1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
621     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
622 
623     if (NumSrcEltBits == NumDstEltBits)
624       if (SDValue V = SimplifyMultipleUseDemandedBits(
625               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
626         return DAG.getBitcast(DstVT, V);
627 
628     // TODO - bigendian once we have test coverage.
629     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
630         DAG.getDataLayout().isLittleEndian()) {
631       unsigned Scale = NumDstEltBits / NumSrcEltBits;
632       unsigned NumSrcElts = SrcVT.getVectorNumElements();
633       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
634       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
635       for (unsigned i = 0; i != Scale; ++i) {
636         unsigned Offset = i * NumSrcEltBits;
637         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
638         if (!Sub.isNullValue()) {
639           DemandedSrcBits |= Sub;
640           for (unsigned j = 0; j != NumElts; ++j)
641             if (DemandedElts[j])
642               DemandedSrcElts.setBit((j * Scale) + i);
643         }
644       }
645 
646       if (SDValue V = SimplifyMultipleUseDemandedBits(
647               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
648         return DAG.getBitcast(DstVT, V);
649     }
650 
651     // TODO - bigendian once we have test coverage.
652     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
653         DAG.getDataLayout().isLittleEndian()) {
654       unsigned Scale = NumSrcEltBits / NumDstEltBits;
655       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
656       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
657       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
658       for (unsigned i = 0; i != NumElts; ++i)
659         if (DemandedElts[i]) {
660           unsigned Offset = (i % Scale) * NumDstEltBits;
661           DemandedSrcBits.insertBits(DemandedBits, Offset);
662           DemandedSrcElts.setBit(i / Scale);
663         }
664 
665       if (SDValue V = SimplifyMultipleUseDemandedBits(
666               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
667         return DAG.getBitcast(DstVT, V);
668     }
669 
670     break;
671   }
672   case ISD::AND: {
673     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
674     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 
676     // If all of the demanded bits are known 1 on one side, return the other.
677     // These bits cannot contribute to the result of the 'and' in this
678     // context.
679     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
680       return Op.getOperand(0);
681     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
682       return Op.getOperand(1);
683     break;
684   }
685   case ISD::OR: {
686     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
687     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 
689     // If all of the demanded bits are known zero on one side, return the
690     // other.  These bits cannot contribute to the result of the 'or' in this
691     // context.
692     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
693       return Op.getOperand(0);
694     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
695       return Op.getOperand(1);
696     break;
697   }
698   case ISD::XOR: {
699     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
700     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
701 
702     // If all of the demanded bits are known zero on one side, return the
703     // other.
704     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::SETCC: {
711     SDValue Op0 = Op.getOperand(0);
712     SDValue Op1 = Op.getOperand(1);
713     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
714     // If (1) we only need the sign-bit, (2) the setcc operands are the same
715     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
716     // -1, we may be able to bypass the setcc.
717     if (DemandedBits.isSignMask() &&
718         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
719         getBooleanContents(Op0.getValueType()) ==
720             BooleanContent::ZeroOrNegativeOneBooleanContent) {
721       // If we're testing X < 0, then this compare isn't needed - just use X!
722       // FIXME: We're limiting to integer types here, but this should also work
723       // if we don't care about FP signed-zero. The use of SETLT with FP means
724       // that we don't care about NaNs.
725       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
726           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
727         return Op0;
728     }
729     break;
730   }
731   case ISD::SIGN_EXTEND_INREG: {
732     // If none of the extended bits are demanded, eliminate the sextinreg.
733     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
734     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
735       return Op.getOperand(0);
736     break;
737   }
738   case ISD::INSERT_VECTOR_ELT: {
739     // If we don't demand the inserted element, return the base vector.
740     SDValue Vec = Op.getOperand(0);
741     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
742     EVT VecVT = Vec.getValueType();
743     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
744         !DemandedElts[CIdx->getZExtValue()])
745       return Vec;
746     break;
747   }
748   case ISD::INSERT_SUBVECTOR: {
749     // If we don't demand the inserted subvector, return the base vector.
750     SDValue Vec = Op.getOperand(0);
751     SDValue Sub = Op.getOperand(1);
752     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
753     unsigned NumVecElts = Vec.getValueType().getVectorNumElements();
754     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
755     if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts))
756       if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0)
757         return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
794     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
795     unsigned Depth) const {
796   EVT VT = Op.getValueType();
797   APInt DemandedElts = VT.isVector()
798                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
799                            : APInt(1, 1);
800   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
801                                          Depth);
802 }
803 
804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
805 /// result of Op are ever used downstream. If we can use this information to
806 /// simplify Op, create a new simplified DAG node and return true, returning the
807 /// original and new nodes in Old and New. Otherwise, analyze the expression and
808 /// return a mask of Known bits for the expression (used to simplify the
809 /// caller).  The Known bits may only be accurate for those bits in the
810 /// OriginalDemandedBits and OriginalDemandedElts.
811 bool TargetLowering::SimplifyDemandedBits(
812     SDValue Op, const APInt &OriginalDemandedBits,
813     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
814     unsigned Depth, bool AssumeSingleUse) const {
815   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
816   assert(Op.getScalarValueSizeInBits() == BitWidth &&
817          "Mask size mismatches value type size!");
818 
819   unsigned NumElts = OriginalDemandedElts.getBitWidth();
820   assert((!Op.getValueType().isVector() ||
821           NumElts == Op.getValueType().getVectorNumElements()) &&
822          "Unexpected vector size");
823 
824   APInt DemandedBits = OriginalDemandedBits;
825   APInt DemandedElts = OriginalDemandedElts;
826   SDLoc dl(Op);
827   auto &DL = TLO.DAG.getDataLayout();
828 
829   // Don't know anything.
830   Known = KnownBits(BitWidth);
831 
832   // Undef operand.
833   if (Op.isUndef())
834     return false;
835 
836   if (Op.getOpcode() == ISD::Constant) {
837     // We know all of the bits for a constant!
838     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
839     Known.Zero = ~Known.One;
840     return false;
841   }
842 
843   // Other users may use these bits.
844   EVT VT = Op.getValueType();
845   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
846     if (Depth != 0) {
847       // If not at the root, Just compute the Known bits to
848       // simplify things downstream.
849       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
850       return false;
851     }
852     // If this is the root being simplified, allow it to have multiple uses,
853     // just set the DemandedBits/Elts to all bits.
854     DemandedBits = APInt::getAllOnesValue(BitWidth);
855     DemandedElts = APInt::getAllOnesValue(NumElts);
856   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
857     // Not demanding any bits/elts from Op.
858     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
859   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
860     // Limit search depth.
861     return false;
862   }
863 
864   KnownBits Known2, KnownOut;
865   switch (Op.getOpcode()) {
866   case ISD::TargetConstant:
867     llvm_unreachable("Can't simplify this node");
868   case ISD::SCALAR_TO_VECTOR: {
869     if (!DemandedElts[0])
870       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
871 
872     KnownBits SrcKnown;
873     SDValue Src = Op.getOperand(0);
874     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
875     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
876     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
877       return true;
878     Known = SrcKnown.anyextOrTrunc(BitWidth);
879     break;
880   }
881   case ISD::BUILD_VECTOR:
882     // Collect the known bits that are shared by every demanded element.
883     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
884     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
885     return false; // Don't fall through, will infinitely loop.
886   case ISD::LOAD: {
887     LoadSDNode *LD = cast<LoadSDNode>(Op);
888     if (getTargetConstantFromLoad(LD)) {
889       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
890       return false; // Don't fall through, will infinitely loop.
891     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
892       // If this is a ZEXTLoad and we are looking at the loaded value.
893       EVT VT = LD->getMemoryVT();
894       unsigned MemBits = VT.getScalarSizeInBits();
895       Known.Zero.setBitsFrom(MemBits);
896       return false; // Don't fall through, will infinitely loop.
897     }
898     break;
899   }
900   case ISD::INSERT_VECTOR_ELT: {
901     SDValue Vec = Op.getOperand(0);
902     SDValue Scl = Op.getOperand(1);
903     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
904     EVT VecVT = Vec.getValueType();
905 
906     // If index isn't constant, assume we need all vector elements AND the
907     // inserted element.
908     APInt DemandedVecElts(DemandedElts);
909     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
910       unsigned Idx = CIdx->getZExtValue();
911       DemandedVecElts.clearBit(Idx);
912 
913       // Inserted element is not required.
914       if (!DemandedElts[Idx])
915         return TLO.CombineTo(Op, Vec);
916     }
917 
918     KnownBits KnownScl;
919     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
920     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
921     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
922       return true;
923 
924     Known = KnownScl.anyextOrTrunc(BitWidth);
925 
926     KnownBits KnownVec;
927     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
928                              Depth + 1))
929       return true;
930 
931     if (!!DemandedVecElts) {
932       Known.One &= KnownVec.One;
933       Known.Zero &= KnownVec.Zero;
934     }
935 
936     return false;
937   }
938   case ISD::INSERT_SUBVECTOR: {
939     SDValue Base = Op.getOperand(0);
940     SDValue Sub = Op.getOperand(1);
941     EVT SubVT = Sub.getValueType();
942     unsigned NumSubElts = SubVT.getVectorNumElements();
943 
944     // If index isn't constant, assume we need the original demanded base
945     // elements and ALL the inserted subvector elements.
946     APInt BaseElts = DemandedElts;
947     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
948     if (isa<ConstantSDNode>(Op.getOperand(2))) {
949       const APInt &Idx = Op.getConstantOperandAPInt(2);
950       if (Idx.ule(NumElts - NumSubElts)) {
951         unsigned SubIdx = Idx.getZExtValue();
952         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
953         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
954       }
955     }
956 
957     KnownBits KnownSub, KnownBase;
958     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
959                              Depth + 1))
960       return true;
961     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
962                              Depth + 1))
963       return true;
964 
965     Known.Zero.setAllBits();
966     Known.One.setAllBits();
967     if (!!SubElts) {
968         Known.One &= KnownSub.One;
969         Known.Zero &= KnownSub.Zero;
970     }
971     if (!!BaseElts) {
972         Known.One &= KnownBase.One;
973         Known.Zero &= KnownBase.Zero;
974     }
975 
976     // Attempt to avoid multi-use src if we don't need anything from it.
977     if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() ||
978         !BaseElts.isAllOnesValue()) {
979       SDValue NewSub = SimplifyMultipleUseDemandedBits(
980           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
981       SDValue NewBase = SimplifyMultipleUseDemandedBits(
982           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
983       if (NewSub || NewBase) {
984         NewSub = NewSub ? NewSub : Sub;
985         NewBase = NewBase ? NewBase : Base;
986         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub,
987                                         Op.getOperand(2));
988         return TLO.CombineTo(Op, NewOp);
989       }
990     }
991     break;
992   }
993   case ISD::EXTRACT_SUBVECTOR: {
994     // If index isn't constant, assume we need all the source vector elements.
995     SDValue Src = Op.getOperand(0);
996     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
997     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
998     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
999     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1000       // Offset the demanded elts by the subvector index.
1001       uint64_t Idx = SubIdx->getZExtValue();
1002       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1003     }
1004     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
1005       return true;
1006 
1007     // Attempt to avoid multi-use src if we don't need anything from it.
1008     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
1009       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1010           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
1011       if (DemandedSrc) {
1012         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1013                                         Op.getOperand(1));
1014         return TLO.CombineTo(Op, NewOp);
1015       }
1016     }
1017     break;
1018   }
1019   case ISD::CONCAT_VECTORS: {
1020     Known.Zero.setAllBits();
1021     Known.One.setAllBits();
1022     EVT SubVT = Op.getOperand(0).getValueType();
1023     unsigned NumSubVecs = Op.getNumOperands();
1024     unsigned NumSubElts = SubVT.getVectorNumElements();
1025     for (unsigned i = 0; i != NumSubVecs; ++i) {
1026       APInt DemandedSubElts =
1027           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1028       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1029                                Known2, TLO, Depth + 1))
1030         return true;
1031       // Known bits are shared by every demanded subvector element.
1032       if (!!DemandedSubElts) {
1033         Known.One &= Known2.One;
1034         Known.Zero &= Known2.Zero;
1035       }
1036     }
1037     break;
1038   }
1039   case ISD::VECTOR_SHUFFLE: {
1040     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1041 
1042     // Collect demanded elements from shuffle operands..
1043     APInt DemandedLHS(NumElts, 0);
1044     APInt DemandedRHS(NumElts, 0);
1045     for (unsigned i = 0; i != NumElts; ++i) {
1046       if (!DemandedElts[i])
1047         continue;
1048       int M = ShuffleMask[i];
1049       if (M < 0) {
1050         // For UNDEF elements, we don't know anything about the common state of
1051         // the shuffle result.
1052         DemandedLHS.clearAllBits();
1053         DemandedRHS.clearAllBits();
1054         break;
1055       }
1056       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1057       if (M < (int)NumElts)
1058         DemandedLHS.setBit(M);
1059       else
1060         DemandedRHS.setBit(M - NumElts);
1061     }
1062 
1063     if (!!DemandedLHS || !!DemandedRHS) {
1064       SDValue Op0 = Op.getOperand(0);
1065       SDValue Op1 = Op.getOperand(1);
1066 
1067       Known.Zero.setAllBits();
1068       Known.One.setAllBits();
1069       if (!!DemandedLHS) {
1070         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1071                                  Depth + 1))
1072           return true;
1073         Known.One &= Known2.One;
1074         Known.Zero &= Known2.Zero;
1075       }
1076       if (!!DemandedRHS) {
1077         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1078                                  Depth + 1))
1079           return true;
1080         Known.One &= Known2.One;
1081         Known.Zero &= Known2.Zero;
1082       }
1083 
1084       // Attempt to avoid multi-use ops if we don't need anything from them.
1085       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1086           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1087       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1088           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1089       if (DemandedOp0 || DemandedOp1) {
1090         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1091         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1092         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1093         return TLO.CombineTo(Op, NewOp);
1094       }
1095     }
1096     break;
1097   }
1098   case ISD::AND: {
1099     SDValue Op0 = Op.getOperand(0);
1100     SDValue Op1 = Op.getOperand(1);
1101 
1102     // If the RHS is a constant, check to see if the LHS would be zero without
1103     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1104     // simplify the LHS, here we're using information from the LHS to simplify
1105     // the RHS.
1106     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1107       // Do not increment Depth here; that can cause an infinite loop.
1108       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1109       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1110       if ((LHSKnown.Zero & DemandedBits) ==
1111           (~RHSC->getAPIntValue() & DemandedBits))
1112         return TLO.CombineTo(Op, Op0);
1113 
1114       // If any of the set bits in the RHS are known zero on the LHS, shrink
1115       // the constant.
1116       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1117         return true;
1118 
1119       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1120       // constant, but if this 'and' is only clearing bits that were just set by
1121       // the xor, then this 'and' can be eliminated by shrinking the mask of
1122       // the xor. For example, for a 32-bit X:
1123       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1124       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1125           LHSKnown.One == ~RHSC->getAPIntValue()) {
1126         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1127         return TLO.CombineTo(Op, Xor);
1128       }
1129     }
1130 
1131     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1132                              Depth + 1))
1133       return true;
1134     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1135     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1136                              Known2, TLO, Depth + 1))
1137       return true;
1138     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1139 
1140     // Attempt to avoid multi-use ops if we don't need anything from them.
1141     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1142       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1143           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1144       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1145           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1146       if (DemandedOp0 || DemandedOp1) {
1147         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1148         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1149         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1150         return TLO.CombineTo(Op, NewOp);
1151       }
1152     }
1153 
1154     // If all of the demanded bits are known one on one side, return the other.
1155     // These bits cannot contribute to the result of the 'and'.
1156     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1157       return TLO.CombineTo(Op, Op0);
1158     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1159       return TLO.CombineTo(Op, Op1);
1160     // If all of the demanded bits in the inputs are known zeros, return zero.
1161     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1162       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1163     // If the RHS is a constant, see if we can simplify it.
1164     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1165       return true;
1166     // If the operation can be done in a smaller type, do so.
1167     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1168       return true;
1169 
1170     // Output known-1 bits are only known if set in both the LHS & RHS.
1171     Known.One &= Known2.One;
1172     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1173     Known.Zero |= Known2.Zero;
1174     break;
1175   }
1176   case ISD::OR: {
1177     SDValue Op0 = Op.getOperand(0);
1178     SDValue Op1 = Op.getOperand(1);
1179 
1180     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1181                              Depth + 1))
1182       return true;
1183     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1184     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1185                              Known2, TLO, Depth + 1))
1186       return true;
1187     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1188 
1189     // Attempt to avoid multi-use ops if we don't need anything from them.
1190     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1191       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1192           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1193       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1194           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1195       if (DemandedOp0 || DemandedOp1) {
1196         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1197         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1198         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1199         return TLO.CombineTo(Op, NewOp);
1200       }
1201     }
1202 
1203     // If all of the demanded bits are known zero on one side, return the other.
1204     // These bits cannot contribute to the result of the 'or'.
1205     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1206       return TLO.CombineTo(Op, Op0);
1207     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1208       return TLO.CombineTo(Op, Op1);
1209     // If the RHS is a constant, see if we can simplify it.
1210     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1211       return true;
1212     // If the operation can be done in a smaller type, do so.
1213     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1214       return true;
1215 
1216     // Output known-0 bits are only known if clear in both the LHS & RHS.
1217     Known.Zero &= Known2.Zero;
1218     // Output known-1 are known to be set if set in either the LHS | RHS.
1219     Known.One |= Known2.One;
1220     break;
1221   }
1222   case ISD::XOR: {
1223     SDValue Op0 = Op.getOperand(0);
1224     SDValue Op1 = Op.getOperand(1);
1225 
1226     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1227                              Depth + 1))
1228       return true;
1229     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1230     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1231                              Depth + 1))
1232       return true;
1233     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1234 
1235     // Attempt to avoid multi-use ops if we don't need anything from them.
1236     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1237       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1238           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1239       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1240           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1241       if (DemandedOp0 || DemandedOp1) {
1242         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1243         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1244         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1245         return TLO.CombineTo(Op, NewOp);
1246       }
1247     }
1248 
1249     // If all of the demanded bits are known zero on one side, return the other.
1250     // These bits cannot contribute to the result of the 'xor'.
1251     if (DemandedBits.isSubsetOf(Known.Zero))
1252       return TLO.CombineTo(Op, Op0);
1253     if (DemandedBits.isSubsetOf(Known2.Zero))
1254       return TLO.CombineTo(Op, Op1);
1255     // If the operation can be done in a smaller type, do so.
1256     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1257       return true;
1258 
1259     // If all of the unknown bits are known to be zero on one side or the other
1260     // (but not both) turn this into an *inclusive* or.
1261     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1262     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1263       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1264 
1265     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1266     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1267     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1268     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1269 
1270     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1271       // If one side is a constant, and all of the known set bits on the other
1272       // side are also set in the constant, turn this into an AND, as we know
1273       // the bits will be cleared.
1274       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1275       // NB: it is okay if more bits are known than are requested
1276       if (C->getAPIntValue() == Known2.One) {
1277         SDValue ANDC =
1278             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1279         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1280       }
1281 
1282       // If the RHS is a constant, see if we can change it. Don't alter a -1
1283       // constant because that's a 'not' op, and that is better for combining
1284       // and codegen.
1285       if (!C->isAllOnesValue()) {
1286         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1287           // We're flipping all demanded bits. Flip the undemanded bits too.
1288           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1289           return TLO.CombineTo(Op, New);
1290         }
1291         // If we can't turn this into a 'not', try to shrink the constant.
1292         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1293           return true;
1294       }
1295     }
1296 
1297     Known = std::move(KnownOut);
1298     break;
1299   }
1300   case ISD::SELECT:
1301     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1302                              Depth + 1))
1303       return true;
1304     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1305                              Depth + 1))
1306       return true;
1307     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1308     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1309 
1310     // If the operands are constants, see if we can simplify them.
1311     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1312       return true;
1313 
1314     // Only known if known in both the LHS and RHS.
1315     Known.One &= Known2.One;
1316     Known.Zero &= Known2.Zero;
1317     break;
1318   case ISD::SELECT_CC:
1319     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1320                              Depth + 1))
1321       return true;
1322     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1323                              Depth + 1))
1324       return true;
1325     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1326     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1327 
1328     // If the operands are constants, see if we can simplify them.
1329     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1330       return true;
1331 
1332     // Only known if known in both the LHS and RHS.
1333     Known.One &= Known2.One;
1334     Known.Zero &= Known2.Zero;
1335     break;
1336   case ISD::SETCC: {
1337     SDValue Op0 = Op.getOperand(0);
1338     SDValue Op1 = Op.getOperand(1);
1339     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1340     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1341     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1342     // -1, we may be able to bypass the setcc.
1343     if (DemandedBits.isSignMask() &&
1344         Op0.getScalarValueSizeInBits() == BitWidth &&
1345         getBooleanContents(Op0.getValueType()) ==
1346             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1347       // If we're testing X < 0, then this compare isn't needed - just use X!
1348       // FIXME: We're limiting to integer types here, but this should also work
1349       // if we don't care about FP signed-zero. The use of SETLT with FP means
1350       // that we don't care about NaNs.
1351       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1352           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1353         return TLO.CombineTo(Op, Op0);
1354 
1355       // TODO: Should we check for other forms of sign-bit comparisons?
1356       // Examples: X <= -1, X >= 0
1357     }
1358     if (getBooleanContents(Op0.getValueType()) ==
1359             TargetLowering::ZeroOrOneBooleanContent &&
1360         BitWidth > 1)
1361       Known.Zero.setBitsFrom(1);
1362     break;
1363   }
1364   case ISD::SHL: {
1365     SDValue Op0 = Op.getOperand(0);
1366     SDValue Op1 = Op.getOperand(1);
1367 
1368     if (const APInt *SA =
1369             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1370       unsigned ShAmt = SA->getZExtValue();
1371       if (ShAmt == 0)
1372         return TLO.CombineTo(Op, Op0);
1373 
1374       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1375       // single shift.  We can do this if the bottom bits (which are shifted
1376       // out) are never demanded.
1377       // TODO - support non-uniform vector amounts.
1378       if (Op0.getOpcode() == ISD::SRL) {
1379         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1380           if (const APInt *SA2 =
1381                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1382             if (SA2->ult(BitWidth)) {
1383               unsigned C1 = SA2->getZExtValue();
1384               unsigned Opc = ISD::SHL;
1385               int Diff = ShAmt - C1;
1386               if (Diff < 0) {
1387                 Diff = -Diff;
1388                 Opc = ISD::SRL;
1389               }
1390 
1391               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1392               return TLO.CombineTo(
1393                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1394             }
1395           }
1396         }
1397       }
1398 
1399       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1400       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1401                                Depth + 1))
1402         return true;
1403 
1404       // Try shrinking the operation as long as the shift amount will still be
1405       // in range.
1406       if ((ShAmt < DemandedBits.getActiveBits()) &&
1407           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1408         return true;
1409 
1410       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1411       // are not demanded. This will likely allow the anyext to be folded away.
1412       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1413         SDValue InnerOp = Op0.getOperand(0);
1414         EVT InnerVT = InnerOp.getValueType();
1415         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1416         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1417             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1418           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1419           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1420             ShTy = InnerVT;
1421           SDValue NarrowShl =
1422               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1423                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1424           return TLO.CombineTo(
1425               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1426         }
1427         // Repeat the SHL optimization above in cases where an extension
1428         // intervenes: (shl (anyext (shr x, c1)), c2) to
1429         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1430         // aren't demanded (as above) and that the shifted upper c1 bits of
1431         // x aren't demanded.
1432         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1433             InnerOp.hasOneUse()) {
1434           if (const APInt *SA2 =
1435                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1436             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1437             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1438                 DemandedBits.getActiveBits() <=
1439                     (InnerBits - InnerShAmt + ShAmt) &&
1440                 DemandedBits.countTrailingZeros() >= ShAmt) {
1441               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1442                                                   Op1.getValueType());
1443               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1444                                                InnerOp.getOperand(0));
1445               return TLO.CombineTo(
1446                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1447             }
1448           }
1449         }
1450       }
1451 
1452       Known.Zero <<= ShAmt;
1453       Known.One <<= ShAmt;
1454       // low bits known zero.
1455       Known.Zero.setLowBits(ShAmt);
1456     }
1457     break;
1458   }
1459   case ISD::SRL: {
1460     SDValue Op0 = Op.getOperand(0);
1461     SDValue Op1 = Op.getOperand(1);
1462 
1463     if (const APInt *SA =
1464             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1465       unsigned ShAmt = SA->getZExtValue();
1466       if (ShAmt == 0)
1467         return TLO.CombineTo(Op, Op0);
1468 
1469       EVT ShiftVT = Op1.getValueType();
1470       APInt InDemandedMask = (DemandedBits << ShAmt);
1471 
1472       // If the shift is exact, then it does demand the low bits (and knows that
1473       // they are zero).
1474       if (Op->getFlags().hasExact())
1475         InDemandedMask.setLowBits(ShAmt);
1476 
1477       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1478       // single shift.  We can do this if the top bits (which are shifted out)
1479       // are never demanded.
1480       // TODO - support non-uniform vector amounts.
1481       if (Op0.getOpcode() == ISD::SHL) {
1482         if (const APInt *SA2 =
1483                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1484           if (!DemandedBits.intersects(
1485                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1486             if (SA2->ult(BitWidth)) {
1487               unsigned C1 = SA2->getZExtValue();
1488               unsigned Opc = ISD::SRL;
1489               int Diff = ShAmt - C1;
1490               if (Diff < 0) {
1491                 Diff = -Diff;
1492                 Opc = ISD::SHL;
1493               }
1494 
1495               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1496               return TLO.CombineTo(
1497                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1498             }
1499           }
1500         }
1501       }
1502 
1503       // Compute the new bits that are at the top now.
1504       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1505                                Depth + 1))
1506         return true;
1507       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1508       Known.Zero.lshrInPlace(ShAmt);
1509       Known.One.lshrInPlace(ShAmt);
1510       // High bits known zero.
