an unsigned shift right. 774 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) 775 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 776 Op.getOperand(0), 777 Op.getOperand(1))); 778 779 int Log2 = NewMask.exactLogBase2(); 780 if (Log2 >= 0) { 781 // The bit must come from the sign. 782 SDValue NewSA = 783 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 784 Op.getOperand(1).getValueType()); 785 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 786 Op.getOperand(0), NewSA)); 787 } 788 789 if (KnownOne.intersects(SignBit)) 790 // New bits are known one. 791 KnownOne |= HighBits; 792 } 793 break; 794 case ISD::SIGN_EXTEND_INREG: { 795 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 796 797 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 798 // If we only care about the highest bit, don't bother shifting right. 799 if (MsbMask == NewMask) { 800 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 801 SDValue InOp = Op.getOperand(0); 802 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 803 bool AlreadySignExtended = 804 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 805 // However if the input is already sign extended we expect the sign 806 // extension to be dropped altogether later and do not simplify. 807 if (!AlreadySignExtended) { 808 // Compute the correct shift amount type, which must be getShiftAmountTy 809 // for scalar types after legalization. 810 EVT ShiftAmtTy = Op.getValueType(); 811 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 812 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 813 814 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 815 ShiftAmtTy); 816 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 817 Op.getValueType(), InOp, 818 ShiftAmt)); 819 } 820 } 821 822 // Sign extension. Compute the demanded bits in the result that are not 823 // present in the input. 824 APInt NewBits = 825 APInt::getHighBitsSet(BitWidth, 826 BitWidth - ExVT.getScalarType().getSizeInBits()); 827 828 // If none of the extended bits are demanded, eliminate the sextinreg. 829 if ((NewBits & NewMask) == 0) 830 return TLO.CombineTo(Op, Op.getOperand(0)); 831 832 APInt InSignBit = 833 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 834 APInt InputDemandedBits = 835 APInt::getLowBitsSet(BitWidth, 836 ExVT.getScalarType().getSizeInBits()) & 837 NewMask; 838 839 // Since the sign extended bits are demanded, we know that the sign 840 // bit is demanded. 841 InputDemandedBits |= InSignBit; 842 843 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 844 KnownZero, KnownOne, TLO, Depth+1)) 845 return true; 846 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 847 848 // If the sign bit of the input is known set or clear, then we know the 849 // top bits of the result. 850 851 // If the input sign bit is known zero, convert this into a zero extension. 852 if (KnownZero.intersects(InSignBit)) 853 return TLO.CombineTo(Op, 854 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 855 856 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 857 KnownOne |= NewBits; 858 KnownZero &= ~NewBits; 859 } else { // Input sign bit unknown 860 KnownZero &= ~NewBits; 861 KnownOne &= ~NewBits; 862 } 863 break; 864 } 865 case ISD::BUILD_PAIR: { 866 EVT HalfVT = Op.getOperand(0).getValueType(); 867 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 868 869 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 870 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 871 872 APInt KnownZeroLo, KnownOneLo; 873 APInt KnownZeroHi, KnownOneHi; 874 875 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 876 KnownOneLo, TLO, Depth + 1)) 877 return true; 878 879 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 880 KnownOneHi, TLO, Depth + 1)) 881 return true; 882 883 KnownZero = KnownZeroLo.zext(BitWidth) | 884 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 885 886 KnownOne = KnownOneLo.zext(BitWidth) | 887 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 888 break; 889 } 890 case ISD::ZERO_EXTEND: { 891 unsigned OperandBitWidth = 892 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 893 APInt InMask = NewMask.trunc(OperandBitWidth); 894 895 // If none of the top bits are demanded, convert this into an any_extend. 896 APInt NewBits = 897 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 898 if (!NewBits.intersects(NewMask)) 899 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 900 Op.getValueType(), 901 Op.getOperand(0))); 902 903 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 904 KnownZero, KnownOne, TLO, Depth+1)) 905 return true; 906 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 907 KnownZero = KnownZero.zext(BitWidth); 908 KnownOne = KnownOne.zext(BitWidth); 909 KnownZero |= NewBits; 910 break; 911 } 912 case ISD::SIGN_EXTEND: { 913 EVT InVT = Op.getOperand(0).getValueType(); 914 unsigned InBits = InVT.getScalarType().getSizeInBits(); 915 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 916 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 917 APInt NewBits = ~InMask & NewMask; 918 919 // If none of the top bits are demanded, convert this into an any_extend. 920 if (NewBits == 0) 921 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 922 Op.getValueType(), 923 Op.getOperand(0))); 924 925 // Since some of the sign extended bits are demanded, we know that the sign 926 // bit is demanded. 927 APInt InDemandedBits = InMask & NewMask; 928 InDemandedBits |= InSignBit; 929 InDemandedBits = InDemandedBits.trunc(InBits); 930 931 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 932 KnownOne, TLO, Depth+1)) 933 return true; 934 KnownZero = KnownZero.zext(BitWidth); 935 KnownOne = KnownOne.zext(BitWidth); 936 937 // If the sign bit is known zero, convert this to a zero extend. 938 if (KnownZero.intersects(InSignBit)) 939 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 940 Op.getValueType(), 941 Op.getOperand(0))); 942 943 // If the sign bit is known one, the top bits match. 944 if (KnownOne.intersects(InSignBit)) { 945 KnownOne |= NewBits; 946 assert((KnownZero & NewBits) == 0); 947 } else { // Otherwise, top bits aren't known. 948 assert((KnownOne & NewBits) == 0); 949 assert((KnownZero & NewBits) == 0); 950 } 951 break; 952 } 953 case ISD::ANY_EXTEND: { 954 unsigned OperandBitWidth = 955 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 956 APInt InMask = NewMask.trunc(OperandBitWidth); 957 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 958 KnownZero, KnownOne, TLO, Depth+1)) 959 return true; 960 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 961 KnownZero = KnownZero.zext(BitWidth); 962 KnownOne = KnownOne.zext(BitWidth); 963 break; 964 } 965 case ISD::TRUNCATE: { 966 // Simplify the input, using demanded bit information, and compute the known 967 // zero/one bits live out. 968 unsigned OperandBitWidth = 969 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 970 APInt TruncMask = NewMask.zext(OperandBitWidth); 971 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 972 KnownZero, KnownOne, TLO, Depth+1)) 973 return true; 974 KnownZero = KnownZero.trunc(BitWidth); 975 KnownOne = KnownOne.trunc(BitWidth); 976 977 // If the input is only used by this truncate, see if we can shrink it based 978 // on the known demanded bits. 979 if (Op.getOperand(0).getNode()->hasOneUse()) { 980 SDValue In = Op.getOperand(0); 981 switch (In.getOpcode()) { 982 default: break; 983 case ISD::SRL: 984 // Shrink SRL by a constant if none of the high bits shifted in are 985 // demanded. 986 if (TLO.LegalTypes() && 987 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 988 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 989 // undesirable. 990 break; 991 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 992 if (!ShAmt) 993 break; 994 SDValue Shift = In.getOperand(1); 995 if (TLO.LegalTypes()) { 996 uint64_t ShVal = ShAmt->getZExtValue(); 997 Shift = 998 TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(Op.getValueType())); 999 } 1000 1001 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1002 OperandBitWidth - BitWidth); 1003 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1004 1005 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1006 // None of the shifted in bits are needed. Add a truncate of the 1007 // shift input, then shift it. 1008 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1009 Op.getValueType(), 1010 In.getOperand(0)); 1011 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1012 Op.getValueType(), 1013 NewTrunc, 1014 Shift)); 1015 } 1016 break; 1017 } 1018 } 1019 1020 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1021 break; 1022 } 1023 case ISD::AssertZext: { 1024 // AssertZext demands all of the high bits, plus any of the low bits 1025 // demanded by its users. 1026 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1027 APInt InMask = APInt::getLowBitsSet(BitWidth, 1028 VT.getSizeInBits()); 1029 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1030 KnownZero, KnownOne, TLO, Depth+1)) 1031 return true; 1032 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1033 1034 KnownZero |= ~InMask & NewMask; 1035 break; 1036 } 1037 case ISD::BITCAST: 1038 // If this is an FP->Int bitcast and if the sign bit is the only 1039 // thing demanded, turn this into a FGETSIGN. 1040 if (!TLO.LegalOperations() && 1041 !Op.getValueType().isVector() && 1042 !Op.getOperand(0).getValueType().isVector() && 1043 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1044 Op.getOperand(0).getValueType().isFloatingPoint()) { 1045 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1046 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1047 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1048 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1049 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1050 // place. We expect the SHL to be eliminated by other optimizations. 