1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 794 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 795 unsigned Depth) const { 796 EVT VT = Op.getValueType(); 797 APInt DemandedElts = VT.isVector() 798 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 799 : APInt(1, 1); 800 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 801 Depth); 802 } 803 804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 805 /// result of Op are ever used downstream. If we can use this information to 806 /// simplify Op, create a new simplified DAG node and return true, returning the 807 /// original and new nodes in Old and New. Otherwise, analyze the expression and 808 /// return a mask of Known bits for the expression (used to simplify the 809 /// caller). The Known bits may only be accurate for those bits in the 810 /// OriginalDemandedBits and OriginalDemandedElts. 811 bool TargetLowering::SimplifyDemandedBits( 812 SDValue Op, const APInt &OriginalDemandedBits, 813 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 814 unsigned Depth, bool AssumeSingleUse) const { 815 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 816 assert(Op.getScalarValueSizeInBits() == BitWidth && 817 "Mask size mismatches value type size!"); 818 819 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 820 assert((!Op.getValueType().isVector() || 821 NumElts == Op.getValueType().getVectorNumElements()) && 822 "Unexpected vector size"); 823 824 APInt DemandedBits = OriginalDemandedBits; 825 APInt DemandedElts = OriginalDemandedElts; 826 SDLoc dl(Op); 827 auto &DL = TLO.DAG.getDataLayout(); 828 829 // Don't know anything. 830 Known = KnownBits(BitWidth); 831 832 // Undef operand. 833 if (Op.isUndef()) 834 return false; 835 836 if (Op.getOpcode() == ISD::Constant) { 837 // We know all of the bits for a constant! 838 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 839 Known.Zero = ~Known.One; 840 return false; 841 } 842 843 // Other users may use these bits. 844 EVT VT = Op.getValueType(); 845 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 846 if (Depth != 0) { 847 // If not at the root, Just compute the Known bits to 848 // simplify things downstream. 849 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 850 return false; 851 } 852 // If this is the root being simplified, allow it to have multiple uses, 853 // just set the DemandedBits/Elts to all bits. 854 DemandedBits = APInt::getAllOnesValue(BitWidth); 855 DemandedElts = APInt::getAllOnesValue(NumElts); 856 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 857 // Not demanding any bits/elts from Op. 858 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 859 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 860 // Limit search depth. 861 return false; 862 } 863 864 KnownBits Known2, KnownOut; 865 switch (Op.getOpcode()) { 866 case ISD::TargetConstant: 867 llvm_unreachable("Can't simplify this node"); 868 case ISD::SCALAR_TO_VECTOR: { 869 if (!DemandedElts[0]) 870 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 871 872 KnownBits SrcKnown; 873 SDValue Src = Op.getOperand(0); 874 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 875 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 877 return true; 878 Known = SrcKnown.anyextOrTrunc(BitWidth); 879 break; 880 } 881 case ISD::BUILD_VECTOR: 882 // Collect the known bits that are shared by every demanded element. 883 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 884 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 885 return false; // Don't fall through, will infinitely loop. 886 case ISD::LOAD: { 887 LoadSDNode *LD = cast<LoadSDNode>(Op); 888 if (getTargetConstantFromLoad(LD)) { 889 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 890 return false; // Don't fall through, will infinitely loop. 891 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 892 // If this is a ZEXTLoad and we are looking at the loaded value. 893 EVT VT = LD->getMemoryVT(); 894 unsigned MemBits = VT.getScalarSizeInBits(); 895 Known.Zero.setBitsFrom(MemBits); 896 return false; // Don't fall through, will infinitely loop. 897 } 898 break; 899 } 900 case ISD::INSERT_VECTOR_ELT: { 901 SDValue Vec = Op.getOperand(0); 902 SDValue Scl = Op.getOperand(1); 903 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 904 EVT VecVT = Vec.getValueType(); 905 906 // If index isn't constant, assume we need all vector elements AND the 907 // inserted element. 908 APInt DemandedVecElts(DemandedElts); 909 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 910 unsigned Idx = CIdx->getZExtValue(); 911 DemandedVecElts.clearBit(Idx); 912 913 // Inserted element is not required. 914 if (!DemandedElts[Idx]) 915 return TLO.CombineTo(Op, Vec); 916 } 917 918 KnownBits KnownScl; 919 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 920 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 921 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 922 return true; 923 924 Known = KnownScl.anyextOrTrunc(BitWidth); 925 926 KnownBits KnownVec; 927 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 928 Depth + 1)) 929 return true; 930 931 if (!!DemandedVecElts) { 932 Known.One &= KnownVec.One; 933 Known.Zero &= KnownVec.Zero; 934 } 935 936 return false; 937 } 938 case ISD::INSERT_SUBVECTOR: { 939 SDValue Base = Op.getOperand(0); 940 SDValue Sub = Op.getOperand(1); 941 EVT SubVT = Sub.getValueType(); 942 unsigned NumSubElts = SubVT.getVectorNumElements(); 943 944 // If index isn't constant, assume we need the original demanded base 945 // elements and ALL the inserted subvector elements. 946 APInt BaseElts = DemandedElts; 947 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 948 if (isa<ConstantSDNode>(Op.getOperand(2))) { 949 const APInt &Idx = Op.getConstantOperandAPInt(2); 950 if (Idx.ule(NumElts - NumSubElts)) { 951 unsigned SubIdx = Idx.getZExtValue(); 952 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 953 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 954 } 955 } 956 957 KnownBits KnownSub, KnownBase; 958 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 959 Depth + 1)) 960 return true; 961 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 962 Depth + 1)) 963 return true; 964 965 Known.Zero.setAllBits(); 966 Known.One.setAllBits(); 967 if (!!SubElts) { 968 Known.One &= KnownSub.One; 969 Known.Zero &= KnownSub.Zero; 970 } 971 if (!!BaseElts) { 972 Known.One &= KnownBase.One; 973 Known.Zero &= KnownBase.Zero; 974 } 975 976 // Attempt to avoid multi-use src if we don't need anything from it. 977 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 978 !BaseElts.isAllOnesValue()) { 979 SDValue NewSub = SimplifyMultipleUseDemandedBits( 980 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 981 SDValue NewBase = SimplifyMultipleUseDemandedBits( 982 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 983 if (NewSub || NewBase) { 984 NewSub = NewSub ? NewSub : Sub; 985 NewBase = NewBase ? NewBase : Base; 986 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 987 Op.getOperand(2)); 988 return TLO.CombineTo(Op, NewOp); 989 } 990 } 991 break; 992 } 993 case ISD::EXTRACT_SUBVECTOR: { 994 // If index isn't constant, assume we need all the source vector elements. 995 SDValue Src = Op.getOperand(0); 996 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 997 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 998 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 999 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1000 // Offset the demanded elts by the subvector index. 1001 uint64_t Idx = SubIdx->getZExtValue(); 1002 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1003 } 1004 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1005 return true; 1006 1007 // Attempt to avoid multi-use src if we don't need anything from it. 1008 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1009 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1010 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1011 if (DemandedSrc) { 1012 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1013 Op.getOperand(1)); 1014 return TLO.CombineTo(Op, NewOp); 1015 } 1016 } 1017 break; 1018 } 1019 case ISD::CONCAT_VECTORS: { 1020 Known.Zero.setAllBits(); 1021 Known.One.setAllBits(); 1022 EVT SubVT = Op.getOperand(0).getValueType(); 1023 unsigned NumSubVecs = Op.getNumOperands(); 1024 unsigned NumSubElts = SubVT.getVectorNumElements(); 1025 for (unsigned i = 0; i != NumSubVecs; ++i) { 1026 APInt DemandedSubElts = 1027 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1028 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1029 Known2, TLO, Depth + 1)) 1030 return true; 1031 // Known bits are shared by every demanded subvector element. 1032 if (!!DemandedSubElts) { 1033 Known.One &= Known2.One; 1034 Known.Zero &= Known2.Zero; 1035 } 1036 } 1037 break; 1038 } 1039 case ISD::VECTOR_SHUFFLE: { 1040 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1041 1042 // Collect demanded elements from shuffle operands.. 1043 APInt DemandedLHS(NumElts, 0); 1044 APInt DemandedRHS(NumElts, 0); 1045 for (unsigned i = 0; i != NumElts; ++i) { 1046 if (!DemandedElts[i]) 1047 continue; 1048 int M = ShuffleMask[i]; 1049 if (M < 0) { 1050 // For UNDEF elements, we don't know anything about the common state of 1051 // the shuffle result. 1052 DemandedLHS.clearAllBits(); 1053 DemandedRHS.clearAllBits(); 1054 break; 1055 } 1056 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1057 if (M < (int)NumElts) 1058 DemandedLHS.setBit(M); 1059 else 1060 DemandedRHS.setBit(M - NumElts); 1061 } 1062 1063 if (!!DemandedLHS || !!DemandedRHS) { 1064 SDValue Op0 = Op.getOperand(0); 1065 SDValue Op1 = Op.getOperand(1); 1066 1067 Known.Zero.setAllBits(); 1068 Known.One.setAllBits(); 1069 if (!!DemandedLHS) { 1070 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1071 Depth + 1)) 1072 return true; 1073 Known.One &= Known2.One; 1074 Known.Zero &= Known2.Zero; 1075 } 1076 if (!!DemandedRHS) { 1077 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1078 Depth + 1)) 1079 return true; 1080 Known.One &= Known2.One; 1081 Known.Zero &= Known2.Zero; 1082 } 1083 1084 // Attempt to avoid multi-use ops if we don't need anything from them. 1085 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1086 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1087 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1088 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1089 if (DemandedOp0 || DemandedOp1) { 1090 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1091 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1092 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1093 return TLO.CombineTo(Op, NewOp); 1094 } 1095 } 1096 break; 1097 } 1098 case ISD::AND: { 1099 SDValue Op0 = Op.getOperand(0); 1100 SDValue Op1 = Op.getOperand(1); 1101 1102 // If the RHS is a constant, check to see if the LHS would be zero without 1103 // using the bits from the RHS. Below, we use knowledge about the RHS to 1104 // simplify the LHS, here we're using information from the LHS to simplify 1105 // the RHS. 1106 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1107 // Do not increment Depth here; that can cause an infinite loop. 1108 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1109 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1110 if ((LHSKnown.Zero & DemandedBits) == 1111 (~RHSC->getAPIntValue() & DemandedBits)) 1112 return TLO.CombineTo(Op, Op0); 1113 1114 // If any of the set bits in the RHS are known zero on the LHS, shrink 1115 // the constant. 1116 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1117 return true; 1118 1119 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1120 // constant, but if this 'and' is only clearing bits that were just set by 1121 // the xor, then this 'and' can be eliminated by shrinking the mask of 1122 // the xor. For example, for a 32-bit X: 1123 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1124 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1125 LHSKnown.One == ~RHSC->getAPIntValue()) { 1126 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1127 return TLO.CombineTo(Op, Xor); 1128 } 1129 } 1130 1131 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1132 Depth + 1)) 1133 return true; 1134 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1135 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1136 Known2, TLO, Depth + 1)) 1137 return true; 1138 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1139 1140 // Attempt to avoid multi-use ops if we don't need anything from them. 1141 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1142 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1143 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1144 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1145 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1146 if (DemandedOp0 || DemandedOp1) { 1147 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1148 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1149 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1150 return TLO.CombineTo(Op, NewOp); 1151 } 1152 } 1153 1154 // If all of the demanded bits are known one on one side, return the other. 1155 // These bits cannot contribute to the result of the 'and'. 1156 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1157 return TLO.CombineTo(Op, Op0); 1158 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1159 return TLO.CombineTo(Op, Op1); 1160 // If all of the demanded bits in the inputs are known zeros, return zero. 1161 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1162 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1163 // If the RHS is a constant, see if we can simplify it. 1164 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1165 return true; 1166 // If the operation can be done in a smaller type, do so. 1167 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1168 return true; 1169 1170 // Output known-1 bits are only known if set in both the LHS & RHS. 1171 Known.One &= Known2.One; 1172 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1173 Known.Zero |= Known2.Zero; 1174 break; 1175 } 1176 case ISD::OR: { 1177 SDValue Op0 = Op.getOperand(0); 1178 SDValue Op1 = Op.getOperand(1); 1179 1180 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1181 Depth + 1)) 1182 return true; 1183 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1184 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1185 Known2, TLO, Depth + 1)) 1186 return true; 1187 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1188 1189 // Attempt to avoid multi-use ops if we don't need anything from them. 1190 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1191 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1192 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1193 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1194 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1195 if (DemandedOp0 || DemandedOp1) { 1196 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1197 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1198 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1199 return TLO.CombineTo(Op, NewOp); 1200 } 1201 } 1202 1203 // If all of the demanded bits are known zero on one side, return the other. 1204 // These bits cannot contribute to the result of the 'or'. 1205 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1206 return TLO.CombineTo(Op, Op0); 1207 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1208 return TLO.CombineTo(Op, Op1); 1209 // If the RHS is a constant, see if we can simplify it. 1210 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1211 return true; 1212 // If the operation can be done in a smaller type, do so. 1213 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1214 return true; 1215 1216 // Output known-0 bits are only known if clear in both the LHS & RHS. 1217 Known.Zero &= Known2.Zero; 1218 // Output known-1 are known to be set if set in either the LHS | RHS. 1219 Known.One |= Known2.One; 1220 break; 1221 } 1222 case ISD::XOR: { 1223 SDValue Op0 = Op.getOperand(0); 1224 SDValue Op1 = Op.getOperand(1); 1225 1226 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1227 Depth + 1)) 1228 return true; 1229 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1230 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1231 Depth + 1)) 1232 return true; 1233 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1234 1235 // Attempt to avoid multi-use ops if we don't need anything from them. 1236 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1237 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1238 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1239 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1240 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1241 if (DemandedOp0 || DemandedOp1) { 1242 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1243 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1244 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1245 return TLO.CombineTo(Op, NewOp); 1246 } 1247 } 1248 1249 // If all of the demanded bits are known zero on one side, return the other. 1250 // These bits cannot contribute to the result of the 'xor'. 1251 if (DemandedBits.isSubsetOf(Known.Zero)) 1252 return TLO.CombineTo(Op, Op0); 1253 if (DemandedBits.isSubsetOf(Known2.Zero)) 1254 return TLO.CombineTo(Op, Op1); 1255 // If the operation can be done in a smaller type, do so. 1256 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1257 return true; 1258 1259 // If all of the unknown bits are known to be zero on one side or the other 1260 // (but not both) turn this into an *inclusive* or. 1261 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1262 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1263 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1264 1265 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1266 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1267 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1268 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1269 1270 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1271 // If one side is a constant, and all of the known set bits on the other 1272 // side are also set in the constant, turn this into an AND, as we know 1273 // the bits will be cleared. 1274 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1275 // NB: it is okay if more bits are known than are requested 1276 if (C->getAPIntValue() == Known2.One) { 1277 SDValue ANDC = 1278 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1279 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1280 } 1281 1282 // If the RHS is a constant, see if we can change it. Don't alter a -1 1283 // constant because that's a 'not' op, and that is better for combining 1284 // and codegen. 1285 if (!C->isAllOnesValue()) { 1286 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1287 // We're flipping all demanded bits. Flip the undemanded bits too. 1288 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1289 return TLO.CombineTo(Op, New); 1290 } 1291 // If we can't turn this into a 'not', try to shrink the constant. 1292 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1293 return true; 1294 } 1295 } 1296 1297 Known = std::move(KnownOut); 1298 break; 1299 } 1300 case ISD::SELECT: 1301 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1302 Depth + 1)) 1303 return true; 1304 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1305 Depth + 1)) 1306 return true; 1307 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1308 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1309 1310 // If the operands are constants, see if we can simplify them. 1311 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1312 return true; 1313 1314 // Only known if known in both the LHS and RHS. 1315 Known.One &= Known2.One; 1316 Known.Zero &= Known2.Zero; 1317 break; 1318 case ISD::SELECT_CC: 1319 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1320 Depth + 1)) 1321 return true; 1322 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1323 Depth + 1)) 1324 return true; 1325 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1326 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1327 1328 // If the operands are constants, see if we can simplify them. 1329 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1330 return true; 1331 1332 // Only known if known in both the LHS and RHS. 1333 Known.One &= Known2.One; 1334 Known.Zero &= Known2.Zero; 1335 break; 1336 case ISD::SETCC: { 1337 SDValue Op0 = Op.getOperand(0); 1338 SDValue Op1 = Op.getOperand(1); 1339 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1340 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1341 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1342 // -1, we may be able to bypass the setcc. 1343 if (DemandedBits.isSignMask() && 1344 Op0.getScalarValueSizeInBits() == BitWidth && 1345 getBooleanContents(Op0.getValueType()) == 1346 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1347 // If we're testing X < 0, then this compare isn't needed - just use X! 1348 // FIXME: We're limiting to integer types here, but this should also work 1349 // if we don't care about FP signed-zero. The use of SETLT with FP means 1350 // that we don't care about NaNs. 1351 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1352 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1353 return TLO.CombineTo(Op, Op0); 1354 1355 // TODO: Should we check for other forms of sign-bit comparisons? 1356 // Examples: X <= -1, X >= 0 1357 } 1358 if (getBooleanContents(Op0.getValueType()) == 1359 TargetLowering::ZeroOrOneBooleanContent && 1360 BitWidth > 1) 1361 Known.Zero.setBitsFrom(1); 1362 break; 1363 } 1364 case ISD::SHL: { 1365 SDValue Op0 = Op.getOperand(0); 1366 SDValue Op1 = Op.getOperand(1); 1367 EVT ShiftVT = Op1.getValueType(); 1368 1369 if (const APInt *SA = 1370 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1371 unsigned ShAmt = SA->getZExtValue(); 1372 if (ShAmt == 0) 1373 return TLO.CombineTo(Op, Op0); 1374 1375 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1376 // single shift. We can do this if the bottom bits (which are shifted 1377 // out) are never demanded. 1378 // TODO - support non-uniform vector amounts. 1379 if (Op0.getOpcode() == ISD::SRL) { 1380 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1381 if (const APInt *SA2 = 1382 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1383 if (SA2->ult(BitWidth)) { 1384 unsigned C1 = SA2->getZExtValue(); 1385 unsigned Opc = ISD::SHL; 1386 int Diff = ShAmt - C1; 1387 if (Diff < 0) { 1388 Diff = -Diff; 1389 Opc = ISD::SRL; 1390 } 1391 1392 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1393 return TLO.CombineTo( 1394 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1395 } 1396 } 1397 } 1398 } 1399 1400 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1401 // are not demanded. This will likely allow the anyext to be folded away. 1402 // TODO - support non-uniform vector amounts. 1403 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1404 SDValue InnerOp = Op0.getOperand(0); 1405 EVT InnerVT = InnerOp.getValueType(); 1406 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1407 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1408 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1409 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1410 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1411 ShTy = InnerVT; 1412 SDValue NarrowShl = 1413 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1414 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1415 return TLO.CombineTo( 1416 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1417 } 1418 1419 // Repeat the SHL optimization above in cases where an extension 1420 // intervenes: (shl (anyext (shr x, c1)), c2) to 1421 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1422 // aren't demanded (as above) and that the shifted upper c1 bits of 1423 // x aren't demanded. 1424 // TODO - support non-uniform vector amounts. 1425 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1426 InnerOp.hasOneUse()) { 1427 if (const APInt *SA2 = 1428 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1429 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1430 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1431 DemandedBits.getActiveBits() <= 1432 (InnerBits - InnerShAmt + ShAmt) && 1433 DemandedBits.countTrailingZeros() >= ShAmt) { 1434 SDValue NewSA = 1435 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1436 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1437 InnerOp.getOperand(0)); 1438 return TLO.CombineTo( 1439 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1440 } 1441 } 1442 } 1443 } 1444 1445 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1446 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1447 Depth + 1)) 1448 return true; 1449 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1450 Known.Zero <<= ShAmt; 1451 Known.One <<= ShAmt; 1452 // low bits known zero. 1453 Known.Zero.setLowBits(ShAmt); 1454 1455 // Try shrinking the operation as long as the shift amount will still be 1456 // in range. 1457 if ((ShAmt < DemandedBits.getActiveBits()) && 1458 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1459 return true; 1460 } 1461 break; 1462 } 1463 case ISD::SRL: { 1464 SDValue Op0 = Op.getOperand(0); 1465 SDValue Op1 = Op.getOperand(1); 1466 EVT ShiftVT = Op1.getValueType(); 1467 1468 if (const APInt *SA = 1469 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1470 unsigned ShAmt = SA->getZExtValue(); 1471 if (ShAmt == 0) 1472 return TLO.CombineTo(Op, Op0); 1473 1474 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1475 // single shift. We can do this if the top bits (which are shifted out) 1476 // are never demanded. 1477 // TODO - support non-uniform vector amounts. 1478 if (Op0.getOpcode() == ISD::SHL) { 1479 if (const APInt *SA2 = 1480 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1481 if (!DemandedBits.intersects( 1482 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1483 if (SA2->ult(BitWidth)) { 1484 unsigned C1 = SA2->getZExtValue(); 1485 unsigned Opc = ISD::SRL; 1486 int Diff = ShAmt - C1; 1487 if (Diff < 0) { 1488 Diff = -Diff; 1489 Opc = ISD::SHL; 1490 } 1491 1492 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1493 return TLO.CombineTo( 1494 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1495 } 1496 } 1497 } 1498 } 1499 1500 APInt InDemandedMask = (DemandedBits << ShAmt); 1501 1502 // If the shift is exact, then it does demand the low bits (and knows that 1503 // they are zero). 1504 if (Op->getFlags().hasExact()) 1505 InDemandedMask.setLowBits(ShAmt); 1506 1507 // Compute the new bits that are at the top now. 1508 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1509 Depth + 1)) 1510 return true; 1511 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1512 Known.Zero.lshrInPlace(ShAmt); 1513 Known.One.lshrInPlace(ShAmt); 1514 // High bits known zero. 1515 Known.Zero.setHighBits(ShAmt); 1516 } 1517 break; 1518 } 1519 case ISD::SRA: { 1520 SDValue Op0 = Op.getOperand(0); 1521 SDValue Op1 = Op.getOperand(1); 1522 EVT ShiftVT = Op1.getValueType(); 1523 1524 // If we only want bits that already match the signbit then we don't need 1525 // to shift. 1526 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1527 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1528 NumHiDemandedBits) 1529 return TLO.CombineTo(Op, Op0); 1530 1531 // If this is an arithmetic shift right and only the low-bit is set, we can 1532 // always convert this into a logical shr, even if the shift amount is 1533 // variable. The low bit of the shift cannot be an input sign bit unless 1534 // the shift amount is >= the size of the datatype, which is undefined. 1535 if (DemandedBits.isOneValue()) 1536 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1537 1538 if (const APInt *SA = 1539 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1540 unsigned ShAmt = SA->getZExtValue(); 1541 if (ShAmt == 0) 1542 return TLO.CombineTo(Op, Op0); 1543 1544 APInt InDemandedMask = (DemandedBits << ShAmt); 1545 1546 // If the shift is exact, then it does demand the low bits (and knows that 1547 // they are zero). 1548 if (Op->getFlags().hasExact()) 1549 InDemandedMask.setLowBits(ShAmt); 1550 1551 // If any of the demanded bits are produced by the sign extension, we also 1552 // demand the input sign bit. 1553 if (DemandedBits.countLeadingZeros() < ShAmt) 1554 InDemandedMask.setSignBit(); 1555 1556 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1557 Depth + 1)) 1558 return true; 1559 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1560 Known.Zero.lshrInPlace(ShAmt); 1561 Known.One.lshrInPlace(ShAmt); 1562 1563 // If the input sign bit is known to be zero, or if none of the top bits 1564 // are demanded, turn this into an unsigned shift right. 1565 if (Known.Zero[BitWidth - ShAmt - 1] || 1566 DemandedBits.countLeadingZeros() >= ShAmt) { 1567 SDNodeFlags Flags; 1568 Flags.setExact(Op->getFlags().hasExact()); 1569 return TLO.CombineTo( 1570 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1571 } 1572 1573 int Log2 = DemandedBits.exactLogBase2(); 1574 if (Log2 >= 0) { 1575 // The bit must come from the sign. 1576 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1577 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1578 } 1579 1580 if (Known.One[BitWidth - ShAmt - 1]) 1581 // New bits are known one. 1582 Known.One.setHighBits(ShAmt); 1583 1584 // Attempt to avoid multi-use ops if we don't need anything from them. 1585 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1586 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1587 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1588 if (DemandedOp0) { 1589 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1590 return TLO.CombineTo(Op, NewOp); 1591 } 1592 } 1593 } 1594 break; 1595 } 1596 case ISD::FSHL: 1597 case ISD::FSHR: { 1598 SDValue Op0 = Op.getOperand(0); 1599 SDValue Op1 = Op.getOperand(1); 1600 SDValue Op2 = Op.getOperand(2); 1601 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1602 1603 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1604 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1605 1606 // For fshl, 0-shift returns the 1st arg. 1607 // For fshr, 0-shift returns the 2nd arg. 1608 if (Amt == 0) { 1609 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1610 Known, TLO, Depth + 1)) 1611 return true; 1612 break; 1613 } 1614 1615 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1616 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1617 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1618 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1619 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1620 Depth + 1)) 1621 return true; 1622 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1623 Depth + 1)) 1624 return true; 1625 1626 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1627 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1628 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1629 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1630 Known.One |= Known2.One; 1631 Known.Zero |= Known2.Zero; 1632 } 1633 break; 1634 } 1635 case ISD::ROTL: 1636 case ISD::ROTR: { 1637 SDValue Op0 = Op.getOperand(0); 1638 1639 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1640 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1641 return TLO.CombineTo(Op, Op0); 1642 break; 1643 } 1644 case ISD::BITREVERSE: { 1645 SDValue Src = Op.getOperand(0); 1646 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1647 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1648 Depth + 1)) 1649 return true; 1650 Known.One = Known2.One.reverseBits(); 1651 Known.Zero = Known2.Zero.reverseBits(); 1652 break; 1653 } 1654 case ISD::BSWAP: { 1655 SDValue Src = Op.getOperand(0); 1656 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1657 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1658 Depth + 1)) 1659 return true; 1660 Known.One = Known2.One.byteSwap(); 1661 Known.Zero = Known2.Zero.byteSwap(); 1662 break; 1663 } 1664 case ISD::SIGN_EXTEND_INREG: { 1665 SDValue Op0 = Op.getOperand(0); 1666 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1667 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1668 1669 // If we only care about the highest bit, don't bother shifting right. 