1511       Known.Zero.setHighBits(ShAmt);
1512     }
1513     break;
1514   }
1515   case ISD::SRA: {
1516     SDValue Op0 = Op.getOperand(0);
1517     SDValue Op1 = Op.getOperand(1);
1518 
1519     // If we only want bits that already match the signbit then we don't need
1520     // to shift.
1521     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1522     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1523         NumHiDemandedBits)
1524       return TLO.CombineTo(Op, Op0);
1525 
1526     // If this is an arithmetic shift right and only the low-bit is set, we can
1527     // always convert this into a logical shr, even if the shift amount is
1528     // variable.  The low bit of the shift cannot be an input sign bit unless
1529     // the shift amount is >= the size of the datatype, which is undefined.
1530     if (DemandedBits.isOneValue())
1531       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1532 
1533     if (const APInt *SA =
1534             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1535       unsigned ShAmt = SA->getZExtValue();
1536       if (ShAmt == 0)
1537         return TLO.CombineTo(Op, Op0);
1538 
1539       APInt InDemandedMask = (DemandedBits << ShAmt);
1540 
1541       // If the shift is exact, then it does demand the low bits (and knows that
1542       // they are zero).
1543       if (Op->getFlags().hasExact())
1544         InDemandedMask.setLowBits(ShAmt);
1545 
1546       // If any of the demanded bits are produced by the sign extension, we also
1547       // demand the input sign bit.
1548       if (DemandedBits.countLeadingZeros() < ShAmt)
1549         InDemandedMask.setSignBit();
1550 
1551       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1552                                Depth + 1))
1553         return true;
1554       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1555       Known.Zero.lshrInPlace(ShAmt);
1556       Known.One.lshrInPlace(ShAmt);
1557 
1558       // If the input sign bit is known to be zero, or if none of the top bits
1559       // are demanded, turn this into an unsigned shift right.
1560       if (Known.Zero[BitWidth - ShAmt - 1] ||
1561           DemandedBits.countLeadingZeros() >= ShAmt) {
1562         SDNodeFlags Flags;
1563         Flags.setExact(Op->getFlags().hasExact());
1564         return TLO.CombineTo(
1565             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1566       }
1567 
1568       int Log2 = DemandedBits.exactLogBase2();
1569       if (Log2 >= 0) {
1570         // The bit must come from the sign.
1571         SDValue NewSA =
1572             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1573         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1574       }
1575 
1576       if (Known.One[BitWidth - ShAmt - 1])
1577         // New bits are known one.
1578         Known.One.setHighBits(ShAmt);
1579 
1580       // Attempt to avoid multi-use ops if we don't need anything from them.
1581       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1582         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1583             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1584         if (DemandedOp0) {
1585           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1586           return TLO.CombineTo(Op, NewOp);
1587         }
1588       }
1589     }
1590     break;
1591   }
1592   case ISD::FSHL:
1593   case ISD::FSHR: {
1594     SDValue Op0 = Op.getOperand(0);
1595     SDValue Op1 = Op.getOperand(1);
1596     SDValue Op2 = Op.getOperand(2);
1597     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1598 
1599     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1600       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1601 
1602       // For fshl, 0-shift returns the 1st arg.
1603       // For fshr, 0-shift returns the 2nd arg.
1604       if (Amt == 0) {
1605         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1606                                  Known, TLO, Depth + 1))
1607           return true;
1608         break;
1609       }
1610 
1611       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1612       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1613       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1614       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1615       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1616                                Depth + 1))
1617         return true;
1618       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1619                                Depth + 1))
1620         return true;
1621 
1622       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1623       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1624       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1625       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1626       Known.One |= Known2.One;
1627       Known.Zero |= Known2.Zero;
1628     }
1629     break;
1630   }
1631   case ISD::ROTL:
1632   case ISD::ROTR: {
1633     SDValue Op0 = Op.getOperand(0);
1634 
1635     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1636     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1637       return TLO.CombineTo(Op, Op0);
1638     break;
1639   }
1640   case ISD::BITREVERSE: {
1641     SDValue Src = Op.getOperand(0);
1642     APInt DemandedSrcBits = DemandedBits.reverseBits();
1643     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1644                              Depth + 1))
1645       return true;
1646     Known.One = Known2.One.reverseBits();
1647     Known.Zero = Known2.Zero.reverseBits();
1648     break;
1649   }
1650   case ISD::BSWAP: {
1651     SDValue Src = Op.getOperand(0);
1652     APInt DemandedSrcBits = DemandedBits.byteSwap();
1653     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1654                              Depth + 1))
1655       return true;
1656     Known.One = Known2.One.byteSwap();
1657     Known.Zero = Known2.Zero.byteSwap();
1658     break;
1659   }
1660   case ISD::SIGN_EXTEND_INREG: {
1661     SDValue Op0 = Op.getOperand(0);
1662     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1663     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1664 
1665     // If we only care about the highest bit, don't bother shifting right.
1666     if (DemandedBits.isSignMask()) {
1667       unsigned NumSignBits =
1668           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1669       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1670       // However if the input is already sign extended we expect the sign
1671       // extension to be dropped altogether later and do not simplify.
1672       if (!AlreadySignExtended) {
1673         // Compute the correct shift amount type, which must be getShiftAmountTy
1674         // for scalar types after legalization.
1675         EVT ShiftAmtTy = VT;
1676         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1677           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1678 
1679         SDValue ShiftAmt =
1680             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1681         return TLO.CombineTo(Op,
1682                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1683       }
1684     }
1685 
1686     // If none of the extended bits are demanded, eliminate the sextinreg.
1687     if (DemandedBits.getActiveBits() <= ExVTBits)
1688       return TLO.CombineTo(Op, Op0);
1689 
1690     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1691 
1692     // Since the sign extended bits are demanded, we know that the sign
1693     // bit is demanded.
1694     InputDemandedBits.setBit(ExVTBits - 1);
1695 
1696     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1697       return true;
1698     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1699 
1700     // If the sign bit of the input is known set or clear, then we know the
1701     // top bits of the result.
1702 
1703     // If the input sign bit is known zero, convert this into a zero extension.
1704     if (Known.Zero[ExVTBits - 1])
1705       return TLO.CombineTo(
1706           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1707 
1708     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1709     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1710       Known.One.setBitsFrom(ExVTBits);
1711       Known.Zero &= Mask;
1712     } else { // Input sign bit unknown
1713       Known.Zero &= Mask;
1714       Known.One &= Mask;
1715     }
1716     break;
1717   }
1718   case ISD::BUILD_PAIR: {
1719     EVT HalfVT = Op.getOperand(0).getValueType();
1720     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1721 
1722     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1723     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1724 
1725     KnownBits KnownLo, KnownHi;
1726 
1727     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1728       return true;
1729 
1730     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1731       return true;
1732 
1733     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1734                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1735 
1736     Known.One = KnownLo.One.zext(BitWidth) |
1737                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1738     break;
1739   }
1740   case ISD::ZERO_EXTEND:
1741   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1742     SDValue Src = Op.getOperand(0);
1743     EVT SrcVT = Src.getValueType();
1744     unsigned InBits = SrcVT.getScalarSizeInBits();
1745     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1746     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1747 
1748     // If none of the top bits are demanded, convert this into an any_extend.
1749     if (DemandedBits.getActiveBits() <= InBits) {
1750       // If we only need the non-extended bits of the bottom element
1751       // then we can just bitcast to the result.
1752       if (IsVecInReg && DemandedElts == 1 &&
1753           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1754           TLO.DAG.getDataLayout().isLittleEndian())
1755         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1756 
1757       unsigned Opc =
1758           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1759       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1760         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1761     }
1762 
1763     APInt InDemandedBits = DemandedBits.trunc(InBits);
1764     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1765     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1766                              Depth + 1))
1767       return true;
1768     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1769     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1770     Known = Known.zext(BitWidth);
1771     break;
1772   }
1773   case ISD::SIGN_EXTEND:
1774   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1775     SDValue Src = Op.getOperand(0);
1776     EVT SrcVT = Src.getValueType();
1777     unsigned InBits = SrcVT.getScalarSizeInBits();
1778     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1779     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1780 
1781     // If none of the top bits are demanded, convert this into an any_extend.
1782     if (DemandedBits.getActiveBits() <= InBits) {
1783       // If we only need the non-extended bits of the bottom element
1784       // then we can just bitcast to the result.
1785       if (IsVecInReg && DemandedElts == 1 &&
1786           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1787           TLO.DAG.getDataLayout().isLittleEndian())
1788         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1789 
1790       unsigned Opc =
1791           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1792       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1793         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1794     }
1795 
1796     APInt InDemandedBits = DemandedBits.trunc(InBits);
1797     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1798 
1799     // Since some of the sign extended bits are demanded, we know that the sign
1800     // bit is demanded.
1801     InDemandedBits.setBit(InBits - 1);
1802 
1803     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1804                              Depth + 1))
1805       return true;
1806     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1807     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1808 
1809     // If the sign bit is known one, the top bits match.
1810     Known = Known.sext(BitWidth);
1811 
1812     // If the sign bit is known zero, convert this to a zero extend.
1813     if (Known.isNonNegative()) {
1814       unsigned Opc =
1815           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1816       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1817         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1818     }
1819     break;
1820   }
1821   case ISD::ANY_EXTEND:
1822   case ISD::ANY_EXTEND_VECTOR_INREG: {
1823     SDValue Src = Op.getOperand(0);
1824     EVT SrcVT = Src.getValueType();
1825     unsigned InBits = SrcVT.getScalarSizeInBits();
1826     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1827     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1828 
1829     // If we only need the bottom element then we can just bitcast.
1830     // TODO: Handle ANY_EXTEND?
1831     if (IsVecInReg && DemandedElts == 1 &&
1832         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1833         TLO.DAG.getDataLayout().isLittleEndian())
1834       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1835 
1836     APInt InDemandedBits = DemandedBits.trunc(InBits);
1837     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1838     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1839                              Depth + 1))
1840       return true;
1841     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1842     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1843     Known = Known.anyext(BitWidth);
1844 
1845     // Attempt to avoid multi-use ops if we don't need anything from them.
1846     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1847             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1848       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1849     break;
1850   }
1851   case ISD::TRUNCATE: {
1852     SDValue Src = Op.getOperand(0);
1853 
1854     // Simplify the input, using demanded bit information, and compute the known
1855     // zero/one bits live out.
1856     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1857     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1858     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1859       return true;
1860     Known = Known.trunc(BitWidth);
1861 
1862     // Attempt to avoid multi-use ops if we don't need anything from them.
1863     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1864             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1865       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1866 
1867     // If the input is only used by this truncate, see if we can shrink it based
1868     // on the known demanded bits.
1869     if (Src.getNode()->hasOneUse()) {
1870       switch (Src.getOpcode()) {
1871       default:
1872         break;
1873       case ISD::SRL:
1874         // Shrink SRL by a constant if none of the high bits shifted in are
1875         // demanded.
1876         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1877           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1878           // undesirable.
1879           break;
1880 
1881         SDValue ShAmt = Src.getOperand(1);
1882         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1883         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1884           break;
1885         uint64_t ShVal = ShAmtC->getZExtValue();
1886 
1887         APInt HighBits =
1888             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1889         HighBits.lshrInPlace(ShVal);
1890         HighBits = HighBits.trunc(BitWidth);
1891 
1892         if (!(HighBits & DemandedBits)) {
1893           // None of the shifted in bits are needed.  Add a truncate of the
1894           // shift input, then shift it.
1895           if (TLO.LegalTypes())
1896             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1897           SDValue NewTrunc =
1898               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1899           return TLO.CombineTo(
1900               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1901         }
1902         break;
1903       }
1904     }
1905 
1906     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1907     break;
1908   }
1909   case ISD::AssertZext: {
1910     // AssertZext demands all of the high bits, plus any of the low bits
1911     // demanded by its users.
1912     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1913     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1914     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1915                              TLO, Depth + 1))
1916       return true;
1917     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1918 
1919     Known.Zero |= ~InMask;
1920     break;
1921   }
1922   case ISD::EXTRACT_VECTOR_ELT: {
1923     SDValue Src = Op.getOperand(0);
1924     SDValue Idx = Op.getOperand(1);
1925     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1926     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1927 
1928     // Demand the bits from every vector element without a constant index.
1929     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1930     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1931       if (CIdx->getAPIntValue().ult(NumSrcElts))
1932         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1933 
1934     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1935     // anything about the extended bits.
1936     APInt DemandedSrcBits = DemandedBits;
1937     if (BitWidth > EltBitWidth)
1938       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1939 
1940     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1941                              Depth + 1))
1942       return true;
1943 
1944     // Attempt to avoid multi-use ops if we don't need anything from them.
1945     if (!DemandedSrcBits.isAllOnesValue() ||
1946         !DemandedSrcElts.isAllOnesValue()) {
1947       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1948               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1949         SDValue NewOp =
1950             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1951         return TLO.CombineTo(Op, NewOp);
1952       }
1953     }
1954 
1955     Known = Known2;
1956     if (BitWidth > EltBitWidth)
1957       Known = Known.anyext(BitWidth);
1958     break;
1959   }
1960   case ISD::BITCAST: {
1961     SDValue Src = Op.getOperand(0);
1962     EVT SrcVT = Src.getValueType();
1963     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1964 
1965     // If this is an FP->Int bitcast and if the sign bit is the only
1966     // thing demanded, turn this into a FGETSIGN.
1967     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1968         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1969         SrcVT.isFloatingPoint()) {
1970       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1971       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1972       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1973           SrcVT != MVT::f128) {
1974         // Cannot eliminate/lower SHL for f128 yet.
1975         EVT Ty = OpVTLegal ? VT : MVT::i32;
1976         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1977         // place.  We expect the SHL to be eliminated by other optimizations.
1978         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1979         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1980         if (!OpVTLegal && OpVTSizeInBits > 32)
1981           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1982         unsigned ShVal = Op.getValueSizeInBits() - 1;
1983         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1984         return TLO.CombineTo(Op,
1985                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1986       }
1987     }
1988 
1989     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1990     // Demand the elt/bit if any of the original elts/bits are demanded.
1991     // TODO - bigendian once we have test coverage.
1992     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1993         TLO.DAG.getDataLayout().isLittleEndian()) {
1994       unsigned Scale = BitWidth / NumSrcEltBits;
1995       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1996       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1997       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1998       for (unsigned i = 0; i != Scale; ++i) {
1999         unsigned Offset = i * NumSrcEltBits;
2000         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2001         if (!Sub.isNullValue()) {
2002           DemandedSrcBits |= Sub;
2003           for (unsigned j = 0; j != NumElts; ++j)
2004             if (DemandedElts[j])
2005               DemandedSrcElts.setBit((j * Scale) + i);
2006         }
2007       }
2008 
2009       APInt KnownSrcUndef, KnownSrcZero;
2010       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2011                                      KnownSrcZero, TLO, Depth + 1))
2012         return true;
2013 
2014       KnownBits KnownSrcBits;
2015       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2016                                KnownSrcBits, TLO, Depth + 1))
2017         return true;
2018     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2019                TLO.DAG.getDataLayout().isLittleEndian()) {
2020       unsigned Scale = NumSrcEltBits / BitWidth;
2021       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2022       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2023       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2024       for (unsigned i = 0; i != NumElts; ++i)
2025         if (DemandedElts[i]) {
2026           unsigned Offset = (i % Scale) * BitWidth;
2027           DemandedSrcBits.insertBits(DemandedBits, Offset);
2028           DemandedSrcElts.setBit(i / Scale);
2029         }
2030 
2031       if (SrcVT.isVector()) {
2032         APInt KnownSrcUndef, KnownSrcZero;
2033         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2034                                        KnownSrcZero, TLO, Depth + 1))
2035           return true;
2036       }
2037 
2038       KnownBits KnownSrcBits;
2039       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2040                                KnownSrcBits, TLO, Depth + 1))
2041         return true;
2042     }
2043 
2044     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2045     // recursive call where Known may be useful to the caller.
2046     if (Depth > 0) {
2047       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2048       return false;
2049     }
2050     break;
2051   }
2052   case ISD::ADD:
2053   case ISD::MUL:
2054   case ISD::SUB: {
2055     // Add, Sub, and Mul don't demand any bits in positions beyond that
2056     // of the highest bit demanded of them.
2057     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2058     SDNodeFlags Flags = Op.getNode()->getFlags();
2059     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2060     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2061     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2062                              Depth + 1) ||
2063         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2064                              Depth + 1) ||
2065         // See if the operation should be performed at a smaller bit width.
2066         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2067       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2068         // Disable the nsw and nuw flags. We can no longer guarantee that we
2069         // won't wrap after simplification.
2070         Flags.setNoSignedWrap(false);
2071         Flags.setNoUnsignedWrap(false);
2072         SDValue NewOp =
2073             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2074         return TLO.CombineTo(Op, NewOp);
2075       }
2076       return true;
2077     }
2078 
2079     // Attempt to avoid multi-use ops if we don't need anything from them.
2080     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2081       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2082           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2083       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2084           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2085       if (DemandedOp0 || DemandedOp1) {
2086         Flags.setNoSignedWrap(false);
2087         Flags.setNoUnsignedWrap(false);
2088         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2089         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2090         SDValue NewOp =
2091             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2092         return TLO.CombineTo(Op, NewOp);
2093       }
2094     }
2095 
2096     // If we have a constant operand, we may be able to turn it into -1 if we
2097     // do not demand the high bits. This can make the constant smaller to
2098     // encode, allow more general folding, or match specialized instruction
2099     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2100     // is probably not useful (and could be detrimental).
2101     ConstantSDNode *C = isConstOrConstSplat(Op1);
2102     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2103     if (C && !C->isAllOnesValue() && !C->isOne() &&
2104         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2105       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2106       // Disable the nsw and nuw flags. We can no longer guarantee that we
2107       // won't wrap after simplification.
2108       Flags.setNoSignedWrap(false);
2109       Flags.setNoUnsignedWrap(false);
2110       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2111       return TLO.CombineTo(Op, NewOp);
2112     }
2113 
2114     LLVM_FALLTHROUGH;
2115   }
2116   default:
2117     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2118       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2119                                             Known, TLO, Depth))
2120         return true;
2121       break;
2122     }
2123 
2124     // Just use computeKnownBits to compute output bits.
2125     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2126     break;
2127   }
2128 
2129   // If we know the value of all of the demanded bits, return this as a
2130   // constant.
2131   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2132     // Avoid folding to a constant if any OpaqueConstant is involved.
2133     const SDNode *N = Op.getNode();
2134     for (SDNodeIterator I = SDNodeIterator::begin(N),
2135                         E = SDNodeIterator::end(N);
2136          I != E; ++I) {
2137       SDNode *Op = *I;
2138       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2139         if (C->isOpaque())
2140           return false;
2141     }
2142     // TODO: Handle float bits as well.
2143     if (VT.isInteger())
2144       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2145   }
2146 
2147   return false;
2148 }
2149 
2150 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2151                                                 const APInt &DemandedElts,
2152                                                 APInt &KnownUndef,
2153                                                 APInt &KnownZero,
2154                                                 DAGCombinerInfo &DCI) const {
2155   SelectionDAG &DAG = DCI.DAG;
2156   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2157                         !DCI.isBeforeLegalizeOps());
2158 
2159   bool Simplified =
2160       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2161   if (Simplified) {
2162     DCI.AddToWorklist(Op.getNode());
2163     DCI.CommitTargetLoweringOpt(TLO);
2164   }
2165 
2166   return Simplified;
2167 }
2168 
2169 /// Given a vector binary operation and known undefined elements for each input
2170 /// operand, compute whether each element of the output is undefined.
2171 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2172                                          const APInt &UndefOp0,
2173                                          const APInt &UndefOp1) {
2174   EVT VT = BO.getValueType();
2175   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2176          "Vector binop only");
2177 
2178   EVT EltVT = VT.getVectorElementType();
2179   unsigned NumElts = VT.getVectorNumElements();
2180   assert(UndefOp0.getBitWidth() == NumElts &&
2181          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2182 
2183   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2184                                    const APInt &UndefVals) {
2185     if (UndefVals[Index])
2186       return DAG.getUNDEF(EltVT);
2187 
2188     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2189       // Try hard to make sure that the getNode() call is not creating temporary
2190       // nodes. Ignore opaque integers because they do not constant fold.
2191       SDValue Elt = BV->getOperand(Index);
2192       auto *C = dyn_cast<ConstantSDNode>(Elt);
2193       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2194         return Elt;
2195     }
2196 
2197     return SDValue();
2198   };
2199 
2200   APInt KnownUndef = APInt::getNullValue(NumElts);
2201   for (unsigned i = 0; i != NumElts; ++i) {
2202     // If both inputs for this element are either constant or undef and match
2203     // the element type, compute the constant/undef result for this element of
2204     // the vector.
2205     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2206     // not handle FP constants. The code within getNode() should be refactored
2207     // to avoid the danger of creating a bogus temporary node here.
2208     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2209     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2210     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2211       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2212         KnownUndef.setBit(i);
2213   }
2214   return KnownUndef;
2215 }
2216 
2217 bool TargetLowering::SimplifyDemandedVectorElts(
2218     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2219     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2220     bool AssumeSingleUse) const {
2221   EVT VT = Op.getValueType();
2222   APInt DemandedElts = OriginalDemandedElts;
2223   unsigned NumElts = DemandedElts.getBitWidth();
2224   assert(VT.isVector() && "Expected vector op");
2225   assert(VT.getVectorNumElements() == NumElts &&
2226          "Mask size mismatches value type element count!");
2227 
2228   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2229 
2230   // Undef operand.
2231   if (Op.isUndef()) {
2232     KnownUndef.setAllBits();
2233     return false;
2234   }
2235 
2236   // If Op has other users, assume that all elements are needed.
2237   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2238     DemandedElts.setAllBits();
2239 
2240   // Not demanding any elements from Op.
2241   if (DemandedElts == 0) {
2242     KnownUndef.setAllBits();
2243     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2244   }
2245 
2246   // Limit search depth.
2247   if (Depth >= SelectionDAG::MaxRecursionDepth)
2248     return false;
2249 
2250   SDLoc DL(Op);
2251   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2252 
2253   switch (Op.getOpcode()) {
2254   case ISD::SCALAR_TO_VECTOR: {
2255     if (!DemandedElts[0]) {
2256       KnownUndef.setAllBits();
2257       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2258     }
2259     KnownUndef.setHighBits(NumElts - 1);
2260     break;
2261   }
2262   case ISD::BITCAST: {
2263     SDValue Src = Op.getOperand(0);
2264     EVT SrcVT = Src.getValueType();
2265 
2266     // We only handle vectors here.
2267     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2268     if (!SrcVT.isVector())
2269       break;
2270 
2271     // Fast handling of 'identity' bitcasts.
2272     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2273     if (NumSrcElts == NumElts)
2274       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2275                                         KnownZero, TLO, Depth + 1);
2276 
2277     APInt SrcZero, SrcUndef;
2278     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2279 
2280     // Bitcast from 'large element' src vector to 'small element' vector, we
2281     // must demand a source element if any DemandedElt maps to it.
2282     if ((NumElts % NumSrcElts) == 0) {
2283       unsigned Scale = NumElts / NumSrcElts;
2284       for (unsigned i = 0; i != NumElts; ++i)
2285         if (DemandedElts[i])
2286           SrcDemandedElts.setBit(i / Scale);
2287 
2288       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2289                                      TLO, Depth + 1))
2290         return true;
2291 
2292       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2293       // of the large element.
2294       // TODO - bigendian once we have test coverage.
2295       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2296         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2297         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2298         for (unsigned i = 0; i != NumElts; ++i)
2299           if (DemandedElts[i]) {
2300             unsigned Ofs = (i % Scale) * EltSizeInBits;
2301             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2302           }
2303 
2304         KnownBits Known;
2305         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2306           return true;
2307       }
2308 
2309       // If the src element is zero/undef then all the output elements will be -
2310       // only demanded elements are guaranteed to be correct.
2311       for (unsigned i = 0; i != NumSrcElts; ++i) {
2312         if (SrcDemandedElts[i]) {
2313           if (SrcZero[i])
2314             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2315           if (SrcUndef[i])
2316             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2317         }
2318       }
2319     }
2320 
2321     // Bitcast from 'small element' src vector to 'large element' vector, we
2322     // demand all smaller source elements covered by the larger demanded element
2323     // of this vector.
2324     if ((NumSrcElts % NumElts) == 0) {
2325       unsigned Scale = NumSrcElts / NumElts;
2326       for (unsigned i = 0; i != NumElts; ++i)
2327         if (DemandedElts[i])
2328           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2329 
2330       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2331                                      TLO, Depth + 1))
2332         return true;
2333 
2334       // If all the src elements covering an output element are zero/undef, then
2335       // the output element will be as well, assuming it was demanded.
2336       for (unsigned i = 0; i != NumElts; ++i) {
2337         if (DemandedElts[i]) {
2338           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2339             KnownZero.setBit(i);
2340           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2341             KnownUndef.setBit(i);
2342         }
2343       }
2344     }
2345     break;
2346   }
2347   case ISD::BUILD_VECTOR: {
2348     // Check all elements and simplify any unused elements with UNDEF.
2349     if (!DemandedElts.isAllOnesValue()) {
2350       // Don't simplify BROADCASTS.