1051 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1052 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1053 if (!OpVTLegal && OpVTSizeInBits > 32) 1054 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1055 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1056 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1057 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1058 Op.getValueType(), 1059 Sign, ShAmt)); 1060 } 1061 } 1062 break; 1063 case ISD::ADD: 1064 case ISD::MUL: 1065 case ISD::SUB: { 1066 // Add, Sub, and Mul don't demand any bits in positions beyond that 1067 // of the highest bit demanded of them. 1068 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1069 BitWidth - NewMask.countLeadingZeros()); 1070 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1071 KnownOne2, TLO, Depth+1)) 1072 return true; 1073 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1074 KnownOne2, TLO, Depth+1)) 1075 return true; 1076 // See if the operation should be performed at a smaller bit width. 1077 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1078 return true; 1079 } 1080 // FALL THROUGH 1081 default: 1082 // Just use computeKnownBits to compute output bits. 1083 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1084 break; 1085 } 1086 1087 // If we know the value of all of the demanded bits, return this as a 1088 // constant. 1089 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1090 // Avoid folding to a constant if any OpaqueConstant is involved. 1091 const SDNode *N = Op.getNode(); 1092 for (SDNodeIterator I = SDNodeIterator::begin(N), 1093 E = SDNodeIterator::end(N); I != E; ++I) { 1094 SDNode *Op = *I; 1095 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1096 if (C->isOpaque()) 1097 return false; 1098 } 1099 return TLO.CombineTo(Op, 1100 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1101 } 1102 1103 return false; 1104 } 1105 1106 /// computeKnownBitsForTargetNode - Determine which of the bits specified 1107 /// in Mask are known to be either zero or one and return them in the 1108 /// KnownZero/KnownOne bitsets. 1109 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1110 APInt &KnownZero, 1111 APInt &KnownOne, 1112 const SelectionDAG &DAG, 1113 unsigned Depth) const { 1114 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1115 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1116 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1117 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1118 "Should use MaskedValueIsZero if you don't know whether Op" 1119 " is a target node!"); 1120 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1121 } 1122 1123 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1124 /// targets that want to expose additional information about sign bits to the 1125 /// DAG Combiner. 1126 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1127 const SelectionDAG &, 1128 unsigned Depth) const { 1129 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1130 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1131 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1132 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1133 "Should use ComputeNumSignBits if you don't know whether Op" 1134 " is a target node!"); 1135 return 1; 1136 } 1137 1138 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1139 /// one bit set. This differs from computeKnownBits in that it doesn't need to 1140 /// determine which bit is set. 1141 /// 1142 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1143 // A left-shift of a constant one will have exactly one bit set, because 1144 // shifting the bit off the end is undefined. 1145 if (Val.getOpcode() == ISD::SHL) 1146 if (ConstantSDNode *C = 1147 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1148 if (C->getAPIntValue() == 1) 1149 return true; 1150 1151 // Similarly, a right-shift of a constant sign-bit will have exactly 1152 // one bit set. 1153 if (Val.getOpcode() == ISD::SRL) 1154 if (ConstantSDNode *C = 1155 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1156 if (C->getAPIntValue().isSignBit()) 1157 return true; 1158 1159 // More could be done here, though the above checks are enough 1160 // to handle some common cases. 1161 1162 // Fall back to computeKnownBits to catch other known cases. 1163 EVT OpVT = Val.getValueType(); 1164 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1165 APInt KnownZero, KnownOne; 1166 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1167 return (KnownZero.countPopulation() == BitWidth - 1) && 1168 (KnownOne.countPopulation() == 1); 1169 } 1170 1171 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1172 if (!N) 1173 return false; 1174 1175 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1176 if (!CN) { 1177 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1178 if (!BV) 1179 return false; 1180 1181 BitVector UndefElements; 1182 CN = BV->getConstantSplatNode(&UndefElements); 1183 // Only interested in constant splats, and we don't try to handle undef 1184 // elements in identifying boolean constants. 1185 if (!CN || UndefElements.none()) 1186 return false; 1187 } 1188 1189 switch (getBooleanContents(N->getValueType(0))) { 1190 case UndefinedBooleanContent: 1191 return CN->getAPIntValue()[0]; 1192 case ZeroOrOneBooleanContent: 1193 return CN->isOne(); 1194 case ZeroOrNegativeOneBooleanContent: 1195 return CN->isAllOnesValue(); 1196 } 1197 1198 llvm_unreachable("Invalid boolean contents"); 1199 } 1200 1201 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1202 if (!N) 1203 return false; 1204 1205 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1206 if (!CN) { 1207 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1208 if (!BV) 1209 return false; 1210 1211 BitVector UndefElements; 1212 CN = BV->getConstantSplatNode(&UndefElements); 1213 // Only interested in constant splats, and we don't try to handle undef 1214 // elements in identifying boolean constants. 1215 if (!CN || UndefElements.none()) 1216 return false; 1217 } 1218 1219 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1220 return !CN->getAPIntValue()[0]; 1221 1222 return CN->isNullValue(); 1223 } 1224 1225 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1226 /// and cc. If it is unable to simplify it, return a null SDValue. 1227 SDValue 1228 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1229 ISD::CondCode Cond, bool foldBooleans, 1230 DAGCombinerInfo &DCI, SDLoc dl) const { 1231 SelectionDAG &DAG = DCI.DAG; 1232 1233 // These setcc operations always fold. 1234 switch (Cond) { 1235 default: break; 1236 case ISD::SETFALSE: 1237 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1238 case ISD::SETTRUE: 1239 case ISD::SETTRUE2: { 1240 TargetLowering::BooleanContent Cnt = 1241 getBooleanContents(N0->getValueType(0)); 1242 return DAG.getConstant( 1243 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1244 VT); 1245 } 1246 } 1247 1248 // Ensure that the constant occurs on the RHS, and fold constant 1249 // comparisons. 1250 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1251 if (isa<ConstantSDNode>(N0.getNode()) && 1252 (DCI.isBeforeLegalizeOps() || 1253 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1254 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1255 1256 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1257 const APInt &C1 = N1C->getAPIntValue(); 1258 1259 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1260 // equality comparison, then we're just comparing whether X itself is 1261 // zero. 1262 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1263 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1264 N0.getOperand(1).getOpcode() == ISD::Constant) { 1265 const APInt &ShAmt 1266 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1267 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1268 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1269 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1270 // (srl (ctlz x), 5) == 0 -> X != 0 1271 // (srl (ctlz x), 5) != 1 -> X != 0 1272 Cond = ISD::SETNE; 1273 } else { 1274 // (srl (ctlz x), 5) != 0 -> X == 0 1275 // (srl (ctlz x), 5) == 1 -> X == 0 1276 Cond = ISD::SETEQ; 1277 } 1278 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1279 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1280 Zero, Cond); 1281 } 1282 } 1283 1284 SDValue CTPOP = N0; 1285 // Look through truncs that don't change the value of a ctpop. 1286 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1287 CTPOP = N0.getOperand(0); 1288 1289 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1290 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1291 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1292 EVT CTVT = CTPOP.getValueType(); 1293 SDValue CTOp = CTPOP.getOperand(0); 1294 1295 // (ctpop x) u< 2 -> (x & x-1) == 0 1296 // (ctpop x) u> 1 -> (x & x-1) != 0 1297 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1298 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1299 DAG.getConstant(1, dl, CTVT)); 1300 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1301 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1302 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1303 } 1304 1305 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1306 } 1307 1308 // (zext x) == C --> x == (trunc C) 1309 // (sext x) == C --> x == (trunc C) 1310 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1311 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1312 unsigned MinBits = N0.getValueSizeInBits(); 1313 SDValue PreExt; 1314 bool Signed = false; 1315 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1316 // ZExt 1317 MinBits = N0->getOperand(0).getValueSizeInBits(); 1318 PreExt = N0->getOperand(0); 1319 } else if (N0->getOpcode() == ISD::AND) { 1320 // DAGCombine turns costly ZExts into ANDs 1321 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1322 if ((C->getAPIntValue()+1).isPowerOf2()) { 1323 MinBits = C->getAPIntValue().countTrailingOnes(); 1324 PreExt = N0->getOperand(0); 1325 } 1326 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1327 // SExt 1328 MinBits = N0->getOperand(0).getValueSizeInBits(); 1329 PreExt = N0->getOperand(0); 1330 Signed = true; 1331 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1332 // ZEXTLOAD / SEXTLOAD 1333 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1334 MinBits = LN0->getMemoryVT().getSizeInBits(); 1335 PreExt = N0; 1336 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1337 Signed = true; 1338 MinBits = LN0->getMemoryVT().getSizeInBits(); 1339 PreExt = N0; 1340 } 1341 } 1342 1343 // Figure out how many bits we need to preserve this constant. 1344 unsigned ReqdBits = Signed ? 