1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 794 /// result of Op are ever used downstream. If we can use this information to 795 /// simplify Op, create a new simplified DAG node and return true, returning the 796 /// original and new nodes in Old and New. Otherwise, analyze the expression and 797 /// return a mask of Known bits for the expression (used to simplify the 798 /// caller). The Known bits may only be accurate for those bits in the 799 /// OriginalDemandedBits and OriginalDemandedElts. 800 bool TargetLowering::SimplifyDemandedBits( 801 SDValue Op, const APInt &OriginalDemandedBits, 802 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 803 unsigned Depth, bool AssumeSingleUse) const { 804 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 805 assert(Op.getScalarValueSizeInBits() == BitWidth && 806 "Mask size mismatches value type size!"); 807 808 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 809 assert((!Op.getValueType().isVector() || 810 NumElts == Op.getValueType().getVectorNumElements()) && 811 "Unexpected vector size"); 812 813 APInt DemandedBits = OriginalDemandedBits; 814 APInt DemandedElts = OriginalDemandedElts; 815 SDLoc dl(Op); 816 auto &DL = TLO.DAG.getDataLayout(); 817 818 // Don't know anything. 819 Known = KnownBits(BitWidth); 820 821 // Undef operand. 822 if (Op.isUndef()) 823 return false; 824 825 if (Op.getOpcode() == ISD::Constant) { 826 // We know all of the bits for a constant! 827 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 828 Known.Zero = ~Known.One; 829 return false; 830 } 831 832 // Other users may use these bits. 833 EVT VT = Op.getValueType(); 834 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 835 if (Depth != 0) { 836 // If not at the root, Just compute the Known bits to 837 // simplify things downstream. 838 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 839 return false; 840 } 841 // If this is the root being simplified, allow it to have multiple uses, 842 // just set the DemandedBits/Elts to all bits. 843 DemandedBits = APInt::getAllOnesValue(BitWidth); 844 DemandedElts = APInt::getAllOnesValue(NumElts); 845 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 846 // Not demanding any bits/elts from Op. 847 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 848 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 849 // Limit search depth. 850 return false; 851 } 852 853 KnownBits Known2, KnownOut; 854 switch (Op.getOpcode()) { 855 case ISD::TargetConstant: 856 llvm_unreachable("Can't simplify this node"); 857 case ISD::SCALAR_TO_VECTOR: { 858 if (!DemandedElts[0]) 859 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 860 861 KnownBits SrcKnown; 862 SDValue Src = Op.getOperand(0); 863 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 864 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 865 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 866 return true; 867 Known = SrcKnown.anyextOrTrunc(BitWidth); 868 break; 869 } 870 case ISD::BUILD_VECTOR: 871 // Collect the known bits that are shared by every demanded element. 872 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 873 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 874 return false; // Don't fall through, will infinitely loop. 875 case ISD::LOAD: { 876 LoadSDNode *LD = cast<LoadSDNode>(Op); 877 if (getTargetConstantFromLoad(LD)) { 878 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 879 return false; // Don't fall through, will infinitely loop. 880 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 881 // If this is a ZEXTLoad and we are looking at the loaded value. 882 EVT VT = LD->getMemoryVT(); 883 unsigned MemBits = VT.getScalarSizeInBits(); 884 Known.Zero.setBitsFrom(MemBits); 885 return false; // Don't fall through, will infinitely loop. 886 } 887 break; 888 } 889 case ISD::INSERT_VECTOR_ELT: { 890 SDValue Vec = Op.getOperand(0); 891 SDValue Scl = Op.getOperand(1); 892 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 893 EVT VecVT = Vec.getValueType(); 894 895 // If index isn't constant, assume we need all vector elements AND the 896 // inserted element. 897 APInt DemandedVecElts(DemandedElts); 898 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 899 unsigned Idx = CIdx->getZExtValue(); 900 DemandedVecElts.clearBit(Idx); 901 902 // Inserted element is not required. 903 if (!DemandedElts[Idx]) 904 return TLO.CombineTo(Op, Vec); 905 } 906 907 KnownBits KnownScl; 908 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 909 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 910 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 911 return true; 912 913 Known = KnownScl.anyextOrTrunc(BitWidth); 914 915 KnownBits KnownVec; 916 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 917 Depth + 1)) 918 return true; 919 920 if (!!DemandedVecElts) { 921 Known.One &= KnownVec.One; 922 Known.Zero &= KnownVec.Zero; 923 } 924 925 return false; 926 } 927 case ISD::INSERT_SUBVECTOR: { 928 SDValue Base = Op.getOperand(0); 929 SDValue Sub = Op.getOperand(1); 930 EVT SubVT = Sub.getValueType(); 931 unsigned NumSubElts = SubVT.getVectorNumElements(); 932 933 // If index isn't constant, assume we need the original demanded base 934 // elements and ALL the inserted subvector elements. 