2351       if (llvm::any_of(Op->op_values(),
2352                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2353         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2354         bool Updated = false;
2355         for (unsigned i = 0; i != NumElts; ++i) {
2356           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2357             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2358             KnownUndef.setBit(i);
2359             Updated = true;
2360           }
2361         }
2362         if (Updated)
2363           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2364       }
2365     }
2366     for (unsigned i = 0; i != NumElts; ++i) {
2367       SDValue SrcOp = Op.getOperand(i);
2368       if (SrcOp.isUndef()) {
2369         KnownUndef.setBit(i);
2370       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2371                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2372         KnownZero.setBit(i);
2373       }
2374     }
2375     break;
2376   }
2377   case ISD::CONCAT_VECTORS: {
2378     EVT SubVT = Op.getOperand(0).getValueType();
2379     unsigned NumSubVecs = Op.getNumOperands();
2380     unsigned NumSubElts = SubVT.getVectorNumElements();
2381     for (unsigned i = 0; i != NumSubVecs; ++i) {
2382       SDValue SubOp = Op.getOperand(i);
2383       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2384       APInt SubUndef, SubZero;
2385       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2386                                      Depth + 1))
2387         return true;
2388       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2389       KnownZero.insertBits(SubZero, i * NumSubElts);
2390     }
2391     break;
2392   }
2393   case ISD::INSERT_SUBVECTOR: {
2394     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2395       break;
2396     SDValue Base = Op.getOperand(0);
2397     SDValue Sub = Op.getOperand(1);
2398     EVT SubVT = Sub.getValueType();
2399     unsigned NumSubElts = SubVT.getVectorNumElements();
2400     const APInt &Idx = Op.getConstantOperandAPInt(2);
2401     if (Idx.ugt(NumElts - NumSubElts))
2402       break;
2403     unsigned SubIdx = Idx.getZExtValue();
2404     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2405     APInt SubUndef, SubZero;
2406     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2407                                    Depth + 1))
2408       return true;
2409     APInt BaseElts = DemandedElts;
2410     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2411 
2412     // If none of the base operand elements are demanded, replace it with undef.
2413     if (!BaseElts && !Base.isUndef())
2414       return TLO.CombineTo(Op,
2415                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2416                                            TLO.DAG.getUNDEF(VT),
2417                                            Op.getOperand(1),
2418                                            Op.getOperand(2)));
2419 
2420     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2421                                    Depth + 1))
2422       return true;
2423     KnownUndef.insertBits(SubUndef, SubIdx);
2424     KnownZero.insertBits(SubZero, SubIdx);
2425     break;
2426   }
2427   case ISD::EXTRACT_SUBVECTOR: {
2428     SDValue Src = Op.getOperand(0);
2429     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2430     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2431     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2432       // Offset the demanded elts by the subvector index.
2433       uint64_t Idx = SubIdx->getZExtValue();
2434       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2435       APInt SrcUndef, SrcZero;
2436       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2437                                      Depth + 1))
2438         return true;
2439       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2440       KnownZero = SrcZero.extractBits(NumElts, Idx);
2441     }
2442     break;
2443   }
2444   case ISD::INSERT_VECTOR_ELT: {
2445     SDValue Vec = Op.getOperand(0);
2446     SDValue Scl = Op.getOperand(1);
2447     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2448 
2449     // For a legal, constant insertion index, if we don't need this insertion
2450     // then strip it, else remove it from the demanded elts.
2451     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2452       unsigned Idx = CIdx->getZExtValue();
2453       if (!DemandedElts[Idx])
2454         return TLO.CombineTo(Op, Vec);
2455 
2456       APInt DemandedVecElts(DemandedElts);
2457       DemandedVecElts.clearBit(Idx);
2458       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2459                                      KnownZero, TLO, Depth + 1))
2460         return true;
2461 
2462       KnownUndef.clearBit(Idx);
2463       if (Scl.isUndef())
2464         KnownUndef.setBit(Idx);
2465 
2466       KnownZero.clearBit(Idx);
2467       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2468         KnownZero.setBit(Idx);
2469       break;
2470     }
2471 
2472     APInt VecUndef, VecZero;
2473     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2474                                    Depth + 1))
2475       return true;
2476     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2477     break;
2478   }
2479   case ISD::VSELECT: {
2480     // Try to transform the select condition based on the current demanded
2481     // elements.
2482     // TODO: If a condition element is undef, we can choose from one arm of the
2483     //       select (and if one arm is undef, then we can propagate that to the
2484     //       result).
2485     // TODO - add support for constant vselect masks (see IR version of this).
2486     APInt UnusedUndef, UnusedZero;
2487     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2488                                    UnusedZero, TLO, Depth + 1))
2489       return true;
2490 
2491     // See if we can simplify either vselect operand.
2492     APInt DemandedLHS(DemandedElts);
2493     APInt DemandedRHS(DemandedElts);
2494     APInt UndefLHS, ZeroLHS;
2495     APInt UndefRHS, ZeroRHS;
2496     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2497                                    ZeroLHS, TLO, Depth + 1))
2498       return true;
2499     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2500                                    ZeroRHS, TLO, Depth + 1))
2501       return true;
2502 
2503     KnownUndef = UndefLHS & UndefRHS;
2504     KnownZero = ZeroLHS & ZeroRHS;
2505     break;
2506   }
2507   case ISD::VECTOR_SHUFFLE: {
2508     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2509 
2510     // Collect demanded elements from shuffle operands..
2511     APInt DemandedLHS(NumElts, 0);
2512     APInt DemandedRHS(NumElts, 0);
2513     for (unsigned i = 0; i != NumElts; ++i) {
2514       int M = ShuffleMask[i];
2515       if (M < 0 || !DemandedElts[i])
2516         continue;
2517       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2518       if (M < (int)NumElts)
2519         DemandedLHS.setBit(M);
2520       else
2521         DemandedRHS.setBit(M - NumElts);
2522     }
2523 
2524     // See if we can simplify either shuffle operand.
2525     APInt UndefLHS, ZeroLHS;
2526     APInt UndefRHS, ZeroRHS;
2527     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2528                                    ZeroLHS, TLO, Depth + 1))
2529       return true;
2530     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2531                                    ZeroRHS, TLO, Depth + 1))
2532       return true;
2533 
2534     // Simplify mask using undef elements from LHS/RHS.
2535     bool Updated = false;
2536     bool IdentityLHS = true, IdentityRHS = true;
2537     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2538     for (unsigned i = 0; i != NumElts; ++i) {
2539       int &M = NewMask[i];
2540       if (M < 0)
2541         continue;
2542       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2543           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2544         Updated = true;
2545         M = -1;
2546       }
2547       IdentityLHS &= (M < 0) || (M == (int)i);
2548       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2549     }
2550 
2551     // Update legal shuffle masks based on demanded elements if it won't reduce
2552     // to Identity which can cause premature removal of the shuffle mask.
2553     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2554       SDValue LegalShuffle =
2555           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2556                                   NewMask, TLO.DAG);
2557       if (LegalShuffle)
2558         return TLO.CombineTo(Op, LegalShuffle);
2559     }
2560 
2561     // Propagate undef/zero elements from LHS/RHS.
2562     for (unsigned i = 0; i != NumElts; ++i) {
2563       int M = ShuffleMask[i];
2564       if (M < 0) {
2565         KnownUndef.setBit(i);
2566       } else if (M < (int)NumElts) {
2567         if (UndefLHS[M])
2568           KnownUndef.setBit(i);
2569         if (ZeroLHS[M])
2570           KnownZero.setBit(i);
2571       } else {
2572         if (UndefRHS[M - NumElts])
2573           KnownUndef.setBit(i);
2574         if (ZeroRHS[M - NumElts])
2575           KnownZero.setBit(i);
2576       }
2577     }
2578     break;
2579   }
2580   case ISD::ANY_EXTEND_VECTOR_INREG:
2581   case ISD::SIGN_EXTEND_VECTOR_INREG:
2582   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2583     APInt SrcUndef, SrcZero;
2584     SDValue Src = Op.getOperand(0);
2585     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2586     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2587     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2588                                    Depth + 1))
2589       return true;
2590     KnownZero = SrcZero.zextOrTrunc(NumElts);
2591     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2592 
2593     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2594         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2595         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2596       // aext - if we just need the bottom element then we can bitcast.
2597       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2598     }
2599 
2600     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2601       // zext(undef) upper bits are guaranteed to be zero.
2602       if (DemandedElts.isSubsetOf(KnownUndef))
2603         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2604       KnownUndef.clearAllBits();
2605     }
2606     break;
2607   }
2608 
2609   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2610   // MAX, saturated math, etc.
2611   case ISD::OR:
2612   case ISD::XOR:
2613   case ISD::ADD:
2614   case ISD::SUB:
2615   case ISD::FADD:
2616   case ISD::FSUB:
2617   case ISD::FMUL:
2618   case ISD::FDIV:
2619   case ISD::FREM: {
2620     APInt UndefRHS, ZeroRHS;
2621     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2622                                    ZeroRHS, TLO, Depth + 1))
2623       return true;
2624     APInt UndefLHS, ZeroLHS;
2625     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2626                                    ZeroLHS, TLO, Depth + 1))
2627       return true;
2628 
2629     KnownZero = ZeroLHS & ZeroRHS;
2630     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2631     break;
2632   }
2633   case ISD::SHL:
2634   case ISD::SRL:
2635   case ISD::SRA:
2636   case ISD::ROTL:
2637   case ISD::ROTR: {
2638     APInt UndefRHS, ZeroRHS;
2639     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2640                                    ZeroRHS, TLO, Depth + 1))
2641       return true;
2642     APInt UndefLHS, ZeroLHS;
2643     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2644                                    ZeroLHS, TLO, Depth + 1))
2645       return true;
2646 
2647     KnownZero = ZeroLHS;
2648     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2649     break;
2650   }
2651   case ISD::MUL:
2652   case ISD::AND: {
2653     APInt SrcUndef, SrcZero;
2654     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2655                                    SrcZero, TLO, Depth + 1))
2656       return true;
2657     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2658                                    KnownZero, TLO, Depth + 1))
2659       return true;
2660 
2661     // If either side has a zero element, then the result element is zero, even
2662     // if the other is an UNDEF.
2663     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2664     // and then handle 'and' nodes with the rest of the binop opcodes.
2665     KnownZero |= SrcZero;
2666     KnownUndef &= SrcUndef;
2667     KnownUndef &= ~KnownZero;
2668     break;
2669   }
2670   case ISD::TRUNCATE:
2671   case ISD::SIGN_EXTEND:
2672   case ISD::ZERO_EXTEND:
2673     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2674                                    KnownZero, TLO, Depth + 1))
2675       return true;
2676 
2677     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2678       // zext(undef) upper bits are guaranteed to be zero.
2679       if (DemandedElts.isSubsetOf(KnownUndef))
2680         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2681       KnownUndef.clearAllBits();
2682     }
2683     break;
2684   default: {
2685     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2686       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2687                                                   KnownZero, TLO, Depth))
2688         return true;
2689     } else {
2690       KnownBits Known;
2691       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2692       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2693                                TLO, Depth, AssumeSingleUse))
2694         return true;
2695     }
2696     break;
2697   }
2698   }
2699   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2700 
2701   // Constant fold all undef cases.
2702   // TODO: Handle zero cases as well.
2703   if (DemandedElts.isSubsetOf(KnownUndef))
2704     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2705 
2706   return false;
2707 }
2708 
2709 /// Determine which of the bits specified in Mask are known to be either zero or
2710 /// one and return them in the Known.
2711 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2712                                                    KnownBits &Known,
2713                                                    const APInt &DemandedElts,
2714                                                    const SelectionDAG &DAG,
2715                                                    unsigned Depth) const {
2716   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2717           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2718           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2719           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2720          "Should use MaskedValueIsZero if you don't know whether Op"
2721          " is a target node!");
2722   Known.resetAll();
2723 }
2724 
2725 void TargetLowering::computeKnownBitsForTargetInstr(
2726     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2727     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2728     unsigned Depth) const {
2729   Known.resetAll();
2730 }
2731 
2732 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2733                                                    KnownBits &Known,
2734                                                    const APInt &DemandedElts,
2735                                                    const SelectionDAG &DAG,
2736                                                    unsigned Depth) const {
2737   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2738 
2739   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2740     // The low bits are known zero if the pointer is aligned.
2741     Known.Zero.setLowBits(Log2_32(Align));
2742   }
2743 }
2744 
2745 /// This method can be implemented by targets that want to expose additional
2746 /// information about sign bits to the DAG Combiner.
2747 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2748                                                          const APInt &,
2749                                                          const SelectionDAG &,
2750                                                          unsigned Depth) const {
2751   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2752           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2753           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2754           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2755          "Should use ComputeNumSignBits if you don't know whether Op"
2756          " is a target node!");
2757   return 1;
2758 }
2759 
2760 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2761     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2762     TargetLoweringOpt &TLO, unsigned Depth) const {
2763   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2764           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2765           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2766           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2767          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2768          " is a target node!");
2769   return false;
2770 }
2771 
2772 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2773     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2774     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2775   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2776           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2777           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2778           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2779          "Should use SimplifyDemandedBits if you don't know whether Op"
2780          " is a target node!");
2781   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2782   return false;
2783 }
2784 
2785 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2786     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2787     SelectionDAG &DAG, unsigned Depth) const {
2788   assert(
2789       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2790        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2791        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2792        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2793       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2794       " is a target node!");
2795   return SDValue();
2796 }
2797 
2798 SDValue
2799 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2800                                         SDValue N1, MutableArrayRef<int> Mask,
2801                                         SelectionDAG &DAG) const {
2802   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2803   if (!LegalMask) {
2804     std::swap(N0, N1);
2805     ShuffleVectorSDNode::commuteMask(Mask);
2806     LegalMask = isShuffleMaskLegal(Mask, VT);
2807   }
2808 
2809   if (!LegalMask)
2810     return SDValue();
2811 
2812   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2813 }
2814 
2815 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2816   return nullptr;
2817 }
2818 
2819 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2820                                                   const SelectionDAG &DAG,
2821                                                   bool SNaN,
2822                                                   unsigned Depth) const {
2823   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2824           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2825           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2826           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2827          "Should use isKnownNeverNaN if you don't know whether Op"
2828          " is a target node!");
2829   return false;
2830 }
2831 
2832 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2833 // work with truncating build vectors and vectors with elements of less than
2834 // 8 bits.
2835 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2836   if (!N)
2837     return false;
2838 
2839   APInt CVal;
2840   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2841     CVal = CN->getAPIntValue();
2842   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2843     auto *CN = BV->getConstantSplatNode();
2844     if (!CN)
2845       return false;
2846 
2847     // If this is a truncating build vector, truncate the splat value.
2848     // Otherwise, we may fail to match the expected values below.
2849     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2850     CVal = CN->getAPIntValue();
2851     if (BVEltWidth < CVal.getBitWidth())
2852       CVal = CVal.trunc(BVEltWidth);
2853   } else {
2854     return false;
2855   }
2856 
2857   switch (getBooleanContents(N->getValueType(0))) {
2858   case UndefinedBooleanContent:
2859     return CVal[0];
2860   case ZeroOrOneBooleanContent:
2861     return CVal.isOneValue();
2862   case ZeroOrNegativeOneBooleanContent:
2863     return CVal.isAllOnesValue();
2864   }
2865 
2866   llvm_unreachable("Invalid boolean contents");
2867 }
2868 
2869 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2870   if (!N)
2871     return false;
2872 
2873   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2874   if (!CN) {
2875     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2876     if (!BV)
2877       return false;
2878 
2879     // Only interested in constant splats, we don't care about undef
2880     // elements in identifying boolean constants and getConstantSplatNode
2881     // returns NULL if all ops are undef;
2882     CN = BV->getConstantSplatNode();
2883     if (!CN)
2884       return false;
2885   }
2886 
2887   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2888     return !CN->getAPIntValue()[0];
2889 
2890   return CN->isNullValue();
2891 }
2892 
2893 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2894                                        bool SExt) const {
2895   if (VT == MVT::i1)
2896     return N->isOne();
2897 
2898   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2899   switch (Cnt) {
2900   case TargetLowering::ZeroOrOneBooleanContent:
2901     // An extended value of 1 is always true, unless its original type is i1,
2902     // in which case it will be sign extended to -1.
2903     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2904   case TargetLowering::UndefinedBooleanContent:
2905   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2906     return N->isAllOnesValue() && SExt;
2907   }
2908   llvm_unreachable("Unexpected enumeration.");
2909 }
2910 
2911 /// This helper function of SimplifySetCC tries to optimize the comparison when
2912 /// either operand of the SetCC node is a bitwise-and instruction.
2913 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2914                                          ISD::CondCode Cond, const SDLoc &DL,
2915                                          DAGCombinerInfo &DCI) const {
2916   // Match these patterns in any of their permutations:
2917   // (X & Y) == Y
2918   // (X & Y) != Y
2919   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2920     std::swap(N0, N1);
2921 
2922   EVT OpVT = N0.getValueType();
2923   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2924       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2925     return SDValue();
2926 
2927   SDValue X, Y;
2928   if (N0.getOperand(0) == N1) {
2929     X = N0.getOperand(1);
2930     Y = N0.getOperand(0);
2931   } else if (N0.getOperand(1) == N1) {
2932     X = N0.getOperand(0);
2933     Y = N0.getOperand(1);
2934   } else {
2935     return SDValue();
2936   }
2937 
2938   SelectionDAG &DAG = DCI.DAG;
2939   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2940   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2941     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2942     // Note that where Y is variable and is known to have at most one bit set
2943     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2944     // equivalent when Y == 0.
2945     assert(OpVT.isInteger());
2946     Cond = ISD::getSetCCInverse(Cond, OpVT);
2947     if (DCI.isBeforeLegalizeOps() ||
2948         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2949       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2950   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2951     // If the target supports an 'and-not' or 'and-complement' logic operation,
2952     // try to use that to make a comparison operation more efficient.
2953     // But don't do this transform if the mask is a single bit because there are
2954     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2955     // 'rlwinm' on PPC).
2956 
2957     // Bail out if the compare operand that we want to turn into a zero is
2958     // already a zero (otherwise, infinite loop).
2959     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2960     if (YConst && YConst->isNullValue())
2961       return SDValue();
2962 
2963     // Transform this into: ~X & Y == 0.
2964     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2965     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2966     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2967   }
2968 
2969   return SDValue();
2970 }
2971 
2972 /// There are multiple IR patterns that could be checking whether certain
2973 /// truncation of a signed number would be lossy or not. The pattern which is
2974 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2975 /// We are looking for the following pattern: (KeptBits is a constant)
2976 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2977 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2978 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2979 /// We will unfold it into the natural trunc+sext pattern:
2980 ///   ((%x << C) a>> C) dstcond %x
2981 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2982 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2983     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2984     const SDLoc &DL) const {
2985   // We must be comparing with a constant.
2986   ConstantSDNode *C1;
2987   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2988     return SDValue();
2989 
2990   // N0 should be:  add %x, (1 << (KeptBits-1))
2991   if (N0->getOpcode() != ISD::ADD)
2992     return SDValue();
2993 
2994   // And we must be 'add'ing a constant.
2995   ConstantSDNode *C01;
2996   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2997     return SDValue();
2998 
2999   SDValue X = N0->getOperand(0);
3000   EVT XVT = X.getValueType();
3001 
3002   // Validate constants ...
3003 
3004   APInt I1 = C1->getAPIntValue();
3005 
3006   ISD::CondCode NewCond;
3007   if (Cond == ISD::CondCode::SETULT) {
3008     NewCond = ISD::CondCode::SETEQ;
3009   } else if (Cond == ISD::CondCode::SETULE) {
3010     NewCond = ISD::CondCode::SETEQ;
3011     // But need to 'canonicalize' the constant.
3012     I1 += 1;
3013   } else if (Cond == ISD::CondCode::SETUGT) {
3014     NewCond = ISD::CondCode::SETNE;
3015     // But need to 'canonicalize' the constant.
3016     I1 += 1;
3017   } else if (Cond == ISD::CondCode::SETUGE) {
3018     NewCond = ISD::CondCode::SETNE;
3019   } else
3020     return SDValue();
3021 
3022   APInt I01 = C01->getAPIntValue();
3023 
3024   auto checkConstants = [&I1, &I01]() -> bool {
3025     // Both of them must be power-of-two, and the constant from setcc is bigger.
3026     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3027   };
3028 
3029   if (checkConstants()) {
3030     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3031   } else {
3032     // What if we invert constants? (and the target predicate)
3033     I1.negate();
3034     I01.negate();
3035     assert(XVT.isInteger());
3036     NewCond = getSetCCInverse(NewCond, XVT);
3037     if (!checkConstants())
3038       return SDValue();
3039     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3040   }
3041 
3042   // They are power-of-two, so which bit is set?
3043   const unsigned KeptBits = I1.logBase2();
3044   const unsigned KeptBitsMinusOne = I01.logBase2();
3045 
3046   // Magic!
3047   if (KeptBits != (KeptBitsMinusOne + 1))
3048     return SDValue();
3049   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3050 
3051   // We don't want to do this in every single case.
3052   SelectionDAG &DAG = DCI.DAG;
3053   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3054           XVT, KeptBits))
3055     return SDValue();
3056 
3057   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3058   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3059 
3060   // Unfold into:  ((%x << C) a>> C) cond %x
3061   // Where 'cond' will be either 'eq' or 'ne'.
3062   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3063   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3064   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3065   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3066 
3067   return T2;
3068 }
3069 
3070 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3071 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3072     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3073     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3074   assert(isConstOrConstSplat(N1C) &&
3075          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3076          "Should be a comparison with 0.");
3077   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3078          "Valid only for [in]equality comparisons.");
3079 
3080   unsigned NewShiftOpcode;
3081   SDValue X, C, Y;
3082 
3083   SelectionDAG &DAG = DCI.DAG;
3084   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3085 
3086   // Look for '(C l>>/<< Y)'.
3087   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3088     // The shift should be one-use.
3089     if (!V.hasOneUse())
3090       return false;
3091     unsigned OldShiftOpcode = V.getOpcode();
3092     switch (OldShiftOpcode) {
3093     case ISD::SHL:
3094       NewShiftOpcode = ISD::SRL;
3095       break;
3096     case ISD::SRL:
3097       NewShiftOpcode = ISD::SHL;
3098       break;
3099     default:
3100       return false; // must be a logical shift.
3101     }
3102     // We should be shifting a constant.
3103     // FIXME: best to use isConstantOrConstantVector().
3104     C = V.getOperand(0);
3105     ConstantSDNode *CC =
3106         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3107     if (!CC)
3108       return false;
3109     Y = V.getOperand(1);
3110 
3111     ConstantSDNode *XC =
3112         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3113     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3114         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3115   };
3116 
3117   // LHS of comparison should be an one-use 'and'.
3118   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3119     return SDValue();
3120 
3121   X = N0.getOperand(0);
3122   SDValue Mask = N0.getOperand(1);
3123 
3124   // 'and' is commutative!
3125   if (!Match(Mask)) {
3126     std::swap(X, Mask);
3127     if (!Match(Mask))
3128       return SDValue();
3129   }
3130 
3131   EVT VT = X.getValueType();
3132 
3133   // Produce:
3134   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3135   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3136   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3137   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3138   return T2;
3139 }
3140 
3141 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3142 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3143 /// handle the commuted versions of these patterns.
3144 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3145                                            ISD::CondCode Cond, const SDLoc &DL,
3146                                            DAGCombinerInfo &DCI) const {
3147   unsigned BOpcode = N0.getOpcode();
3148   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3149          "Unexpected binop");
3150   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3151 
3152   // (X + Y) == X --> Y == 0
3153   // (X - Y) == X --> Y == 0
3154   // (X ^ Y) == X --> Y == 0
3155   SelectionDAG &DAG = DCI.DAG;
3156   EVT OpVT = N0.getValueType();
3157   SDValue X = N0.getOperand(0);
3158   SDValue Y = N0.getOperand(1);
3159   if (X == N1)
3160     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3161 
3162   if (Y != N1)
3163     return SDValue();
3164 
3165   // (X + Y) == Y --> X == 0
3166   // (X ^ Y) == Y --> X == 0
3167   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3168     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3169 
3170   // The shift would not be valid if the operands are boolean (i1).
3171   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3172     return SDValue();
3173 
3174   // (X - Y) == Y --> X == Y << 1
3175   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3176                                  !DCI.isBeforeLegalize());
3177   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3178   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3179   if (!DCI.isCalledByLegalizer())
3180     DCI.AddToWorklist(YShl1.getNode());
3181   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3182 }
3183 
3184 /// Try to simplify a setcc built with the specified operands and cc. If it is
3185 /// unable to simplify it, return a null SDValue.
3186 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3187                                       ISD::CondCode Cond, bool foldBooleans,
3188                                       DAGCombinerInfo &DCI,
3189                                       const SDLoc &dl) const {
3190   SelectionDAG &DAG = DCI.DAG;
3191   const DataLayout &Layout = DAG.getDataLayout();
3192   EVT OpVT = N0.getValueType();
3193 
3194   // Constant fold or commute setcc.
3195   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3196     return Fold;
3197 
3198   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3199   // TODO: Handle non-splat vector constants. All undef causes trouble.
3200   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3201   if (isConstOrConstSplat(N0) &&
3202       (DCI.isBeforeLegalizeOps() ||
3203        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3204     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3205 
3206   // If we have a subtract with the same 2 non-constant operands as this setcc
3207   // -- but in reverse order -- then try to commute the operands of this setcc
3208   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3209   // instruction on some targets.
3210   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3211       (DCI.isBeforeLegalizeOps() ||
3212        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3213       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3214       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3215     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3216 
3217   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3218     const APInt &C1 = N1C->getAPIntValue();
3219 
3220     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3221     // equality comparison, then we're just comparing whether X itself is
3222     // zero.
3223     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3224         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3225         N0.getOperand(1).getOpcode() == ISD::Constant) {
3226       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3227       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3228           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3229         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3230           // (srl (ctlz x), 5) == 0  -> X != 0
3231           // (srl (ctlz x), 5) != 1  -> X != 0
3232           Cond = ISD::SETNE;
3233         } else {
3234           // (srl (ctlz x), 5) != 0  -> X == 0
3235           // (srl (ctlz x), 5) == 1  -> X == 0
3236           Cond = ISD::SETEQ;
3237         }
3238         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3239         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3240                             Zero, Cond);
3241       }
3242     }
3243 
3244     SDValue CTPOP = N0;
3245     // Look through truncs that don't change the value of a ctpop.