1670 if (DemandedBits.isSignMask()) { 1671 unsigned NumSignBits = 1672 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1673 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1674 // However if the input is already sign extended we expect the sign 1675 // extension to be dropped altogether later and do not simplify. 1676 if (!AlreadySignExtended) { 1677 // Compute the correct shift amount type, which must be getShiftAmountTy 1678 // for scalar types after legalization. 1679 EVT ShiftAmtTy = VT; 1680 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1681 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1682 1683 SDValue ShiftAmt = 1684 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1685 return TLO.CombineTo(Op, 1686 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1687 } 1688 } 1689 1690 // If none of the extended bits are demanded, eliminate the sextinreg. 1691 if (DemandedBits.getActiveBits() <= ExVTBits) 1692 return TLO.CombineTo(Op, Op0); 1693 1694 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1695 1696 // Since the sign extended bits are demanded, we know that the sign 1697 // bit is demanded. 1698 InputDemandedBits.setBit(ExVTBits - 1); 1699 1700 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1701 return true; 1702 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1703 1704 // If the sign bit of the input is known set or clear, then we know the 1705 // top bits of the result. 1706 1707 // If the input sign bit is known zero, convert this into a zero extension. 1708 if (Known.Zero[ExVTBits - 1]) 1709 return TLO.CombineTo( 1710 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1711 1712 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1713 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1714 Known.One.setBitsFrom(ExVTBits); 1715 Known.Zero &= Mask; 1716 } else { // Input sign bit unknown 1717 Known.Zero &= Mask; 1718 Known.One &= Mask; 1719 } 1720 break; 1721 } 1722 case ISD::BUILD_PAIR: { 1723 EVT HalfVT = Op.getOperand(0).getValueType(); 1724 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1725 1726 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1727 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1728 1729 KnownBits KnownLo, KnownHi; 1730 1731 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1732 return true; 1733 1734 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1735 return true; 1736 1737 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1738 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1739 1740 Known.One = KnownLo.One.zext(BitWidth) | 1741 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1742 break; 1743 } 1744 case ISD::ZERO_EXTEND: 1745 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1746 SDValue Src = Op.getOperand(0); 1747 EVT SrcVT = Src.getValueType(); 1748 unsigned InBits = SrcVT.getScalarSizeInBits(); 1749 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1750 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1751 1752 // If none of the top bits are demanded, convert this into an any_extend. 1753 if (DemandedBits.getActiveBits() <= InBits) { 1754 // If we only need the non-extended bits of the bottom element 1755 // then we can just bitcast to the result. 1756 if (IsVecInReg && DemandedElts == 1 && 1757 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1758 TLO.DAG.getDataLayout().isLittleEndian()) 1759 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1760 1761 unsigned Opc = 1762 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1763 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1764 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1765 } 1766 1767 APInt InDemandedBits = DemandedBits.trunc(InBits); 1768 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1769 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1770 Depth + 1)) 1771 return true; 1772 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1773 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1774 Known = Known.zext(BitWidth); 1775 break; 1776 } 1777 case ISD::SIGN_EXTEND: 1778 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1779 SDValue Src = Op.getOperand(0); 1780 EVT SrcVT = Src.getValueType(); 1781 unsigned InBits = SrcVT.getScalarSizeInBits(); 1782 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1783 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1784 1785 // If none of the top bits are demanded, convert this into an any_extend. 1786 if (DemandedBits.getActiveBits() <= InBits) { 1787 // If we only need the non-extended bits of the bottom element 1788 // then we can just bitcast to the result. 1789 if (IsVecInReg && DemandedElts == 1 && 1790 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1791 TLO.DAG.getDataLayout().isLittleEndian()) 1792 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1793 1794 unsigned Opc = 1795 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1796 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1797 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1798 } 1799 1800 APInt InDemandedBits = DemandedBits.trunc(InBits); 1801 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1802 1803 // Since some of the sign extended bits are demanded, we know that the sign 1804 // bit is demanded. 1805 InDemandedBits.setBit(InBits - 1); 1806 1807 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1808 Depth + 1)) 1809 return true; 1810 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1811 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1812 1813 // If the sign bit is known one, the top bits match. 1814 Known = Known.sext(BitWidth); 1815 1816 // If the sign bit is known zero, convert this to a zero extend. 1817 if (Known.isNonNegative()) { 1818 unsigned Opc = 1819 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1820 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1821 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1822 } 1823 break; 1824 } 1825 case ISD::ANY_EXTEND: 1826 case ISD::ANY_EXTEND_VECTOR_INREG: { 1827 SDValue Src = Op.getOperand(0); 1828 EVT SrcVT = Src.getValueType(); 1829 unsigned InBits = SrcVT.getScalarSizeInBits(); 1830 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1831 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1832 1833 // If we only need the bottom element then we can just bitcast. 1834 // TODO: Handle ANY_EXTEND? 1835 if (IsVecInReg && DemandedElts == 1 && 1836 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1837 TLO.DAG.getDataLayout().isLittleEndian()) 1838 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1839 1840 APInt InDemandedBits = DemandedBits.trunc(InBits); 1841 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1842 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1843 Depth + 1)) 1844 return true; 1845 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1846 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1847 Known = Known.anyext(BitWidth); 1848 1849 // Attempt to avoid multi-use ops if we don't need anything from them. 1850 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1851 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1852 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1853 break; 1854 } 1855 case ISD::TRUNCATE: { 1856 SDValue Src = Op.getOperand(0); 1857 1858 // Simplify the input, using demanded bit information, and compute the known 1859 // zero/one bits live out. 1860 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1861 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1862 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1863 return true; 1864 Known = Known.trunc(BitWidth); 1865 1866 // Attempt to avoid multi-use ops if we don't need anything from them. 1867 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1868 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1869 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1870 1871 // If the input is only used by this truncate, see if we can shrink it based 1872 // on the known demanded bits. 1873 if (Src.getNode()->hasOneUse()) { 1874 switch (Src.getOpcode()) { 1875 default: 1876 break; 1877 case ISD::SRL: 1878 // Shrink SRL by a constant if none of the high bits shifted in are 1879 // demanded. 1880 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1881 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1882 // undesirable. 1883 break; 1884 1885 SDValue ShAmt = Src.getOperand(1); 1886 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1887 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1888 break; 1889 uint64_t ShVal = ShAmtC->getZExtValue(); 1890 1891 APInt HighBits = 1892 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1893 HighBits.lshrInPlace(ShVal); 1894 HighBits = HighBits.trunc(BitWidth); 1895 1896 if (!(HighBits & DemandedBits)) { 1897 // None of the shifted in bits are needed. Add a truncate of the 1898 // shift input, then shift it. 1899 if (TLO.LegalTypes()) 1900 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1901 SDValue NewTrunc = 1902 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1903 return TLO.CombineTo( 1904 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1905 } 1906 break; 1907 } 1908 } 1909 1910 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1911 break; 1912 } 1913 case ISD::AssertZext: { 1914 // AssertZext demands all of the high bits, plus any of the low bits 1915 // demanded by its users. 1916 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1917 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1918 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1919 TLO, Depth + 1)) 1920 return true; 1921 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1922 1923 Known.Zero |= ~InMask; 1924 break; 1925 } 1926 case ISD::EXTRACT_VECTOR_ELT: { 1927 SDValue Src = Op.getOperand(0); 1928 SDValue Idx = Op.getOperand(1); 1929 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1930 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1931 1932 // Demand the bits from every vector element without a constant index. 1933 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1934 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1935 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1936 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1937 1938 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1939 // anything about the extended bits. 1940 APInt DemandedSrcBits = DemandedBits; 1941 if (BitWidth > EltBitWidth) 1942 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1943 1944 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1945 Depth + 1)) 1946 return true; 1947 1948 // Attempt to avoid multi-use ops if we don't need anything from them. 1949 if (!DemandedSrcBits.isAllOnesValue() || 1950 !DemandedSrcElts.isAllOnesValue()) { 1951 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1952 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1953 SDValue NewOp = 1954 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1955 return TLO.CombineTo(Op, NewOp); 1956 } 1957 } 1958 1959 Known = Known2; 1960 if (BitWidth > EltBitWidth) 1961 Known = Known.anyext(BitWidth); 1962 break; 1963 } 1964 case ISD::BITCAST: { 1965 SDValue Src = Op.getOperand(0); 1966 EVT SrcVT = Src.getValueType(); 1967 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1968 1969 // If this is an FP->Int bitcast and if the sign bit is the only 1970 // thing demanded, turn this into a FGETSIGN. 1971 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1972 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1973 SrcVT.isFloatingPoint()) { 1974 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1975 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1976 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1977 SrcVT != MVT::f128) { 1978 // Cannot eliminate/lower SHL for f128 yet. 1979 EVT Ty = OpVTLegal ? VT : MVT::i32; 1980 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1981 // place. We expect the SHL to be eliminated by other optimizations. 1982 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1983 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1984 if (!OpVTLegal && OpVTSizeInBits > 32) 1985 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1986 unsigned ShVal = Op.getValueSizeInBits() - 1; 1987 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1988 return TLO.CombineTo(Op, 1989 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1990 } 1991 } 1992 1993 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1994 // Demand the elt/bit if any of the original elts/bits are demanded. 1995 // TODO - bigendian once we have test coverage. 1996 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1997 TLO.DAG.getDataLayout().isLittleEndian()) { 1998 unsigned Scale = BitWidth / NumSrcEltBits; 1999 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2000 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2001 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2002 for (unsigned i = 0; i != Scale; ++i) { 2003 unsigned Offset = i * NumSrcEltBits; 2004 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2005 if (!Sub.isNullValue()) { 2006 DemandedSrcBits |= Sub; 2007 for (unsigned j = 0; j != NumElts; ++j) 2008 if (DemandedElts[j]) 2009 DemandedSrcElts.setBit((j * Scale) + i); 2010 } 2011 } 2012 2013 APInt KnownSrcUndef, KnownSrcZero; 2014 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2015 KnownSrcZero, TLO, Depth + 1)) 2016 return true; 2017 2018 KnownBits KnownSrcBits; 2019 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2020 KnownSrcBits, TLO, Depth + 1)) 2021 return true; 2022 } else if ((NumSrcEltBits % BitWidth) == 0 && 2023 TLO.DAG.getDataLayout().isLittleEndian()) { 2024 unsigned Scale = NumSrcEltBits / BitWidth; 2025 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2026 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2027 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2028 for (unsigned i = 0; i != NumElts; ++i) 2029 if (DemandedElts[i]) { 2030 unsigned Offset = (i % Scale) * BitWidth; 2031 DemandedSrcBits.insertBits(DemandedBits, Offset); 2032 DemandedSrcElts.setBit(i / Scale); 2033 } 2034 2035 if (SrcVT.isVector()) { 2036 APInt KnownSrcUndef, KnownSrcZero; 2037 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2038 KnownSrcZero, TLO, Depth + 1)) 2039 return true; 2040 } 2041 2042 KnownBits KnownSrcBits; 2043 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2044 KnownSrcBits, TLO, Depth + 1)) 2045 return true; 2046 } 2047 2048 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2049 // recursive call where Known may be useful to the caller. 2050 if (Depth > 0) { 2051 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2052 return false; 2053 } 2054 break; 2055 } 2056 case ISD::ADD: 2057 case ISD::MUL: 2058 case ISD::SUB: { 2059 // Add, Sub, and Mul don't demand any bits in positions beyond that 2060 // of the highest bit demanded of them. 2061 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2062 SDNodeFlags Flags = Op.getNode()->getFlags(); 2063 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2064 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2065 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2066 Depth + 1) || 2067 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2068 Depth + 1) || 2069 // See if the operation should be performed at a smaller bit width. 2070 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2071 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2072 // Disable the nsw and nuw flags. We can no longer guarantee that we 2073 // won't wrap after simplification. 2074 Flags.setNoSignedWrap(false); 2075 Flags.setNoUnsignedWrap(false); 2076 SDValue NewOp = 2077 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2078 return TLO.CombineTo(Op, NewOp); 2079 } 2080 return true; 2081 } 2082 2083 // Attempt to avoid multi-use ops if we don't need anything from them. 2084 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2085 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2086 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2087 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2088 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2089 if (DemandedOp0 || DemandedOp1) { 2090 Flags.setNoSignedWrap(false); 2091 Flags.setNoUnsignedWrap(false); 2092 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2093 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2094 SDValue NewOp = 2095 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2096 return TLO.CombineTo(Op, NewOp); 2097 } 2098 } 2099 2100 // If we have a constant operand, we may be able to turn it into -1 if we 2101 // do not demand the high bits. This can make the constant smaller to 2102 // encode, allow more general folding, or match specialized instruction 2103 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2104 // is probably not useful (and could be detrimental). 2105 ConstantSDNode *C = isConstOrConstSplat(Op1); 2106 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2107 if (C && !C->isAllOnesValue() && !C->isOne() && 2108 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2109 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2110 // Disable the nsw and nuw flags. We can no longer guarantee that we 2111 // won't wrap after simplification. 2112 Flags.setNoSignedWrap(false); 2113 Flags.setNoUnsignedWrap(false); 2114 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2115 return TLO.CombineTo(Op, NewOp); 2116 } 2117 2118 LLVM_FALLTHROUGH; 2119 } 2120 default: 2121 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2122 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2123 Known, TLO, Depth)) 2124 return true; 2125 break; 2126 } 2127 2128 // Just use computeKnownBits to compute output bits. 2129 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2130 break; 2131 } 2132 2133 // If we know the value of all of the demanded bits, return this as a 2134 // constant. 2135 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2136 // Avoid folding to a constant if any OpaqueConstant is involved. 2137 const SDNode *N = Op.getNode(); 2138 for (SDNodeIterator I = SDNodeIterator::begin(N), 2139 E = SDNodeIterator::end(N); 2140 I != E; ++I) { 2141 SDNode *Op = *I; 2142 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2143 if (C->isOpaque()) 2144 return false; 2145 } 2146 // TODO: Handle float bits as well. 2147 if (VT.isInteger()) 2148 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2149 } 2150 2151 return false; 2152 } 2153 2154 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2155 const APInt &DemandedElts, 2156 APInt &KnownUndef, 2157 APInt &KnownZero, 2158 DAGCombinerInfo &DCI) const { 2159 SelectionDAG &DAG = DCI.DAG; 2160 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2161 !DCI.isBeforeLegalizeOps()); 2162 2163 bool Simplified = 2164 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2165 if (Simplified) { 2166 DCI.AddToWorklist(Op.getNode()); 2167 DCI.CommitTargetLoweringOpt(TLO); 2168 } 2169 2170 return Simplified; 2171 } 2172 2173 /// Given a vector binary operation and known undefined elements for each input 2174 /// operand, compute whether each element of the output is undefined. 2175 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2176 const APInt &UndefOp0, 2177 const APInt &UndefOp1) { 2178 EVT VT = BO.getValueType(); 2179 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2180 "Vector binop only"); 2181 2182 EVT EltVT = VT.getVectorElementType(); 2183 unsigned NumElts = VT.getVectorNumElements(); 2184 assert(UndefOp0.getBitWidth() == NumElts && 2185 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2186 2187 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2188 const APInt &UndefVals) { 2189 if (UndefVals[Index]) 2190 return DAG.getUNDEF(EltVT); 2191 2192 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2193 // Try hard to make sure that the getNode() call is not creating temporary 2194 // nodes. Ignore opaque integers because they do not constant fold. 2195 SDValue Elt = BV->getOperand(Index); 2196 auto *C = dyn_cast<ConstantSDNode>(Elt); 2197 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2198 return Elt; 2199 } 2200 2201 return SDValue(); 2202 }; 2203 2204 APInt KnownUndef = APInt::getNullValue(NumElts); 2205 for (unsigned i = 0; i != NumElts; ++i) { 2206 // If both inputs for this element are either constant or undef and match 2207 // the element type, compute the constant/undef result for this element of 2208 // the vector. 2209 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2210 // not handle FP constants. The code within getNode() should be refactored 2211 // to avoid the danger of creating a bogus temporary node here. 2212 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2213 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2214 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2215 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2216 KnownUndef.setBit(i); 2217 } 2218 return KnownUndef; 2219 } 2220 2221 bool TargetLowering::SimplifyDemandedVectorElts( 2222 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2223 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2224 bool AssumeSingleUse) const { 2225 EVT VT = Op.getValueType(); 2226 APInt DemandedElts = OriginalDemandedElts; 2227 unsigned NumElts = DemandedElts.getBitWidth(); 2228 assert(VT.isVector() && "Expected vector op"); 2229 assert(VT.getVectorNumElements() == NumElts && 2230 "Mask size mismatches value type element count!"); 2231 2232 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2233 2234 // Undef operand. 2235 if (Op.isUndef()) { 2236 KnownUndef.setAllBits(); 2237 return false; 2238 } 2239 2240 // If Op has other users, assume that all elements are needed. 2241 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2242 DemandedElts.setAllBits(); 2243 2244 // Not demanding any elements from Op. 2245 if (DemandedElts == 0) { 2246 KnownUndef.setAllBits(); 2247 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2248 } 2249 2250 // Limit search depth. 2251 if (Depth >= SelectionDAG::MaxRecursionDepth) 2252 return false; 2253 2254 SDLoc DL(Op); 2255 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2256 2257 switch (Op.getOpcode()) { 2258 case ISD::SCALAR_TO_VECTOR: { 2259 if (!DemandedElts[0]) { 2260 KnownUndef.setAllBits(); 2261 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2262 } 2263 KnownUndef.setHighBits(NumElts - 1); 2264 break; 2265 } 2266 case ISD::BITCAST: { 2267 SDValue Src = Op.getOperand(0); 2268 EVT SrcVT = Src.getValueType(); 2269 2270 // We only handle vectors here. 2271 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2272 if (!SrcVT.isVector()) 2273 break; 2274 2275 // Fast handling of 'identity' bitcasts. 2276 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2277 if (NumSrcElts == NumElts) 2278 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2279 KnownZero, TLO, Depth + 1); 2280 2281 APInt SrcZero, SrcUndef; 2282 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2283 2284 // Bitcast from 'large element' src vector to 'small element' vector, we 2285 // must demand a source element if any DemandedElt maps to it. 2286 if ((NumElts % NumSrcElts) == 0) { 2287 unsigned Scale = NumElts / NumSrcElts; 2288 for (unsigned i = 0; i != NumElts; ++i) 2289 if (DemandedElts[i]) 2290 SrcDemandedElts.setBit(i / Scale); 2291 2292 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2293 TLO, Depth + 1)) 2294 return true; 2295 2296 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2297 // of the large element. 2298 // TODO - bigendian once we have test coverage. 2299 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2300 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2301 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2302 for (unsigned i = 0; i != NumElts; ++i) 2303 if (DemandedElts[i]) { 2304 unsigned Ofs = (i % Scale) * EltSizeInBits; 2305 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2306 } 2307 2308 KnownBits Known; 2309 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2310 return true; 2311 } 2312 2313 // If the src element is zero/undef then all the output elements will be - 2314 // only demanded elements are guaranteed to be correct. 2315 for (unsigned i = 0; i != NumSrcElts; ++i) { 2316 if (SrcDemandedElts[i]) { 2317 if (SrcZero[i]) 2318 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2319 if (SrcUndef[i]) 2320 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2321 } 2322 } 2323 } 2324 2325 // Bitcast from 'small element' src vector to 'large element' vector, we 2326 // demand all smaller source elements covered by the larger demanded element 2327 // of this vector. 2328 if ((NumSrcElts % NumElts) == 0) { 2329 unsigned Scale = NumSrcElts / NumElts; 2330 for (unsigned i = 0; i != NumElts; ++i) 2331 if (DemandedElts[i]) 2332 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2333 2334 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2335 TLO, Depth + 1)) 2336 return true; 2337 2338 // If all the src elements covering an output element are zero/undef, then 2339 // the output element will be as well, assuming it was demanded. 2340 for (unsigned i = 0; i != NumElts; ++i) { 2341 if (DemandedElts[i]) { 2342 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2343 KnownZero.setBit(i); 2344 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2345 KnownUndef.setBit(i); 2346 } 2347 } 2348 } 2349 break; 2350 } 2351 case ISD::BUILD_VECTOR: { 2352 // Check all elements and simplify any unused elements with UNDEF. 2353 if (!DemandedElts.isAllOnesValue()) { 2354 // Don't simplify BROADCASTS. 2355 if (llvm::any_of(Op->op_values(), 2356 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2357 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2358 bool Updated = false; 2359 for (unsigned i = 0; i != NumElts; ++i) { 2360 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2361 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2362 KnownUndef.setBit(i); 2363 Updated = true; 2364 } 2365 } 2366 if (Updated) 2367 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2368 } 2369 } 2370 for (unsigned i = 0; i != NumElts; ++i) { 2371 SDValue SrcOp = Op.getOperand(i); 2372 if (SrcOp.isUndef()) { 2373 KnownUndef.setBit(i); 2374 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2375 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2376 KnownZero.setBit(i); 2377 } 2378 } 2379 break; 2380 } 2381 case ISD::CONCAT_VECTORS: { 2382 EVT SubVT = Op.getOperand(0).getValueType(); 2383 unsigned NumSubVecs = Op.getNumOperands(); 2384 unsigned NumSubElts = SubVT.getVectorNumElements(); 2385 for (unsigned i = 0; i != NumSubVecs; ++i) { 2386 SDValue SubOp = Op.getOperand(i); 2387 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2388 APInt SubUndef, SubZero; 2389 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2390 Depth + 1)) 2391 return true; 2392 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2393 KnownZero.insertBits(SubZero, i * NumSubElts); 2394 } 2395 break; 2396 } 2397 case ISD::INSERT_SUBVECTOR: { 2398 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2399 break; 2400 SDValue Base = Op.getOperand(0); 2401 SDValue Sub = Op.getOperand(1); 2402 EVT SubVT = Sub.getValueType(); 2403 unsigned NumSubElts = SubVT.getVectorNumElements(); 2404 const APInt &Idx = Op.getConstantOperandAPInt(2); 2405 if (Idx.ugt(NumElts - NumSubElts)) 2406 break; 2407 unsigned SubIdx = Idx.getZExtValue(); 2408 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2409 APInt SubUndef, SubZero; 2410 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2411 Depth + 1)) 2412 return true; 2413 APInt BaseElts = DemandedElts; 2414 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2415 2416 // If none of the base operand elements are demanded, replace it with undef. 2417 if (!BaseElts && !Base.isUndef()) 2418 return TLO.CombineTo(Op, 2419 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2420 TLO.DAG.getUNDEF(VT), 2421 Op.getOperand(1), 2422 Op.getOperand(2))); 2423 2424 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2425 Depth + 1)) 2426 return true; 2427 KnownUndef.insertBits(SubUndef, SubIdx); 2428 KnownZero.insertBits(SubZero, SubIdx); 2429 break; 2430 } 2431 case ISD::EXTRACT_SUBVECTOR: { 2432 SDValue Src = Op.getOperand(0); 2433 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2434 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2435 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2436 // Offset the demanded elts by the subvector index. 2437 uint64_t Idx = SubIdx->getZExtValue(); 2438 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2439 APInt SrcUndef, SrcZero; 2440 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2441 Depth + 1)) 2442 return true; 2443 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2444 KnownZero = SrcZero.extractBits(NumElts, Idx); 2445 } 2446 break; 2447 } 2448 case ISD::INSERT_VECTOR_ELT: { 2449 SDValue Vec = Op.getOperand(0); 2450 SDValue Scl = Op.getOperand(1); 2451 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2452 2453 // For a legal, constant insertion index, if we don't need this insertion 2454 // then strip it, else remove it from the demanded elts. 2455 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2456 unsigned Idx = CIdx->getZExtValue(); 2457 if (!DemandedElts[Idx]) 2458 return TLO.CombineTo(Op, Vec); 2459 2460 APInt DemandedVecElts(DemandedElts); 2461 DemandedVecElts.clearBit(Idx); 2462 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2463 KnownZero, TLO, Depth + 1)) 2464 return true; 2465 2466 KnownUndef.clearBit(Idx); 2467 if (Scl.isUndef()) 2468 KnownUndef.setBit(Idx); 2469 2470 KnownZero.clearBit(Idx); 2471 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2472 KnownZero.setBit(Idx); 2473 break; 2474 } 2475 2476 APInt VecUndef, VecZero; 2477 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2478 Depth + 1)) 2479 return true; 2480 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2481 break; 2482 } 2483 case ISD::VSELECT: { 2484 // Try to transform the select condition based on the current demanded 2485 // elements. 2486 // TODO: If a condition element is undef, we can choose from one arm of the 2487 // select (and if one arm is undef, then we can propagate that to the 2488 // result). 2489 // TODO - add support for constant vselect masks (see IR version of this). 2490 APInt UnusedUndef, UnusedZero; 2491 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2492 UnusedZero, TLO, Depth + 1)) 2493 return true; 2494 2495 // See if we can simplify either vselect operand. 2496 APInt DemandedLHS(DemandedElts); 2497 APInt DemandedRHS(DemandedElts); 2498 APInt UndefLHS, ZeroLHS; 2499 APInt UndefRHS, ZeroRHS; 2500 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2501 ZeroLHS, TLO, Depth + 1)) 2502 return true; 2503 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2504 ZeroRHS, TLO, Depth + 1)) 2505 return true; 2506 2507 KnownUndef = UndefLHS & UndefRHS; 2508 KnownZero = ZeroLHS & ZeroRHS; 2509 break; 2510 } 2511 case ISD::VECTOR_SHUFFLE: { 2512 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2513 2514 // Collect demanded elements from shuffle operands.. 2515 APInt DemandedLHS(NumElts, 0); 2516 APInt DemandedRHS(NumElts, 0); 2517 for (unsigned i = 0; i != NumElts; ++i) { 2518 int M = ShuffleMask[i]; 2519 if (M < 0 || !DemandedElts[i]) 2520 continue; 2521 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2522 if (M < (int)NumElts) 2523 DemandedLHS.setBit(M); 2524 else 2525 DemandedRHS.setBit(M - NumElts); 2526 } 2527 2528 // See if we can simplify either shuffle operand. 