1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
621     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
622 
623     if (NumSrcEltBits == NumDstEltBits)
624       if (SDValue V = SimplifyMultipleUseDemandedBits(
625               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
626         return DAG.getBitcast(DstVT, V);
627 
628     // TODO - bigendian once we have test coverage.
629     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
630         DAG.getDataLayout().isLittleEndian()) {
631       unsigned Scale = NumDstEltBits / NumSrcEltBits;
632       unsigned NumSrcElts = SrcVT.getVectorNumElements();
633       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
634       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
635       for (unsigned i = 0; i != Scale; ++i) {
636         unsigned Offset = i * NumSrcEltBits;
637         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
638         if (!Sub.isNullValue()) {
639           DemandedSrcBits |= Sub;
640           for (unsigned j = 0; j != NumElts; ++j)
641             if (DemandedElts[j])
642               DemandedSrcElts.setBit((j * Scale) + i);
643         }
644       }
645 
646       if (SDValue V = SimplifyMultipleUseDemandedBits(
647               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
648         return DAG.getBitcast(DstVT, V);
649     }
650 
651     // TODO - bigendian once we have test coverage.
652     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
653         DAG.getDataLayout().isLittleEndian()) {
654       unsigned Scale = NumSrcEltBits / NumDstEltBits;
655       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
656       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
657       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
658       for (unsigned i = 0; i != NumElts; ++i)
659         if (DemandedElts[i]) {
660           unsigned Offset = (i % Scale) * NumDstEltBits;
661           DemandedSrcBits.insertBits(DemandedBits, Offset);
662           DemandedSrcElts.setBit(i / Scale);
663         }
664 
665       if (SDValue V = SimplifyMultipleUseDemandedBits(
666               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
667         return DAG.getBitcast(DstVT, V);
668     }
669 
670     break;
671   }
672   case ISD::AND: {
673     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
674     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 
676     // If all of the demanded bits are known 1 on one side, return the other.
677     // These bits cannot contribute to the result of the 'and' in this
678     // context.
679     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
680       return Op.getOperand(0);
681     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
682       return Op.getOperand(1);
683     break;
684   }
685   case ISD::OR: {
686     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
687     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 
689     // If all of the demanded bits are known zero on one side, return the
690     // other.  These bits cannot contribute to the result of the 'or' in this
691     // context.
692     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
693       return Op.getOperand(0);
694     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
695       return Op.getOperand(1);
696     break;
697   }
698   case ISD::XOR: {
699     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
700     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
701 
702     // If all of the demanded bits are known zero on one side, return the
703     // other.
704     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::SETCC: {
711     SDValue Op0 = Op.getOperand(0);
712     SDValue Op1 = Op.getOperand(1);
713     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
714     // If (1) we only need the sign-bit, (2) the setcc operands are the same
715     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
716     // -1, we may be able to bypass the setcc.
717     if (DemandedBits.isSignMask() &&
718         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
719         getBooleanContents(Op0.getValueType()) ==
720             BooleanContent::ZeroOrNegativeOneBooleanContent) {
721       // If we're testing X < 0, then this compare isn't needed - just use X!
722       // FIXME: We're limiting to integer types here, but this should also work
723       // if we don't care about FP signed-zero. The use of SETLT with FP means
724       // that we don't care about NaNs.
725       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
726           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
727         return Op0;
728     }
729     break;
730   }
731   case ISD::SIGN_EXTEND_INREG: {
732     // If none of the extended bits are demanded, eliminate the sextinreg.
733     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
734     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
735       return Op.getOperand(0);
736     break;
737   }
738   case ISD::INSERT_VECTOR_ELT: {
739     // If we don't demand the inserted element, return the base vector.
740     SDValue Vec = Op.getOperand(0);
741     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
742     EVT VecVT = Vec.getValueType();
743     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
744         !DemandedElts[CIdx->getZExtValue()])
745       return Vec;
746     break;
747   }
748   case ISD::INSERT_SUBVECTOR: {
749     // If we don't demand the inserted subvector, return the base vector.
750     SDValue Vec = Op.getOperand(0);
751     SDValue Sub = Op.getOperand(1);
752     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
753     unsigned NumVecElts = Vec.getValueType().getVectorNumElements();
754     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
755     if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts))
756       if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0)
757         return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
794     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
795     unsigned Depth) const {
796   EVT VT = Op.getValueType();
797   APInt DemandedElts = VT.isVector()
798                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
799                            : APInt(1, 1);
800   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
801                                          Depth);
802 }
803 
804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
805 /// result of Op are ever used downstream. If we can use this information to
806 /// simplify Op, create a new simplified DAG node and return true, returning the
807 /// original and new nodes in Old and New. Otherwise, analyze the expression and
808 /// return a mask of Known bits for the expression (used to simplify the
809 /// caller).  The Known bits may only be accurate for those bits in the
810 /// OriginalDemandedBits and OriginalDemandedElts.
811 bool TargetLowering::SimplifyDemandedBits(
812     SDValue Op, const APInt &OriginalDemandedBits,
813     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
814     unsigned Depth, bool AssumeSingleUse) const {
815   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
816   assert(Op.getScalarValueSizeInBits() == BitWidth &&
817          "Mask size mismatches value type size!");
818 
819   unsigned NumElts = OriginalDemandedElts.getBitWidth();
820   assert((!Op.getValueType().isVector() ||
821           NumElts == Op.getValueType().getVectorNumElements()) &&
822          "Unexpected vector size");
823 
824   APInt DemandedBits = OriginalDemandedBits;
825   APInt DemandedElts = OriginalDemandedElts;
826   SDLoc dl(Op);
827   auto &DL = TLO.DAG.getDataLayout();
828 
829   // Don't know anything.
830   Known = KnownBits(BitWidth);
831 
832   // Undef operand.
833   if (Op.isUndef())
834     return false;
835 
836   if (Op.getOpcode() == ISD::Constant) {
837     // We know all of the bits for a constant!
838     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
839     Known.Zero = ~Known.One;
840     return false;
841   }
842 
843   // Other users may use these bits.
844   EVT VT = Op.getValueType();
845   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
846     if (Depth != 0) {
847       // If not at the root, Just compute the Known bits to
848       // simplify things downstream.
849       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
850       return false;
851     }
852     // If this is the root being simplified, allow it to have multiple uses,
853     // just set the DemandedBits/Elts to all bits.
854     DemandedBits = APInt::getAllOnesValue(BitWidth);
855     DemandedElts = APInt::getAllOnesValue(NumElts);
856   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
857     // Not demanding any bits/elts from Op.
858     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
859   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
860     // Limit search depth.
861     return false;
862   }
863 
864   KnownBits Known2, KnownOut;
865   switch (Op.getOpcode()) {
866   case ISD::TargetConstant:
867     llvm_unreachable("Can't simplify this node");
868   case ISD::SCALAR_TO_VECTOR: {
869     if (!DemandedElts[0])
870       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
871 
872     KnownBits SrcKnown;
873     SDValue Src = Op.getOperand(0);
874     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
875     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
876     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
877       return true;
878     Known = SrcKnown.anyextOrTrunc(BitWidth);
879     break;
880   }
881   case ISD::BUILD_VECTOR:
882     // Collect the known bits that are shared by every demanded element.
883     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
884     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
885     return false; // Don't fall through, will infinitely loop.
886   case ISD::LOAD: {
887     LoadSDNode *LD = cast<LoadSDNode>(Op);
888     if (getTargetConstantFromLoad(LD)) {
889       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
890       return false; // Don't fall through, will infinitely loop.
891     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
892       // If this is a ZEXTLoad and we are looking at the loaded value.
893       EVT VT = LD->getMemoryVT();
894       unsigned MemBits = VT.getScalarSizeInBits();
895       Known.Zero.setBitsFrom(MemBits);
896       return false; // Don't fall through, will infinitely loop.
897     }
898     break;
899   }
900   case ISD::INSERT_VECTOR_ELT: {
901     SDValue Vec = Op.getOperand(0);
902     SDValue Scl = Op.getOperand(1);
903     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
904     EVT VecVT = Vec.getValueType();
905 
906     // If index isn't constant, assume we need all vector elements AND the
907     // inserted element.
908     APInt DemandedVecElts(DemandedElts);
909     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
910       unsigned Idx = CIdx->getZExtValue();
911       DemandedVecElts.clearBit(Idx);
912 
913       // Inserted element is not required.
914       if (!DemandedElts[Idx])
915         return TLO.CombineTo(Op, Vec);
916     }
917 
918     KnownBits KnownScl;
919     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
920     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
921     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
922       return true;
923 
924     Known = KnownScl.anyextOrTrunc(BitWidth);
925 
926     KnownBits KnownVec;
927     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
928                              Depth + 1))
929       return true;
930 
931     if (!!DemandedVecElts) {
932       Known.One &= KnownVec.One;
933       Known.Zero &= KnownVec.Zero;
934     }
935 
936     return false;
937   }
938   case ISD::INSERT_SUBVECTOR: {
939     SDValue Base = Op.getOperand(0);
940     SDValue Sub = Op.getOperand(1);
941     EVT SubVT = Sub.getValueType();
942     unsigned NumSubElts = SubVT.getVectorNumElements();
943 
944     // If index isn't constant, assume we need the original demanded base
945     // elements and ALL the inserted subvector elements.
946     APInt BaseElts = DemandedElts;
947     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
948     if (isa<ConstantSDNode>(Op.getOperand(2))) {
949       const APInt &Idx = Op.getConstantOperandAPInt(2);
950       if (Idx.ule(NumElts - NumSubElts)) {
951         unsigned SubIdx = Idx.getZExtValue();
952         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
953         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
954       }
955     }
956 
957     KnownBits KnownSub, KnownBase;
958     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
959                              Depth + 1))
960       return true;
961     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
962                              Depth + 1))
963       return true;
964 
965     Known.Zero.setAllBits();
966     Known.One.setAllBits();
967     if (!!SubElts) {
968         Known.One &= KnownSub.One;
969         Known.Zero &= KnownSub.Zero;
970     }
971     if (!!BaseElts) {
972         Known.One &= KnownBase.One;
973         Known.Zero &= KnownBase.Zero;
974     }
975 
976     // Attempt to avoid multi-use src if we don't need anything from it.
977     if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() ||
978         !BaseElts.isAllOnesValue()) {
979       SDValue NewSub = SimplifyMultipleUseDemandedBits(
980           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
981       SDValue NewBase = SimplifyMultipleUseDemandedBits(
982           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
983       if (NewSub || NewBase) {
984         NewSub = NewSub ? NewSub : Sub;
985         NewBase = NewBase ? NewBase : Base;
986         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub,
987                                         Op.getOperand(2));
988         return TLO.CombineTo(Op, NewOp);
989       }
990     }
991     break;
992   }
993   case ISD::EXTRACT_SUBVECTOR: {
994     // If index isn't constant, assume we need all the source vector elements.
995     SDValue Src = Op.getOperand(0);
996     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
997     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
998     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
999     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1000       // Offset the demanded elts by the subvector index.
1001       uint64_t Idx = SubIdx->getZExtValue();
1002       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1003     }
1004     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
1005       return true;
1006 
1007     // Attempt to avoid multi-use src if we don't need anything from it.
1008     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
1009       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1010           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
1011       if (DemandedSrc) {
1012         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1013                                         Op.getOperand(1));
1014         return TLO.CombineTo(Op, NewOp);
1015       }
1016     }
1017     break;
1018   }
1019   case ISD::CONCAT_VECTORS: {
1020     Known.Zero.setAllBits();
1021     Known.One.setAllBits();
1022     EVT SubVT = Op.getOperand(0).getValueType();
1023     unsigned NumSubVecs = Op.getNumOperands();
1024     unsigned NumSubElts = SubVT.getVectorNumElements();
1025     for (unsigned i = 0; i != NumSubVecs; ++i) {
1026       APInt DemandedSubElts =
1027           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1028       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1029                                Known2, TLO, Depth + 1))
1030         return true;
1031       // Known bits are shared by every demanded subvector element.
1032       if (!!DemandedSubElts) {
1033         Known.One &= Known2.One;
1034         Known.Zero &= Known2.Zero;
1035       }
1036     }
1037     break;
1038   }
1039   case ISD::VECTOR_SHUFFLE: {
1040     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1041 
1042     // Collect demanded elements from shuffle operands..
1043     APInt DemandedLHS(NumElts, 0);
1044     APInt DemandedRHS(NumElts, 0);
1045     for (unsigned i = 0; i != NumElts; ++i) {
1046       if (!DemandedElts[i])
1047         continue;
1048       int M = ShuffleMask[i];
1049       if (M < 0) {
1050         // For UNDEF elements, we don't know anything about the common state of
1051         // the shuffle result.
1052         DemandedLHS.clearAllBits();
1053         DemandedRHS.clearAllBits();
1054         break;
1055       }
1056       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1057       if (M < (int)NumElts)
1058         DemandedLHS.setBit(M);
1059       else
1060         DemandedRHS.setBit(M - NumElts);
1061     }
1062 
1063     if (!!DemandedLHS || !!DemandedRHS) {
1064       SDValue Op0 = Op.getOperand(0);
1065       SDValue Op1 = Op.getOperand(1);
1066 
1067       Known.Zero.setAllBits();
1068       Known.One.setAllBits();
1069       if (!!DemandedLHS) {
1070         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1071                                  Depth + 1))
1072           return true;
1073         Known.One &= Known2.One;
1074         Known.Zero &= Known2.Zero;
1075       }
1076       if (!!DemandedRHS) {
1077         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1078                                  Depth + 1))
1079           return true;
1080         Known.One &= Known2.One;
1081         Known.Zero &= Known2.Zero;
1082       }
1083 
1084       // Attempt to avoid multi-use ops if we don't need anything from them.
1085       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1086           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1087       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1088           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1089       if (DemandedOp0 || DemandedOp1) {
1090         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1091         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1092         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1093         return TLO.CombineTo(Op, NewOp);
1094       }
1095     }
1096     break;
1097   }
1098   case ISD::AND: {
1099     SDValue Op0 = Op.getOperand(0);
1100     SDValue Op1 = Op.getOperand(1);
1101 
1102     // If the RHS is a constant, check to see if the LHS would be zero without
1103     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1104     // simplify the LHS, here we're using information from the LHS to simplify
1105     // the RHS.
1106     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1107       // Do not increment Depth here; that can cause an infinite loop.
1108       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1109       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1110       if ((LHSKnown.Zero & DemandedBits) ==
1111           (~RHSC->getAPIntValue() & DemandedBits))
1112         return TLO.CombineTo(Op, Op0);
1113 
1114       // If any of the set bits in the RHS are known zero on the LHS, shrink
1115       // the constant.
1116       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1117         return true;
1118 
1119       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1120       // constant, but if this 'and' is only clearing bits that were just set by
1121       // the xor, then this 'and' can be eliminated by shrinking the mask of
1122       // the xor. For example, for a 32-bit X:
1123       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1124       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1125           LHSKnown.One == ~RHSC->getAPIntValue()) {
1126         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1127         return TLO.CombineTo(Op, Xor);
1128       }
1129     }
1130 
1131     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1132                              Depth + 1))
1133       return true;
1134     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1135     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1136                              Known2, TLO, Depth + 1))
1137       return true;
1138     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1139 
1140     // Attempt to avoid multi-use ops if we don't need anything from them.
1141     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1142       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1143           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1144       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1145           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1146       if (DemandedOp0 || DemandedOp1) {
1147         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1148         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1149         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1150         return TLO.CombineTo(Op, NewOp);
1151       }
1152     }
1153 
1154     // If all of the demanded bits are known one on one side, return the other.
1155     // These bits cannot contribute to the result of the 'and'.
1156     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1157       return TLO.CombineTo(Op, Op0);
1158     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1159       return TLO.CombineTo(Op, Op1);
1160     // If all of the demanded bits in the inputs are known zeros, return zero.
1161     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1162       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1163     // If the RHS is a constant, see if we can simplify it.
1164     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1165       return true;
1166     // If the operation can be done in a smaller type, do so.
1167     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1168       return true;
1169 
1170     // Output known-1 bits are only known if set in both the LHS & RHS.
1171     Known.One &= Known2.One;
1172     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1173     Known.Zero |= Known2.Zero;
1174     break;
1175   }
1176   case ISD::OR: {
1177     SDValue Op0 = Op.getOperand(0);
1178     SDValue Op1 = Op.getOperand(1);
1179 
1180     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1181                              Depth + 1))
1182       return true;
1183     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1184     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1185                              Known2, TLO, Depth + 1))
1186       return true;
1187     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1188 
1189     // Attempt to avoid multi-use ops if we don't need anything from them.
1190     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1191       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1192           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1193       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1194           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1195       if (DemandedOp0 || DemandedOp1) {
1196         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1197         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1198         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1199         return TLO.CombineTo(Op, NewOp);
1200       }
1201     }
1202 
1203     // If all of the demanded bits are known zero on one side, return the other.
1204     // These bits cannot contribute to the result of the 'or'.
1205     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1206       return TLO.CombineTo(Op, Op0);
1207     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1208       return TLO.CombineTo(Op, Op1);
1209     // If the RHS is a constant, see if we can simplify it.
1210     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1211       return true;
1212     // If the operation can be done in a smaller type, do so.
1213     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1214       return true;
1215 
1216     // Output known-0 bits are only known if clear in both the LHS & RHS.
1217     Known.Zero &= Known2.Zero;
1218     // Output known-1 are known to be set if set in either the LHS | RHS.
1219     Known.One |= Known2.One;
1220     break;
1221   }
1222   case ISD::XOR: {
1223     SDValue Op0 = Op.getOperand(0);
1224     SDValue Op1 = Op.getOperand(1);
1225 
1226     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1227                              Depth + 1))
1228       return true;
1229     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1230     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1231                              Depth + 1))
1232       return true;
1233     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1234 
1235     // Attempt to avoid multi-use ops if we don't need anything from them.
1236     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1237       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1238           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1239       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1240           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1241       if (DemandedOp0 || DemandedOp1) {
1242         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1243         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1244         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1245         return TLO.CombineTo(Op, NewOp);
1246       }
1247     }
1248 
1249     // If all of the demanded bits are known zero on one side, return the other.
1250     // These bits cannot contribute to the result of the 'xor'.
1251     if (DemandedBits.isSubsetOf(Known.Zero))
1252       return TLO.CombineTo(Op, Op0);
1253     if (DemandedBits.isSubsetOf(Known2.Zero))
1254       return TLO.CombineTo(Op, Op1);
1255     // If the operation can be done in a smaller type, do so.
1256     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1257       return true;
1258 
1259     // If all of the unknown bits are known to be zero on one side or the other
1260     // (but not both) turn this into an *inclusive* or.
1261     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1262     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1263       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1264 
1265     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1266     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1267     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1268     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1269 
1270     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1271       // If one side is a constant, and all of the known set bits on the other
1272       // side are also set in the constant, turn this into an AND, as we know
1273       // the bits will be cleared.
1274       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1275       // NB: it is okay if more bits are known than are requested
1276       if (C->getAPIntValue() == Known2.One) {
1277         SDValue ANDC =
1278             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1279         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1280       }
1281 
1282       // If the RHS is a constant, see if we can change it. Don't alter a -1
1283       // constant because that's a 'not' op, and that is better for combining
1284       // and codegen.
1285       if (!C->isAllOnesValue()) {
1286         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1287           // We're flipping all demanded bits. Flip the undemanded bits too.
1288           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1289           return TLO.CombineTo(Op, New);
1290         }
1291         // If we can't turn this into a 'not', try to shrink the constant.
1292         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1293           return true;
1294       }
1295     }
1296 
1297     Known = std::move(KnownOut);
1298     break;
1299   }
1300   case ISD::SELECT:
1301     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1302                              Depth + 1))
1303       return true;
1304     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1305                              Depth + 1))
1306       return true;
1307     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1308     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1309 
1310     // If the operands are constants, see if we can simplify them.
1311     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1312       return true;
1313 
1314     // Only known if known in both the LHS and RHS.
1315     Known.One &= Known2.One;
1316     Known.Zero &= Known2.Zero;
1317     break;
1318   case ISD::SELECT_CC:
1319     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1320                              Depth + 1))
1321       return true;
1322     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1323                              Depth + 1))
1324       return true;
1325     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1326     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1327 
1328     // If the operands are constants, see if we can simplify them.
1329     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1330       return true;
1331 
1332     // Only known if known in both the LHS and RHS.
1333     Known.One &= Known2.One;
1334     Known.Zero &= Known2.Zero;
1335     break;
1336   case ISD::SETCC: {
1337     SDValue Op0 = Op.getOperand(0);
1338     SDValue Op1 = Op.getOperand(1);
1339     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1340     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1341     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1342     // -1, we may be able to bypass the setcc.
1343     if (DemandedBits.isSignMask() &&
1344         Op0.getScalarValueSizeInBits() == BitWidth &&
1345         getBooleanContents(Op0.getValueType()) ==
1346             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1347       // If we're testing X < 0, then this compare isn't needed - just use X!
1348       // FIXME: We're limiting to integer types here, but this should also work
1349       // if we don't care about FP signed-zero. The use of SETLT with FP means
1350       // that we don't care about NaNs.
1351       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1352           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1353         return TLO.CombineTo(Op, Op0);
1354 
1355       // TODO: Should we check for other forms of sign-bit comparisons?
1356       // Examples: X <= -1, X >= 0
1357     }
1358     if (getBooleanContents(Op0.getValueType()) ==
1359             TargetLowering::ZeroOrOneBooleanContent &&
1360         BitWidth > 1)
1361       Known.Zero.setBitsFrom(1);
1362     break;
1363   }
1364   case ISD::SHL: {
1365     SDValue Op0 = Op.getOperand(0);
1366     SDValue Op1 = Op.getOperand(1);
1367     EVT ShiftVT = Op1.getValueType();
1368 
1369     if (const APInt *SA =
1370             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1371       unsigned ShAmt = SA->getZExtValue();
1372       if (ShAmt == 0)
1373         return TLO.CombineTo(Op, Op0);
1374 
1375       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1376       // single shift.  We can do this if the bottom bits (which are shifted
1377       // out) are never demanded.
1378       // TODO - support non-uniform vector amounts.
1379       if (Op0.getOpcode() == ISD::SRL) {
1380         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1381           if (const APInt *SA2 =
1382                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1383             if (SA2->ult(BitWidth)) {
1384               unsigned C1 = SA2->getZExtValue();
1385               unsigned Opc = ISD::SHL;
1386               int Diff = ShAmt - C1;
1387               if (Diff < 0) {
1388                 Diff = -Diff;
1389                 Opc = ISD::SRL;
1390               }
1391 
1392               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1393               return TLO.CombineTo(
1394                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1395             }
1396           }
1397         }
1398       }
1399 
1400       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1401       // are not demanded. This will likely allow the anyext to be folded away.
1402       // TODO - support non-uniform vector amounts.
1403       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1404         SDValue InnerOp = Op0.getOperand(0);
1405         EVT InnerVT = InnerOp.getValueType();
1406         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1407         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1408             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1409           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1410           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1411             ShTy = InnerVT;
1412           SDValue NarrowShl =
1413               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1414                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1415           return TLO.CombineTo(
1416               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1417         }
1418 
1419         // Repeat the SHL optimization above in cases where an extension
1420         // intervenes: (shl (anyext (shr x, c1)), c2) to
1421         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1422         // aren't demanded (as above) and that the shifted upper c1 bits of
1423         // x aren't demanded.
1424         // TODO - support non-uniform vector amounts.
1425         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1426             InnerOp.hasOneUse()) {
1427           if (const APInt *SA2 =
1428                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1429             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1430             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1431                 DemandedBits.getActiveBits() <=
1432                     (InnerBits - InnerShAmt + ShAmt) &&
1433                 DemandedBits.countTrailingZeros() >= ShAmt) {
1434               SDValue NewSA =
1435                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1436               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1437                                                InnerOp.getOperand(0));
1438               return TLO.CombineTo(
1439                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1440             }
1441           }
1442         }
1443       }
1444 
1445       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1446       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1447                                Depth + 1))
1448         return true;
1449       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1450       Known.Zero <<= ShAmt;
1451       Known.One <<= ShAmt;
1452       // low bits known zero.
1453       Known.Zero.setLowBits(ShAmt);
1454 
1455       // Try shrinking the operation as long as the shift amount will still be
1456       // in range.
1457       if ((ShAmt < DemandedBits.getActiveBits()) &&
1458           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1459         return true;
1460     }
1461     break;
1462   }
1463   case ISD::SRL: {
1464     SDValue Op0 = Op.getOperand(0);
1465     SDValue Op1 = Op.getOperand(1);
1466     EVT ShiftVT = Op1.getValueType();
1467 
1468     if (const APInt *SA =
1469             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1470       unsigned ShAmt = SA->getZExtValue();
1471       if (ShAmt == 0)
1472         return TLO.CombineTo(Op, Op0);
1473 
1474       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1475       // single shift.  We can do this if the top bits (which are shifted out)
1476       // are never demanded.
1477       // TODO - support non-uniform vector amounts.
1478       if (Op0.getOpcode() == ISD::SHL) {
1479         if (const APInt *SA2 =
1480                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1481           if (!DemandedBits.intersects(
1482                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1483             if (SA2->ult(BitWidth)) {
1484               unsigned C1 = SA2->getZExtValue();
1485               unsigned Opc = ISD::SRL;
1486               int Diff = ShAmt - C1;
1487               if (Diff < 0) {
1488                 Diff = -Diff;
1489                 Opc = ISD::SHL;
1490               }
1491 
1492               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1493               return TLO.CombineTo(
1494                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1495             }
1496           }
1497         }
1498       }
1499 
1500       APInt InDemandedMask = (DemandedBits << ShAmt);
1501 
1502       // If the shift is exact, then it does demand the low bits (and knows that
1503       // they are zero).
1504       if (Op->getFlags().hasExact())
1505         InDemandedMask.setLowBits(ShAmt);
1506 
1507       // Compute the new bits that are at the top now.
1508       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1509                                Depth + 1))
1510         return true;
1511       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1512       Known.Zero.lshrInPlace(ShAmt);
1513       Known.One.lshrInPlace(ShAmt);
1514       // High bits known zero.