935 APInt BaseElts = DemandedElts; 936 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 937 if (isa<ConstantSDNode>(Op.getOperand(2))) { 938 const APInt &Idx = Op.getConstantOperandAPInt(2); 939 if (Idx.ule(NumElts - NumSubElts)) { 940 unsigned SubIdx = Idx.getZExtValue(); 941 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 942 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 943 } 944 } 945 946 KnownBits KnownSub, KnownBase; 947 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 948 Depth + 1)) 949 return true; 950 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 951 Depth + 1)) 952 return true; 953 954 Known.Zero.setAllBits(); 955 Known.One.setAllBits(); 956 if (!!SubElts) { 957 Known.One &= KnownSub.One; 958 Known.Zero &= KnownSub.Zero; 959 } 960 if (!!BaseElts) { 961 Known.One &= KnownBase.One; 962 Known.Zero &= KnownBase.Zero; 963 } 964 965 // Attempt to avoid multi-use src if we don't need anything from it. 966 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 967 !BaseElts.isAllOnesValue()) { 968 SDValue NewSub = SimplifyMultipleUseDemandedBits( 969 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 970 SDValue NewBase = SimplifyMultipleUseDemandedBits( 971 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 972 if (NewSub || NewBase) { 973 NewSub = NewSub ? NewSub : Sub; 974 NewBase = NewBase ? NewBase : Base; 975 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 976 Op.getOperand(2)); 977 return TLO.CombineTo(Op, NewOp); 978 } 979 } 980 break; 981 } 982 case ISD::EXTRACT_SUBVECTOR: { 983 // If index isn't constant, assume we need all the source vector elements. 984 SDValue Src = Op.getOperand(0); 985 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 986 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 987 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 988 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 989 // Offset the demanded elts by the subvector index. 990 uint64_t Idx = SubIdx->getZExtValue(); 991 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 992 } 993 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 994 return true; 995 996 // Attempt to avoid multi-use src if we don't need anything from it. 997 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 998 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 999 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1000 if (DemandedSrc) { 1001 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1002 Op.getOperand(1)); 1003 return TLO.CombineTo(Op, NewOp); 1004 } 1005 } 1006 break; 1007 } 1008 case ISD::CONCAT_VECTORS: { 1009 Known.Zero.setAllBits(); 1010 Known.One.setAllBits(); 1011 EVT SubVT = Op.getOperand(0).getValueType(); 1012 unsigned NumSubVecs = Op.getNumOperands(); 1013 unsigned NumSubElts = SubVT.getVectorNumElements(); 1014 for (unsigned i = 0; i != NumSubVecs; ++i) { 1015 APInt DemandedSubElts = 1016 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1017 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1018 Known2, TLO, Depth + 1)) 1019 return true; 1020 // Known bits are shared by every demanded subvector element. 1021 if (!!DemandedSubElts) { 1022 Known.One &= Known2.One; 1023 Known.Zero &= Known2.Zero; 1024 } 1025 } 1026 break; 1027 } 1028 case ISD::VECTOR_SHUFFLE: { 1029 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1030 1031 // Collect demanded elements from shuffle operands.. 1032 APInt DemandedLHS(NumElts, 0); 1033 APInt DemandedRHS(NumElts, 0); 1034 for (unsigned i = 0; i != NumElts; ++i) { 1035 if (!DemandedElts[i]) 1036 continue; 1037 int M = ShuffleMask[i]; 1038 if (M < 0) { 1039 // For UNDEF elements, we don't know anything about the common state of 1040 // the shuffle result. 1041 DemandedLHS.clearAllBits(); 1042 DemandedRHS.clearAllBits(); 1043 break; 1044 } 1045 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1046 if (M < (int)NumElts) 1047 DemandedLHS.setBit(M); 1048 else 1049 DemandedRHS.setBit(M - NumElts); 1050 } 1051 1052 if (!!DemandedLHS || !!DemandedRHS) { 1053 SDValue Op0 = Op.getOperand(0); 1054 SDValue Op1 = Op.getOperand(1); 1055 1056 Known.Zero.setAllBits(); 1057 Known.One.setAllBits(); 1058 if (!!DemandedLHS) { 1059 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1060 Depth + 1)) 1061 return true; 1062 Known.One &= Known2.One; 1063 Known.Zero &= Known2.Zero; 1064 } 1065 if (!!DemandedRHS) { 1066 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1067 Depth + 1)) 1068 return true; 1069 Known.One &= Known2.One; 1070 Known.Zero &= Known2.Zero; 