2529 APInt UndefLHS, ZeroLHS; 2530 APInt UndefRHS, ZeroRHS; 2531 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2532 ZeroLHS, TLO, Depth + 1)) 2533 return true; 2534 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2535 ZeroRHS, TLO, Depth + 1)) 2536 return true; 2537 2538 // Simplify mask using undef elements from LHS/RHS. 2539 bool Updated = false; 2540 bool IdentityLHS = true, IdentityRHS = true; 2541 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2542 for (unsigned i = 0; i != NumElts; ++i) { 2543 int &M = NewMask[i]; 2544 if (M < 0) 2545 continue; 2546 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2547 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2548 Updated = true; 2549 M = -1; 2550 } 2551 IdentityLHS &= (M < 0) || (M == (int)i); 2552 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2553 } 2554 2555 // Update legal shuffle masks based on demanded elements if it won't reduce 2556 // to Identity which can cause premature removal of the shuffle mask. 2557 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2558 SDValue LegalShuffle = 2559 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2560 NewMask, TLO.DAG); 2561 if (LegalShuffle) 2562 return TLO.CombineTo(Op, LegalShuffle); 2563 } 2564 2565 // Propagate undef/zero elements from LHS/RHS. 2566 for (unsigned i = 0; i != NumElts; ++i) { 2567 int M = ShuffleMask[i]; 2568 if (M < 0) { 2569 KnownUndef.setBit(i); 2570 } else if (M < (int)NumElts) { 2571 if (UndefLHS[M]) 2572 KnownUndef.setBit(i); 2573 if (ZeroLHS[M]) 2574 KnownZero.setBit(i); 2575 } else { 2576 if (UndefRHS[M - NumElts]) 2577 KnownUndef.setBit(i); 2578 if (ZeroRHS[M - NumElts]) 2579 KnownZero.setBit(i); 2580 } 2581 } 2582 break; 2583 } 2584 case ISD::ANY_EXTEND_VECTOR_INREG: 2585 case ISD::SIGN_EXTEND_VECTOR_INREG: 2586 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2587 APInt SrcUndef, SrcZero; 2588 SDValue Src = Op.getOperand(0); 2589 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2590 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2591 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2592 Depth + 1)) 2593 return true; 2594 KnownZero = SrcZero.zextOrTrunc(NumElts); 2595 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2596 2597 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2598 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2599 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2600 // aext - if we just need the bottom element then we can bitcast. 2601 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2602 } 2603 2604 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2605 // zext(undef) upper bits are guaranteed to be zero. 2606 if (DemandedElts.isSubsetOf(KnownUndef)) 2607 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2608 KnownUndef.clearAllBits(); 2609 } 2610 break; 2611 } 2612 2613 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2614 // MAX, saturated math, etc. 2615 case ISD::OR: 2616 case ISD::XOR: 2617 case ISD::ADD: 2618 case ISD::SUB: 2619 case ISD::FADD: 2620 case ISD::FSUB: 2621 case ISD::FMUL: 2622 case ISD::FDIV: 2623 case ISD::FREM: { 2624 APInt UndefRHS, ZeroRHS; 2625 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2626 ZeroRHS, TLO, Depth + 1)) 2627 return true; 2628 APInt UndefLHS, ZeroLHS; 2629 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2630 ZeroLHS, TLO, Depth + 1)) 2631 return true; 2632 2633 KnownZero = ZeroLHS & ZeroRHS; 2634 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2635 break; 2636 } 2637 case ISD::SHL: 2638 case ISD::SRL: 2639 case ISD::SRA: 2640 case ISD::ROTL: 2641 case ISD::ROTR: { 2642 APInt UndefRHS, ZeroRHS; 2643 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2644 ZeroRHS, TLO, Depth + 1)) 2645 return true; 2646 APInt UndefLHS, ZeroLHS; 2647 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2648 ZeroLHS, TLO, Depth + 1)) 2649 return true; 2650 2651 KnownZero = ZeroLHS; 2652 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2653 break; 2654 } 2655 case ISD::MUL: 2656 case ISD::AND: { 2657 APInt SrcUndef, SrcZero; 2658 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2659 SrcZero, TLO, Depth + 1)) 2660 return true; 2661 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2662 KnownZero, TLO, Depth + 1)) 2663 return true; 2664 2665 // If either side has a zero element, then the result element is zero, even 2666 // if the other is an UNDEF. 2667 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2668 // and then handle 'and' nodes with the rest of the binop opcodes. 2669 KnownZero |= SrcZero; 2670 KnownUndef &= SrcUndef; 2671 KnownUndef &= ~KnownZero; 2672 break; 2673 } 2674 case ISD::TRUNCATE: 2675 case ISD::SIGN_EXTEND: 2676 case ISD::ZERO_EXTEND: 2677 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2678 KnownZero, TLO, Depth + 1)) 2679 return true; 2680 2681 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2682 // zext(undef) upper bits are guaranteed to be zero. 2683 if (DemandedElts.isSubsetOf(KnownUndef)) 2684 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2685 KnownUndef.clearAllBits(); 2686 } 2687 break; 2688 default: { 2689 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2690 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2691 KnownZero, TLO, Depth)) 2692 return true; 2693 } else { 2694 KnownBits Known; 2695 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2696 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2697 TLO, Depth, AssumeSingleUse)) 2698 return true; 2699 } 2700 break; 2701 } 2702 } 2703 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2704 2705 // Constant fold all undef cases. 2706 // TODO: Handle zero cases as well. 2707 if (DemandedElts.isSubsetOf(KnownUndef)) 2708 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2709 2710 return false; 2711 } 2712 2713 /// Determine which of the bits specified in Mask are known to be either zero or 2714 /// one and return them in the Known. 2715 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2716 KnownBits &Known, 2717 const APInt &DemandedElts, 2718 const SelectionDAG &DAG, 2719 unsigned Depth) const { 2720 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2721 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2722 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2723 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2724 "Should use MaskedValueIsZero if you don't know whether Op" 2725 " is a target node!"); 2726 Known.resetAll(); 2727 } 2728 2729 void TargetLowering::computeKnownBitsForTargetInstr( 2730 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2731 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2732 unsigned Depth) const { 2733 Known.resetAll(); 2734 } 2735 2736 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2737 KnownBits &Known, 2738 const APInt &DemandedElts, 2739 const SelectionDAG &DAG, 2740 unsigned Depth) const { 2741 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2742 2743 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2744 // The low bits are known zero if the pointer is aligned. 2745 Known.Zero.setLowBits(Log2_32(Align)); 2746 } 2747 } 2748 2749 /// This method can be implemented by targets that want to expose additional 2750 /// information about sign bits to the DAG Combiner. 2751 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2752 const APInt &, 2753 const SelectionDAG &, 2754 unsigned Depth) const { 2755 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2756 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2757 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2758 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2759 "Should use ComputeNumSignBits if you don't know whether Op" 2760 " is a target node!"); 2761 return 1; 2762 } 2763 2764 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2765 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2766 TargetLoweringOpt &TLO, unsigned Depth) const { 2767 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2768 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2769 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2770 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2771 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2772 " is a target node!"); 2773 return false; 2774 } 2775 2776 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2777 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2778 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2779 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2780 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2781 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2782 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2783 "Should use SimplifyDemandedBits if you don't know whether Op" 2784 " is a target node!"); 2785 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2786 return false; 2787 } 2788 2789 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2790 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2791 SelectionDAG &DAG, unsigned Depth) const { 2792 assert( 2793 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2794 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2795 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2796 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2797 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2798 " is a target node!"); 2799 return SDValue(); 2800 } 2801 2802 SDValue 2803 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2804 SDValue N1, MutableArrayRef<int> Mask, 2805 SelectionDAG &DAG) const { 2806 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2807 if (!LegalMask) { 2808 std::swap(N0, N1); 2809 ShuffleVectorSDNode::commuteMask(Mask); 2810 LegalMask = isShuffleMaskLegal(Mask, VT); 2811 } 2812 2813 if (!LegalMask) 2814 return SDValue(); 2815 2816 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2817 } 2818 2819 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2820 return nullptr; 2821 } 2822 2823 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2824 const SelectionDAG &DAG, 2825 bool SNaN, 2826 unsigned Depth) const { 2827 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2828 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2829 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2830 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2831 "Should use isKnownNeverNaN if you don't know whether Op" 2832 " is a target node!"); 2833 return false; 2834 } 2835 2836 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2837 // work with truncating build vectors and vectors with elements of less than 2838 // 8 bits. 2839 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2840 if (!N) 2841 return false; 2842 2843 APInt CVal; 2844 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2845 CVal = CN->getAPIntValue(); 2846 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2847 auto *CN = BV->getConstantSplatNode(); 2848 if (!CN) 2849 return false; 2850 2851 // If this is a truncating build vector, truncate the splat value. 2852 // Otherwise, we may fail to match the expected values below. 2853 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2854 CVal = CN->getAPIntValue(); 2855 if (BVEltWidth < CVal.getBitWidth()) 2856 CVal = CVal.trunc(BVEltWidth); 2857 } else { 2858 return false; 2859 } 2860 2861 switch (getBooleanContents(N->getValueType(0))) { 2862 case UndefinedBooleanContent: 2863 return CVal[0]; 2864 case ZeroOrOneBooleanContent: 2865 return CVal.isOneValue(); 2866 case ZeroOrNegativeOneBooleanContent: 2867 return CVal.isAllOnesValue(); 2868 } 2869 2870 llvm_unreachable("Invalid boolean contents"); 2871 } 2872 2873 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2874 if (!N) 2875 return false; 2876 2877 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2878 if (!CN) { 2879 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2880 if (!BV) 2881 return false; 2882 2883 // Only interested in constant splats, we don't care about undef 2884 // elements in identifying boolean constants and getConstantSplatNode 2885 // returns NULL if all ops are undef; 2886 CN = BV->getConstantSplatNode(); 2887 if (!CN) 2888 return false; 2889 } 2890 2891 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2892 return !CN->getAPIntValue()[0]; 2893 2894 return CN->isNullValue(); 2895 } 2896 2897 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2898 bool SExt) const { 2899 if (VT == MVT::i1) 2900 return N->isOne(); 2901 2902 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2903 switch (Cnt) { 2904 case TargetLowering::ZeroOrOneBooleanContent: 2905 // An extended value of 1 is always true, unless its original type is i1, 2906 // in which case it will be sign extended to -1. 2907 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2908 case TargetLowering::UndefinedBooleanContent: 2909 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2910 return N->isAllOnesValue() && SExt; 2911 } 2912 llvm_unreachable("Unexpected enumeration."); 2913 } 2914 2915 /// This helper function of SimplifySetCC tries to optimize the comparison when 2916 /// either operand of the SetCC node is a bitwise-and instruction. 2917 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2918 ISD::CondCode Cond, const SDLoc &DL, 2919 DAGCombinerInfo &DCI) const { 2920 // Match these patterns in any of their permutations: 2921 // (X & Y) == Y 2922 // (X & Y) != Y 2923 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2924 std::swap(N0, N1); 2925 2926 EVT OpVT = N0.getValueType(); 2927 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2928 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2929 return SDValue(); 2930 2931 SDValue X, Y; 2932 if (N0.getOperand(0) == N1) { 2933 X = N0.getOperand(1); 2934 Y = N0.getOperand(0); 2935 } else if (N0.getOperand(1) == N1) { 2936 X = N0.getOperand(0); 2937 Y = N0.getOperand(1); 2938 } else { 2939 return SDValue(); 2940 } 2941 2942 SelectionDAG &DAG = DCI.DAG; 2943 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2944 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2945 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2946 // Note that where Y is variable and is known to have at most one bit set 2947 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2948 // equivalent when Y == 0. 2949 assert(OpVT.isInteger()); 2950 Cond = ISD::getSetCCInverse(Cond, OpVT); 2951 if (DCI.isBeforeLegalizeOps() || 2952 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2953 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2954 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2955 // If the target supports an 'and-not' or 'and-complement' logic operation, 2956 // try to use that to make a comparison operation more efficient. 2957 // But don't do this transform if the mask is a single bit because there are 2958 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2959 // 'rlwinm' on PPC). 2960 2961 // Bail out if the compare operand that we want to turn into a zero is 2962 // already a zero (otherwise, infinite loop). 2963 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2964 if (YConst && YConst->isNullValue()) 2965 return SDValue(); 2966 2967 // Transform this into: ~X & Y == 0. 2968 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2969 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2970 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2971 } 2972 2973 return SDValue(); 2974 } 2975 2976 /// There are multiple IR patterns that could be checking whether certain 2977 /// truncation of a signed number would be lossy or not. The pattern which is 2978 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2979 /// We are looking for the following pattern: (KeptBits is a constant) 2980 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2981 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2982 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2983 /// We will unfold it into the natural trunc+sext pattern: 2984 /// ((%x << C) a>> C) dstcond %x 2985 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2986 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2987 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2988 const SDLoc &DL) const { 2989 // We must be comparing with a constant. 2990 ConstantSDNode *C1; 2991 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2992 return SDValue(); 2993 2994 // N0 should be: add %x, (1 << (KeptBits-1)) 2995 if (N0->getOpcode() != ISD::ADD) 2996 return SDValue(); 2997 2998 // And we must be 'add'ing a constant. 2999 ConstantSDNode *C01; 3000 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3001 return SDValue(); 3002 3003 SDValue X = N0->getOperand(0); 3004 EVT XVT = X.getValueType(); 3005 3006 // Validate constants ... 3007 3008 APInt I1 = C1->getAPIntValue(); 3009 3010 ISD::CondCode NewCond; 3011 if (Cond == ISD::CondCode::SETULT) { 3012 NewCond = ISD::CondCode::SETEQ; 3013 } else if (Cond == ISD::CondCode::SETULE) { 3014 NewCond = ISD::CondCode::SETEQ; 3015 // But need to 'canonicalize' the constant. 3016 I1 += 1; 3017 } else if (Cond == ISD::CondCode::SETUGT) { 3018 NewCond = ISD::CondCode::SETNE; 3019 // But need to 'canonicalize' the constant. 3020 I1 += 1; 3021 } else if (Cond == ISD::CondCode::SETUGE) { 3022 NewCond = ISD::CondCode::SETNE; 3023 } else 3024 return SDValue(); 3025 3026 APInt I01 = C01->getAPIntValue(); 3027 3028 auto checkConstants = [&I1, &I01]() -> bool { 3029 // Both of them must be power-of-two, and the constant from setcc is bigger. 3030 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3031 }; 3032 3033 if (checkConstants()) { 3034 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3035 } else { 3036 // What if we invert constants? (and the target predicate) 3037 I1.negate(); 3038 I01.negate(); 3039 assert(XVT.isInteger()); 3040 NewCond = getSetCCInverse(NewCond, XVT); 3041 if (!checkConstants()) 3042 return SDValue(); 3043 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3044 } 3045 3046 // They are power-of-two, so which bit is set? 3047 const unsigned KeptBits = I1.logBase2(); 3048 const unsigned KeptBitsMinusOne = I01.logBase2(); 3049 3050 // Magic! 3051 if (KeptBits != (KeptBitsMinusOne + 1)) 3052 return SDValue(); 3053 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3054 3055 // We don't want to do this in every single case. 3056 SelectionDAG &DAG = DCI.DAG; 3057 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3058 XVT, KeptBits)) 3059 return SDValue(); 3060 3061 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3062 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3063 3064 // Unfold into: ((%x << C) a>> C) cond %x 3065 // Where 'cond' will be either 'eq' or 'ne'. 3066 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3067 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3068 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3069 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3070 3071 return T2; 3072 } 3073 3074 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3075 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3076 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3077 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3078 assert(isConstOrConstSplat(N1C) && 3079 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3080 "Should be a comparison with 0."); 3081 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3082 "Valid only for [in]equality comparisons."); 3083 3084 unsigned NewShiftOpcode; 3085 SDValue X, C, Y; 3086 3087 SelectionDAG &DAG = DCI.DAG; 3088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3089 3090 // Look for '(C l>>/<< Y)'. 3091 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3092 // The shift should be one-use. 3093 if (!V.hasOneUse()) 3094 return false; 3095 unsigned OldShiftOpcode = V.getOpcode(); 3096 switch (OldShiftOpcode) { 3097 case ISD::SHL: 3098 NewShiftOpcode = ISD::SRL; 3099 break; 3100 case ISD::SRL: 3101 NewShiftOpcode = ISD::SHL; 3102 break; 3103 default: 3104 return false; // must be a logical shift. 3105 } 3106 // We should be shifting a constant. 3107 // FIXME: best to use isConstantOrConstantVector(). 3108 C = V.getOperand(0); 3109 ConstantSDNode *CC = 3110 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3111 if (!CC) 3112 return false; 3113 Y = V.getOperand(1); 3114 3115 ConstantSDNode *XC = 3116 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3117 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3118 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3119 }; 3120 3121 // LHS of comparison should be an one-use 'and'. 3122 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3123 return SDValue(); 3124 3125 X = N0.getOperand(0); 3126 SDValue Mask = N0.getOperand(1); 3127 3128 // 'and' is commutative! 3129 if (!Match(Mask)) { 3130 std::swap(X, Mask); 3131 if (!Match(Mask)) 3132 return SDValue(); 3133 } 3134 3135 EVT VT = X.getValueType(); 3136 3137 // Produce: 3138 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3139 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3140 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3141 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3142 return T2; 3143 } 3144 3145 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3146 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3147 /// handle the commuted versions of these patterns. 3148 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3149 ISD::CondCode Cond, const SDLoc &DL, 3150 DAGCombinerInfo &DCI) const { 3151 unsigned BOpcode = N0.getOpcode(); 3152 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3153 "Unexpected binop"); 3154 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3155 3156 // (X + Y) == X --> Y == 0 3157 // (X - Y) == X --> Y == 0 3158 // (X ^ Y) == X --> Y == 0 3159 SelectionDAG &DAG = DCI.DAG; 3160 EVT OpVT = N0.getValueType(); 3161 SDValue X = N0.getOperand(0); 3162 SDValue Y = N0.getOperand(1); 3163 if (X == N1) 3164 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3165 3166 if (Y != N1) 3167 return SDValue(); 3168 3169 // (X + Y) == Y --> X == 0 3170 // (X ^ Y) == Y --> X == 0 3171 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3172 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3173 3174 // The shift would not be valid if the operands are boolean (i1). 3175 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3176 return SDValue(); 3177 3178 // (X - Y) == Y --> X == Y << 1 3179 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3180 !DCI.isBeforeLegalize()); 3181 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3182 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3183 if (!DCI.isCalledByLegalizer()) 3184 DCI.AddToWorklist(YShl1.getNode()); 3185 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3186 } 3187 3188 /// Try to simplify a setcc built with the specified operands and cc. If it is 3189 /// unable to simplify it, return a null SDValue. 3190 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3191 ISD::CondCode Cond, bool foldBooleans, 3192 DAGCombinerInfo &DCI, 3193 const SDLoc &dl) const { 3194 SelectionDAG &DAG = DCI.DAG; 3195 const DataLayout &Layout = DAG.getDataLayout(); 3196 EVT OpVT = N0.getValueType(); 3197 3198 // Constant fold or commute setcc. 3199 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3200 return Fold; 3201 3202 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3203 // TODO: Handle non-splat vector constants. All undef causes trouble. 3204 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3205 if (isConstOrConstSplat(N0) && 3206 (DCI.isBeforeLegalizeOps() || 3207 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3208 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3209 3210 // If we have a subtract with the same 2 non-constant operands as this setcc 3211 // -- but in reverse order -- then try to commute the operands of this setcc 3212 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3213 // instruction on some targets. 3214 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3215 (DCI.isBeforeLegalizeOps() || 3216 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3217 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3218 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3219 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3220 3221 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3222 const APInt &C1 = N1C->getAPIntValue(); 3223 3224 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3225 // equality comparison, then we're just comparing whether X itself is 3226 // zero. 3227 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3228 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3229 N0.getOperand(1).getOpcode() == ISD::Constant) { 3230 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3231 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3232 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3233 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3234 // (srl (ctlz x), 5) == 0 -> X != 0 3235 // (srl (ctlz x), 5) != 1 -> X != 0 3236 Cond = ISD::SETNE; 3237 } else { 3238 // (srl (ctlz x), 5) != 0 -> X == 0 3239 // (srl (ctlz x), 5) == 1 -> X == 0 3240 Cond = ISD::SETEQ; 3241 } 3242 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3243 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3244 Zero, Cond); 3245 } 3246 } 3247 3248 SDValue CTPOP = N0; 3249 // Look through truncs that don't change the value of a ctpop. 3250 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3251 CTPOP = N0.getOperand(0); 3252 3253 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3254 (N0 == CTPOP || 3255 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3256 EVT CTVT = CTPOP.getValueType(); 3257 SDValue CTOp = CTPOP.getOperand(0); 3258 3259 // (ctpop x) u< 2 -> (x & x-1) == 0 3260 // (ctpop x) u> 1 -> (x & x-1) != 0 3261 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3262 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3263 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3264 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3265 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3266 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3267 } 3268 3269 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3270 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3271 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3272 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3273 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3274 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3275 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3276 assert(CTVT.isInteger()); 3277 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3278 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3279 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3280 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3281 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3282 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3283 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3284 } 3285 } 3286 3287 // (zext x) == C --> x == (trunc C) 3288 // (sext x) == C --> x == (trunc C) 3289 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3290 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3291 unsigned MinBits = N0.getValueSizeInBits(); 3292 SDValue PreExt; 3293 bool Signed = false; 3294 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3295 // ZExt 3296 MinBits = N0->getOperand(0).getValueSizeInBits(); 3297 PreExt = N0->getOperand(0); 3298 } else if (N0->getOpcode() == ISD::AND) { 3299 // DAGCombine turns costly ZExts into ANDs 3300 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3301 if ((C->getAPIntValue()+1).isPowerOf2()) { 3302 MinBits = C->getAPIntValue().countTrailingOnes(); 3303 PreExt = N0->getOperand(0); 3304 } 3305 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3306 // SExt 3307 MinBits = N0->getOperand(0).getValueSizeInBits(); 3308 PreExt = N0->getOperand(0); 3309 Signed = true; 3310 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3311 // ZEXTLOAD / SEXTLOAD 3312 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3313 MinBits = LN0->getMemoryVT().getSizeInBits(); 3314 PreExt = N0; 3315 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3316 Signed = true; 3317 MinBits = LN0->getMemoryVT().getSizeInBits(); 3318 PreExt = N0; 3319 } 3320 } 3321 3322 // Figure out how many bits we need to preserve this constant. 3323 unsigned ReqdBits = Signed ? 3324 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3325 C1.getActiveBits(); 3326 3327 // Make sure we're not losing bits from the constant. 3328 if (MinBits > 0 && 3329 MinBits < C1.getBitWidth() && 3330 MinBits >= ReqdBits) { 3331 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3332 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3333 // Will get folded away. 3334 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3335 if (MinBits == 1 && C1 == 1) 3336 // Invert the condition. 3337 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3338 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3339 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3340 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3341 } 3342 3343 // If truncating the setcc operands is not desirable, we can still 3344 // simplify the expression in some cases: 3345 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3346 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3347 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3348 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3349 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3350 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3351 SDValue TopSetCC = N0->getOperand(0); 3352 unsigned N0Opc = N0->getOpcode(); 3353 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3354 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3355 TopSetCC.getOpcode() == ISD::SETCC && 3356 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3357 (isConstFalseVal(N1C) || 3358 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3359 3360 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3361 (!N1C->isNullValue() && Cond == ISD::SETNE); 3362 3363 if (!Inverse) 3364 return TopSetCC; 3365 3366 ISD::CondCode InvCond = ISD::getSetCCInverse( 3367 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3368 TopSetCC.getOperand(0).getValueType()); 3369 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3370 TopSetCC.getOperand(1), 3371 InvCond); 3372 } 3373 } 3374 } 3375 3376 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3377 // equality or unsigned, and all 1 bits of the const are in the same 3378 // partial word, see if we can shorten the load. 3379 if (DCI.isBeforeLegalize() && 3380 !ISD::isSignedIntSetCC(Cond) && 3381 N0.getOpcode() == ISD::AND && C1 == 0 && 3382 N0.getNode()->hasOneUse() && 3383 isa<LoadSDNode>(N0.getOperand(0)) && 3384 N0.getOperand(0).getNode()->hasOneUse() && 3385 isa<ConstantSDNode>(N0.getOperand(1))) { 3386 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3387 APInt bestMask; 3388 unsigned bestWidth = 0, bestOffset = 0; 3389 if (Lod->isSimple() && Lod->isUnindexed()) { 3390 unsigned origWidth = N0.getValueSizeInBits(); 3391 unsigned maskWidth = origWidth; 3392 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3393 // 8 bits, but have to be careful... 3394 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3395 origWidth = Lod->getMemoryVT().getSizeInBits(); 3396 const APInt &Mask = N0.getConstantOperandAPInt(1); 3397 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3398 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3399 for (unsigned offset=0; offset<origWidth/width; offset++) { 3400 if (Mask.isSubsetOf(newMask)) { 3401 if (Layout.isLittleEndian()) 3402 bestOffset = (uint64_t)offset * (width/8); 3403 else 3404 bestOffset = (origWidth/width - offset - 1) * (width/8); 3405 bestMask = Mask.lshr(offset * (width/8) * 8); 3406 bestWidth = width; 3407 break; 3408 } 3409 newMask <<= width; 3410 } 3411 } 3412 } 3413 if (bestWidth) { 3414 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3415 if (newVT.isRound() && 3416 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3417 SDValue Ptr = Lod->getBasePtr(); 3418 if (bestOffset != 0) 3419 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3420 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3421 SDValue NewLoad = DAG.getLoad( 3422 newVT, dl, Lod->getChain(), Ptr, 3423 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3424 return DAG.getSetCC(dl, VT, 3425 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3426 DAG.getConstant(bestMask.trunc(bestWidth), 3427 dl, newVT)), 3428 DAG.getConstant(0LL, dl, newVT), Cond); 3429 } 3430 } 3431 } 3432 3433 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3434 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3435 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3436 3437 // If the comparison constant has bits in the upper part, the 3438 // zero-extended value could never match. 