1345 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1346 C1.getActiveBits(); 1347 1348 // Make sure we're not losing bits from the constant. 1349 if (MinBits > 0 && 1350 MinBits < C1.getBitWidth() && 1351 MinBits >= ReqdBits) { 1352 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1353 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1354 // Will get folded away. 1355 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1356 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1357 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1358 } 1359 } 1360 } 1361 1362 // If the LHS is '(and load, const)', the RHS is 0, 1363 // the test is for equality or unsigned, and all 1 bits of the const are 1364 // in the same partial word, see if we can shorten the load. 1365 if (DCI.isBeforeLegalize() && 1366 !ISD::isSignedIntSetCC(Cond) && 1367 N0.getOpcode() == ISD::AND && C1 == 0 && 1368 N0.getNode()->hasOneUse() && 1369 isa<LoadSDNode>(N0.getOperand(0)) && 1370 N0.getOperand(0).getNode()->hasOneUse() && 1371 isa<ConstantSDNode>(N0.getOperand(1))) { 1372 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1373 APInt bestMask; 1374 unsigned bestWidth = 0, bestOffset = 0; 1375 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1376 unsigned origWidth = N0.getValueType().getSizeInBits(); 1377 unsigned maskWidth = origWidth; 1378 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1379 // 8 bits, but have to be careful... 1380 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1381 origWidth = Lod->getMemoryVT().getSizeInBits(); 1382 const APInt &Mask = 1383 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1384 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1385 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1386 for (unsigned offset=0; offset<origWidth/width; offset++) { 1387 if ((newMask & Mask) == Mask) { 1388 if (!getDataLayout()->isLittleEndian()) 1389 bestOffset = (origWidth/width - offset - 1) * (width/8); 1390 else 1391 bestOffset = (uint64_t)offset * (width/8); 1392 bestMask = Mask.lshr(offset * (width/8) * 8); 1393 bestWidth = width; 1394 break; 1395 } 1396 newMask = newMask << width; 1397 } 1398 } 1399 } 1400 if (bestWidth) { 1401 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1402 if (newVT.isRound()) { 1403 EVT PtrType = Lod->getOperand(1).getValueType(); 1404 SDValue Ptr = Lod->getBasePtr(); 1405 if (bestOffset != 0) 1406 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1407 DAG.getConstant(bestOffset, dl, PtrType)); 1408 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1409 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1410 Lod->getPointerInfo().getWithOffset(bestOffset), 1411 false, false, false, NewAlign); 1412 return DAG.getSetCC(dl, VT, 1413 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1414 DAG.getConstant(bestMask.trunc(bestWidth), 1415 dl, newVT)), 1416 DAG.getConstant(0LL, dl, newVT), Cond); 1417 } 1418 } 1419 } 1420 1421 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1422 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1423 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1424 1425 // If the comparison constant has bits in the upper part, the 1426 // zero-extended value could never match. 1427 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1428 C1.getBitWidth() - InSize))) { 1429 switch (Cond) { 1430 case ISD::SETUGT: 1431 case ISD::SETUGE: 1432 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1433 case ISD::SETULT: 1434 case ISD::SETULE: 1435 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1436 case ISD::SETGT: 1437 case ISD::SETGE: 1438 // True if the sign bit of C1 is set. 1439 return DAG.getConstant(C1.isNegative(), dl, VT); 1440 case ISD::SETLT: 1441 case ISD::SETLE: 1442 // True if the sign bit of C1 isn't set. 1443 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1444 default: 1445 break; 1446 } 1447 } 1448 1449 // Otherwise, we can perform the comparison with the low bits. 1450 switch (Cond) { 1451 case ISD::SETEQ: 1452 case ISD::SETNE: 1453 case ISD::SETUGT: 1454 case ISD::SETUGE: 1455 case ISD::SETULT: 1456 case ISD::SETULE: { 1457 EVT newVT = N0.getOperand(0).getValueType(); 1458 if (DCI.isBeforeLegalizeOps() || 1459 (isOperationLegal(ISD::SETCC, newVT) && 1460 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1461 EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT); 1462 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1463 1464 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1465 NewConst, Cond); 1466 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1467 } 1468 break; 1469 } 1470 default: 1471 break; // todo, be more careful with signed comparisons 1472 } 1473 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1474 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1475 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1476 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1477 EVT ExtDstTy = N0.getValueType(); 1478 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1479 1480 // If the constant doesn't fit into the number of bits for the source of 1481 // the sign extension, it is impossible for both sides to be equal. 1482 if (C1.getMinSignedBits() > ExtSrcTyBits) 1483 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1484 1485 SDValue ZextOp; 1486 EVT Op0Ty = N0.getOperand(0).getValueType(); 1487 if (Op0Ty == ExtSrcTy) { 1488 ZextOp = N0.getOperand(0); 1489 } else { 1490 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1491 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1492 DAG.getConstant(Imm, dl, Op0Ty)); 1493 } 1494 if (!DCI.isCalledByLegalizer()) 1495 DCI.AddToWorklist(ZextOp.getNode()); 1496 // Otherwise, make this a use of a zext. 1497 return DAG.getSetCC(dl, VT, ZextOp, 1498 DAG.getConstant(C1 & APInt::getLowBitsSet( 1499 ExtDstTyBits, 1500 ExtSrcTyBits), 1501 dl, ExtDstTy), 1502 Cond); 1503 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1504 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1505 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1506 if (N0.getOpcode() == ISD::SETCC && 1507 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1508 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1509 if (TrueWhenTrue) 1510 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1511 // Invert the condition. 1512 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1513 CC = ISD::getSetCCInverse(CC, 1514 N0.getOperand(0).getValueType().isInteger()); 1515 if (DCI.isBeforeLegalizeOps() || 1516 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1517 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1518 } 1519 1520 if ((N0.getOpcode() == ISD::XOR || 1521 (N0.getOpcode() == ISD::AND && 1522 N0.getOperand(0).getOpcode() == ISD::XOR && 1523 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1524 isa<ConstantSDNode>(N0.getOperand(1)) && 1525 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1526 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1527 // can only do this if the top bits are known zero. 1528 unsigned BitWidth = N0.getValueSizeInBits(); 1529 if (DAG.MaskedValueIsZero(N0, 1530 APInt::getHighBitsSet(BitWidth, 1531 BitWidth-1))) { 1532 // Okay, get the un-inverted input value. 1533 SDValue Val; 1534 if (N0.getOpcode() == ISD::XOR) 1535 Val = N0.getOperand(0); 1536 else { 1537 assert(N0.getOpcode() == ISD::AND && 1538 N0.getOperand(0).getOpcode() == ISD::XOR); 1539 // ((X^1)&1)^1 -> X & 1 1540 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1541 N0.getOperand(0).getOperand(0), 1542 N0.getOperand(1)); 1543 } 1544 1545 return DAG.getSetCC(dl, VT, Val, N1, 1546 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1547 } 1548 } else if (N1C->getAPIntValue() == 1 && 1549 (VT == MVT::i1 || 1550 getBooleanContents(N0->getValueType(0)) == 1551 ZeroOrOneBooleanContent)) { 1552 SDValue Op0 = N0; 1553 if (Op0.getOpcode() == ISD::TRUNCATE) 1554 Op0 = Op0.getOperand(0); 1555 1556 if ((Op0.getOpcode() == ISD::XOR) && 1557 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1558 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1559 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1560 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1561 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1562 Cond); 1563 } 1564 if (Op0.getOpcode() == ISD::AND && 1565 isa<ConstantSDNode>(Op0.getOperand(1)) && 1566 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1567 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1568 if (Op0.getValueType().bitsGT(VT)) 1569 Op0 = DAG.getNode(ISD::AND, dl, VT, 1570 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1571 DAG.getConstant(1, dl, VT)); 1572 else if (Op0.getValueType().bitsLT(VT)) 1573 Op0 = DAG.getNode(ISD::AND, dl, VT, 1574 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1575 DAG.getConstant(1, dl, VT)); 1576 1577 return DAG.getSetCC(dl, VT, Op0, 1578 DAG.getConstant(0, dl, Op0.getValueType()), 1579 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1580 } 1581 if (Op0.getOpcode() == ISD::AssertZext && 1582 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1583 return DAG.getSetCC(dl, VT, Op0, 1584 DAG.getConstant(0, dl, Op0.getValueType()), 1585 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1586 } 1587 } 1588 1589 APInt MinVal, MaxVal; 1590 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1591 if (ISD::isSignedIntSetCC(Cond)) { 1592 MinVal = APInt::getSignedMinValue(OperandBitSize); 1593 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1594 } else { 1595 MinVal = APInt::getMinValue(OperandBitSize); 1596 MaxVal = APInt::getMaxValue(OperandBitSize); 1597 } 1598 1599 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1600 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1601 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1602 // X >= C0 --> X > (C0 - 1) 1603 APInt C = C1 - 1; 1604 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1605 if ((DCI.isBeforeLegalizeOps() || 1606 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1607 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1608 isLegalICmpImmediate(C.getSExtValue())))) { 1609 return DAG.getSetCC(dl, VT, N0, 1610 DAG.getConstant(C, dl, N1.getValueType()), 1611 NewCC); 1612 } 1613 } 1614 1615 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1616 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1617 // X <= C0 --> X < (C0 + 1) 