1071 } 1072 1073 // Attempt to avoid multi-use ops if we don't need anything from them. 1074 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1075 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1076 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1077 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1078 if (DemandedOp0 || DemandedOp1) { 1079 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1080 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1081 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1082 return TLO.CombineTo(Op, NewOp); 1083 } 1084 } 1085 break; 1086 } 1087 case ISD::AND: { 1088 SDValue Op0 = Op.getOperand(0); 1089 SDValue Op1 = Op.getOperand(1); 1090 1091 // If the RHS is a constant, check to see if the LHS would be zero without 1092 // using the bits from the RHS. Below, we use knowledge about the RHS to 1093 // simplify the LHS, here we're using information from the LHS to simplify 1094 // the RHS. 1095 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1096 // Do not increment Depth here; that can cause an infinite loop. 1097 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1098 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1099 if ((LHSKnown.Zero & DemandedBits) == 1100 (~RHSC->getAPIntValue() & DemandedBits)) 1101 return TLO.CombineTo(Op, Op0); 1102 1103 // If any of the set bits in the RHS are known zero on the LHS, shrink 1104 // the constant. 1105 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1106 return true; 1107 1108 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1109 // constant, but if this 'and' is only clearing bits that were just set by 1110 // the xor, then this 'and' can be eliminated by shrinking the mask of 1111 // the xor. For example, for a 32-bit X: 1112 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1113 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1114 LHSKnown.One == ~RHSC->getAPIntValue()) { 1115 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1116 return TLO.CombineTo(Op, Xor); 1117 } 1118 } 1119 1120 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1121 Depth + 1)) 1122 return true; 1123 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1124 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1125 Known2, TLO, Depth + 1)) 1126 return true; 1127 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1128 1129 // Attempt to avoid multi-use ops if we don't need anything from them. 1130 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1131 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1132 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1133 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1134 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1135 if (DemandedOp0 || DemandedOp1) { 1136 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1137 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1138 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1139 return TLO.CombineTo(Op, NewOp); 1140 } 1141 } 1142 1143 // If all of the demanded bits are known one on one side, return the other. 1144 // These bits cannot contribute to the result of the 'and'. 1145 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1146 return TLO.CombineTo(Op, Op0); 1147 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1148 return TLO.CombineTo(Op, Op1); 1149 // If all of the demanded bits in the inputs are known zeros, return zero. 1150 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1151 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1152 // If the RHS is a constant, see if we can simplify it. 1153 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1154 return true; 1155 // If the operation can be done in a smaller type, do so. 1156 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1157 return true; 1158 1159 // Output known-1 bits are only known if set in both the LHS & RHS. 1160 Known.One &= Known2.One; 1161 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1162 Known.Zero |= Known2.Zero; 1163 break; 1164 } 1165 case ISD::OR: { 1166 SDValue Op0 = Op.getOperand(0); 1167 SDValue Op1 = Op.getOperand(1); 1168 1169 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1170 Depth + 1)) 1171 return true; 1172 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1173 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1174 Known2, TLO, Depth + 1)) 1175 return true; 1176 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1177 1178 // Attempt to avoid multi-use ops if we don't need anything from them. 1179 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1180 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1181 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1182 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1183 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1184 if (DemandedOp0 || DemandedOp1) { 1185 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1186 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1187 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1188 return TLO.CombineTo(Op, NewOp); 1189 } 1190 } 1191 1192 // If all of the demanded bits are known zero on one side, return the other. 