3439 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3440 C1.getBitWidth() - InSize))) { 3441 switch (Cond) { 3442 case ISD::SETUGT: 3443 case ISD::SETUGE: 3444 case ISD::SETEQ: 3445 return DAG.getConstant(0, dl, VT); 3446 case ISD::SETULT: 3447 case ISD::SETULE: 3448 case ISD::SETNE: 3449 return DAG.getConstant(1, dl, VT); 3450 case ISD::SETGT: 3451 case ISD::SETGE: 3452 // True if the sign bit of C1 is set. 3453 return DAG.getConstant(C1.isNegative(), dl, VT); 3454 case ISD::SETLT: 3455 case ISD::SETLE: 3456 // True if the sign bit of C1 isn't set. 3457 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3458 default: 3459 break; 3460 } 3461 } 3462 3463 // Otherwise, we can perform the comparison with the low bits. 3464 switch (Cond) { 3465 case ISD::SETEQ: 3466 case ISD::SETNE: 3467 case ISD::SETUGT: 3468 case ISD::SETUGE: 3469 case ISD::SETULT: 3470 case ISD::SETULE: { 3471 EVT newVT = N0.getOperand(0).getValueType(); 3472 if (DCI.isBeforeLegalizeOps() || 3473 (isOperationLegal(ISD::SETCC, newVT) && 3474 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3475 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3476 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3477 3478 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3479 NewConst, Cond); 3480 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3481 } 3482 break; 3483 } 3484 default: 3485 break; // todo, be more careful with signed comparisons 3486 } 3487 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3488 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3489 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3490 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3491 EVT ExtDstTy = N0.getValueType(); 3492 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3493 3494 // If the constant doesn't fit into the number of bits for the source of 3495 // the sign extension, it is impossible for both sides to be equal. 3496 if (C1.getMinSignedBits() > ExtSrcTyBits) 3497 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3498 3499 SDValue ZextOp; 3500 EVT Op0Ty = N0.getOperand(0).getValueType(); 3501 if (Op0Ty == ExtSrcTy) { 3502 ZextOp = N0.getOperand(0); 3503 } else { 3504 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3505 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3506 DAG.getConstant(Imm, dl, Op0Ty)); 3507 } 3508 if (!DCI.isCalledByLegalizer()) 3509 DCI.AddToWorklist(ZextOp.getNode()); 3510 // Otherwise, make this a use of a zext. 3511 return DAG.getSetCC(dl, VT, ZextOp, 3512 DAG.getConstant(C1 & APInt::getLowBitsSet( 3513 ExtDstTyBits, 3514 ExtSrcTyBits), 3515 dl, ExtDstTy), 3516 Cond); 3517 } else if ((N1C->isNullValue() || N1C->isOne()) && 3518 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3519 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3520 if (N0.getOpcode() == ISD::SETCC && 3521 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3522 (N0.getValueType() == MVT::i1 || 3523 getBooleanContents(N0.getOperand(0).getValueType()) == 3524 ZeroOrOneBooleanContent)) { 3525 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3526 if (TrueWhenTrue) 3527 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3528 // Invert the condition. 3529 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3530 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3531 if (DCI.isBeforeLegalizeOps() || 3532 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3533 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3534 } 3535 3536 if ((N0.getOpcode() == ISD::XOR || 3537 (N0.getOpcode() == ISD::AND && 3538 N0.getOperand(0).getOpcode() == ISD::XOR && 3539 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3540 isa<ConstantSDNode>(N0.getOperand(1)) && 3541 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3542 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3543 // can only do this if the top bits are known zero. 3544 unsigned BitWidth = N0.getValueSizeInBits(); 3545 if (DAG.MaskedValueIsZero(N0, 3546 APInt::getHighBitsSet(BitWidth, 3547 BitWidth-1))) { 3548 // Okay, get the un-inverted input value. 3549 SDValue Val; 3550 if (N0.getOpcode() == ISD::XOR) { 3551 Val = N0.getOperand(0); 3552 } else { 3553 assert(N0.getOpcode() == ISD::AND && 3554 N0.getOperand(0).getOpcode() == ISD::XOR); 3555 // ((X^1)&1)^1 -> X & 1 3556 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3557 N0.getOperand(0).getOperand(0), 3558 N0.getOperand(1)); 3559 } 3560 3561 return DAG.getSetCC(dl, VT, Val, N1, 3562 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3563 } 3564 } else if (N1C->isOne()) { 3565 SDValue Op0 = N0; 3566 if (Op0.getOpcode() == ISD::TRUNCATE) 3567 Op0 = Op0.getOperand(0); 3568 3569 if ((Op0.getOpcode() == ISD::XOR) && 3570 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3571 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3572 SDValue XorLHS = Op0.getOperand(0); 3573 SDValue XorRHS = Op0.getOperand(1); 3574 // Ensure that the input setccs return an i1 type or 0/1 value. 3575 if (Op0.getValueType() == MVT::i1 || 3576 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3577 ZeroOrOneBooleanContent && 3578 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3579 ZeroOrOneBooleanContent)) { 3580 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3581 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3582 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3583 } 3584 } 3585 if (Op0.getOpcode() == ISD::AND && 3586 isa<ConstantSDNode>(Op0.getOperand(1)) && 3587 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3588 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3589 if (Op0.getValueType().bitsGT(VT)) 3590 Op0 = DAG.getNode(ISD::AND, dl, VT, 3591 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3592 DAG.getConstant(1, dl, VT)); 3593 else if (Op0.getValueType().bitsLT(VT)) 3594 Op0 = DAG.getNode(ISD::AND, dl, VT, 3595 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3596 DAG.getConstant(1, dl, VT)); 3597 3598 return DAG.getSetCC(dl, VT, Op0, 3599 DAG.getConstant(0, dl, Op0.getValueType()), 3600 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3601 } 3602 if (Op0.getOpcode() == ISD::AssertZext && 3603 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3604 return DAG.getSetCC(dl, VT, Op0, 3605 DAG.getConstant(0, dl, Op0.getValueType()), 3606 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3607 } 3608 } 3609 3610 // Given: 3611 // icmp eq/ne (urem %x, %y), 0 3612 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3613 // icmp eq/ne %x, 0 3614 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3615 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3616 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3617 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3618 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3619 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3620 } 3621 3622 if (SDValue V = 3623 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3624 return V; 3625 } 3626 3627 // These simplifications apply to splat vectors as well. 3628 // TODO: Handle more splat vector cases. 3629 if (auto *N1C = isConstOrConstSplat(N1)) { 3630 const APInt &C1 = N1C->getAPIntValue(); 3631 3632 APInt MinVal, MaxVal; 3633 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3634 if (ISD::isSignedIntSetCC(Cond)) { 3635 MinVal = APInt::getSignedMinValue(OperandBitSize); 3636 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3637 } else { 3638 MinVal = APInt::getMinValue(OperandBitSize); 3639 MaxVal = APInt::getMaxValue(OperandBitSize); 3640 } 3641 3642 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3643 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3644 // X >= MIN --> true 3645 if (C1 == MinVal) 3646 return DAG.getBoolConstant(true, dl, VT, OpVT); 3647 3648 if (!VT.isVector()) { // TODO: Support this for vectors. 3649 // X >= C0 --> X > (C0 - 1) 3650 APInt C = C1 - 1; 3651 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3652 if ((DCI.isBeforeLegalizeOps() || 3653 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3654 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3655 isLegalICmpImmediate(C.getSExtValue())))) { 3656 return DAG.getSetCC(dl, VT, N0, 3657 DAG.getConstant(C, dl, N1.getValueType()), 3658 NewCC); 3659 } 3660 } 3661 } 3662 3663 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3664 // X <= MAX --> true 3665 if (C1 == MaxVal) 3666 return DAG.getBoolConstant(true, dl, VT, OpVT); 3667 3668 // X <= C0 --> X < (C0 + 1) 3669 if (!VT.isVector()) { // TODO: Support this for vectors. 3670 APInt C = C1 + 1; 3671 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3672 if ((DCI.isBeforeLegalizeOps() || 3673 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3674 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3675 isLegalICmpImmediate(C.getSExtValue())))) { 3676 return DAG.getSetCC(dl, VT, N0, 3677 DAG.getConstant(C, dl, N1.getValueType()), 3678 NewCC); 3679 } 3680 } 3681 } 3682 3683 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3684 if (C1 == MinVal) 3685 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3686 3687 // TODO: Support this for vectors after legalize ops. 3688 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3689 // Canonicalize setlt X, Max --> setne X, Max 3690 if (C1 == MaxVal) 3691 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3692 3693 // If we have setult X, 1, turn it into seteq X, 0 3694 if (C1 == MinVal+1) 3695 return DAG.getSetCC(dl, VT, N0, 3696 DAG.getConstant(MinVal, dl, N0.getValueType()), 3697 ISD::SETEQ); 3698 } 3699 } 3700 3701 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3702 if (C1 == MaxVal) 3703 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3704 3705 // TODO: Support this for vectors after legalize ops. 3706 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3707 // Canonicalize setgt X, Min --> setne X, Min 3708 if (C1 == MinVal) 3709 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3710 3711 // If we have setugt X, Max-1, turn it into seteq X, Max 3712 if (C1 == MaxVal-1) 3713 return DAG.getSetCC(dl, VT, N0, 3714 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3715 ISD::SETEQ); 3716 } 3717 } 3718 3719 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3720 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3721 if (C1.isNullValue()) 3722 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3723 VT, N0, N1, Cond, DCI, dl)) 3724 return CC; 3725 } 3726 3727 // If we have "setcc X, C0", check to see if we can shrink the immediate 3728 // by changing cc. 3729 // TODO: Support this for vectors after legalize ops. 3730 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3731 // SETUGT X, SINTMAX -> SETLT X, 0 3732 if (Cond == ISD::SETUGT && 3733 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3734 return DAG.getSetCC(dl, VT, N0, 3735 DAG.getConstant(0, dl, N1.getValueType()), 3736 ISD::SETLT); 3737 3738 // SETULT X, SINTMIN -> SETGT X, -1 3739 if (Cond == ISD::SETULT && 3740 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3741 SDValue ConstMinusOne = 3742 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3743 N1.getValueType()); 3744 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3745 } 3746 } 3747 } 3748 3749 // Back to non-vector simplifications. 3750 // TODO: Can we do these for vector splats? 3751 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3753 const APInt &C1 = N1C->getAPIntValue(); 3754 EVT ShValTy = N0.getValueType(); 3755 3756 // Fold bit comparisons when we can. 3757 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3758 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3759 N0.getOpcode() == ISD::AND) { 3760 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3761 EVT ShiftTy = 3762 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3763 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3764 // Perform the xform if the AND RHS is a single bit. 3765 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3766 if (AndRHS->getAPIntValue().isPowerOf2() && 3767 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3768 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3769 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3770 DAG.getConstant(ShCt, dl, ShiftTy))); 3771 } 3772 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3773 // (X & 8) == 8 --> (X & 8) >> 3 3774 // Perform the xform if C1 is a single bit. 3775 unsigned ShCt = C1.logBase2(); 3776 if (C1.isPowerOf2() && 3777 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3778 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3779 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3780 DAG.getConstant(ShCt, dl, ShiftTy))); 3781 } 3782 } 3783 } 3784 } 3785 3786 if (C1.getMinSignedBits() <= 64 && 3787 !isLegalICmpImmediate(C1.getSExtValue())) { 3788 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3789 // (X & -256) == 256 -> (X >> 8) == 1 3790 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3791 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3792 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3793 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3794 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3795 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3796 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3797 SDValue Shift = 3798 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3799 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3800 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3801 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3802 } 3803 } 3804 } 3805 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3806 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3807 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3808 // X < 0x100000000 -> (X >> 32) < 1 3809 // X >= 0x100000000 -> (X >> 32) >= 1 3810 // X <= 0x0ffffffff -> (X >> 32) < 1 3811 // X > 0x0ffffffff -> (X >> 32) >= 1 3812 unsigned ShiftBits; 3813 APInt NewC = C1; 3814 ISD::CondCode NewCond = Cond; 3815 if (AdjOne) { 3816 ShiftBits = C1.countTrailingOnes(); 3817 NewC = NewC + 1; 3818 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3819 } else { 3820 ShiftBits = C1.countTrailingZeros(); 3821 } 3822 NewC.lshrInPlace(ShiftBits); 3823 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3824 isLegalICmpImmediate(NewC.getSExtValue()) && 3825 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3826 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3827 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3828 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3829 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3830 } 3831 } 3832 } 3833 } 3834 3835 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3836 auto *CFP = cast<ConstantFPSDNode>(N1); 3837 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3838 3839 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3840 // constant if knowing that the operand is non-nan is enough. We prefer to 3841 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3842 // materialize 0.0. 3843 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3844 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3845 3846 // setcc (fneg x), C -> setcc swap(pred) x, -C 3847 if (N0.getOpcode() == ISD::FNEG) { 3848 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3849 if (DCI.isBeforeLegalizeOps() || 3850 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3851 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3852 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3853 } 3854 } 3855 3856 // If the condition is not legal, see if we can find an equivalent one 3857 // which is legal. 3858 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3859 // If the comparison was an awkward floating-point == or != and one of 3860 // the comparison operands is infinity or negative infinity, convert the 3861 // condition to a less-awkward <= or >=. 3862 if (CFP->getValueAPF().isInfinity()) { 3863 if (CFP->getValueAPF().isNegative()) { 3864 if (Cond == ISD::SETOEQ && 3865 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3866 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3867 if (Cond == ISD::SETUEQ && 3868 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3869 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3870 if (Cond == ISD::SETUNE && 3871 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3872 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3873 if (Cond == ISD::SETONE && 3874 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3875 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3876 } else { 3877 if (Cond == ISD::SETOEQ && 3878 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3879 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3880 if (Cond == ISD::SETUEQ && 3881 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3882 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3883 if (Cond == ISD::SETUNE && 3884 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3885 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3886 if (Cond == ISD::SETONE && 3887 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3888 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3889 } 3890 } 3891 } 3892 } 3893 3894 if (N0 == N1) { 3895 // The sext(setcc()) => setcc() optimization relies on the appropriate 3896 // constant being emitted. 3897 assert(!N0.getValueType().isInteger() && 3898 "Integer types should be handled by FoldSetCC"); 3899 3900 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3901 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3902 if (UOF == 2) // FP operators that are undefined on NaNs. 3903 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3904 if (UOF == unsigned(EqTrue)) 3905 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3906 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3907 // if it is not already. 3908 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3909 if (NewCond != Cond && 3910 (DCI.isBeforeLegalizeOps() || 3911 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3912 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3913 } 3914 3915 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3916 N0.getValueType().isInteger()) { 3917 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3918 N0.getOpcode() == ISD::XOR) { 3919 // Simplify (X+Y) == (X+Z) --> Y == Z 3920 if (N0.getOpcode() == N1.getOpcode()) { 3921 if (N0.getOperand(0) == N1.getOperand(0)) 3922 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3923 if (N0.getOperand(1) == N1.getOperand(1)) 3924 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3925 if (isCommutativeBinOp(N0.getOpcode())) { 3926 // If X op Y == Y op X, try other combinations. 3927 if (N0.getOperand(0) == N1.getOperand(1)) 3928 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3929 Cond); 3930 if (N0.getOperand(1) == N1.getOperand(0)) 3931 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3932 Cond); 3933 } 3934 } 3935 3936 // If RHS is a legal immediate value for a compare instruction, we need 3937 // to be careful about increasing register pressure needlessly. 3938 bool LegalRHSImm = false; 3939 3940 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3941 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3942 // Turn (X+C1) == C2 --> X == C2-C1 3943 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3944 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3945 DAG.getConstant(RHSC->getAPIntValue()- 3946 LHSR->getAPIntValue(), 3947 dl, N0.getValueType()), Cond); 3948 } 3949 3950 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3951 if (N0.getOpcode() == ISD::XOR) 3952 // If we know that all of the inverted bits are zero, don't bother 3953 // performing the inversion. 3954 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3955 return 3956 DAG.getSetCC(dl, VT, N0.getOperand(0), 3957 DAG.getConstant(LHSR->getAPIntValue() ^ 3958 RHSC->getAPIntValue(), 3959 dl, N0.getValueType()), 3960 Cond); 3961 } 3962 3963 // Turn (C1-X) == C2 --> X == C1-C2 3964 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3965 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3966 return 3967 DAG.getSetCC(dl, VT, N0.getOperand(1), 3968 DAG.getConstant(SUBC->getAPIntValue() - 3969 RHSC->getAPIntValue(), 3970 dl, N0.getValueType()), 3971 Cond); 3972 } 3973 } 3974 3975 // Could RHSC fold directly into a compare? 3976 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3977 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3978 } 3979 3980 // (X+Y) == X --> Y == 0 and similar folds. 3981 // Don't do this if X is an immediate that can fold into a cmp 3982 // instruction and X+Y has other uses. It could be an induction variable 3983 // chain, and the transform would increase register pressure. 3984 if (!LegalRHSImm || N0.hasOneUse()) 3985 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3986 return V; 3987 } 3988 3989 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3990 N1.getOpcode() == ISD::XOR) 3991 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3992 return V; 3993 3994 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3995 return V; 3996 } 3997 3998 // Fold remainder of division by a constant. 3999 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4000 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4001 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4002 4003 // When division is cheap or optimizing for minimum size, 4004 // fall through to DIVREM creation by skipping this fold. 4005 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4006 if (N0.getOpcode() == ISD::UREM) { 4007 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4008 return Folded; 4009 } else if (N0.getOpcode() == ISD::SREM) { 4010 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4011 return Folded; 4012 } 4013 } 4014 } 4015 4016 // Fold away ALL boolean setcc's. 4017 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4018 SDValue Temp; 4019 switch (Cond) { 4020 default: llvm_unreachable("Unknown integer setcc!"); 4021 case ISD::SETEQ: // X == Y -> ~(X^Y) 4022 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4023 N0 = DAG.getNOT(dl, Temp, OpVT); 4024 if (!DCI.isCalledByLegalizer()) 4025 DCI.AddToWorklist(Temp.getNode()); 4026 break; 4027 case ISD::SETNE: // X != Y --> (X^Y) 4028 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4029 break; 4030 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4031 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4032 Temp = DAG.getNOT(dl, N0, OpVT); 4033 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4034 if (!DCI.isCalledByLegalizer()) 4035 DCI.AddToWorklist(Temp.getNode()); 4036 break; 4037 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4038 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4039 Temp = DAG.getNOT(dl, N1, OpVT); 4040 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4041 if (!DCI.isCalledByLegalizer()) 4042 DCI.AddToWorklist(Temp.getNode()); 4043 break; 4044 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4045 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4046 Temp = DAG.getNOT(dl, N0, OpVT); 4047 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4048 if (!DCI.isCalledByLegalizer()) 4049 DCI.AddToWorklist(Temp.getNode()); 4050 break; 4051 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4052 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4053 Temp = DAG.getNOT(dl, N1, OpVT); 4054 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4055 break; 4056 } 4057 if (VT.getScalarType() != MVT::i1) { 4058 if (!DCI.isCalledByLegalizer()) 4059 DCI.AddToWorklist(N0.getNode()); 4060 // FIXME: If running after legalize, we probably can't do this. 4061 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4062 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4063 } 4064 return N0; 4065 } 4066 4067 // Could not fold it. 4068 return SDValue(); 4069 } 4070 4071 /// Returns true (and the GlobalValue and the offset) if the node is a 4072 /// GlobalAddress + offset. 4073 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4074 int64_t &Offset) const { 4075 4076 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4077 4078 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4079 GA = GASD->getGlobal(); 4080 Offset += GASD->getOffset(); 4081 return true; 4082 } 4083 4084 if (N->getOpcode() == ISD::ADD) { 4085 SDValue N1 = N->getOperand(0); 4086 SDValue N2 = N->getOperand(1); 4087 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4088 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4089 Offset += V->getSExtValue(); 4090 return true; 4091 } 4092 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4093 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4094 Offset += V->getSExtValue(); 4095 return true; 4096 } 4097 } 4098 } 4099 4100 return false; 4101 } 4102 4103 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4104 DAGCombinerInfo &DCI) const { 4105 // Default implementation: no optimization. 4106 return SDValue(); 4107 } 4108 4109 //===----------------------------------------------------------------------===// 4110 // Inline Assembler Implementation Methods 4111 //===----------------------------------------------------------------------===// 4112 4113 TargetLowering::ConstraintType 4114 TargetLowering::getConstraintType(StringRef Constraint) const { 4115 unsigned S = Constraint.size(); 4116 4117 if (S == 1) { 4118 switch (Constraint[0]) { 4119 default: break; 4120 case 'r': 4121 return C_RegisterClass; 4122 case 'm': // memory 4123 case 'o': // offsetable 4124 case 'V': // not offsetable 4125 return C_Memory; 4126 case 'n': // Simple Integer 4127 case 'E': // Floating Point Constant 4128 case 'F': // Floating Point Constant 4129 return C_Immediate; 4130 case 'i': // Simple Integer or Relocatable Constant 4131 case 's': // Relocatable Constant 4132 case 'p': // Address. 4133 case 'X': // Allow ANY value. 4134 case 'I': // Target registers. 4135 case 'J': 4136 case 'K': 4137 case 'L': 4138 case 'M': 4139 case 'N': 4140 case 'O': 4141 case 'P': 4142 case '<': 4143 case '>': 4144 return C_Other; 4145 } 4146 } 4147 4148 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4149 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4150 return C_Memory; 4151 return C_Register; 4152 } 4153 return C_Unknown; 4154 } 4155 4156 /// Try to replace an X constraint, which matches anything, with another that 4157 /// has more specific requirements based on the type of the corresponding 4158 /// operand. 4159 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4160 if (ConstraintVT.isInteger()) 4161 return "r"; 4162 if (ConstraintVT.isFloatingPoint()) 4163 return "f"; // works for many targets 4164 return nullptr; 4165 } 4166 4167 SDValue TargetLowering::LowerAsmOutputForConstraint( 4168 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4169 SelectionDAG &DAG) const { 4170 return SDValue(); 4171 } 4172 4173 /// Lower the specified operand into the Ops vector. 4174 /// If it is invalid, don't add anything to Ops. 4175 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4176 std::string &Constraint, 4177 std::vector<SDValue> &Ops, 4178 SelectionDAG &DAG) const { 4179 4180 if (Constraint.length() > 1) return; 4181 4182 char ConstraintLetter = Constraint[0]; 4183 switch (ConstraintLetter) { 4184 default: break; 4185 case 'X': // Allows any operand; labels (basic block) use this. 4186 if (Op.getOpcode() == ISD::BasicBlock || 4187 Op.getOpcode() == ISD::TargetBlockAddress) { 4188 Ops.push_back(Op); 4189 return; 4190 } 4191 LLVM_FALLTHROUGH; 4192 case 'i': // Simple Integer or Relocatable Constant 4193 case 'n': // Simple Integer 4194 case 's': { // Relocatable Constant 4195 4196 GlobalAddressSDNode *GA; 4197 ConstantSDNode *C; 4198 BlockAddressSDNode *BA; 4199 uint64_t Offset = 0; 4200 4201 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4202 // etc., since getelementpointer is variadic. We can't use 4203 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4204 // while in this case the GA may be furthest from the root node which is 4205 // likely an ISD::ADD. 4206 while (1) { 4207 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4208 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4209 GA->getValueType(0), 4210 Offset + GA->getOffset())); 4211 return; 4212 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4213 ConstraintLetter != 's') { 4214 // gcc prints these as sign extended. Sign extend value to 64 bits 4215 // now; without this it would get ZExt'd later in 4216 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4217 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4218 BooleanContent BCont = getBooleanContents(MVT::i64); 4219 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4220 : ISD::SIGN_EXTEND; 4221 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4222 : C->getSExtValue(); 4223 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4224 SDLoc(C), MVT::i64)); 4225 return; 4226 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4227 ConstraintLetter != 'n') { 4228 Ops.push_back(DAG.getTargetBlockAddress( 4229 BA->getBlockAddress(), BA->getValueType(0), 4230 Offset + BA->getOffset(), BA->getTargetFlags())); 4231 return; 4232 } else { 4233 const unsigned OpCode = Op.getOpcode(); 4234 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4235 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4236 Op = Op.getOperand(1); 4237 // Subtraction is not commutative. 4238 else if (OpCode == ISD::ADD && 4239 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4240 Op = Op.getOperand(0); 4241 else 4242 return; 4243 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4244 continue; 4245 } 4246 } 4247 return; 4248 } 4249 break; 4250 } 4251 } 4252 } 4253 4254 std::pair<unsigned, const TargetRegisterClass *> 4255 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4256 StringRef Constraint, 4257 MVT VT) const { 4258 if (Constraint.empty() || Constraint[0] != '{') 4259 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4260 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4261 4262 // Remove the braces from around the name. 4263 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4264 4265 std::pair<unsigned, const TargetRegisterClass *> R = 4266 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4267 4268 // Figure out which register class contains this reg. 4269 for (const TargetRegisterClass *RC : RI->regclasses()) { 4270 // If none of the value types for this register class are valid, we 4271 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4272 if (!isLegalRC(*RI, *RC)) 4273 continue; 4274 4275 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4276 I != E; ++I) { 4277 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4278 std::pair<unsigned, const TargetRegisterClass *> S = 4279 std::make_pair(*I, RC); 4280 4281 // If this register class has the requested value type, return it, 4282 // otherwise keep searching and return the first class found 4283 // if no other is found which explicitly has the requested type. 4284 if (RI->isTypeLegalForClass(*RC, VT)) 4285 return S; 4286 if (!R.second) 4287 R = S; 4288 } 4289 } 4290 } 4291 4292 return R; 4293 } 4294 4295 //===----------------------------------------------------------------------===// 4296 // Constraint Selection. 4297 4298 /// Return true of this is an input operand that is a matching constraint like 4299 /// "4". 