1618 APInt C = C1 + 1; 1619 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1620 if ((DCI.isBeforeLegalizeOps() || 1621 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1622 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1623 isLegalICmpImmediate(C.getSExtValue())))) { 1624 return DAG.getSetCC(dl, VT, N0, 1625 DAG.getConstant(C, dl, N1.getValueType()), 1626 NewCC); 1627 } 1628 } 1629 1630 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1631 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1632 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1633 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1634 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1635 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1636 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1637 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1638 1639 // Canonicalize setgt X, Min --> setne X, Min 1640 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1641 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1642 // Canonicalize setlt X, Max --> setne X, Max 1643 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1644 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1645 1646 // If we have setult X, 1, turn it into seteq X, 0 1647 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1648 return DAG.getSetCC(dl, VT, N0, 1649 DAG.getConstant(MinVal, dl, N0.getValueType()), 1650 ISD::SETEQ); 1651 // If we have setugt X, Max-1, turn it into seteq X, Max 1652 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1653 return DAG.getSetCC(dl, VT, N0, 1654 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1655 ISD::SETEQ); 1656 1657 // If we have "setcc X, C0", check to see if we can shrink the immediate 1658 // by changing cc. 1659 1660 // SETUGT X, SINTMAX -> SETLT X, 0 1661 if (Cond == ISD::SETUGT && 1662 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1663 return DAG.getSetCC(dl, VT, N0, 1664 DAG.getConstant(0, dl, N1.getValueType()), 1665 ISD::SETLT); 1666 1667 // SETULT X, SINTMIN -> SETGT X, -1 1668 if (Cond == ISD::SETULT && 1669 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1670 SDValue ConstMinusOne = 1671 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1672 N1.getValueType()); 1673 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1674 } 1675 1676 // Fold bit comparisons when we can. 1677 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1678 (VT == N0.getValueType() || 1679 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1680 N0.getOpcode() == ISD::AND) 1681 if (ConstantSDNode *AndRHS = 1682 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1683 EVT ShiftTy = DCI.isBeforeLegalize() ? 1684 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1685 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1686 // Perform the xform if the AND RHS is a single bit. 1687 if (AndRHS->getAPIntValue().isPowerOf2()) { 1688 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1689 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1690 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1691 ShiftTy))); 1692 } 1693 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1694 // (X & 8) == 8 --> (X & 8) >> 3 1695 // Perform the xform if C1 is a single bit. 1696 if (C1.isPowerOf2()) { 1697 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1698 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1699 DAG.getConstant(C1.logBase2(), dl, 1700 ShiftTy))); 1701 } 1702 } 1703 } 1704 1705 if (C1.getMinSignedBits() <= 64 && 1706 !isLegalICmpImmediate(C1.getSExtValue())) { 1707 // (X & -256) == 256 -> (X >> 8) == 1 1708 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1709 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1710 if (ConstantSDNode *AndRHS = 1711 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1712 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1713 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1714 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1715 EVT ShiftTy = DCI.isBeforeLegalize() ? 1716 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1717 EVT CmpTy = N0.getValueType(); 1718 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1719 DAG.getConstant(ShiftBits, dl, 1720 ShiftTy)); 1721 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1722 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1723 } 1724 } 1725 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1726 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1727 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1728 // X < 0x100000000 -> (X >> 32) < 1 1729 // X >= 0x100000000 -> (X >> 32) >= 1 1730 // X <= 0x0ffffffff -> (X >> 32) < 1 1731 // X > 0x0ffffffff -> (X >> 32) >= 1 1732 unsigned ShiftBits; 1733 APInt NewC = C1; 1734 ISD::CondCode NewCond = Cond; 1735 if (AdjOne) { 1736 ShiftBits = C1.countTrailingOnes(); 1737 NewC = NewC + 1; 1738 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1739 } else { 1740 ShiftBits = C1.countTrailingZeros(); 1741 } 1742 NewC = NewC.lshr(ShiftBits); 1743 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1744 isLegalICmpImmediate(NewC.getSExtValue())) { 1745 EVT ShiftTy = DCI.isBeforeLegalize() ? 1746 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1747 EVT CmpTy = N0.getValueType(); 1748 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1749 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1750 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1751 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1752 } 1753 } 1754 } 1755 } 1756 1757 if (isa<ConstantFPSDNode>(N0.getNode())) { 1758 // Constant fold or commute setcc. 1759 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1760 if (O.getNode()) return O; 1761 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1762 // If the RHS of an FP comparison is a constant, simplify it away in 1763 // some cases. 1764 if (CFP->getValueAPF().isNaN()) { 1765 // If an operand is known to be a nan, we can fold it. 1766 switch (ISD::getUnorderedFlavor(Cond)) { 1767 default: llvm_unreachable("Unknown flavor!"); 1768 case 0: // Known false. 1769 return DAG.getConstant(0, dl, VT); 1770 case 1: // Known true. 1771 return DAG.getConstant(1, dl, VT); 1772 case 2: // Undefined. 1773 return DAG.getUNDEF(VT); 1774 } 1775 } 1776 1777 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1778 // constant if knowing that the operand is non-nan is enough. We prefer to 1779 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1780 // materialize 0.0. 1781 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1782 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1783 1784 // If the condition is not legal, see if we can find an equivalent one 1785 // which is legal. 1786 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1787 // If the comparison was an awkward floating-point == or != and one of 1788 // the comparison operands is infinity or negative infinity, convert the 1789 // condition to a less-awkward <= or >=. 1790 if (CFP->getValueAPF().isInfinity()) { 1791 if (CFP->getValueAPF().isNegative()) { 1792 if (Cond == ISD::SETOEQ && 1793 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1794 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1795 if (Cond == ISD::SETUEQ && 1796 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1797 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1798 if (Cond == ISD::SETUNE && 1799 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1800 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1801 if (Cond == ISD::SETONE && 1802 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1803 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1804 } else { 1805 if (Cond == ISD::SETOEQ && 1806 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1807 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1808 if (Cond == ISD::SETUEQ && 1809 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1810 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1811 if (Cond == ISD::SETUNE && 1812 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1813 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1814 if (Cond == ISD::SETONE && 1815 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1816 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1817 } 1818 } 1819 } 1820 } 1821 1822 if (N0 == N1) { 1823 // The sext(setcc()) => setcc() optimization relies on the appropriate 1824 // constant being emitted. 1825 uint64_t EqVal = 0; 1826 switch (getBooleanContents(N0.getValueType())) { 1827 case UndefinedBooleanContent: 1828 case ZeroOrOneBooleanContent: 1829 EqVal = ISD::isTrueWhenEqual(Cond); 1830 break; 1831 case ZeroOrNegativeOneBooleanContent: 1832 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1833 break; 1834 } 1835 1836 // We can always fold X == X for integer setcc's. 1837 if (N0.getValueType().isInteger()) { 1838 return DAG.getConstant(EqVal, dl, VT); 1839 } 1840 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1841 if (UOF == 2) // FP operators that are undefined on NaNs. 1842 return DAG.getConstant(EqVal, dl, VT); 1843 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1844 return DAG.getConstant(EqVal, dl, VT); 1845 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1846 // if it is not already. 1847 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1848 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1849 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1850 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1851 } 1852 1853 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1854 N0.getValueType().isInteger()) { 1855 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1856 N0.getOpcode() == ISD::XOR) { 1857 // Simplify (X+Y) == (X+Z) --> Y == Z 1858 if (N0.getOpcode() == N1.getOpcode()) { 1859 if (N0.getOperand(0) == N1.getOperand(0)) 1860 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1861 if (N0.getOperand(1) == N1.getOperand(1)) 1862 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1863 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1864 // If X op Y == Y op X, try other combinations. 1865 if (N0.getOperand(0) == N1.getOperand(1)) 1866 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1867 Cond); 1868 if (N0.getOperand(1) == N1.getOperand(0)) 1869 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1870 Cond); 1871 } 1872 } 1873 1874 // If RHS is a legal immediate value for a compare instruction, we need 1875 // to be careful about increasing register pressure needlessly. 