1515       Known.Zero.setHighBits(ShAmt);
1516     }
1517     break;
1518   }
1519   case ISD::SRA: {
1520     SDValue Op0 = Op.getOperand(0);
1521     SDValue Op1 = Op.getOperand(1);
1522     EVT ShiftVT = Op1.getValueType();
1523 
1524     // If we only want bits that already match the signbit then we don't need
1525     // to shift.
1526     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1527     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1528         NumHiDemandedBits)
1529       return TLO.CombineTo(Op, Op0);
1530 
1531     // If this is an arithmetic shift right and only the low-bit is set, we can
1532     // always convert this into a logical shr, even if the shift amount is
1533     // variable.  The low bit of the shift cannot be an input sign bit unless
1534     // the shift amount is >= the size of the datatype, which is undefined.
1535     if (DemandedBits.isOneValue())
1536       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1537 
1538     if (const APInt *SA =
1539             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1540       unsigned ShAmt = SA->getZExtValue();
1541       if (ShAmt == 0)
1542         return TLO.CombineTo(Op, Op0);
1543 
1544       APInt InDemandedMask = (DemandedBits << ShAmt);
1545 
1546       // If the shift is exact, then it does demand the low bits (and knows that
1547       // they are zero).
1548       if (Op->getFlags().hasExact())
1549         InDemandedMask.setLowBits(ShAmt);
1550 
1551       // If any of the demanded bits are produced by the sign extension, we also
1552       // demand the input sign bit.
1553       if (DemandedBits.countLeadingZeros() < ShAmt)
1554         InDemandedMask.setSignBit();
1555 
1556       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1557                                Depth + 1))
1558         return true;
1559       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1560       Known.Zero.lshrInPlace(ShAmt);
1561       Known.One.lshrInPlace(ShAmt);
1562 
1563       // If the input sign bit is known to be zero, or if none of the top bits
1564       // are demanded, turn this into an unsigned shift right.
1565       if (Known.Zero[BitWidth - ShAmt - 1] ||
1566           DemandedBits.countLeadingZeros() >= ShAmt) {
1567         SDNodeFlags Flags;
1568         Flags.setExact(Op->getFlags().hasExact());
1569         return TLO.CombineTo(
1570             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1571       }
1572 
1573       int Log2 = DemandedBits.exactLogBase2();
1574       if (Log2 >= 0) {
1575         // The bit must come from the sign.
1576         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1577         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1578       }
1579 
1580       if (Known.One[BitWidth - ShAmt - 1])
1581         // New bits are known one.
1582         Known.One.setHighBits(ShAmt);
1583 
1584       // Attempt to avoid multi-use ops if we don't need anything from them.
1585       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1586         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1587             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1588         if (DemandedOp0) {
1589           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1590           return TLO.CombineTo(Op, NewOp);
1591         }
1592       }
1593     }
1594     break;
1595   }
1596   case ISD::FSHL:
1597   case ISD::FSHR: {
1598     SDValue Op0 = Op.getOperand(0);
1599     SDValue Op1 = Op.getOperand(1);
1600     SDValue Op2 = Op.getOperand(2);
1601     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1602 
1603     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1604       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1605 
1606       // For fshl, 0-shift returns the 1st arg.
1607       // For fshr, 0-shift returns the 2nd arg.
1608       if (Amt == 0) {
1609         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1610                                  Known, TLO, Depth + 1))
1611           return true;
1612         break;
1613       }
1614 
1615       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1616       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1617       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1618       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1619       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1620                                Depth + 1))
1621         return true;
1622       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1623                                Depth + 1))
1624         return true;
1625 
1626       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1627       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1628       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1629       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1630       Known.One |= Known2.One;
1631       Known.Zero |= Known2.Zero;
1632     }
1633     break;
1634   }
1635   case ISD::ROTL:
1636   case ISD::ROTR: {
1637     SDValue Op0 = Op.getOperand(0);
1638 
1639     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1640     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1641       return TLO.CombineTo(Op, Op0);
1642     break;
1643   }
1644   case ISD::BITREVERSE: {
1645     SDValue Src = Op.getOperand(0);
1646     APInt DemandedSrcBits = DemandedBits.reverseBits();
1647     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1648                              Depth + 1))
1649       return true;
1650     Known.One = Known2.One.reverseBits();
1651     Known.Zero = Known2.Zero.reverseBits();
1652     break;
1653   }
1654   case ISD::BSWAP: {
1655     SDValue Src = Op.getOperand(0);
1656     APInt DemandedSrcBits = DemandedBits.byteSwap();
1657     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1658                              Depth + 1))
1659       return true;
1660     Known.One = Known2.One.byteSwap();
1661     Known.Zero = Known2.Zero.byteSwap();
1662     break;
1663   }
1664   case ISD::SIGN_EXTEND_INREG: {
1665     SDValue Op0 = Op.getOperand(0);
1666     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1667     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1668 
1669     // If we only care about the highest bit, don't bother shifting right.
1670     if (DemandedBits.isSignMask()) {
1671       unsigned NumSignBits =
1672           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1673       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1674       // However if the input is already sign extended we expect the sign
1675       // extension to be dropped altogether later and do not simplify.
1676       if (!AlreadySignExtended) {
1677         // Compute the correct shift amount type, which must be getShiftAmountTy
1678         // for scalar types after legalization.
1679         EVT ShiftAmtTy = VT;
1680         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1681           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1682 
1683         SDValue ShiftAmt =
1684             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1685         return TLO.CombineTo(Op,
1686                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1687       }
1688     }
1689 
1690     // If none of the extended bits are demanded, eliminate the sextinreg.
1691     if (DemandedBits.getActiveBits() <= ExVTBits)
1692       return TLO.CombineTo(Op, Op0);
1693 
1694     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1695 
1696     // Since the sign extended bits are demanded, we know that the sign
1697     // bit is demanded.
1698     InputDemandedBits.setBit(ExVTBits - 1);
1699 
1700     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1701       return true;
1702     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1703 
1704     // If the sign bit of the input is known set or clear, then we know the
1705     // top bits of the result.
1706 
1707     // If the input sign bit is known zero, convert this into a zero extension.
1708     if (Known.Zero[ExVTBits - 1])
1709       return TLO.CombineTo(
1710           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1711 
1712     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1713     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1714       Known.One.setBitsFrom(ExVTBits);
1715       Known.Zero &= Mask;
1716     } else { // Input sign bit unknown
1717       Known.Zero &= Mask;
1718       Known.One &= Mask;
1719     }
1720     break;
1721   }
1722   case ISD::BUILD_PAIR: {
1723     EVT HalfVT = Op.getOperand(0).getValueType();
1724     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1725 
1726     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1727     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1728 
1729     KnownBits KnownLo, KnownHi;
1730 
1731     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1732       return true;
1733 
1734     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1735       return true;
1736 
1737     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1738                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1739 
1740     Known.One = KnownLo.One.zext(BitWidth) |
1741                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1742     break;
1743   }
1744   case ISD::ZERO_EXTEND:
1745   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1746     SDValue Src = Op.getOperand(0);
1747     EVT SrcVT = Src.getValueType();
1748     unsigned InBits = SrcVT.getScalarSizeInBits();
1749     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1750     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1751 
1752     // If none of the top bits are demanded, convert this into an any_extend.
1753     if (DemandedBits.getActiveBits() <= InBits) {
1754       // If we only need the non-extended bits of the bottom element
1755       // then we can just bitcast to the result.
1756       if (IsVecInReg && DemandedElts == 1 &&
1757           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1758           TLO.DAG.getDataLayout().isLittleEndian())
1759         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1760 
1761       unsigned Opc =
1762           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1763       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1764         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1765     }
1766 
1767     APInt InDemandedBits = DemandedBits.trunc(InBits);
1768     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1769     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1770                              Depth + 1))
1771       return true;
1772     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1773     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1774     Known = Known.zext(BitWidth);
1775     break;
1776   }
1777   case ISD::SIGN_EXTEND:
1778   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1779     SDValue Src = Op.getOperand(0);
1780     EVT SrcVT = Src.getValueType();
1781     unsigned InBits = SrcVT.getScalarSizeInBits();
1782     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1783     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1784 
1785     // If none of the top bits are demanded, convert this into an any_extend.
1786     if (DemandedBits.getActiveBits() <= InBits) {
1787       // If we only need the non-extended bits of the bottom element
1788       // then we can just bitcast to the result.
1789       if (IsVecInReg && DemandedElts == 1 &&
1790           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1791           TLO.DAG.getDataLayout().isLittleEndian())
1792         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1793 
1794       unsigned Opc =
1795           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1796       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1797         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1798     }
1799 
1800     APInt InDemandedBits = DemandedBits.trunc(InBits);
1801     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1802 
1803     // Since some of the sign extended bits are demanded, we know that the sign
1804     // bit is demanded.
1805     InDemandedBits.setBit(InBits - 1);
1806 
1807     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1808                              Depth + 1))
1809       return true;
1810     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1811     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1812 
1813     // If the sign bit is known one, the top bits match.
1814     Known = Known.sext(BitWidth);
1815 
1816     // If the sign bit is known zero, convert this to a zero extend.
1817     if (Known.isNonNegative()) {
1818       unsigned Opc =
1819           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1820       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1821         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1822     }
1823     break;
1824   }
1825   case ISD::ANY_EXTEND:
1826   case ISD::ANY_EXTEND_VECTOR_INREG: {
1827     SDValue Src = Op.getOperand(0);
1828     EVT SrcVT = Src.getValueType();
1829     unsigned InBits = SrcVT.getScalarSizeInBits();
1830     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1831     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1832 
1833     // If we only need the bottom element then we can just bitcast.
1834     // TODO: Handle ANY_EXTEND?
1835     if (IsVecInReg && DemandedElts == 1 &&
1836         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1837         TLO.DAG.getDataLayout().isLittleEndian())
1838       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1839 
1840     APInt InDemandedBits = DemandedBits.trunc(InBits);
1841     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1842     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1843                              Depth + 1))
1844       return true;
1845     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1846     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1847     Known = Known.anyext(BitWidth);
1848 
1849     // Attempt to avoid multi-use ops if we don't need anything from them.
1850     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1851             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1852       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1853     break;
1854   }
1855   case ISD::TRUNCATE: {
1856     SDValue Src = Op.getOperand(0);
1857 
1858     // Simplify the input, using demanded bit information, and compute the known
1859     // zero/one bits live out.
1860     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1861     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1862     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1863       return true;
1864     Known = Known.trunc(BitWidth);
1865 
1866     // Attempt to avoid multi-use ops if we don't need anything from them.
1867     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1868             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1869       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1870 
1871     // If the input is only used by this truncate, see if we can shrink it based
1872     // on the known demanded bits.
1873     if (Src.getNode()->hasOneUse()) {
1874       switch (Src.getOpcode()) {
1875       default:
1876         break;
1877       case ISD::SRL:
1878         // Shrink SRL by a constant if none of the high bits shifted in are
1879         // demanded.
1880         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1881           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1882           // undesirable.
1883           break;
1884 
1885         SDValue ShAmt = Src.getOperand(1);
1886         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1887         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1888           break;
1889         uint64_t ShVal = ShAmtC->getZExtValue();
1890 
1891         APInt HighBits =
1892             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1893         HighBits.lshrInPlace(ShVal);
1894         HighBits = HighBits.trunc(BitWidth);
1895 
1896         if (!(HighBits & DemandedBits)) {
1897           // None of the shifted in bits are needed.  Add a truncate of the
1898           // shift input, then shift it.
1899           if (TLO.LegalTypes())
1900             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1901           SDValue NewTrunc =
1902               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1903           return TLO.CombineTo(
1904               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1905         }
1906         break;
1907       }
1908     }
1909 
1910     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1911     break;
1912   }
1913   case ISD::AssertZext: {
1914     // AssertZext demands all of the high bits, plus any of the low bits
1915     // demanded by its users.
1916     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1917     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1918     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1919                              TLO, Depth + 1))
1920       return true;
1921     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1922 
1923     Known.Zero |= ~InMask;
1924     break;
1925   }
1926   case ISD::EXTRACT_VECTOR_ELT: {
1927     SDValue Src = Op.getOperand(0);
1928     SDValue Idx = Op.getOperand(1);
1929     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1930     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1931 
1932     // Demand the bits from every vector element without a constant index.
1933     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1934     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1935       if (CIdx->getAPIntValue().ult(NumSrcElts))
1936         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1937 
1938     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1939     // anything about the extended bits.
1940     APInt DemandedSrcBits = DemandedBits;
1941     if (BitWidth > EltBitWidth)
1942       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1943 
1944     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1945                              Depth + 1))
1946       return true;
1947 
1948     // Attempt to avoid multi-use ops if we don't need anything from them.
1949     if (!DemandedSrcBits.isAllOnesValue() ||
1950         !DemandedSrcElts.isAllOnesValue()) {
1951       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1952               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1953         SDValue NewOp =
1954             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1955         return TLO.CombineTo(Op, NewOp);
1956       }
1957     }
1958 
1959     Known = Known2;
1960     if (BitWidth > EltBitWidth)
1961       Known = Known.anyext(BitWidth);
1962     break;
1963   }
1964   case ISD::BITCAST: {
1965     SDValue Src = Op.getOperand(0);
1966     EVT SrcVT = Src.getValueType();
1967     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1968 
1969     // If this is an FP->Int bitcast and if the sign bit is the only
1970     // thing demanded, turn this into a FGETSIGN.
1971     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1972         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1973         SrcVT.isFloatingPoint()) {
1974       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1975       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1976       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1977           SrcVT != MVT::f128) {
1978         // Cannot eliminate/lower SHL for f128 yet.
1979         EVT Ty = OpVTLegal ? VT : MVT::i32;
1980         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1981         // place.  We expect the SHL to be eliminated by other optimizations.
1982         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1983         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1984         if (!OpVTLegal && OpVTSizeInBits > 32)
1985           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1986         unsigned ShVal = Op.getValueSizeInBits() - 1;
1987         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1988         return TLO.CombineTo(Op,
1989                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1990       }
1991     }
1992 
1993     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1994     // Demand the elt/bit if any of the original elts/bits are demanded.
1995     // TODO - bigendian once we have test coverage.
1996     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1997         TLO.DAG.getDataLayout().isLittleEndian()) {
1998       unsigned Scale = BitWidth / NumSrcEltBits;
1999       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2000       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2001       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2002       for (unsigned i = 0; i != Scale; ++i) {
2003         unsigned Offset = i * NumSrcEltBits;
2004         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2005         if (!Sub.isNullValue()) {
2006           DemandedSrcBits |= Sub;
2007           for (unsigned j = 0; j != NumElts; ++j)
2008             if (DemandedElts[j])
2009               DemandedSrcElts.setBit((j * Scale) + i);
2010         }
2011       }
2012 
2013       APInt KnownSrcUndef, KnownSrcZero;
2014       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2015                                      KnownSrcZero, TLO, Depth + 1))
2016         return true;
2017 
2018       KnownBits KnownSrcBits;
2019       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2020                                KnownSrcBits, TLO, Depth + 1))
2021         return true;
2022     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2023                TLO.DAG.getDataLayout().isLittleEndian()) {
2024       unsigned Scale = NumSrcEltBits / BitWidth;
2025       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2026       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2027       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2028       for (unsigned i = 0; i != NumElts; ++i)
2029         if (DemandedElts[i]) {
2030           unsigned Offset = (i % Scale) * BitWidth;
2031           DemandedSrcBits.insertBits(DemandedBits, Offset);
2032           DemandedSrcElts.setBit(i / Scale);
2033         }
2034 
2035       if (SrcVT.isVector()) {
2036         APInt KnownSrcUndef, KnownSrcZero;
2037         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2038                                        KnownSrcZero, TLO, Depth + 1))
2039           return true;
2040       }
2041 
2042       KnownBits KnownSrcBits;
2043       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2044                                KnownSrcBits, TLO, Depth + 1))
2045         return true;
2046     }
2047 
2048     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2049     // recursive call where Known may be useful to the caller.
2050     if (Depth > 0) {
2051       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2052       return false;
2053     }
2054     break;
2055   }
2056   case ISD::ADD:
2057   case ISD::MUL:
2058   case ISD::SUB: {
2059     // Add, Sub, and Mul don't demand any bits in positions beyond that
2060     // of the highest bit demanded of them.
2061     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2062     SDNodeFlags Flags = Op.getNode()->getFlags();
2063     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2064     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2065     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2066                              Depth + 1) ||
2067         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2068                              Depth + 1) ||
2069         // See if the operation should be performed at a smaller bit width.
2070         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2071       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2072         // Disable the nsw and nuw flags. We can no longer guarantee that we
2073         // won't wrap after simplification.
2074         Flags.setNoSignedWrap(false);
2075         Flags.setNoUnsignedWrap(false);
2076         SDValue NewOp =
2077             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2078         return TLO.CombineTo(Op, NewOp);
2079       }
2080       return true;
2081     }
2082 
2083     // Attempt to avoid multi-use ops if we don't need anything from them.
2084     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2085       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2086           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2087       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2088           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2089       if (DemandedOp0 || DemandedOp1) {
2090         Flags.setNoSignedWrap(false);
2091         Flags.setNoUnsignedWrap(false);
2092         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2093         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2094         SDValue NewOp =
2095             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2096         return TLO.CombineTo(Op, NewOp);
2097       }
2098     }
2099 
2100     // If we have a constant operand, we may be able to turn it into -1 if we
2101     // do not demand the high bits. This can make the constant smaller to
2102     // encode, allow more general folding, or match specialized instruction
2103     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2104     // is probably not useful (and could be detrimental).
2105     ConstantSDNode *C = isConstOrConstSplat(Op1);
2106     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2107     if (C && !C->isAllOnesValue() && !C->isOne() &&
2108         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2109       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2110       // Disable the nsw and nuw flags. We can no longer guarantee that we
2111       // won't wrap after simplification.
2112       Flags.setNoSignedWrap(false);
2113       Flags.setNoUnsignedWrap(false);
2114       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2115       return TLO.CombineTo(Op, NewOp);
2116     }
2117 
2118     LLVM_FALLTHROUGH;
2119   }
2120   default:
2121     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2122       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2123                                             Known, TLO, Depth))
2124         return true;
2125       break;
2126     }
2127 
2128     // Just use computeKnownBits to compute output bits.
2129     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2130     break;
2131   }
2132 
2133   // If we know the value of all of the demanded bits, return this as a
2134   // constant.
2135   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2136     // Avoid folding to a constant if any OpaqueConstant is involved.
2137     const SDNode *N = Op.getNode();
2138     for (SDNodeIterator I = SDNodeIterator::begin(N),
2139                         E = SDNodeIterator::end(N);
2140          I != E; ++I) {
2141       SDNode *Op = *I;
2142       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2143         if (C->isOpaque())
2144           return false;
2145     }
2146     // TODO: Handle float bits as well.
2147     if (VT.isInteger())
2148       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2149   }
2150 
2151   return false;
2152 }
2153 
2154 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2155                                                 const APInt &DemandedElts,
2156                                                 APInt &KnownUndef,
2157                                                 APInt &KnownZero,
2158                                                 DAGCombinerInfo &DCI) const {
2159   SelectionDAG &DAG = DCI.DAG;
2160   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2161                         !DCI.isBeforeLegalizeOps());
2162 
2163   bool Simplified =
2164       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2165   if (Simplified) {
2166     DCI.AddToWorklist(Op.getNode());
2167     DCI.CommitTargetLoweringOpt(TLO);
2168   }
2169 
2170   return Simplified;
2171 }
2172 
2173 /// Given a vector binary operation and known undefined elements for each input
2174 /// operand, compute whether each element of the output is undefined.
2175 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2176                                          const APInt &UndefOp0,
2177                                          const APInt &UndefOp1) {
2178   EVT VT = BO.getValueType();
2179   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2180          "Vector binop only");
2181 
2182   EVT EltVT = VT.getVectorElementType();
2183   unsigned NumElts = VT.getVectorNumElements();
2184   assert(UndefOp0.getBitWidth() == NumElts &&
2185          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2186 
2187   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2188                                    const APInt &UndefVals) {
2189     if (UndefVals[Index])
2190       return DAG.getUNDEF(EltVT);
2191 
2192     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2193       // Try hard to make sure that the getNode() call is not creating temporary
2194       // nodes. Ignore opaque integers because they do not constant fold.
2195       SDValue Elt = BV->getOperand(Index);
2196       auto *C = dyn_cast<ConstantSDNode>(Elt);
2197       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2198         return Elt;
2199     }
2200 
2201     return SDValue();
2202   };
2203 
2204   APInt KnownUndef = APInt::getNullValue(NumElts);
2205   for (unsigned i = 0; i != NumElts; ++i) {
2206     // If both inputs for this element are either constant or undef and match
2207     // the element type, compute the constant/undef result for this element of
2208     // the vector.
2209     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2210     // not handle FP constants. The code within getNode() should be refactored
2211     // to avoid the danger of creating a bogus temporary node here.
2212     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2213     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2214     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2215       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2216         KnownUndef.setBit(i);
2217   }
2218   return KnownUndef;
2219 }
2220 
2221 bool TargetLowering::SimplifyDemandedVectorElts(
2222     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2223     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2224     bool AssumeSingleUse) const {
2225   EVT VT = Op.getValueType();
2226   APInt DemandedElts = OriginalDemandedElts;
2227   unsigned NumElts = DemandedElts.getBitWidth();
2228   assert(VT.isVector() && "Expected vector op");
2229   assert(VT.getVectorNumElements() == NumElts &&
2230          "Mask size mismatches value type element count!");
2231 
2232   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2233 
2234   // Undef operand.
2235   if (Op.isUndef()) {
2236     KnownUndef.setAllBits();
2237     return false;
2238   }
2239 
2240   // If Op has other users, assume that all elements are needed.
2241   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2242     DemandedElts.setAllBits();
2243 
2244   // Not demanding any elements from Op.
2245   if (DemandedElts == 0) {
2246     KnownUndef.setAllBits();
2247     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2248   }
2249 
2250   // Limit search depth.
2251   if (Depth >= SelectionDAG::MaxRecursionDepth)
2252     return false;
2253 
2254   SDLoc DL(Op);
2255   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2256 
2257   switch (Op.getOpcode()) {
2258   case ISD::SCALAR_TO_VECTOR: {
2259     if (!DemandedElts[0]) {
2260       KnownUndef.setAllBits();
2261       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2262     }
2263     KnownUndef.setHighBits(NumElts - 1);
2264     break;
2265   }
2266   case ISD::BITCAST: {
2267     SDValue Src = Op.getOperand(0);
2268     EVT SrcVT = Src.getValueType();
2269 
2270     // We only handle vectors here.
2271     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2272     if (!SrcVT.isVector())
2273       break;
2274 
2275     // Fast handling of 'identity' bitcasts.
2276     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2277     if (NumSrcElts == NumElts)
2278       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2279                                         KnownZero, TLO, Depth + 1);
2280 
2281     APInt SrcZero, SrcUndef;
2282     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2283 
2284     // Bitcast from 'large element' src vector to 'small element' vector, we
2285     // must demand a source element if any DemandedElt maps to it.
2286     if ((NumElts % NumSrcElts) == 0) {
2287       unsigned Scale = NumElts / NumSrcElts;
2288       for (unsigned i = 0; i != NumElts; ++i)
2289         if (DemandedElts[i])
2290           SrcDemandedElts.setBit(i / Scale);
2291 
2292       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2293                                      TLO, Depth + 1))
2294         return true;
2295 
2296       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2297       // of the large element.
2298       // TODO - bigendian once we have test coverage.
2299       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2300         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2301         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2302         for (unsigned i = 0; i != NumElts; ++i)
2303           if (DemandedElts[i]) {
2304             unsigned Ofs = (i % Scale) * EltSizeInBits;
2305             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2306           }
2307 
2308         KnownBits Known;
2309         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2310           return true;
2311       }
2312 
2313       // If the src element is zero/undef then all the output elements will be -
2314       // only demanded elements are guaranteed to be correct.
2315       for (unsigned i = 0; i != NumSrcElts; ++i) {
2316         if (SrcDemandedElts[i]) {
2317           if (SrcZero[i])
2318             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2319           if (SrcUndef[i])
2320             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2321         }
2322       }
2323     }
2324 
2325     // Bitcast from 'small element' src vector to 'large element' vector, we
2326     // demand all smaller source elements covered by the larger demanded element
2327     // of this vector.
2328     if ((NumSrcElts % NumElts) == 0) {
2329       unsigned Scale = NumSrcElts / NumElts;
2330       for (unsigned i = 0; i != NumElts; ++i)
2331         if (DemandedElts[i])
2332           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2333 
2334       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2335                                      TLO, Depth + 1))
2336         return true;
2337 
2338       // If all the src elements covering an output element are zero/undef, then
2339       // the output element will be as well, assuming it was demanded.
2340       for (unsigned i = 0; i != NumElts; ++i) {
2341         if (DemandedElts[i]) {
2342           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2343             KnownZero.setBit(i);
2344           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2345             KnownUndef.setBit(i);
2346         }
2347       }
2348     }
2349     break;
2350   }
2351   case ISD::BUILD_VECTOR: {
2352     // Check all elements and simplify any unused elements with UNDEF.
2353     if (!DemandedElts.isAllOnesValue()) {
2354       // Don't simplify BROADCASTS.