4300 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4301 assert(!ConstraintCode.empty() && "No known constraint!"); 4302 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4303 } 4304 4305 /// If this is an input matching constraint, this method returns the output 4306 /// operand it matches. 4307 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4308 assert(!ConstraintCode.empty() && "No known constraint!"); 4309 return atoi(ConstraintCode.c_str()); 4310 } 4311 4312 /// Split up the constraint string from the inline assembly value into the 4313 /// specific constraints and their prefixes, and also tie in the associated 4314 /// operand values. 4315 /// If this returns an empty vector, and if the constraint string itself 4316 /// isn't empty, there was an error parsing. 4317 TargetLowering::AsmOperandInfoVector 4318 TargetLowering::ParseConstraints(const DataLayout &DL, 4319 const TargetRegisterInfo *TRI, 4320 ImmutableCallSite CS) const { 4321 /// Information about all of the constraints. 4322 AsmOperandInfoVector ConstraintOperands; 4323 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4324 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4325 4326 // Do a prepass over the constraints, canonicalizing them, and building up the 4327 // ConstraintOperands list. 4328 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4329 unsigned ResNo = 0; // ResNo - The result number of the next output. 4330 4331 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4332 ConstraintOperands.emplace_back(std::move(CI)); 4333 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4334 4335 // Update multiple alternative constraint count. 4336 if (OpInfo.multipleAlternatives.size() > maCount) 4337 maCount = OpInfo.multipleAlternatives.size(); 4338 4339 OpInfo.ConstraintVT = MVT::Other; 4340 4341 // Compute the value type for each operand. 4342 switch (OpInfo.Type) { 4343 case InlineAsm::isOutput: 4344 // Indirect outputs just consume an argument. 4345 if (OpInfo.isIndirect) { 4346 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4347 break; 4348 } 4349 4350 // The return value of the call is this value. As such, there is no 4351 // corresponding argument. 4352 assert(!CS.getType()->isVoidTy() && 4353 "Bad inline asm!"); 4354 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4355 OpInfo.ConstraintVT = 4356 getSimpleValueType(DL, STy->getElementType(ResNo)); 4357 } else { 4358 assert(ResNo == 0 && "Asm only has one result!"); 4359 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4360 } 4361 ++ResNo; 4362 break; 4363 case InlineAsm::isInput: 4364 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4365 break; 4366 case InlineAsm::isClobber: 4367 // Nothing to do. 4368 break; 4369 } 4370 4371 if (OpInfo.CallOperandVal) { 4372 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4373 if (OpInfo.isIndirect) { 4374 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4375 if (!PtrTy) 4376 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4377 OpTy = PtrTy->getElementType(); 4378 } 4379 4380 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4381 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4382 if (STy->getNumElements() == 1) 4383 OpTy = STy->getElementType(0); 4384 4385 // If OpTy is not a single value, it may be a struct/union that we 4386 // can tile with integers. 4387 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4388 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4389 switch (BitSize) { 4390 default: break; 4391 case 1: 4392 case 8: 4393 case 16: 4394 case 32: 4395 case 64: 4396 case 128: 4397 OpInfo.ConstraintVT = 4398 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4399 break; 4400 } 4401 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4402 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4403 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4404 } else { 4405 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4406 } 4407 } 4408 } 4409 4410 // If we have multiple alternative constraints, select the best alternative. 4411 if (!ConstraintOperands.empty()) { 4412 if (maCount) { 4413 unsigned bestMAIndex = 0; 4414 int bestWeight = -1; 4415 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4416 int weight = -1; 4417 unsigned maIndex; 4418 // Compute the sums of the weights for each alternative, keeping track 4419 // of the best (highest weight) one so far. 4420 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4421 int weightSum = 0; 4422 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4423 cIndex != eIndex; ++cIndex) { 4424 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4425 if (OpInfo.Type == InlineAsm::isClobber) 4426 continue; 4427 4428 // If this is an output operand with a matching input operand, 4429 // look up the matching input. If their types mismatch, e.g. one 4430 // is an integer, the other is floating point, or their sizes are 4431 // different, flag it as an maCantMatch. 4432 if (OpInfo.hasMatchingInput()) { 4433 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4434 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4435 if ((OpInfo.ConstraintVT.isInteger() != 4436 Input.ConstraintVT.isInteger()) || 4437 (OpInfo.ConstraintVT.getSizeInBits() != 4438 Input.ConstraintVT.getSizeInBits())) { 4439 weightSum = -1; // Can't match. 4440 break; 4441 } 4442 } 4443 } 4444 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4445 if (weight == -1) { 4446 weightSum = -1; 4447 break; 4448 } 4449 weightSum += weight; 4450 } 4451 // Update best. 4452 if (weightSum > bestWeight) { 4453 bestWeight = weightSum; 4454 bestMAIndex = maIndex; 4455 } 4456 } 4457 4458 // Now select chosen alternative in each constraint. 4459 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4460 cIndex != eIndex; ++cIndex) { 4461 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4462 if (cInfo.Type == InlineAsm::isClobber) 4463 continue; 4464 cInfo.selectAlternative(bestMAIndex); 4465 } 4466 } 4467 } 4468 4469 // Check and hook up tied operands, choose constraint code to use. 4470 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4471 cIndex != eIndex; ++cIndex) { 4472 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4473 4474 // If this is an output operand with a matching input operand, look up the 4475 // matching input. If their types mismatch, e.g. one is an integer, the 4476 // other is floating point, or their sizes are different, flag it as an 4477 // error. 4478 if (OpInfo.hasMatchingInput()) { 4479 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4480 4481 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4482 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4483 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4484 OpInfo.ConstraintVT); 4485 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4486 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4487 Input.ConstraintVT); 4488 if ((OpInfo.ConstraintVT.isInteger() != 4489 Input.ConstraintVT.isInteger()) || 4490 (MatchRC.second != InputRC.second)) { 4491 report_fatal_error("Unsupported asm: input constraint" 4492 " with a matching output constraint of" 4493 " incompatible type!"); 4494 } 4495 } 4496 } 4497 } 4498 4499 return ConstraintOperands; 4500 } 4501 4502 /// Return an integer indicating how general CT is. 4503 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4504 switch (CT) { 4505 case TargetLowering::C_Immediate: 4506 case TargetLowering::C_Other: 4507 case TargetLowering::C_Unknown: 4508 return 0; 4509 case TargetLowering::C_Register: 4510 return 1; 4511 case TargetLowering::C_RegisterClass: 4512 return 2; 4513 case TargetLowering::C_Memory: 4514 return 3; 4515 } 4516 llvm_unreachable("Invalid constraint type"); 4517 } 4518 4519 /// Examine constraint type and operand type and determine a weight value. 4520 /// This object must already have been set up with the operand type 4521 /// and the current alternative constraint selected. 4522 TargetLowering::ConstraintWeight 4523 TargetLowering::getMultipleConstraintMatchWeight( 4524 AsmOperandInfo &info, int maIndex) const { 4525 InlineAsm::ConstraintCodeVector *rCodes; 4526 if (maIndex >= (int)info.multipleAlternatives.size()) 4527 rCodes = &info.Codes; 4528 else 4529 rCodes = &info.multipleAlternatives[maIndex].Codes; 4530 ConstraintWeight BestWeight = CW_Invalid; 4531 4532 // Loop over the options, keeping track of the most general one. 4533 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4534 ConstraintWeight weight = 4535 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4536 if (weight > BestWeight) 4537 BestWeight = weight; 4538 } 4539 4540 return BestWeight; 4541 } 4542 4543 /// Examine constraint type and operand type and determine a weight value. 4544 /// This object must already have been set up with the operand type 4545 /// and the current alternative constraint selected. 4546 TargetLowering::ConstraintWeight 4547 TargetLowering::getSingleConstraintMatchWeight( 4548 AsmOperandInfo &info, const char *constraint) const { 4549 ConstraintWeight weight = CW_Invalid; 4550 Value *CallOperandVal = info.CallOperandVal; 4551 // If we don't have a value, we can't do a match, 4552 // but allow it at the lowest weight. 4553 if (!CallOperandVal) 4554 return CW_Default; 4555 // Look at the constraint type. 4556 switch (*constraint) { 4557 case 'i': // immediate integer. 4558 case 'n': // immediate integer with a known value. 4559 if (isa<ConstantInt>(CallOperandVal)) 4560 weight = CW_Constant; 4561 break; 4562 case 's': // non-explicit intregal immediate. 4563 if (isa<GlobalValue>(CallOperandVal)) 4564 weight = CW_Constant; 4565 break; 4566 case 'E': // immediate float if host format. 4567 case 'F': // immediate float. 4568 if (isa<ConstantFP>(CallOperandVal)) 4569 weight = CW_Constant; 4570 break; 4571 case '<': // memory operand with autodecrement. 4572 case '>': // memory operand with autoincrement. 4573 case 'm': // memory operand. 4574 case 'o': // offsettable memory operand 4575 case 'V': // non-offsettable memory operand 4576 weight = CW_Memory; 4577 break; 4578 case 'r': // general register. 4579 case 'g': // general register, memory operand or immediate integer. 4580 // note: Clang converts "g" to "imr". 4581 if (CallOperandVal->getType()->isIntegerTy()) 4582 weight = CW_Register; 4583 break; 4584 case 'X': // any operand. 4585 default: 4586 weight = CW_Default; 4587 break; 4588 } 4589 return weight; 4590 } 4591 4592 /// If there are multiple different constraints that we could pick for this 4593 /// operand (e.g. "imr") try to pick the 'best' one. 4594 /// This is somewhat tricky: constraints fall into four classes: 4595 /// Other -> immediates and magic values 4596 /// Register -> one specific register 4597 /// RegisterClass -> a group of regs 4598 /// Memory -> memory 4599 /// Ideally, we would pick the most specific constraint possible: if we have 4600 /// something that fits into a register, we would pick it. The problem here 4601 /// is that if we have something that could either be in a register or in 4602 /// memory that use of the register could cause selection of *other* 4603 /// operands to fail: they might only succeed if we pick memory. Because of 4604 /// this the heuristic we use is: 4605 /// 4606 /// 1) If there is an 'other' constraint, and if the operand is valid for 4607 /// that constraint, use it. This makes us take advantage of 'i' 4608 /// constraints when available. 4609 /// 2) Otherwise, pick the most general constraint present. This prefers 4610 /// 'm' over 'r', for example. 4611 /// 4612 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4613 const TargetLowering &TLI, 4614 SDValue Op, SelectionDAG *DAG) { 4615 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4616 unsigned BestIdx = 0; 4617 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4618 int BestGenerality = -1; 4619 4620 // Loop over the options, keeping track of the most general one. 4621 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4622 TargetLowering::ConstraintType CType = 4623 TLI.getConstraintType(OpInfo.Codes[i]); 4624 4625 // Indirect 'other' or 'immediate' constraints are not allowed. 4626 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4627 CType == TargetLowering::C_Register || 4628 CType == TargetLowering::C_RegisterClass)) 4629 continue; 4630 4631 // If this is an 'other' or 'immediate' constraint, see if the operand is 4632 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4633 // the operand is an integer in the range [0..31] we want to use I (saving a 4634 // load of a register), otherwise we must use 'r'. 4635 if ((CType == TargetLowering::C_Other || 4636 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4637 assert(OpInfo.Codes[i].size() == 1 && 4638 "Unhandled multi-letter 'other' constraint"); 4639 std::vector<SDValue> ResultOps; 4640 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4641 ResultOps, *DAG); 4642 if (!ResultOps.empty()) { 4643 BestType = CType; 4644 BestIdx = i; 4645 break; 4646 } 4647 } 4648 4649 // Things with matching constraints can only be registers, per gcc 4650 // documentation. This mainly affects "g" constraints. 4651 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4652 continue; 4653 4654 // This constraint letter is more general than the previous one, use it. 4655 int Generality = getConstraintGenerality(CType); 4656 if (Generality > BestGenerality) { 4657 BestType = CType; 4658 BestIdx = i; 4659 BestGenerality = Generality; 4660 } 4661 } 4662 4663 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4664 OpInfo.ConstraintType = BestType; 4665 } 4666 4667 /// Determines the constraint code and constraint type to use for the specific 4668 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4669 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4670 SDValue Op, 4671 SelectionDAG *DAG) const { 4672 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4673 4674 // Single-letter constraints ('r') are very common. 4675 if (OpInfo.Codes.size() == 1) { 4676 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4677 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4678 } else { 4679 ChooseConstraint(OpInfo, *this, Op, DAG); 4680 } 4681 4682 // 'X' matches anything. 4683 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4684 // Labels and constants are handled elsewhere ('X' is the only thing 4685 // that matches labels). For Functions, the type here is the type of 4686 // the result, which is not what we want to look at; leave them alone. 4687 Value *v = OpInfo.CallOperandVal; 4688 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4689 OpInfo.CallOperandVal = v; 4690 return; 4691 } 4692 4693 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4694 return; 4695 4696 // Otherwise, try to resolve it to something we know about by looking at 4697 // the actual operand type. 4698 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4699 OpInfo.ConstraintCode = Repl; 4700 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4701 } 4702 } 4703 } 4704 4705 /// Given an exact SDIV by a constant, create a multiplication 4706 /// with the multiplicative inverse of the constant. 4707 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4708 const SDLoc &dl, SelectionDAG &DAG, 4709 SmallVectorImpl<SDNode *> &Created) { 4710 SDValue Op0 = N->getOperand(0); 4711 SDValue Op1 = N->getOperand(1); 4712 EVT VT = N->getValueType(0); 4713 EVT SVT = VT.getScalarType(); 4714 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4715 EVT ShSVT = ShVT.getScalarType(); 4716 4717 bool UseSRA = false; 4718 SmallVector<SDValue, 16> Shifts, Factors; 4719 4720 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4721 if (C->isNullValue()) 4722 return false; 4723 APInt Divisor = C->getAPIntValue(); 4724 unsigned Shift = Divisor.countTrailingZeros(); 4725 if (Shift) { 4726 Divisor.ashrInPlace(Shift); 4727 UseSRA = true; 4728 } 4729 // Calculate the multiplicative inverse, using Newton's method. 4730 APInt t; 4731 APInt Factor = Divisor; 4732 while ((t = Divisor * Factor) != 1) 4733 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4734 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4735 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4736 return true; 4737 }; 4738 4739 // Collect all magic values from the build vector. 4740 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4741 return SDValue(); 4742 4743 SDValue Shift, Factor; 4744 if (VT.isVector()) { 4745 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4746 Factor = DAG.getBuildVector(VT, dl, Factors); 4747 } else { 4748 Shift = Shifts[0]; 4749 Factor = Factors[0]; 4750 } 4751 4752 SDValue Res = Op0; 4753 4754 // Shift the value upfront if it is even, so the LSB is one. 4755 if (UseSRA) { 4756 // TODO: For UDIV use SRL instead of SRA. 4757 SDNodeFlags Flags; 4758 Flags.setExact(true); 4759 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4760 Created.push_back(Res.getNode()); 4761 } 4762 4763 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4764 } 4765 4766 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4767 SelectionDAG &DAG, 4768 SmallVectorImpl<SDNode *> &Created) const { 4769 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4771 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4772 return SDValue(N, 0); // Lower SDIV as SDIV 4773 return SDValue(); 4774 } 4775 4776 /// Given an ISD::SDIV node expressing a divide by constant, 4777 /// return a DAG expression to select that will generate the same value by 4778 /// multiplying by a magic number. 4779 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4780 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4781 bool IsAfterLegalization, 4782 SmallVectorImpl<SDNode *> &Created) const { 4783 SDLoc dl(N); 4784 EVT VT = N->getValueType(0); 4785 EVT SVT = VT.getScalarType(); 4786 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4787 EVT ShSVT = ShVT.getScalarType(); 4788 unsigned EltBits = VT.getScalarSizeInBits(); 4789 4790 // Check to see if we can do this. 4791 // FIXME: We should be more aggressive here. 4792 if (!isTypeLegal(VT)) 4793 return SDValue(); 4794 4795 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4796 if (N->getFlags().hasExact()) 4797 return BuildExactSDIV(*this, N, dl, DAG, Created); 4798 4799 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4800 4801 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4802 if (C->isNullValue()) 4803 return false; 4804 4805 const APInt &Divisor = C->getAPIntValue(); 4806 APInt::ms magics = Divisor.magic(); 4807 int NumeratorFactor = 0; 4808 int ShiftMask = -1; 4809 4810 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4811 // If d is +1/-1, we just multiply the numerator by +1/-1. 4812 NumeratorFactor = Divisor.getSExtValue(); 4813 magics.m = 0; 4814 magics.s = 0; 4815 ShiftMask = 0; 4816 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4817 // If d > 0 and m < 0, add the numerator. 4818 NumeratorFactor = 1; 4819 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4820 // If d < 0 and m > 0, subtract the numerator. 4821 NumeratorFactor = -1; 4822 } 4823 4824 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4825 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4826 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4827 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4828 return true; 4829 }; 4830 4831 SDValue N0 = N->getOperand(0); 4832 SDValue N1 = N->getOperand(1); 4833 4834 // Collect the shifts / magic values from each element. 4835 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4836 return SDValue(); 4837 4838 SDValue MagicFactor, Factor, Shift, ShiftMask; 4839 if (VT.isVector()) { 4840 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4841 Factor = DAG.getBuildVector(VT, dl, Factors); 4842 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4843 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4844 } else { 4845 MagicFactor = MagicFactors[0]; 4846 Factor = Factors[0]; 4847 Shift = Shifts[0]; 4848 ShiftMask = ShiftMasks[0]; 4849 } 4850 4851 // Multiply the numerator (operand 0) by the magic value. 4852 // FIXME: We should support doing a MUL in a wider type. 4853 SDValue Q; 4854 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4855 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4856 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4857 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4858 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4859 SDValue LoHi = 4860 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4861 Q = SDValue(LoHi.getNode(), 1); 4862 } else 4863 return SDValue(); // No mulhs or equivalent. 4864 Created.push_back(Q.getNode()); 4865 4866 // (Optionally) Add/subtract the numerator using Factor. 4867 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4868 Created.push_back(Factor.getNode()); 4869 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4870 Created.push_back(Q.getNode()); 4871 4872 // Shift right algebraic by shift value. 4873 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4874 Created.push_back(Q.getNode()); 4875 4876 // Extract the sign bit, mask it and add it to the quotient. 4877 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4878 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4879 Created.push_back(T.getNode()); 4880 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4881 Created.push_back(T.getNode()); 4882 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4883 } 4884 4885 /// Given an ISD::UDIV node expressing a divide by constant, 4886 /// return a DAG expression to select that will generate the same value by 4887 /// multiplying by a magic number. 4888 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4889 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4890 bool IsAfterLegalization, 4891 SmallVectorImpl<SDNode *> &Created) const { 4892 SDLoc dl(N); 4893 EVT VT = N->getValueType(0); 4894 EVT SVT = VT.getScalarType(); 4895 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4896 EVT ShSVT = ShVT.getScalarType(); 4897 unsigned EltBits = VT.getScalarSizeInBits(); 4898 4899 // Check to see if we can do this. 4900 // FIXME: We should be more aggressive here. 4901 if (!isTypeLegal(VT)) 4902 return SDValue(); 4903 4904 bool UseNPQ = false; 4905 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4906 4907 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4908 if (C->isNullValue()) 4909 return false; 4910 // FIXME: We should use a narrower constant when the upper 4911 // bits are known to be zero. 4912 APInt Divisor = C->getAPIntValue(); 4913 APInt::mu magics = Divisor.magicu(); 4914 unsigned PreShift = 0, PostShift = 0; 4915 4916 // If the divisor is even, we can avoid using the expensive fixup by 4917 // shifting the divided value upfront. 4918 if (magics.a != 0 && !Divisor[0]) { 4919 PreShift = Divisor.countTrailingZeros(); 4920 // Get magic number for the shifted divisor. 4921 magics = Divisor.lshr(PreShift).magicu(PreShift); 4922 assert(magics.a == 0 && "Should use cheap fixup now"); 4923 } 4924 4925 APInt Magic = magics.m; 4926 4927 unsigned SelNPQ; 4928 if (magics.a == 0 || Divisor.isOneValue()) { 4929 assert(magics.s < Divisor.getBitWidth() && 4930 "We shouldn't generate an undefined shift!"); 4931 PostShift = magics.s; 4932 SelNPQ = false; 4933 } else { 4934 PostShift = magics.s - 1; 4935 SelNPQ = true; 4936 } 4937 4938 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4939 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4940 NPQFactors.push_back( 4941 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4942 : APInt::getNullValue(EltBits), 4943 dl, SVT)); 4944 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4945 UseNPQ |= SelNPQ; 4946 return true; 4947 }; 4948 4949 SDValue N0 = N->getOperand(0); 4950 SDValue N1 = N->getOperand(1); 4951 4952 // Collect the shifts/magic values from each element. 4953 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4954 return SDValue(); 4955 4956 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4957 if (VT.isVector()) { 4958 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4959 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4960 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4961 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4962 } else { 4963 PreShift = PreShifts[0]; 4964 MagicFactor = MagicFactors[0]; 4965 PostShift = PostShifts[0]; 4966 } 4967 4968 SDValue Q = N0; 4969 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4970 Created.push_back(Q.getNode()); 4971 4972 // FIXME: We should support doing a MUL in a wider type. 4973 auto GetMULHU = [&](SDValue X, SDValue Y) { 4974 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4975 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4976 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4977 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4978 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4979 SDValue LoHi = 4980 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4981 return SDValue(LoHi.getNode(), 1); 4982 } 4983 return SDValue(); // No mulhu or equivalent 4984 }; 4985 4986 // Multiply the numerator (operand 0) by the magic value. 4987 Q = GetMULHU(Q, MagicFactor); 4988 if (!Q) 4989 return SDValue(); 4990 4991 Created.push_back(Q.getNode()); 4992 4993 if (UseNPQ) { 4994 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4995 Created.push_back(NPQ.getNode()); 4996 4997 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4998 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4999 if (VT.isVector()) 5000 NPQ = GetMULHU(NPQ, NPQFactor); 5001 else 5002 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5003 5004 Created.push_back(NPQ.getNode()); 5005 5006 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5007 Created.push_back(Q.getNode()); 5008 } 5009 5010 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5011 Created.push_back(Q.getNode()); 5012 5013 SDValue One = DAG.getConstant(1, dl, VT); 5014 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5015 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5016 } 5017 5018 /// If all values in Values that *don't* match the predicate are same 'splat' 5019 /// value, then replace all values with that splat value. 5020 /// Else, if AlternativeReplacement was provided, then replace all values that 5021 /// do match predicate with AlternativeReplacement value. 5022 static void 5023 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5024 std::function<bool(SDValue)> Predicate, 5025 SDValue AlternativeReplacement = SDValue()) { 5026 SDValue Replacement; 5027 // Is there a value for which the Predicate does *NOT* match? What is it? 5028 auto SplatValue = llvm::find_if_not(Values, Predicate); 5029 if (SplatValue != Values.end()) { 5030 // Does Values consist only of SplatValue's and values matching Predicate? 5031 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5032 return Value == *SplatValue || Predicate(Value); 5033 })) // Then we shall replace values matching predicate with SplatValue. 5034 Replacement = *SplatValue; 5035 } 5036 if (!Replacement) { 5037 // Oops, we did not find the "baseline" splat value. 5038 if (!AlternativeReplacement) 5039 return; // Nothing to do. 5040 // Let's replace with provided value then. 5041 Replacement = AlternativeReplacement; 5042 } 5043 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5044 } 5045 5046 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5047 /// where the divisor is constant and the comparison target is zero, 5048 /// return a DAG expression that will generate the same comparison result 5049 /// using only multiplications, additions and shifts/rotations. 5050 /// Ref: "Hacker's Delight" 10-17. 5051 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5052 SDValue CompTargetNode, 5053 ISD::CondCode Cond, 5054 DAGCombinerInfo &DCI, 5055 const SDLoc &DL) const { 5056 SmallVector<SDNode *, 5> Built; 5057 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5058 DCI, DL, Built)) { 5059 for (SDNode *N : Built) 5060 DCI.AddToWorklist(N); 5061 return Folded; 5062 } 5063 5064 return SDValue(); 5065 } 5066 5067 SDValue 5068 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5069 SDValue CompTargetNode, ISD::CondCode Cond, 5070 DAGCombinerInfo &DCI, const SDLoc &DL, 5071 SmallVectorImpl<SDNode *> &Created) const { 5072 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5073 // - D must be constant, with D = D0 * 2^K where D0 is odd 5074 // - P is the multiplicative inverse of D0 modulo 2^W 5075 // - Q = floor(((2^W) - 1) / D) 5076 // where W is the width of the common type of N and D. 5077 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5078 "Only applicable for (in)equality comparisons."); 5079 5080 SelectionDAG &DAG = DCI.DAG; 5081 5082 EVT VT = REMNode.getValueType(); 5083 EVT SVT = VT.getScalarType(); 5084 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5085 EVT ShSVT = ShVT.getScalarType(); 5086 5087 // If MUL is unavailable, we cannot proceed in any case. 5088 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5089 return SDValue(); 5090 5091 bool ComparingWithAllZeros = true; 5092 bool AllComparisonsWithNonZerosAreTautological = true; 5093 bool HadTautologicalLanes = false; 5094 bool AllLanesAreTautological = true; 5095 bool HadEvenDivisor = false; 5096 bool AllDivisorsArePowerOfTwo = true; 5097 bool HadTautologicalInvertedLanes = false; 5098 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5099 5100 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5101 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5102 if (CDiv->isNullValue()) 5103 return false; 5104 5105 const APInt &D = CDiv->getAPIntValue(); 5106 const APInt &Cmp = CCmp->getAPIntValue(); 5107 5108 ComparingWithAllZeros &= Cmp.isNullValue(); 5109 5110 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5111 // if C2 is not less than C1, the comparison is always false. 5112 // But we will only be able to produce the comparison that will give the 5113 // opposive tautological answer. So this lane would need to be fixed up. 5114 bool TautologicalInvertedLane = D.ule(Cmp); 5115 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5116 5117 // If all lanes are tautological (either all divisors are ones, or divisor 5118 // is not greater than the constant we are comparing with), 5119 // we will prefer to avoid the fold. 5120 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5121 HadTautologicalLanes |= TautologicalLane; 5122 AllLanesAreTautological &= TautologicalLane; 5123 5124 // If we are comparing with non-zero, we need'll need to subtract said 5125 // comparison value from the LHS. But there is no point in doing that if 5126 // every lane where we are comparing with non-zero is tautological.. 5127 if (!Cmp.isNullValue()) 5128 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5129 5130 // Decompose D into D0 * 2^K 5131 unsigned K = D.countTrailingZeros(); 5132 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5133 APInt D0 = D.lshr(K); 5134 5135 // D is even if it has trailing zeros. 5136 HadEvenDivisor |= (K != 0); 5137 // D is a power-of-two if D0 is one. 5138 // If all divisors are power-of-two, we will prefer to avoid the fold. 5139 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5140 5141 // P = inv(D0, 2^W) 5142 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5143 unsigned W = D.getBitWidth(); 5144 APInt P = D0.zext(W + 1) 5145 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5146 .trunc(W); 5147 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5148 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5149 5150 // Q = floor((2^W - 1) u/ D) 5151 // R = ((2^W - 1) u% D) 5152 APInt Q, R; 5153 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5154 5155 // If we are comparing with zero, then that comparison constant is okay, 5156 // else it may need to be one less than that. 5157 if (Cmp.ugt(R)) 5158 Q -= 1; 5159 5160 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5161 "We are expecting that K is always less than all-ones for ShSVT"); 5162 5163 // If the lane is tautological the result can be constant-folded. 