1876 bool LegalRHSImm = false; 1877 1878 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1879 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1880 // Turn (X+C1) == C2 --> X == C2-C1 1881 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1882 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1883 DAG.getConstant(RHSC->getAPIntValue()- 1884 LHSR->getAPIntValue(), 1885 dl, N0.getValueType()), Cond); 1886 } 1887 1888 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1889 if (N0.getOpcode() == ISD::XOR) 1890 // If we know that all of the inverted bits are zero, don't bother 1891 // performing the inversion. 1892 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1893 return 1894 DAG.getSetCC(dl, VT, N0.getOperand(0), 1895 DAG.getConstant(LHSR->getAPIntValue() ^ 1896 RHSC->getAPIntValue(), 1897 dl, N0.getValueType()), 1898 Cond); 1899 } 1900 1901 // Turn (C1-X) == C2 --> X == C1-C2 1902 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1903 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1904 return 1905 DAG.getSetCC(dl, VT, N0.getOperand(1), 1906 DAG.getConstant(SUBC->getAPIntValue() - 1907 RHSC->getAPIntValue(), 1908 dl, N0.getValueType()), 1909 Cond); 1910 } 1911 } 1912 1913 // Could RHSC fold directly into a compare? 1914 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1915 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1916 } 1917 1918 // Simplify (X+Z) == X --> Z == 0 1919 // Don't do this if X is an immediate that can fold into a cmp 1920 // instruction and X+Z has other uses. It could be an induction variable 1921 // chain, and the transform would increase register pressure. 1922 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1923 if (N0.getOperand(0) == N1) 1924 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1925 DAG.getConstant(0, dl, N0.getValueType()), Cond); 1926 if (N0.getOperand(1) == N1) { 1927 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1928 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1929 DAG.getConstant(0, dl, N0.getValueType()), 1930 Cond); 1931 if (N0.getNode()->hasOneUse()) { 1932 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1933 // (Z-X) == X --> Z == X<<1 1934 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1935 DAG.getConstant(1, dl, 1936 getShiftAmountTy(N1.getValueType()))); 1937 if (!DCI.isCalledByLegalizer()) 1938 DCI.AddToWorklist(SH.getNode()); 1939 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1940 } 1941 } 1942 } 1943 } 1944 1945 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1946 N1.getOpcode() == ISD::XOR) { 1947 // Simplify X == (X+Z) --> Z == 0 1948 if (N1.getOperand(0) == N0) 1949 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1950 DAG.getConstant(0, dl, N1.getValueType()), Cond); 1951 if (N1.getOperand(1) == N0) { 1952 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1953 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1954 DAG.getConstant(0, dl, N1.getValueType()), Cond); 1955 if (N1.getNode()->hasOneUse()) { 1956 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1957 // X == (Z-X) --> X<<1 == Z 1958 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1959 DAG.getConstant(1, dl, 1960 getShiftAmountTy(N0.getValueType()))); 1961 if (!DCI.isCalledByLegalizer()) 1962 DCI.AddToWorklist(SH.getNode()); 1963 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1964 } 1965 } 1966 } 1967 1968 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1969 // Note that where y is variable and is known to have at most 1970 // one bit set (for example, if it is z&1) we cannot do this; 1971 // the expressions are not equivalent when y==0. 1972 if (N0.getOpcode() == ISD::AND) 1973 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1974 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1975 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1976 if (DCI.isBeforeLegalizeOps() || 1977 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1978 SDValue Zero = DAG.getConstant(0, dl, N1.getValueType()); 1979 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1980 } 1981 } 1982 } 1983 if (N1.getOpcode() == ISD::AND) 1984 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1985 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1986 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1987 if (DCI.isBeforeLegalizeOps() || 1988 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 1989 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1990 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1991 } 1992 } 1993 } 1994 } 1995 1996 // Fold away ALL boolean setcc's. 1997 SDValue Temp; 1998 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1999 switch (Cond) { 2000 default: llvm_unreachable("Unknown integer setcc!"); 2001 case ISD::SETEQ: // X == Y -> ~(X^Y) 2002 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2003 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2004 if (!DCI.isCalledByLegalizer()) 2005 DCI.AddToWorklist(Temp.getNode()); 2006 break; 2007 case ISD::SETNE: // X != Y --> (X^Y) 2008 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2009 break; 2010 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2011 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2012 Temp = DAG.getNOT(dl, N0, MVT::i1); 2013 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2014 if (!DCI.isCalledByLegalizer()) 2015 DCI.AddToWorklist(Temp.getNode()); 2016 break; 2017 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2018 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2019 Temp = DAG.getNOT(dl, N1, MVT::i1); 2020 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2021 if (!DCI.isCalledByLegalizer()) 2022 DCI.AddToWorklist(Temp.getNode()); 2023 break; 2024 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2025 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2026 Temp = DAG.getNOT(dl, N0, MVT::i1); 2027 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2028 if (!DCI.isCalledByLegalizer()) 2029 DCI.AddToWorklist(Temp.getNode()); 2030 break; 2031 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2032 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2033 Temp = DAG.getNOT(dl, N1, MVT::i1); 2034 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2035 break; 2036 } 2037 if (VT != MVT::i1) { 2038 if (!DCI.isCalledByLegalizer()) 2039 DCI.AddToWorklist(N0.getNode()); 2040 // FIXME: If running after legalize, we probably can't do this. 2041 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2042 } 2043 return N0; 2044 } 2045 2046 // Could not fold it. 2047 return SDValue(); 2048 } 2049 2050 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2051 /// node is a GlobalAddress + offset. 2052 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2053 int64_t &Offset) const { 2054 if (isa<GlobalAddressSDNode>(N)) { 2055 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2056 GA = GASD->getGlobal(); 2057 Offset += GASD->getOffset(); 2058 return true; 2059 } 2060 2061 if (N->getOpcode() == ISD::ADD) { 2062 SDValue N1 = N->getOperand(0); 2063 SDValue N2 = N->getOperand(1); 2064 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2065 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2066 if (V) { 2067 Offset += V->getSExtValue(); 2068 return true; 2069 } 2070 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2071 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2072 if (V) { 2073 Offset += V->getSExtValue(); 2074 return true; 2075 } 2076 } 2077 } 2078 2079 return false; 2080 } 2081 2082 2083 SDValue TargetLowering:: 2084 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2085 // Default implementation: no optimization. 2086 return SDValue(); 2087 } 2088 2089 //===----------------------------------------------------------------------===// 2090 // Inline Assembler Implementation Methods 2091 //===----------------------------------------------------------------------===// 2092 2093 2094 TargetLowering::ConstraintType 2095 TargetLowering::getConstraintType(const std::string &Constraint) const { 2096 unsigned S = Constraint.size(); 2097 2098 if (S == 1) { 2099 switch (Constraint[0]) { 2100 default: break; 2101 case 'r': return C_RegisterClass; 2102 case 'm': // memory 2103 case 'o': // offsetable 2104 case 'V': // not offsetable 2105 return C_Memory; 2106 case 'i': // Simple Integer or Relocatable Constant 2107 case 'n': // Simple Integer 2108 case 'E': // Floating Point Constant 2109 case 'F': // Floating Point Constant 2110 case 's': // Relocatable Constant 2111 case 'p': // Address. 2112 case 'X': // Allow ANY value. 2113 case 'I': // Target registers. 2114 case 'J': 2115 case 'K': 2116 case 'L': 2117 case 'M': 2118 case 'N': 2119 case 'O': 2120 case 'P': 2121 case '<': 2122 case '>': 2123 return C_Other; 2124 } 2125 } 2126 2127 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2128 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 2129 return C_Memory; 2130 return C_Register; 2131 } 2132 return C_Unknown; 2133 } 2134 2135 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2136 /// with another that has more specific requirements based on the type of the 2137 /// corresponding operand. 2138 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2139 if (ConstraintVT.isInteger()) 2140 return "r"; 2141 if (ConstraintVT.isFloatingPoint()) 2142 return "f"; // works for many targets 2143 return nullptr; 2144 } 2145 2146 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2147 /// vector. If it is invalid, don't add anything to Ops. 2148 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2149 std::string &Constraint, 2150 std::vector<SDValue> &Ops, 2151 SelectionDAG &DAG) const { 2152 2153 if (Constraint.length() > 1) return; 2154 2155 char ConstraintLetter = Constraint[0]; 2156 switch (ConstraintLetter) { 2157 default: break; 2158 case 'X': // Allows any operand; labels (basic block) use this. 2159 if (Op.getOpcode() == ISD::BasicBlock) { 2160 Ops.push_back(Op); 2161 return; 2162 } 2163 // fall through 2164 case 'i': // Simple Integer or Relocatable Constant 2165 case 'n': // Simple Integer 2166 case 's': { // Relocatable Constant 2167 // These operands are interested in values of the form (GV+C), where C may 2168 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2169 // is possible and fine if either GV or C are missing. 