2355       if (llvm::any_of(Op->op_values(),
2356                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2357         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2358         bool Updated = false;
2359         for (unsigned i = 0; i != NumElts; ++i) {
2360           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2361             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2362             KnownUndef.setBit(i);
2363             Updated = true;
2364           }
2365         }
2366         if (Updated)
2367           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2368       }
2369     }
2370     for (unsigned i = 0; i != NumElts; ++i) {
2371       SDValue SrcOp = Op.getOperand(i);
2372       if (SrcOp.isUndef()) {
2373         KnownUndef.setBit(i);
2374       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2375                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2376         KnownZero.setBit(i);
2377       }
2378     }
2379     break;
2380   }
2381   case ISD::CONCAT_VECTORS: {
2382     EVT SubVT = Op.getOperand(0).getValueType();
2383     unsigned NumSubVecs = Op.getNumOperands();
2384     unsigned NumSubElts = SubVT.getVectorNumElements();
2385     for (unsigned i = 0; i != NumSubVecs; ++i) {
2386       SDValue SubOp = Op.getOperand(i);
2387       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2388       APInt SubUndef, SubZero;
2389       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2390                                      Depth + 1))
2391         return true;
2392       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2393       KnownZero.insertBits(SubZero, i * NumSubElts);
2394     }
2395     break;
2396   }
2397   case ISD::INSERT_SUBVECTOR: {
2398     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2399       break;
2400     SDValue Base = Op.getOperand(0);
2401     SDValue Sub = Op.getOperand(1);
2402     EVT SubVT = Sub.getValueType();
2403     unsigned NumSubElts = SubVT.getVectorNumElements();
2404     const APInt &Idx = Op.getConstantOperandAPInt(2);
2405     if (Idx.ugt(NumElts - NumSubElts))
2406       break;
2407     unsigned SubIdx = Idx.getZExtValue();
2408     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2409     APInt SubUndef, SubZero;
2410     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2411                                    Depth + 1))
2412       return true;
2413     APInt BaseElts = DemandedElts;
2414     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2415 
2416     // If none of the base operand elements are demanded, replace it with undef.
2417     if (!BaseElts && !Base.isUndef())
2418       return TLO.CombineTo(Op,
2419                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2420                                            TLO.DAG.getUNDEF(VT),
2421                                            Op.getOperand(1),
2422                                            Op.getOperand(2)));
2423 
2424     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2425                                    Depth + 1))
2426       return true;
2427     KnownUndef.insertBits(SubUndef, SubIdx);
2428     KnownZero.insertBits(SubZero, SubIdx);
2429     break;
2430   }
2431   case ISD::EXTRACT_SUBVECTOR: {
2432     SDValue Src = Op.getOperand(0);
2433     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2434     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2435     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2436       // Offset the demanded elts by the subvector index.
2437       uint64_t Idx = SubIdx->getZExtValue();
2438       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2439       APInt SrcUndef, SrcZero;
2440       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2441                                      Depth + 1))
2442         return true;
2443       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2444       KnownZero = SrcZero.extractBits(NumElts, Idx);
2445     }
2446     break;
2447   }
2448   case ISD::INSERT_VECTOR_ELT: {
2449     SDValue Vec = Op.getOperand(0);
2450     SDValue Scl = Op.getOperand(1);
2451     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2452 
2453     // For a legal, constant insertion index, if we don't need this insertion
2454     // then strip it, else remove it from the demanded elts.
2455     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2456       unsigned Idx = CIdx->getZExtValue();
2457       if (!DemandedElts[Idx])
2458         return TLO.CombineTo(Op, Vec);
2459 
2460       APInt DemandedVecElts(DemandedElts);
2461       DemandedVecElts.clearBit(Idx);
2462       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2463                                      KnownZero, TLO, Depth + 1))
2464         return true;
2465 
2466       KnownUndef.clearBit(Idx);
2467       if (Scl.isUndef())
2468         KnownUndef.setBit(Idx);
2469 
2470       KnownZero.clearBit(Idx);
2471       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2472         KnownZero.setBit(Idx);
2473       break;
2474     }
2475 
2476     APInt VecUndef, VecZero;
2477     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2478                                    Depth + 1))
2479       return true;
2480     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2481     break;
2482   }
2483   case ISD::VSELECT: {
2484     // Try to transform the select condition based on the current demanded
2485     // elements.
2486     // TODO: If a condition element is undef, we can choose from one arm of the
2487     //       select (and if one arm is undef, then we can propagate that to the
2488     //       result).
2489     // TODO - add support for constant vselect masks (see IR version of this).
2490     APInt UnusedUndef, UnusedZero;
2491     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2492                                    UnusedZero, TLO, Depth + 1))
2493       return true;
2494 
2495     // See if we can simplify either vselect operand.
2496     APInt DemandedLHS(DemandedElts);
2497     APInt DemandedRHS(DemandedElts);
2498     APInt UndefLHS, ZeroLHS;
2499     APInt UndefRHS, ZeroRHS;
2500     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2501                                    ZeroLHS, TLO, Depth + 1))
2502       return true;
2503     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2504                                    ZeroRHS, TLO, Depth + 1))
2505       return true;
2506 
2507     KnownUndef = UndefLHS & UndefRHS;
2508     KnownZero = ZeroLHS & ZeroRHS;
2509     break;
2510   }
2511   case ISD::VECTOR_SHUFFLE: {
2512     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2513 
2514     // Collect demanded elements from shuffle operands..
2515     APInt DemandedLHS(NumElts, 0);
2516     APInt DemandedRHS(NumElts, 0);
2517     for (unsigned i = 0; i != NumElts; ++i) {
2518       int M = ShuffleMask[i];
2519       if (M < 0 || !DemandedElts[i])
2520         continue;
2521       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2522       if (M < (int)NumElts)
2523         DemandedLHS.setBit(M);
2524       else
2525         DemandedRHS.setBit(M - NumElts);
2526     }
2527 
2528     // See if we can simplify either shuffle operand.
2529     APInt UndefLHS, ZeroLHS;
2530     APInt UndefRHS, ZeroRHS;
2531     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2532                                    ZeroLHS, TLO, Depth + 1))
2533       return true;
2534     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2535                                    ZeroRHS, TLO, Depth + 1))
2536       return true;
2537 
2538     // Simplify mask using undef elements from LHS/RHS.
2539     bool Updated = false;
2540     bool IdentityLHS = true, IdentityRHS = true;
2541     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2542     for (unsigned i = 0; i != NumElts; ++i) {
2543       int &M = NewMask[i];
2544       if (M < 0)
2545         continue;
2546       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2547           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2548         Updated = true;
2549         M = -1;
2550       }
2551       IdentityLHS &= (M < 0) || (M == (int)i);
2552       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2553     }
2554 
2555     // Update legal shuffle masks based on demanded elements if it won't reduce
2556     // to Identity which can cause premature removal of the shuffle mask.
2557     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2558       SDValue LegalShuffle =
2559           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2560                                   NewMask, TLO.DAG);
2561       if (LegalShuffle)
2562         return TLO.CombineTo(Op, LegalShuffle);
2563     }
2564 
2565     // Propagate undef/zero elements from LHS/RHS.
2566     for (unsigned i = 0; i != NumElts; ++i) {
2567       int M = ShuffleMask[i];
2568       if (M < 0) {
2569         KnownUndef.setBit(i);
2570       } else if (M < (int)NumElts) {
2571         if (UndefLHS[M])
2572           KnownUndef.setBit(i);
2573         if (ZeroLHS[M])
2574           KnownZero.setBit(i);
2575       } else {
2576         if (UndefRHS[M - NumElts])
2577           KnownUndef.setBit(i);
2578         if (ZeroRHS[M - NumElts])
2579           KnownZero.setBit(i);
2580       }
2581     }
2582     break;
2583   }
2584   case ISD::ANY_EXTEND_VECTOR_INREG:
2585   case ISD::SIGN_EXTEND_VECTOR_INREG:
2586   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2587     APInt SrcUndef, SrcZero;
2588     SDValue Src = Op.getOperand(0);
2589     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2590     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2591     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2592                                    Depth + 1))
2593       return true;
2594     KnownZero = SrcZero.zextOrTrunc(NumElts);
2595     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2596 
2597     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2598         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2599         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2600       // aext - if we just need the bottom element then we can bitcast.
2601       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2602     }
2603 
2604     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2605       // zext(undef) upper bits are guaranteed to be zero.
2606       if (DemandedElts.isSubsetOf(KnownUndef))
2607         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2608       KnownUndef.clearAllBits();
2609     }
2610     break;
2611   }
2612 
2613   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2614   // MAX, saturated math, etc.
2615   case ISD::OR:
2616   case ISD::XOR:
2617   case ISD::ADD:
2618   case ISD::SUB:
2619   case ISD::FADD:
2620   case ISD::FSUB:
2621   case ISD::FMUL:
2622   case ISD::FDIV:
2623   case ISD::FREM: {
2624     APInt UndefRHS, ZeroRHS;
2625     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2626                                    ZeroRHS, TLO, Depth + 1))
2627       return true;
2628     APInt UndefLHS, ZeroLHS;
2629     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2630                                    ZeroLHS, TLO, Depth + 1))
2631       return true;
2632 
2633     KnownZero = ZeroLHS & ZeroRHS;
2634     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2635     break;
2636   }
2637   case ISD::SHL:
2638   case ISD::SRL:
2639   case ISD::SRA:
2640   case ISD::ROTL:
2641   case ISD::ROTR: {
2642     APInt UndefRHS, ZeroRHS;
2643     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2644                                    ZeroRHS, TLO, Depth + 1))
2645       return true;
2646     APInt UndefLHS, ZeroLHS;
2647     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2648                                    ZeroLHS, TLO, Depth + 1))
2649       return true;
2650 
2651     KnownZero = ZeroLHS;
2652     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2653     break;
2654   }
2655   case ISD::MUL:
2656   case ISD::AND: {
2657     APInt SrcUndef, SrcZero;
2658     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2659                                    SrcZero, TLO, Depth + 1))
2660       return true;
2661     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2662                                    KnownZero, TLO, Depth + 1))
2663       return true;
2664 
2665     // If either side has a zero element, then the result element is zero, even
2666     // if the other is an UNDEF.
2667     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2668     // and then handle 'and' nodes with the rest of the binop opcodes.
2669     KnownZero |= SrcZero;
2670     KnownUndef &= SrcUndef;
2671     KnownUndef &= ~KnownZero;
2672     break;
2673   }
2674   case ISD::TRUNCATE:
2675   case ISD::SIGN_EXTEND:
2676   case ISD::ZERO_EXTEND:
2677     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2678                                    KnownZero, TLO, Depth + 1))
2679       return true;
2680 
2681     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2682       // zext(undef) upper bits are guaranteed to be zero.
2683       if (DemandedElts.isSubsetOf(KnownUndef))
2684         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2685       KnownUndef.clearAllBits();
2686     }
2687     break;
2688   default: {
2689     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2690       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2691                                                   KnownZero, TLO, Depth))
2692         return true;
2693     } else {
2694       KnownBits Known;
2695       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2696       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2697                                TLO, Depth, AssumeSingleUse))
2698         return true;
2699     }
2700     break;
2701   }
2702   }
2703   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2704 
2705   // Constant fold all undef cases.
2706   // TODO: Handle zero cases as well.
2707   if (DemandedElts.isSubsetOf(KnownUndef))
2708     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2709 
2710   return false;
2711 }
2712 
2713 /// Determine which of the bits specified in Mask are known to be either zero or
2714 /// one and return them in the Known.
2715 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2716                                                    KnownBits &Known,
2717                                                    const APInt &DemandedElts,
2718                                                    const SelectionDAG &DAG,
2719                                                    unsigned Depth) const {
2720   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2721           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2722           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2723           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2724          "Should use MaskedValueIsZero if you don't know whether Op"
2725          " is a target node!");
2726   Known.resetAll();
2727 }
2728 
2729 void TargetLowering::computeKnownBitsForTargetInstr(
2730     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2731     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2732     unsigned Depth) const {
2733   Known.resetAll();
2734 }
2735 
2736 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2737                                                    KnownBits &Known,
2738                                                    const APInt &DemandedElts,
2739                                                    const SelectionDAG &DAG,
2740                                                    unsigned Depth) const {
2741   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2742 
2743   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2744     // The low bits are known zero if the pointer is aligned.
2745     Known.Zero.setLowBits(Log2_32(Align));
2746   }
2747 }
2748 
2749 /// This method can be implemented by targets that want to expose additional
2750 /// information about sign bits to the DAG Combiner.
2751 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2752                                                          const APInt &,
2753                                                          const SelectionDAG &,
2754                                                          unsigned Depth) const {
2755   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2756           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2757           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2758           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2759          "Should use ComputeNumSignBits if you don't know whether Op"
2760          " is a target node!");
2761   return 1;
2762 }
2763 
2764 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2765     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2766     TargetLoweringOpt &TLO, unsigned Depth) const {
2767   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2768           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2769           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2770           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2771          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2772          " is a target node!");
2773   return false;
2774 }
2775 
2776 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2777     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2778     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2779   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2780           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2781           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2782           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2783          "Should use SimplifyDemandedBits if you don't know whether Op"
2784          " is a target node!");
2785   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2786   return false;
2787 }
2788 
2789 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2790     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2791     SelectionDAG &DAG, unsigned Depth) const {
2792   assert(
2793       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2794        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2795        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2796        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2797       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2798       " is a target node!");
2799   return SDValue();
2800 }
2801 
2802 SDValue
2803 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2804                                         SDValue N1, MutableArrayRef<int> Mask,
2805                                         SelectionDAG &DAG) const {
2806   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2807   if (!LegalMask) {
2808     std::swap(N0, N1);
2809     ShuffleVectorSDNode::commuteMask(Mask);
2810     LegalMask = isShuffleMaskLegal(Mask, VT);
2811   }
2812 
2813   if (!LegalMask)
2814     return SDValue();
2815 
2816   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2817 }
2818 
2819 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2820   return nullptr;
2821 }
2822 
2823 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2824                                                   const SelectionDAG &DAG,
2825                                                   bool SNaN,
2826                                                   unsigned Depth) const {
2827   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2828           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2829           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2830           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2831          "Should use isKnownNeverNaN if you don't know whether Op"
2832          " is a target node!");
2833   return false;
2834 }
2835 
2836 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2837 // work with truncating build vectors and vectors with elements of less than
2838 // 8 bits.
2839 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2840   if (!N)
2841     return false;
2842 
2843   APInt CVal;
2844   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2845     CVal = CN->getAPIntValue();
2846   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2847     auto *CN = BV->getConstantSplatNode();
2848     if (!CN)
2849       return false;
2850 
2851     // If this is a truncating build vector, truncate the splat value.
2852     // Otherwise, we may fail to match the expected values below.
2853     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2854     CVal = CN->getAPIntValue();
2855     if (BVEltWidth < CVal.getBitWidth())
2856       CVal = CVal.trunc(BVEltWidth);
2857   } else {
2858     return false;
2859   }
2860 
2861   switch (getBooleanContents(N->getValueType(0))) {
2862   case UndefinedBooleanContent:
2863     return CVal[0];
2864   case ZeroOrOneBooleanContent:
2865     return CVal.isOneValue();
2866   case ZeroOrNegativeOneBooleanContent:
2867     return CVal.isAllOnesValue();
2868   }
2869 
2870   llvm_unreachable("Invalid boolean contents");
2871 }
2872 
2873 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2874   if (!N)
2875     return false;
2876 
2877   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2878   if (!CN) {
2879     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2880     if (!BV)
2881       return false;
2882 
2883     // Only interested in constant splats, we don't care about undef
2884     // elements in identifying boolean constants and getConstantSplatNode
2885     // returns NULL if all ops are undef;
2886     CN = BV->getConstantSplatNode();
2887     if (!CN)
2888       return false;
2889   }
2890 
2891   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2892     return !CN->getAPIntValue()[0];
2893 
2894   return CN->isNullValue();
2895 }
2896 
2897 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2898                                        bool SExt) const {
2899   if (VT == MVT::i1)
2900     return N->isOne();
2901 
2902   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2903   switch (Cnt) {
2904   case TargetLowering::ZeroOrOneBooleanContent:
2905     // An extended value of 1 is always true, unless its original type is i1,
2906     // in which case it will be sign extended to -1.
2907     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2908   case TargetLowering::UndefinedBooleanContent:
2909   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2910     return N->isAllOnesValue() && SExt;
2911   }
2912   llvm_unreachable("Unexpected enumeration.");
2913 }
2914 
2915 /// This helper function of SimplifySetCC tries to optimize the comparison when
2916 /// either operand of the SetCC node is a bitwise-and instruction.
2917 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2918                                          ISD::CondCode Cond, const SDLoc &DL,
2919                                          DAGCombinerInfo &DCI) const {
2920   // Match these patterns in any of their permutations:
2921   // (X & Y) == Y
2922   // (X & Y) != Y
2923   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2924     std::swap(N0, N1);
2925 
2926   EVT OpVT = N0.getValueType();
2927   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2928       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2929     return SDValue();
2930 
2931   SDValue X, Y;
2932   if (N0.getOperand(0) == N1) {
2933     X = N0.getOperand(1);
2934     Y = N0.getOperand(0);
2935   } else if (N0.getOperand(1) == N1) {
2936     X = N0.getOperand(0);
2937     Y = N0.getOperand(1);
2938   } else {
2939     return SDValue();
2940   }
2941 
2942   SelectionDAG &DAG = DCI.DAG;
2943   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2944   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2945     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2946     // Note that where Y is variable and is known to have at most one bit set
2947     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2948     // equivalent when Y == 0.
2949     assert(OpVT.isInteger());
2950     Cond = ISD::getSetCCInverse(Cond, OpVT);
2951     if (DCI.isBeforeLegalizeOps() ||
2952         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2953       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2954   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2955     // If the target supports an 'and-not' or 'and-complement' logic operation,
2956     // try to use that to make a comparison operation more efficient.
2957     // But don't do this transform if the mask is a single bit because there are
2958     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2959     // 'rlwinm' on PPC).
2960 
2961     // Bail out if the compare operand that we want to turn into a zero is
2962     // already a zero (otherwise, infinite loop).
2963     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2964     if (YConst && YConst->isNullValue())
2965       return SDValue();
2966 
2967     // Transform this into: ~X & Y == 0.
2968     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2969     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2970     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2971   }
2972 
2973   return SDValue();
2974 }
2975 
2976 /// There are multiple IR patterns that could be checking whether certain
2977 /// truncation of a signed number would be lossy or not. The pattern which is
2978 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2979 /// We are looking for the following pattern: (KeptBits is a constant)
2980 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2981 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2982 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2983 /// We will unfold it into the natural trunc+sext pattern:
2984 ///   ((%x << C) a>> C) dstcond %x
2985 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2986 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2987     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2988     const SDLoc &DL) const {
2989   // We must be comparing with a constant.
2990   ConstantSDNode *C1;
2991   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2992     return SDValue();
2993 
2994   // N0 should be:  add %x, (1 << (KeptBits-1))
2995   if (N0->getOpcode() != ISD::ADD)
2996     return SDValue();
2997 
2998   // And we must be 'add'ing a constant.
2999   ConstantSDNode *C01;
3000   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3001     return SDValue();
3002 
3003   SDValue X = N0->getOperand(0);
3004   EVT XVT = X.getValueType();
3005 
3006   // Validate constants ...
3007 
3008   APInt I1 = C1->getAPIntValue();
3009 
3010   ISD::CondCode NewCond;
3011   if (Cond == ISD::CondCode::SETULT) {
3012     NewCond = ISD::CondCode::SETEQ;
3013   } else if (Cond == ISD::CondCode::SETULE) {
3014     NewCond = ISD::CondCode::SETEQ;
3015     // But need to 'canonicalize' the constant.
3016     I1 += 1;
3017   } else if (Cond == ISD::CondCode::SETUGT) {
3018     NewCond = ISD::CondCode::SETNE;
3019     // But need to 'canonicalize' the constant.
3020     I1 += 1;
3021   } else if (Cond == ISD::CondCode::SETUGE) {
3022     NewCond = ISD::CondCode::SETNE;
3023   } else
3024     return SDValue();
3025 
3026   APInt I01 = C01->getAPIntValue();
3027 
3028   auto checkConstants = [&I1, &I01]() -> bool {
3029     // Both of them must be power-of-two, and the constant from setcc is bigger.
3030     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3031   };
3032 
3033   if (checkConstants()) {
3034     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3035   } else {
3036     // What if we invert constants? (and the target predicate)
3037     I1.negate();
3038     I01.negate();
3039     assert(XVT.isInteger());
3040     NewCond = getSetCCInverse(NewCond, XVT);
3041     if (!checkConstants())
3042       return SDValue();
3043     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3044   }
3045 
3046   // They are power-of-two, so which bit is set?
3047   const unsigned KeptBits = I1.logBase2();
3048   const unsigned KeptBitsMinusOne = I01.logBase2();
3049 
3050   // Magic!
3051   if (KeptBits != (KeptBitsMinusOne + 1))
3052     return SDValue();
3053   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3054 
3055   // We don't want to do this in every single case.
3056   SelectionDAG &DAG = DCI.DAG;
3057   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3058           XVT, KeptBits))
3059     return SDValue();
3060 
3061   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3062   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3063 
3064   // Unfold into:  ((%x << C) a>> C) cond %x
3065   // Where 'cond' will be either 'eq' or 'ne'.
3066   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3067   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3068   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3069   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3070 
3071   return T2;
3072 }
3073 
3074 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3075 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3076     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3077     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3078   assert(isConstOrConstSplat(N1C) &&
3079          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3080          "Should be a comparison with 0.");
3081   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3082          "Valid only for [in]equality comparisons.");
3083 
3084   unsigned NewShiftOpcode;
3085   SDValue X, C, Y;
3086 
3087   SelectionDAG &DAG = DCI.DAG;
3088   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3089 
3090   // Look for '(C l>>/<< Y)'.
3091   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3092     // The shift should be one-use.
3093     if (!V.hasOneUse())
3094       return false;
3095     unsigned OldShiftOpcode = V.getOpcode();
3096     switch (OldShiftOpcode) {
3097     case ISD::SHL:
3098       NewShiftOpcode = ISD::SRL;
3099       break;
3100     case ISD::SRL:
3101       NewShiftOpcode = ISD::SHL;
3102       break;
3103     default:
3104       return false; // must be a logical shift.
3105     }
3106     // We should be shifting a constant.
3107     // FIXME: best to use isConstantOrConstantVector().
3108     C = V.getOperand(0);
3109     ConstantSDNode *CC =
3110         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3111     if (!CC)
3112       return false;
3113     Y = V.getOperand(1);
3114 
3115     ConstantSDNode *XC =
3116         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3117     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3118         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3119   };
3120 
3121   // LHS of comparison should be an one-use 'and'.
3122   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3123     return SDValue();
3124 
3125   X = N0.getOperand(0);
3126   SDValue Mask = N0.getOperand(1);
3127 
3128   // 'and' is commutative!
3129   if (!Match(Mask)) {
3130     std::swap(X, Mask);
3131     if (!Match(Mask))
3132       return SDValue();
3133   }
3134 
3135   EVT VT = X.getValueType();
3136 
3137   // Produce:
3138   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3139   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3140   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3141   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3142   return T2;
3143 }
3144 
3145 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3146 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3147 /// handle the commuted versions of these patterns.
3148 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3149                                            ISD::CondCode Cond, const SDLoc &DL,
3150                                            DAGCombinerInfo &DCI) const {
3151   unsigned BOpcode = N0.getOpcode();
3152   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3153          "Unexpected binop");
3154   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3155 
3156   // (X + Y) == X --> Y == 0
3157   // (X - Y) == X --> Y == 0
3158   // (X ^ Y) == X --> Y == 0
3159   SelectionDAG &DAG = DCI.DAG;
3160   EVT OpVT = N0.getValueType();
3161   SDValue X = N0.getOperand(0);
3162   SDValue Y = N0.getOperand(1);
3163   if (X == N1)
3164     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3165 
3166   if (Y != N1)
3167     return SDValue();
3168 
3169   // (X + Y) == Y --> X == 0
3170   // (X ^ Y) == Y --> X == 0
3171   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3172     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3173 
3174   // The shift would not be valid if the operands are boolean (i1).
3175   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3176     return SDValue();
3177 
3178   // (X - Y) == Y --> X == Y << 1
3179   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3180                                  !DCI.isBeforeLegalize());
3181   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3182   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3183   if (!DCI.isCalledByLegalizer())
3184     DCI.AddToWorklist(YShl1.getNode());
3185   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3186 }
3187 
3188 /// Try to simplify a setcc built with the specified operands and cc. If it is
3189 /// unable to simplify it, return a null SDValue.
3190 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3191                                       ISD::CondCode Cond, bool foldBooleans,
3192                                       DAGCombinerInfo &DCI,
3193                                       const SDLoc &dl) const {
3194   SelectionDAG &DAG = DCI.DAG;
3195   const DataLayout &Layout = DAG.getDataLayout();
3196   EVT OpVT = N0.getValueType();
3197 
3198   // Constant fold or commute setcc.
3199   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3200     return Fold;
3201 
3202   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3203   // TODO: Handle non-splat vector constants. All undef causes trouble.
3204   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3205   if (isConstOrConstSplat(N0) &&
3206       (DCI.isBeforeLegalizeOps() ||
3207        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3208     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3209 
3210   // If we have a subtract with the same 2 non-constant operands as this setcc
3211   // -- but in reverse order -- then try to commute the operands of this setcc
3212   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3213   // instruction on some targets.
3214   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3215       (DCI.isBeforeLegalizeOps() ||
3216        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3217       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3218       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3219     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3220 
3221   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3222     const APInt &C1 = N1C->getAPIntValue();
3223 
3224     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3225     // equality comparison, then we're just comparing whether X itself is
3226     // zero.
3227     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3228         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3229         N0.getOperand(1).getOpcode() == ISD::Constant) {
3230       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3231       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3232           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3233         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3234           // (srl (ctlz x), 5) == 0  -> X != 0
3235           // (srl (ctlz x), 5) != 1  -> X != 0
3236           Cond = ISD::SETNE;
3237         } else {
3238           // (srl (ctlz x), 5) != 0  -> X == 0
3239           // (srl (ctlz x), 5) == 1  -> X == 0
3240           Cond = ISD::SETEQ;
3241         }
3242         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3243         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3244                             Zero, Cond);
3245       }
3246     }
3247 
3248     SDValue CTPOP = N0;
3249     // Look through truncs that don't change the value of a ctpop.