5164 if (TautologicalLane) { 5165 // Set P and K amount to a bogus values so we can try to splat them. 5166 P = 0; 5167 K = -1; 5168 // And ensure that comparison constant is tautological, 5169 // it will always compare true/false. 5170 Q = -1; 5171 } 5172 5173 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5174 KAmts.push_back( 5175 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5176 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5177 return true; 5178 }; 5179 5180 SDValue N = REMNode.getOperand(0); 5181 SDValue D = REMNode.getOperand(1); 5182 5183 // Collect the values from each element. 5184 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5185 return SDValue(); 5186 5187 // If all lanes are tautological, the result can be constant-folded. 5188 if (AllLanesAreTautological) 5189 return SDValue(); 5190 5191 // If this is a urem by a powers-of-two, avoid the fold since it can be 5192 // best implemented as a bit test. 5193 if (AllDivisorsArePowerOfTwo) 5194 return SDValue(); 5195 5196 SDValue PVal, KVal, QVal; 5197 if (VT.isVector()) { 5198 if (HadTautologicalLanes) { 5199 // Try to turn PAmts into a splat, since we don't care about the values 5200 // that are currently '0'. If we can't, just keep '0'`s. 5201 turnVectorIntoSplatVector(PAmts, isNullConstant); 5202 // Try to turn KAmts into a splat, since we don't care about the values 5203 // that are currently '-1'. If we can't, change them to '0'`s. 5204 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5205 DAG.getConstant(0, DL, ShSVT)); 5206 } 5207 5208 PVal = DAG.getBuildVector(VT, DL, PAmts); 5209 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5210 QVal = DAG.getBuildVector(VT, DL, QAmts); 5211 } else { 5212 PVal = PAmts[0]; 5213 KVal = KAmts[0]; 5214 QVal = QAmts[0]; 5215 } 5216 5217 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5218 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5219 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5220 assert(CompTargetNode.getValueType() == N.getValueType() && 5221 "Expecting that the types on LHS and RHS of comparisons match."); 5222 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5223 } 5224 5225 // (mul N, P) 5226 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5227 Created.push_back(Op0.getNode()); 5228 5229 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5230 // divisors as a performance improvement, since rotating by 0 is a no-op. 5231 if (HadEvenDivisor) { 5232 // We need ROTR to do this. 5233 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5234 return SDValue(); 5235 SDNodeFlags Flags; 5236 Flags.setExact(true); 5237 // UREM: (rotr (mul N, P), K) 5238 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5239 Created.push_back(Op0.getNode()); 5240 } 5241 5242 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5243 SDValue NewCC = 5244 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5245 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5246 if (!HadTautologicalInvertedLanes) 5247 return NewCC; 5248 5249 // If any lanes previously compared always-false, the NewCC will give 5250 // always-true result for them, so we need to fixup those lanes. 5251 // Or the other way around for inequality predicate. 5252 assert(VT.isVector() && "Can/should only get here for vectors."); 5253 Created.push_back(NewCC.getNode()); 5254 5255 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5256 // if C2 is not less than C1, the comparison is always false. 5257 // But we have produced the comparison that will give the 5258 // opposive tautological answer. So these lanes would need to be fixed up. 5259 SDValue TautologicalInvertedChannels = 5260 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5261 Created.push_back(TautologicalInvertedChannels.getNode()); 5262 5263 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5264 // If we have a vector select, let's replace the comparison results in the 5265 // affected lanes with the correct tautological result. 5266 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5267 DL, SETCCVT, SETCCVT); 5268 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5269 Replacement, NewCC); 5270 } 5271 5272 // Else, we can just invert the comparison result in the appropriate lanes. 5273 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5274 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5275 TautologicalInvertedChannels); 5276 5277 return SDValue(); // Don't know how to lower. 5278 } 5279 5280 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5281 /// where the divisor is constant and the comparison target is zero, 5282 /// return a DAG expression that will generate the same comparison result 5283 /// using only multiplications, additions and shifts/rotations. 5284 /// Ref: "Hacker's Delight" 10-17. 5285 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5286 SDValue CompTargetNode, 5287 ISD::CondCode Cond, 5288 DAGCombinerInfo &DCI, 5289 const SDLoc &DL) const { 5290 SmallVector<SDNode *, 7> Built; 5291 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5292 DCI, DL, Built)) { 5293 assert(Built.size() <= 7 && "Max size prediction failed."); 5294 for (SDNode *N : Built) 5295 DCI.AddToWorklist(N); 5296 return Folded; 5297 } 5298 5299 return SDValue(); 5300 } 5301 5302 SDValue 5303 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5304 SDValue CompTargetNode, ISD::CondCode Cond, 5305 DAGCombinerInfo &DCI, const SDLoc &DL, 5306 SmallVectorImpl<SDNode *> &Created) const { 5307 // Fold: 5308 // (seteq/ne (srem N, D), 0) 5309 // To: 5310 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5311 // 5312 // - D must be constant, with D = D0 * 2^K where D0 is odd 5313 // - P is the multiplicative inverse of D0 modulo 2^W 5314 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5315 // - Q = floor((2 * A) / (2^K)) 5316 // where W is the width of the common type of N and D. 5317 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5318 "Only applicable for (in)equality comparisons."); 5319 5320 SelectionDAG &DAG = DCI.DAG; 5321 5322 EVT VT = REMNode.getValueType(); 5323 EVT SVT = VT.getScalarType(); 5324 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5325 EVT ShSVT = ShVT.getScalarType(); 5326 5327 // If MUL is unavailable, we cannot proceed in any case. 5328 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5329 return SDValue(); 5330 5331 // TODO: Could support comparing with non-zero too. 5332 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5333 if (!CompTarget || !CompTarget->isNullValue()) 5334 return SDValue(); 5335 5336 bool HadIntMinDivisor = false; 5337 bool HadOneDivisor = false; 5338 bool AllDivisorsAreOnes = true; 5339 bool HadEvenDivisor = false; 5340 bool NeedToApplyOffset = false; 5341 bool AllDivisorsArePowerOfTwo = true; 5342 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5343 5344 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5345 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5346 if (C->isNullValue()) 5347 return false; 5348 5349 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5350 5351 // WARNING: this fold is only valid for positive divisors! 5352 APInt D = C->getAPIntValue(); 5353 if (D.isNegative()) 5354 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5355 5356 HadIntMinDivisor |= D.isMinSignedValue(); 5357 5358 // If all divisors are ones, we will prefer to avoid the fold. 5359 HadOneDivisor |= D.isOneValue(); 5360 AllDivisorsAreOnes &= D.isOneValue(); 5361 5362 // Decompose D into D0 * 2^K 5363 unsigned K = D.countTrailingZeros(); 5364 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5365 APInt D0 = D.lshr(K); 5366 5367 if (!D.isMinSignedValue()) { 5368 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5369 // we don't care about this lane in this fold, we'll special-handle it. 5370 HadEvenDivisor |= (K != 0); 5371 } 5372 5373 // D is a power-of-two if D0 is one. This includes INT_MIN. 5374 // If all divisors are power-of-two, we will prefer to avoid the fold. 5375 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5376 5377 // P = inv(D0, 2^W) 5378 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5379 unsigned W = D.getBitWidth(); 5380 APInt P = D0.zext(W + 1) 5381 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5382 .trunc(W); 5383 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5384 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5385 5386 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5387 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5388 A.clearLowBits(K); 5389 5390 if (!D.isMinSignedValue()) { 5391 // If divisor INT_MIN, then we don't care about this lane in this fold, 5392 // we'll special-handle it. 5393 NeedToApplyOffset |= A != 0; 5394 } 5395 5396 // Q = floor((2 * A) / (2^K)) 5397 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5398 5399 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5400 "We are expecting that A is always less than all-ones for SVT"); 5401 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5402 "We are expecting that K is always less than all-ones for ShSVT"); 5403 5404 // If the divisor is 1 the result can be constant-folded. Likewise, we 5405 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5406 if (D.isOneValue()) { 5407 // Set P, A and K to a bogus values so we can try to splat them. 5408 P = 0; 5409 A = -1; 5410 K = -1; 5411 5412 // x ?% 1 == 0 <--> true <--> x u<= -1 5413 Q = -1; 5414 } 5415 5416 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5417 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5418 KAmts.push_back( 5419 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5420 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5421 return true; 5422 }; 5423 5424 SDValue N = REMNode.getOperand(0); 5425 SDValue D = REMNode.getOperand(1); 5426 5427 // Collect the values from each element. 5428 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5429 return SDValue(); 5430 5431 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5432 if (AllDivisorsAreOnes) 5433 return SDValue(); 5434 5435 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5436 // since it can be best implemented as a bit test. 5437 if (AllDivisorsArePowerOfTwo) 5438 return SDValue(); 5439 5440 SDValue PVal, AVal, KVal, QVal; 5441 if (VT.isVector()) { 5442 if (HadOneDivisor) { 5443 // Try to turn PAmts into a splat, since we don't care about the values 5444 // that are currently '0'. If we can't, just keep '0'`s. 5445 turnVectorIntoSplatVector(PAmts, isNullConstant); 5446 // Try to turn AAmts into a splat, since we don't care about the 5447 // values that are currently '-1'. If we can't, change them to '0'`s. 5448 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5449 DAG.getConstant(0, DL, SVT)); 5450 // Try to turn KAmts into a splat, since we don't care about the values 5451 // that are currently '-1'. If we can't, change them to '0'`s. 5452 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5453 DAG.getConstant(0, DL, ShSVT)); 5454 } 5455 5456 PVal = DAG.getBuildVector(VT, DL, PAmts); 5457 AVal = DAG.getBuildVector(VT, DL, AAmts); 5458 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5459 QVal = DAG.getBuildVector(VT, DL, QAmts); 5460 } else { 5461 PVal = PAmts[0]; 5462 AVal = AAmts[0]; 5463 KVal = KAmts[0]; 5464 QVal = QAmts[0]; 5465 } 5466 5467 // (mul N, P) 5468 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5469 Created.push_back(Op0.getNode()); 5470 5471 if (NeedToApplyOffset) { 5472 // We need ADD to do this. 5473 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5474 return SDValue(); 5475 5476 // (add (mul N, P), A) 5477 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5478 Created.push_back(Op0.getNode()); 5479 } 5480 5481 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5482 // divisors as a performance improvement, since rotating by 0 is a no-op. 5483 if (HadEvenDivisor) { 5484 // We need ROTR to do this. 5485 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5486 return SDValue(); 5487 SDNodeFlags Flags; 5488 Flags.setExact(true); 5489 // SREM: (rotr (add (mul N, P), A), K) 5490 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5491 Created.push_back(Op0.getNode()); 5492 } 5493 5494 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5495 SDValue Fold = 5496 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5497 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5498 5499 // If we didn't have lanes with INT_MIN divisor, then we're done. 5500 if (!HadIntMinDivisor) 5501 return Fold; 5502 5503 // That fold is only valid for positive divisors. Which effectively means, 5504 // it is invalid for INT_MIN divisors. So if we have such a lane, 5505 // we must fix-up results for said lanes. 5506 assert(VT.isVector() && "Can/should only get here for vectors."); 5507 5508 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5509 !isOperationLegalOrCustom(ISD::AND, VT) || 5510 !isOperationLegalOrCustom(Cond, VT) || 5511 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5512 return SDValue(); 5513 5514 Created.push_back(Fold.getNode()); 5515 5516 SDValue IntMin = DAG.getConstant( 5517 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5518 SDValue IntMax = DAG.getConstant( 5519 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5520 SDValue Zero = 5521 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5522 5523 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5524 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5525 Created.push_back(DivisorIsIntMin.getNode()); 5526 5527 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5528 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5529 Created.push_back(Masked.getNode()); 5530 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5531 Created.push_back(MaskedIsZero.getNode()); 5532 5533 // To produce final result we need to blend 2 vectors: 'SetCC' and 5534 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5535 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5536 // constant-folded, select can get lowered to a shuffle with constant mask. 5537 SDValue Blended = 5538 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5539 5540 return Blended; 5541 } 5542 5543 bool TargetLowering:: 5544 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5545 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5546 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5547 "be a constant integer"); 5548 return true; 5549 } 5550 5551 return false; 5552 } 5553 5554 TargetLowering::NegatibleCost 5555 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5556 bool LegalOperations, bool ForCodeSize, 5557 unsigned Depth) const { 5558 // fneg is removable even if it has multiple uses. 5559 if (Op.getOpcode() == ISD::FNEG) 5560 return NegatibleCost::Cheaper; 5561 5562 // Don't allow anything with multiple uses unless we know it is free. 5563 EVT VT = Op.getValueType(); 5564 const SDNodeFlags Flags = Op->getFlags(); 5565 const TargetOptions &Options = DAG.getTarget().Options; 5566 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5567 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5568 return NegatibleCost::Expensive; 5569 5570 // Don't recurse exponentially. 5571 if (Depth > SelectionDAG::MaxRecursionDepth) 5572 return NegatibleCost::Expensive; 5573 5574 switch (Op.getOpcode()) { 5575 case ISD::ConstantFP: { 5576 if (!LegalOperations) 5577 return NegatibleCost::Neutral; 5578 5579 // Don't invert constant FP values after legalization unless the target says 5580 // the negated constant is legal. 5581 if (isOperationLegal(ISD::ConstantFP, VT) || 5582 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5583 ForCodeSize)) 5584 return NegatibleCost::Neutral; 5585 break; 5586 } 5587 case ISD::BUILD_VECTOR: { 5588 // Only permit BUILD_VECTOR of constants. 5589 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5590 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5591 })) 5592 return NegatibleCost::Expensive; 5593 if (!LegalOperations) 5594 return NegatibleCost::Neutral; 5595 if (isOperationLegal(ISD::ConstantFP, VT) && 5596 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5597 return NegatibleCost::Neutral; 5598 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5599 return N.isUndef() || 5600 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5601 ForCodeSize); 5602 })) 5603 return NegatibleCost::Neutral; 5604 break; 5605 } 5606 case ISD::FADD: { 5607 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5608 return NegatibleCost::Expensive; 5609 5610 // After operation legalization, it might not be legal to create new FSUBs. 5611 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5612 return NegatibleCost::Expensive; 5613 5614 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5615 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5616 ForCodeSize, Depth + 1); 5617 if (V0 != NegatibleCost::Expensive) 5618 return V0; 5619 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5620 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5621 Depth + 1); 5622 } 5623 case ISD::FSUB: 5624 // We can't turn -(A-B) into B-A when we honor signed zeros. 5625 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5626 return NegatibleCost::Expensive; 5627 5628 // fold (fneg (fsub A, B)) -> (fsub B, A) 5629 return NegatibleCost::Neutral; 5630 case ISD::FMUL: 5631 case ISD::FDIV: { 5632 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5633 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5634 ForCodeSize, Depth + 1); 5635 if (V0 != NegatibleCost::Expensive) 5636 return V0; 5637 5638 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5639 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5640 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5641 return NegatibleCost::Expensive; 5642 5643 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5644 Depth + 1); 5645 } 5646 case ISD::FMA: 5647 case ISD::FMAD: { 5648 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5649 return NegatibleCost::Expensive; 5650 5651 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5652 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5653 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5654 ForCodeSize, Depth + 1); 5655 if (NegatibleCost::Expensive == V2) 5656 return NegatibleCost::Expensive; 5657 5658 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5659 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5660 ForCodeSize, Depth + 1); 5661 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5662 ForCodeSize, Depth + 1); 5663 NegatibleCost V01 = std::max(V0, V1); 5664 if (V01 == NegatibleCost::Expensive) 5665 return NegatibleCost::Expensive; 5666 return std::max(V01, V2); 5667 } 5668 5669 case ISD::FP_EXTEND: 5670 case ISD::FP_ROUND: 5671 case ISD::FSIN: 5672 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5673 Depth + 1); 5674 } 5675 5676 return NegatibleCost::Expensive; 5677 } 5678 5679 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5680 bool LegalOperations, 5681 bool ForCodeSize, 5682 unsigned Depth) const { 5683 // fneg is removable even if it has multiple uses. 5684 if (Op.getOpcode() == ISD::FNEG) 5685 return Op.getOperand(0); 5686 5687 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5688 "getNegatedExpression doesn't match getNegatibleCost"); 5689 const SDNodeFlags Flags = Op->getFlags(); 5690 5691 switch (Op.getOpcode()) { 5692 case ISD::ConstantFP: { 5693 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5694 V.changeSign(); 5695 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5696 } 5697 case ISD::BUILD_VECTOR: { 5698 SmallVector<SDValue, 4> Ops; 5699 for (SDValue C : Op->op_values()) { 5700 if (C.isUndef()) { 5701 Ops.push_back(C); 5702 continue; 5703 } 5704 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5705 V.changeSign(); 5706 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5707 } 5708 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5709 } 5710 case ISD::FADD: { 5711 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5712 Flags.hasNoSignedZeros()) && 5713 "Expected NSZ fp-flag"); 5714 5715 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5716 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5717 ForCodeSize, Depth + 1); 5718 if (V0 != NegatibleCost::Expensive) 5719 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5720 getNegatedExpression(Op.getOperand(0), DAG, 5721 LegalOperations, ForCodeSize, 5722 Depth + 1), 5723 Op.getOperand(1), Flags); 5724 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5725 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5726 getNegatedExpression(Op.getOperand(1), DAG, 5727 LegalOperations, ForCodeSize, 5728 Depth + 1), 5729 Op.getOperand(0), Flags); 5730 } 5731 case ISD::FSUB: 5732 // fold (fneg (fsub 0, B)) -> B 5733 if (ConstantFPSDNode *N0CFP = 5734 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5735 if (N0CFP->isZero()) 5736 return Op.getOperand(1); 5737 5738 // fold (fneg (fsub A, B)) -> (fsub B, A) 5739 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5740 Op.getOperand(1), Op.getOperand(0), Flags); 5741 5742 case ISD::FMUL: 5743 case ISD::FDIV: { 5744 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5745 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5746 ForCodeSize, Depth + 1); 5747 if (V0 != NegatibleCost::Expensive) 5748 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5749 getNegatedExpression(Op.getOperand(0), DAG, 5750 LegalOperations, ForCodeSize, 5751 Depth + 1), 5752 Op.getOperand(1), Flags); 5753 5754 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5755 return DAG.getNode( 5756 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5757 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5758 ForCodeSize, Depth + 1), 5759 Flags); 5760 } 5761 case ISD::FMA: 5762 case ISD::FMAD: { 5763 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5764 Flags.hasNoSignedZeros()) && 5765 "Expected NSZ fp-flag"); 5766 5767 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5768 ForCodeSize, Depth + 1); 5769 5770 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5771 ForCodeSize, Depth + 1); 5772 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5773 ForCodeSize, Depth + 1); 5774 // TODO: This is a hack. It is possible that costs have changed between now 5775 // and the initial calls to getNegatibleCost(). That is because we 5776 // are rewriting the expression, and that may change the number of 5777 // uses (and therefore the cost) of values. If the negation costs are 5778 // equal, only negate this value if it is a constant. Otherwise, try 5779 // operand 1. A better fix would eliminate uses as a cost factor or 5780 // track the change in uses as we rewrite the expression. 5781 if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) { 5782 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5783 SDValue Neg0 = getNegatedExpression( 5784 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5785 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5786 Op.getOperand(1), Neg2, Flags); 5787 } 5788 5789 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5790 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5791 ForCodeSize, Depth + 1); 5792 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5793 Op.getOperand(0), Neg1, Neg2, Flags); 5794 } 5795 5796 case ISD::FP_EXTEND: 5797 case ISD::FSIN: 5798 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5799 getNegatedExpression(Op.getOperand(0), DAG, 5800 LegalOperations, ForCodeSize, 5801 Depth + 1)); 5802 case ISD::FP_ROUND: 5803 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5804 getNegatedExpression(Op.getOperand(0), DAG, 5805 LegalOperations, ForCodeSize, 5806 Depth + 1), 5807 Op.getOperand(1)); 5808 } 5809 5810 llvm_unreachable("Unknown code"); 5811 } 5812 5813 //===----------------------------------------------------------------------===// 5814 // Legalization Utilities 5815 //===----------------------------------------------------------------------===// 5816 5817 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5818 SDValue LHS, SDValue RHS, 5819 SmallVectorImpl<SDValue> &Result, 5820 EVT HiLoVT, SelectionDAG &DAG, 5821 MulExpansionKind Kind, SDValue LL, 5822 SDValue LH, SDValue RL, SDValue RH) const { 5823 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5824 Opcode == ISD::SMUL_LOHI); 5825 5826 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5827 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5828 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5829 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5830 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5831 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5832 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5833 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5834 5835 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5836 return false; 5837 5838 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5839 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5840 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5841 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5842 5843 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5844 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5845 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5846 5847 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5848 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5849 bool Signed) -> bool { 5850 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5851 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5852 Hi = SDValue(Lo.getNode(), 1); 5853 return true; 5854 } 5855 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5856 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5857 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5858 return true; 5859 } 5860 return false; 5861 }; 5862 5863 SDValue Lo, Hi; 5864 5865 if (!LL.getNode() && !RL.getNode() && 5866 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5867 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5868 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5869 } 5870 5871 if (!LL.getNode()) 5872 return false; 5873 5874 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5875 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5876 DAG.MaskedValueIsZero(RHS, HighMask)) { 5877 // The inputs are both zero-extended. 5878 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5879 Result.push_back(Lo); 5880 Result.push_back(Hi); 5881 if (Opcode != ISD::MUL) { 5882 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5883 Result.push_back(Zero); 5884 Result.push_back(Zero); 5885 } 5886 return true; 5887 } 5888 } 5889 5890 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5891 RHSSB > InnerBitSize) { 5892 // The input values are both sign-extended. 5893 // TODO non-MUL case? 5894 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5895 Result.push_back(Lo); 5896 Result.push_back(Hi); 5897 return true; 5898 } 5899 } 5900 5901 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5902 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5903 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5904 // FIXME getShiftAmountTy does not always return a sensible result when VT 5905 // is an illegal type, and so the type may be too small to fit the shift 5906 // amount. Override it with i32. The shift will have to be legalized. 5907 ShiftAmountTy = MVT::i32; 5908 } 5909 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5910 5911 if (!LH.getNode() && !RH.getNode() && 5912 isOperationLegalOrCustom(ISD::SRL, VT) && 5913 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5914 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5915 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5916 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5917 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5918 } 5919 5920 if (!LH.getNode()) 5921 return false; 5922 5923 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5924 return false; 5925 5926 Result.push_back(Lo); 5927 5928 if (Opcode == ISD::MUL) { 5929 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5930 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5931 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5932 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5933 Result.push_back(Hi); 5934 return true; 5935 } 5936 5937 // Compute the full width result. 5938 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5939 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5940 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5941 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5942 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5943 }; 5944 5945 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5946 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5947 return false; 5948 5949 // This is effectively the add part of a multiply-add of half-sized operands, 5950 // so it cannot overflow. 5951 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5952 5953 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5954 return false; 5955 5956 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5957 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5958 5959 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5960 isOperationLegalOrCustom(ISD::ADDE, VT)); 5961 if (UseGlue) 5962 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5963 Merge(Lo, Hi)); 5964 else 5965 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5966 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5967 5968 SDValue Carry = Next.getValue(1); 5969 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5970 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5971 5972 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5973 return false; 5974 5975 if (UseGlue) 5976 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5977 Carry); 5978 else 5979 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5980 Zero, Carry); 5981 5982 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5983 5984 if (Opcode == ISD::SMUL_LOHI) { 5985 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5986 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5987 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5988 5989 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5990 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5991 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5992 } 5993 5994 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5995 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5996 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5997 return true; 5998 } 5999 6000 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6001 SelectionDAG &DAG, MulExpansionKind Kind, 6002 SDValue LL, SDValue LH, SDValue RL, 6003 SDValue RH) const { 6004 SmallVector<SDValue, 2> Result; 6005 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6006 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6007 DAG, Kind, LL, LH, RL, RH); 6008 if (Ok) { 6009 assert(Result.size() == 2); 6010 Lo = Result[0]; 6011 Hi = Result[1]; 6012 } 6013 return Ok; 6014 } 6015 6016 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6017 SelectionDAG &DAG) const { 6018 EVT VT = Node->getValueType(0); 6019 6020 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6021 !isOperationLegalOrCustom(ISD::SRL, VT) || 6022 !isOperationLegalOrCustom(ISD::SUB, VT) || 6023 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6024 return false; 6025 6026 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6027 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6028 SDValue X = Node->getOperand(0); 6029 SDValue Y = Node->getOperand(1); 6030 SDValue Z = Node->getOperand(2); 6031 6032 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6033 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6034 SDLoc DL(SDValue(Node, 0)); 6035 6036 EVT ShVT = Z.getValueType(); 6037 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6038 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6039 6040 SDValue ShAmt; 6041 if (isPowerOf2_32(EltSizeInBits)) { 6042 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6043 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6044 } else { 6045 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6046 } 6047 6048 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6049 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6050 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6051 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6052 6053 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6054 // and that is undefined. We must compare and select to avoid UB. 6055 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6056 6057 // For fshl, 0-shift returns the 1st arg (X). 