2170 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2171 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2172 2173 // If we have "(add GV, C)", pull out GV/C 2174 if (Op.getOpcode() == ISD::ADD) { 2175 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2176 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2177 if (!C || !GA) { 2178 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2179 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2180 } 2181 if (!C || !GA) 2182 C = nullptr, GA = nullptr; 2183 } 2184 2185 // If we find a valid operand, map to the TargetXXX version so that the 2186 // value itself doesn't get selected. 2187 if (GA) { // Either &GV or &GV+C 2188 if (ConstraintLetter != 'n') { 2189 int64_t Offs = GA->getOffset(); 2190 if (C) Offs += C->getZExtValue(); 2191 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2192 C ? SDLoc(C) : SDLoc(), 2193 Op.getValueType(), Offs)); 2194 return; 2195 } 2196 } 2197 if (C) { // just C, no GV. 2198 // Simple constants are not allowed for 's'. 2199 if (ConstraintLetter != 's') { 2200 // gcc prints these as sign extended. Sign extend value to 64 bits 2201 // now; without this it would get ZExt'd later in 2202 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2203 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2204 SDLoc(C), MVT::i64)); 2205 return; 2206 } 2207 } 2208 break; 2209 } 2210 } 2211 } 2212 2213 std::pair<unsigned, const TargetRegisterClass *> 2214 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2215 const std::string &Constraint, 2216 MVT VT) const { 2217 if (Constraint.empty() || Constraint[0] != '{') 2218 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2219 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2220 2221 // Remove the braces from around the name. 2222 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2223 2224 std::pair<unsigned, const TargetRegisterClass*> R = 2225 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2226 2227 // Figure out which register class contains this reg. 2228 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2229 E = RI->regclass_end(); RCI != E; ++RCI) { 2230 const TargetRegisterClass *RC = *RCI; 2231 2232 // If none of the value types for this register class are valid, we 2233 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2234 if (!isLegalRC(RC)) 2235 continue; 2236 2237 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2238 I != E; ++I) { 2239 if (RegName.equals_lower(RI->getName(*I))) { 2240 std::pair<unsigned, const TargetRegisterClass*> S = 2241 std::make_pair(*I, RC); 2242 2243 // If this register class has the requested value type, return it, 2244 // otherwise keep searching and return the first class found 2245 // if no other is found which explicitly has the requested type. 2246 if (RC->hasType(VT)) 2247 return S; 2248 else if (!R.second) 2249 R = S; 2250 } 2251 } 2252 } 2253 2254 return R; 2255 } 2256 2257 //===----------------------------------------------------------------------===// 2258 // Constraint Selection. 2259 2260 /// isMatchingInputConstraint - Return true of this is an input operand that is 2261 /// a matching constraint like "4". 2262 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2263 assert(!ConstraintCode.empty() && "No known constraint!"); 2264 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2265 } 2266 2267 /// getMatchedOperand - If this is an input matching constraint, this method 2268 /// returns the output operand it matches. 2269 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2270 assert(!ConstraintCode.empty() && "No known constraint!"); 2271 return atoi(ConstraintCode.c_str()); 2272 } 2273 2274 2275 /// ParseConstraints - Split up the constraint string from the inline 2276 /// assembly value into the specific constraints and their prefixes, 2277 /// and also tie in the associated operand values. 2278 /// If this returns an empty vector, and if the constraint string itself 2279 /// isn't empty, there was an error parsing. 2280 TargetLowering::AsmOperandInfoVector 2281 TargetLowering::ParseConstraints(const TargetRegisterInfo *TRI, 2282 ImmutableCallSite CS) const { 2283 /// ConstraintOperands - Information about all of the constraints. 2284 AsmOperandInfoVector ConstraintOperands; 2285 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2286 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2287 2288 // Do a prepass over the constraints, canonicalizing them, and building up the 2289 // ConstraintOperands list. 2290 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2291 unsigned ResNo = 0; // ResNo - The result number of the next output. 2292 2293 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2294 ConstraintOperands.emplace_back(std::move(CI)); 2295 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2296 2297 // Update multiple alternative constraint count. 2298 if (OpInfo.multipleAlternatives.size() > maCount) 2299 maCount = OpInfo.multipleAlternatives.size(); 2300 2301 OpInfo.ConstraintVT = MVT::Other; 2302 2303 // Compute the value type for each operand. 2304 switch (OpInfo.Type) { 2305 case InlineAsm::isOutput: 2306 // Indirect outputs just consume an argument. 2307 if (OpInfo.isIndirect) { 2308 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2309 break; 2310 } 2311 2312 // The return value of the call is this value. As such, there is no 2313 // corresponding argument. 2314 assert(!CS.getType()->isVoidTy() && 2315 "Bad inline asm!"); 2316 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2317 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2318 } else { 2319 assert(ResNo == 0 && "Asm only has one result!"); 2320 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2321 } 2322 ++ResNo; 2323 break; 2324 case InlineAsm::isInput: 2325 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2326 break; 2327 case InlineAsm::isClobber: 2328 // Nothing to do. 2329 break; 2330 } 2331 2332 if (OpInfo.CallOperandVal) { 2333 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2334 if (OpInfo.isIndirect) { 2335 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2336 if (!PtrTy) 2337 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2338 OpTy = PtrTy->getElementType(); 2339 } 2340 2341 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2342 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2343 if (STy->getNumElements() == 1) 2344 OpTy = STy->getElementType(0); 2345 2346 // If OpTy is not a single value, it may be a struct/union that we 2347 // can tile with integers. 2348 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2349 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2350 switch (BitSize) { 2351 default: break; 2352 case 1: 2353 case 8: 2354 case 16: 2355 case 32: 2356 case 64: 2357 case 128: 2358 OpInfo.ConstraintVT = 2359 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2360 break; 2361 } 2362 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2363 unsigned PtrSize 2364 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); 2365 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2366 } else { 2367 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2368 } 2369 } 2370 } 2371 2372 // If we have multiple alternative constraints, select the best alternative. 2373 if (!ConstraintOperands.empty()) { 2374 if (maCount) { 2375 unsigned bestMAIndex = 0; 2376 int bestWeight = -1; 2377 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2378 int weight = -1; 2379 unsigned maIndex; 2380 // Compute the sums of the weights for each alternative, keeping track 2381 // of the best (highest weight) one so far. 2382 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2383 int weightSum = 0; 2384 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2385 cIndex != eIndex; ++cIndex) { 2386 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2387 if (OpInfo.Type == InlineAsm::isClobber) 2388 continue; 2389 2390 // If this is an output operand with a matching input operand, 2391 // look up the matching input. If their types mismatch, e.g. one 2392 // is an integer, the other is floating point, or their sizes are 2393 // different, flag it as an maCantMatch. 2394 if (OpInfo.hasMatchingInput()) { 2395 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2396 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2397 if ((OpInfo.ConstraintVT.isInteger() != 2398 Input.ConstraintVT.isInteger()) || 2399 (OpInfo.ConstraintVT.getSizeInBits() != 2400 Input.ConstraintVT.getSizeInBits())) { 2401 weightSum = -1; // Can't match. 2402 break; 2403 } 2404 } 2405 } 2406 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2407 if (weight == -1) { 2408 weightSum = -1; 2409 break; 2410 } 2411 weightSum += weight; 2412 } 2413 // Update best. 2414 if (weightSum > bestWeight) { 2415 bestWeight = weightSum; 2416 bestMAIndex = maIndex; 2417 } 2418 } 2419 2420 // Now select chosen alternative in each constraint. 2421 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2422 cIndex != eIndex; ++cIndex) { 2423 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2424 if (cInfo.Type == InlineAsm::isClobber) 2425 continue; 2426 cInfo.selectAlternative(bestMAIndex); 2427 } 2428 } 2429 } 2430 2431 // Check and hook up tied operands, choose constraint code to use. 2432 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2433 cIndex != eIndex; ++cIndex) { 2434 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2435 2436 // If this is an output operand with a matching input operand, look up the 2437 // matching input. If their types mismatch, e.g. one is an integer, the 2438 // other is floating point, or their sizes are different, flag it as an 2439 // error. 