3250     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3251       CTPOP = N0.getOperand(0);
3252 
3253     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3254         (N0 == CTPOP ||
3255          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3256       EVT CTVT = CTPOP.getValueType();
3257       SDValue CTOp = CTPOP.getOperand(0);
3258 
3259       // (ctpop x) u< 2 -> (x & x-1) == 0
3260       // (ctpop x) u> 1 -> (x & x-1) != 0
3261       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3262         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3263         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3264         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3265         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3266         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3267       }
3268 
3269       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3270       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3271           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3272         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3273         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3274         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3275         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3276         assert(CTVT.isInteger());
3277         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3278         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3279         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3280         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3281         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3282         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3283         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3284       }
3285     }
3286 
3287     // (zext x) == C --> x == (trunc C)
3288     // (sext x) == C --> x == (trunc C)
3289     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3290         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3291       unsigned MinBits = N0.getValueSizeInBits();
3292       SDValue PreExt;
3293       bool Signed = false;
3294       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3295         // ZExt
3296         MinBits = N0->getOperand(0).getValueSizeInBits();
3297         PreExt = N0->getOperand(0);
3298       } else if (N0->getOpcode() == ISD::AND) {
3299         // DAGCombine turns costly ZExts into ANDs
3300         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3301           if ((C->getAPIntValue()+1).isPowerOf2()) {
3302             MinBits = C->getAPIntValue().countTrailingOnes();
3303             PreExt = N0->getOperand(0);
3304           }
3305       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3306         // SExt
3307         MinBits = N0->getOperand(0).getValueSizeInBits();
3308         PreExt = N0->getOperand(0);
3309         Signed = true;
3310       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3311         // ZEXTLOAD / SEXTLOAD
3312         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3313           MinBits = LN0->getMemoryVT().getSizeInBits();
3314           PreExt = N0;
3315         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3316           Signed = true;
3317           MinBits = LN0->getMemoryVT().getSizeInBits();
3318           PreExt = N0;
3319         }
3320       }
3321 
3322       // Figure out how many bits we need to preserve this constant.
3323       unsigned ReqdBits = Signed ?
3324         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3325         C1.getActiveBits();
3326 
3327       // Make sure we're not losing bits from the constant.
3328       if (MinBits > 0 &&
3329           MinBits < C1.getBitWidth() &&
3330           MinBits >= ReqdBits) {
3331         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3332         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3333           // Will get folded away.
3334           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3335           if (MinBits == 1 && C1 == 1)
3336             // Invert the condition.
3337             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3338                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3339           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3340           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3341         }
3342 
3343         // If truncating the setcc operands is not desirable, we can still
3344         // simplify the expression in some cases:
3345         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3346         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3347         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3348         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3349         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3350         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3351         SDValue TopSetCC = N0->getOperand(0);
3352         unsigned N0Opc = N0->getOpcode();
3353         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3354         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3355             TopSetCC.getOpcode() == ISD::SETCC &&
3356             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3357             (isConstFalseVal(N1C) ||
3358              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3359 
3360           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3361                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3362 
3363           if (!Inverse)
3364             return TopSetCC;
3365 
3366           ISD::CondCode InvCond = ISD::getSetCCInverse(
3367               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3368               TopSetCC.getOperand(0).getValueType());
3369           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3370                                       TopSetCC.getOperand(1),
3371                                       InvCond);
3372         }
3373       }
3374     }
3375 
3376     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3377     // equality or unsigned, and all 1 bits of the const are in the same
3378     // partial word, see if we can shorten the load.
3379     if (DCI.isBeforeLegalize() &&
3380         !ISD::isSignedIntSetCC(Cond) &&
3381         N0.getOpcode() == ISD::AND && C1 == 0 &&
3382         N0.getNode()->hasOneUse() &&
3383         isa<LoadSDNode>(N0.getOperand(0)) &&
3384         N0.getOperand(0).getNode()->hasOneUse() &&
3385         isa<ConstantSDNode>(N0.getOperand(1))) {
3386       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3387       APInt bestMask;
3388       unsigned bestWidth = 0, bestOffset = 0;
3389       if (Lod->isSimple() && Lod->isUnindexed()) {
3390         unsigned origWidth = N0.getValueSizeInBits();
3391         unsigned maskWidth = origWidth;
3392         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3393         // 8 bits, but have to be careful...
3394         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3395           origWidth = Lod->getMemoryVT().getSizeInBits();
3396         const APInt &Mask = N0.getConstantOperandAPInt(1);
3397         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3398           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3399           for (unsigned offset=0; offset<origWidth/width; offset++) {
3400             if (Mask.isSubsetOf(newMask)) {
3401               if (Layout.isLittleEndian())
3402                 bestOffset = (uint64_t)offset * (width/8);
3403               else
3404                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3405               bestMask = Mask.lshr(offset * (width/8) * 8);
3406               bestWidth = width;
3407               break;
3408             }
3409             newMask <<= width;
3410           }
3411         }
3412       }
3413       if (bestWidth) {
3414         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3415         if (newVT.isRound() &&
3416             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3417           SDValue Ptr = Lod->getBasePtr();
3418           if (bestOffset != 0)
3419             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3420           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3421           SDValue NewLoad = DAG.getLoad(
3422               newVT, dl, Lod->getChain(), Ptr,
3423               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3424           return DAG.getSetCC(dl, VT,
3425                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3426                                       DAG.getConstant(bestMask.trunc(bestWidth),
3427                                                       dl, newVT)),
3428                               DAG.getConstant(0LL, dl, newVT), Cond);
3429         }
3430       }
3431     }
3432 
3433     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3434     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3435       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3436 
3437       // If the comparison constant has bits in the upper part, the
3438       // zero-extended value could never match.
3439       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3440                                               C1.getBitWidth() - InSize))) {
3441         switch (Cond) {
3442         case ISD::SETUGT:
3443         case ISD::SETUGE:
3444         case ISD::SETEQ:
3445           return DAG.getConstant(0, dl, VT);
3446         case ISD::SETULT:
3447         case ISD::SETULE:
3448         case ISD::SETNE:
3449           return DAG.getConstant(1, dl, VT);
3450         case ISD::SETGT:
3451         case ISD::SETGE:
3452           // True if the sign bit of C1 is set.
3453           return DAG.getConstant(C1.isNegative(), dl, VT);
3454         case ISD::SETLT:
3455         case ISD::SETLE:
3456           // True if the sign bit of C1 isn't set.
3457           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3458         default:
3459           break;
3460         }
3461       }
3462 
3463       // Otherwise, we can perform the comparison with the low bits.
3464       switch (Cond) {
3465       case ISD::SETEQ:
3466       case ISD::SETNE:
3467       case ISD::SETUGT:
3468       case ISD::SETUGE:
3469       case ISD::SETULT:
3470       case ISD::SETULE: {
3471         EVT newVT = N0.getOperand(0).getValueType();
3472         if (DCI.isBeforeLegalizeOps() ||
3473             (isOperationLegal(ISD::SETCC, newVT) &&
3474              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3475           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3476           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3477 
3478           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3479                                           NewConst, Cond);
3480           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3481         }
3482         break;
3483       }
3484       default:
3485         break; // todo, be more careful with signed comparisons
3486       }
3487     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3488                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3489       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3490       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3491       EVT ExtDstTy = N0.getValueType();
3492       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3493 
3494       // If the constant doesn't fit into the number of bits for the source of
3495       // the sign extension, it is impossible for both sides to be equal.
3496       if (C1.getMinSignedBits() > ExtSrcTyBits)
3497         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3498 
3499       SDValue ZextOp;
3500       EVT Op0Ty = N0.getOperand(0).getValueType();
3501       if (Op0Ty == ExtSrcTy) {
3502         ZextOp = N0.getOperand(0);
3503       } else {
3504         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3505         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3506                              DAG.getConstant(Imm, dl, Op0Ty));
3507       }
3508       if (!DCI.isCalledByLegalizer())
3509         DCI.AddToWorklist(ZextOp.getNode());
3510       // Otherwise, make this a use of a zext.
3511       return DAG.getSetCC(dl, VT, ZextOp,
3512                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3513                                                               ExtDstTyBits,
3514                                                               ExtSrcTyBits),
3515                                           dl, ExtDstTy),
3516                           Cond);
3517     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3518                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3519       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3520       if (N0.getOpcode() == ISD::SETCC &&
3521           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3522           (N0.getValueType() == MVT::i1 ||
3523            getBooleanContents(N0.getOperand(0).getValueType()) ==
3524                        ZeroOrOneBooleanContent)) {
3525         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3526         if (TrueWhenTrue)
3527           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3528         // Invert the condition.
3529         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3530         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3531         if (DCI.isBeforeLegalizeOps() ||
3532             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3533           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3534       }
3535 
3536       if ((N0.getOpcode() == ISD::XOR ||
3537            (N0.getOpcode() == ISD::AND &&
3538             N0.getOperand(0).getOpcode() == ISD::XOR &&
3539             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3540           isa<ConstantSDNode>(N0.getOperand(1)) &&
3541           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3542         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3543         // can only do this if the top bits are known zero.
3544         unsigned BitWidth = N0.getValueSizeInBits();
3545         if (DAG.MaskedValueIsZero(N0,
3546                                   APInt::getHighBitsSet(BitWidth,
3547                                                         BitWidth-1))) {
3548           // Okay, get the un-inverted input value.
3549           SDValue Val;
3550           if (N0.getOpcode() == ISD::XOR) {
3551             Val = N0.getOperand(0);
3552           } else {
3553             assert(N0.getOpcode() == ISD::AND &&
3554                     N0.getOperand(0).getOpcode() == ISD::XOR);
3555             // ((X^1)&1)^1 -> X & 1
3556             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3557                               N0.getOperand(0).getOperand(0),
3558                               N0.getOperand(1));
3559           }
3560 
3561           return DAG.getSetCC(dl, VT, Val, N1,
3562                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3563         }
3564       } else if (N1C->isOne()) {
3565         SDValue Op0 = N0;
3566         if (Op0.getOpcode() == ISD::TRUNCATE)
3567           Op0 = Op0.getOperand(0);
3568 
3569         if ((Op0.getOpcode() == ISD::XOR) &&
3570             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3571             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3572           SDValue XorLHS = Op0.getOperand(0);
3573           SDValue XorRHS = Op0.getOperand(1);
3574           // Ensure that the input setccs return an i1 type or 0/1 value.
3575           if (Op0.getValueType() == MVT::i1 ||
3576               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3577                       ZeroOrOneBooleanContent &&
3578                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3579                         ZeroOrOneBooleanContent)) {
3580             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3581             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3582             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3583           }
3584         }
3585         if (Op0.getOpcode() == ISD::AND &&
3586             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3587             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3588           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3589           if (Op0.getValueType().bitsGT(VT))
3590             Op0 = DAG.getNode(ISD::AND, dl, VT,
3591                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3592                           DAG.getConstant(1, dl, VT));
3593           else if (Op0.getValueType().bitsLT(VT))
3594             Op0 = DAG.getNode(ISD::AND, dl, VT,
3595                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3596                         DAG.getConstant(1, dl, VT));
3597 
3598           return DAG.getSetCC(dl, VT, Op0,
3599                               DAG.getConstant(0, dl, Op0.getValueType()),
3600                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3601         }
3602         if (Op0.getOpcode() == ISD::AssertZext &&
3603             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3604           return DAG.getSetCC(dl, VT, Op0,
3605                               DAG.getConstant(0, dl, Op0.getValueType()),
3606                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3607       }
3608     }
3609 
3610     // Given:
3611     //   icmp eq/ne (urem %x, %y), 0
3612     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3613     //   icmp eq/ne %x, 0
3614     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3615         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3616       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3617       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3618       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3619         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3620     }
3621 
3622     if (SDValue V =
3623             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3624       return V;
3625   }
3626 
3627   // These simplifications apply to splat vectors as well.
3628   // TODO: Handle more splat vector cases.
3629   if (auto *N1C = isConstOrConstSplat(N1)) {
3630     const APInt &C1 = N1C->getAPIntValue();
3631 
3632     APInt MinVal, MaxVal;
3633     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3634     if (ISD::isSignedIntSetCC(Cond)) {
3635       MinVal = APInt::getSignedMinValue(OperandBitSize);
3636       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3637     } else {
3638       MinVal = APInt::getMinValue(OperandBitSize);
3639       MaxVal = APInt::getMaxValue(OperandBitSize);
3640     }
3641 
3642     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3643     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3644       // X >= MIN --> true
3645       if (C1 == MinVal)
3646         return DAG.getBoolConstant(true, dl, VT, OpVT);
3647 
3648       if (!VT.isVector()) { // TODO: Support this for vectors.
3649         // X >= C0 --> X > (C0 - 1)
3650         APInt C = C1 - 1;
3651         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3652         if ((DCI.isBeforeLegalizeOps() ||
3653              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3654             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3655                                   isLegalICmpImmediate(C.getSExtValue())))) {
3656           return DAG.getSetCC(dl, VT, N0,
3657                               DAG.getConstant(C, dl, N1.getValueType()),
3658                               NewCC);
3659         }
3660       }
3661     }
3662 
3663     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3664       // X <= MAX --> true
3665       if (C1 == MaxVal)
3666         return DAG.getBoolConstant(true, dl, VT, OpVT);
3667 
3668       // X <= C0 --> X < (C0 + 1)
3669       if (!VT.isVector()) { // TODO: Support this for vectors.
3670         APInt C = C1 + 1;
3671         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3672         if ((DCI.isBeforeLegalizeOps() ||
3673              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3674             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3675                                   isLegalICmpImmediate(C.getSExtValue())))) {
3676           return DAG.getSetCC(dl, VT, N0,
3677                               DAG.getConstant(C, dl, N1.getValueType()),
3678                               NewCC);
3679         }
3680       }
3681     }
3682 
3683     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3684       if (C1 == MinVal)
3685         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3686 
3687       // TODO: Support this for vectors after legalize ops.
3688       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3689         // Canonicalize setlt X, Max --> setne X, Max
3690         if (C1 == MaxVal)
3691           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3692 
3693         // If we have setult X, 1, turn it into seteq X, 0
3694         if (C1 == MinVal+1)
3695           return DAG.getSetCC(dl, VT, N0,
3696                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3697                               ISD::SETEQ);
3698       }
3699     }
3700 
3701     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3702       if (C1 == MaxVal)
3703         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3704 
3705       // TODO: Support this for vectors after legalize ops.
3706       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3707         // Canonicalize setgt X, Min --> setne X, Min
3708         if (C1 == MinVal)
3709           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3710 
3711         // If we have setugt X, Max-1, turn it into seteq X, Max
3712         if (C1 == MaxVal-1)
3713           return DAG.getSetCC(dl, VT, N0,
3714                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3715                               ISD::SETEQ);
3716       }
3717     }
3718 
3719     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3720       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3721       if (C1.isNullValue())
3722         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3723                 VT, N0, N1, Cond, DCI, dl))
3724           return CC;
3725     }
3726 
3727     // If we have "setcc X, C0", check to see if we can shrink the immediate
3728     // by changing cc.
3729     // TODO: Support this for vectors after legalize ops.
3730     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3731       // SETUGT X, SINTMAX  -> SETLT X, 0
3732       if (Cond == ISD::SETUGT &&
3733           C1 == APInt::getSignedMaxValue(OperandBitSize))
3734         return DAG.getSetCC(dl, VT, N0,
3735                             DAG.getConstant(0, dl, N1.getValueType()),
3736                             ISD::SETLT);
3737 
3738       // SETULT X, SINTMIN  -> SETGT X, -1
3739       if (Cond == ISD::SETULT &&
3740           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3741         SDValue ConstMinusOne =
3742             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3743                             N1.getValueType());
3744         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3745       }
3746     }
3747   }
3748 
3749   // Back to non-vector simplifications.
3750   // TODO: Can we do these for vector splats?
3751   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3752     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3753     const APInt &C1 = N1C->getAPIntValue();
3754     EVT ShValTy = N0.getValueType();
3755 
3756     // Fold bit comparisons when we can.
3757     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3758         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3759         N0.getOpcode() == ISD::AND) {
3760       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3761         EVT ShiftTy =
3762             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3763         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3764           // Perform the xform if the AND RHS is a single bit.
3765           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3766           if (AndRHS->getAPIntValue().isPowerOf2() &&
3767               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3768             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3769                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3770                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3771           }
3772         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3773           // (X & 8) == 8  -->  (X & 8) >> 3
3774           // Perform the xform if C1 is a single bit.
3775           unsigned ShCt = C1.logBase2();
3776           if (C1.isPowerOf2() &&
3777               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3778             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3779                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3780                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3781           }
3782         }
3783       }
3784     }
3785 
3786     if (C1.getMinSignedBits() <= 64 &&
3787         !isLegalICmpImmediate(C1.getSExtValue())) {
3788       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3789       // (X & -256) == 256 -> (X >> 8) == 1
3790       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3791           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3792         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3793           const APInt &AndRHSC = AndRHS->getAPIntValue();
3794           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3795             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3796             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3797               SDValue Shift =
3798                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3799                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3800               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3801               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3802             }
3803           }
3804         }
3805       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3806                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3807         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3808         // X <  0x100000000 -> (X >> 32) <  1
3809         // X >= 0x100000000 -> (X >> 32) >= 1
3810         // X <= 0x0ffffffff -> (X >> 32) <  1
3811         // X >  0x0ffffffff -> (X >> 32) >= 1
3812         unsigned ShiftBits;
3813         APInt NewC = C1;
3814         ISD::CondCode NewCond = Cond;
3815         if (AdjOne) {
3816           ShiftBits = C1.countTrailingOnes();
3817           NewC = NewC + 1;
3818           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3819         } else {
3820           ShiftBits = C1.countTrailingZeros();
3821         }
3822         NewC.lshrInPlace(ShiftBits);
3823         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3824             isLegalICmpImmediate(NewC.getSExtValue()) &&
3825             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3826           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3827                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3828           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3829           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3830         }
3831       }
3832     }
3833   }
3834 
3835   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3836     auto *CFP = cast<ConstantFPSDNode>(N1);
3837     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3838 
3839     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3840     // constant if knowing that the operand is non-nan is enough.  We prefer to
3841     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3842     // materialize 0.0.
3843     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3844       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3845 
3846     // setcc (fneg x), C -> setcc swap(pred) x, -C
3847     if (N0.getOpcode() == ISD::FNEG) {
3848       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3849       if (DCI.isBeforeLegalizeOps() ||
3850           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3851         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3852         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3853       }
3854     }
3855 
3856     // If the condition is not legal, see if we can find an equivalent one
3857     // which is legal.
3858     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3859       // If the comparison was an awkward floating-point == or != and one of
3860       // the comparison operands is infinity or negative infinity, convert the
3861       // condition to a less-awkward <= or >=.
3862       if (CFP->getValueAPF().isInfinity()) {
3863         if (CFP->getValueAPF().isNegative()) {
3864           if (Cond == ISD::SETOEQ &&
3865               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3866             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3867           if (Cond == ISD::SETUEQ &&
3868               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3869             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3870           if (Cond == ISD::SETUNE &&
3871               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3872             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3873           if (Cond == ISD::SETONE &&
3874               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3875             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3876         } else {
3877           if (Cond == ISD::SETOEQ &&
3878               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3879             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3880           if (Cond == ISD::SETUEQ &&
3881               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3882             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3883           if (Cond == ISD::SETUNE &&
3884               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3885             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3886           if (Cond == ISD::SETONE &&
3887               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3888             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3889         }
3890       }
3891     }
3892   }
3893 
3894   if (N0 == N1) {
3895     // The sext(setcc()) => setcc() optimization relies on the appropriate
3896     // constant being emitted.
3897     assert(!N0.getValueType().isInteger() &&
3898            "Integer types should be handled by FoldSetCC");
3899 
3900     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3901     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3902     if (UOF == 2) // FP operators that are undefined on NaNs.
3903       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3904     if (UOF == unsigned(EqTrue))
3905       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3906     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3907     // if it is not already.
3908     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3909     if (NewCond != Cond &&
3910         (DCI.isBeforeLegalizeOps() ||
3911                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3912       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3913   }
3914 
3915   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3916       N0.getValueType().isInteger()) {
3917     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3918         N0.getOpcode() == ISD::XOR) {
3919       // Simplify (X+Y) == (X+Z) -->  Y == Z
3920       if (N0.getOpcode() == N1.getOpcode()) {
3921         if (N0.getOperand(0) == N1.getOperand(0))
3922           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3923         if (N0.getOperand(1) == N1.getOperand(1))
3924           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3925         if (isCommutativeBinOp(N0.getOpcode())) {
3926           // If X op Y == Y op X, try other combinations.
3927           if (N0.getOperand(0) == N1.getOperand(1))
3928             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3929                                 Cond);
3930           if (N0.getOperand(1) == N1.getOperand(0))
3931             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3932                                 Cond);
3933         }
3934       }
3935 
3936       // If RHS is a legal immediate value for a compare instruction, we need
3937       // to be careful about increasing register pressure needlessly.
3938       bool LegalRHSImm = false;
3939 
3940       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3941         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3942           // Turn (X+C1) == C2 --> X == C2-C1
3943           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3944             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3945                                 DAG.getConstant(RHSC->getAPIntValue()-
3946                                                 LHSR->getAPIntValue(),
3947                                 dl, N0.getValueType()), Cond);
3948           }
3949 
3950           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3951           if (N0.getOpcode() == ISD::XOR)
3952             // If we know that all of the inverted bits are zero, don't bother
3953             // performing the inversion.
3954             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3955               return
3956                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3957                              DAG.getConstant(LHSR->getAPIntValue() ^
3958                                                RHSC->getAPIntValue(),
3959                                              dl, N0.getValueType()),
3960                              Cond);
3961         }
3962 
3963         // Turn (C1-X) == C2 --> X == C1-C2
3964         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3965           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3966             return
3967               DAG.getSetCC(dl, VT, N0.getOperand(1),
3968                            DAG.getConstant(SUBC->getAPIntValue() -
3969                                              RHSC->getAPIntValue(),
3970                                            dl, N0.getValueType()),
3971                            Cond);
3972           }
3973         }
3974 
3975         // Could RHSC fold directly into a compare?
3976         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3977           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3978       }
3979 
3980       // (X+Y) == X --> Y == 0 and similar folds.
3981       // Don't do this if X is an immediate that can fold into a cmp
3982       // instruction and X+Y has other uses. It could be an induction variable
3983       // chain, and the transform would increase register pressure.
3984       if (!LegalRHSImm || N0.hasOneUse())
3985         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3986           return V;
3987     }
3988 
3989     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3990         N1.getOpcode() == ISD::XOR)
3991       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3992         return V;
3993 
3994     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3995       return V;
3996   }
3997 
3998   // Fold remainder of division by a constant.
3999   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4000       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4001     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4002 
4003     // When division is cheap or optimizing for minimum size,
4004     // fall through to DIVREM creation by skipping this fold.
4005     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4006       if (N0.getOpcode() == ISD::UREM) {
4007         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4008           return Folded;
4009       } else if (N0.getOpcode() == ISD::SREM) {
4010         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4011           return Folded;
4012       }
4013     }
4014   }
4015 
4016   // Fold away ALL boolean setcc's.
4017   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4018     SDValue Temp;
4019     switch (Cond) {
4020     default: llvm_unreachable("Unknown integer setcc!");
4021     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4022       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4023       N0 = DAG.getNOT(dl, Temp, OpVT);
4024       if (!DCI.isCalledByLegalizer())
4025         DCI.AddToWorklist(Temp.getNode());
4026       break;
4027     case ISD::SETNE:  // X != Y   -->  (X^Y)
4028       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4029       break;
4030     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4031     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4032       Temp = DAG.getNOT(dl, N0, OpVT);
4033       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4034       if (!DCI.isCalledByLegalizer())
4035         DCI.AddToWorklist(Temp.getNode());
4036       break;
4037     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4038     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4039       Temp = DAG.getNOT(dl, N1, OpVT);
4040       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4041       if (!DCI.isCalledByLegalizer())
4042         DCI.AddToWorklist(Temp.getNode());
4043       break;
4044     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4045     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4046       Temp = DAG.getNOT(dl, N0, OpVT);
4047       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4048       if (!DCI.isCalledByLegalizer())
4049         DCI.AddToWorklist(Temp.getNode());
4050       break;
4051     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4052     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4053       Temp = DAG.getNOT(dl, N1, OpVT);
4054       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4055       break;
4056     }
4057     if (VT.getScalarType() != MVT::i1) {
4058       if (!DCI.isCalledByLegalizer())
4059         DCI.AddToWorklist(N0.getNode());
4060       // FIXME: If running after legalize, we probably can't do this.
4061       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4062       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4063     }
4064     return N0;
4065   }
4066 
4067   // Could not fold it.
4068   return SDValue();
4069 }
4070 
4071 /// Returns true (and the GlobalValue and the offset) if the node is a
4072 /// GlobalAddress + offset.
4073 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4074                                     int64_t &Offset) const {
4075 
4076   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4077 
4078   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4079     GA = GASD->getGlobal();
4080     Offset += GASD->getOffset();
4081     return true;
4082   }
4083 
4084   if (N->getOpcode() == ISD::ADD) {
4085     SDValue N1 = N->getOperand(0);
4086     SDValue N2 = N->getOperand(1);
4087     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4088       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4089         Offset += V->getSExtValue();
4090         return true;
4091       }
4092     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4093       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4094         Offset += V->getSExtValue();
4095         return true;
4096       }
4097     }
4098   }
4099 
4100   return false;
4101 }
4102 
4103 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4104                                           DAGCombinerInfo &DCI) const {
4105   // Default implementation: no optimization.
4106   return SDValue();
4107 }
4108 
4109 //===----------------------------------------------------------------------===//
4110 //  Inline Assembler Implementation Methods
4111 //===----------------------------------------------------------------------===//
4112 
4113 TargetLowering::ConstraintType
4114 TargetLowering::getConstraintType(StringRef Constraint) const {
4115   unsigned S = Constraint.size();
4116 
4117   if (S == 1) {
4118     switch (Constraint[0]) {
4119     default: break;
4120     case 'r':
4121       return C_RegisterClass;
4122     case 'm': // memory
4123     case 'o': // offsetable
4124     case 'V': // not offsetable
4125       return C_Memory;
4126     case 'n': // Simple Integer
4127     case 'E': // Floating Point Constant
4128     case 'F': // Floating Point Constant
4129       return C_Immediate;
4130     case 'i': // Simple Integer or Relocatable Constant
4131     case 's': // Relocatable Constant
4132     case 'p': // Address.