6058 // For fshr, 0-shift returns the 2nd arg (Y). 6059 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6060 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6061 return true; 6062 } 6063 6064 // TODO: Merge with expandFunnelShift. 6065 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6066 SelectionDAG &DAG) const { 6067 EVT VT = Node->getValueType(0); 6068 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6069 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6070 SDValue Op0 = Node->getOperand(0); 6071 SDValue Op1 = Node->getOperand(1); 6072 SDLoc DL(SDValue(Node, 0)); 6073 6074 EVT ShVT = Op1.getValueType(); 6075 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6076 6077 // If a rotate in the other direction is legal, use it. 6078 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6079 if (isOperationLegal(RevRot, VT)) { 6080 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6081 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6082 return true; 6083 } 6084 6085 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6086 !isOperationLegalOrCustom(ISD::SRL, VT) || 6087 !isOperationLegalOrCustom(ISD::SUB, VT) || 6088 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6089 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6090 return false; 6091 6092 // Otherwise, 6093 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6094 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6095 // 6096 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6097 "Expecting the type bitwidth to be a power of 2"); 6098 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6099 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6100 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6101 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6102 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6103 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6104 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6105 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6106 return true; 6107 } 6108 6109 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6110 SelectionDAG &DAG) const { 6111 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6112 SDValue Src = Node->getOperand(OpNo); 6113 EVT SrcVT = Src.getValueType(); 6114 EVT DstVT = Node->getValueType(0); 6115 SDLoc dl(SDValue(Node, 0)); 6116 6117 // FIXME: Only f32 to i64 conversions are supported. 6118 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6119 return false; 6120 6121 if (Node->isStrictFPOpcode()) 6122 // When a NaN is converted to an integer a trap is allowed. We can't 6123 // use this expansion here because it would eliminate that trap. Other 6124 // traps are also allowed and cannot be eliminated. See 6125 // IEEE 754-2008 sec 5.8. 6126 return false; 6127 6128 // Expand f32 -> i64 conversion 6129 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6130 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6131 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6132 EVT IntVT = SrcVT.changeTypeToInteger(); 6133 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6134 6135 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6136 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6137 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6138 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6139 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6140 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6141 6142 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6143 6144 SDValue ExponentBits = DAG.getNode( 6145 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6146 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6147 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6148 6149 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6150 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6151 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6152 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6153 6154 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6155 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6156 DAG.getConstant(0x00800000, dl, IntVT)); 6157 6158 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6159 6160 R = DAG.getSelectCC( 6161 dl, Exponent, ExponentLoBit, 6162 DAG.getNode(ISD::SHL, dl, DstVT, R, 6163 DAG.getZExtOrTrunc( 6164 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6165 dl, IntShVT)), 6166 DAG.getNode(ISD::SRL, dl, DstVT, R, 6167 DAG.getZExtOrTrunc( 6168 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6169 dl, IntShVT)), 6170 ISD::SETGT); 6171 6172 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6173 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6174 6175 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6176 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6177 return true; 6178 } 6179 6180 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6181 SDValue &Chain, 6182 SelectionDAG &DAG) const { 6183 SDLoc dl(SDValue(Node, 0)); 6184 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6185 SDValue Src = Node->getOperand(OpNo); 6186 6187 EVT SrcVT = Src.getValueType(); 6188 EVT DstVT = Node->getValueType(0); 6189 EVT SetCCVT = 6190 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6191 EVT DstSetCCVT = 6192 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6193 6194 // Only expand vector types if we have the appropriate vector bit operations. 6195 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6196 ISD::FP_TO_SINT; 6197 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6198 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6199 return false; 6200 6201 // If the maximum float value is smaller then the signed integer range, 6202 // the destination signmask can't be represented by the float, so we can 6203 // just use FP_TO_SINT directly. 6204 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6205 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6206 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6207 if (APFloat::opOverflow & 6208 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6209 if (Node->isStrictFPOpcode()) { 6210 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6211 { Node->getOperand(0), Src }); 6212 Chain = Result.getValue(1); 6213 } else 6214 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6215 return true; 6216 } 6217 6218 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6219 SDValue Sel; 6220 6221 if (Node->isStrictFPOpcode()) { 6222 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6223 Node->getOperand(0), /*IsSignaling*/ true); 6224 Chain = Sel.getValue(1); 6225 } else { 6226 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6227 } 6228 6229 bool Strict = Node->isStrictFPOpcode() || 6230 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6231 6232 if (Strict) { 6233 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6234 // signmask then offset (the result of which should be fully representable). 6235 // Sel = Src < 0x8000000000000000 6236 // FltOfs = select Sel, 0, 0x8000000000000000 6237 // IntOfs = select Sel, 0, 0x8000000000000000 6238 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6239 6240 // TODO: Should any fast-math-flags be set for the FSUB? 6241 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6242 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6243 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6244 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6245 DAG.getConstant(0, dl, DstVT), 6246 DAG.getConstant(SignMask, dl, DstVT)); 6247 SDValue SInt; 6248 if (Node->isStrictFPOpcode()) { 6249 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6250 { Chain, Src, FltOfs }); 6251 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6252 { Val.getValue(1), Val }); 6253 Chain = SInt.getValue(1); 6254 } else { 6255 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6256 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6257 } 6258 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6259 } else { 6260 // Expand based on maximum range of FP_TO_SINT: 6261 // True = fp_to_sint(Src) 6262 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6263 // Result = select (Src < 0x8000000000000000), True, False 6264 6265 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6266 // TODO: Should any fast-math-flags be set for the FSUB? 6267 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6268 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6269 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6270 DAG.getConstant(SignMask, dl, DstVT)); 6271 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6272 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6273 } 6274 return true; 6275 } 6276 6277 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6278 SDValue &Chain, 6279 SelectionDAG &DAG) const { 6280 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6281 SDValue Src = Node->getOperand(OpNo); 6282 EVT SrcVT = Src.getValueType(); 6283 EVT DstVT = Node->getValueType(0); 6284 6285 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6286 return false; 6287 6288 // Only expand vector types if we have the appropriate vector bit operations. 6289 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6290 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6291 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6292 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6293 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6294 return false; 6295 6296 SDLoc dl(SDValue(Node, 0)); 6297 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6298 6299 // Implementation of unsigned i64 to f64 following the algorithm in 6300 // __floatundidf in compiler_rt. This implementation has the advantage 6301 // of performing rounding correctly, both in the default rounding mode 6302 // and in all alternate rounding modes. 6303 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6304 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6305 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6306 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6307 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6308 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6309 6310 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6311 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6312 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6313 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6314 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6315 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6316 if (Node->isStrictFPOpcode()) { 6317 SDValue HiSub = 6318 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6319 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6320 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6321 {HiSub.getValue(1), LoFlt, HiSub}); 6322 Chain = Result.getValue(1); 6323 } else { 6324 SDValue HiSub = 6325 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6326 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6327 } 6328 return true; 6329 } 6330 6331 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6332 SelectionDAG &DAG) const { 6333 SDLoc dl(Node); 6334 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6335 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6336 EVT VT = Node->getValueType(0); 6337 if (isOperationLegalOrCustom(NewOp, VT)) { 6338 SDValue Quiet0 = Node->getOperand(0); 6339 SDValue Quiet1 = Node->getOperand(1); 6340 6341 if (!Node->getFlags().hasNoNaNs()) { 6342 // Insert canonicalizes if it's possible we need to quiet to get correct 6343 // sNaN behavior. 6344 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6345 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6346 Node->getFlags()); 6347 } 6348 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6349 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6350 Node->getFlags()); 6351 } 6352 } 6353 6354 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6355 } 6356 6357 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6358 // instead if there are no NaNs. 6359 if (Node->getFlags().hasNoNaNs()) { 6360 unsigned IEEE2018Op = 6361 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6362 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6363 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6364 Node->getOperand(1), Node->getFlags()); 6365 } 6366 } 6367 6368 // If none of the above worked, but there are no NaNs, then expand to 6369 // a compare/select sequence. This is required for correctness since 6370 // InstCombine might have canonicalized a fcmp+select sequence to a 6371 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6372 // expansion to libcall, we might introduce a link-time dependency 6373 // on libm into a file that originally did not have one. 6374 if (Node->getFlags().hasNoNaNs()) { 6375 ISD::CondCode Pred = 6376 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6377 SDValue Op1 = Node->getOperand(0); 6378 SDValue Op2 = Node->getOperand(1); 6379 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6380 // Copy FMF flags, but always set the no-signed-zeros flag 6381 // as this is implied by the FMINNUM/FMAXNUM semantics. 6382 SDNodeFlags Flags = Node->getFlags(); 6383 Flags.setNoSignedZeros(true); 6384 SelCC->setFlags(Flags); 6385 return SelCC; 6386 } 6387 6388 return SDValue(); 6389 } 6390 6391 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6392 SelectionDAG &DAG) const { 6393 SDLoc dl(Node); 6394 EVT VT = Node->getValueType(0); 6395 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6396 SDValue Op = Node->getOperand(0); 6397 unsigned Len = VT.getScalarSizeInBits(); 6398 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6399 6400 // TODO: Add support for irregular type lengths. 6401 if (!(Len <= 128 && Len % 8 == 0)) 6402 return false; 6403 6404 // Only expand vector types if we have the appropriate vector bit operations. 6405 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6406 !isOperationLegalOrCustom(ISD::SUB, VT) || 6407 !isOperationLegalOrCustom(ISD::SRL, VT) || 6408 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6409 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6410 return false; 6411 6412 // This is the "best" algorithm from 6413 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6414 SDValue Mask55 = 6415 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6416 SDValue Mask33 = 6417 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6418 SDValue Mask0F = 6419 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6420 SDValue Mask01 = 6421 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6422 6423 // v = v - ((v >> 1) & 0x55555555...) 6424 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6425 DAG.getNode(ISD::AND, dl, VT, 6426 DAG.getNode(ISD::SRL, dl, VT, Op, 6427 DAG.getConstant(1, dl, ShVT)), 6428 Mask55)); 6429 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6430 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6431 DAG.getNode(ISD::AND, dl, VT, 6432 DAG.getNode(ISD::SRL, dl, VT, Op, 6433 DAG.getConstant(2, dl, ShVT)), 6434 Mask33)); 6435 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6436 Op = DAG.getNode(ISD::AND, dl, VT, 6437 DAG.getNode(ISD::ADD, dl, VT, Op, 6438 DAG.getNode(ISD::SRL, dl, VT, Op, 6439 DAG.getConstant(4, dl, ShVT))), 6440 Mask0F); 6441 // v = (v * 0x01010101...) >> (Len - 8) 6442 if (Len > 8) 6443 Op = 6444 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6445 DAG.getConstant(Len - 8, dl, ShVT)); 6446 6447 Result = Op; 6448 return true; 6449 } 6450 6451 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6452 SelectionDAG &DAG) const { 6453 SDLoc dl(Node); 6454 EVT VT = Node->getValueType(0); 6455 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6456 SDValue Op = Node->getOperand(0); 6457 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6458 6459 // If the non-ZERO_UNDEF version is supported we can use that instead. 6460 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6461 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6462 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6463 return true; 6464 } 6465 6466 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6467 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6468 EVT SetCCVT = 6469 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6470 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6471 SDValue Zero = DAG.getConstant(0, dl, VT); 6472 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6473 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6474 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6475 return true; 6476 } 6477 6478 // Only expand vector types if we have the appropriate vector bit operations. 6479 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6480 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6481 !isOperationLegalOrCustom(ISD::SRL, VT) || 6482 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6483 return false; 6484 6485 // for now, we do this: 6486 // x = x | (x >> 1); 6487 // x = x | (x >> 2); 6488 // ... 6489 // x = x | (x >>16); 6490 // x = x | (x >>32); // for 64-bit input 6491 // return popcount(~x); 6492 // 6493 // Ref: "Hacker's Delight" by Henry Warren 6494 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6495 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6496 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6497 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6498 } 6499 Op = DAG.getNOT(dl, Op, VT); 6500 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6501 return true; 6502 } 6503 6504 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6505 SelectionDAG &DAG) const { 6506 SDLoc dl(Node); 6507 EVT VT = Node->getValueType(0); 6508 SDValue Op = Node->getOperand(0); 6509 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6510 6511 // If the non-ZERO_UNDEF version is supported we can use that instead. 6512 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6513 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6514 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6515 return true; 6516 } 6517 6518 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6519 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6520 EVT SetCCVT = 6521 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6522 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6523 SDValue Zero = DAG.getConstant(0, dl, VT); 6524 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6525 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6526 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6527 return true; 6528 } 6529 6530 // Only expand vector types if we have the appropriate vector bit operations. 6531 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6532 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6533 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6534 !isOperationLegalOrCustom(ISD::SUB, VT) || 6535 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6536 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6537 return false; 6538 6539 // for now, we use: { return popcount(~x & (x - 1)); } 6540 // unless the target has ctlz but not ctpop, in which case we use: 6541 // { return 32 - nlz(~x & (x-1)); } 6542 // Ref: "Hacker's Delight" by Henry Warren 6543 SDValue Tmp = DAG.getNode( 6544 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6545 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6546 6547 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6548 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6549 Result = 6550 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6551 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6552 return true; 6553 } 6554 6555 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6556 return true; 6557 } 6558 6559 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6560 SelectionDAG &DAG) const { 6561 SDLoc dl(N); 6562 EVT VT = N->getValueType(0); 6563 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6564 SDValue Op = N->getOperand(0); 6565 6566 // Only expand vector types if we have the appropriate vector operations. 6567 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6568 !isOperationLegalOrCustom(ISD::ADD, VT) || 6569 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6570 return false; 6571 6572 SDValue Shift = 6573 DAG.getNode(ISD::SRA, dl, VT, Op, 6574 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6575 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6576 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6577 return true; 6578 } 6579 6580 std::pair<SDValue, SDValue> 6581 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6582 SelectionDAG &DAG) const { 6583 SDLoc SL(LD); 6584 SDValue Chain = LD->getChain(); 6585 SDValue BasePTR = LD->getBasePtr(); 6586 EVT SrcVT = LD->getMemoryVT(); 6587 ISD::LoadExtType ExtType = LD->getExtensionType(); 6588 6589 unsigned NumElem = SrcVT.getVectorNumElements(); 6590 6591 EVT SrcEltVT = SrcVT.getScalarType(); 6592 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6593 6594 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6595 assert(SrcEltVT.isByteSized()); 6596 6597 SmallVector<SDValue, 8> Vals; 6598 SmallVector<SDValue, 8> LoadChains; 6599 6600 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6601 SDValue ScalarLoad = 6602 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6603 LD->getPointerInfo().getWithOffset(Idx * Stride), 6604 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6605 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6606 6607 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6608 6609 Vals.push_back(ScalarLoad.getValue(0)); 6610 LoadChains.push_back(ScalarLoad.getValue(1)); 6611 } 6612 6613 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6614 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6615 6616 return std::make_pair(Value, NewChain); 6617 } 6618 6619 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6620 SelectionDAG &DAG) const { 6621 SDLoc SL(ST); 6622 6623 SDValue Chain = ST->getChain(); 6624 SDValue BasePtr = ST->getBasePtr(); 6625 SDValue Value = ST->getValue(); 6626 EVT StVT = ST->getMemoryVT(); 6627 6628 // The type of the data we want to save 6629 EVT RegVT = Value.getValueType(); 6630 EVT RegSclVT = RegVT.getScalarType(); 6631 6632 // The type of data as saved in memory. 6633 EVT MemSclVT = StVT.getScalarType(); 6634 6635 unsigned NumElem = StVT.getVectorNumElements(); 6636 6637 // A vector must always be stored in memory as-is, i.e. without any padding 6638 // between the elements, since various code depend on it, e.g. in the 6639 // handling of a bitcast of a vector type to int, which may be done with a 6640 // vector store followed by an integer load. A vector that does not have 6641 // elements that are byte-sized must therefore be stored as an integer 6642 // built out of the extracted vector elements. 6643 if (!MemSclVT.isByteSized()) { 6644 unsigned NumBits = StVT.getSizeInBits(); 6645 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6646 6647 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6648 6649 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6650 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6651 DAG.getVectorIdxConstant(Idx, SL)); 6652 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6653 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6654 unsigned ShiftIntoIdx = 6655 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6656 SDValue ShiftAmount = 6657 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6658 SDValue ShiftedElt = 6659 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6660 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6661 } 6662 6663 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6664 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6665 ST->getAAInfo()); 6666 } 6667 6668 // Store Stride in bytes 6669 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6670 assert(Stride && "Zero stride!"); 6671 // Extract each of the elements from the original vector and save them into 6672 // memory individually. 6673 SmallVector<SDValue, 8> Stores; 6674 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6675 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6676 DAG.getVectorIdxConstant(Idx, SL)); 6677 6678 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6679 6680 // This scalar TruncStore may be illegal, but we legalize it later. 6681 SDValue Store = DAG.getTruncStore( 6682 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6683 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6684 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6685 6686 Stores.push_back(Store); 6687 } 6688 6689 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6690 } 6691 6692 std::pair<SDValue, SDValue> 6693 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6694 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6695 "unaligned indexed loads not implemented!"); 6696 SDValue Chain = LD->getChain(); 6697 SDValue Ptr = LD->getBasePtr(); 6698 EVT VT = LD->getValueType(0); 6699 EVT LoadedVT = LD->getMemoryVT(); 6700 SDLoc dl(LD); 6701 auto &MF = DAG.getMachineFunction(); 6702 6703 if (VT.isFloatingPoint() || VT.isVector()) { 6704 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6705 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6706 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6707 LoadedVT.isVector()) { 6708 // Scalarize the load and let the individual components be handled. 6709 return scalarizeVectorLoad(LD, DAG); 6710 } 6711 6712 // Expand to a (misaligned) integer load of the same size, 6713 // then bitconvert to floating point or vector. 6714 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6715 LD->getMemOperand()); 6716 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6717 if (LoadedVT != VT) 6718 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6719 ISD::ANY_EXTEND, dl, VT, Result); 6720 6721 return std::make_pair(Result, newLoad.getValue(1)); 6722 } 6723 6724 // Copy the value to a (aligned) stack slot using (unaligned) integer 6725 // loads and stores, then do a (aligned) load from the stack slot. 6726 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6727 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6728 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6729 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6730 6731 // Make sure the stack slot is also aligned for the register type. 6732 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6733 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6734 SmallVector<SDValue, 8> Stores; 6735 SDValue StackPtr = StackBase; 6736 unsigned Offset = 0; 6737 6738 EVT PtrVT = Ptr.getValueType(); 6739 EVT StackPtrVT = StackPtr.getValueType(); 6740 6741 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6742 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6743 6744 // Do all but one copies using the full register width. 6745 for (unsigned i = 1; i < NumRegs; i++) { 6746 // Load one integer register's worth from the original location. 6747 SDValue Load = DAG.getLoad( 6748 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6749 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6750 LD->getAAInfo()); 6751 // Follow the load with a store to the stack slot. Remember the store. 6752 Stores.push_back(DAG.getStore( 6753 Load.getValue(1), dl, Load, StackPtr, 6754 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6755 // Increment the pointers. 6756 Offset += RegBytes; 6757 6758 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6759 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6760 } 6761 6762 // The last copy may be partial. Do an extending load. 6763 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6764 8 * (LoadedBytes - Offset)); 6765 SDValue Load = 6766 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6767 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6768 MinAlign(LD->getAlignment(), Offset), 6769 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6770 // Follow the load with a store to the stack slot. Remember the store. 6771 // On big-endian machines this requires a truncating store to ensure 6772 // that the bits end up in the right place. 6773 Stores.push_back(DAG.getTruncStore( 6774 Load.getValue(1), dl, Load, StackPtr, 6775 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6776 6777 // The order of the stores doesn't matter - say it with a TokenFactor. 6778 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6779 6780 // Finally, perform the original load only redirected to the stack slot. 6781 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6782 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6783 LoadedVT); 6784 6785 // Callers expect a MERGE_VALUES node. 6786 return std::make_pair(Load, TF); 6787 } 6788 6789 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6790 "Unaligned load of unsupported type."); 6791 6792 // Compute the new VT that is half the size of the old one. This is an 6793 // integer MVT. 6794 unsigned NumBits = LoadedVT.getSizeInBits(); 6795 EVT NewLoadedVT; 6796 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6797 NumBits >>= 1; 6798 6799 unsigned Alignment = LD->getAlignment(); 6800 unsigned IncrementSize = NumBits / 8; 6801 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6802 6803 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6804 if (HiExtType == ISD::NON_EXTLOAD) 6805 HiExtType = ISD::ZEXTLOAD; 6806 6807 // Load the value in two parts 6808 SDValue Lo, Hi; 6809 if (DAG.getDataLayout().isLittleEndian()) { 6810 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6811 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6812 LD->getAAInfo()); 6813 6814 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6815 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6816 LD->getPointerInfo().getWithOffset(IncrementSize), 6817 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6818 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6819 } else { 6820 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6821 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6822 LD->getAAInfo()); 6823 6824 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6825 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6826 LD->getPointerInfo().getWithOffset(IncrementSize), 6827 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6828 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6829 } 6830 6831 // aggregate the two parts 6832 SDValue ShiftAmount = 6833 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6834 DAG.getDataLayout())); 6835 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6836 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6837 6838 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6839 Hi.getValue(1)); 6840 6841 return std::make_pair(Result, TF); 6842 } 6843 6844 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6845 SelectionDAG &DAG) const { 6846 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6847 "unaligned indexed stores not implemented!"); 6848 SDValue Chain = ST->getChain(); 6849 SDValue Ptr = ST->getBasePtr(); 6850 SDValue Val = ST->getValue(); 6851 EVT VT = Val.getValueType(); 6852 int Alignment = ST->getAlignment(); 6853 auto &MF = DAG.getMachineFunction(); 6854 EVT StoreMemVT = ST->getMemoryVT(); 6855 6856 SDLoc dl(ST); 6857 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6858 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6859 if (isTypeLegal(intVT)) { 6860 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6861 StoreMemVT.isVector()) { 6862 // Scalarize the store and let the individual components be handled. 