3246     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3247       CTPOP = N0.getOperand(0);
3248 
3249     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3250         (N0 == CTPOP ||
3251          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3252       EVT CTVT = CTPOP.getValueType();
3253       SDValue CTOp = CTPOP.getOperand(0);
3254 
3255       // (ctpop x) u< 2 -> (x & x-1) == 0
3256       // (ctpop x) u> 1 -> (x & x-1) != 0
3257       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3258         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3259         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3260         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3261         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3262         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3263       }
3264 
3265       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3266       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3267           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3268         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3269         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3270         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3271         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3272         assert(CTVT.isInteger());
3273         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3274         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3275         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3276         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3277         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3278         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3279         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3280       }
3281     }
3282 
3283     // (zext x) == C --> x == (trunc C)
3284     // (sext x) == C --> x == (trunc C)
3285     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3286         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3287       unsigned MinBits = N0.getValueSizeInBits();
3288       SDValue PreExt;
3289       bool Signed = false;
3290       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3291         // ZExt
3292         MinBits = N0->getOperand(0).getValueSizeInBits();
3293         PreExt = N0->getOperand(0);
3294       } else if (N0->getOpcode() == ISD::AND) {
3295         // DAGCombine turns costly ZExts into ANDs
3296         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3297           if ((C->getAPIntValue()+1).isPowerOf2()) {
3298             MinBits = C->getAPIntValue().countTrailingOnes();
3299             PreExt = N0->getOperand(0);
3300           }
3301       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3302         // SExt
3303         MinBits = N0->getOperand(0).getValueSizeInBits();
3304         PreExt = N0->getOperand(0);
3305         Signed = true;
3306       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3307         // ZEXTLOAD / SEXTLOAD
3308         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3309           MinBits = LN0->getMemoryVT().getSizeInBits();
3310           PreExt = N0;
3311         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3312           Signed = true;
3313           MinBits = LN0->getMemoryVT().getSizeInBits();
3314           PreExt = N0;
3315         }
3316       }
3317 
3318       // Figure out how many bits we need to preserve this constant.
3319       unsigned ReqdBits = Signed ?
3320         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3321         C1.getActiveBits();
3322 
3323       // Make sure we're not losing bits from the constant.
3324       if (MinBits > 0 &&
3325           MinBits < C1.getBitWidth() &&
3326           MinBits >= ReqdBits) {
3327         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3328         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3329           // Will get folded away.
3330           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3331           if (MinBits == 1 && C1 == 1)
3332             // Invert the condition.
3333             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3334                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3335           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3336           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3337         }
3338 
3339         // If truncating the setcc operands is not desirable, we can still
3340         // simplify the expression in some cases:
3341         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3342         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3343         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3344         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3345         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3346         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3347         SDValue TopSetCC = N0->getOperand(0);
3348         unsigned N0Opc = N0->getOpcode();
3349         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3350         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3351             TopSetCC.getOpcode() == ISD::SETCC &&
3352             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3353             (isConstFalseVal(N1C) ||
3354              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3355 
3356           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3357                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3358 
3359           if (!Inverse)
3360             return TopSetCC;
3361 
3362           ISD::CondCode InvCond = ISD::getSetCCInverse(
3363               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3364               TopSetCC.getOperand(0).getValueType());
3365           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3366                                       TopSetCC.getOperand(1),
3367                                       InvCond);
3368         }
3369       }
3370     }
3371 
3372     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3373     // equality or unsigned, and all 1 bits of the const are in the same
3374     // partial word, see if we can shorten the load.
3375     if (DCI.isBeforeLegalize() &&
3376         !ISD::isSignedIntSetCC(Cond) &&
3377         N0.getOpcode() == ISD::AND && C1 == 0 &&
3378         N0.getNode()->hasOneUse() &&
3379         isa<LoadSDNode>(N0.getOperand(0)) &&
3380         N0.getOperand(0).getNode()->hasOneUse() &&
3381         isa<ConstantSDNode>(N0.getOperand(1))) {
3382       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3383       APInt bestMask;
3384       unsigned bestWidth = 0, bestOffset = 0;
3385       if (Lod->isSimple() && Lod->isUnindexed()) {
3386         unsigned origWidth = N0.getValueSizeInBits();
3387         unsigned maskWidth = origWidth;
3388         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3389         // 8 bits, but have to be careful...
3390         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3391           origWidth = Lod->getMemoryVT().getSizeInBits();
3392         const APInt &Mask = N0.getConstantOperandAPInt(1);
3393         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3394           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3395           for (unsigned offset=0; offset<origWidth/width; offset++) {
3396             if (Mask.isSubsetOf(newMask)) {
3397               if (Layout.isLittleEndian())
3398                 bestOffset = (uint64_t)offset * (width/8);
3399               else
3400                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3401               bestMask = Mask.lshr(offset * (width/8) * 8);
3402               bestWidth = width;
3403               break;
3404             }
3405             newMask <<= width;
3406           }
3407         }
3408       }
3409       if (bestWidth) {
3410         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3411         if (newVT.isRound() &&
3412             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3413           SDValue Ptr = Lod->getBasePtr();
3414           if (bestOffset != 0)
3415             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3416           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3417           SDValue NewLoad = DAG.getLoad(
3418               newVT, dl, Lod->getChain(), Ptr,
3419               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3420           return DAG.getSetCC(dl, VT,
3421                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3422                                       DAG.getConstant(bestMask.trunc(bestWidth),
3423                                                       dl, newVT)),
3424                               DAG.getConstant(0LL, dl, newVT), Cond);
3425         }
3426       }
3427     }
3428 
3429     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3430     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3431       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3432 
3433       // If the comparison constant has bits in the upper part, the
3434       // zero-extended value could never match.
3435       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3436                                               C1.getBitWidth() - InSize))) {
3437         switch (Cond) {
3438         case ISD::SETUGT:
3439         case ISD::SETUGE:
3440         case ISD::SETEQ:
3441           return DAG.getConstant(0, dl, VT);
3442         case ISD::SETULT:
3443         case ISD::SETULE:
3444         case ISD::SETNE:
3445           return DAG.getConstant(1, dl, VT);
3446         case ISD::SETGT:
3447         case ISD::SETGE:
3448           // True if the sign bit of C1 is set.
3449           return DAG.getConstant(C1.isNegative(), dl, VT);
3450         case ISD::SETLT:
3451         case ISD::SETLE:
3452           // True if the sign bit of C1 isn't set.
3453           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3454         default:
3455           break;
3456         }
3457       }
3458 
3459       // Otherwise, we can perform the comparison with the low bits.
3460       switch (Cond) {
3461       case ISD::SETEQ:
3462       case ISD::SETNE:
3463       case ISD::SETUGT:
3464       case ISD::SETUGE:
3465       case ISD::SETULT:
3466       case ISD::SETULE: {
3467         EVT newVT = N0.getOperand(0).getValueType();
3468         if (DCI.isBeforeLegalizeOps() ||
3469             (isOperationLegal(ISD::SETCC, newVT) &&
3470              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3471           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3472           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3473 
3474           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3475                                           NewConst, Cond);
3476           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3477         }
3478         break;
3479       }
3480       default:
3481         break; // todo, be more careful with signed comparisons
3482       }
3483     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3484                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3485       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3486       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3487       EVT ExtDstTy = N0.getValueType();
3488       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3489 
3490       // If the constant doesn't fit into the number of bits for the source of
3491       // the sign extension, it is impossible for both sides to be equal.
3492       if (C1.getMinSignedBits() > ExtSrcTyBits)
3493         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3494 
3495       SDValue ZextOp;
3496       EVT Op0Ty = N0.getOperand(0).getValueType();
3497       if (Op0Ty == ExtSrcTy) {
3498         ZextOp = N0.getOperand(0);
3499       } else {
3500         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3501         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3502                              DAG.getConstant(Imm, dl, Op0Ty));
3503       }
3504       if (!DCI.isCalledByLegalizer())
3505         DCI.AddToWorklist(ZextOp.getNode());
3506       // Otherwise, make this a use of a zext.
3507       return DAG.getSetCC(dl, VT, ZextOp,
3508                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3509                                                               ExtDstTyBits,
3510                                                               ExtSrcTyBits),
3511                                           dl, ExtDstTy),
3512                           Cond);
3513     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3514                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3515       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3516       if (N0.getOpcode() == ISD::SETCC &&
3517           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3518           (N0.getValueType() == MVT::i1 ||
3519            getBooleanContents(N0.getOperand(0).getValueType()) ==
3520                        ZeroOrOneBooleanContent)) {
3521         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3522         if (TrueWhenTrue)
3523           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3524         // Invert the condition.
3525         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3526         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3527         if (DCI.isBeforeLegalizeOps() ||
3528             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3529           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3530       }
3531 
3532       if ((N0.getOpcode() == ISD::XOR ||
3533            (N0.getOpcode() == ISD::AND &&
3534             N0.getOperand(0).getOpcode() == ISD::XOR &&
3535             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3536           isa<ConstantSDNode>(N0.getOperand(1)) &&
3537           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3538         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3539         // can only do this if the top bits are known zero.
3540         unsigned BitWidth = N0.getValueSizeInBits();
3541         if (DAG.MaskedValueIsZero(N0,
3542                                   APInt::getHighBitsSet(BitWidth,
3543                                                         BitWidth-1))) {
3544           // Okay, get the un-inverted input value.
3545           SDValue Val;
3546           if (N0.getOpcode() == ISD::XOR) {
3547             Val = N0.getOperand(0);
3548           } else {
3549             assert(N0.getOpcode() == ISD::AND &&
3550                     N0.getOperand(0).getOpcode() == ISD::XOR);
3551             // ((X^1)&1)^1 -> X & 1
3552             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3553                               N0.getOperand(0).getOperand(0),
3554                               N0.getOperand(1));
3555           }
3556 
3557           return DAG.getSetCC(dl, VT, Val, N1,
3558                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3559         }
3560       } else if (N1C->isOne()) {
3561         SDValue Op0 = N0;
3562         if (Op0.getOpcode() == ISD::TRUNCATE)
3563           Op0 = Op0.getOperand(0);
3564 
3565         if ((Op0.getOpcode() == ISD::XOR) &&
3566             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3567             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3568           SDValue XorLHS = Op0.getOperand(0);
3569           SDValue XorRHS = Op0.getOperand(1);
3570           // Ensure that the input setccs return an i1 type or 0/1 value.
3571           if (Op0.getValueType() == MVT::i1 ||
3572               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3573                       ZeroOrOneBooleanContent &&
3574                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3575                         ZeroOrOneBooleanContent)) {
3576             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3577             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3578             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3579           }
3580         }
3581         if (Op0.getOpcode() == ISD::AND &&
3582             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3583             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3584           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3585           if (Op0.getValueType().bitsGT(VT))
3586             Op0 = DAG.getNode(ISD::AND, dl, VT,
3587                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3588                           DAG.getConstant(1, dl, VT));
3589           else if (Op0.getValueType().bitsLT(VT))
3590             Op0 = DAG.getNode(ISD::AND, dl, VT,
3591                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3592                         DAG.getConstant(1, dl, VT));
3593 
3594           return DAG.getSetCC(dl, VT, Op0,
3595                               DAG.getConstant(0, dl, Op0.getValueType()),
3596                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3597         }
3598         if (Op0.getOpcode() == ISD::AssertZext &&
3599             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3600           return DAG.getSetCC(dl, VT, Op0,
3601                               DAG.getConstant(0, dl, Op0.getValueType()),
3602                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3603       }
3604     }
3605 
3606     // Given:
3607     //   icmp eq/ne (urem %x, %y), 0
3608     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3609     //   icmp eq/ne %x, 0
3610     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3611         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3612       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3613       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3614       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3615         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3616     }
3617 
3618     if (SDValue V =
3619             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3620       return V;
3621   }
3622 
3623   // These simplifications apply to splat vectors as well.
3624   // TODO: Handle more splat vector cases.
3625   if (auto *N1C = isConstOrConstSplat(N1)) {
3626     const APInt &C1 = N1C->getAPIntValue();
3627 
3628     APInt MinVal, MaxVal;
3629     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3630     if (ISD::isSignedIntSetCC(Cond)) {
3631       MinVal = APInt::getSignedMinValue(OperandBitSize);
3632       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3633     } else {
3634       MinVal = APInt::getMinValue(OperandBitSize);
3635       MaxVal = APInt::getMaxValue(OperandBitSize);
3636     }
3637 
3638     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3639     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3640       // X >= MIN --> true
3641       if (C1 == MinVal)
3642         return DAG.getBoolConstant(true, dl, VT, OpVT);
3643 
3644       if (!VT.isVector()) { // TODO: Support this for vectors.
3645         // X >= C0 --> X > (C0 - 1)
3646         APInt C = C1 - 1;
3647         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3648         if ((DCI.isBeforeLegalizeOps() ||
3649              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3650             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3651                                   isLegalICmpImmediate(C.getSExtValue())))) {
3652           return DAG.getSetCC(dl, VT, N0,
3653                               DAG.getConstant(C, dl, N1.getValueType()),
3654                               NewCC);
3655         }
3656       }
3657     }
3658 
3659     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3660       // X <= MAX --> true
3661       if (C1 == MaxVal)
3662         return DAG.getBoolConstant(true, dl, VT, OpVT);
3663 
3664       // X <= C0 --> X < (C0 + 1)
3665       if (!VT.isVector()) { // TODO: Support this for vectors.
3666         APInt C = C1 + 1;
3667         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3668         if ((DCI.isBeforeLegalizeOps() ||
3669              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3670             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3671                                   isLegalICmpImmediate(C.getSExtValue())))) {
3672           return DAG.getSetCC(dl, VT, N0,
3673                               DAG.getConstant(C, dl, N1.getValueType()),
3674                               NewCC);
3675         }
3676       }
3677     }
3678 
3679     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3680       if (C1 == MinVal)
3681         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3682 
3683       // TODO: Support this for vectors after legalize ops.
3684       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3685         // Canonicalize setlt X, Max --> setne X, Max
3686         if (C1 == MaxVal)
3687           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3688 
3689         // If we have setult X, 1, turn it into seteq X, 0
3690         if (C1 == MinVal+1)
3691           return DAG.getSetCC(dl, VT, N0,
3692                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3693                               ISD::SETEQ);
3694       }
3695     }
3696 
3697     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3698       if (C1 == MaxVal)
3699         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3700 
3701       // TODO: Support this for vectors after legalize ops.
3702       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3703         // Canonicalize setgt X, Min --> setne X, Min
3704         if (C1 == MinVal)
3705           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3706 
3707         // If we have setugt X, Max-1, turn it into seteq X, Max
3708         if (C1 == MaxVal-1)
3709           return DAG.getSetCC(dl, VT, N0,
3710                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3711                               ISD::SETEQ);
3712       }
3713     }
3714 
3715     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3716       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3717       if (C1.isNullValue())
3718         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3719                 VT, N0, N1, Cond, DCI, dl))
3720           return CC;
3721     }
3722 
3723     // If we have "setcc X, C0", check to see if we can shrink the immediate
3724     // by changing cc.
3725     // TODO: Support this for vectors after legalize ops.
3726     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3727       // SETUGT X, SINTMAX  -> SETLT X, 0
3728       if (Cond == ISD::SETUGT &&
3729           C1 == APInt::getSignedMaxValue(OperandBitSize))
3730         return DAG.getSetCC(dl, VT, N0,
3731                             DAG.getConstant(0, dl, N1.getValueType()),
3732                             ISD::SETLT);
3733 
3734       // SETULT X, SINTMIN  -> SETGT X, -1
3735       if (Cond == ISD::SETULT &&
3736           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3737         SDValue ConstMinusOne =
3738             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3739                             N1.getValueType());
3740         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3741       }
3742     }
3743   }
3744 
3745   // Back to non-vector simplifications.
3746   // TODO: Can we do these for vector splats?
3747   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3748     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3749     const APInt &C1 = N1C->getAPIntValue();
3750     EVT ShValTy = N0.getValueType();
3751 
3752     // Fold bit comparisons when we can.
3753     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3754         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3755         N0.getOpcode() == ISD::AND) {
3756       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3757         EVT ShiftTy =
3758             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3759         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3760           // Perform the xform if the AND RHS is a single bit.
3761           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3762           if (AndRHS->getAPIntValue().isPowerOf2() &&
3763               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3764             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3765                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3766                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3767           }
3768         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3769           // (X & 8) == 8  -->  (X & 8) >> 3
3770           // Perform the xform if C1 is a single bit.
3771           unsigned ShCt = C1.logBase2();
3772           if (C1.isPowerOf2() &&
3773               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3774             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3775                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3776                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3777           }
3778         }
3779       }
3780     }
3781 
3782     if (C1.getMinSignedBits() <= 64 &&
3783         !isLegalICmpImmediate(C1.getSExtValue())) {
3784       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3785       // (X & -256) == 256 -> (X >> 8) == 1
3786       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3787           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3788         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3789           const APInt &AndRHSC = AndRHS->getAPIntValue();
3790           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3791             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3792             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3793               SDValue Shift =
3794                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3795                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3796               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3797               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3798             }
3799           }
3800         }
3801       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3802                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3803         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3804         // X <  0x100000000 -> (X >> 32) <  1
3805         // X >= 0x100000000 -> (X >> 32) >= 1
3806         // X <= 0x0ffffffff -> (X >> 32) <  1
3807         // X >  0x0ffffffff -> (X >> 32) >= 1
3808         unsigned ShiftBits;
3809         APInt NewC = C1;
3810         ISD::CondCode NewCond = Cond;
3811         if (AdjOne) {
3812           ShiftBits = C1.countTrailingOnes();
3813           NewC = NewC + 1;
3814           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3815         } else {
3816           ShiftBits = C1.countTrailingZeros();
3817         }
3818         NewC.lshrInPlace(ShiftBits);
3819         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3820             isLegalICmpImmediate(NewC.getSExtValue()) &&
3821             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3822           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3823                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3824           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3825           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3826         }
3827       }
3828     }
3829   }
3830 
3831   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3832     auto *CFP = cast<ConstantFPSDNode>(N1);
3833     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3834 
3835     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3836     // constant if knowing that the operand is non-nan is enough.  We prefer to
3837     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3838     // materialize 0.0.
3839     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3840       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3841 
3842     // setcc (fneg x), C -> setcc swap(pred) x, -C
3843     if (N0.getOpcode() == ISD::FNEG) {
3844       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3845       if (DCI.isBeforeLegalizeOps() ||
3846           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3847         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3848         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3849       }
3850     }
3851 
3852     // If the condition is not legal, see if we can find an equivalent one
3853     // which is legal.
3854     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3855       // If the comparison was an awkward floating-point == or != and one of
3856       // the comparison operands is infinity or negative infinity, convert the
3857       // condition to a less-awkward <= or >=.
3858       if (CFP->getValueAPF().isInfinity()) {
3859         if (CFP->getValueAPF().isNegative()) {
3860           if (Cond == ISD::SETOEQ &&
3861               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3862             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3863           if (Cond == ISD::SETUEQ &&
3864               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3865             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3866           if (Cond == ISD::SETUNE &&
3867               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3868             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3869           if (Cond == ISD::SETONE &&
3870               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3871             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3872         } else {
3873           if (Cond == ISD::SETOEQ &&
3874               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3875             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3876           if (Cond == ISD::SETUEQ &&
3877               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3878             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3879           if (Cond == ISD::SETUNE &&
3880               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3881             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3882           if (Cond == ISD::SETONE &&
3883               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3884             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3885         }
3886       }
3887     }
3888   }
3889 
3890   if (N0 == N1) {
3891     // The sext(setcc()) => setcc() optimization relies on the appropriate
3892     // constant being emitted.
3893     assert(!N0.getValueType().isInteger() &&
3894            "Integer types should be handled by FoldSetCC");
3895 
3896     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3897     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3898     if (UOF == 2) // FP operators that are undefined on NaNs.
3899       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3900     if (UOF == unsigned(EqTrue))
3901       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3902     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3903     // if it is not already.
3904     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3905     if (NewCond != Cond &&
3906         (DCI.isBeforeLegalizeOps() ||
3907                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3908       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3909   }
3910 
3911   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3912       N0.getValueType().isInteger()) {
3913     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3914         N0.getOpcode() == ISD::XOR) {
3915       // Simplify (X+Y) == (X+Z) -->  Y == Z
3916       if (N0.getOpcode() == N1.getOpcode()) {
3917         if (N0.getOperand(0) == N1.getOperand(0))
3918           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3919         if (N0.getOperand(1) == N1.getOperand(1))
3920           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3921         if (isCommutativeBinOp(N0.getOpcode())) {
3922           // If X op Y == Y op X, try other combinations.
3923           if (N0.getOperand(0) == N1.getOperand(1))
3924             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3925                                 Cond);
3926           if (N0.getOperand(1) == N1.getOperand(0))
3927             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3928                                 Cond);
3929         }
3930       }
3931 
3932       // If RHS is a legal immediate value for a compare instruction, we need
3933       // to be careful about increasing register pressure needlessly.
3934       bool LegalRHSImm = false;
3935 
3936       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3937         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3938           // Turn (X+C1) == C2 --> X == C2-C1
3939           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3940             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3941                                 DAG.getConstant(RHSC->getAPIntValue()-
3942                                                 LHSR->getAPIntValue(),
3943                                 dl, N0.getValueType()), Cond);
3944           }
3945 
3946           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3947           if (N0.getOpcode() == ISD::XOR)
3948             // If we know that all of the inverted bits are zero, don't bother
3949             // performing the inversion.
3950             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3951               return
3952                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3953                              DAG.getConstant(LHSR->getAPIntValue() ^
3954                                                RHSC->getAPIntValue(),
3955                                              dl, N0.getValueType()),
3956                              Cond);
3957         }
3958 
3959         // Turn (C1-X) == C2 --> X == C1-C2
3960         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3961           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3962             return
3963               DAG.getSetCC(dl, VT, N0.getOperand(1),
3964                            DAG.getConstant(SUBC->getAPIntValue() -
3965                                              RHSC->getAPIntValue(),
3966                                            dl, N0.getValueType()),
3967                            Cond);
3968           }
3969         }
3970 
3971         // Could RHSC fold directly into a compare?
3972         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3973           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3974       }
3975 
3976       // (X+Y) == X --> Y == 0 and similar folds.
3977       // Don't do this if X is an immediate that can fold into a cmp
3978       // instruction and X+Y has other uses. It could be an induction variable
3979       // chain, and the transform would increase register pressure.
3980       if (!LegalRHSImm || N0.hasOneUse())
3981         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3982           return V;
3983     }
3984 
3985     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3986         N1.getOpcode() == ISD::XOR)
3987       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3988         return V;
3989 
3990     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3991       return V;
3992   }
3993 
3994   // Fold remainder of division by a constant.
3995   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3996       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3997     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3998 
3999     // When division is cheap or optimizing for minimum size,
4000     // fall through to DIVREM creation by skipping this fold.
4001     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4002       if (N0.getOpcode() == ISD::UREM) {
4003         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4004           return Folded;
4005       } else if (N0.getOpcode() == ISD::SREM) {
4006         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4007           return Folded;
4008       }
4009     }
4010   }
4011 
4012   // Fold away ALL boolean setcc's.
4013   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4014     SDValue Temp;
4015     switch (Cond) {
4016     default: llvm_unreachable("Unknown integer setcc!");
4017     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4018       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4019       N0 = DAG.getNOT(dl, Temp, OpVT);
4020       if (!DCI.isCalledByLegalizer())
4021         DCI.AddToWorklist(Temp.getNode());
4022       break;
4023     case ISD::SETNE:  // X != Y   -->  (X^Y)
4024       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4025       break;
4026     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4027     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4028       Temp = DAG.getNOT(dl, N0, OpVT);
4029       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4030       if (!DCI.isCalledByLegalizer())
4031         DCI.AddToWorklist(Temp.getNode());
4032       break;
4033     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4034     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4035       Temp = DAG.getNOT(dl, N1, OpVT);
4036       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4037       if (!DCI.isCalledByLegalizer())
4038         DCI.AddToWorklist(Temp.getNode());
4039       break;
4040     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4041     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4042       Temp = DAG.getNOT(dl, N0, OpVT);
4043       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4044       if (!DCI.isCalledByLegalizer())
4045         DCI.AddToWorklist(Temp.getNode());
4046       break;
4047     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4048     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4049       Temp = DAG.getNOT(dl, N1, OpVT);
4050       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4051       break;
4052     }
4053     if (VT.getScalarType() != MVT::i1) {
4054       if (!DCI.isCalledByLegalizer())
4055         DCI.AddToWorklist(N0.getNode());
4056       // FIXME: If running after legalize, we probably can't do this.
4057       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4058       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4059     }
4060     return N0;
4061   }
4062 
4063   // Could not fold it.
4064   return SDValue();
4065 }
4066 
4067 /// Returns true (and the GlobalValue and the offset) if the node is a
4068 /// GlobalAddress + offset.
4069 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4070                                     int64_t &Offset) const {
4071 
4072   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4073 
4074   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4075     GA = GASD->getGlobal();
4076     Offset += GASD->getOffset();
4077     return true;
4078   }
4079 
4080   if (N->getOpcode() == ISD::ADD) {
4081     SDValue N1 = N->getOperand(0);
4082     SDValue N2 = N->getOperand(1);
4083     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4084       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4085         Offset += V->getSExtValue();
4086         return true;
4087       }
4088     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4089       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4090         Offset += V->getSExtValue();
4091         return true;
4092       }
4093     }
4094   }
4095 
4096   return false;
4097 }
4098 
4099 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4100                                           DAGCombinerInfo &DCI) const {
4101   // Default implementation: no optimization.
4102   return SDValue();
4103 }
4104 
4105 //===----------------------------------------------------------------------===//
4106 //  Inline Assembler Implementation Methods
4107 //===----------------------------------------------------------------------===//
4108 
4109 TargetLowering::ConstraintType
4110 TargetLowering::getConstraintType(StringRef Constraint) const {
4111   unsigned S = Constraint.size();
4112 
4113   if (S == 1) {
4114     switch (Constraint[0]) {
4115     default: break;
4116     case 'r':
4117       return C_RegisterClass;
4118     case 'm': // memory
4119     case 'o': // offsetable
4120     case 'V': // not offsetable
4121       return C_Memory;
4122     case 'n': // Simple Integer
4123     case 'E': // Floating Point Constant
4124     case 'F': // Floating Point Constant
4125       return C_Immediate;
4126     case 'i': // Simple Integer or Relocatable Constant
4127     case 's': // Relocatable Constant
4128     case 'p': // Address.