4133     case 'X': // Allow ANY value.
4134     case 'I': // Target registers.
4135     case 'J':
4136     case 'K':
4137     case 'L':
4138     case 'M':
4139     case 'N':
4140     case 'O':
4141     case 'P':
4142     case '<':
4143     case '>':
4144       return C_Other;
4145     }
4146   }
4147 
4148   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4149     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4150       return C_Memory;
4151     return C_Register;
4152   }
4153   return C_Unknown;
4154 }
4155 
4156 /// Try to replace an X constraint, which matches anything, with another that
4157 /// has more specific requirements based on the type of the corresponding
4158 /// operand.
4159 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4160   if (ConstraintVT.isInteger())
4161     return "r";
4162   if (ConstraintVT.isFloatingPoint())
4163     return "f"; // works for many targets
4164   return nullptr;
4165 }
4166 
4167 SDValue TargetLowering::LowerAsmOutputForConstraint(
4168     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4169     SelectionDAG &DAG) const {
4170   return SDValue();
4171 }
4172 
4173 /// Lower the specified operand into the Ops vector.
4174 /// If it is invalid, don't add anything to Ops.
4175 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4176                                                   std::string &Constraint,
4177                                                   std::vector<SDValue> &Ops,
4178                                                   SelectionDAG &DAG) const {
4179 
4180   if (Constraint.length() > 1) return;
4181 
4182   char ConstraintLetter = Constraint[0];
4183   switch (ConstraintLetter) {
4184   default: break;
4185   case 'X':     // Allows any operand; labels (basic block) use this.
4186     if (Op.getOpcode() == ISD::BasicBlock ||
4187         Op.getOpcode() == ISD::TargetBlockAddress) {
4188       Ops.push_back(Op);
4189       return;
4190     }
4191     LLVM_FALLTHROUGH;
4192   case 'i':    // Simple Integer or Relocatable Constant
4193   case 'n':    // Simple Integer
4194   case 's': {  // Relocatable Constant
4195 
4196     GlobalAddressSDNode *GA;
4197     ConstantSDNode *C;
4198     BlockAddressSDNode *BA;
4199     uint64_t Offset = 0;
4200 
4201     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4202     // etc., since getelementpointer is variadic. We can't use
4203     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4204     // while in this case the GA may be furthest from the root node which is
4205     // likely an ISD::ADD.
4206     while (1) {
4207       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4208         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4209                                                  GA->getValueType(0),
4210                                                  Offset + GA->getOffset()));
4211         return;
4212       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4213                  ConstraintLetter != 's') {
4214         // gcc prints these as sign extended.  Sign extend value to 64 bits
4215         // now; without this it would get ZExt'd later in
4216         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4217         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4218         BooleanContent BCont = getBooleanContents(MVT::i64);
4219         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4220                                       : ISD::SIGN_EXTEND;
4221         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4222                                                     : C->getSExtValue();
4223         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4224                                             SDLoc(C), MVT::i64));
4225         return;
4226       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4227                  ConstraintLetter != 'n') {
4228         Ops.push_back(DAG.getTargetBlockAddress(
4229             BA->getBlockAddress(), BA->getValueType(0),
4230             Offset + BA->getOffset(), BA->getTargetFlags()));
4231         return;
4232       } else {
4233         const unsigned OpCode = Op.getOpcode();
4234         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4235           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4236             Op = Op.getOperand(1);
4237           // Subtraction is not commutative.
4238           else if (OpCode == ISD::ADD &&
4239                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4240             Op = Op.getOperand(0);
4241           else
4242             return;
4243           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4244           continue;
4245         }
4246       }
4247       return;
4248     }
4249     break;
4250   }
4251   }
4252 }
4253 
4254 std::pair<unsigned, const TargetRegisterClass *>
4255 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4256                                              StringRef Constraint,
4257                                              MVT VT) const {
4258   if (Constraint.empty() || Constraint[0] != '{')
4259     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4260   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4261 
4262   // Remove the braces from around the name.
4263   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4264 
4265   std::pair<unsigned, const TargetRegisterClass *> R =
4266       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4267 
4268   // Figure out which register class contains this reg.
4269   for (const TargetRegisterClass *RC : RI->regclasses()) {
4270     // If none of the value types for this register class are valid, we
4271     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4272     if (!isLegalRC(*RI, *RC))
4273       continue;
4274 
4275     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4276          I != E; ++I) {
4277       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4278         std::pair<unsigned, const TargetRegisterClass *> S =
4279             std::make_pair(*I, RC);
4280 
4281         // If this register class has the requested value type, return it,
4282         // otherwise keep searching and return the first class found
4283         // if no other is found which explicitly has the requested type.
4284         if (RI->isTypeLegalForClass(*RC, VT))
4285           return S;
4286         if (!R.second)
4287           R = S;
4288       }
4289     }
4290   }
4291 
4292   return R;
4293 }
4294 
4295 //===----------------------------------------------------------------------===//
4296 // Constraint Selection.
4297 
4298 /// Return true of this is an input operand that is a matching constraint like
4299 /// "4".
4300 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4301   assert(!ConstraintCode.empty() && "No known constraint!");
4302   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4303 }
4304 
4305 /// If this is an input matching constraint, this method returns the output
4306 /// operand it matches.
4307 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4308   assert(!ConstraintCode.empty() && "No known constraint!");
4309   return atoi(ConstraintCode.c_str());
4310 }
4311 
4312 /// Split up the constraint string from the inline assembly value into the
4313 /// specific constraints and their prefixes, and also tie in the associated
4314 /// operand values.
4315 /// If this returns an empty vector, and if the constraint string itself
4316 /// isn't empty, there was an error parsing.
4317 TargetLowering::AsmOperandInfoVector
4318 TargetLowering::ParseConstraints(const DataLayout &DL,
4319                                  const TargetRegisterInfo *TRI,
4320                                  ImmutableCallSite CS) const {
4321   /// Information about all of the constraints.
4322   AsmOperandInfoVector ConstraintOperands;
4323   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4324   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4325 
4326   // Do a prepass over the constraints, canonicalizing them, and building up the
4327   // ConstraintOperands list.
4328   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4329   unsigned ResNo = 0; // ResNo - The result number of the next output.
4330 
4331   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4332     ConstraintOperands.emplace_back(std::move(CI));
4333     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4334 
4335     // Update multiple alternative constraint count.
4336     if (OpInfo.multipleAlternatives.size() > maCount)
4337       maCount = OpInfo.multipleAlternatives.size();
4338 
4339     OpInfo.ConstraintVT = MVT::Other;
4340 
4341     // Compute the value type for each operand.
4342     switch (OpInfo.Type) {
4343     case InlineAsm::isOutput:
4344       // Indirect outputs just consume an argument.
4345       if (OpInfo.isIndirect) {
4346         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4347         break;
4348       }
4349 
4350       // The return value of the call is this value.  As such, there is no
4351       // corresponding argument.
4352       assert(!CS.getType()->isVoidTy() &&
4353              "Bad inline asm!");
4354       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4355         OpInfo.ConstraintVT =
4356             getSimpleValueType(DL, STy->getElementType(ResNo));
4357       } else {
4358         assert(ResNo == 0 && "Asm only has one result!");
4359         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4360       }
4361       ++ResNo;
4362       break;
4363     case InlineAsm::isInput:
4364       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4365       break;
4366     case InlineAsm::isClobber:
4367       // Nothing to do.
4368       break;
4369     }
4370 
4371     if (OpInfo.CallOperandVal) {
4372       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4373       if (OpInfo.isIndirect) {
4374         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4375         if (!PtrTy)
4376           report_fatal_error("Indirect operand for inline asm not a pointer!");
4377         OpTy = PtrTy->getElementType();
4378       }
4379 
4380       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4381       if (StructType *STy = dyn_cast<StructType>(OpTy))
4382         if (STy->getNumElements() == 1)
4383           OpTy = STy->getElementType(0);
4384 
4385       // If OpTy is not a single value, it may be a struct/union that we
4386       // can tile with integers.
4387       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4388         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4389         switch (BitSize) {
4390         default: break;
4391         case 1:
4392         case 8:
4393         case 16:
4394         case 32:
4395         case 64:
4396         case 128:
4397           OpInfo.ConstraintVT =
4398               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4399           break;
4400         }
4401       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4402         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4403         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4404       } else {
4405         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4406       }
4407     }
4408   }
4409 
4410   // If we have multiple alternative constraints, select the best alternative.
4411   if (!ConstraintOperands.empty()) {
4412     if (maCount) {
4413       unsigned bestMAIndex = 0;
4414       int bestWeight = -1;
4415       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4416       int weight = -1;
4417       unsigned maIndex;
4418       // Compute the sums of the weights for each alternative, keeping track
4419       // of the best (highest weight) one so far.
4420       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4421         int weightSum = 0;
4422         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4423              cIndex != eIndex; ++cIndex) {
4424           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4425           if (OpInfo.Type == InlineAsm::isClobber)
4426             continue;
4427 
4428           // If this is an output operand with a matching input operand,
4429           // look up the matching input. If their types mismatch, e.g. one
4430           // is an integer, the other is floating point, or their sizes are
4431           // different, flag it as an maCantMatch.
4432           if (OpInfo.hasMatchingInput()) {
4433             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4434             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4435               if ((OpInfo.ConstraintVT.isInteger() !=
4436                    Input.ConstraintVT.isInteger()) ||
4437                   (OpInfo.ConstraintVT.getSizeInBits() !=
4438                    Input.ConstraintVT.getSizeInBits())) {
4439                 weightSum = -1; // Can't match.
4440                 break;
4441               }
4442             }
4443           }
4444           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4445           if (weight == -1) {
4446             weightSum = -1;
4447             break;
4448           }
4449           weightSum += weight;
4450         }
4451         // Update best.
4452         if (weightSum > bestWeight) {
4453           bestWeight = weightSum;
4454           bestMAIndex = maIndex;
4455         }
4456       }
4457 
4458       // Now select chosen alternative in each constraint.
4459       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4460            cIndex != eIndex; ++cIndex) {
4461         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4462         if (cInfo.Type == InlineAsm::isClobber)
4463           continue;
4464         cInfo.selectAlternative(bestMAIndex);
4465       }
4466     }
4467   }
4468 
4469   // Check and hook up tied operands, choose constraint code to use.
4470   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4471        cIndex != eIndex; ++cIndex) {
4472     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4473 
4474     // If this is an output operand with a matching input operand, look up the
4475     // matching input. If their types mismatch, e.g. one is an integer, the
4476     // other is floating point, or their sizes are different, flag it as an
4477     // error.
4478     if (OpInfo.hasMatchingInput()) {
4479       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4480 
4481       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4482         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4483             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4484                                          OpInfo.ConstraintVT);
4485         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4486             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4487                                          Input.ConstraintVT);
4488         if ((OpInfo.ConstraintVT.isInteger() !=
4489              Input.ConstraintVT.isInteger()) ||
4490             (MatchRC.second != InputRC.second)) {
4491           report_fatal_error("Unsupported asm: input constraint"
4492                              " with a matching output constraint of"
4493                              " incompatible type!");
4494         }
4495       }
4496     }
4497   }
4498 
4499   return ConstraintOperands;
4500 }
4501 
4502 /// Return an integer indicating how general CT is.
4503 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4504   switch (CT) {
4505   case TargetLowering::C_Immediate:
4506   case TargetLowering::C_Other:
4507   case TargetLowering::C_Unknown:
4508     return 0;
4509   case TargetLowering::C_Register:
4510     return 1;
4511   case TargetLowering::C_RegisterClass:
4512     return 2;
4513   case TargetLowering::C_Memory:
4514     return 3;
4515   }
4516   llvm_unreachable("Invalid constraint type");
4517 }
4518 
4519 /// Examine constraint type and operand type and determine a weight value.
4520 /// This object must already have been set up with the operand type
4521 /// and the current alternative constraint selected.
4522 TargetLowering::ConstraintWeight
4523   TargetLowering::getMultipleConstraintMatchWeight(
4524     AsmOperandInfo &info, int maIndex) const {
4525   InlineAsm::ConstraintCodeVector *rCodes;
4526   if (maIndex >= (int)info.multipleAlternatives.size())
4527     rCodes = &info.Codes;
4528   else
4529     rCodes = &info.multipleAlternatives[maIndex].Codes;
4530   ConstraintWeight BestWeight = CW_Invalid;
4531 
4532   // Loop over the options, keeping track of the most general one.
4533   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4534     ConstraintWeight weight =
4535       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4536     if (weight > BestWeight)
4537       BestWeight = weight;
4538   }
4539 
4540   return BestWeight;
4541 }
4542 
4543 /// Examine constraint type and operand type and determine a weight value.
4544 /// This object must already have been set up with the operand type
4545 /// and the current alternative constraint selected.
4546 TargetLowering::ConstraintWeight
4547   TargetLowering::getSingleConstraintMatchWeight(
4548     AsmOperandInfo &info, const char *constraint) const {
4549   ConstraintWeight weight = CW_Invalid;
4550   Value *CallOperandVal = info.CallOperandVal;
4551     // If we don't have a value, we can't do a match,
4552     // but allow it at the lowest weight.
4553   if (!CallOperandVal)
4554     return CW_Default;
4555   // Look at the constraint type.
4556   switch (*constraint) {
4557     case 'i': // immediate integer.
4558     case 'n': // immediate integer with a known value.
4559       if (isa<ConstantInt>(CallOperandVal))
4560         weight = CW_Constant;
4561       break;
4562     case 's': // non-explicit intregal immediate.
4563       if (isa<GlobalValue>(CallOperandVal))
4564         weight = CW_Constant;
4565       break;
4566     case 'E': // immediate float if host format.
4567     case 'F': // immediate float.
4568       if (isa<ConstantFP>(CallOperandVal))
4569         weight = CW_Constant;
4570       break;
4571     case '<': // memory operand with autodecrement.
4572     case '>': // memory operand with autoincrement.
4573     case 'm': // memory operand.
4574     case 'o': // offsettable memory operand
4575     case 'V': // non-offsettable memory operand
4576       weight = CW_Memory;
4577       break;
4578     case 'r': // general register.
4579     case 'g': // general register, memory operand or immediate integer.
4580               // note: Clang converts "g" to "imr".
4581       if (CallOperandVal->getType()->isIntegerTy())
4582         weight = CW_Register;
4583       break;
4584     case 'X': // any operand.
4585   default:
4586     weight = CW_Default;
4587     break;
4588   }
4589   return weight;
4590 }
4591 
4592 /// If there are multiple different constraints that we could pick for this
4593 /// operand (e.g. "imr") try to pick the 'best' one.
4594 /// This is somewhat tricky: constraints fall into four classes:
4595 ///    Other         -> immediates and magic values
4596 ///    Register      -> one specific register
4597 ///    RegisterClass -> a group of regs
4598 ///    Memory        -> memory
4599 /// Ideally, we would pick the most specific constraint possible: if we have
4600 /// something that fits into a register, we would pick it.  The problem here
4601 /// is that if we have something that could either be in a register or in
4602 /// memory that use of the register could cause selection of *other*
4603 /// operands to fail: they might only succeed if we pick memory.  Because of
4604 /// this the heuristic we use is:
4605 ///
4606 ///  1) If there is an 'other' constraint, and if the operand is valid for
4607 ///     that constraint, use it.  This makes us take advantage of 'i'
4608 ///     constraints when available.
4609 ///  2) Otherwise, pick the most general constraint present.  This prefers
4610 ///     'm' over 'r', for example.
4611 ///
4612 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4613                              const TargetLowering &TLI,
4614                              SDValue Op, SelectionDAG *DAG) {
4615   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4616   unsigned BestIdx = 0;
4617   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4618   int BestGenerality = -1;
4619 
4620   // Loop over the options, keeping track of the most general one.
4621   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4622     TargetLowering::ConstraintType CType =
4623       TLI.getConstraintType(OpInfo.Codes[i]);
4624 
4625     // Indirect 'other' or 'immediate' constraints are not allowed.
4626     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4627                                CType == TargetLowering::C_Register ||
4628                                CType == TargetLowering::C_RegisterClass))
4629       continue;
4630 
4631     // If this is an 'other' or 'immediate' constraint, see if the operand is
4632     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4633     // the operand is an integer in the range [0..31] we want to use I (saving a
4634     // load of a register), otherwise we must use 'r'.
4635     if ((CType == TargetLowering::C_Other ||
4636          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4637       assert(OpInfo.Codes[i].size() == 1 &&
4638              "Unhandled multi-letter 'other' constraint");
4639       std::vector<SDValue> ResultOps;
4640       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4641                                        ResultOps, *DAG);
4642       if (!ResultOps.empty()) {
4643         BestType = CType;
4644         BestIdx = i;
4645         break;
4646       }
4647     }
4648 
4649     // Things with matching constraints can only be registers, per gcc
4650     // documentation.  This mainly affects "g" constraints.
4651     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4652       continue;
4653 
4654     // This constraint letter is more general than the previous one, use it.
4655     int Generality = getConstraintGenerality(CType);
4656     if (Generality > BestGenerality) {
4657       BestType = CType;
4658       BestIdx = i;
4659       BestGenerality = Generality;
4660     }
4661   }
4662 
4663   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4664   OpInfo.ConstraintType = BestType;
4665 }
4666 
4667 /// Determines the constraint code and constraint type to use for the specific
4668 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4669 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4670                                             SDValue Op,
4671                                             SelectionDAG *DAG) const {
4672   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4673 
4674   // Single-letter constraints ('r') are very common.
4675   if (OpInfo.Codes.size() == 1) {
4676     OpInfo.ConstraintCode = OpInfo.Codes[0];
4677     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4678   } else {
4679     ChooseConstraint(OpInfo, *this, Op, DAG);
4680   }
4681 
4682   // 'X' matches anything.
4683   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4684     // Labels and constants are handled elsewhere ('X' is the only thing
4685     // that matches labels).  For Functions, the type here is the type of
4686     // the result, which is not what we want to look at; leave them alone.
4687     Value *v = OpInfo.CallOperandVal;
4688     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4689       OpInfo.CallOperandVal = v;
4690       return;
4691     }
4692 
4693     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4694       return;
4695 
4696     // Otherwise, try to resolve it to something we know about by looking at
4697     // the actual operand type.
4698     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4699       OpInfo.ConstraintCode = Repl;
4700       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4701     }
4702   }
4703 }
4704 
4705 /// Given an exact SDIV by a constant, create a multiplication
4706 /// with the multiplicative inverse of the constant.
4707 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4708                               const SDLoc &dl, SelectionDAG &DAG,
4709                               SmallVectorImpl<SDNode *> &Created) {
4710   SDValue Op0 = N->getOperand(0);
4711   SDValue Op1 = N->getOperand(1);
4712   EVT VT = N->getValueType(0);
4713   EVT SVT = VT.getScalarType();
4714   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4715   EVT ShSVT = ShVT.getScalarType();
4716 
4717   bool UseSRA = false;
4718   SmallVector<SDValue, 16> Shifts, Factors;
4719 
4720   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4721     if (C->isNullValue())
4722       return false;
4723     APInt Divisor = C->getAPIntValue();
4724     unsigned Shift = Divisor.countTrailingZeros();
4725     if (Shift) {
4726       Divisor.ashrInPlace(Shift);
4727       UseSRA = true;
4728     }
4729     // Calculate the multiplicative inverse, using Newton's method.
4730     APInt t;
4731     APInt Factor = Divisor;
4732     while ((t = Divisor * Factor) != 1)
4733       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4734     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4735     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4736     return true;
4737   };
4738 
4739   // Collect all magic values from the build vector.
4740   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4741     return SDValue();
4742 
4743   SDValue Shift, Factor;
4744   if (VT.isVector()) {
4745     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4746     Factor = DAG.getBuildVector(VT, dl, Factors);
4747   } else {
4748     Shift = Shifts[0];
4749     Factor = Factors[0];
4750   }
4751 
4752   SDValue Res = Op0;
4753 
4754   // Shift the value upfront if it is even, so the LSB is one.
4755   if (UseSRA) {
4756     // TODO: For UDIV use SRL instead of SRA.
4757     SDNodeFlags Flags;
4758     Flags.setExact(true);
4759     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4760     Created.push_back(Res.getNode());
4761   }
4762 
4763   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4764 }
4765 
4766 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4767                               SelectionDAG &DAG,
4768                               SmallVectorImpl<SDNode *> &Created) const {
4769   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4771   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4772     return SDValue(N, 0); // Lower SDIV as SDIV
4773   return SDValue();
4774 }
4775 
4776 /// Given an ISD::SDIV node expressing a divide by constant,
4777 /// return a DAG expression to select that will generate the same value by
4778 /// multiplying by a magic number.
4779 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4780 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4781                                   bool IsAfterLegalization,
4782                                   SmallVectorImpl<SDNode *> &Created) const {
4783   SDLoc dl(N);
4784   EVT VT = N->getValueType(0);
4785   EVT SVT = VT.getScalarType();
4786   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4787   EVT ShSVT = ShVT.getScalarType();
4788   unsigned EltBits = VT.getScalarSizeInBits();
4789 
4790   // Check to see if we can do this.
4791   // FIXME: We should be more aggressive here.
4792   if (!isTypeLegal(VT))
4793     return SDValue();
4794 
4795   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4796   if (N->getFlags().hasExact())
4797     return BuildExactSDIV(*this, N, dl, DAG, Created);
4798 
4799   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4800 
4801   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4802     if (C->isNullValue())
4803       return false;
4804 
4805     const APInt &Divisor = C->getAPIntValue();
4806     APInt::ms magics = Divisor.magic();
4807     int NumeratorFactor = 0;
4808     int ShiftMask = -1;
4809 
4810     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4811       // If d is +1/-1, we just multiply the numerator by +1/-1.
4812       NumeratorFactor = Divisor.getSExtValue();
4813       magics.m = 0;
4814       magics.s = 0;
4815       ShiftMask = 0;
4816     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4817       // If d > 0 and m < 0, add the numerator.
4818       NumeratorFactor = 1;
4819     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4820       // If d < 0 and m > 0, subtract the numerator.
4821       NumeratorFactor = -1;
4822     }
4823 
4824     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4825     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4826     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4827     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4828     return true;
4829   };
4830 
4831   SDValue N0 = N->getOperand(0);
4832   SDValue N1 = N->getOperand(1);
4833 
4834   // Collect the shifts / magic values from each element.
4835   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4836     return SDValue();
4837 
4838   SDValue MagicFactor, Factor, Shift, ShiftMask;
4839   if (VT.isVector()) {
4840     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4841     Factor = DAG.getBuildVector(VT, dl, Factors);
4842     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4843     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4844   } else {
4845     MagicFactor = MagicFactors[0];
4846     Factor = Factors[0];
4847     Shift = Shifts[0];
4848     ShiftMask = ShiftMasks[0];
4849   }
4850 
4851   // Multiply the numerator (operand 0) by the magic value.
4852   // FIXME: We should support doing a MUL in a wider type.
4853   SDValue Q;
4854   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4855                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4856     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4857   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4858                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4859     SDValue LoHi =
4860         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4861     Q = SDValue(LoHi.getNode(), 1);
4862   } else
4863     return SDValue(); // No mulhs or equivalent.
4864   Created.push_back(Q.getNode());
4865 
4866   // (Optionally) Add/subtract the numerator using Factor.
4867   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4868   Created.push_back(Factor.getNode());
4869   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4870   Created.push_back(Q.getNode());
4871 
4872   // Shift right algebraic by shift value.
4873   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4874   Created.push_back(Q.getNode());
4875 
4876   // Extract the sign bit, mask it and add it to the quotient.
4877   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4878   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4879   Created.push_back(T.getNode());
4880   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4881   Created.push_back(T.getNode());
4882   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4883 }
4884 
4885 /// Given an ISD::UDIV node expressing a divide by constant,
4886 /// return a DAG expression to select that will generate the same value by
4887 /// multiplying by a magic number.
4888 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4889 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4890                                   bool IsAfterLegalization,
4891                                   SmallVectorImpl<SDNode *> &Created) const {
4892   SDLoc dl(N);
4893   EVT VT = N->getValueType(0);
4894   EVT SVT = VT.getScalarType();
4895   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4896   EVT ShSVT = ShVT.getScalarType();
4897   unsigned EltBits = VT.getScalarSizeInBits();
4898 
4899   // Check to see if we can do this.
4900   // FIXME: We should be more aggressive here.
4901   if (!isTypeLegal(VT))
4902     return SDValue();
4903 
4904   bool UseNPQ = false;
4905   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4906 
4907   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4908     if (C->isNullValue())
4909       return false;
4910     // FIXME: We should use a narrower constant when the upper
4911     // bits are known to be zero.
4912     APInt Divisor = C->getAPIntValue();
4913     APInt::mu magics = Divisor.magicu();
4914     unsigned PreShift = 0, PostShift = 0;
4915 
4916     // If the divisor is even, we can avoid using the expensive fixup by
4917     // shifting the divided value upfront.
4918     if (magics.a != 0 && !Divisor[0]) {
4919       PreShift = Divisor.countTrailingZeros();
4920       // Get magic number for the shifted divisor.
4921       magics = Divisor.lshr(PreShift).magicu(PreShift);
4922       assert(magics.a == 0 && "Should use cheap fixup now");
4923     }
4924 
4925     APInt Magic = magics.m;
4926 
4927     unsigned SelNPQ;
4928     if (magics.a == 0 || Divisor.isOneValue()) {
4929       assert(magics.s < Divisor.getBitWidth() &&
4930              "We shouldn't generate an undefined shift!");
4931       PostShift = magics.s;
4932       SelNPQ = false;
4933     } else {
4934       PostShift = magics.s - 1;
4935       SelNPQ = true;
4936     }
4937 
4938     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4939     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4940     NPQFactors.push_back(
4941         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4942                                : APInt::getNullValue(EltBits),
4943                         dl, SVT));
4944     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4945     UseNPQ |= SelNPQ;
4946     return true;
4947   };
4948 
4949   SDValue N0 = N->getOperand(0);
4950   SDValue N1 = N->getOperand(1);
4951 
4952   // Collect the shifts/magic values from each element.