1193 // These bits cannot contribute to the result of the 'or'. 1194 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1195 return TLO.CombineTo(Op, Op0); 1196 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1197 return TLO.CombineTo(Op, Op1); 1198 // If the RHS is a constant, see if we can simplify it. 1199 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1200 return true; 1201 // If the operation can be done in a smaller type, do so. 1202 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1203 return true; 1204 1205 // Output known-0 bits are only known if clear in both the LHS & RHS. 1206 Known.Zero &= Known2.Zero; 1207 // Output known-1 are known to be set if set in either the LHS | RHS. 1208 Known.One |= Known2.One; 1209 break; 1210 } 1211 case ISD::XOR: { 1212 SDValue Op0 = Op.getOperand(0); 1213 SDValue Op1 = Op.getOperand(1); 1214 1215 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1216 Depth + 1)) 1217 return true; 1218 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1219 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1220 Depth + 1)) 1221 return true; 1222 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1223 1224 // Attempt to avoid multi-use ops if we don't need anything from them. 1225 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1226 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1227 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1228 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1229 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1230 if (DemandedOp0 || DemandedOp1) { 1231 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1232 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1233 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1234 return TLO.CombineTo(Op, NewOp); 1235 } 1236 } 1237 1238 // If all of the demanded bits are known zero on one side, return the other. 1239 // These bits cannot contribute to the result of the 'xor'. 1240 if (DemandedBits.isSubsetOf(Known.Zero)) 1241 return TLO.CombineTo(Op, Op0); 1242 if (DemandedBits.isSubsetOf(Known2.Zero)) 1243 return TLO.CombineTo(Op, Op1); 1244 // If the operation can be done in a smaller type, do so. 1245 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1246 return true; 1247 1248 // If all of the unknown bits are known to be zero on one side or the other 1249 // (but not both) turn this into an *inclusive* or. 1250 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1251 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1252 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1253 1254 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1255 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1256 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1257 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1258 1259 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1260 // If one side is a constant, and all of the known set bits on the other 1261 // side are also set in the constant, turn this into an AND, as we know 1262 // the bits will be cleared. 1263 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1264 // NB: it is okay if more bits are known than are requested 1265 if (C->getAPIntValue() == Known2.One) { 1266 SDValue ANDC = 1267 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1268 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1269 } 1270 1271 // If the RHS is a constant, see if we can change it. Don't alter a -1 1272 // constant because that's a 'not' op, and that is better for combining 1273 // and codegen. 1274 if (!C->isAllOnesValue()) { 1275 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1276 // We're flipping all demanded bits. Flip the undemanded bits too. 1277 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1278 return TLO.CombineTo(Op, New); 1279 } 1280 // If we can't turn this into a 'not', try to shrink the constant. 1281 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1282 return true; 1283 } 1284 } 1285 1286 Known = std::move(KnownOut); 1287 break; 1288 } 1289 case ISD::SELECT: 1290 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1291 Depth + 1)) 1292 return true; 1293 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1294 Depth + 1)) 1295 return true; 1296 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1297 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1298 1299 // If the operands are constants, see if we can simplify them. 1300 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1301 return true; 1302 1303 // Only known if known in both the LHS and RHS. 1304 Known.One &= Known2.One; 1305 Known.Zero &= Known2.Zero; 1306 break; 1307 case ISD::SELECT_CC: 1308 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // If the operands are constants, see if we can simplify them. 1318 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1319 return true; 1320 1321 // Only known if known in both the LHS and RHS. 1322 Known.One &= Known2.One; 1323 Known.Zero &= Known2.Zero; 1324 break; 1325 case ISD::SETCC: { 1326 SDValue Op0 = Op.getOperand(0); 1327 SDValue Op1 = Op.getOperand(1); 1328 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1329 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1330 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1331 // -1, we may be able to bypass the setcc. 