6863 SDValue Result = scalarizeVectorStore(ST, DAG); 6864 return Result; 6865 } 6866 // Expand to a bitconvert of the value to the integer type of the 6867 // same size, then a (misaligned) int store. 6868 // FIXME: Does not handle truncating floating point stores! 6869 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6870 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6871 Alignment, ST->getMemOperand()->getFlags()); 6872 return Result; 6873 } 6874 // Do a (aligned) store to a stack slot, then copy from the stack slot 6875 // to the final destination using (unaligned) integer loads and stores. 6876 MVT RegVT = getRegisterType( 6877 *DAG.getContext(), 6878 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6879 EVT PtrVT = Ptr.getValueType(); 6880 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6881 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6882 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6883 6884 // Make sure the stack slot is also aligned for the register type. 6885 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6886 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6887 6888 // Perform the original store, only redirected to the stack slot. 6889 SDValue Store = DAG.getTruncStore( 6890 Chain, dl, Val, StackPtr, 6891 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6892 6893 EVT StackPtrVT = StackPtr.getValueType(); 6894 6895 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6896 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6897 SmallVector<SDValue, 8> Stores; 6898 unsigned Offset = 0; 6899 6900 // Do all but one copies using the full register width. 6901 for (unsigned i = 1; i < NumRegs; i++) { 6902 // Load one integer register's worth from the stack slot. 6903 SDValue Load = DAG.getLoad( 6904 RegVT, dl, Store, StackPtr, 6905 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6906 // Store it to the final location. Remember the store. 6907 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6908 ST->getPointerInfo().getWithOffset(Offset), 6909 MinAlign(ST->getAlignment(), Offset), 6910 ST->getMemOperand()->getFlags())); 6911 // Increment the pointers. 6912 Offset += RegBytes; 6913 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6914 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6915 } 6916 6917 // The last store may be partial. Do a truncating store. On big-endian 6918 // machines this requires an extending load from the stack slot to ensure 6919 // that the bits are in the right place. 6920 EVT LoadMemVT = 6921 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6922 6923 // Load from the stack slot. 6924 SDValue Load = DAG.getExtLoad( 6925 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6926 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6927 6928 Stores.push_back( 6929 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6930 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6931 MinAlign(ST->getAlignment(), Offset), 6932 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6933 // The order of the stores doesn't matter - say it with a TokenFactor. 6934 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6935 return Result; 6936 } 6937 6938 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6939 "Unaligned store of unknown type."); 6940 // Get the half-size VT 6941 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6942 int NumBits = NewStoredVT.getSizeInBits(); 6943 int IncrementSize = NumBits / 8; 6944 6945 // Divide the stored value in two parts. 6946 SDValue ShiftAmount = DAG.getConstant( 6947 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6948 SDValue Lo = Val; 6949 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6950 6951 // Store the two parts 6952 SDValue Store1, Store2; 6953 Store1 = DAG.getTruncStore(Chain, dl, 6954 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6955 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6956 ST->getMemOperand()->getFlags()); 6957 6958 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6959 Alignment = MinAlign(Alignment, IncrementSize); 6960 Store2 = DAG.getTruncStore( 6961 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6962 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6963 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6964 6965 SDValue Result = 6966 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6967 return Result; 6968 } 6969 6970 SDValue 6971 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6972 const SDLoc &DL, EVT DataVT, 6973 SelectionDAG &DAG, 6974 bool IsCompressedMemory) const { 6975 SDValue Increment; 6976 EVT AddrVT = Addr.getValueType(); 6977 EVT MaskVT = Mask.getValueType(); 6978 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6979 "Incompatible types of Data and Mask"); 6980 if (IsCompressedMemory) { 6981 // Incrementing the pointer according to number of '1's in the mask. 6982 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6983 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6984 if (MaskIntVT.getSizeInBits() < 32) { 6985 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6986 MaskIntVT = MVT::i32; 6987 } 6988 6989 // Count '1's with POPCNT. 6990 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6991 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6992 // Scale is an element size in bytes. 6993 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6994 AddrVT); 6995 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6996 } else 6997 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6998 6999 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7000 } 7001 7002 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7003 SDValue Idx, 7004 EVT VecVT, 7005 const SDLoc &dl) { 7006 if (isa<ConstantSDNode>(Idx)) 7007 return Idx; 7008 7009 EVT IdxVT = Idx.getValueType(); 7010 unsigned NElts = VecVT.getVectorNumElements(); 7011 if (isPowerOf2_32(NElts)) { 7012 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7013 Log2_32(NElts)); 7014 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7015 DAG.getConstant(Imm, dl, IdxVT)); 7016 } 7017 7018 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7019 DAG.getConstant(NElts - 1, dl, IdxVT)); 7020 } 7021 7022 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7023 SDValue VecPtr, EVT VecVT, 7024 SDValue Index) const { 7025 SDLoc dl(Index); 7026 // Make sure the index type is big enough to compute in. 7027 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7028 7029 EVT EltVT = VecVT.getVectorElementType(); 7030 7031 // Calculate the element offset and add it to the pointer. 7032 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7033 assert(EltSize * 8 == EltVT.getSizeInBits() && 7034 "Converting bits to bytes lost precision"); 7035 7036 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7037 7038 EVT IdxVT = Index.getValueType(); 7039 7040 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7041 DAG.getConstant(EltSize, dl, IdxVT)); 7042 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7043 } 7044 7045 //===----------------------------------------------------------------------===// 7046 // Implementation of Emulated TLS Model 7047 //===----------------------------------------------------------------------===// 7048 7049 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7050 SelectionDAG &DAG) const { 7051 // Access to address of TLS varialbe xyz is lowered to a function call: 7052 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7053 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7054 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7055 SDLoc dl(GA); 7056 7057 ArgListTy Args; 7058 ArgListEntry Entry; 7059 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7060 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7061 StringRef EmuTlsVarName(NameString); 7062 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7063 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7064 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7065 Entry.Ty = VoidPtrType; 7066 Args.push_back(Entry); 7067 7068 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7069 7070 TargetLowering::CallLoweringInfo CLI(DAG); 7071 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7072 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7073 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7074 7075 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7076 // At last for X86 targets, maybe good for other targets too? 7077 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7078 MFI.setAdjustsStack(true); // Is this only for X86 target? 7079 MFI.setHasCalls(true); 7080 7081 assert((GA->getOffset() == 0) && 7082 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7083 return CallResult.first; 7084 } 7085 7086 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7087 SelectionDAG &DAG) const { 7088 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7089 if (!isCtlzFast()) 7090 return SDValue(); 7091 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7092 SDLoc dl(Op); 7093 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7094 if (C->isNullValue() && CC == ISD::SETEQ) { 7095 EVT VT = Op.getOperand(0).getValueType(); 7096 SDValue Zext = Op.getOperand(0); 7097 if (VT.bitsLT(MVT::i32)) { 7098 VT = MVT::i32; 7099 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7100 } 7101 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7102 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7103 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7104 DAG.getConstant(Log2b, dl, MVT::i32)); 7105 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7106 } 7107 } 7108 return SDValue(); 7109 } 7110 7111 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7112 unsigned Opcode = Node->getOpcode(); 7113 SDValue LHS = Node->getOperand(0); 7114 SDValue RHS = Node->getOperand(1); 7115 EVT VT = LHS.getValueType(); 7116 SDLoc dl(Node); 7117 7118 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7119 assert(VT.isInteger() && "Expected operands to be integers"); 7120 7121 // usub.sat(a, b) -> umax(a, b) - b 7122 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7123 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7124 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7125 } 7126 7127 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7128 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7129 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7130 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7131 } 7132 7133 unsigned OverflowOp; 7134 switch (Opcode) { 7135 case ISD::SADDSAT: 7136 OverflowOp = ISD::SADDO; 7137 break; 7138 case ISD::UADDSAT: 7139 OverflowOp = ISD::UADDO; 7140 break; 7141 case ISD::SSUBSAT: 7142 OverflowOp = ISD::SSUBO; 7143 break; 7144 case ISD::USUBSAT: 7145 OverflowOp = ISD::USUBO; 7146 break; 7147 default: 7148 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7149 "addition or subtraction node."); 7150 } 7151 7152 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7153 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7154 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7155 LHS, RHS); 7156 SDValue SumDiff = Result.getValue(0); 7157 SDValue Overflow = Result.getValue(1); 7158 SDValue Zero = DAG.getConstant(0, dl, VT); 7159 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7160 7161 if (Opcode == ISD::UADDSAT) { 7162 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7163 // (LHS + RHS) | OverflowMask 7164 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7165 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7166 } 7167 // Overflow ? 0xffff.... : (LHS + RHS) 7168 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7169 } else if (Opcode == ISD::USUBSAT) { 7170 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7171 // (LHS - RHS) & ~OverflowMask 7172 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7173 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7174 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7175 } 7176 // Overflow ? 0 : (LHS - RHS) 7177 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7178 } else { 7179 // SatMax -> Overflow && SumDiff < 0 7180 // SatMin -> Overflow && SumDiff >= 0 7181 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7182 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7183 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7184 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7185 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7186 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7187 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7188 } 7189 } 7190 7191 SDValue 7192 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7193 assert((Node->getOpcode() == ISD::SMULFIX || 7194 Node->getOpcode() == ISD::UMULFIX || 7195 Node->getOpcode() == ISD::SMULFIXSAT || 7196 Node->getOpcode() == ISD::UMULFIXSAT) && 7197 "Expected a fixed point multiplication opcode"); 7198 7199 SDLoc dl(Node); 7200 SDValue LHS = Node->getOperand(0); 7201 SDValue RHS = Node->getOperand(1); 7202 EVT VT = LHS.getValueType(); 7203 unsigned Scale = Node->getConstantOperandVal(2); 7204 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7205 Node->getOpcode() == ISD::UMULFIXSAT); 7206 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7207 Node->getOpcode() == ISD::SMULFIXSAT); 7208 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7209 unsigned VTSize = VT.getScalarSizeInBits(); 7210 7211 if (!Scale) { 7212 // [us]mul.fix(a, b, 0) -> mul(a, b) 7213 if (!Saturating) { 7214 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7215 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7216 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7217 SDValue Result = 7218 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7219 SDValue Product = Result.getValue(0); 7220 SDValue Overflow = Result.getValue(1); 7221 SDValue Zero = DAG.getConstant(0, dl, VT); 7222 7223 APInt MinVal = APInt::getSignedMinValue(VTSize); 7224 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7225 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7226 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7227 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7228 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7229 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7230 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7231 SDValue Result = 7232 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7233 SDValue Product = Result.getValue(0); 7234 SDValue Overflow = Result.getValue(1); 7235 7236 APInt MaxVal = APInt::getMaxValue(VTSize); 7237 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7238 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7239 } 7240 } 7241 7242 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7243 "Expected scale to be less than the number of bits if signed or at " 7244 "most the number of bits if unsigned."); 7245 assert(LHS.getValueType() == RHS.getValueType() && 7246 "Expected both operands to be the same type"); 7247 7248 // Get the upper and lower bits of the result. 7249 SDValue Lo, Hi; 7250 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7251 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7252 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7253 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7254 Lo = Result.getValue(0); 7255 Hi = Result.getValue(1); 7256 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7257 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7258 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7259 } else if (VT.isVector()) { 7260 return SDValue(); 7261 } else { 7262 report_fatal_error("Unable to expand fixed point multiplication."); 7263 } 7264 7265 if (Scale == VTSize) 7266 // Result is just the top half since we'd be shifting by the width of the 7267 // operand. Overflow impossible so this works for both UMULFIX and 7268 // UMULFIXSAT. 7269 return Hi; 7270 7271 // The result will need to be shifted right by the scale since both operands 7272 // are scaled. The result is given to us in 2 halves, so we only want part of 7273 // both in the result. 7274 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7275 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7276 DAG.getConstant(Scale, dl, ShiftTy)); 7277 if (!Saturating) 7278 return Result; 7279 7280 if (!Signed) { 7281 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7282 // widened multiplication) aren't all zeroes. 7283 7284 // Saturate to max if ((Hi >> Scale) != 0), 7285 // which is the same as if (Hi > ((1 << Scale) - 1)) 7286 APInt MaxVal = APInt::getMaxValue(VTSize); 7287 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7288 dl, VT); 7289 Result = DAG.getSelectCC(dl, Hi, LowMask, 7290 DAG.getConstant(MaxVal, dl, VT), Result, 7291 ISD::SETUGT); 7292 7293 return Result; 7294 } 7295 7296 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7297 // widened multiplication) aren't all ones or all zeroes. 7298 7299 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7300 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7301 7302 if (Scale == 0) { 7303 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7304 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7305 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7306 // Saturated to SatMin if wide product is negative, and SatMax if wide 7307 // product is positive ... 7308 SDValue Zero = DAG.getConstant(0, dl, VT); 7309 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7310 ISD::SETLT); 7311 // ... but only if we overflowed. 7312 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7313 } 7314 7315 // We handled Scale==0 above so all the bits to examine is in Hi. 7316 7317 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7318 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7319 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7320 dl, VT); 7321 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7322 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7323 // which is the same as if (HI < (-1 << (Scale - 1)) 7324 SDValue HighMask = 7325 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7326 dl, VT); 7327 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7328 return Result; 7329 } 7330 7331 SDValue 7332 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7333 SDValue LHS, SDValue RHS, 7334 unsigned Scale, SelectionDAG &DAG) const { 7335 assert((Opcode == ISD::SDIVFIX || 7336 Opcode == ISD::UDIVFIX) && 7337 "Expected a fixed point division opcode"); 7338 7339 EVT VT = LHS.getValueType(); 7340 bool Signed = Opcode == ISD::SDIVFIX; 7341 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7342 7343 // If there is enough room in the type to upscale the LHS or downscale the 7344 // RHS before the division, we can perform it in this type without having to 7345 // resize. For signed operations, the LHS headroom is the number of 7346 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7347 // The headroom for the RHS is the number of trailing zeroes. 7348 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7349 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7350 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7351 7352 if (LHSLead + RHSTrail < Scale) 7353 return SDValue(); 7354 7355 unsigned LHSShift = std::min(LHSLead, Scale); 7356 unsigned RHSShift = Scale - LHSShift; 7357 7358 // At this point, we know that if we shift the LHS up by LHSShift and the 7359 // RHS down by RHSShift, we can emit a regular division with a final scaling 7360 // factor of Scale. 7361 7362 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7363 if (LHSShift) 7364 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7365 DAG.getConstant(LHSShift, dl, ShiftTy)); 7366 if (RHSShift) 7367 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7368 DAG.getConstant(RHSShift, dl, ShiftTy)); 7369 7370 SDValue Quot; 7371 if (Signed) { 7372 // For signed operations, if the resulting quotient is negative and the 7373 // remainder is nonzero, subtract 1 from the quotient to round towards 7374 // negative infinity. 7375 SDValue Rem; 7376 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7377 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7378 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7379 if (isTypeLegal(VT) && 7380 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7381 Quot = DAG.getNode(ISD::SDIVREM, dl, 7382 DAG.getVTList(VT, VT), 7383 LHS, RHS); 7384 Rem = Quot.getValue(1); 7385 Quot = Quot.getValue(0); 7386 } else { 7387 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7388 LHS, RHS); 7389 Rem = DAG.getNode(ISD::SREM, dl, VT, 7390 LHS, RHS); 7391 } 7392 SDValue Zero = DAG.getConstant(0, dl, VT); 7393 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7394 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7395 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7396 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7397 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7398 DAG.getConstant(1, dl, VT)); 7399 Quot = DAG.getSelect(dl, VT, 7400 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7401 Sub1, Quot); 7402 } else 7403 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7404 LHS, RHS); 7405 7406 // TODO: Saturation. 7407 7408 return Quot; 7409 } 7410 7411 void TargetLowering::expandUADDSUBO( 7412 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7413 SDLoc dl(Node); 7414 SDValue LHS = Node->getOperand(0); 7415 SDValue RHS = Node->getOperand(1); 7416 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7417 7418 // If ADD/SUBCARRY is legal, use that instead. 7419 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7420 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7421 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7422 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7423 { LHS, RHS, CarryIn }); 7424 Result = SDValue(NodeCarry.getNode(), 0); 7425 Overflow = SDValue(NodeCarry.getNode(), 1); 7426 return; 7427 } 7428 7429 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7430 LHS.getValueType(), LHS, RHS); 7431 7432 EVT ResultType = Node->getValueType(1); 7433 EVT SetCCType = getSetCCResultType( 7434 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7435 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7436 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7437 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7438 } 7439 7440 void TargetLowering::expandSADDSUBO( 7441 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7442 SDLoc dl(Node); 7443 SDValue LHS = Node->getOperand(0); 7444 SDValue RHS = Node->getOperand(1); 7445 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7446 7447 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7448 LHS.getValueType(), LHS, RHS); 7449 7450 EVT ResultType = Node->getValueType(1); 7451 EVT OType = getSetCCResultType( 7452 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7453 7454 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7455 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7456 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7457 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7458 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7459 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7460 return; 7461 } 7462 7463 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7464 7465 // For an addition, the result should be less than one of the operands (LHS) 7466 // if and only if the other operand (RHS) is negative, otherwise there will 7467 // be overflow. 7468 // For a subtraction, the result should be less than one of the operands 7469 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7470 // otherwise there will be overflow. 7471 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7472 SDValue ConditionRHS = 7473 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7474 7475 Overflow = DAG.getBoolExtOrTrunc( 7476 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7477 ResultType, ResultType); 7478 } 7479 7480 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7481 SDValue &Overflow, SelectionDAG &DAG) const { 7482 SDLoc dl(Node); 7483 EVT VT = Node->getValueType(0); 7484 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7485 SDValue LHS = Node->getOperand(0); 7486 SDValue RHS = Node->getOperand(1); 7487 bool isSigned = Node->getOpcode() == ISD::SMULO; 7488 7489 // For power-of-two multiplications we can use a simpler shift expansion. 7490 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7491 const APInt &C = RHSC->getAPIntValue(); 7492 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7493 if (C.isPowerOf2()) { 7494 // smulo(x, signed_min) is same as umulo(x, signed_min). 7495 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7496 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7497 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7498 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7499 Overflow = DAG.getSetCC(dl, SetCCVT, 7500 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7501 dl, VT, Result, ShiftAmt), 7502 LHS, ISD::SETNE); 7503 return true; 7504 } 7505 } 7506 7507 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7508 if (VT.isVector()) 7509 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7510 VT.getVectorNumElements()); 7511 7512 SDValue BottomHalf; 7513 SDValue TopHalf; 7514 static const unsigned Ops[2][3] = 7515 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7516 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7517 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7518 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7519 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7520 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7521 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7522 RHS); 7523 TopHalf = BottomHalf.getValue(1); 7524 } else if (isTypeLegal(WideVT)) { 7525 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7526 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7527 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7528 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7529 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7530 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7531 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7532 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7533 } else { 7534 if (VT.isVector()) 7535 return false; 7536 7537 // We can fall back to a libcall with an illegal type for the MUL if we 7538 // have a libcall big enough. 7539 // Also, we can fall back to a division in some cases, but that's a big 7540 // performance hit in the general case. 7541 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7542 if (WideVT == MVT::i16) 7543 LC = RTLIB::MUL_I16; 7544 else if (WideVT == MVT::i32) 7545 LC = RTLIB::MUL_I32; 7546 else if (WideVT == MVT::i64) 7547 LC = RTLIB::MUL_I64; 7548 else if (WideVT == MVT::i128) 7549 LC = RTLIB::MUL_I128; 7550 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7551 7552 SDValue HiLHS; 7553 SDValue HiRHS; 7554 if (isSigned) { 7555 // The high part is obtained by SRA'ing all but one of the bits of low 7556 // part. 7557 unsigned LoSize = VT.getSizeInBits(); 7558 HiLHS = 7559 DAG.getNode(ISD::SRA, dl, VT, LHS, 7560 DAG.getConstant(LoSize - 1, dl, 7561 getPointerTy(DAG.getDataLayout()))); 7562 HiRHS = 7563 DAG.getNode(ISD::SRA, dl, VT, RHS, 7564 DAG.getConstant(LoSize - 1, dl, 7565 getPointerTy(DAG.getDataLayout()))); 7566 } else { 7567 HiLHS = DAG.getConstant(0, dl, VT); 7568 HiRHS = DAG.getConstant(0, dl, VT); 7569 } 7570 7571 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7572 // pre-lowered to the correct types. This all depends upon WideVT not 7573 // being a legal type for the architecture and thus has to be split to 7574 // two arguments. 7575 SDValue Ret; 7576 TargetLowering::MakeLibCallOptions CallOptions; 7577 CallOptions.setSExt(isSigned); 7578 CallOptions.setIsPostTypeLegalization(true); 7579 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7580 // Halves of WideVT are packed into registers in different order 7581 // depending on platform endianness. This is usually handled by 7582 // the C calling convention, but we can't defer to it in 7583 // the legalizer. 7584 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7585 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7586 } else { 7587 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7588 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7589 } 7590 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7591 "Ret value is a collection of constituent nodes holding result."); 7592 if (DAG.getDataLayout().isLittleEndian()) { 7593 // Same as above. 7594 BottomHalf = Ret.getOperand(0); 7595 TopHalf = Ret.getOperand(1); 7596 } else { 7597 BottomHalf = Ret.getOperand(1); 7598 TopHalf = Ret.getOperand(0); 7599 } 7600 } 7601 7602 Result = BottomHalf; 7603 if (isSigned) { 7604 SDValue ShiftAmt = DAG.getConstant( 7605 VT.getScalarSizeInBits() - 1, dl, 7606 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7607 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7608 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7609 } else { 7610 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7611 DAG.getConstant(0, dl, VT), ISD::SETNE); 7612 } 7613 7614 // Truncate the result if SetCC returns a larger type than needed. 7615 EVT RType = Node->getValueType(1); 7616 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7617 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7618 7619 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7620 "Unexpected result type for S/UMULO legalization"); 7621 return true; 7622 } 7623 7624 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7625 SDLoc dl(Node); 7626 bool NoNaN = Node->getFlags().hasNoNaNs(); 7627 unsigned BaseOpcode = 0; 7628 switch (Node->getOpcode()) { 7629 default: llvm_unreachable("Expected VECREDUCE opcode"); 7630 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7631 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7632 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7633 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7634 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7635 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7636 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7637 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7638 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7639 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7640 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7641 case ISD::VECREDUCE_FMAX: 7642 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7643 break; 7644 case ISD::VECREDUCE_FMIN: 7645 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7646 break; 7647 } 7648 7649 SDValue Op = Node->getOperand(0); 7650 EVT VT = Op.getValueType(); 7651 7652 // Try to use a shuffle reduction for power of two vectors. 7653 if (VT.isPow2VectorType()) { 7654 while (VT.getVectorNumElements() > 1) { 7655 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7656 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7657 break; 7658 7659 SDValue Lo, Hi; 7660 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7661 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7662 VT = HalfVT; 7663 } 7664 } 7665 7666 EVT EltVT = VT.getVectorElementType(); 7667 unsigned NumElts = VT.getVectorNumElements(); 7668 7669 SmallVector<SDValue, 8> Ops; 7670 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7671 7672 SDValue Res = Ops[0]; 7673 for (unsigned i = 1; i < NumElts; i++) 7674 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7675 7676 // Result type may be wider than element type. 7677 if (EltVT != Node->getValueType(0)) 7678 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7679 return Res; 7680 } 7681