4953   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4954     return SDValue();
4955 
4956   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4957   if (VT.isVector()) {
4958     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4959     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4960     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4961     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4962   } else {
4963     PreShift = PreShifts[0];
4964     MagicFactor = MagicFactors[0];
4965     PostShift = PostShifts[0];
4966   }
4967 
4968   SDValue Q = N0;
4969   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4970   Created.push_back(Q.getNode());
4971 
4972   // FIXME: We should support doing a MUL in a wider type.
4973   auto GetMULHU = [&](SDValue X, SDValue Y) {
4974     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4975                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4976       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4977     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4978                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4979       SDValue LoHi =
4980           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4981       return SDValue(LoHi.getNode(), 1);
4982     }
4983     return SDValue(); // No mulhu or equivalent
4984   };
4985 
4986   // Multiply the numerator (operand 0) by the magic value.
4987   Q = GetMULHU(Q, MagicFactor);
4988   if (!Q)
4989     return SDValue();
4990 
4991   Created.push_back(Q.getNode());
4992 
4993   if (UseNPQ) {
4994     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4995     Created.push_back(NPQ.getNode());
4996 
4997     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4998     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4999     if (VT.isVector())
5000       NPQ = GetMULHU(NPQ, NPQFactor);
5001     else
5002       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5003 
5004     Created.push_back(NPQ.getNode());
5005 
5006     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5007     Created.push_back(Q.getNode());
5008   }
5009 
5010   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5011   Created.push_back(Q.getNode());
5012 
5013   SDValue One = DAG.getConstant(1, dl, VT);
5014   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5015   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5016 }
5017 
5018 /// If all values in Values that *don't* match the predicate are same 'splat'
5019 /// value, then replace all values with that splat value.
5020 /// Else, if AlternativeReplacement was provided, then replace all values that
5021 /// do match predicate with AlternativeReplacement value.
5022 static void
5023 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5024                           std::function<bool(SDValue)> Predicate,
5025                           SDValue AlternativeReplacement = SDValue()) {
5026   SDValue Replacement;
5027   // Is there a value for which the Predicate does *NOT* match? What is it?
5028   auto SplatValue = llvm::find_if_not(Values, Predicate);
5029   if (SplatValue != Values.end()) {
5030     // Does Values consist only of SplatValue's and values matching Predicate?
5031     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5032           return Value == *SplatValue || Predicate(Value);
5033         })) // Then we shall replace values matching predicate with SplatValue.
5034       Replacement = *SplatValue;
5035   }
5036   if (!Replacement) {
5037     // Oops, we did not find the "baseline" splat value.
5038     if (!AlternativeReplacement)
5039       return; // Nothing to do.
5040     // Let's replace with provided value then.
5041     Replacement = AlternativeReplacement;
5042   }
5043   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5044 }
5045 
5046 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5047 /// where the divisor is constant and the comparison target is zero,
5048 /// return a DAG expression that will generate the same comparison result
5049 /// using only multiplications, additions and shifts/rotations.
5050 /// Ref: "Hacker's Delight" 10-17.
5051 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5052                                         SDValue CompTargetNode,
5053                                         ISD::CondCode Cond,
5054                                         DAGCombinerInfo &DCI,
5055                                         const SDLoc &DL) const {
5056   SmallVector<SDNode *, 5> Built;
5057   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5058                                          DCI, DL, Built)) {
5059     for (SDNode *N : Built)
5060       DCI.AddToWorklist(N);
5061     return Folded;
5062   }
5063 
5064   return SDValue();
5065 }
5066 
5067 SDValue
5068 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5069                                   SDValue CompTargetNode, ISD::CondCode Cond,
5070                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5071                                   SmallVectorImpl<SDNode *> &Created) const {
5072   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5073   // - D must be constant, with D = D0 * 2^K where D0 is odd
5074   // - P is the multiplicative inverse of D0 modulo 2^W
5075   // - Q = floor(((2^W) - 1) / D)
5076   // where W is the width of the common type of N and D.
5077   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5078          "Only applicable for (in)equality comparisons.");
5079 
5080   SelectionDAG &DAG = DCI.DAG;
5081 
5082   EVT VT = REMNode.getValueType();
5083   EVT SVT = VT.getScalarType();
5084   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5085   EVT ShSVT = ShVT.getScalarType();
5086 
5087   // If MUL is unavailable, we cannot proceed in any case.
5088   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5089     return SDValue();
5090 
5091   bool ComparingWithAllZeros = true;
5092   bool AllComparisonsWithNonZerosAreTautological = true;
5093   bool HadTautologicalLanes = false;
5094   bool AllLanesAreTautological = true;
5095   bool HadEvenDivisor = false;
5096   bool AllDivisorsArePowerOfTwo = true;
5097   bool HadTautologicalInvertedLanes = false;
5098   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5099 
5100   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5101     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5102     if (CDiv->isNullValue())
5103       return false;
5104 
5105     const APInt &D = CDiv->getAPIntValue();
5106     const APInt &Cmp = CCmp->getAPIntValue();
5107 
5108     ComparingWithAllZeros &= Cmp.isNullValue();
5109 
5110     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5111     // if C2 is not less than C1, the comparison is always false.
5112     // But we will only be able to produce the comparison that will give the
5113     // opposive tautological answer. So this lane would need to be fixed up.
5114     bool TautologicalInvertedLane = D.ule(Cmp);
5115     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5116 
5117     // If all lanes are tautological (either all divisors are ones, or divisor
5118     // is not greater than the constant we are comparing with),
5119     // we will prefer to avoid the fold.
5120     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5121     HadTautologicalLanes |= TautologicalLane;
5122     AllLanesAreTautological &= TautologicalLane;
5123 
5124     // If we are comparing with non-zero, we need'll need  to subtract said
5125     // comparison value from the LHS. But there is no point in doing that if
5126     // every lane where we are comparing with non-zero is tautological..
5127     if (!Cmp.isNullValue())
5128       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5129 
5130     // Decompose D into D0 * 2^K
5131     unsigned K = D.countTrailingZeros();
5132     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5133     APInt D0 = D.lshr(K);
5134 
5135     // D is even if it has trailing zeros.
5136     HadEvenDivisor |= (K != 0);
5137     // D is a power-of-two if D0 is one.
5138     // If all divisors are power-of-two, we will prefer to avoid the fold.
5139     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5140 
5141     // P = inv(D0, 2^W)
5142     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5143     unsigned W = D.getBitWidth();
5144     APInt P = D0.zext(W + 1)
5145                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5146                   .trunc(W);
5147     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5148     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5149 
5150     // Q = floor((2^W - 1) u/ D)
5151     // R = ((2^W - 1) u% D)
5152     APInt Q, R;
5153     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5154 
5155     // If we are comparing with zero, then that comparison constant is okay,
5156     // else it may need to be one less than that.
5157     if (Cmp.ugt(R))
5158       Q -= 1;
5159 
5160     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5161            "We are expecting that K is always less than all-ones for ShSVT");
5162 
5163     // If the lane is tautological the result can be constant-folded.
5164     if (TautologicalLane) {
5165       // Set P and K amount to a bogus values so we can try to splat them.
5166       P = 0;
5167       K = -1;
5168       // And ensure that comparison constant is tautological,
5169       // it will always compare true/false.
5170       Q = -1;
5171     }
5172 
5173     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5174     KAmts.push_back(
5175         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5176     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5177     return true;
5178   };
5179 
5180   SDValue N = REMNode.getOperand(0);
5181   SDValue D = REMNode.getOperand(1);
5182 
5183   // Collect the values from each element.
5184   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5185     return SDValue();
5186 
5187   // If all lanes are tautological, the result can be constant-folded.
5188   if (AllLanesAreTautological)
5189     return SDValue();
5190 
5191   // If this is a urem by a powers-of-two, avoid the fold since it can be
5192   // best implemented as a bit test.
5193   if (AllDivisorsArePowerOfTwo)
5194     return SDValue();
5195 
5196   SDValue PVal, KVal, QVal;
5197   if (VT.isVector()) {
5198     if (HadTautologicalLanes) {
5199       // Try to turn PAmts into a splat, since we don't care about the values
5200       // that are currently '0'. If we can't, just keep '0'`s.
5201       turnVectorIntoSplatVector(PAmts, isNullConstant);
5202       // Try to turn KAmts into a splat, since we don't care about the values
5203       // that are currently '-1'. If we can't, change them to '0'`s.
5204       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5205                                 DAG.getConstant(0, DL, ShSVT));
5206     }
5207 
5208     PVal = DAG.getBuildVector(VT, DL, PAmts);
5209     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5210     QVal = DAG.getBuildVector(VT, DL, QAmts);
5211   } else {
5212     PVal = PAmts[0];
5213     KVal = KAmts[0];
5214     QVal = QAmts[0];
5215   }
5216 
5217   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5218     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5219       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5220     assert(CompTargetNode.getValueType() == N.getValueType() &&
5221            "Expecting that the types on LHS and RHS of comparisons match.");
5222     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5223   }
5224 
5225   // (mul N, P)
5226   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5227   Created.push_back(Op0.getNode());
5228 
5229   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5230   // divisors as a performance improvement, since rotating by 0 is a no-op.
5231   if (HadEvenDivisor) {
5232     // We need ROTR to do this.
5233     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5234       return SDValue();
5235     SDNodeFlags Flags;
5236     Flags.setExact(true);
5237     // UREM: (rotr (mul N, P), K)
5238     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5239     Created.push_back(Op0.getNode());
5240   }
5241 
5242   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5243   SDValue NewCC =
5244       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5245                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5246   if (!HadTautologicalInvertedLanes)
5247     return NewCC;
5248 
5249   // If any lanes previously compared always-false, the NewCC will give
5250   // always-true result for them, so we need to fixup those lanes.
5251   // Or the other way around for inequality predicate.
5252   assert(VT.isVector() && "Can/should only get here for vectors.");
5253   Created.push_back(NewCC.getNode());
5254 
5255   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5256   // if C2 is not less than C1, the comparison is always false.
5257   // But we have produced the comparison that will give the
5258   // opposive tautological answer. So these lanes would need to be fixed up.
5259   SDValue TautologicalInvertedChannels =
5260       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5261   Created.push_back(TautologicalInvertedChannels.getNode());
5262 
5263   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5264     // If we have a vector select, let's replace the comparison results in the
5265     // affected lanes with the correct tautological result.
5266     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5267                                               DL, SETCCVT, SETCCVT);
5268     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5269                        Replacement, NewCC);
5270   }
5271 
5272   // Else, we can just invert the comparison result in the appropriate lanes.
5273   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5274     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5275                        TautologicalInvertedChannels);
5276 
5277   return SDValue(); // Don't know how to lower.
5278 }
5279 
5280 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5281 /// where the divisor is constant and the comparison target is zero,
5282 /// return a DAG expression that will generate the same comparison result
5283 /// using only multiplications, additions and shifts/rotations.
5284 /// Ref: "Hacker's Delight" 10-17.
5285 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5286                                         SDValue CompTargetNode,
5287                                         ISD::CondCode Cond,
5288                                         DAGCombinerInfo &DCI,
5289                                         const SDLoc &DL) const {
5290   SmallVector<SDNode *, 7> Built;
5291   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5292                                          DCI, DL, Built)) {
5293     assert(Built.size() <= 7 && "Max size prediction failed.");
5294     for (SDNode *N : Built)
5295       DCI.AddToWorklist(N);
5296     return Folded;
5297   }
5298 
5299   return SDValue();
5300 }
5301 
5302 SDValue
5303 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5304                                   SDValue CompTargetNode, ISD::CondCode Cond,
5305                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5306                                   SmallVectorImpl<SDNode *> &Created) const {
5307   // Fold:
5308   //   (seteq/ne (srem N, D), 0)
5309   // To:
5310   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5311   //
5312   // - D must be constant, with D = D0 * 2^K where D0 is odd
5313   // - P is the multiplicative inverse of D0 modulo 2^W
5314   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5315   // - Q = floor((2 * A) / (2^K))
5316   // where W is the width of the common type of N and D.
5317   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5318          "Only applicable for (in)equality comparisons.");
5319 
5320   SelectionDAG &DAG = DCI.DAG;
5321 
5322   EVT VT = REMNode.getValueType();
5323   EVT SVT = VT.getScalarType();
5324   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5325   EVT ShSVT = ShVT.getScalarType();
5326 
5327   // If MUL is unavailable, we cannot proceed in any case.
5328   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5329     return SDValue();
5330 
5331   // TODO: Could support comparing with non-zero too.
5332   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5333   if (!CompTarget || !CompTarget->isNullValue())
5334     return SDValue();
5335 
5336   bool HadIntMinDivisor = false;
5337   bool HadOneDivisor = false;
5338   bool AllDivisorsAreOnes = true;
5339   bool HadEvenDivisor = false;
5340   bool NeedToApplyOffset = false;
5341   bool AllDivisorsArePowerOfTwo = true;
5342   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5343 
5344   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5345     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5346     if (C->isNullValue())
5347       return false;
5348 
5349     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5350 
5351     // WARNING: this fold is only valid for positive divisors!
5352     APInt D = C->getAPIntValue();
5353     if (D.isNegative())
5354       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5355 
5356     HadIntMinDivisor |= D.isMinSignedValue();
5357 
5358     // If all divisors are ones, we will prefer to avoid the fold.
5359     HadOneDivisor |= D.isOneValue();
5360     AllDivisorsAreOnes &= D.isOneValue();
5361 
5362     // Decompose D into D0 * 2^K
5363     unsigned K = D.countTrailingZeros();
5364     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5365     APInt D0 = D.lshr(K);
5366 
5367     if (!D.isMinSignedValue()) {
5368       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5369       // we don't care about this lane in this fold, we'll special-handle it.
5370       HadEvenDivisor |= (K != 0);
5371     }
5372 
5373     // D is a power-of-two if D0 is one. This includes INT_MIN.
5374     // If all divisors are power-of-two, we will prefer to avoid the fold.
5375     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5376 
5377     // P = inv(D0, 2^W)
5378     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5379     unsigned W = D.getBitWidth();
5380     APInt P = D0.zext(W + 1)
5381                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5382                   .trunc(W);
5383     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5384     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5385 
5386     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5387     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5388     A.clearLowBits(K);
5389 
5390     if (!D.isMinSignedValue()) {
5391       // If divisor INT_MIN, then we don't care about this lane in this fold,
5392       // we'll special-handle it.
5393       NeedToApplyOffset |= A != 0;
5394     }
5395 
5396     // Q = floor((2 * A) / (2^K))
5397     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5398 
5399     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5400            "We are expecting that A is always less than all-ones for SVT");
5401     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5402            "We are expecting that K is always less than all-ones for ShSVT");
5403 
5404     // If the divisor is 1 the result can be constant-folded. Likewise, we
5405     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5406     if (D.isOneValue()) {
5407       // Set P, A and K to a bogus values so we can try to splat them.
5408       P = 0;
5409       A = -1;
5410       K = -1;
5411 
5412       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5413       Q = -1;
5414     }
5415 
5416     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5417     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5418     KAmts.push_back(
5419         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5420     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5421     return true;
5422   };
5423 
5424   SDValue N = REMNode.getOperand(0);
5425   SDValue D = REMNode.getOperand(1);
5426 
5427   // Collect the values from each element.
5428   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5429     return SDValue();
5430 
5431   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5432   if (AllDivisorsAreOnes)
5433     return SDValue();
5434 
5435   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5436   // since it can be best implemented as a bit test.
5437   if (AllDivisorsArePowerOfTwo)
5438     return SDValue();
5439 
5440   SDValue PVal, AVal, KVal, QVal;
5441   if (VT.isVector()) {
5442     if (HadOneDivisor) {
5443       // Try to turn PAmts into a splat, since we don't care about the values
5444       // that are currently '0'. If we can't, just keep '0'`s.
5445       turnVectorIntoSplatVector(PAmts, isNullConstant);
5446       // Try to turn AAmts into a splat, since we don't care about the
5447       // values that are currently '-1'. If we can't, change them to '0'`s.
5448       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5449                                 DAG.getConstant(0, DL, SVT));
5450       // Try to turn KAmts into a splat, since we don't care about the values
5451       // that are currently '-1'. If we can't, change them to '0'`s.
5452       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5453                                 DAG.getConstant(0, DL, ShSVT));
5454     }
5455 
5456     PVal = DAG.getBuildVector(VT, DL, PAmts);
5457     AVal = DAG.getBuildVector(VT, DL, AAmts);
5458     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5459     QVal = DAG.getBuildVector(VT, DL, QAmts);
5460   } else {
5461     PVal = PAmts[0];
5462     AVal = AAmts[0];
5463     KVal = KAmts[0];
5464     QVal = QAmts[0];
5465   }
5466 
5467   // (mul N, P)
5468   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5469   Created.push_back(Op0.getNode());
5470 
5471   if (NeedToApplyOffset) {
5472     // We need ADD to do this.
5473     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5474       return SDValue();
5475 
5476     // (add (mul N, P), A)
5477     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5478     Created.push_back(Op0.getNode());
5479   }
5480 
5481   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5482   // divisors as a performance improvement, since rotating by 0 is a no-op.
5483   if (HadEvenDivisor) {
5484     // We need ROTR to do this.
5485     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5486       return SDValue();
5487     SDNodeFlags Flags;
5488     Flags.setExact(true);
5489     // SREM: (rotr (add (mul N, P), A), K)
5490     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5491     Created.push_back(Op0.getNode());
5492   }
5493 
5494   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5495   SDValue Fold =
5496       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5497                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5498 
5499   // If we didn't have lanes with INT_MIN divisor, then we're done.
5500   if (!HadIntMinDivisor)
5501     return Fold;
5502 
5503   // That fold is only valid for positive divisors. Which effectively means,
5504   // it is invalid for INT_MIN divisors. So if we have such a lane,
5505   // we must fix-up results for said lanes.
5506   assert(VT.isVector() && "Can/should only get here for vectors.");
5507 
5508   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5509       !isOperationLegalOrCustom(ISD::AND, VT) ||
5510       !isOperationLegalOrCustom(Cond, VT) ||
5511       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5512     return SDValue();
5513 
5514   Created.push_back(Fold.getNode());
5515 
5516   SDValue IntMin = DAG.getConstant(
5517       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5518   SDValue IntMax = DAG.getConstant(
5519       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5520   SDValue Zero =
5521       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5522 
5523   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5524   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5525   Created.push_back(DivisorIsIntMin.getNode());
5526 
5527   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5528   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5529   Created.push_back(Masked.getNode());
5530   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5531   Created.push_back(MaskedIsZero.getNode());
5532 
5533   // To produce final result we need to blend 2 vectors: 'SetCC' and
5534   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5535   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5536   // constant-folded, select can get lowered to a shuffle with constant mask.
5537   SDValue Blended =
5538       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5539 
5540   return Blended;
5541 }
5542 
5543 bool TargetLowering::
5544 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5545   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5546     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5547                                 "be a constant integer");
5548     return true;
5549   }
5550 
5551   return false;
5552 }
5553 
5554 TargetLowering::NegatibleCost
5555 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
5556                                  bool LegalOperations, bool ForCodeSize,
5557                                  unsigned Depth) const {
5558   // fneg is removable even if it has multiple uses.
5559   if (Op.getOpcode() == ISD::FNEG)
5560     return NegatibleCost::Cheaper;
5561 
5562   // Don't allow anything with multiple uses unless we know it is free.
5563   EVT VT = Op.getValueType();
5564   const SDNodeFlags Flags = Op->getFlags();
5565   const TargetOptions &Options = DAG.getTarget().Options;
5566   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5567                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5568     return NegatibleCost::Expensive;
5569 
5570   // Don't recurse exponentially.
5571   if (Depth > SelectionDAG::MaxRecursionDepth)
5572     return NegatibleCost::Expensive;
5573 
5574   switch (Op.getOpcode()) {
5575   case ISD::ConstantFP: {
5576     if (!LegalOperations)
5577       return NegatibleCost::Neutral;
5578 
5579     // Don't invert constant FP values after legalization unless the target says
5580     // the negated constant is legal.
5581     if (isOperationLegal(ISD::ConstantFP, VT) ||
5582         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5583                      ForCodeSize))
5584       return NegatibleCost::Neutral;
5585     break;
5586   }
5587   case ISD::BUILD_VECTOR: {
5588     // Only permit BUILD_VECTOR of constants.
5589     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5590           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5591         }))
5592       return NegatibleCost::Expensive;
5593     if (!LegalOperations)
5594       return NegatibleCost::Neutral;
5595     if (isOperationLegal(ISD::ConstantFP, VT) &&
5596         isOperationLegal(ISD::BUILD_VECTOR, VT))
5597       return NegatibleCost::Neutral;
5598     if (llvm::all_of(Op->op_values(), [&](SDValue N) {
5599           return N.isUndef() ||
5600                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5601                               ForCodeSize);
5602         }))
5603       return NegatibleCost::Neutral;
5604     break;
5605   }
5606   case ISD::FADD: {
5607     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5608       return NegatibleCost::Expensive;
5609 
5610     // After operation legalization, it might not be legal to create new FSUBs.
5611     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5612       return NegatibleCost::Expensive;
5613 
5614     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5615     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5616                                         ForCodeSize, Depth + 1);
5617     if (V0 != NegatibleCost::Expensive)
5618       return V0;
5619     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5620     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5621                             Depth + 1);
5622   }
5623   case ISD::FSUB:
5624     // We can't turn -(A-B) into B-A when we honor signed zeros.
5625     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5626       return NegatibleCost::Expensive;
5627 
5628     // fold (fneg (fsub A, B)) -> (fsub B, A)
5629     return NegatibleCost::Neutral;
5630   case ISD::FMUL:
5631   case ISD::FDIV: {
5632     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5633     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5634                                         ForCodeSize, Depth + 1);
5635     if (V0 != NegatibleCost::Expensive)
5636       return V0;
5637 
5638     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5639     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5640       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5641         return NegatibleCost::Expensive;
5642 
5643     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5644                             Depth + 1);
5645   }
5646   case ISD::FMA:
5647   case ISD::FMAD: {
5648     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5649       return NegatibleCost::Expensive;
5650 
5651     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5652     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5653     NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations,
5654                                         ForCodeSize, Depth + 1);
5655     if (NegatibleCost::Expensive == V2)
5656       return NegatibleCost::Expensive;
5657 
5658     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5659     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5660                                         ForCodeSize, Depth + 1);
5661     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5662                                         ForCodeSize, Depth + 1);
5663     NegatibleCost V01 = std::max(V0, V1);
5664     if (V01 == NegatibleCost::Expensive)
5665       return NegatibleCost::Expensive;
5666     return std::max(V01, V2);
5667   }
5668 
5669   case ISD::FP_EXTEND:
5670   case ISD::FP_ROUND:
5671   case ISD::FSIN:
5672     return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5673                             Depth + 1);
5674   }
5675 
5676   return NegatibleCost::Expensive;
5677 }
5678 
5679 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5680                                              bool LegalOperations,
5681                                              bool ForCodeSize,
5682                                              unsigned Depth) const {
5683   // fneg is removable even if it has multiple uses.
5684   if (Op.getOpcode() == ISD::FNEG)
5685     return Op.getOperand(0);
5686 
5687   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5688          "getNegatedExpression doesn't match getNegatibleCost");
5689   const SDNodeFlags Flags = Op->getFlags();
5690 
5691   switch (Op.getOpcode()) {
5692   case ISD::ConstantFP: {
5693     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5694     V.changeSign();
5695     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5696   }
5697   case ISD::BUILD_VECTOR: {
5698     SmallVector<SDValue, 4> Ops;
5699     for (SDValue C : Op->op_values()) {
5700       if (C.isUndef()) {
5701         Ops.push_back(C);
5702         continue;
5703       }
5704       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5705       V.changeSign();
5706       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5707     }
5708     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5709   }
5710   case ISD::FADD: {
5711     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5712             Flags.hasNoSignedZeros()) &&
5713            "Expected NSZ fp-flag");
5714 
5715     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5716     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5717                                         ForCodeSize, Depth + 1);
5718     if (V0 != NegatibleCost::Expensive)
5719       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5720                          getNegatedExpression(Op.getOperand(0), DAG,
5721                                               LegalOperations, ForCodeSize,
5722                                               Depth + 1),
5723                          Op.getOperand(1), Flags);
5724     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5725     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5726                        getNegatedExpression(Op.getOperand(1), DAG,
5727                                             LegalOperations, ForCodeSize,
5728                                             Depth + 1),
5729                        Op.getOperand(0), Flags);
5730   }
5731   case ISD::FSUB:
5732     // fold (fneg (fsub 0, B)) -> B
5733     if (ConstantFPSDNode *N0CFP =
5734             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5735       if (N0CFP->isZero())
5736         return Op.getOperand(1);
5737 
5738     // fold (fneg (fsub A, B)) -> (fsub B, A)
5739     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5740                        Op.getOperand(1), Op.getOperand(0), Flags);
5741 
5742   case ISD::FMUL:
5743   case ISD::FDIV: {
5744     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5745     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5746                                         ForCodeSize, Depth + 1);
5747     if (V0 != NegatibleCost::Expensive)
5748       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5749                          getNegatedExpression(Op.getOperand(0), DAG,
5750                                               LegalOperations, ForCodeSize,
5751                                               Depth + 1),
5752                          Op.getOperand(1), Flags);
5753 
5754     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5755     return DAG.getNode(
5756         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5757         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5758                              ForCodeSize, Depth + 1),
5759         Flags);
5760   }
5761   case ISD::FMA:
5762   case ISD::FMAD: {
5763     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5764             Flags.hasNoSignedZeros()) &&
5765            "Expected NSZ fp-flag");
5766 
5767     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5768                                         ForCodeSize, Depth + 1);
5769 
5770     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5771                                         ForCodeSize, Depth + 1);
5772     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5773                                         ForCodeSize, Depth + 1);
5774     // TODO: This is a hack. It is possible that costs have changed between now
5775     //       and the initial calls to getNegatibleCost(). That is because we
5776     //       are rewriting the expression, and that may change the number of
5777     //       uses (and therefore the cost) of values. If the negation costs are
5778     //       equal, only negate this value if it is a constant. Otherwise, try
5779     //       operand 1. A better fix would eliminate uses as a cost factor or
5780     //       track the change in uses as we rewrite the expression.