4129     case 'X': // Allow ANY value.
4130     case 'I': // Target registers.
4131     case 'J':
4132     case 'K':
4133     case 'L':
4134     case 'M':
4135     case 'N':
4136     case 'O':
4137     case 'P':
4138     case '<':
4139     case '>':
4140       return C_Other;
4141     }
4142   }
4143 
4144   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4145     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4146       return C_Memory;
4147     return C_Register;
4148   }
4149   return C_Unknown;
4150 }
4151 
4152 /// Try to replace an X constraint, which matches anything, with another that
4153 /// has more specific requirements based on the type of the corresponding
4154 /// operand.
4155 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4156   if (ConstraintVT.isInteger())
4157     return "r";
4158   if (ConstraintVT.isFloatingPoint())
4159     return "f"; // works for many targets
4160   return nullptr;
4161 }
4162 
4163 SDValue TargetLowering::LowerAsmOutputForConstraint(
4164     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4165     SelectionDAG &DAG) const {
4166   return SDValue();
4167 }
4168 
4169 /// Lower the specified operand into the Ops vector.
4170 /// If it is invalid, don't add anything to Ops.
4171 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4172                                                   std::string &Constraint,
4173                                                   std::vector<SDValue> &Ops,
4174                                                   SelectionDAG &DAG) const {
4175 
4176   if (Constraint.length() > 1) return;
4177 
4178   char ConstraintLetter = Constraint[0];
4179   switch (ConstraintLetter) {
4180   default: break;
4181   case 'X':     // Allows any operand; labels (basic block) use this.
4182     if (Op.getOpcode() == ISD::BasicBlock ||
4183         Op.getOpcode() == ISD::TargetBlockAddress) {
4184       Ops.push_back(Op);
4185       return;
4186     }
4187     LLVM_FALLTHROUGH;
4188   case 'i':    // Simple Integer or Relocatable Constant
4189   case 'n':    // Simple Integer
4190   case 's': {  // Relocatable Constant
4191 
4192     GlobalAddressSDNode *GA;
4193     ConstantSDNode *C;
4194     BlockAddressSDNode *BA;
4195     uint64_t Offset = 0;
4196 
4197     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4198     // etc., since getelementpointer is variadic. We can't use
4199     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4200     // while in this case the GA may be furthest from the root node which is
4201     // likely an ISD::ADD.
4202     while (1) {
4203       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4204         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4205                                                  GA->getValueType(0),
4206                                                  Offset + GA->getOffset()));
4207         return;
4208       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4209                  ConstraintLetter != 's') {
4210         // gcc prints these as sign extended.  Sign extend value to 64 bits
4211         // now; without this it would get ZExt'd later in
4212         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4213         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4214         BooleanContent BCont = getBooleanContents(MVT::i64);
4215         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4216                                       : ISD::SIGN_EXTEND;
4217         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4218                                                     : C->getSExtValue();
4219         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4220                                             SDLoc(C), MVT::i64));
4221         return;
4222       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4223                  ConstraintLetter != 'n') {
4224         Ops.push_back(DAG.getTargetBlockAddress(
4225             BA->getBlockAddress(), BA->getValueType(0),
4226             Offset + BA->getOffset(), BA->getTargetFlags()));
4227         return;
4228       } else {
4229         const unsigned OpCode = Op.getOpcode();
4230         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4231           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4232             Op = Op.getOperand(1);
4233           // Subtraction is not commutative.
4234           else if (OpCode == ISD::ADD &&
4235                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4236             Op = Op.getOperand(0);
4237           else
4238             return;
4239           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4240           continue;
4241         }
4242       }
4243       return;
4244     }
4245     break;
4246   }
4247   }
4248 }
4249 
4250 std::pair<unsigned, const TargetRegisterClass *>
4251 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4252                                              StringRef Constraint,
4253                                              MVT VT) const {
4254   if (Constraint.empty() || Constraint[0] != '{')
4255     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4256   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4257 
4258   // Remove the braces from around the name.
4259   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4260 
4261   std::pair<unsigned, const TargetRegisterClass *> R =
4262       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4263 
4264   // Figure out which register class contains this reg.
4265   for (const TargetRegisterClass *RC : RI->regclasses()) {
4266     // If none of the value types for this register class are valid, we
4267     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4268     if (!isLegalRC(*RI, *RC))
4269       continue;
4270 
4271     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4272          I != E; ++I) {
4273       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4274         std::pair<unsigned, const TargetRegisterClass *> S =
4275             std::make_pair(*I, RC);
4276 
4277         // If this register class has the requested value type, return it,
4278         // otherwise keep searching and return the first class found
4279         // if no other is found which explicitly has the requested type.
4280         if (RI->isTypeLegalForClass(*RC, VT))
4281           return S;
4282         if (!R.second)
4283           R = S;
4284       }
4285     }
4286   }
4287 
4288   return R;
4289 }
4290 
4291 //===----------------------------------------------------------------------===//
4292 // Constraint Selection.
4293 
4294 /// Return true of this is an input operand that is a matching constraint like
4295 /// "4".
4296 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4297   assert(!ConstraintCode.empty() && "No known constraint!");
4298   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4299 }
4300 
4301 /// If this is an input matching constraint, this method returns the output
4302 /// operand it matches.
4303 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4304   assert(!ConstraintCode.empty() && "No known constraint!");
4305   return atoi(ConstraintCode.c_str());
4306 }
4307 
4308 /// Split up the constraint string from the inline assembly value into the
4309 /// specific constraints and their prefixes, and also tie in the associated
4310 /// operand values.
4311 /// If this returns an empty vector, and if the constraint string itself
4312 /// isn't empty, there was an error parsing.
4313 TargetLowering::AsmOperandInfoVector
4314 TargetLowering::ParseConstraints(const DataLayout &DL,
4315                                  const TargetRegisterInfo *TRI,
4316                                  ImmutableCallSite CS) const {
4317   /// Information about all of the constraints.
4318   AsmOperandInfoVector ConstraintOperands;
4319   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4320   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4321 
4322   // Do a prepass over the constraints, canonicalizing them, and building up the
4323   // ConstraintOperands list.
4324   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4325   unsigned ResNo = 0; // ResNo - The result number of the next output.
4326 
4327   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4328     ConstraintOperands.emplace_back(std::move(CI));
4329     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4330 
4331     // Update multiple alternative constraint count.
4332     if (OpInfo.multipleAlternatives.size() > maCount)
4333       maCount = OpInfo.multipleAlternatives.size();
4334 
4335     OpInfo.ConstraintVT = MVT::Other;
4336 
4337     // Compute the value type for each operand.
4338     switch (OpInfo.Type) {
4339     case InlineAsm::isOutput:
4340       // Indirect outputs just consume an argument.
4341       if (OpInfo.isIndirect) {
4342         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4343         break;
4344       }
4345 
4346       // The return value of the call is this value.  As such, there is no
4347       // corresponding argument.
4348       assert(!CS.getType()->isVoidTy() &&
4349              "Bad inline asm!");
4350       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4351         OpInfo.ConstraintVT =
4352             getSimpleValueType(DL, STy->getElementType(ResNo));
4353       } else {
4354         assert(ResNo == 0 && "Asm only has one result!");
4355         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4356       }
4357       ++ResNo;
4358       break;
4359     case InlineAsm::isInput:
4360       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4361       break;
4362     case InlineAsm::isClobber:
4363       // Nothing to do.
4364       break;
4365     }
4366 
4367     if (OpInfo.CallOperandVal) {
4368       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4369       if (OpInfo.isIndirect) {
4370         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4371         if (!PtrTy)
4372           report_fatal_error("Indirect operand for inline asm not a pointer!");
4373         OpTy = PtrTy->getElementType();
4374       }
4375 
4376       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4377       if (StructType *STy = dyn_cast<StructType>(OpTy))
4378         if (STy->getNumElements() == 1)
4379           OpTy = STy->getElementType(0);
4380 
4381       // If OpTy is not a single value, it may be a struct/union that we
4382       // can tile with integers.
4383       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4384         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4385         switch (BitSize) {
4386         default: break;
4387         case 1:
4388         case 8:
4389         case 16:
4390         case 32:
4391         case 64:
4392         case 128:
4393           OpInfo.ConstraintVT =
4394               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4395           break;
4396         }
4397       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4398         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4399         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4400       } else {
4401         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4402       }
4403     }
4404   }
4405 
4406   // If we have multiple alternative constraints, select the best alternative.
4407   if (!ConstraintOperands.empty()) {
4408     if (maCount) {
4409       unsigned bestMAIndex = 0;
4410       int bestWeight = -1;
4411       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4412       int weight = -1;
4413       unsigned maIndex;
4414       // Compute the sums of the weights for each alternative, keeping track
4415       // of the best (highest weight) one so far.
4416       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4417         int weightSum = 0;
4418         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4419              cIndex != eIndex; ++cIndex) {
4420           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4421           if (OpInfo.Type == InlineAsm::isClobber)
4422             continue;
4423 
4424           // If this is an output operand with a matching input operand,
4425           // look up the matching input. If their types mismatch, e.g. one
4426           // is an integer, the other is floating point, or their sizes are
4427           // different, flag it as an maCantMatch.
4428           if (OpInfo.hasMatchingInput()) {
4429             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4430             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4431               if ((OpInfo.ConstraintVT.isInteger() !=
4432                    Input.ConstraintVT.isInteger()) ||
4433                   (OpInfo.ConstraintVT.getSizeInBits() !=
4434                    Input.ConstraintVT.getSizeInBits())) {
4435                 weightSum = -1; // Can't match.
4436                 break;
4437               }
4438             }
4439           }
4440           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4441           if (weight == -1) {
4442             weightSum = -1;
4443             break;
4444           }
4445           weightSum += weight;
4446         }
4447         // Update best.
4448         if (weightSum > bestWeight) {
4449           bestWeight = weightSum;
4450           bestMAIndex = maIndex;
4451         }
4452       }
4453 
4454       // Now select chosen alternative in each constraint.
4455       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4456            cIndex != eIndex; ++cIndex) {
4457         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4458         if (cInfo.Type == InlineAsm::isClobber)
4459           continue;
4460         cInfo.selectAlternative(bestMAIndex);
4461       }
4462     }
4463   }
4464 
4465   // Check and hook up tied operands, choose constraint code to use.
4466   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4467        cIndex != eIndex; ++cIndex) {
4468     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4469 
4470     // If this is an output operand with a matching input operand, look up the
4471     // matching input. If their types mismatch, e.g. one is an integer, the
4472     // other is floating point, or their sizes are different, flag it as an
4473     // error.
4474     if (OpInfo.hasMatchingInput()) {
4475       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4476 
4477       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4478         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4479             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4480                                          OpInfo.ConstraintVT);
4481         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4482             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4483                                          Input.ConstraintVT);
4484         if ((OpInfo.ConstraintVT.isInteger() !=
4485              Input.ConstraintVT.isInteger()) ||
4486             (MatchRC.second != InputRC.second)) {
4487           report_fatal_error("Unsupported asm: input constraint"
4488                              " with a matching output constraint of"
4489                              " incompatible type!");
4490         }
4491       }
4492     }
4493   }
4494 
4495   return ConstraintOperands;
4496 }
4497 
4498 /// Return an integer indicating how general CT is.
4499 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4500   switch (CT) {
4501   case TargetLowering::C_Immediate:
4502   case TargetLowering::C_Other:
4503   case TargetLowering::C_Unknown:
4504     return 0;
4505   case TargetLowering::C_Register:
4506     return 1;
4507   case TargetLowering::C_RegisterClass:
4508     return 2;
4509   case TargetLowering::C_Memory:
4510     return 3;
4511   }
4512   llvm_unreachable("Invalid constraint type");
4513 }
4514 
4515 /// Examine constraint type and operand type and determine a weight value.
4516 /// This object must already have been set up with the operand type
4517 /// and the current alternative constraint selected.
4518 TargetLowering::ConstraintWeight
4519   TargetLowering::getMultipleConstraintMatchWeight(
4520     AsmOperandInfo &info, int maIndex) const {
4521   InlineAsm::ConstraintCodeVector *rCodes;
4522   if (maIndex >= (int)info.multipleAlternatives.size())
4523     rCodes = &info.Codes;
4524   else
4525     rCodes = &info.multipleAlternatives[maIndex].Codes;
4526   ConstraintWeight BestWeight = CW_Invalid;
4527 
4528   // Loop over the options, keeping track of the most general one.
4529   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4530     ConstraintWeight weight =
4531       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4532     if (weight > BestWeight)
4533       BestWeight = weight;
4534   }
4535 
4536   return BestWeight;
4537 }
4538 
4539 /// Examine constraint type and operand type and determine a weight value.
4540 /// This object must already have been set up with the operand type
4541 /// and the current alternative constraint selected.
4542 TargetLowering::ConstraintWeight
4543   TargetLowering::getSingleConstraintMatchWeight(
4544     AsmOperandInfo &info, const char *constraint) const {
4545   ConstraintWeight weight = CW_Invalid;
4546   Value *CallOperandVal = info.CallOperandVal;
4547     // If we don't have a value, we can't do a match,
4548     // but allow it at the lowest weight.
4549   if (!CallOperandVal)
4550     return CW_Default;
4551   // Look at the constraint type.
4552   switch (*constraint) {
4553     case 'i': // immediate integer.
4554     case 'n': // immediate integer with a known value.
4555       if (isa<ConstantInt>(CallOperandVal))
4556         weight = CW_Constant;
4557       break;
4558     case 's': // non-explicit intregal immediate.
4559       if (isa<GlobalValue>(CallOperandVal))
4560         weight = CW_Constant;
4561       break;
4562     case 'E': // immediate float if host format.
4563     case 'F': // immediate float.
4564       if (isa<ConstantFP>(CallOperandVal))
4565         weight = CW_Constant;
4566       break;
4567     case '<': // memory operand with autodecrement.
4568     case '>': // memory operand with autoincrement.
4569     case 'm': // memory operand.
4570     case 'o': // offsettable memory operand
4571     case 'V': // non-offsettable memory operand
4572       weight = CW_Memory;
4573       break;
4574     case 'r': // general register.
4575     case 'g': // general register, memory operand or immediate integer.
4576               // note: Clang converts "g" to "imr".
4577       if (CallOperandVal->getType()->isIntegerTy())
4578         weight = CW_Register;
4579       break;
4580     case 'X': // any operand.
4581   default:
4582     weight = CW_Default;
4583     break;
4584   }
4585   return weight;
4586 }
4587 
4588 /// If there are multiple different constraints that we could pick for this
4589 /// operand (e.g. "imr") try to pick the 'best' one.
4590 /// This is somewhat tricky: constraints fall into four classes:
4591 ///    Other         -> immediates and magic values
4592 ///    Register      -> one specific register
4593 ///    RegisterClass -> a group of regs
4594 ///    Memory        -> memory
4595 /// Ideally, we would pick the most specific constraint possible: if we have
4596 /// something that fits into a register, we would pick it.  The problem here
4597 /// is that if we have something that could either be in a register or in
4598 /// memory that use of the register could cause selection of *other*
4599 /// operands to fail: they might only succeed if we pick memory.  Because of
4600 /// this the heuristic we use is:
4601 ///
4602 ///  1) If there is an 'other' constraint, and if the operand is valid for
4603 ///     that constraint, use it.  This makes us take advantage of 'i'
4604 ///     constraints when available.
4605 ///  2) Otherwise, pick the most general constraint present.  This prefers
4606 ///     'm' over 'r', for example.
4607 ///
4608 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4609                              const TargetLowering &TLI,
4610                              SDValue Op, SelectionDAG *DAG) {
4611   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4612   unsigned BestIdx = 0;
4613   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4614   int BestGenerality = -1;
4615 
4616   // Loop over the options, keeping track of the most general one.
4617   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4618     TargetLowering::ConstraintType CType =
4619       TLI.getConstraintType(OpInfo.Codes[i]);
4620 
4621     // Indirect 'other' or 'immediate' constraints are not allowed.
4622     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4623                                CType == TargetLowering::C_Register ||
4624                                CType == TargetLowering::C_RegisterClass))
4625       continue;
4626 
4627     // If this is an 'other' or 'immediate' constraint, see if the operand is
4628     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4629     // the operand is an integer in the range [0..31] we want to use I (saving a
4630     // load of a register), otherwise we must use 'r'.
4631     if ((CType == TargetLowering::C_Other ||
4632          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4633       assert(OpInfo.Codes[i].size() == 1 &&
4634              "Unhandled multi-letter 'other' constraint");
4635       std::vector<SDValue> ResultOps;
4636       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4637                                        ResultOps, *DAG);
4638       if (!ResultOps.empty()) {
4639         BestType = CType;
4640         BestIdx = i;
4641         break;
4642       }
4643     }
4644 
4645     // Things with matching constraints can only be registers, per gcc
4646     // documentation.  This mainly affects "g" constraints.
4647     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4648       continue;
4649 
4650     // This constraint letter is more general than the previous one, use it.
4651     int Generality = getConstraintGenerality(CType);
4652     if (Generality > BestGenerality) {
4653       BestType = CType;
4654       BestIdx = i;
4655       BestGenerality = Generality;
4656     }
4657   }
4658 
4659   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4660   OpInfo.ConstraintType = BestType;
4661 }
4662 
4663 /// Determines the constraint code and constraint type to use for the specific
4664 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4665 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4666                                             SDValue Op,
4667                                             SelectionDAG *DAG) const {
4668   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4669 
4670   // Single-letter constraints ('r') are very common.
4671   if (OpInfo.Codes.size() == 1) {
4672     OpInfo.ConstraintCode = OpInfo.Codes[0];
4673     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4674   } else {
4675     ChooseConstraint(OpInfo, *this, Op, DAG);
4676   }
4677 
4678   // 'X' matches anything.
4679   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4680     // Labels and constants are handled elsewhere ('X' is the only thing
4681     // that matches labels).  For Functions, the type here is the type of
4682     // the result, which is not what we want to look at; leave them alone.
4683     Value *v = OpInfo.CallOperandVal;
4684     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4685       OpInfo.CallOperandVal = v;
4686       return;
4687     }
4688 
4689     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4690       return;
4691 
4692     // Otherwise, try to resolve it to something we know about by looking at
4693     // the actual operand type.
4694     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4695       OpInfo.ConstraintCode = Repl;
4696       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4697     }
4698   }
4699 }
4700 
4701 /// Given an exact SDIV by a constant, create a multiplication
4702 /// with the multiplicative inverse of the constant.
4703 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4704                               const SDLoc &dl, SelectionDAG &DAG,
4705                               SmallVectorImpl<SDNode *> &Created) {
4706   SDValue Op0 = N->getOperand(0);
4707   SDValue Op1 = N->getOperand(1);
4708   EVT VT = N->getValueType(0);
4709   EVT SVT = VT.getScalarType();
4710   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4711   EVT ShSVT = ShVT.getScalarType();
4712 
4713   bool UseSRA = false;
4714   SmallVector<SDValue, 16> Shifts, Factors;
4715 
4716   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4717     if (C->isNullValue())
4718       return false;
4719     APInt Divisor = C->getAPIntValue();
4720     unsigned Shift = Divisor.countTrailingZeros();
4721     if (Shift) {
4722       Divisor.ashrInPlace(Shift);
4723       UseSRA = true;
4724     }
4725     // Calculate the multiplicative inverse, using Newton's method.
4726     APInt t;
4727     APInt Factor = Divisor;
4728     while ((t = Divisor * Factor) != 1)
4729       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4730     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4731     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4732     return true;
4733   };
4734 
4735   // Collect all magic values from the build vector.
4736   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4737     return SDValue();
4738 
4739   SDValue Shift, Factor;
4740   if (VT.isVector()) {
4741     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4742     Factor = DAG.getBuildVector(VT, dl, Factors);
4743   } else {
4744     Shift = Shifts[0];
4745     Factor = Factors[0];
4746   }
4747 
4748   SDValue Res = Op0;
4749 
4750   // Shift the value upfront if it is even, so the LSB is one.
4751   if (UseSRA) {
4752     // TODO: For UDIV use SRL instead of SRA.
4753     SDNodeFlags Flags;
4754     Flags.setExact(true);
4755     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4756     Created.push_back(Res.getNode());
4757   }
4758 
4759   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4760 }
4761 
4762 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4763                               SelectionDAG &DAG,
4764                               SmallVectorImpl<SDNode *> &Created) const {
4765   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4767   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4768     return SDValue(N, 0); // Lower SDIV as SDIV
4769   return SDValue();
4770 }
4771 
4772 /// Given an ISD::SDIV node expressing a divide by constant,
4773 /// return a DAG expression to select that will generate the same value by
4774 /// multiplying by a magic number.
4775 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4776 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4777                                   bool IsAfterLegalization,
4778                                   SmallVectorImpl<SDNode *> &Created) const {
4779   SDLoc dl(N);
4780   EVT VT = N->getValueType(0);
4781   EVT SVT = VT.getScalarType();
4782   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4783   EVT ShSVT = ShVT.getScalarType();
4784   unsigned EltBits = VT.getScalarSizeInBits();
4785 
4786   // Check to see if we can do this.
4787   // FIXME: We should be more aggressive here.
4788   if (!isTypeLegal(VT))
4789     return SDValue();
4790 
4791   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4792   if (N->getFlags().hasExact())
4793     return BuildExactSDIV(*this, N, dl, DAG, Created);
4794 
4795   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4796 
4797   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4798     if (C->isNullValue())
4799       return false;
4800 
4801     const APInt &Divisor = C->getAPIntValue();
4802     APInt::ms magics = Divisor.magic();
4803     int NumeratorFactor = 0;
4804     int ShiftMask = -1;
4805 
4806     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4807       // If d is +1/-1, we just multiply the numerator by +1/-1.
4808       NumeratorFactor = Divisor.getSExtValue();
4809       magics.m = 0;
4810       magics.s = 0;
4811       ShiftMask = 0;
4812     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4813       // If d > 0 and m < 0, add the numerator.
4814       NumeratorFactor = 1;
4815     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4816       // If d < 0 and m > 0, subtract the numerator.
4817       NumeratorFactor = -1;
4818     }
4819 
4820     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4821     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4822     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4823     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4824     return true;
4825   };
4826 
4827   SDValue N0 = N->getOperand(0);
4828   SDValue N1 = N->getOperand(1);
4829 
4830   // Collect the shifts / magic values from each element.
4831   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4832     return SDValue();
4833 
4834   SDValue MagicFactor, Factor, Shift, ShiftMask;
4835   if (VT.isVector()) {
4836     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4837     Factor = DAG.getBuildVector(VT, dl, Factors);
4838     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4839     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4840   } else {
4841     MagicFactor = MagicFactors[0];
4842     Factor = Factors[0];
4843     Shift = Shifts[0];
4844     ShiftMask = ShiftMasks[0];
4845   }
4846 
4847   // Multiply the numerator (operand 0) by the magic value.
4848   // FIXME: We should support doing a MUL in a wider type.
4849   SDValue Q;
4850   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4851                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4852     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4853   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4854                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4855     SDValue LoHi =
4856         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4857     Q = SDValue(LoHi.getNode(), 1);
4858   } else
4859     return SDValue(); // No mulhs or equivalent.
4860   Created.push_back(Q.getNode());
4861 
4862   // (Optionally) Add/subtract the numerator using Factor.
4863   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4864   Created.push_back(Factor.getNode());
4865   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4866   Created.push_back(Q.getNode());
4867 
4868   // Shift right algebraic by shift value.
4869   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4870   Created.push_back(Q.getNode());
4871 
4872   // Extract the sign bit, mask it and add it to the quotient.
4873   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4874   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4875   Created.push_back(T.getNode());
4876   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4877   Created.push_back(T.getNode());
4878   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4879 }
4880 
4881 /// Given an ISD::UDIV node expressing a divide by constant,
4882 /// return a DAG expression to select that will generate the same value by
4883 /// multiplying by a magic number.
4884 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4885 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4886                                   bool IsAfterLegalization,
4887                                   SmallVectorImpl<SDNode *> &Created) const {
4888   SDLoc dl(N);
4889   EVT VT = N->getValueType(0);
4890   EVT SVT = VT.getScalarType();
4891   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4892   EVT ShSVT = ShVT.getScalarType();
4893   unsigned EltBits = VT.getScalarSizeInBits();
4894 
4895   // Check to see if we can do this.
4896   // FIXME: We should be more aggressive here.
4897   if (!isTypeLegal(VT))
4898     return SDValue();
4899 
4900   bool UseNPQ = false;
4901   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4902 
4903   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4904     if (C->isNullValue())
4905       return false;
4906     // FIXME: We should use a narrower constant when the upper
4907     // bits are known to be zero.
4908     APInt Divisor = C->getAPIntValue();
4909     APInt::mu magics = Divisor.magicu();
4910     unsigned PreShift = 0, PostShift = 0;
4911 
4912     // If the divisor is even, we can avoid using the expensive fixup by
4913     // shifting the divided value upfront.
4914     if (magics.a != 0 && !Divisor[0]) {
4915       PreShift = Divisor.countTrailingZeros();
4916       // Get magic number for the shifted divisor.
4917       magics = Divisor.lshr(PreShift).magicu(PreShift);
4918       assert(magics.a == 0 && "Should use cheap fixup now");
4919     }
4920 
4921     APInt Magic = magics.m;
4922 
4923     unsigned SelNPQ;
4924     if (magics.a == 0 || Divisor.isOneValue()) {
4925       assert(magics.s < Divisor.getBitWidth() &&
4926              "We shouldn't generate an undefined shift!");
4927       PostShift = magics.s;
4928       SelNPQ = false;
4929     } else {
4930       PostShift = magics.s - 1;
4931       SelNPQ = true;
4932     }
4933 
4934     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4935     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4936     NPQFactors.push_back(
4937         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4938                                : APInt::getNullValue(EltBits),
4939                         dl, SVT));
4940     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4941     UseNPQ |= SelNPQ;
4942     return true;
4943   };
4944 
4945   SDValue N0 = N->getOperand(0);
4946   SDValue N1 = N->getOperand(1);
4947 
4948   // Collect the shifts/magic values from each element.