1332 if (DemandedBits.isSignMask() && 1333 Op0.getScalarValueSizeInBits() == BitWidth && 1334 getBooleanContents(Op0.getValueType()) == 1335 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1336 // If we're testing X < 0, then this compare isn't needed - just use X! 1337 // FIXME: We're limiting to integer types here, but this should also work 1338 // if we don't care about FP signed-zero. The use of SETLT with FP means 1339 // that we don't care about NaNs. 1340 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1341 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1342 return TLO.CombineTo(Op, Op0); 1343 1344 // TODO: Should we check for other forms of sign-bit comparisons? 1345 // Examples: X <= -1, X >= 0 1346 } 1347 if (getBooleanContents(Op0.getValueType()) == 1348 TargetLowering::ZeroOrOneBooleanContent && 1349 BitWidth > 1) 1350 Known.Zero.setBitsFrom(1); 1351 break; 1352 } 1353 case ISD::SHL: { 1354 SDValue Op0 = Op.getOperand(0); 1355 SDValue Op1 = Op.getOperand(1); 1356 1357 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1358 // If the shift count is an invalid immediate, don't do anything. 1359 if (SA->getAPIntValue().uge(BitWidth)) 1360 break; 1361 1362 unsigned ShAmt = SA->getZExtValue(); 1363 if (ShAmt == 0) 1364 return TLO.CombineTo(Op, Op0); 1365 1366 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1367 // single shift. We can do this if the bottom bits (which are shifted 1368 // out) are never demanded. 1369 // TODO - support non-uniform vector amounts. 1370 if (Op0.getOpcode() == ISD::SRL) { 1371 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1372 if (ConstantSDNode *SA2 = 1373 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1374 if (SA2->getAPIntValue().ult(BitWidth)) { 1375 unsigned C1 = SA2->getZExtValue(); 1376 unsigned Opc = ISD::SHL; 1377 int Diff = ShAmt - C1; 1378 if (Diff < 0) { 1379 Diff = -Diff; 1380 Opc = ISD::SRL; 1381 } 1382 1383 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1384 return TLO.CombineTo( 1385 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1386 } 1387 } 1388 } 1389 } 1390 1391 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1392 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1393 Depth + 1)) 1394 return true; 1395 1396 // Try shrinking the operation as long as the shift amount will still be 1397 // in range. 1398 if ((ShAmt < DemandedBits.getActiveBits()) && 1399 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1400 return true; 1401 1402 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1403 // are not demanded. This will likely allow the anyext to be folded away. 1404 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1405 SDValue InnerOp = Op0.getOperand(0); 1406 EVT InnerVT = InnerOp.getValueType(); 1407 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1408 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1409 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1410 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1411 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1412 ShTy = InnerVT; 1413 SDValue NarrowShl = 1414 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1415 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1416 return TLO.CombineTo( 1417 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1418 } 1419 // Repeat the SHL optimization above in cases where an extension 1420 // intervenes: (shl (anyext (shr x, c1)), c2) to 1421 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1422 // aren't demanded (as above) and that the shifted upper c1 bits of 1423 // x aren't demanded. 1424 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1425 InnerOp.hasOneUse()) { 1426 if (ConstantSDNode *SA2 = 1427 isConstOrConstSplat(InnerOp.getOperand(1))) { 1428 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1429 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1430 DemandedBits.getActiveBits() <= 1431 (InnerBits - InnerShAmt + ShAmt) && 1432 DemandedBits.countTrailingZeros() >= ShAmt) { 1433 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1434 Op1.getValueType()); 1435 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1436 InnerOp.getOperand(0)); 1437 return TLO.CombineTo( 1438 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1439 } 1440 } 1441 } 1442 } 1443 1444 Known.Zero <<= ShAmt; 1445 Known.One <<= ShAmt; 1446 // low bits known zero. 1447 Known.Zero.setLowBits(ShAmt); 1448 } 1449 break; 1450 } 1451 case ISD::SRL: { 1452 SDValue Op0 = Op.getOperand(0); 1453 SDValue Op1 = Op.getOperand(1); 1454 1455 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1456 // If the shift count is an invalid immediate, don't do anything. 