2440 if (OpInfo.hasMatchingInput()) { 2441 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2442 2443 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2444 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2445 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2446 OpInfo.ConstraintVT); 2447 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2448 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2449 Input.ConstraintVT); 2450 if ((OpInfo.ConstraintVT.isInteger() != 2451 Input.ConstraintVT.isInteger()) || 2452 (MatchRC.second != InputRC.second)) { 2453 report_fatal_error("Unsupported asm: input constraint" 2454 " with a matching output constraint of" 2455 " incompatible type!"); 2456 } 2457 } 2458 2459 } 2460 } 2461 2462 return ConstraintOperands; 2463 } 2464 2465 2466 /// getConstraintGenerality - Return an integer indicating how general CT 2467 /// is. 2468 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2469 switch (CT) { 2470 case TargetLowering::C_Other: 2471 case TargetLowering::C_Unknown: 2472 return 0; 2473 case TargetLowering::C_Register: 2474 return 1; 2475 case TargetLowering::C_RegisterClass: 2476 return 2; 2477 case TargetLowering::C_Memory: 2478 return 3; 2479 } 2480 llvm_unreachable("Invalid constraint type"); 2481 } 2482 2483 /// Examine constraint type and operand type and determine a weight value. 2484 /// This object must already have been set up with the operand type 2485 /// and the current alternative constraint selected. 2486 TargetLowering::ConstraintWeight 2487 TargetLowering::getMultipleConstraintMatchWeight( 2488 AsmOperandInfo &info, int maIndex) const { 2489 InlineAsm::ConstraintCodeVector *rCodes; 2490 if (maIndex >= (int)info.multipleAlternatives.size()) 2491 rCodes = &info.Codes; 2492 else 2493 rCodes = &info.multipleAlternatives[maIndex].Codes; 2494 ConstraintWeight BestWeight = CW_Invalid; 2495 2496 // Loop over the options, keeping track of the most general one. 2497 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2498 ConstraintWeight weight = 2499 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2500 if (weight > BestWeight) 2501 BestWeight = weight; 2502 } 2503 2504 return BestWeight; 2505 } 2506 2507 /// Examine constraint type and operand type and determine a weight value. 2508 /// This object must already have been set up with the operand type 2509 /// and the current alternative constraint selected. 2510 TargetLowering::ConstraintWeight 2511 TargetLowering::getSingleConstraintMatchWeight( 2512 AsmOperandInfo &info, const char *constraint) const { 2513 ConstraintWeight weight = CW_Invalid; 2514 Value *CallOperandVal = info.CallOperandVal; 2515 // If we don't have a value, we can't do a match, 2516 // but allow it at the lowest weight. 2517 if (!CallOperandVal) 2518 return CW_Default; 2519 // Look at the constraint type. 2520 switch (*constraint) { 2521 case 'i': // immediate integer. 2522 case 'n': // immediate integer with a known value. 2523 if (isa<ConstantInt>(CallOperandVal)) 2524 weight = CW_Constant; 2525 break; 2526 case 's': // non-explicit intregal immediate. 2527 if (isa<GlobalValue>(CallOperandVal)) 2528 weight = CW_Constant; 2529 break; 2530 case 'E': // immediate float if host format. 2531 case 'F': // immediate float. 2532 if (isa<ConstantFP>(CallOperandVal)) 2533 weight = CW_Constant; 2534 break; 2535 case '<': // memory operand with autodecrement. 2536 case '>': // memory operand with autoincrement. 2537 case 'm': // memory operand. 2538 case 'o': // offsettable memory operand 2539 case 'V': // non-offsettable memory operand 2540 weight = CW_Memory; 2541 break; 2542 case 'r': // general register. 2543 case 'g': // general register, memory operand or immediate integer. 2544 // note: Clang converts "g" to "imr". 2545 if (CallOperandVal->getType()->isIntegerTy()) 2546 weight = CW_Register; 2547 break; 2548 case 'X': // any operand. 2549 default: 2550 weight = CW_Default; 2551 break; 2552 } 2553 return weight; 2554 } 2555 2556 /// ChooseConstraint - If there are multiple different constraints that we 2557 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2558 /// This is somewhat tricky: constraints fall into four classes: 2559 /// Other -> immediates and magic values 2560 /// Register -> one specific register 2561 /// RegisterClass -> a group of regs 2562 /// Memory -> memory 2563 /// Ideally, we would pick the most specific constraint possible: if we have 2564 /// something that fits into a register, we would pick it. The problem here 2565 /// is that if we have something that could either be in a register or in 2566 /// memory that use of the register could cause selection of *other* 2567 /// operands to fail: they might only succeed if we pick memory. Because of 2568 /// this the heuristic we use is: 2569 /// 2570 /// 1) If there is an 'other' constraint, and if the operand is valid for 2571 /// that constraint, use it. This makes us take advantage of 'i' 2572 /// constraints when available. 2573 /// 2) Otherwise, pick the most general constraint present. This prefers 2574 /// 'm' over 'r', for example. 2575 /// 2576 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2577 const TargetLowering &TLI, 2578 SDValue Op, SelectionDAG *DAG) { 2579 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2580 unsigned BestIdx = 0; 2581 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2582 int BestGenerality = -1; 2583 2584 // Loop over the options, keeping track of the most general one. 2585 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2586 TargetLowering::ConstraintType CType = 2587 TLI.getConstraintType(OpInfo.Codes[i]); 2588 2589 // If this is an 'other' constraint, see if the operand is valid for it. 2590 // For example, on X86 we might have an 'rI' constraint. If the operand 2591 // is an integer in the range [0..31] we want to use I (saving a load 2592 // of a register), otherwise we must use 'r'. 2593 if (CType == TargetLowering::C_Other && Op.getNode()) { 2594 assert(OpInfo.Codes[i].size() == 1 && 2595 "Unhandled multi-letter 'other' constraint"); 2596 std::vector<SDValue> ResultOps; 2597 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2598 ResultOps, *DAG); 2599 if (!ResultOps.empty()) { 2600 BestType = CType; 2601 BestIdx = i; 2602 break; 2603 } 2604 } 2605 2606 // Things with matching constraints can only be registers, per gcc 2607 // documentation. This mainly affects "g" constraints. 2608 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2609 continue; 2610 2611 // This constraint letter is more general than the previous one, use it. 2612 int Generality = getConstraintGenerality(CType); 2613 if (Generality > BestGenerality) { 2614 BestType = CType; 2615 BestIdx = i; 2616 BestGenerality = Generality; 2617 } 2618 } 2619 2620 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2621 OpInfo.ConstraintType = BestType; 2622 } 2623 2624 /// ComputeConstraintToUse - Determines the constraint code and constraint 2625 /// type to use for the specific AsmOperandInfo, setting 2626 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2627 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2628 SDValue Op, 2629 SelectionDAG *DAG) const { 2630 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2631 2632 // Single-letter constraints ('r') are very common. 2633 if (OpInfo.Codes.size() == 1) { 2634 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2635 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2636 } else { 2637 ChooseConstraint(OpInfo, *this, Op, DAG); 2638 } 2639 2640 // 'X' matches anything. 2641 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2642 // Labels and constants are handled elsewhere ('X' is the only thing 2643 // that matches labels). For Functions, the type here is the type of 2644 // the result, which is not what we want to look at; leave them alone. 2645 Value *v = OpInfo.CallOperandVal; 2646 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2647 OpInfo.CallOperandVal = v; 2648 return; 2649 } 2650 2651 // Otherwise, try to resolve it to something we know about by looking at 2652 // the actual operand type. 2653 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2654 OpInfo.ConstraintCode = Repl; 2655 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2656 } 2657 } 2658 } 2659 2660 /// \brief Given an exact SDIV by a constant, create a multiplication 2661 /// with the multiplicative inverse of the constant. 2662 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2663 SelectionDAG &DAG) const { 2664 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2665 APInt d = C->getAPIntValue(); 2666 assert(d != 0 && "Division by zero!"); 2667 2668 // Shift the value upfront if it is even, so the LSB is one. 2669 unsigned ShAmt = d.countTrailingZeros(); 2670 if (ShAmt) { 2671 // TODO: For UDIV use SRL instead of SRA. 2672 SDValue Amt = 2673 DAG.getConstant(ShAmt, dl, getShiftAmountTy(Op1.getValueType())); 2674 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false, 2675 true); 2676 d = d.ashr(ShAmt); 2677 } 2678 2679 // Calculate the multiplicative inverse, using Newton's method. 2680 APInt t, xn = d; 2681 while ((t = d*xn) != 1) 2682 xn *= APInt(d.getBitWidth(), 2) - t; 2683 2684 Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2685 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2686 } 2687 2688 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2689 /// return a DAG expression to select that will generate the same value by 2690 /// multiplying by a magic number. 2691 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2692 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2693 SelectionDAG &DAG, bool IsAfterLegalization, 2694 std::vector<SDNode *> *Created) const { 2695 assert(Created && "No vector to hold sdiv ops."); 2696 2697 EVT VT = N->getValueType(0); 2698 SDLoc dl(N); 2699 2700 // Check to see if we can do this. 2701 // FIXME: We should be more aggressive here. 2702 if (!isTypeLegal(VT)) 2703 return SDValue(); 2704 2705 APInt::ms magics = Divisor.magic(); 2706 2707 // Multiply the numerator (operand 0) by the magic value 2708 // FIXME: We should support doing a MUL in a wider type 2709 SDValue Q; 2710 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2711 isOperationLegalOrCustom(ISD::MULHS, VT)) 2712 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2713 DAG.getConstant(magics.m, dl, VT)); 2714 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2715 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2716 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2717 N->getOperand(0), 2718 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2719 else 2720 return SDValue(); // No mulhs or equvialent 2721 // If d > 0 and m < 0, add the numerator 2722 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2723 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2724 Created->push_back(Q.getNode()); 2725 } 2726 // If d < 0 and m > 0, subtract the numerator. 