4949   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4950     return SDValue();
4951 
4952   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4953   if (VT.isVector()) {
4954     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4955     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4956     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4957     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4958   } else {
4959     PreShift = PreShifts[0];
4960     MagicFactor = MagicFactors[0];
4961     PostShift = PostShifts[0];
4962   }
4963 
4964   SDValue Q = N0;
4965   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4966   Created.push_back(Q.getNode());
4967 
4968   // FIXME: We should support doing a MUL in a wider type.
4969   auto GetMULHU = [&](SDValue X, SDValue Y) {
4970     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4971                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4972       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4973     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4974                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4975       SDValue LoHi =
4976           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4977       return SDValue(LoHi.getNode(), 1);
4978     }
4979     return SDValue(); // No mulhu or equivalent
4980   };
4981 
4982   // Multiply the numerator (operand 0) by the magic value.
4983   Q = GetMULHU(Q, MagicFactor);
4984   if (!Q)
4985     return SDValue();
4986 
4987   Created.push_back(Q.getNode());
4988 
4989   if (UseNPQ) {
4990     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4991     Created.push_back(NPQ.getNode());
4992 
4993     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4994     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4995     if (VT.isVector())
4996       NPQ = GetMULHU(NPQ, NPQFactor);
4997     else
4998       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4999 
5000     Created.push_back(NPQ.getNode());
5001 
5002     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5003     Created.push_back(Q.getNode());
5004   }
5005 
5006   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5007   Created.push_back(Q.getNode());
5008 
5009   SDValue One = DAG.getConstant(1, dl, VT);
5010   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5011   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5012 }
5013 
5014 /// If all values in Values that *don't* match the predicate are same 'splat'
5015 /// value, then replace all values with that splat value.
5016 /// Else, if AlternativeReplacement was provided, then replace all values that
5017 /// do match predicate with AlternativeReplacement value.
5018 static void
5019 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5020                           std::function<bool(SDValue)> Predicate,
5021                           SDValue AlternativeReplacement = SDValue()) {
5022   SDValue Replacement;
5023   // Is there a value for which the Predicate does *NOT* match? What is it?
5024   auto SplatValue = llvm::find_if_not(Values, Predicate);
5025   if (SplatValue != Values.end()) {
5026     // Does Values consist only of SplatValue's and values matching Predicate?
5027     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5028           return Value == *SplatValue || Predicate(Value);
5029         })) // Then we shall replace values matching predicate with SplatValue.
5030       Replacement = *SplatValue;
5031   }
5032   if (!Replacement) {
5033     // Oops, we did not find the "baseline" splat value.
5034     if (!AlternativeReplacement)
5035       return; // Nothing to do.
5036     // Let's replace with provided value then.
5037     Replacement = AlternativeReplacement;
5038   }
5039   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5040 }
5041 
5042 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5043 /// where the divisor is constant and the comparison target is zero,
5044 /// return a DAG expression that will generate the same comparison result
5045 /// using only multiplications, additions and shifts/rotations.
5046 /// Ref: "Hacker's Delight" 10-17.
5047 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5048                                         SDValue CompTargetNode,
5049                                         ISD::CondCode Cond,
5050                                         DAGCombinerInfo &DCI,
5051                                         const SDLoc &DL) const {
5052   SmallVector<SDNode *, 5> Built;
5053   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5054                                          DCI, DL, Built)) {
5055     for (SDNode *N : Built)
5056       DCI.AddToWorklist(N);
5057     return Folded;
5058   }
5059 
5060   return SDValue();
5061 }
5062 
5063 SDValue
5064 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5065                                   SDValue CompTargetNode, ISD::CondCode Cond,
5066                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5067                                   SmallVectorImpl<SDNode *> &Created) const {
5068   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5069   // - D must be constant, with D = D0 * 2^K where D0 is odd
5070   // - P is the multiplicative inverse of D0 modulo 2^W
5071   // - Q = floor(((2^W) - 1) / D)
5072   // where W is the width of the common type of N and D.
5073   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5074          "Only applicable for (in)equality comparisons.");
5075 
5076   SelectionDAG &DAG = DCI.DAG;
5077 
5078   EVT VT = REMNode.getValueType();
5079   EVT SVT = VT.getScalarType();
5080   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5081   EVT ShSVT = ShVT.getScalarType();
5082 
5083   // If MUL is unavailable, we cannot proceed in any case.
5084   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5085     return SDValue();
5086 
5087   bool ComparingWithAllZeros = true;
5088   bool AllComparisonsWithNonZerosAreTautological = true;
5089   bool HadTautologicalLanes = false;
5090   bool AllLanesAreTautological = true;
5091   bool HadEvenDivisor = false;
5092   bool AllDivisorsArePowerOfTwo = true;
5093   bool HadTautologicalInvertedLanes = false;
5094   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5095 
5096   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5097     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5098     if (CDiv->isNullValue())
5099       return false;
5100 
5101     const APInt &D = CDiv->getAPIntValue();
5102     const APInt &Cmp = CCmp->getAPIntValue();
5103 
5104     ComparingWithAllZeros &= Cmp.isNullValue();
5105 
5106     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5107     // if C2 is not less than C1, the comparison is always false.
5108     // But we will only be able to produce the comparison that will give the
5109     // opposive tautological answer. So this lane would need to be fixed up.
5110     bool TautologicalInvertedLane = D.ule(Cmp);
5111     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5112 
5113     // If all lanes are tautological (either all divisors are ones, or divisor
5114     // is not greater than the constant we are comparing with),
5115     // we will prefer to avoid the fold.
5116     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5117     HadTautologicalLanes |= TautologicalLane;
5118     AllLanesAreTautological &= TautologicalLane;
5119 
5120     // If we are comparing with non-zero, we need'll need  to subtract said
5121     // comparison value from the LHS. But there is no point in doing that if
5122     // every lane where we are comparing with non-zero is tautological..
5123     if (!Cmp.isNullValue())
5124       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5125 
5126     // Decompose D into D0 * 2^K
5127     unsigned K = D.countTrailingZeros();
5128     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5129     APInt D0 = D.lshr(K);
5130 
5131     // D is even if it has trailing zeros.
5132     HadEvenDivisor |= (K != 0);
5133     // D is a power-of-two if D0 is one.
5134     // If all divisors are power-of-two, we will prefer to avoid the fold.
5135     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5136 
5137     // P = inv(D0, 2^W)
5138     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5139     unsigned W = D.getBitWidth();
5140     APInt P = D0.zext(W + 1)
5141                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5142                   .trunc(W);
5143     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5144     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5145 
5146     // Q = floor((2^W - 1) u/ D)
5147     // R = ((2^W - 1) u% D)
5148     APInt Q, R;
5149     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5150 
5151     // If we are comparing with zero, then that comparison constant is okay,
5152     // else it may need to be one less than that.
5153     if (Cmp.ugt(R))
5154       Q -= 1;
5155 
5156     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5157            "We are expecting that K is always less than all-ones for ShSVT");
5158 
5159     // If the lane is tautological the result can be constant-folded.
5160     if (TautologicalLane) {
5161       // Set P and K amount to a bogus values so we can try to splat them.
5162       P = 0;
5163       K = -1;
5164       // And ensure that comparison constant is tautological,
5165       // it will always compare true/false.
5166       Q = -1;
5167     }
5168 
5169     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5170     KAmts.push_back(
5171         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5172     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5173     return true;
5174   };
5175 
5176   SDValue N = REMNode.getOperand(0);
5177   SDValue D = REMNode.getOperand(1);
5178 
5179   // Collect the values from each element.
5180   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5181     return SDValue();
5182 
5183   // If all lanes are tautological, the result can be constant-folded.
5184   if (AllLanesAreTautological)
5185     return SDValue();
5186 
5187   // If this is a urem by a powers-of-two, avoid the fold since it can be
5188   // best implemented as a bit test.
5189   if (AllDivisorsArePowerOfTwo)
5190     return SDValue();
5191 
5192   SDValue PVal, KVal, QVal;
5193   if (VT.isVector()) {
5194     if (HadTautologicalLanes) {
5195       // Try to turn PAmts into a splat, since we don't care about the values
5196       // that are currently '0'. If we can't, just keep '0'`s.
5197       turnVectorIntoSplatVector(PAmts, isNullConstant);
5198       // Try to turn KAmts into a splat, since we don't care about the values
5199       // that are currently '-1'. If we can't, change them to '0'`s.
5200       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5201                                 DAG.getConstant(0, DL, ShSVT));
5202     }
5203 
5204     PVal = DAG.getBuildVector(VT, DL, PAmts);
5205     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5206     QVal = DAG.getBuildVector(VT, DL, QAmts);
5207   } else {
5208     PVal = PAmts[0];
5209     KVal = KAmts[0];
5210     QVal = QAmts[0];
5211   }
5212 
5213   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5214     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5215       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5216     assert(CompTargetNode.getValueType() == N.getValueType() &&
5217            "Expecting that the types on LHS and RHS of comparisons match.");
5218     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5219   }
5220 
5221   // (mul N, P)
5222   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5223   Created.push_back(Op0.getNode());
5224 
5225   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5226   // divisors as a performance improvement, since rotating by 0 is a no-op.
5227   if (HadEvenDivisor) {
5228     // We need ROTR to do this.
5229     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5230       return SDValue();
5231     SDNodeFlags Flags;
5232     Flags.setExact(true);
5233     // UREM: (rotr (mul N, P), K)
5234     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5235     Created.push_back(Op0.getNode());
5236   }
5237 
5238   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5239   SDValue NewCC =
5240       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5241                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5242   if (!HadTautologicalInvertedLanes)
5243     return NewCC;
5244 
5245   // If any lanes previously compared always-false, the NewCC will give
5246   // always-true result for them, so we need to fixup those lanes.
5247   // Or the other way around for inequality predicate.
5248   assert(VT.isVector() && "Can/should only get here for vectors.");
5249   Created.push_back(NewCC.getNode());
5250 
5251   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5252   // if C2 is not less than C1, the comparison is always false.
5253   // But we have produced the comparison that will give the
5254   // opposive tautological answer. So these lanes would need to be fixed up.
5255   SDValue TautologicalInvertedChannels =
5256       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5257   Created.push_back(TautologicalInvertedChannels.getNode());
5258 
5259   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5260     // If we have a vector select, let's replace the comparison results in the
5261     // affected lanes with the correct tautological result.
5262     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5263                                               DL, SETCCVT, SETCCVT);
5264     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5265                        Replacement, NewCC);
5266   }
5267 
5268   // Else, we can just invert the comparison result in the appropriate lanes.
5269   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5270     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5271                        TautologicalInvertedChannels);
5272 
5273   return SDValue(); // Don't know how to lower.
5274 }
5275 
5276 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5277 /// where the divisor is constant and the comparison target is zero,
5278 /// return a DAG expression that will generate the same comparison result
5279 /// using only multiplications, additions and shifts/rotations.
5280 /// Ref: "Hacker's Delight" 10-17.
5281 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5282                                         SDValue CompTargetNode,
5283                                         ISD::CondCode Cond,
5284                                         DAGCombinerInfo &DCI,
5285                                         const SDLoc &DL) const {
5286   SmallVector<SDNode *, 7> Built;
5287   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5288                                          DCI, DL, Built)) {
5289     assert(Built.size() <= 7 && "Max size prediction failed.");
5290     for (SDNode *N : Built)
5291       DCI.AddToWorklist(N);
5292     return Folded;
5293   }
5294 
5295   return SDValue();
5296 }
5297 
5298 SDValue
5299 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5300                                   SDValue CompTargetNode, ISD::CondCode Cond,
5301                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5302                                   SmallVectorImpl<SDNode *> &Created) const {
5303   // Fold:
5304   //   (seteq/ne (srem N, D), 0)
5305   // To:
5306   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5307   //
5308   // - D must be constant, with D = D0 * 2^K where D0 is odd
5309   // - P is the multiplicative inverse of D0 modulo 2^W
5310   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5311   // - Q = floor((2 * A) / (2^K))
5312   // where W is the width of the common type of N and D.
5313   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5314          "Only applicable for (in)equality comparisons.");
5315 
5316   SelectionDAG &DAG = DCI.DAG;
5317 
5318   EVT VT = REMNode.getValueType();
5319   EVT SVT = VT.getScalarType();
5320   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5321   EVT ShSVT = ShVT.getScalarType();
5322 
5323   // If MUL is unavailable, we cannot proceed in any case.
5324   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5325     return SDValue();
5326 
5327   // TODO: Could support comparing with non-zero too.
5328   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5329   if (!CompTarget || !CompTarget->isNullValue())
5330     return SDValue();
5331 
5332   bool HadIntMinDivisor = false;
5333   bool HadOneDivisor = false;
5334   bool AllDivisorsAreOnes = true;
5335   bool HadEvenDivisor = false;
5336   bool NeedToApplyOffset = false;
5337   bool AllDivisorsArePowerOfTwo = true;
5338   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5339 
5340   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5341     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5342     if (C->isNullValue())
5343       return false;
5344 
5345     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5346 
5347     // WARNING: this fold is only valid for positive divisors!
5348     APInt D = C->getAPIntValue();
5349     if (D.isNegative())
5350       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5351 
5352     HadIntMinDivisor |= D.isMinSignedValue();
5353 
5354     // If all divisors are ones, we will prefer to avoid the fold.
5355     HadOneDivisor |= D.isOneValue();
5356     AllDivisorsAreOnes &= D.isOneValue();
5357 
5358     // Decompose D into D0 * 2^K
5359     unsigned K = D.countTrailingZeros();
5360     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5361     APInt D0 = D.lshr(K);
5362 
5363     if (!D.isMinSignedValue()) {
5364       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5365       // we don't care about this lane in this fold, we'll special-handle it.
5366       HadEvenDivisor |= (K != 0);
5367     }
5368 
5369     // D is a power-of-two if D0 is one. This includes INT_MIN.
5370     // If all divisors are power-of-two, we will prefer to avoid the fold.
5371     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5372 
5373     // P = inv(D0, 2^W)
5374     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5375     unsigned W = D.getBitWidth();
5376     APInt P = D0.zext(W + 1)
5377                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5378                   .trunc(W);
5379     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5380     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5381 
5382     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5383     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5384     A.clearLowBits(K);
5385 
5386     if (!D.isMinSignedValue()) {
5387       // If divisor INT_MIN, then we don't care about this lane in this fold,
5388       // we'll special-handle it.
5389       NeedToApplyOffset |= A != 0;
5390     }
5391 
5392     // Q = floor((2 * A) / (2^K))
5393     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5394 
5395     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5396            "We are expecting that A is always less than all-ones for SVT");
5397     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5398            "We are expecting that K is always less than all-ones for ShSVT");
5399 
5400     // If the divisor is 1 the result can be constant-folded. Likewise, we
5401     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5402     if (D.isOneValue()) {
5403       // Set P, A and K to a bogus values so we can try to splat them.
5404       P = 0;
5405       A = -1;
5406       K = -1;
5407 
5408       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5409       Q = -1;
5410     }
5411 
5412     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5413     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5414     KAmts.push_back(
5415         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5416     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5417     return true;
5418   };
5419 
5420   SDValue N = REMNode.getOperand(0);
5421   SDValue D = REMNode.getOperand(1);
5422 
5423   // Collect the values from each element.
5424   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5425     return SDValue();
5426 
5427   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5428   if (AllDivisorsAreOnes)
5429     return SDValue();
5430 
5431   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5432   // since it can be best implemented as a bit test.
5433   if (AllDivisorsArePowerOfTwo)
5434     return SDValue();
5435 
5436   SDValue PVal, AVal, KVal, QVal;
5437   if (VT.isVector()) {
5438     if (HadOneDivisor) {
5439       // Try to turn PAmts into a splat, since we don't care about the values
5440       // that are currently '0'. If we can't, just keep '0'`s.
5441       turnVectorIntoSplatVector(PAmts, isNullConstant);
5442       // Try to turn AAmts into a splat, since we don't care about the
5443       // values that are currently '-1'. If we can't, change them to '0'`s.
5444       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5445                                 DAG.getConstant(0, DL, SVT));
5446       // Try to turn KAmts into a splat, since we don't care about the values
5447       // that are currently '-1'. If we can't, change them to '0'`s.
5448       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5449                                 DAG.getConstant(0, DL, ShSVT));
5450     }
5451 
5452     PVal = DAG.getBuildVector(VT, DL, PAmts);
5453     AVal = DAG.getBuildVector(VT, DL, AAmts);
5454     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5455     QVal = DAG.getBuildVector(VT, DL, QAmts);
5456   } else {
5457     PVal = PAmts[0];
5458     AVal = AAmts[0];
5459     KVal = KAmts[0];
5460     QVal = QAmts[0];
5461   }
5462 
5463   // (mul N, P)
5464   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5465   Created.push_back(Op0.getNode());
5466 
5467   if (NeedToApplyOffset) {
5468     // We need ADD to do this.
5469     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5470       return SDValue();
5471 
5472     // (add (mul N, P), A)
5473     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5474     Created.push_back(Op0.getNode());
5475   }
5476 
5477   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5478   // divisors as a performance improvement, since rotating by 0 is a no-op.
5479   if (HadEvenDivisor) {
5480     // We need ROTR to do this.
5481     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5482       return SDValue();
5483     SDNodeFlags Flags;
5484     Flags.setExact(true);
5485     // SREM: (rotr (add (mul N, P), A), K)
5486     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5487     Created.push_back(Op0.getNode());
5488   }
5489 
5490   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5491   SDValue Fold =
5492       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5493                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5494 
5495   // If we didn't have lanes with INT_MIN divisor, then we're done.
5496   if (!HadIntMinDivisor)
5497     return Fold;
5498 
5499   // That fold is only valid for positive divisors. Which effectively means,
5500   // it is invalid for INT_MIN divisors. So if we have such a lane,
5501   // we must fix-up results for said lanes.
5502   assert(VT.isVector() && "Can/should only get here for vectors.");
5503 
5504   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5505       !isOperationLegalOrCustom(ISD::AND, VT) ||
5506       !isOperationLegalOrCustom(Cond, VT) ||
5507       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5508     return SDValue();
5509 
5510   Created.push_back(Fold.getNode());
5511 
5512   SDValue IntMin = DAG.getConstant(
5513       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5514   SDValue IntMax = DAG.getConstant(
5515       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5516   SDValue Zero =
5517       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5518 
5519   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5520   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5521   Created.push_back(DivisorIsIntMin.getNode());
5522 
5523   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5524   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5525   Created.push_back(Masked.getNode());
5526   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5527   Created.push_back(MaskedIsZero.getNode());
5528 
5529   // To produce final result we need to blend 2 vectors: 'SetCC' and
5530   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5531   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5532   // constant-folded, select can get lowered to a shuffle with constant mask.
5533   SDValue Blended =
5534       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5535 
5536   return Blended;
5537 }
5538 
5539 bool TargetLowering::
5540 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5541   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5542     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5543                                 "be a constant integer");
5544     return true;
5545   }
5546 
5547   return false;
5548 }
5549 
5550 TargetLowering::NegatibleCost
5551 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
5552                                  bool LegalOperations, bool ForCodeSize,
5553                                  unsigned Depth) const {
5554   // fneg is removable even if it has multiple uses.
5555   if (Op.getOpcode() == ISD::FNEG)
5556     return NegatibleCost::Cheaper;
5557 
5558   // Don't allow anything with multiple uses unless we know it is free.
5559   EVT VT = Op.getValueType();
5560   const SDNodeFlags Flags = Op->getFlags();
5561   const TargetOptions &Options = DAG.getTarget().Options;
5562   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5563                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5564     return NegatibleCost::Expensive;
5565 
5566   // Don't recurse exponentially.
5567   if (Depth > SelectionDAG::MaxRecursionDepth)
5568     return NegatibleCost::Expensive;
5569 
5570   switch (Op.getOpcode()) {
5571   case ISD::ConstantFP: {
5572     if (!LegalOperations)
5573       return NegatibleCost::Neutral;
5574 
5575     // Don't invert constant FP values after legalization unless the target says
5576     // the negated constant is legal.
5577     if (isOperationLegal(ISD::ConstantFP, VT) ||
5578         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5579                      ForCodeSize))
5580       return NegatibleCost::Neutral;
5581     break;
5582   }
5583   case ISD::BUILD_VECTOR: {
5584     // Only permit BUILD_VECTOR of constants.
5585     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5586           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5587         }))
5588       return NegatibleCost::Expensive;
5589     if (!LegalOperations)
5590       return NegatibleCost::Neutral;
5591     if (isOperationLegal(ISD::ConstantFP, VT) &&
5592         isOperationLegal(ISD::BUILD_VECTOR, VT))
5593       return NegatibleCost::Neutral;
5594     if (llvm::all_of(Op->op_values(), [&](SDValue N) {
5595           return N.isUndef() ||
5596                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5597                               ForCodeSize);
5598         }))
5599       return NegatibleCost::Neutral;
5600     break;
5601   }
5602   case ISD::FADD: {
5603     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5604       return NegatibleCost::Expensive;
5605 
5606     // After operation legalization, it might not be legal to create new FSUBs.
5607     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5608       return NegatibleCost::Expensive;
5609 
5610     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5611     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5612                                         ForCodeSize, Depth + 1);
5613     if (V0 != NegatibleCost::Expensive)
5614       return V0;
5615     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5616     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5617                             Depth + 1);
5618   }
5619   case ISD::FSUB:
5620     // We can't turn -(A-B) into B-A when we honor signed zeros.
5621     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5622       return NegatibleCost::Expensive;
5623 
5624     // fold (fneg (fsub A, B)) -> (fsub B, A)
5625     return NegatibleCost::Neutral;
5626   case ISD::FMUL:
5627   case ISD::FDIV: {
5628     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5629     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5630                                         ForCodeSize, Depth + 1);
5631     if (V0 != NegatibleCost::Expensive)
5632       return V0;
5633 
5634     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5635     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5636       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5637         return NegatibleCost::Expensive;
5638 
5639     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5640                             Depth + 1);
5641   }
5642   case ISD::FMA:
5643   case ISD::FMAD: {
5644     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5645       return NegatibleCost::Expensive;
5646 
5647     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5648     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5649     NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations,
5650                                         ForCodeSize, Depth + 1);
5651     if (NegatibleCost::Expensive == V2)
5652       return NegatibleCost::Expensive;
5653 
5654     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5655     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5656                                         ForCodeSize, Depth + 1);
5657     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5658                                         ForCodeSize, Depth + 1);
5659     NegatibleCost V01 = std::max(V0, V1);
5660     if (V01 == NegatibleCost::Expensive)
5661       return NegatibleCost::Expensive;
5662     return std::max(V01, V2);
5663   }
5664 
5665   case ISD::FP_EXTEND:
5666   case ISD::FP_ROUND:
5667   case ISD::FSIN:
5668     return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5669                             Depth + 1);
5670   }
5671 
5672   return NegatibleCost::Expensive;
5673 }
5674 
5675 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5676                                              bool LegalOperations,
5677                                              bool ForCodeSize,
5678                                              unsigned Depth) const {
5679   // fneg is removable even if it has multiple uses.
5680   if (Op.getOpcode() == ISD::FNEG)
5681     return Op.getOperand(0);
5682 
5683   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5684          "getNegatedExpression doesn't match getNegatibleCost");
5685   const SDNodeFlags Flags = Op->getFlags();
5686 
5687   switch (Op.getOpcode()) {
5688   case ISD::ConstantFP: {
5689     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5690     V.changeSign();
5691     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5692   }
5693   case ISD::BUILD_VECTOR: {
5694     SmallVector<SDValue, 4> Ops;
5695     for (SDValue C : Op->op_values()) {
5696       if (C.isUndef()) {
5697         Ops.push_back(C);
5698         continue;
5699       }
5700       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5701       V.changeSign();
5702       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5703     }
5704     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5705   }
5706   case ISD::FADD: {
5707     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5708             Flags.hasNoSignedZeros()) &&
5709            "Expected NSZ fp-flag");
5710 
5711     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5712     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5713                                         ForCodeSize, Depth + 1);
5714     if (V0 != NegatibleCost::Expensive)
5715       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5716                          getNegatedExpression(Op.getOperand(0), DAG,
5717                                               LegalOperations, ForCodeSize,
5718                                               Depth + 1),
5719                          Op.getOperand(1), Flags);
5720     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5721     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5722                        getNegatedExpression(Op.getOperand(1), DAG,
5723                                             LegalOperations, ForCodeSize,
5724                                             Depth + 1),
5725                        Op.getOperand(0), Flags);
5726   }
5727   case ISD::FSUB:
5728     // fold (fneg (fsub 0, B)) -> B
5729     if (ConstantFPSDNode *N0CFP =
5730             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5731       if (N0CFP->isZero())
5732         return Op.getOperand(1);
5733 
5734     // fold (fneg (fsub A, B)) -> (fsub B, A)
5735     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5736                        Op.getOperand(1), Op.getOperand(0), Flags);
5737 
5738   case ISD::FMUL:
5739   case ISD::FDIV: {
5740     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5741     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5742                                         ForCodeSize, Depth + 1);
5743     if (V0 != NegatibleCost::Expensive)
5744       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5745                          getNegatedExpression(Op.getOperand(0), DAG,
5746                                               LegalOperations, ForCodeSize,
5747                                               Depth + 1),
5748                          Op.getOperand(1), Flags);
5749 
5750     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5751     return DAG.getNode(
5752         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5753         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5754                              ForCodeSize, Depth + 1),
5755         Flags);
5756   }
5757   case ISD::FMA:
5758   case ISD::FMAD: {
5759     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5760             Flags.hasNoSignedZeros()) &&
5761            "Expected NSZ fp-flag");
5762 
5763     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5764                                         ForCodeSize, Depth + 1);
5765 
5766     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5767                                         ForCodeSize, Depth + 1);
5768     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5769                                         ForCodeSize, Depth + 1);
5770     // TODO: This is a hack. It is possible that costs have changed between now
5771     //       and the initial calls to getNegatibleCost(). That is because we
5772     //       are rewriting the expression, and that may change the number of
5773     //       uses (and therefore the cost) of values. If the negation costs are
5774     //       equal, only negate this value if it is a constant. Otherwise, try
5775     //       operand 1. A better fix would eliminate uses as a cost factor or
5776     //       track the change in uses as we rewrite the expression.