5781     if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) {
5782       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5783       SDValue Neg0 = getNegatedExpression(
5784           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5785       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5786                          Op.getOperand(1), Neg2, Flags);
5787     }
5788 
5789     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5790     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5791                                         ForCodeSize, Depth + 1);
5792     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5793                        Op.getOperand(0), Neg1, Neg2, Flags);
5794   }
5795 
5796   case ISD::FP_EXTEND:
5797   case ISD::FSIN:
5798     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5799                        getNegatedExpression(Op.getOperand(0), DAG,
5800                                             LegalOperations, ForCodeSize,
5801                                             Depth + 1));
5802   case ISD::FP_ROUND:
5803     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5804                        getNegatedExpression(Op.getOperand(0), DAG,
5805                                             LegalOperations, ForCodeSize,
5806                                             Depth + 1),
5807                        Op.getOperand(1));
5808   }
5809 
5810   llvm_unreachable("Unknown code");
5811 }
5812 
5813 //===----------------------------------------------------------------------===//
5814 // Legalization Utilities
5815 //===----------------------------------------------------------------------===//
5816 
5817 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5818                                     SDValue LHS, SDValue RHS,
5819                                     SmallVectorImpl<SDValue> &Result,
5820                                     EVT HiLoVT, SelectionDAG &DAG,
5821                                     MulExpansionKind Kind, SDValue LL,
5822                                     SDValue LH, SDValue RL, SDValue RH) const {
5823   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5824          Opcode == ISD::SMUL_LOHI);
5825 
5826   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5827                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5828   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5829                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5830   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5831                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5832   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5833                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5834 
5835   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5836     return false;
5837 
5838   unsigned OuterBitSize = VT.getScalarSizeInBits();
5839   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5840   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5841   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5842 
5843   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5844   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5845          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5846 
5847   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5848   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5849                           bool Signed) -> bool {
5850     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5851       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5852       Hi = SDValue(Lo.getNode(), 1);
5853       return true;
5854     }
5855     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5856       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5857       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5858       return true;
5859     }
5860     return false;
5861   };
5862 
5863   SDValue Lo, Hi;
5864 
5865   if (!LL.getNode() && !RL.getNode() &&
5866       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5867     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5868     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5869   }
5870 
5871   if (!LL.getNode())
5872     return false;
5873 
5874   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5875   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5876       DAG.MaskedValueIsZero(RHS, HighMask)) {
5877     // The inputs are both zero-extended.
5878     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5879       Result.push_back(Lo);
5880       Result.push_back(Hi);
5881       if (Opcode != ISD::MUL) {
5882         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5883         Result.push_back(Zero);
5884         Result.push_back(Zero);
5885       }
5886       return true;
5887     }
5888   }
5889 
5890   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5891       RHSSB > InnerBitSize) {
5892     // The input values are both sign-extended.
5893     // TODO non-MUL case?
5894     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5895       Result.push_back(Lo);
5896       Result.push_back(Hi);
5897       return true;
5898     }
5899   }
5900 
5901   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5902   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5903   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5904     // FIXME getShiftAmountTy does not always return a sensible result when VT
5905     // is an illegal type, and so the type may be too small to fit the shift
5906     // amount. Override it with i32. The shift will have to be legalized.
5907     ShiftAmountTy = MVT::i32;
5908   }
5909   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5910 
5911   if (!LH.getNode() && !RH.getNode() &&
5912       isOperationLegalOrCustom(ISD::SRL, VT) &&
5913       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5914     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5915     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5916     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5917     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5918   }
5919 
5920   if (!LH.getNode())
5921     return false;
5922 
5923   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5924     return false;
5925 
5926   Result.push_back(Lo);
5927 
5928   if (Opcode == ISD::MUL) {
5929     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5930     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5931     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5932     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5933     Result.push_back(Hi);
5934     return true;
5935   }
5936 
5937   // Compute the full width result.
5938   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5939     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5940     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5941     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5942     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5943   };
5944 
5945   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5946   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5947     return false;
5948 
5949   // This is effectively the add part of a multiply-add of half-sized operands,
5950   // so it cannot overflow.
5951   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5952 
5953   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5954     return false;
5955 
5956   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5957   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5958 
5959   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5960                   isOperationLegalOrCustom(ISD::ADDE, VT));
5961   if (UseGlue)
5962     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5963                        Merge(Lo, Hi));
5964   else
5965     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5966                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5967 
5968   SDValue Carry = Next.getValue(1);
5969   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5970   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5971 
5972   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5973     return false;
5974 
5975   if (UseGlue)
5976     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5977                      Carry);
5978   else
5979     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5980                      Zero, Carry);
5981 
5982   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5983 
5984   if (Opcode == ISD::SMUL_LOHI) {
5985     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5986                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5987     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5988 
5989     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5990                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5991     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5992   }
5993 
5994   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5995   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5996   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5997   return true;
5998 }
5999 
6000 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6001                                SelectionDAG &DAG, MulExpansionKind Kind,
6002                                SDValue LL, SDValue LH, SDValue RL,
6003                                SDValue RH) const {
6004   SmallVector<SDValue, 2> Result;
6005   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
6006                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6007                            DAG, Kind, LL, LH, RL, RH);
6008   if (Ok) {
6009     assert(Result.size() == 2);
6010     Lo = Result[0];
6011     Hi = Result[1];
6012   }
6013   return Ok;
6014 }
6015 
6016 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6017                                        SelectionDAG &DAG) const {
6018   EVT VT = Node->getValueType(0);
6019 
6020   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6021                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6022                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6023                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6024     return false;
6025 
6026   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6027   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6028   SDValue X = Node->getOperand(0);
6029   SDValue Y = Node->getOperand(1);
6030   SDValue Z = Node->getOperand(2);
6031 
6032   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6033   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6034   SDLoc DL(SDValue(Node, 0));
6035 
6036   EVT ShVT = Z.getValueType();
6037   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6038   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6039 
6040   SDValue ShAmt;
6041   if (isPowerOf2_32(EltSizeInBits)) {
6042     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6043     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6044   } else {
6045     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6046   }
6047 
6048   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6049   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6050   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6051   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6052 
6053   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6054   // and that is undefined. We must compare and select to avoid UB.
6055   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6056 
6057   // For fshl, 0-shift returns the 1st arg (X).
6058   // For fshr, 0-shift returns the 2nd arg (Y).
6059   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6060   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6061   return true;
6062 }
6063 
6064 // TODO: Merge with expandFunnelShift.
6065 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6066                                SelectionDAG &DAG) const {
6067   EVT VT = Node->getValueType(0);
6068   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6069   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6070   SDValue Op0 = Node->getOperand(0);
6071   SDValue Op1 = Node->getOperand(1);
6072   SDLoc DL(SDValue(Node, 0));
6073 
6074   EVT ShVT = Op1.getValueType();
6075   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6076 
6077   // If a rotate in the other direction is legal, use it.
6078   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6079   if (isOperationLegal(RevRot, VT)) {
6080     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6081     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6082     return true;
6083   }
6084 
6085   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6086                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6087                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6088                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6089                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6090     return false;
6091 
6092   // Otherwise,
6093   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6094   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6095   //
6096   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6097          "Expecting the type bitwidth to be a power of 2");
6098   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6099   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6100   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6101   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6102   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6103   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6104   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6105                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6106   return true;
6107 }
6108 
6109 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6110                                       SelectionDAG &DAG) const {
6111   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6112   SDValue Src = Node->getOperand(OpNo);
6113   EVT SrcVT = Src.getValueType();
6114   EVT DstVT = Node->getValueType(0);
6115   SDLoc dl(SDValue(Node, 0));
6116 
6117   // FIXME: Only f32 to i64 conversions are supported.
6118   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6119     return false;
6120 
6121   if (Node->isStrictFPOpcode())
6122     // When a NaN is converted to an integer a trap is allowed. We can't
6123     // use this expansion here because it would eliminate that trap. Other
6124     // traps are also allowed and cannot be eliminated. See
6125     // IEEE 754-2008 sec 5.8.
6126     return false;
6127 
6128   // Expand f32 -> i64 conversion
6129   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6130   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6131   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6132   EVT IntVT = SrcVT.changeTypeToInteger();
6133   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6134 
6135   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6136   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6137   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6138   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6139   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6140   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6141 
6142   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6143 
6144   SDValue ExponentBits = DAG.getNode(
6145       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6146       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6147   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6148 
6149   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6150                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6151                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6152   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6153 
6154   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6155                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6156                           DAG.getConstant(0x00800000, dl, IntVT));
6157 
6158   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6159 
6160   R = DAG.getSelectCC(
6161       dl, Exponent, ExponentLoBit,
6162       DAG.getNode(ISD::SHL, dl, DstVT, R,
6163                   DAG.getZExtOrTrunc(
6164                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6165                       dl, IntShVT)),
6166       DAG.getNode(ISD::SRL, dl, DstVT, R,
6167                   DAG.getZExtOrTrunc(
6168                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6169                       dl, IntShVT)),
6170       ISD::SETGT);
6171 
6172   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6173                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6174 
6175   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6176                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6177   return true;
6178 }
6179 
6180 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6181                                       SDValue &Chain,
6182                                       SelectionDAG &DAG) const {
6183   SDLoc dl(SDValue(Node, 0));
6184   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6185   SDValue Src = Node->getOperand(OpNo);
6186 
6187   EVT SrcVT = Src.getValueType();
6188   EVT DstVT = Node->getValueType(0);
6189   EVT SetCCVT =
6190       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6191   EVT DstSetCCVT =
6192       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6193 
6194   // Only expand vector types if we have the appropriate vector bit operations.
6195   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6196                                                    ISD::FP_TO_SINT;
6197   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6198                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6199     return false;
6200 
6201   // If the maximum float value is smaller then the signed integer range,
6202   // the destination signmask can't be represented by the float, so we can
6203   // just use FP_TO_SINT directly.
6204   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6205   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6206   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6207   if (APFloat::opOverflow &
6208       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6209     if (Node->isStrictFPOpcode()) {
6210       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6211                            { Node->getOperand(0), Src });
6212       Chain = Result.getValue(1);
6213     } else
6214       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6215     return true;
6216   }
6217 
6218   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6219   SDValue Sel;
6220 
6221   if (Node->isStrictFPOpcode()) {
6222     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6223                        Node->getOperand(0), /*IsSignaling*/ true);
6224     Chain = Sel.getValue(1);
6225   } else {
6226     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6227   }
6228 
6229   bool Strict = Node->isStrictFPOpcode() ||
6230                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6231 
6232   if (Strict) {
6233     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6234     // signmask then offset (the result of which should be fully representable).
6235     // Sel = Src < 0x8000000000000000
6236     // FltOfs = select Sel, 0, 0x8000000000000000
6237     // IntOfs = select Sel, 0, 0x8000000000000000
6238     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6239 
6240     // TODO: Should any fast-math-flags be set for the FSUB?
6241     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6242                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6243     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6244     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6245                                    DAG.getConstant(0, dl, DstVT),
6246                                    DAG.getConstant(SignMask, dl, DstVT));
6247     SDValue SInt;
6248     if (Node->isStrictFPOpcode()) {
6249       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6250                                 { Chain, Src, FltOfs });
6251       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6252                          { Val.getValue(1), Val });
6253       Chain = SInt.getValue(1);
6254     } else {
6255       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6256       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6257     }
6258     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6259   } else {
6260     // Expand based on maximum range of FP_TO_SINT:
6261     // True = fp_to_sint(Src)
6262     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6263     // Result = select (Src < 0x8000000000000000), True, False
6264 
6265     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6266     // TODO: Should any fast-math-flags be set for the FSUB?
6267     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6268                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6269     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6270                         DAG.getConstant(SignMask, dl, DstVT));
6271     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6272     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6273   }
6274   return true;
6275 }
6276 
6277 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6278                                       SDValue &Chain,
6279                                       SelectionDAG &DAG) const {
6280   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6281   SDValue Src = Node->getOperand(OpNo);
6282   EVT SrcVT = Src.getValueType();
6283   EVT DstVT = Node->getValueType(0);
6284 
6285   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6286     return false;
6287 
6288   // Only expand vector types if we have the appropriate vector bit operations.
6289   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6290                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6291                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6292                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6293                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6294     return false;
6295 
6296   SDLoc dl(SDValue(Node, 0));
6297   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6298 
6299   // Implementation of unsigned i64 to f64 following the algorithm in
6300   // __floatundidf in compiler_rt. This implementation has the advantage
6301   // of performing rounding correctly, both in the default rounding mode
6302   // and in all alternate rounding modes.
6303   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6304   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6305       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6306   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6307   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6308   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6309 
6310   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6311   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6312   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6313   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6314   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6315   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6316   if (Node->isStrictFPOpcode()) {
6317     SDValue HiSub =
6318         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6319                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6320     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6321                          {HiSub.getValue(1), LoFlt, HiSub});
6322     Chain = Result.getValue(1);
6323   } else {
6324     SDValue HiSub =
6325         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6326     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6327   }
6328   return true;
6329 }
6330 
6331 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6332                                               SelectionDAG &DAG) const {
6333   SDLoc dl(Node);
6334   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6335     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6336   EVT VT = Node->getValueType(0);
6337   if (isOperationLegalOrCustom(NewOp, VT)) {
6338     SDValue Quiet0 = Node->getOperand(0);
6339     SDValue Quiet1 = Node->getOperand(1);
6340 
6341     if (!Node->getFlags().hasNoNaNs()) {
6342       // Insert canonicalizes if it's possible we need to quiet to get correct
6343       // sNaN behavior.
6344       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6345         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6346                              Node->getFlags());
6347       }
6348       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6349         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6350                              Node->getFlags());
6351       }
6352     }
6353 
6354     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6355   }
6356 
6357   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6358   // instead if there are no NaNs.
6359   if (Node->getFlags().hasNoNaNs()) {
6360     unsigned IEEE2018Op =
6361         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6362     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6363       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6364                          Node->getOperand(1), Node->getFlags());
6365     }
6366   }
6367 
6368   // If none of the above worked, but there are no NaNs, then expand to
6369   // a compare/select sequence.  This is required for correctness since
6370   // InstCombine might have canonicalized a fcmp+select sequence to a
6371   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6372   // expansion to libcall, we might introduce a link-time dependency
6373   // on libm into a file that originally did not have one.
6374   if (Node->getFlags().hasNoNaNs()) {
6375     ISD::CondCode Pred =
6376         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6377     SDValue Op1 = Node->getOperand(0);
6378     SDValue Op2 = Node->getOperand(1);
6379     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6380     // Copy FMF flags, but always set the no-signed-zeros flag
6381     // as this is implied by the FMINNUM/FMAXNUM semantics.
6382     SDNodeFlags Flags = Node->getFlags();
6383     Flags.setNoSignedZeros(true);
6384     SelCC->setFlags(Flags);
6385     return SelCC;
6386   }
6387 
6388   return SDValue();
6389 }
6390 
6391 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6392                                  SelectionDAG &DAG) const {
6393   SDLoc dl(Node);
6394   EVT VT = Node->getValueType(0);
6395   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6396   SDValue Op = Node->getOperand(0);
6397   unsigned Len = VT.getScalarSizeInBits();
6398   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6399 
6400   // TODO: Add support for irregular type lengths.
6401   if (!(Len <= 128 && Len % 8 == 0))
6402     return false;
6403 
6404   // Only expand vector types if we have the appropriate vector bit operations.
6405   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6406                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6407                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6408                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6409                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6410     return false;
6411 
6412   // This is the "best" algorithm from
6413   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6414   SDValue Mask55 =
6415       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6416   SDValue Mask33 =
6417       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6418   SDValue Mask0F =
6419       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6420   SDValue Mask01 =
6421       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6422 
6423   // v = v - ((v >> 1) & 0x55555555...)
6424   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6425                    DAG.getNode(ISD::AND, dl, VT,
6426                                DAG.getNode(ISD::SRL, dl, VT, Op,
6427                                            DAG.getConstant(1, dl, ShVT)),
6428                                Mask55));
6429   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6430   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6431                    DAG.getNode(ISD::AND, dl, VT,
6432                                DAG.getNode(ISD::SRL, dl, VT, Op,
6433                                            DAG.getConstant(2, dl, ShVT)),
6434                                Mask33));
6435   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6436   Op = DAG.getNode(ISD::AND, dl, VT,
6437                    DAG.getNode(ISD::ADD, dl, VT, Op,
6438                                DAG.getNode(ISD::SRL, dl, VT, Op,
6439                                            DAG.getConstant(4, dl, ShVT))),
6440                    Mask0F);
6441   // v = (v * 0x01010101...) >> (Len - 8)
6442   if (Len > 8)
6443     Op =
6444         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6445                     DAG.getConstant(Len - 8, dl, ShVT));
6446 
6447   Result = Op;
6448   return true;
6449 }
6450 
6451 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6452                                 SelectionDAG &DAG) const {
6453   SDLoc dl(Node);
6454   EVT VT = Node->getValueType(0);
6455   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6456   SDValue Op = Node->getOperand(0);
6457   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6458 
6459   // If the non-ZERO_UNDEF version is supported we can use that instead.
6460   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6461       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6462     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6463     return true;
6464   }
6465 
6466   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6467   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6468     EVT SetCCVT =
6469         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6470     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6471     SDValue Zero = DAG.getConstant(0, dl, VT);
6472     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6473     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6474                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6475     return true;
6476   }
6477 
6478   // Only expand vector types if we have the appropriate vector bit operations.
6479   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6480                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6481                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6482                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6483     return false;
6484 
6485   // for now, we do this:
6486   // x = x | (x >> 1);
6487   // x = x | (x >> 2);
6488   // ...
6489   // x = x | (x >>16);
6490   // x = x | (x >>32); // for 64-bit input
6491   // return popcount(~x);
6492   //
6493   // Ref: "Hacker's Delight" by Henry Warren
6494   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6495     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6496     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6497                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6498   }
6499   Op = DAG.getNOT(dl, Op, VT);
6500   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6501   return true;
6502 }
6503 
6504 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6505                                 SelectionDAG &DAG) const {
6506   SDLoc dl(Node);
6507   EVT VT = Node->getValueType(0);
6508   SDValue Op = Node->getOperand(0);
6509   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6510 
6511   // If the non-ZERO_UNDEF version is supported we can use that instead.
6512   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6513       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6514     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6515     return true;
6516   }
6517 
6518   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6519   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6520     EVT SetCCVT =
6521         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6522     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6523     SDValue Zero = DAG.getConstant(0, dl, VT);
6524     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6525     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6526                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6527     return true;
6528   }
6529 
6530   // Only expand vector types if we have the appropriate vector bit operations.
6531   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6532                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6533                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6534                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6535                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6536                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6537     return false;
6538 
6539   // for now, we use: { return popcount(~x & (x - 1)); }
6540   // unless the target has ctlz but not ctpop, in which case we use:
6541   // { return 32 - nlz(~x & (x-1)); }
6542   // Ref: "Hacker's Delight" by Henry Warren
6543   SDValue Tmp = DAG.getNode(
6544       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6545       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6546 
6547   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6548   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6549     Result =
6550         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6551                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6552     return true;
6553   }
6554 
6555   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6556   return true;
6557 }
6558 
6559 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6560                                SelectionDAG &DAG) const {
6561   SDLoc dl(N);
6562   EVT VT = N->getValueType(0);
6563   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6564   SDValue Op = N->getOperand(0);
6565 
6566   // Only expand vector types if we have the appropriate vector operations.
6567   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6568                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6569                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6570     return false;
6571 
6572   SDValue Shift =
6573       DAG.getNode(ISD::SRA, dl, VT, Op,
6574                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6575   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6576   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6577   return true;
6578 }
6579 
6580 std::pair<SDValue, SDValue>
6581 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6582                                     SelectionDAG &DAG) const {
6583   SDLoc SL(LD);
6584   SDValue Chain = LD->getChain();
6585   SDValue BasePTR = LD->getBasePtr();
6586   EVT SrcVT = LD->getMemoryVT();
6587   ISD::LoadExtType ExtType = LD->getExtensionType();
6588 
6589   unsigned NumElem = SrcVT.getVectorNumElements();
6590 
6591   EVT SrcEltVT = SrcVT.getScalarType();
6592   EVT DstEltVT = LD->getValueType(0).getScalarType();
6593 
6594   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6595   assert(SrcEltVT.isByteSized());
6596 
6597   SmallVector<SDValue, 8> Vals;
6598   SmallVector<SDValue, 8> LoadChains;
6599 
6600   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6601     SDValue ScalarLoad =
6602         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6603                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6604                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6605                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6606 
6607     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6608 
6609     Vals.push_back(ScalarLoad.getValue(0));
6610     LoadChains.push_back(ScalarLoad.getValue(1));
6611   }
6612 
6613   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6614   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6615 
6616   return std::make_pair(Value, NewChain);
6617 }
6618 
6619 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6620                                              SelectionDAG &DAG) const {
6621   SDLoc SL(ST);
6622 
6623   SDValue Chain = ST->getChain();
6624   SDValue BasePtr = ST->getBasePtr();
6625   SDValue Value = ST->getValue();
6626   EVT StVT = ST->getMemoryVT();
6627 
6628   // The type of the data we want to save
6629   EVT RegVT = Value.getValueType();
6630   EVT RegSclVT = RegVT.getScalarType();
6631 
6632   // The type of data as saved in memory.
6633   EVT MemSclVT = StVT.getScalarType();
6634 
6635   unsigned NumElem = StVT.getVectorNumElements();
6636 
6637   // A vector must always be stored in memory as-is, i.e. without any padding
6638   // between the elements, since various code depend on it, e.g. in the
6639   // handling of a bitcast of a vector type to int, which may be done with a
6640   // vector store followed by an integer load. A vector that does not have
6641   // elements that are byte-sized must therefore be stored as an integer
6642   // built out of the extracted vector elements.
6643   if (!MemSclVT.isByteSized()) {
6644     unsigned NumBits = StVT.getSizeInBits();
6645     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6646 
6647     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6648 
6649     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6650       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6651                                 DAG.getVectorIdxConstant(Idx, SL));
6652       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6653       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6654       unsigned ShiftIntoIdx =
6655           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6656       SDValue ShiftAmount =
6657           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6658       SDValue ShiftedElt =
6659           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6660       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6661     }
6662 
6663     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6664                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6665                         ST->getAAInfo());
6666   }
6667 
6668   // Store Stride in bytes
6669   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6670   assert(Stride && "Zero stride!");
6671   // Extract each of the elements from the original vector and save them into
6672   // memory individually.
6673   SmallVector<SDValue, 8> Stores;
6674   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6675     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6676                               DAG.getVectorIdxConstant(Idx, SL));
6677 
6678     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6679 
6680     // This scalar TruncStore may be illegal, but we legalize it later.
6681     SDValue Store = DAG.getTruncStore(
6682         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6683         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6684         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6685 
6686     Stores.push_back(Store);
6687   }
6688 
6689   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6690 }
6691 
6692 std::pair<SDValue, SDValue>
6693 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6694   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6695          "unaligned indexed loads not implemented!");
6696   SDValue Chain = LD->getChain();
6697   SDValue Ptr = LD->getBasePtr();
6698   EVT VT = LD->getValueType(0);
6699   EVT LoadedVT = LD->getMemoryVT();
6700   SDLoc dl(LD);
6701   auto &MF = DAG.getMachineFunction();
6702 
6703   if (VT.isFloatingPoint() || VT.isVector()) {
6704     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6705     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6706       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6707           LoadedVT.isVector()) {
6708         // Scalarize the load and let the individual components be handled.
6709         return scalarizeVectorLoad(LD, DAG);
6710       }
6711 
6712       // Expand to a (misaligned) integer load of the same size,
6713       // then bitconvert to floating point or vector.
6714       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6715                                     LD->getMemOperand());
6716       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6717       if (LoadedVT != VT)
6718         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6719                              ISD::ANY_EXTEND, dl, VT, Result);
6720 
6721       return std::make_pair(Result, newLoad.getValue(1));
6722     }
6723 
6724     // Copy the value to a (aligned) stack slot using (unaligned) integer
6725     // loads and stores, then do a (aligned) load from the stack slot.
6726     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6727     unsigned LoadedBytes = LoadedVT.getStoreSize();
6728     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6729     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6730 
6731     // Make sure the stack slot is also aligned for the register type.
6732     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6733     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6734     SmallVector<SDValue, 8> Stores;
6735     SDValue StackPtr = StackBase;
6736     unsigned Offset = 0;
6737 
6738     EVT PtrVT = Ptr.getValueType();
6739     EVT StackPtrVT = StackPtr.getValueType();
6740 
6741     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6742     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6743 
6744     // Do all but one copies using the full register width.
6745     for (unsigned i = 1; i < NumRegs; i++) {
6746       // Load one integer register's worth from the original location.
6747       SDValue Load = DAG.getLoad(
6748           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6749           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6750           LD->getAAInfo());
6751       // Follow the load with a store to the stack slot.  Remember the store.
6752       Stores.push_back(DAG.getStore(
6753           Load.getValue(1), dl, Load, StackPtr,
6754           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6755       // Increment the pointers.
6756       Offset += RegBytes;
6757 
6758       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6759       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6760     }
6761 
6762     // The last copy may be partial.  Do an extending load.
6763     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6764                                   8 * (LoadedBytes - Offset));
6765     SDValue Load =
6766         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6767                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6768                        MinAlign(LD->getAlignment(), Offset),
6769                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6770     // Follow the load with a store to the stack slot.  Remember the store.
6771     // On big-endian machines this requires a truncating store to ensure
6772     // that the bits end up in the right place.
6773     Stores.push_back(DAG.getTruncStore(
6774         Load.getValue(1), dl, Load, StackPtr,
6775         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6776 
6777     // The order of the stores doesn't matter - say it with a TokenFactor.
6778     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6779 
6780     // Finally, perform the original load only redirected to the stack slot.