2727 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2728 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2729 Created->push_back(Q.getNode()); 2730 } 2731 // Shift right algebraic if shift value is nonzero 2732 if (magics.s > 0) { 2733 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2734 DAG.getConstant(magics.s, dl, 2735 getShiftAmountTy(Q.getValueType()))); 2736 Created->push_back(Q.getNode()); 2737 } 2738 // Extract the sign bit and add it to the quotient 2739 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, 2740 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2741 getShiftAmountTy(Q.getValueType()))); 2742 Created->push_back(T.getNode()); 2743 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2744 } 2745 2746 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2747 /// return a DAG expression to select that will generate the same value by 2748 /// multiplying by a magic number. 2749 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2750 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2751 SelectionDAG &DAG, bool IsAfterLegalization, 2752 std::vector<SDNode *> *Created) const { 2753 assert(Created && "No vector to hold udiv ops."); 2754 2755 EVT VT = N->getValueType(0); 2756 SDLoc dl(N); 2757 2758 // Check to see if we can do this. 2759 // FIXME: We should be more aggressive here. 2760 if (!isTypeLegal(VT)) 2761 return SDValue(); 2762 2763 // FIXME: We should use a narrower constant when the upper 2764 // bits are known to be zero. 2765 APInt::mu magics = Divisor.magicu(); 2766 2767 SDValue Q = N->getOperand(0); 2768 2769 // If the divisor is even, we can avoid using the expensive fixup by shifting 2770 // the divided value upfront. 2771 if (magics.a != 0 && !Divisor[0]) { 2772 unsigned Shift = Divisor.countTrailingZeros(); 2773 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2774 DAG.getConstant(Shift, dl, 2775 getShiftAmountTy(Q.getValueType()))); 2776 Created->push_back(Q.getNode()); 2777 2778 // Get magic number for the shifted divisor. 2779 magics = Divisor.lshr(Shift).magicu(Shift); 2780 assert(magics.a == 0 && "Should use cheap fixup now"); 2781 } 2782 2783 // Multiply the numerator (operand 0) by the magic value 2784 // FIXME: We should support doing a MUL in a wider type 2785 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2786 isOperationLegalOrCustom(ISD::MULHU, VT)) 2787 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2788 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2789 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2790 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2791 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2792 else 2793 return SDValue(); // No mulhu or equvialent 2794 2795 Created->push_back(Q.getNode()); 2796 2797 if (magics.a == 0) { 2798 assert(magics.s < Divisor.getBitWidth() && 2799 "We shouldn't generate an undefined shift!"); 2800 return DAG.getNode(ISD::SRL, dl, VT, Q, 2801 DAG.getConstant(magics.s, dl, 2802 getShiftAmountTy(Q.getValueType()))); 2803 } else { 2804 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2805 Created->push_back(NPQ.getNode()); 2806 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2807 DAG.getConstant(1, dl, 2808 getShiftAmountTy(NPQ.getValueType()))); 2809 Created->push_back(NPQ.getNode()); 2810 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2811 Created->push_back(NPQ.getNode()); 2812 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2813 DAG.getConstant(magics.s - 1, dl, 2814 getShiftAmountTy(NPQ.getValueType()))); 2815 } 2816 } 2817 2818 bool TargetLowering:: 2819 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2820 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2821 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2822 "be a constant integer"); 2823 return true; 2824 } 2825 2826 return false; 2827 } 2828 2829 //===----------------------------------------------------------------------===// 2830 // Legalization Utilities 2831 //===----------------------------------------------------------------------===// 2832 2833 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2834 SelectionDAG &DAG, SDValue LL, SDValue LH, 2835 SDValue RL, SDValue RH) const { 2836 EVT VT = N->getValueType(0); 2837 SDLoc dl(N); 2838 2839 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2840 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2841 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2842 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2843 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2844 unsigned OuterBitSize = VT.getSizeInBits(); 2845 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2846 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2847 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2848 2849 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2850 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2851 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2852 2853 if (!LL.getNode() && !RL.getNode() && 2854 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2855 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2856 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2857 } 2858 2859 if (!LL.getNode()) 2860 return false; 2861 2862 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2863 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2864 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2865 // The inputs are both zero-extended. 2866 if (HasUMUL_LOHI) { 2867 // We can emit a umul_lohi. 2868 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2869 RL); 2870 Hi = SDValue(Lo.getNode(), 1); 2871 return true; 2872 } 2873 if (HasMULHU) { 2874 // We can emit a mulhu+mul. 2875 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2876 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2877 return true; 2878 } 2879 } 2880 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2881 // The input values are both sign-extended. 2882 if (HasSMUL_LOHI) { 2883 // We can emit a smul_lohi. 2884 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2885 RL); 2886 Hi = SDValue(Lo.getNode(), 1); 2887 return true; 2888 } 2889 if (HasMULHS) { 2890 // We can emit a mulhs+mul. 2891 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2892 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 2893 return true; 2894 } 2895 } 2896 2897 if (!LH.getNode() && !RH.getNode() && 2898 isOperationLegalOrCustom(ISD::SRL, VT) && 2899 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2900 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 2901 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT)); 2902 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 2903 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 2904 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 2905 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 2906 } 2907 2908 if (!LH.getNode()) 2909 return false; 2910 2911 if (HasUMUL_LOHI) { 2912 // Lo,Hi = umul LHS, RHS. 2913 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 2914 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2915 Lo = UMulLOHI; 2916 Hi = UMulLOHI.getValue(1); 2917 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2918 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2919 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2920 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2921 return true; 2922 } 2923 if (HasMULHU) { 2924 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2925 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2926 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2927 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2928 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2929 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2930 return true; 2931 } 2932 } 2933 return false; 2934 } 2935 2936 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 2937 SelectionDAG &DAG) const { 2938 EVT VT = Node->getOperand(0).getValueType(); 2939 EVT NVT = Node->getValueType(0); 2940 SDLoc dl(SDValue(Node, 0)); 2941 2942 // FIXME: Only f32 to i64 conversions are supported. 2943 if (VT != MVT::f32 || NVT != MVT::i64) 2944 return false; 2945 2946 // Expand f32 -> i64 conversion 2947 // This algorithm comes from compiler-rt's implementation of fixsfdi: 2948 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 2949 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 2950 VT.getSizeInBits()); 2951 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 2952 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 2953 SDValue Bias = DAG.getConstant(127, dl, IntVT); 2954 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 2955 IntVT); 2956 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 2957 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 2958 2959 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 2960 2961 SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT, 2962 DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 2963 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT))); 2964 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 2965 2966 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 2967 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 2968 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT))); 2969 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 2970 2971 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 2972 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 2973 DAG.getConstant(0x00800000, dl, IntVT)); 2974 2975 R = DAG.getZExtOrTrunc(R, dl, NVT); 2976 2977 2978 R = DAG.getSelectCC(dl, Exponent, ExponentLoBit, 2979 DAG.getNode(ISD::SHL, dl, NVT, R, 2980 DAG.getZExtOrTrunc( 2981 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 2982 dl, getShiftAmountTy(IntVT))), 2983 DAG.getNode(ISD::SRL, dl, NVT, R, 2984 DAG.getZExtOrTrunc( 2985 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 2986 dl, getShiftAmountTy(IntVT))), 2987 ISD::SETGT); 2988 2989 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 2990 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 2991 Sign); 2992 2993 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 2994 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 2995 return true; 2996 } 2997