1457 if (SA->getAPIntValue().uge(BitWidth)) 1458 break; 1459 1460 unsigned ShAmt = SA->getZExtValue(); 1461 if (ShAmt == 0) 1462 return TLO.CombineTo(Op, Op0); 1463 1464 EVT ShiftVT = Op1.getValueType(); 1465 APInt InDemandedMask = (DemandedBits << ShAmt); 1466 1467 // If the shift is exact, then it does demand the low bits (and knows that 1468 // they are zero). 1469 if (Op->getFlags().hasExact()) 1470 InDemandedMask.setLowBits(ShAmt); 1471 1472 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1473 // single shift. We can do this if the top bits (which are shifted out) 1474 // are never demanded. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::SHL) { 1477 if (ConstantSDNode *SA2 = 1478 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1479 if (!DemandedBits.intersects( 1480 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1481 if (SA2->getAPIntValue().ult(BitWidth)) { 1482 unsigned C1 = SA2->getZExtValue(); 1483 unsigned Opc = ISD::SRL; 1484 int Diff = ShAmt - C1; 1485 if (Diff < 0) { 1486 Diff = -Diff; 1487 Opc = ISD::SHL; 1488 } 1489 1490 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1491 return TLO.CombineTo( 1492 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1493 } 1494 } 1495 } 1496 } 1497 1498 // Compute the new bits that are at the top now. 1499 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1500 Depth + 1)) 1501 return true; 1502 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1503 Known.Zero.lshrInPlace(ShAmt); 1504 Known.One.lshrInPlace(ShAmt); 1505 1506 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1507 } 1508 break; 1509 } 1510 case ISD::SRA: { 1511 SDValue Op0 = Op.getOperand(0); 1512 SDValue Op1 = Op.getOperand(1); 1513 1514 // If we only want bits that already match the signbit then we don't need 1515 // to shift. 1516 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1517 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1518 NumHiDemandedBits) 1519 return TLO.CombineTo(Op, Op0); 1520 1521 // If this is an arithmetic shift right and only the low-bit is set, we can 1522 // always convert this into a logical shr, even if the shift amount is 1523 // variable. The low bit of the shift cannot be an input sign bit unless 1524 // the shift amount is >= the size of the datatype, which is undefined. 1525 if (DemandedBits.isOneValue()) 1526 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1527 1528 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1529 // If the shift count is an invalid immediate, don't do anything. 1530 if (SA->getAPIntValue().uge(BitWidth)) 1531 break; 1532 1533 unsigned ShAmt = SA->getZExtValue(); 1534 if (ShAmt == 0) 1535 return TLO.CombineTo(Op, Op0); 1536 1537 APInt InDemandedMask = (DemandedBits << ShAmt); 1538 1539 // If the shift is exact, then it does demand the low bits (and knows that 1540 // they are zero). 1541 if (Op->getFlags().hasExact()) 1542 InDemandedMask.setLowBits(ShAmt); 1543 1544 // If any of the demanded bits are produced by the sign extension, we also 1545 // demand the input sign bit. 1546 if (DemandedBits.countLeadingZeros() < ShAmt) 1547 InDemandedMask.setSignBit(); 1548 1549 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1550 Depth + 1)) 1551 return true; 1552 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1553 Known.Zero.lshrInPlace(ShAmt); 1554 Known.One.lshrInPlace(ShAmt); 1555 1556 // If the input sign bit is known to be zero, or if none of the top bits 1557 // are demanded, turn this into an unsigned shift right. 1558 if (Known.Zero[BitWidth - ShAmt - 1] || 1559 DemandedBits.countLeadingZeros() >= ShAmt) { 1560 SDNodeFlags Flags; 1561 Flags.setExact(Op->getFlags().hasExact()); 1562 return TLO.CombineTo( 1563 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1564 } 1565 1566 int Log2 = DemandedBits.exactLogBase2(); 1567 if (Log2 >= 0) { 1568 // The bit must come from the sign. 1569 SDValue NewSA = 1570 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1571 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1572 } 1573 1574 if (Known.One[BitWidth - ShAmt - 1]) 1575 // New bits are known one. 1576 Known.One.setHighBits(ShAmt); 1577 1578 // Attempt to avoid multi-use ops if we don't need anything from them. 1579 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1580 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1581 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1582 if (DemandedOp0) { 1583 