5777     if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) {
5778       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5779       SDValue Neg0 = getNegatedExpression(
5780           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5781       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5782                          Op.getOperand(1), Neg2, Flags);
5783     }
5784 
5785     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5786     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5787                                         ForCodeSize, Depth + 1);
5788     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5789                        Op.getOperand(0), Neg1, Neg2, Flags);
5790   }
5791 
5792   case ISD::FP_EXTEND:
5793   case ISD::FSIN:
5794     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5795                        getNegatedExpression(Op.getOperand(0), DAG,
5796                                             LegalOperations, ForCodeSize,
5797                                             Depth + 1));
5798   case ISD::FP_ROUND:
5799     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5800                        getNegatedExpression(Op.getOperand(0), DAG,
5801                                             LegalOperations, ForCodeSize,
5802                                             Depth + 1),
5803                        Op.getOperand(1));
5804   }
5805 
5806   llvm_unreachable("Unknown code");
5807 }
5808 
5809 //===----------------------------------------------------------------------===//
5810 // Legalization Utilities
5811 //===----------------------------------------------------------------------===//
5812 
5813 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5814                                     SDValue LHS, SDValue RHS,
5815                                     SmallVectorImpl<SDValue> &Result,
5816                                     EVT HiLoVT, SelectionDAG &DAG,
5817                                     MulExpansionKind Kind, SDValue LL,
5818                                     SDValue LH, SDValue RL, SDValue RH) const {
5819   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5820          Opcode == ISD::SMUL_LOHI);
5821 
5822   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5823                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5824   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5825                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5826   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5827                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5828   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5829                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5830 
5831   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5832     return false;
5833 
5834   unsigned OuterBitSize = VT.getScalarSizeInBits();
5835   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5836   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5837   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5838 
5839   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5840   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5841          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5842 
5843   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5844   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5845                           bool Signed) -> bool {
5846     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5847       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5848       Hi = SDValue(Lo.getNode(), 1);
5849       return true;
5850     }
5851     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5852       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5853       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5854       return true;
5855     }
5856     return false;
5857   };
5858 
5859   SDValue Lo, Hi;
5860 
5861   if (!LL.getNode() && !RL.getNode() &&
5862       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5863     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5864     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5865   }
5866 
5867   if (!LL.getNode())
5868     return false;
5869 
5870   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5871   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5872       DAG.MaskedValueIsZero(RHS, HighMask)) {
5873     // The inputs are both zero-extended.
5874     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5875       Result.push_back(Lo);
5876       Result.push_back(Hi);
5877       if (Opcode != ISD::MUL) {
5878         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5879         Result.push_back(Zero);
5880         Result.push_back(Zero);
5881       }
5882       return true;
5883     }
5884   }
5885 
5886   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5887       RHSSB > InnerBitSize) {
5888     // The input values are both sign-extended.
5889     // TODO non-MUL case?
5890     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5891       Result.push_back(Lo);
5892       Result.push_back(Hi);
5893       return true;
5894     }
5895   }
5896 
5897   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5898   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5899   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5900     // FIXME getShiftAmountTy does not always return a sensible result when VT
5901     // is an illegal type, and so the type may be too small to fit the shift
5902     // amount. Override it with i32. The shift will have to be legalized.
5903     ShiftAmountTy = MVT::i32;
5904   }
5905   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5906 
5907   if (!LH.getNode() && !RH.getNode() &&
5908       isOperationLegalOrCustom(ISD::SRL, VT) &&
5909       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5910     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5911     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5912     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5913     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5914   }
5915 
5916   if (!LH.getNode())
5917     return false;
5918 
5919   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5920     return false;
5921 
5922   Result.push_back(Lo);
5923 
5924   if (Opcode == ISD::MUL) {
5925     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5926     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5927     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5928     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5929     Result.push_back(Hi);
5930     return true;
5931   }
5932 
5933   // Compute the full width result.
5934   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5935     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5936     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5937     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5938     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5939   };
5940 
5941   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5942   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5943     return false;
5944 
5945   // This is effectively the add part of a multiply-add of half-sized operands,
5946   // so it cannot overflow.
5947   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5948 
5949   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5950     return false;
5951 
5952   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5953   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5954 
5955   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5956                   isOperationLegalOrCustom(ISD::ADDE, VT));
5957   if (UseGlue)
5958     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5959                        Merge(Lo, Hi));
5960   else
5961     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5962                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5963 
5964   SDValue Carry = Next.getValue(1);
5965   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5966   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5967 
5968   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5969     return false;
5970 
5971   if (UseGlue)
5972     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5973                      Carry);
5974   else
5975     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5976                      Zero, Carry);
5977 
5978   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5979 
5980   if (Opcode == ISD::SMUL_LOHI) {
5981     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5982                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5983     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5984 
5985     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5986                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5987     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5988   }
5989 
5990   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5991   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5992   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5993   return true;
5994 }
5995 
5996 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5997                                SelectionDAG &DAG, MulExpansionKind Kind,
5998                                SDValue LL, SDValue LH, SDValue RL,
5999                                SDValue RH) const {
6000   SmallVector<SDValue, 2> Result;
6001   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
6002                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6003                            DAG, Kind, LL, LH, RL, RH);
6004   if (Ok) {
6005     assert(Result.size() == 2);
6006     Lo = Result[0];
6007     Hi = Result[1];
6008   }
6009   return Ok;
6010 }
6011 
6012 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6013                                        SelectionDAG &DAG) const {
6014   EVT VT = Node->getValueType(0);
6015 
6016   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6017                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6018                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6019                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6020     return false;
6021 
6022   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6023   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6024   SDValue X = Node->getOperand(0);
6025   SDValue Y = Node->getOperand(1);
6026   SDValue Z = Node->getOperand(2);
6027 
6028   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6029   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6030   SDLoc DL(SDValue(Node, 0));
6031 
6032   EVT ShVT = Z.getValueType();
6033   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6034   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6035 
6036   SDValue ShAmt;
6037   if (isPowerOf2_32(EltSizeInBits)) {
6038     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6039     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6040   } else {
6041     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6042   }
6043 
6044   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6045   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6046   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6047   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6048 
6049   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6050   // and that is undefined. We must compare and select to avoid UB.
6051   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6052 
6053   // For fshl, 0-shift returns the 1st arg (X).
6054   // For fshr, 0-shift returns the 2nd arg (Y).
6055   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6056   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6057   return true;
6058 }
6059 
6060 // TODO: Merge with expandFunnelShift.
6061 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6062                                SelectionDAG &DAG) const {
6063   EVT VT = Node->getValueType(0);
6064   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6065   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6066   SDValue Op0 = Node->getOperand(0);
6067   SDValue Op1 = Node->getOperand(1);
6068   SDLoc DL(SDValue(Node, 0));
6069 
6070   EVT ShVT = Op1.getValueType();
6071   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6072 
6073   // If a rotate in the other direction is legal, use it.
6074   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6075   if (isOperationLegal(RevRot, VT)) {
6076     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6077     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6078     return true;
6079   }
6080 
6081   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6082                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6083                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6084                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6085                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6086     return false;
6087 
6088   // Otherwise,
6089   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6090   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6091   //
6092   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6093          "Expecting the type bitwidth to be a power of 2");
6094   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6095   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6096   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6097   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6098   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6099   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6100   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6101                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6102   return true;
6103 }
6104 
6105 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6106                                       SelectionDAG &DAG) const {
6107   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6108   SDValue Src = Node->getOperand(OpNo);
6109   EVT SrcVT = Src.getValueType();
6110   EVT DstVT = Node->getValueType(0);
6111   SDLoc dl(SDValue(Node, 0));
6112 
6113   // FIXME: Only f32 to i64 conversions are supported.
6114   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6115     return false;
6116 
6117   if (Node->isStrictFPOpcode())
6118     // When a NaN is converted to an integer a trap is allowed. We can't
6119     // use this expansion here because it would eliminate that trap. Other
6120     // traps are also allowed and cannot be eliminated. See
6121     // IEEE 754-2008 sec 5.8.
6122     return false;
6123 
6124   // Expand f32 -> i64 conversion
6125   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6126   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6127   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6128   EVT IntVT = SrcVT.changeTypeToInteger();
6129   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6130 
6131   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6132   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6133   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6134   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6135   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6136   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6137 
6138   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6139 
6140   SDValue ExponentBits = DAG.getNode(
6141       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6142       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6143   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6144 
6145   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6146                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6147                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6148   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6149 
6150   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6151                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6152                           DAG.getConstant(0x00800000, dl, IntVT));
6153 
6154   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6155 
6156   R = DAG.getSelectCC(
6157       dl, Exponent, ExponentLoBit,
6158       DAG.getNode(ISD::SHL, dl, DstVT, R,
6159                   DAG.getZExtOrTrunc(
6160                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6161                       dl, IntShVT)),
6162       DAG.getNode(ISD::SRL, dl, DstVT, R,
6163                   DAG.getZExtOrTrunc(
6164                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6165                       dl, IntShVT)),
6166       ISD::SETGT);
6167 
6168   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6169                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6170 
6171   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6172                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6173   return true;
6174 }
6175 
6176 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6177                                       SDValue &Chain,
6178                                       SelectionDAG &DAG) const {
6179   SDLoc dl(SDValue(Node, 0));
6180   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6181   SDValue Src = Node->getOperand(OpNo);
6182 
6183   EVT SrcVT = Src.getValueType();
6184   EVT DstVT = Node->getValueType(0);
6185   EVT SetCCVT =
6186       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6187   EVT DstSetCCVT =
6188       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6189 
6190   // Only expand vector types if we have the appropriate vector bit operations.
6191   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6192                                                    ISD::FP_TO_SINT;
6193   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6194                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6195     return false;
6196 
6197   // If the maximum float value is smaller then the signed integer range,
6198   // the destination signmask can't be represented by the float, so we can
6199   // just use FP_TO_SINT directly.
6200   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6201   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6202   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6203   if (APFloat::opOverflow &
6204       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6205     if (Node->isStrictFPOpcode()) {
6206       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6207                            { Node->getOperand(0), Src });
6208       Chain = Result.getValue(1);
6209     } else
6210       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6211     return true;
6212   }
6213 
6214   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6215   SDValue Sel;
6216 
6217   if (Node->isStrictFPOpcode()) {
6218     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6219                        Node->getOperand(0), /*IsSignaling*/ true);
6220     Chain = Sel.getValue(1);
6221   } else {
6222     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6223   }
6224 
6225   bool Strict = Node->isStrictFPOpcode() ||
6226                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6227 
6228   if (Strict) {
6229     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6230     // signmask then offset (the result of which should be fully representable).
6231     // Sel = Src < 0x8000000000000000
6232     // FltOfs = select Sel, 0, 0x8000000000000000
6233     // IntOfs = select Sel, 0, 0x8000000000000000
6234     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6235 
6236     // TODO: Should any fast-math-flags be set for the FSUB?
6237     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6238                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6239     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6240     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6241                                    DAG.getConstant(0, dl, DstVT),
6242                                    DAG.getConstant(SignMask, dl, DstVT));
6243     SDValue SInt;
6244     if (Node->isStrictFPOpcode()) {
6245       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6246                                 { Chain, Src, FltOfs });
6247       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6248                          { Val.getValue(1), Val });
6249       Chain = SInt.getValue(1);
6250     } else {
6251       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6252       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6253     }
6254     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6255   } else {
6256     // Expand based on maximum range of FP_TO_SINT:
6257     // True = fp_to_sint(Src)
6258     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6259     // Result = select (Src < 0x8000000000000000), True, False
6260 
6261     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6262     // TODO: Should any fast-math-flags be set for the FSUB?
6263     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6264                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6265     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6266                         DAG.getConstant(SignMask, dl, DstVT));
6267     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6268     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6269   }
6270   return true;
6271 }
6272 
6273 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6274                                       SDValue &Chain,
6275                                       SelectionDAG &DAG) const {
6276   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6277   SDValue Src = Node->getOperand(OpNo);
6278   EVT SrcVT = Src.getValueType();
6279   EVT DstVT = Node->getValueType(0);
6280 
6281   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6282     return false;
6283 
6284   // Only expand vector types if we have the appropriate vector bit operations.
6285   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6286                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6287                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6288                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6289                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6290     return false;
6291 
6292   SDLoc dl(SDValue(Node, 0));
6293   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6294 
6295   // Implementation of unsigned i64 to f64 following the algorithm in
6296   // __floatundidf in compiler_rt. This implementation has the advantage
6297   // of performing rounding correctly, both in the default rounding mode
6298   // and in all alternate rounding modes.
6299   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6300   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6301       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6302   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6303   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6304   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6305 
6306   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6307   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6308   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6309   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6310   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6311   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6312   if (Node->isStrictFPOpcode()) {
6313     SDValue HiSub =
6314         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6315                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6316     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6317                          {HiSub.getValue(1), LoFlt, HiSub});
6318     Chain = Result.getValue(1);
6319   } else {
6320     SDValue HiSub =
6321         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6322     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6323   }
6324   return true;
6325 }
6326 
6327 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6328                                               SelectionDAG &DAG) const {
6329   SDLoc dl(Node);
6330   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6331     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6332   EVT VT = Node->getValueType(0);
6333   if (isOperationLegalOrCustom(NewOp, VT)) {
6334     SDValue Quiet0 = Node->getOperand(0);
6335     SDValue Quiet1 = Node->getOperand(1);
6336 
6337     if (!Node->getFlags().hasNoNaNs()) {
6338       // Insert canonicalizes if it's possible we need to quiet to get correct
6339       // sNaN behavior.
6340       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6341         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6342                              Node->getFlags());
6343       }
6344       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6345         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6346                              Node->getFlags());
6347       }
6348     }
6349 
6350     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6351   }
6352 
6353   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6354   // instead if there are no NaNs.
6355   if (Node->getFlags().hasNoNaNs()) {
6356     unsigned IEEE2018Op =
6357         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6358     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6359       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6360                          Node->getOperand(1), Node->getFlags());
6361     }
6362   }
6363 
6364   // If none of the above worked, but there are no NaNs, then expand to
6365   // a compare/select sequence.  This is required for correctness since
6366   // InstCombine might have canonicalized a fcmp+select sequence to a
6367   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6368   // expansion to libcall, we might introduce a link-time dependency
6369   // on libm into a file that originally did not have one.
6370   if (Node->getFlags().hasNoNaNs()) {
6371     ISD::CondCode Pred =
6372         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6373     SDValue Op1 = Node->getOperand(0);
6374     SDValue Op2 = Node->getOperand(1);
6375     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6376     // Copy FMF flags, but always set the no-signed-zeros flag
6377     // as this is implied by the FMINNUM/FMAXNUM semantics.
6378     SDNodeFlags Flags = Node->getFlags();
6379     Flags.setNoSignedZeros(true);
6380     SelCC->setFlags(Flags);
6381     return SelCC;
6382   }
6383 
6384   return SDValue();
6385 }
6386 
6387 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6388                                  SelectionDAG &DAG) const {
6389   SDLoc dl(Node);
6390   EVT VT = Node->getValueType(0);
6391   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6392   SDValue Op = Node->getOperand(0);
6393   unsigned Len = VT.getScalarSizeInBits();
6394   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6395 
6396   // TODO: Add support for irregular type lengths.
6397   if (!(Len <= 128 && Len % 8 == 0))
6398     return false;
6399 
6400   // Only expand vector types if we have the appropriate vector bit operations.
6401   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6402                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6403                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6404                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6405                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6406     return false;
6407 
6408   // This is the "best" algorithm from
6409   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6410   SDValue Mask55 =
6411       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6412   SDValue Mask33 =
6413       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6414   SDValue Mask0F =
6415       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6416   SDValue Mask01 =
6417       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6418 
6419   // v = v - ((v >> 1) & 0x55555555...)
6420   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6421                    DAG.getNode(ISD::AND, dl, VT,
6422                                DAG.getNode(ISD::SRL, dl, VT, Op,
6423                                            DAG.getConstant(1, dl, ShVT)),
6424                                Mask55));
6425   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6426   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6427                    DAG.getNode(ISD::AND, dl, VT,
6428                                DAG.getNode(ISD::SRL, dl, VT, Op,
6429                                            DAG.getConstant(2, dl, ShVT)),
6430                                Mask33));
6431   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6432   Op = DAG.getNode(ISD::AND, dl, VT,
6433                    DAG.getNode(ISD::ADD, dl, VT, Op,
6434                                DAG.getNode(ISD::SRL, dl, VT, Op,
6435                                            DAG.getConstant(4, dl, ShVT))),
6436                    Mask0F);
6437   // v = (v * 0x01010101...) >> (Len - 8)
6438   if (Len > 8)
6439     Op =
6440         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6441                     DAG.getConstant(Len - 8, dl, ShVT));
6442 
6443   Result = Op;
6444   return true;
6445 }
6446 
6447 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6448                                 SelectionDAG &DAG) const {
6449   SDLoc dl(Node);
6450   EVT VT = Node->getValueType(0);
6451   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6452   SDValue Op = Node->getOperand(0);
6453   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6454 
6455   // If the non-ZERO_UNDEF version is supported we can use that instead.
6456   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6457       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6458     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6459     return true;
6460   }
6461 
6462   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6463   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6464     EVT SetCCVT =
6465         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6466     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6467     SDValue Zero = DAG.getConstant(0, dl, VT);
6468     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6469     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6470                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6471     return true;
6472   }
6473 
6474   // Only expand vector types if we have the appropriate vector bit operations.
6475   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6476                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6477                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6478                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6479     return false;
6480 
6481   // for now, we do this:
6482   // x = x | (x >> 1);
6483   // x = x | (x >> 2);
6484   // ...
6485   // x = x | (x >>16);
6486   // x = x | (x >>32); // for 64-bit input
6487   // return popcount(~x);
6488   //
6489   // Ref: "Hacker's Delight" by Henry Warren
6490   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6491     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6492     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6493                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6494   }
6495   Op = DAG.getNOT(dl, Op, VT);
6496   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6497   return true;
6498 }
6499 
6500 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6501                                 SelectionDAG &DAG) const {
6502   SDLoc dl(Node);
6503   EVT VT = Node->getValueType(0);
6504   SDValue Op = Node->getOperand(0);
6505   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6506 
6507   // If the non-ZERO_UNDEF version is supported we can use that instead.
6508   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6509       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6510     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6511     return true;
6512   }
6513 
6514   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6515   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6516     EVT SetCCVT =
6517         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6518     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6519     SDValue Zero = DAG.getConstant(0, dl, VT);
6520     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6521     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6522                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6523     return true;
6524   }
6525 
6526   // Only expand vector types if we have the appropriate vector bit operations.
6527   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6528                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6529                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6530                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6531                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6532                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6533     return false;
6534 
6535   // for now, we use: { return popcount(~x & (x - 1)); }
6536   // unless the target has ctlz but not ctpop, in which case we use:
6537   // { return 32 - nlz(~x & (x-1)); }
6538   // Ref: "Hacker's Delight" by Henry Warren
6539   SDValue Tmp = DAG.getNode(
6540       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6541       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6542 
6543   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6544   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6545     Result =
6546         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6547                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6548     return true;
6549   }
6550 
6551   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6552   return true;
6553 }
6554 
6555 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6556                                SelectionDAG &DAG) const {
6557   SDLoc dl(N);
6558   EVT VT = N->getValueType(0);
6559   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6560   SDValue Op = N->getOperand(0);
6561 
6562   // Only expand vector types if we have the appropriate vector operations.
6563   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6564                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6565                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6566     return false;
6567 
6568   SDValue Shift =
6569       DAG.getNode(ISD::SRA, dl, VT, Op,
6570                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6571   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6572   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6573   return true;
6574 }
6575 
6576 std::pair<SDValue, SDValue>
6577 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6578                                     SelectionDAG &DAG) const {
6579   SDLoc SL(LD);
6580   SDValue Chain = LD->getChain();
6581   SDValue BasePTR = LD->getBasePtr();
6582   EVT SrcVT = LD->getMemoryVT();
6583   ISD::LoadExtType ExtType = LD->getExtensionType();
6584 
6585   unsigned NumElem = SrcVT.getVectorNumElements();
6586 
6587   EVT SrcEltVT = SrcVT.getScalarType();
6588   EVT DstEltVT = LD->getValueType(0).getScalarType();
6589 
6590   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6591   assert(SrcEltVT.isByteSized());
6592 
6593   SmallVector<SDValue, 8> Vals;
6594   SmallVector<SDValue, 8> LoadChains;
6595 
6596   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6597     SDValue ScalarLoad =
6598         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6599                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6600                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6601                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6602 
6603     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6604 
6605     Vals.push_back(ScalarLoad.getValue(0));
6606     LoadChains.push_back(ScalarLoad.getValue(1));
6607   }
6608 
6609   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6610   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6611 
6612   return std::make_pair(Value, NewChain);
6613 }
6614 
6615 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6616                                              SelectionDAG &DAG) const {
6617   SDLoc SL(ST);
6618 
6619   SDValue Chain = ST->getChain();
6620   SDValue BasePtr = ST->getBasePtr();
6621   SDValue Value = ST->getValue();
6622   EVT StVT = ST->getMemoryVT();
6623 
6624   // The type of the data we want to save
6625   EVT RegVT = Value.getValueType();
6626   EVT RegSclVT = RegVT.getScalarType();
6627 
6628   // The type of data as saved in memory.
6629   EVT MemSclVT = StVT.getScalarType();
6630 
6631   unsigned NumElem = StVT.getVectorNumElements();
6632 
6633   // A vector must always be stored in memory as-is, i.e. without any padding
6634   // between the elements, since various code depend on it, e.g. in the
6635   // handling of a bitcast of a vector type to int, which may be done with a
6636   // vector store followed by an integer load. A vector that does not have
6637   // elements that are byte-sized must therefore be stored as an integer
6638   // built out of the extracted vector elements.
6639   if (!MemSclVT.isByteSized()) {
6640     unsigned NumBits = StVT.getSizeInBits();
6641     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6642 
6643     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6644 
6645     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6646       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6647                                 DAG.getVectorIdxConstant(Idx, SL));
6648       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6649       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6650       unsigned ShiftIntoIdx =
6651           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6652       SDValue ShiftAmount =
6653           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6654       SDValue ShiftedElt =
6655           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6656       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6657     }
6658 
6659     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6660                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6661                         ST->getAAInfo());
6662   }
6663 
6664   // Store Stride in bytes
6665   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6666   assert(Stride && "Zero stride!");
6667   // Extract each of the elements from the original vector and save them into
6668   // memory individually.
6669   SmallVector<SDValue, 8> Stores;
6670   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6671     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6672                               DAG.getVectorIdxConstant(Idx, SL));
6673 
6674     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6675 
6676     // This scalar TruncStore may be illegal, but we legalize it later.
6677     SDValue Store = DAG.getTruncStore(
6678         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6679         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6680         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6681 
6682     Stores.push_back(Store);
6683   }
6684 
6685   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6686 }
6687 
6688 std::pair<SDValue, SDValue>
6689 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6690   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6691          "unaligned indexed loads not implemented!");
6692   SDValue Chain = LD->getChain();
6693   SDValue Ptr = LD->getBasePtr();
6694   EVT VT = LD->getValueType(0);
6695   EVT LoadedVT = LD->getMemoryVT();
6696   SDLoc dl(LD);
6697   auto &MF = DAG.getMachineFunction();
6698 
6699   if (VT.isFloatingPoint() || VT.isVector()) {
6700     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6701     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6702       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6703           LoadedVT.isVector()) {
6704         // Scalarize the load and let the individual components be handled.
6705         return scalarizeVectorLoad(LD, DAG);
6706       }
6707 
6708       // Expand to a (misaligned) integer load of the same size,
6709       // then bitconvert to floating point or vector.
6710       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6711                                     LD->getMemOperand());
6712       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6713       if (LoadedVT != VT)
6714         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6715                              ISD::ANY_EXTEND, dl, VT, Result);
6716 
6717       return std::make_pair(Result, newLoad.getValue(1));
6718     }
6719 
6720     // Copy the value to a (aligned) stack slot using (unaligned) integer
6721     // loads and stores, then do a (aligned) load from the stack slot.
6722     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6723     unsigned LoadedBytes = LoadedVT.getStoreSize();
6724     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6725     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6726 
6727     // Make sure the stack slot is also aligned for the register type.
6728     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6729     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6730     SmallVector<SDValue, 8> Stores;
6731     SDValue StackPtr = StackBase;
6732     unsigned Offset = 0;
6733 
6734     EVT PtrVT = Ptr.getValueType();
6735     EVT StackPtrVT = StackPtr.getValueType();
6736 
6737     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6738     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6739 
6740     // Do all but one copies using the full register width.
6741     for (unsigned i = 1; i < NumRegs; i++) {
6742       // Load one integer register's worth from the original location.
6743       SDValue Load = DAG.getLoad(
6744           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6745           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6746           LD->getAAInfo());
6747       // Follow the load with a store to the stack slot.  Remember the store.
6748       Stores.push_back(DAG.getStore(
6749           Load.getValue(1), dl, Load, StackPtr,
6750           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6751       // Increment the pointers.
6752       Offset += RegBytes;
6753 
6754       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6755       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6756     }
6757 
6758     // The last copy may be partial.  Do an extending load.
6759     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6760                                   8 * (LoadedBytes - Offset));
6761     SDValue Load =
6762         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6763                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6764                        MinAlign(LD->getAlignment(), Offset),
6765                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6766     // Follow the load with a store to the stack slot.  Remember the store.
6767     // On big-endian machines this requires a truncating store to ensure
6768     // that the bits end up in the right place.
6769     Stores.push_back(DAG.getTruncStore(
6770         Load.getValue(1), dl, Load, StackPtr,
6771         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6772 
6773     // The order of the stores doesn't matter - say it with a TokenFactor.
6774     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6775 
6776     // Finally, perform the original load only redirected to the stack slot.
6777     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6778                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6779                           LoadedVT);
6780 
6781     // Callers expect a MERGE_VALUES node.