6781     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6782                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6783                           LoadedVT);
6784 
6785     // Callers expect a MERGE_VALUES node.
6786     return std::make_pair(Load, TF);
6787   }
6788 
6789   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6790          "Unaligned load of unsupported type.");
6791 
6792   // Compute the new VT that is half the size of the old one.  This is an
6793   // integer MVT.
6794   unsigned NumBits = LoadedVT.getSizeInBits();
6795   EVT NewLoadedVT;
6796   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6797   NumBits >>= 1;
6798 
6799   unsigned Alignment = LD->getAlignment();
6800   unsigned IncrementSize = NumBits / 8;
6801   ISD::LoadExtType HiExtType = LD->getExtensionType();
6802 
6803   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6804   if (HiExtType == ISD::NON_EXTLOAD)
6805     HiExtType = ISD::ZEXTLOAD;
6806 
6807   // Load the value in two parts
6808   SDValue Lo, Hi;
6809   if (DAG.getDataLayout().isLittleEndian()) {
6810     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6811                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6812                         LD->getAAInfo());
6813 
6814     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6815     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6816                         LD->getPointerInfo().getWithOffset(IncrementSize),
6817                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6818                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6819   } else {
6820     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6821                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6822                         LD->getAAInfo());
6823 
6824     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6825     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6826                         LD->getPointerInfo().getWithOffset(IncrementSize),
6827                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6828                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6829   }
6830 
6831   // aggregate the two parts
6832   SDValue ShiftAmount =
6833       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6834                                                     DAG.getDataLayout()));
6835   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6836   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6837 
6838   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6839                              Hi.getValue(1));
6840 
6841   return std::make_pair(Result, TF);
6842 }
6843 
6844 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6845                                              SelectionDAG &DAG) const {
6846   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6847          "unaligned indexed stores not implemented!");
6848   SDValue Chain = ST->getChain();
6849   SDValue Ptr = ST->getBasePtr();
6850   SDValue Val = ST->getValue();
6851   EVT VT = Val.getValueType();
6852   int Alignment = ST->getAlignment();
6853   auto &MF = DAG.getMachineFunction();
6854   EVT StoreMemVT = ST->getMemoryVT();
6855 
6856   SDLoc dl(ST);
6857   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6858     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6859     if (isTypeLegal(intVT)) {
6860       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6861           StoreMemVT.isVector()) {
6862         // Scalarize the store and let the individual components be handled.
6863         SDValue Result = scalarizeVectorStore(ST, DAG);
6864         return Result;
6865       }
6866       // Expand to a bitconvert of the value to the integer type of the
6867       // same size, then a (misaligned) int store.
6868       // FIXME: Does not handle truncating floating point stores!
6869       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6870       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6871                             Alignment, ST->getMemOperand()->getFlags());
6872       return Result;
6873     }
6874     // Do a (aligned) store to a stack slot, then copy from the stack slot
6875     // to the final destination using (unaligned) integer loads and stores.
6876     MVT RegVT = getRegisterType(
6877         *DAG.getContext(),
6878         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6879     EVT PtrVT = Ptr.getValueType();
6880     unsigned StoredBytes = StoreMemVT.getStoreSize();
6881     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6882     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6883 
6884     // Make sure the stack slot is also aligned for the register type.
6885     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6886     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6887 
6888     // Perform the original store, only redirected to the stack slot.
6889     SDValue Store = DAG.getTruncStore(
6890         Chain, dl, Val, StackPtr,
6891         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6892 
6893     EVT StackPtrVT = StackPtr.getValueType();
6894 
6895     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6896     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6897     SmallVector<SDValue, 8> Stores;
6898     unsigned Offset = 0;
6899 
6900     // Do all but one copies using the full register width.
6901     for (unsigned i = 1; i < NumRegs; i++) {
6902       // Load one integer register's worth from the stack slot.
6903       SDValue Load = DAG.getLoad(
6904           RegVT, dl, Store, StackPtr,
6905           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6906       // Store it to the final location.  Remember the store.
6907       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6908                                     ST->getPointerInfo().getWithOffset(Offset),
6909                                     MinAlign(ST->getAlignment(), Offset),
6910                                     ST->getMemOperand()->getFlags()));
6911       // Increment the pointers.
6912       Offset += RegBytes;
6913       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6914       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6915     }
6916 
6917     // The last store may be partial.  Do a truncating store.  On big-endian
6918     // machines this requires an extending load from the stack slot to ensure
6919     // that the bits are in the right place.
6920     EVT LoadMemVT =
6921         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6922 
6923     // Load from the stack slot.
6924     SDValue Load = DAG.getExtLoad(
6925         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6926         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6927 
6928     Stores.push_back(
6929         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6930                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6931                           MinAlign(ST->getAlignment(), Offset),
6932                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6933     // The order of the stores doesn't matter - say it with a TokenFactor.
6934     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6935     return Result;
6936   }
6937 
6938   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6939          "Unaligned store of unknown type.");
6940   // Get the half-size VT
6941   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6942   int NumBits = NewStoredVT.getSizeInBits();
6943   int IncrementSize = NumBits / 8;
6944 
6945   // Divide the stored value in two parts.
6946   SDValue ShiftAmount = DAG.getConstant(
6947       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6948   SDValue Lo = Val;
6949   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6950 
6951   // Store the two parts
6952   SDValue Store1, Store2;
6953   Store1 = DAG.getTruncStore(Chain, dl,
6954                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6955                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6956                              ST->getMemOperand()->getFlags());
6957 
6958   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6959   Alignment = MinAlign(Alignment, IncrementSize);
6960   Store2 = DAG.getTruncStore(
6961       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6962       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6963       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6964 
6965   SDValue Result =
6966       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6967   return Result;
6968 }
6969 
6970 SDValue
6971 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6972                                        const SDLoc &DL, EVT DataVT,
6973                                        SelectionDAG &DAG,
6974                                        bool IsCompressedMemory) const {
6975   SDValue Increment;
6976   EVT AddrVT = Addr.getValueType();
6977   EVT MaskVT = Mask.getValueType();
6978   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6979          "Incompatible types of Data and Mask");
6980   if (IsCompressedMemory) {
6981     // Incrementing the pointer according to number of '1's in the mask.
6982     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6983     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6984     if (MaskIntVT.getSizeInBits() < 32) {
6985       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6986       MaskIntVT = MVT::i32;
6987     }
6988 
6989     // Count '1's with POPCNT.
6990     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6991     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6992     // Scale is an element size in bytes.
6993     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6994                                     AddrVT);
6995     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6996   } else
6997     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6998 
6999   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7000 }
7001 
7002 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7003                                        SDValue Idx,
7004                                        EVT VecVT,
7005                                        const SDLoc &dl) {
7006   if (isa<ConstantSDNode>(Idx))
7007     return Idx;
7008 
7009   EVT IdxVT = Idx.getValueType();
7010   unsigned NElts = VecVT.getVectorNumElements();
7011   if (isPowerOf2_32(NElts)) {
7012     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7013                                      Log2_32(NElts));
7014     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7015                        DAG.getConstant(Imm, dl, IdxVT));
7016   }
7017 
7018   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7019                      DAG.getConstant(NElts - 1, dl, IdxVT));
7020 }
7021 
7022 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7023                                                 SDValue VecPtr, EVT VecVT,
7024                                                 SDValue Index) const {
7025   SDLoc dl(Index);
7026   // Make sure the index type is big enough to compute in.
7027   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7028 
7029   EVT EltVT = VecVT.getVectorElementType();
7030 
7031   // Calculate the element offset and add it to the pointer.
7032   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7033   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7034          "Converting bits to bytes lost precision");
7035 
7036   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7037 
7038   EVT IdxVT = Index.getValueType();
7039 
7040   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7041                       DAG.getConstant(EltSize, dl, IdxVT));
7042   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7043 }
7044 
7045 //===----------------------------------------------------------------------===//
7046 // Implementation of Emulated TLS Model
7047 //===----------------------------------------------------------------------===//
7048 
7049 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7050                                                 SelectionDAG &DAG) const {
7051   // Access to address of TLS varialbe xyz is lowered to a function call:
7052   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7053   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7054   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7055   SDLoc dl(GA);
7056 
7057   ArgListTy Args;
7058   ArgListEntry Entry;
7059   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7060   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7061   StringRef EmuTlsVarName(NameString);
7062   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7063   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7064   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7065   Entry.Ty = VoidPtrType;
7066   Args.push_back(Entry);
7067 
7068   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7069 
7070   TargetLowering::CallLoweringInfo CLI(DAG);
7071   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7072   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7073   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7074 
7075   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7076   // At last for X86 targets, maybe good for other targets too?
7077   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7078   MFI.setAdjustsStack(true); // Is this only for X86 target?
7079   MFI.setHasCalls(true);
7080 
7081   assert((GA->getOffset() == 0) &&
7082          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7083   return CallResult.first;
7084 }
7085 
7086 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7087                                                 SelectionDAG &DAG) const {
7088   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7089   if (!isCtlzFast())
7090     return SDValue();
7091   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7092   SDLoc dl(Op);
7093   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7094     if (C->isNullValue() && CC == ISD::SETEQ) {
7095       EVT VT = Op.getOperand(0).getValueType();
7096       SDValue Zext = Op.getOperand(0);
7097       if (VT.bitsLT(MVT::i32)) {
7098         VT = MVT::i32;
7099         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7100       }
7101       unsigned Log2b = Log2_32(VT.getSizeInBits());
7102       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7103       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7104                                 DAG.getConstant(Log2b, dl, MVT::i32));
7105       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7106     }
7107   }
7108   return SDValue();
7109 }
7110 
7111 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7112   unsigned Opcode = Node->getOpcode();
7113   SDValue LHS = Node->getOperand(0);
7114   SDValue RHS = Node->getOperand(1);
7115   EVT VT = LHS.getValueType();
7116   SDLoc dl(Node);
7117 
7118   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7119   assert(VT.isInteger() && "Expected operands to be integers");
7120 
7121   // usub.sat(a, b) -> umax(a, b) - b
7122   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7123     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7124     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7125   }
7126 
7127   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7128     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7129     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7130     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7131   }
7132 
7133   unsigned OverflowOp;
7134   switch (Opcode) {
7135   case ISD::SADDSAT:
7136     OverflowOp = ISD::SADDO;
7137     break;
7138   case ISD::UADDSAT:
7139     OverflowOp = ISD::UADDO;
7140     break;
7141   case ISD::SSUBSAT:
7142     OverflowOp = ISD::SSUBO;
7143     break;
7144   case ISD::USUBSAT:
7145     OverflowOp = ISD::USUBO;
7146     break;
7147   default:
7148     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7149                      "addition or subtraction node.");
7150   }
7151 
7152   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7153   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7154   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7155                                LHS, RHS);
7156   SDValue SumDiff = Result.getValue(0);
7157   SDValue Overflow = Result.getValue(1);
7158   SDValue Zero = DAG.getConstant(0, dl, VT);
7159   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7160 
7161   if (Opcode == ISD::UADDSAT) {
7162     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7163       // (LHS + RHS) | OverflowMask
7164       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7165       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7166     }
7167     // Overflow ? 0xffff.... : (LHS + RHS)
7168     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7169   } else if (Opcode == ISD::USUBSAT) {
7170     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7171       // (LHS - RHS) & ~OverflowMask
7172       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7173       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7174       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7175     }
7176     // Overflow ? 0 : (LHS - RHS)
7177     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7178   } else {
7179     // SatMax -> Overflow && SumDiff < 0
7180     // SatMin -> Overflow && SumDiff >= 0
7181     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7182     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7183     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7184     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7185     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7186     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7187     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7188   }
7189 }
7190 
7191 SDValue
7192 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7193   assert((Node->getOpcode() == ISD::SMULFIX ||
7194           Node->getOpcode() == ISD::UMULFIX ||
7195           Node->getOpcode() == ISD::SMULFIXSAT ||
7196           Node->getOpcode() == ISD::UMULFIXSAT) &&
7197          "Expected a fixed point multiplication opcode");
7198 
7199   SDLoc dl(Node);
7200   SDValue LHS = Node->getOperand(0);
7201   SDValue RHS = Node->getOperand(1);
7202   EVT VT = LHS.getValueType();
7203   unsigned Scale = Node->getConstantOperandVal(2);
7204   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7205                      Node->getOpcode() == ISD::UMULFIXSAT);
7206   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7207                  Node->getOpcode() == ISD::SMULFIXSAT);
7208   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7209   unsigned VTSize = VT.getScalarSizeInBits();
7210 
7211   if (!Scale) {
7212     // [us]mul.fix(a, b, 0) -> mul(a, b)
7213     if (!Saturating) {
7214       if (isOperationLegalOrCustom(ISD::MUL, VT))
7215         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7216     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7217       SDValue Result =
7218           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7219       SDValue Product = Result.getValue(0);
7220       SDValue Overflow = Result.getValue(1);
7221       SDValue Zero = DAG.getConstant(0, dl, VT);
7222 
7223       APInt MinVal = APInt::getSignedMinValue(VTSize);
7224       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7225       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7226       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7227       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7228       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7229       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7230     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7231       SDValue Result =
7232           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7233       SDValue Product = Result.getValue(0);
7234       SDValue Overflow = Result.getValue(1);
7235 
7236       APInt MaxVal = APInt::getMaxValue(VTSize);
7237       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7238       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7239     }
7240   }
7241 
7242   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7243          "Expected scale to be less than the number of bits if signed or at "
7244          "most the number of bits if unsigned.");
7245   assert(LHS.getValueType() == RHS.getValueType() &&
7246          "Expected both operands to be the same type");
7247 
7248   // Get the upper and lower bits of the result.
7249   SDValue Lo, Hi;
7250   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7251   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7252   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7253     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7254     Lo = Result.getValue(0);
7255     Hi = Result.getValue(1);
7256   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7257     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7258     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7259   } else if (VT.isVector()) {
7260     return SDValue();
7261   } else {
7262     report_fatal_error("Unable to expand fixed point multiplication.");
7263   }
7264 
7265   if (Scale == VTSize)
7266     // Result is just the top half since we'd be shifting by the width of the
7267     // operand. Overflow impossible so this works for both UMULFIX and
7268     // UMULFIXSAT.
7269     return Hi;
7270 
7271   // The result will need to be shifted right by the scale since both operands
7272   // are scaled. The result is given to us in 2 halves, so we only want part of
7273   // both in the result.
7274   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7275   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7276                                DAG.getConstant(Scale, dl, ShiftTy));
7277   if (!Saturating)
7278     return Result;
7279 
7280   if (!Signed) {
7281     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7282     // widened multiplication) aren't all zeroes.
7283 
7284     // Saturate to max if ((Hi >> Scale) != 0),
7285     // which is the same as if (Hi > ((1 << Scale) - 1))
7286     APInt MaxVal = APInt::getMaxValue(VTSize);
7287     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7288                                       dl, VT);
7289     Result = DAG.getSelectCC(dl, Hi, LowMask,
7290                              DAG.getConstant(MaxVal, dl, VT), Result,
7291                              ISD::SETUGT);
7292 
7293     return Result;
7294   }
7295 
7296   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7297   // widened multiplication) aren't all ones or all zeroes.
7298 
7299   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7300   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7301 
7302   if (Scale == 0) {
7303     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7304                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7305     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7306     // Saturated to SatMin if wide product is negative, and SatMax if wide
7307     // product is positive ...
7308     SDValue Zero = DAG.getConstant(0, dl, VT);
7309     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7310                                                ISD::SETLT);
7311     // ... but only if we overflowed.
7312     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7313   }
7314 
7315   //  We handled Scale==0 above so all the bits to examine is in Hi.
7316 
7317   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7318   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7319   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7320                                     dl, VT);
7321   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7322   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7323   // which is the same as if (HI < (-1 << (Scale - 1))
7324   SDValue HighMask =
7325       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7326                       dl, VT);
7327   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7328   return Result;
7329 }
7330 
7331 SDValue
7332 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7333                                     SDValue LHS, SDValue RHS,
7334                                     unsigned Scale, SelectionDAG &DAG) const {
7335   assert((Opcode == ISD::SDIVFIX ||
7336           Opcode == ISD::UDIVFIX) &&
7337          "Expected a fixed point division opcode");
7338 
7339   EVT VT = LHS.getValueType();
7340   bool Signed = Opcode == ISD::SDIVFIX;
7341   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7342 
7343   // If there is enough room in the type to upscale the LHS or downscale the
7344   // RHS before the division, we can perform it in this type without having to
7345   // resize. For signed operations, the LHS headroom is the number of
7346   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7347   // The headroom for the RHS is the number of trailing zeroes.
7348   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7349                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7350   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7351 
7352   if (LHSLead + RHSTrail < Scale)
7353     return SDValue();
7354 
7355   unsigned LHSShift = std::min(LHSLead, Scale);
7356   unsigned RHSShift = Scale - LHSShift;
7357 
7358   // At this point, we know that if we shift the LHS up by LHSShift and the
7359   // RHS down by RHSShift, we can emit a regular division with a final scaling
7360   // factor of Scale.
7361 
7362   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7363   if (LHSShift)
7364     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7365                       DAG.getConstant(LHSShift, dl, ShiftTy));
7366   if (RHSShift)
7367     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7368                       DAG.getConstant(RHSShift, dl, ShiftTy));
7369 
7370   SDValue Quot;
7371   if (Signed) {
7372     // For signed operations, if the resulting quotient is negative and the
7373     // remainder is nonzero, subtract 1 from the quotient to round towards
7374     // negative infinity.
7375     SDValue Rem;
7376     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7377     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7378     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7379     if (isTypeLegal(VT) &&
7380         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7381       Quot = DAG.getNode(ISD::SDIVREM, dl,
7382                          DAG.getVTList(VT, VT),
7383                          LHS, RHS);
7384       Rem = Quot.getValue(1);
7385       Quot = Quot.getValue(0);
7386     } else {
7387       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7388                          LHS, RHS);
7389       Rem = DAG.getNode(ISD::SREM, dl, VT,
7390                         LHS, RHS);
7391     }
7392     SDValue Zero = DAG.getConstant(0, dl, VT);
7393     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7394     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7395     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7396     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7397     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7398                                DAG.getConstant(1, dl, VT));
7399     Quot = DAG.getSelect(dl, VT,
7400                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7401                          Sub1, Quot);
7402   } else
7403     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7404                        LHS, RHS);
7405 
7406   // TODO: Saturation.
7407 
7408   return Quot;
7409 }
7410 
7411 void TargetLowering::expandUADDSUBO(
7412     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7413   SDLoc dl(Node);
7414   SDValue LHS = Node->getOperand(0);
7415   SDValue RHS = Node->getOperand(1);
7416   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7417 
7418   // If ADD/SUBCARRY is legal, use that instead.
7419   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7420   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7421     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7422     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7423                                     { LHS, RHS, CarryIn });
7424     Result = SDValue(NodeCarry.getNode(), 0);
7425     Overflow = SDValue(NodeCarry.getNode(), 1);
7426     return;
7427   }
7428 
7429   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7430                             LHS.getValueType(), LHS, RHS);
7431 
7432   EVT ResultType = Node->getValueType(1);
7433   EVT SetCCType = getSetCCResultType(
7434       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7435   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7436   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7437   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7438 }
7439 
7440 void TargetLowering::expandSADDSUBO(
7441     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7442   SDLoc dl(Node);
7443   SDValue LHS = Node->getOperand(0);
7444   SDValue RHS = Node->getOperand(1);
7445   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7446 
7447   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7448                             LHS.getValueType(), LHS, RHS);
7449 
7450   EVT ResultType = Node->getValueType(1);
7451   EVT OType = getSetCCResultType(
7452       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7453 
7454   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7455   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7456   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7457     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7458     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7459     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7460     return;
7461   }
7462 
7463   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7464 
7465   // For an addition, the result should be less than one of the operands (LHS)
7466   // if and only if the other operand (RHS) is negative, otherwise there will
7467   // be overflow.
7468   // For a subtraction, the result should be less than one of the operands
7469   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7470   // otherwise there will be overflow.
7471   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7472   SDValue ConditionRHS =
7473       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7474 
7475   Overflow = DAG.getBoolExtOrTrunc(
7476       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7477       ResultType, ResultType);
7478 }
7479 
7480 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7481                                 SDValue &Overflow, SelectionDAG &DAG) const {
7482   SDLoc dl(Node);
7483   EVT VT = Node->getValueType(0);
7484   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7485   SDValue LHS = Node->getOperand(0);
7486   SDValue RHS = Node->getOperand(1);
7487   bool isSigned = Node->getOpcode() == ISD::SMULO;
7488 
7489   // For power-of-two multiplications we can use a simpler shift expansion.
7490   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7491     const APInt &C = RHSC->getAPIntValue();
7492     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7493     if (C.isPowerOf2()) {
7494       // smulo(x, signed_min) is same as umulo(x, signed_min).
7495       bool UseArithShift = isSigned && !C.isMinSignedValue();
7496       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7497       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7498       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7499       Overflow = DAG.getSetCC(dl, SetCCVT,
7500           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7501                       dl, VT, Result, ShiftAmt),
7502           LHS, ISD::SETNE);
7503       return true;
7504     }
7505   }
7506 
7507   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7508   if (VT.isVector())
7509     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7510                               VT.getVectorNumElements());
7511 
7512   SDValue BottomHalf;
7513   SDValue TopHalf;
7514   static const unsigned Ops[2][3] =
7515       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7516         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7517   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7518     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7519     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7520   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7521     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7522                              RHS);
7523     TopHalf = BottomHalf.getValue(1);
7524   } else if (isTypeLegal(WideVT)) {
7525     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7526     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7527     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7528     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7529     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7530         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7531     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7532                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7533   } else {
7534     if (VT.isVector())
7535       return false;
7536 
7537     // We can fall back to a libcall with an illegal type for the MUL if we
7538     // have a libcall big enough.
7539     // Also, we can fall back to a division in some cases, but that's a big
7540     // performance hit in the general case.
7541     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7542     if (WideVT == MVT::i16)
7543       LC = RTLIB::MUL_I16;
7544     else if (WideVT == MVT::i32)
7545       LC = RTLIB::MUL_I32;
7546     else if (WideVT == MVT::i64)
7547       LC = RTLIB::MUL_I64;
7548     else if (WideVT == MVT::i128)
7549       LC = RTLIB::MUL_I128;
7550     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7551 
7552     SDValue HiLHS;
7553     SDValue HiRHS;
7554     if (isSigned) {
7555       // The high part is obtained by SRA'ing all but one of the bits of low
7556       // part.
7557       unsigned LoSize = VT.getSizeInBits();
7558       HiLHS =
7559           DAG.getNode(ISD::SRA, dl, VT, LHS,
7560                       DAG.getConstant(LoSize - 1, dl,
7561                                       getPointerTy(DAG.getDataLayout())));
7562       HiRHS =
7563           DAG.getNode(ISD::SRA, dl, VT, RHS,
7564                       DAG.getConstant(LoSize - 1, dl,
7565                                       getPointerTy(DAG.getDataLayout())));
7566     } else {
7567         HiLHS = DAG.getConstant(0, dl, VT);
7568         HiRHS = DAG.getConstant(0, dl, VT);
7569     }
7570 
7571     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7572     // pre-lowered to the correct types. This all depends upon WideVT not
7573     // being a legal type for the architecture and thus has to be split to
7574     // two arguments.
7575     SDValue Ret;
7576     TargetLowering::MakeLibCallOptions CallOptions;
7577     CallOptions.setSExt(isSigned);
7578     CallOptions.setIsPostTypeLegalization(true);
7579     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7580       // Halves of WideVT are packed into registers in different order
7581       // depending on platform endianness. This is usually handled by
7582       // the C calling convention, but we can't defer to it in
7583       // the legalizer.
7584       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7585       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7586     } else {
7587       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7588       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7589     }
7590     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7591            "Ret value is a collection of constituent nodes holding result.");
7592     if (DAG.getDataLayout().isLittleEndian()) {
7593       // Same as above.
7594       BottomHalf = Ret.getOperand(0);
7595       TopHalf = Ret.getOperand(1);
7596     } else {
7597       BottomHalf = Ret.getOperand(1);
7598       TopHalf = Ret.getOperand(0);
7599     }
7600   }
7601 
7602   Result = BottomHalf;
7603   if (isSigned) {
7604     SDValue ShiftAmt = DAG.getConstant(
7605         VT.getScalarSizeInBits() - 1, dl,
7606         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7607     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7608     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7609   } else {
7610     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7611                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7612   }
7613 
7614   // Truncate the result if SetCC returns a larger type than needed.
7615   EVT RType = Node->getValueType(1);
7616   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7617     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7618 
7619   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7620          "Unexpected result type for S/UMULO legalization");
7621   return true;
7622 }
7623 
7624 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7625   SDLoc dl(Node);
7626   bool NoNaN = Node->getFlags().hasNoNaNs();
7627   unsigned BaseOpcode = 0;
7628   switch (Node->getOpcode()) {
7629   default: llvm_unreachable("Expected VECREDUCE opcode");
7630   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7631   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7632   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7633   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7634   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7635   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7636   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7637   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7638   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7639   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7640   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7641   case ISD::VECREDUCE_FMAX:
7642     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7643     break;
7644   case ISD::VECREDUCE_FMIN:
7645     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7646     break;
7647   }
7648 
7649   SDValue Op = Node->getOperand(0);
7650   EVT VT = Op.getValueType();
7651 
7652   // Try to use a shuffle reduction for power of two vectors.
7653   if (VT.isPow2VectorType()) {
7654     while (VT.getVectorNumElements() > 1) {
7655       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7656       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7657         break;
7658 
7659       SDValue Lo, Hi;
7660       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7661       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7662       VT = HalfVT;
7663     }
7664   }
7665 
7666   EVT EltVT = VT.getVectorElementType();
7667   unsigned NumElts = VT.getVectorNumElements();
7668 
7669   SmallVector<SDValue, 8> Ops;
7670   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7671 
7672   SDValue Res = Ops[0];
7673   for (unsigned i = 1; i < NumElts; i++)
7674     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7675 
7676   // Result type may be wider than element type.
7677   if (EltVT != Node->getValueType(0))
7678     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7679   return Res;
7680 }
7681