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1584 return TLO.CombineTo(Op, NewOp); 1585 } 1586 } 1587 } 1588 break; 1589 } 1590 case ISD::FSHL: 1591 case ISD::FSHR: { 1592 SDValue Op0 = Op.getOperand(0); 1593 SDValue Op1 = Op.getOperand(1); 1594 SDValue Op2 = Op.getOperand(2); 1595 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1596 1597 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1598 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1599 1600 // For fshl, 0-shift returns the 1st arg. 1601 // For fshr, 0-shift returns the 2nd arg. 1602 if (Amt == 0) { 1603 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1604 Known, TLO, Depth + 1)) 1605 return true; 1606 break; 1607 } 1608 1609 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1610 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1611 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1612 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1613 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1614 Depth + 1)) 1615 return true; 1616 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1617 Depth + 1)) 1618 return true; 1619 1620 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1621 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1622 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1623 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1624 Known.One |= Known2.One; 1625 Known.Zero |= Known2.Zero; 1626 } 1627 break; 1628 } 1629 case ISD::ROTL: 1630 case ISD::ROTR: { 1631 SDValue Op0 = Op.getOperand(0); 1632 1633 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1634 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1635 return TLO.CombineTo(Op, Op0); 1636 break; 1637 } 1638 case ISD::BITREVERSE: { 1639 SDValue Src = Op.getOperand(0); 1640 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1641 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1642 Depth + 1)) 1643 return true; 1644 Known.One = Known2.One.reverseBits(); 1645 Known.Zero = Known2.Zero.reverseBits(); 1646 break; 1647 } 1648 case ISD::BSWAP: { 1649 SDValue Src = Op.getOperand(0); 1650 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1651 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1652 Depth + 1)) 1653 return true; 1654 Known.One = Known2.One.byteSwap(); 1655 Known.Zero = Known2.Zero.byteSwap(); 1656 break; 1657 } 1658 case ISD::SIGN_EXTEND_INREG: { 1659 SDValue Op0 = Op.getOperand(0); 1660 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1661 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1662 1663 // If we only care about the highest bit, don't bother shifting right. 1664 if (DemandedBits.isSignMask()) { 1665 unsigned NumSignBits = 1666 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1667 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1668 // However if the input is already sign extended we expect the sign 1669 // extension to be dropped altogether later and do not simplify. 1670 if (!AlreadySignExtended) { 1671 // Compute the correct shift amount type, which must be getShiftAmountTy 1672 // for scalar types after legalization. 1673 EVT ShiftAmtTy = VT; 1674 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1675 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1676 1677 SDValue ShiftAmt = 1678 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1679 return TLO.CombineTo(Op, 1680 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1681 } 1682 } 1683 1684 // If none of the extended bits are demanded, eliminate the sextinreg. 1685 if (DemandedBits.getActiveBits() <= ExVTBits) 1686 return TLO.CombineTo(Op, Op0); 1687 1688 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1689 1690 // Since the sign extended bits are demanded, we know that the sign 1691 // bit is demanded. 1692 InputDemandedBits.setBit(ExVTBits - 1); 1693 1694 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1695 return true; 1696 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1697 1698 // If the sign bit of the input is known set or clear, then we know the 1699 // top bits of the result. 1700 1701 // If the input sign bit is known zero, convert this into a zero extension. 1702 if (Known.Zero[ExVTBits - 1]) 1703 return TLO.CombineTo( 1704 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1705 1706 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1707 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1708 Known.One.setBitsFrom(ExVTBits); 1709 Known.Zero &= Mask; 1710 } else { // Input sign bit unknown 1711 Known.Zero &= Mask; 1712 Known.One &= Mask; 1713 } 1714 break; 1715 } 1716 case ISD::BUILD_PAIR: { 1717 EVT HalfVT = Op.getOperand(0).getValueType(); 1718 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1719 1720 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1721 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1722 1723 KnownBits KnownLo, KnownHi; 1724 1725 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1726 