6782     return std::make_pair(Load, TF);
6783   }
6784 
6785   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6786          "Unaligned load of unsupported type.");
6787 
6788   // Compute the new VT that is half the size of the old one.  This is an
6789   // integer MVT.
6790   unsigned NumBits = LoadedVT.getSizeInBits();
6791   EVT NewLoadedVT;
6792   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6793   NumBits >>= 1;
6794 
6795   unsigned Alignment = LD->getAlignment();
6796   unsigned IncrementSize = NumBits / 8;
6797   ISD::LoadExtType HiExtType = LD->getExtensionType();
6798 
6799   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6800   if (HiExtType == ISD::NON_EXTLOAD)
6801     HiExtType = ISD::ZEXTLOAD;
6802 
6803   // Load the value in two parts
6804   SDValue Lo, Hi;
6805   if (DAG.getDataLayout().isLittleEndian()) {
6806     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6807                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6808                         LD->getAAInfo());
6809 
6810     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6811     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6812                         LD->getPointerInfo().getWithOffset(IncrementSize),
6813                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6814                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6815   } else {
6816     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6817                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6818                         LD->getAAInfo());
6819 
6820     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6821     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6822                         LD->getPointerInfo().getWithOffset(IncrementSize),
6823                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6824                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6825   }
6826 
6827   // aggregate the two parts
6828   SDValue ShiftAmount =
6829       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6830                                                     DAG.getDataLayout()));
6831   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6832   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6833 
6834   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6835                              Hi.getValue(1));
6836 
6837   return std::make_pair(Result, TF);
6838 }
6839 
6840 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6841                                              SelectionDAG &DAG) const {
6842   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6843          "unaligned indexed stores not implemented!");
6844   SDValue Chain = ST->getChain();
6845   SDValue Ptr = ST->getBasePtr();
6846   SDValue Val = ST->getValue();
6847   EVT VT = Val.getValueType();
6848   int Alignment = ST->getAlignment();
6849   auto &MF = DAG.getMachineFunction();
6850   EVT StoreMemVT = ST->getMemoryVT();
6851 
6852   SDLoc dl(ST);
6853   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6854     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6855     if (isTypeLegal(intVT)) {
6856       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6857           StoreMemVT.isVector()) {
6858         // Scalarize the store and let the individual components be handled.
6859         SDValue Result = scalarizeVectorStore(ST, DAG);
6860         return Result;
6861       }
6862       // Expand to a bitconvert of the value to the integer type of the
6863       // same size, then a (misaligned) int store.
6864       // FIXME: Does not handle truncating floating point stores!
6865       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6866       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6867                             Alignment, ST->getMemOperand()->getFlags());
6868       return Result;
6869     }
6870     // Do a (aligned) store to a stack slot, then copy from the stack slot
6871     // to the final destination using (unaligned) integer loads and stores.
6872     MVT RegVT = getRegisterType(
6873         *DAG.getContext(),
6874         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6875     EVT PtrVT = Ptr.getValueType();
6876     unsigned StoredBytes = StoreMemVT.getStoreSize();
6877     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6878     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6879 
6880     // Make sure the stack slot is also aligned for the register type.
6881     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6882     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6883 
6884     // Perform the original store, only redirected to the stack slot.
6885     SDValue Store = DAG.getTruncStore(
6886         Chain, dl, Val, StackPtr,
6887         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6888 
6889     EVT StackPtrVT = StackPtr.getValueType();
6890 
6891     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6892     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6893     SmallVector<SDValue, 8> Stores;
6894     unsigned Offset = 0;
6895 
6896     // Do all but one copies using the full register width.
6897     for (unsigned i = 1; i < NumRegs; i++) {
6898       // Load one integer register's worth from the stack slot.
6899       SDValue Load = DAG.getLoad(
6900           RegVT, dl, Store, StackPtr,
6901           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6902       // Store it to the final location.  Remember the store.
6903       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6904                                     ST->getPointerInfo().getWithOffset(Offset),
6905                                     MinAlign(ST->getAlignment(), Offset),
6906                                     ST->getMemOperand()->getFlags()));
6907       // Increment the pointers.
6908       Offset += RegBytes;
6909       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6910       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6911     }
6912 
6913     // The last store may be partial.  Do a truncating store.  On big-endian
6914     // machines this requires an extending load from the stack slot to ensure
6915     // that the bits are in the right place.
6916     EVT LoadMemVT =
6917         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6918 
6919     // Load from the stack slot.
6920     SDValue Load = DAG.getExtLoad(
6921         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6922         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6923 
6924     Stores.push_back(
6925         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6926                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6927                           MinAlign(ST->getAlignment(), Offset),
6928                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6929     // The order of the stores doesn't matter - say it with a TokenFactor.
6930     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6931     return Result;
6932   }
6933 
6934   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6935          "Unaligned store of unknown type.");
6936   // Get the half-size VT
6937   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6938   int NumBits = NewStoredVT.getSizeInBits();
6939   int IncrementSize = NumBits / 8;
6940 
6941   // Divide the stored value in two parts.
6942   SDValue ShiftAmount = DAG.getConstant(
6943       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6944   SDValue Lo = Val;
6945   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6946 
6947   // Store the two parts
6948   SDValue Store1, Store2;
6949   Store1 = DAG.getTruncStore(Chain, dl,
6950                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6951                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6952                              ST->getMemOperand()->getFlags());
6953 
6954   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6955   Alignment = MinAlign(Alignment, IncrementSize);
6956   Store2 = DAG.getTruncStore(
6957       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6958       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6959       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6960 
6961   SDValue Result =
6962       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6963   return Result;
6964 }
6965 
6966 SDValue
6967 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6968                                        const SDLoc &DL, EVT DataVT,
6969                                        SelectionDAG &DAG,
6970                                        bool IsCompressedMemory) const {
6971   SDValue Increment;
6972   EVT AddrVT = Addr.getValueType();
6973   EVT MaskVT = Mask.getValueType();
6974   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6975          "Incompatible types of Data and Mask");
6976   if (IsCompressedMemory) {
6977     // Incrementing the pointer according to number of '1's in the mask.
6978     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6979     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6980     if (MaskIntVT.getSizeInBits() < 32) {
6981       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6982       MaskIntVT = MVT::i32;
6983     }
6984 
6985     // Count '1's with POPCNT.
6986     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6987     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6988     // Scale is an element size in bytes.
6989     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6990                                     AddrVT);
6991     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6992   } else
6993     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6994 
6995   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6996 }
6997 
6998 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6999                                        SDValue Idx,
7000                                        EVT VecVT,
7001                                        const SDLoc &dl) {
7002   if (isa<ConstantSDNode>(Idx))
7003     return Idx;
7004 
7005   EVT IdxVT = Idx.getValueType();
7006   unsigned NElts = VecVT.getVectorNumElements();
7007   if (isPowerOf2_32(NElts)) {
7008     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7009                                      Log2_32(NElts));
7010     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7011                        DAG.getConstant(Imm, dl, IdxVT));
7012   }
7013 
7014   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7015                      DAG.getConstant(NElts - 1, dl, IdxVT));
7016 }
7017 
7018 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7019                                                 SDValue VecPtr, EVT VecVT,
7020                                                 SDValue Index) const {
7021   SDLoc dl(Index);
7022   // Make sure the index type is big enough to compute in.
7023   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7024 
7025   EVT EltVT = VecVT.getVectorElementType();
7026 
7027   // Calculate the element offset and add it to the pointer.
7028   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7029   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7030          "Converting bits to bytes lost precision");
7031 
7032   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7033 
7034   EVT IdxVT = Index.getValueType();
7035 
7036   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7037                       DAG.getConstant(EltSize, dl, IdxVT));
7038   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7039 }
7040 
7041 //===----------------------------------------------------------------------===//
7042 // Implementation of Emulated TLS Model
7043 //===----------------------------------------------------------------------===//
7044 
7045 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7046                                                 SelectionDAG &DAG) const {
7047   // Access to address of TLS varialbe xyz is lowered to a function call:
7048   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7049   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7050   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7051   SDLoc dl(GA);
7052 
7053   ArgListTy Args;
7054   ArgListEntry Entry;
7055   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7056   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7057   StringRef EmuTlsVarName(NameString);
7058   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7059   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7060   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7061   Entry.Ty = VoidPtrType;
7062   Args.push_back(Entry);
7063 
7064   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7065 
7066   TargetLowering::CallLoweringInfo CLI(DAG);
7067   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7068   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7069   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7070 
7071   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7072   // At last for X86 targets, maybe good for other targets too?
7073   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7074   MFI.setAdjustsStack(true); // Is this only for X86 target?
7075   MFI.setHasCalls(true);
7076 
7077   assert((GA->getOffset() == 0) &&
7078          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7079   return CallResult.first;
7080 }
7081 
7082 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7083                                                 SelectionDAG &DAG) const {
7084   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7085   if (!isCtlzFast())
7086     return SDValue();
7087   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7088   SDLoc dl(Op);
7089   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7090     if (C->isNullValue() && CC == ISD::SETEQ) {
7091       EVT VT = Op.getOperand(0).getValueType();
7092       SDValue Zext = Op.getOperand(0);
7093       if (VT.bitsLT(MVT::i32)) {
7094         VT = MVT::i32;
7095         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7096       }
7097       unsigned Log2b = Log2_32(VT.getSizeInBits());
7098       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7099       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7100                                 DAG.getConstant(Log2b, dl, MVT::i32));
7101       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7102     }
7103   }
7104   return SDValue();
7105 }
7106 
7107 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7108   unsigned Opcode = Node->getOpcode();
7109   SDValue LHS = Node->getOperand(0);
7110   SDValue RHS = Node->getOperand(1);
7111   EVT VT = LHS.getValueType();
7112   SDLoc dl(Node);
7113 
7114   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7115   assert(VT.isInteger() && "Expected operands to be integers");
7116 
7117   // usub.sat(a, b) -> umax(a, b) - b
7118   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7119     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7120     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7121   }
7122 
7123   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7124     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7125     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7126     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7127   }
7128 
7129   unsigned OverflowOp;
7130   switch (Opcode) {
7131   case ISD::SADDSAT:
7132     OverflowOp = ISD::SADDO;
7133     break;
7134   case ISD::UADDSAT:
7135     OverflowOp = ISD::UADDO;
7136     break;
7137   case ISD::SSUBSAT:
7138     OverflowOp = ISD::SSUBO;
7139     break;
7140   case ISD::USUBSAT:
7141     OverflowOp = ISD::USUBO;
7142     break;
7143   default:
7144     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7145                      "addition or subtraction node.");
7146   }
7147 
7148   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7149   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7150   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7151                                LHS, RHS);
7152   SDValue SumDiff = Result.getValue(0);
7153   SDValue Overflow = Result.getValue(1);
7154   SDValue Zero = DAG.getConstant(0, dl, VT);
7155   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7156 
7157   if (Opcode == ISD::UADDSAT) {
7158     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7159       // (LHS + RHS) | OverflowMask
7160       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7161       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7162     }
7163     // Overflow ? 0xffff.... : (LHS + RHS)
7164     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7165   } else if (Opcode == ISD::USUBSAT) {
7166     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7167       // (LHS - RHS) & ~OverflowMask
7168       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7169       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7170       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7171     }
7172     // Overflow ? 0 : (LHS - RHS)
7173     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7174   } else {
7175     // SatMax -> Overflow && SumDiff < 0
7176     // SatMin -> Overflow && SumDiff >= 0
7177     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7178     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7179     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7180     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7181     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7182     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7183     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7184   }
7185 }
7186 
7187 SDValue
7188 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7189   assert((Node->getOpcode() == ISD::SMULFIX ||
7190           Node->getOpcode() == ISD::UMULFIX ||
7191           Node->getOpcode() == ISD::SMULFIXSAT ||
7192           Node->getOpcode() == ISD::UMULFIXSAT) &&
7193          "Expected a fixed point multiplication opcode");
7194 
7195   SDLoc dl(Node);
7196   SDValue LHS = Node->getOperand(0);
7197   SDValue RHS = Node->getOperand(1);
7198   EVT VT = LHS.getValueType();
7199   unsigned Scale = Node->getConstantOperandVal(2);
7200   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7201                      Node->getOpcode() == ISD::UMULFIXSAT);
7202   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7203                  Node->getOpcode() == ISD::SMULFIXSAT);
7204   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7205   unsigned VTSize = VT.getScalarSizeInBits();
7206 
7207   if (!Scale) {
7208     // [us]mul.fix(a, b, 0) -> mul(a, b)
7209     if (!Saturating) {
7210       if (isOperationLegalOrCustom(ISD::MUL, VT))
7211         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7212     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7213       SDValue Result =
7214           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7215       SDValue Product = Result.getValue(0);
7216       SDValue Overflow = Result.getValue(1);
7217       SDValue Zero = DAG.getConstant(0, dl, VT);
7218 
7219       APInt MinVal = APInt::getSignedMinValue(VTSize);
7220       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7221       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7222       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7223       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7224       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7225       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7226     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7227       SDValue Result =
7228           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7229       SDValue Product = Result.getValue(0);
7230       SDValue Overflow = Result.getValue(1);
7231 
7232       APInt MaxVal = APInt::getMaxValue(VTSize);
7233       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7234       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7235     }
7236   }
7237 
7238   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7239          "Expected scale to be less than the number of bits if signed or at "
7240          "most the number of bits if unsigned.");
7241   assert(LHS.getValueType() == RHS.getValueType() &&
7242          "Expected both operands to be the same type");
7243 
7244   // Get the upper and lower bits of the result.
7245   SDValue Lo, Hi;
7246   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7247   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7248   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7249     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7250     Lo = Result.getValue(0);
7251     Hi = Result.getValue(1);
7252   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7253     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7254     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7255   } else if (VT.isVector()) {
7256     return SDValue();
7257   } else {
7258     report_fatal_error("Unable to expand fixed point multiplication.");
7259   }
7260 
7261   if (Scale == VTSize)
7262     // Result is just the top half since we'd be shifting by the width of the
7263     // operand. Overflow impossible so this works for both UMULFIX and
7264     // UMULFIXSAT.
7265     return Hi;
7266 
7267   // The result will need to be shifted right by the scale since both operands
7268   // are scaled. The result is given to us in 2 halves, so we only want part of
7269   // both in the result.
7270   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7271   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7272                                DAG.getConstant(Scale, dl, ShiftTy));
7273   if (!Saturating)
7274     return Result;
7275 
7276   if (!Signed) {
7277     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7278     // widened multiplication) aren't all zeroes.
7279 
7280     // Saturate to max if ((Hi >> Scale) != 0),
7281     // which is the same as if (Hi > ((1 << Scale) - 1))
7282     APInt MaxVal = APInt::getMaxValue(VTSize);
7283     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7284                                       dl, VT);
7285     Result = DAG.getSelectCC(dl, Hi, LowMask,
7286                              DAG.getConstant(MaxVal, dl, VT), Result,
7287                              ISD::SETUGT);
7288 
7289     return Result;
7290   }
7291 
7292   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7293   // widened multiplication) aren't all ones or all zeroes.
7294 
7295   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7296   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7297 
7298   if (Scale == 0) {
7299     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7300                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7301     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7302     // Saturated to SatMin if wide product is negative, and SatMax if wide
7303     // product is positive ...
7304     SDValue Zero = DAG.getConstant(0, dl, VT);
7305     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7306                                                ISD::SETLT);
7307     // ... but only if we overflowed.
7308     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7309   }
7310 
7311   //  We handled Scale==0 above so all the bits to examine is in Hi.
7312 
7313   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7314   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7315   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7316                                     dl, VT);
7317   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7318   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7319   // which is the same as if (HI < (-1 << (Scale - 1))
7320   SDValue HighMask =
7321       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7322                       dl, VT);
7323   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7324   return Result;
7325 }
7326 
7327 SDValue
7328 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7329                                     SDValue LHS, SDValue RHS,
7330                                     unsigned Scale, SelectionDAG &DAG) const {
7331   assert((Opcode == ISD::SDIVFIX ||
7332           Opcode == ISD::UDIVFIX) &&
7333          "Expected a fixed point division opcode");
7334 
7335   EVT VT = LHS.getValueType();
7336   bool Signed = Opcode == ISD::SDIVFIX;
7337   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7338 
7339   // If there is enough room in the type to upscale the LHS or downscale the
7340   // RHS before the division, we can perform it in this type without having to
7341   // resize. For signed operations, the LHS headroom is the number of
7342   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7343   // The headroom for the RHS is the number of trailing zeroes.
7344   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7345                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7346   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7347 
7348   if (LHSLead + RHSTrail < Scale)
7349     return SDValue();
7350 
7351   unsigned LHSShift = std::min(LHSLead, Scale);
7352   unsigned RHSShift = Scale - LHSShift;
7353 
7354   // At this point, we know that if we shift the LHS up by LHSShift and the
7355   // RHS down by RHSShift, we can emit a regular division with a final scaling
7356   // factor of Scale.
7357 
7358   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7359   if (LHSShift)
7360     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7361                       DAG.getConstant(LHSShift, dl, ShiftTy));
7362   if (RHSShift)
7363     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7364                       DAG.getConstant(RHSShift, dl, ShiftTy));
7365 
7366   SDValue Quot;
7367   if (Signed) {
7368     // For signed operations, if the resulting quotient is negative and the
7369     // remainder is nonzero, subtract 1 from the quotient to round towards
7370     // negative infinity.
7371     SDValue Rem;
7372     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7373     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7374     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7375     if (isTypeLegal(VT) &&
7376         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7377       Quot = DAG.getNode(ISD::SDIVREM, dl,
7378                          DAG.getVTList(VT, VT),
7379                          LHS, RHS);
7380       Rem = Quot.getValue(1);
7381       Quot = Quot.getValue(0);
7382     } else {
7383       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7384                          LHS, RHS);
7385       Rem = DAG.getNode(ISD::SREM, dl, VT,
7386                         LHS, RHS);
7387     }
7388     SDValue Zero = DAG.getConstant(0, dl, VT);
7389     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7390     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7391     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7392     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7393     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7394                                DAG.getConstant(1, dl, VT));
7395     Quot = DAG.getSelect(dl, VT,
7396                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7397                          Sub1, Quot);
7398   } else
7399     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7400                        LHS, RHS);
7401 
7402   // TODO: Saturation.
7403 
7404   return Quot;
7405 }
7406 
7407 void TargetLowering::expandUADDSUBO(
7408     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7409   SDLoc dl(Node);
7410   SDValue LHS = Node->getOperand(0);
7411   SDValue RHS = Node->getOperand(1);
7412   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7413 
7414   // If ADD/SUBCARRY is legal, use that instead.
7415   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7416   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7417     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7418     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7419                                     { LHS, RHS, CarryIn });
7420     Result = SDValue(NodeCarry.getNode(), 0);
7421     Overflow = SDValue(NodeCarry.getNode(), 1);
7422     return;
7423   }
7424 
7425   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7426                             LHS.getValueType(), LHS, RHS);
7427 
7428   EVT ResultType = Node->getValueType(1);
7429   EVT SetCCType = getSetCCResultType(
7430       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7431   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7432   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7433   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7434 }
7435 
7436 void TargetLowering::expandSADDSUBO(
7437     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7438   SDLoc dl(Node);
7439   SDValue LHS = Node->getOperand(0);
7440   SDValue RHS = Node->getOperand(1);
7441   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7442 
7443   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7444                             LHS.getValueType(), LHS, RHS);
7445 
7446   EVT ResultType = Node->getValueType(1);
7447   EVT OType = getSetCCResultType(
7448       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7449 
7450   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7451   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7452   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7453     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7454     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7455     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7456     return;
7457   }
7458 
7459   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7460 
7461   // For an addition, the result should be less than one of the operands (LHS)
7462   // if and only if the other operand (RHS) is negative, otherwise there will
7463   // be overflow.
7464   // For a subtraction, the result should be less than one of the operands
7465   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7466   // otherwise there will be overflow.
7467   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7468   SDValue ConditionRHS =
7469       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7470 
7471   Overflow = DAG.getBoolExtOrTrunc(
7472       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7473       ResultType, ResultType);
7474 }
7475 
7476 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7477                                 SDValue &Overflow, SelectionDAG &DAG) const {
7478   SDLoc dl(Node);
7479   EVT VT = Node->getValueType(0);
7480   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7481   SDValue LHS = Node->getOperand(0);
7482   SDValue RHS = Node->getOperand(1);
7483   bool isSigned = Node->getOpcode() == ISD::SMULO;
7484 
7485   // For power-of-two multiplications we can use a simpler shift expansion.
7486   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7487     const APInt &C = RHSC->getAPIntValue();
7488     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7489     if (C.isPowerOf2()) {
7490       // smulo(x, signed_min) is same as umulo(x, signed_min).
7491       bool UseArithShift = isSigned && !C.isMinSignedValue();
7492       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7493       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7494       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7495       Overflow = DAG.getSetCC(dl, SetCCVT,
7496           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7497                       dl, VT, Result, ShiftAmt),
7498           LHS, ISD::SETNE);
7499       return true;
7500     }
7501   }
7502 
7503   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7504   if (VT.isVector())
7505     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7506                               VT.getVectorNumElements());
7507 
7508   SDValue BottomHalf;
7509   SDValue TopHalf;
7510   static const unsigned Ops[2][3] =
7511       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7512         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7513   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7514     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7515     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7516   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7517     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7518                              RHS);
7519     TopHalf = BottomHalf.getValue(1);
7520   } else if (isTypeLegal(WideVT)) {
7521     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7522     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7523     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7524     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7525     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7526         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7527     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7528                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7529   } else {
7530     if (VT.isVector())
7531       return false;
7532 
7533     // We can fall back to a libcall with an illegal type for the MUL if we
7534     // have a libcall big enough.
7535     // Also, we can fall back to a division in some cases, but that's a big
7536     // performance hit in the general case.
7537     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7538     if (WideVT == MVT::i16)
7539       LC = RTLIB::MUL_I16;
7540     else if (WideVT == MVT::i32)
7541       LC = RTLIB::MUL_I32;
7542     else if (WideVT == MVT::i64)
7543       LC = RTLIB::MUL_I64;
7544     else if (WideVT == MVT::i128)
7545       LC = RTLIB::MUL_I128;
7546     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7547 
7548     SDValue HiLHS;
7549     SDValue HiRHS;
7550     if (isSigned) {
7551       // The high part is obtained by SRA'ing all but one of the bits of low
7552       // part.
7553       unsigned LoSize = VT.getSizeInBits();
7554       HiLHS =
7555           DAG.getNode(ISD::SRA, dl, VT, LHS,
7556                       DAG.getConstant(LoSize - 1, dl,
7557                                       getPointerTy(DAG.getDataLayout())));
7558       HiRHS =
7559           DAG.getNode(ISD::SRA, dl, VT, RHS,
7560                       DAG.getConstant(LoSize - 1, dl,
7561                                       getPointerTy(DAG.getDataLayout())));
7562     } else {
7563         HiLHS = DAG.getConstant(0, dl, VT);
7564         HiRHS = DAG.getConstant(0, dl, VT);
7565     }
7566 
7567     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7568     // pre-lowered to the correct types. This all depends upon WideVT not
7569     // being a legal type for the architecture and thus has to be split to
7570     // two arguments.
7571     SDValue Ret;
7572     TargetLowering::MakeLibCallOptions CallOptions;
7573     CallOptions.setSExt(isSigned);
7574     CallOptions.setIsPostTypeLegalization(true);
7575     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7576       // Halves of WideVT are packed into registers in different order
7577       // depending on platform endianness. This is usually handled by
7578       // the C calling convention, but we can't defer to it in
7579       // the legalizer.
7580       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7581       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7582     } else {
7583       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7584       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7585     }
7586     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7587            "Ret value is a collection of constituent nodes holding result.");
7588     if (DAG.getDataLayout().isLittleEndian()) {
7589       // Same as above.
7590       BottomHalf = Ret.getOperand(0);
7591       TopHalf = Ret.getOperand(1);
7592     } else {
7593       BottomHalf = Ret.getOperand(1);
7594       TopHalf = Ret.getOperand(0);
7595     }
7596   }
7597 
7598   Result = BottomHalf;
7599   if (isSigned) {
7600     SDValue ShiftAmt = DAG.getConstant(
7601         VT.getScalarSizeInBits() - 1, dl,
7602         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7603     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7604     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7605   } else {
7606     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7607                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7608   }
7609 
7610   // Truncate the result if SetCC returns a larger type than needed.
7611   EVT RType = Node->getValueType(1);
7612   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7613     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7614 
7615   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7616          "Unexpected result type for S/UMULO legalization");
7617   return true;
7618 }
7619 
7620 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7621   SDLoc dl(Node);
7622   bool NoNaN = Node->getFlags().hasNoNaNs();
7623   unsigned BaseOpcode = 0;
7624   switch (Node->getOpcode()) {
7625   default: llvm_unreachable("Expected VECREDUCE opcode");
7626   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7627   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7628   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7629   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7630   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7631   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7632   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7633   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7634   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7635   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7636   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7637   case ISD::VECREDUCE_FMAX:
7638     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7639     break;
7640   case ISD::VECREDUCE_FMIN:
7641     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7642     break;
7643   }
7644 
7645   SDValue Op = Node->getOperand(0);
7646   EVT VT = Op.getValueType();
7647 
7648   // Try to use a shuffle reduction for power of two vectors.
7649   if (VT.isPow2VectorType()) {
7650     while (VT.getVectorNumElements() > 1) {
7651       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7652       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7653         break;
7654 
7655       SDValue Lo, Hi;
7656       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7657       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7658       VT = HalfVT;
7659     }
7660   }
7661 
7662   EVT EltVT = VT.getVectorElementType();
7663   unsigned NumElts = VT.getVectorNumElements();
7664 
7665   SmallVector<SDValue, 8> Ops;
7666   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7667 
7668   SDValue Res = Ops[0];
7669   for (unsigned i = 1; i < NumElts; i++)
7670     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7671 
7672   // Result type may be wider than element type.
7673   if (EltVT != Node->getValueType(0))
7674     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7675   return Res;
7676 }
7677