return true; 1727 1728 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1729 return true; 1730 1731 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1732 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1733 1734 Known.One = KnownLo.One.zext(BitWidth) | 1735 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1736 break; 1737 } 1738 case ISD::ZERO_EXTEND: 1739 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1740 SDValue Src = Op.getOperand(0); 1741 EVT SrcVT = Src.getValueType(); 1742 unsigned InBits = SrcVT.getScalarSizeInBits(); 1743 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1744 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1745 1746 // If none of the top bits are demanded, convert this into an any_extend. 1747 if (DemandedBits.getActiveBits() <= InBits) { 1748 // If we only need the non-extended bits of the bottom element 1749 // then we can just bitcast to the result. 1750 if (IsVecInReg && DemandedElts == 1 && 1751 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1752 TLO.DAG.getDataLayout().isLittleEndian()) 1753 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1754 1755 unsigned Opc = 1756 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1757 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1758 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1759 } 1760 1761 APInt InDemandedBits = DemandedBits.trunc(InBits); 1762 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1763 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1764 Depth + 1)) 1765 return true; 1766 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1767 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1768 Known = Known.zext(BitWidth); 1769 break; 1770 } 1771 case ISD::SIGN_EXTEND: 1772 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1773 SDValue Src = Op.getOperand(0); 1774 EVT SrcVT = Src.getValueType(); 1775 unsigned InBits = SrcVT.getScalarSizeInBits(); 1776 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1777 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1778 1779 // If none of the top bits are demanded, convert this into an any_extend. 1780 if (DemandedBits.getActiveBits() <= InBits) { 1781 // If we only need the non-extended bits of the bottom element 1782 // then we can just bitcast to the result. 1783 if (IsVecInReg && DemandedElts == 1 && 1784 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1785 TLO.DAG.getDataLayout().isLittleEndian()) 1786 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1787 1788 unsigned Opc = 1789 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1790 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1791 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1792 } 1793 1794 APInt InDemandedBits = DemandedBits.trunc(InBits); 1795 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1796 1797 // Since some of the sign extended bits are demanded, we know that the sign 1798 // bit is demanded. 1799 InDemandedBits.setBit(InBits - 1); 1800 1801 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1802 Depth + 1)) 1803 return true; 1804 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1805 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1806 1807 // If the sign bit is known one, the top bits match. 1808 Known = Known.sext(BitWidth); 1809 1810 // If the sign bit is known zero, convert this to a zero extend. 1811 if (Known.isNonNegative()) { 1812 unsigned Opc = 1813 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1814 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1815 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1816 } 1817 break; 1818 } 1819 case ISD::ANY_EXTEND: 1820 case ISD::ANY_EXTEND_VECTOR_INREG: { 1821 SDValue Src = Op.getOperand(0); 1822 EVT SrcVT = Src.getValueType(); 1823 unsigned InBits = SrcVT.getScalarSizeInBits(); 1824 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1825 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1826 1827 // If we only need the bottom element then we can just bitcast. 1828 // TODO: Handle ANY_EXTEND? 1829 if (IsVecInReg && DemandedElts == 1 && 1830 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1831 TLO.DAG.getDataLayout().isLittleEndian()) 1832 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1833 1834 APInt InDemandedBits = DemandedBits.trunc(InBits); 1835 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1836 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1837 Depth + 1)) 1838 return true; 1839 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1840 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1841 Known = Known.anyext(BitWidth); 1842 1843 // Attempt to avoid multi-use ops if we don't need anything from them. 1844 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1845 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1846 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1847 break; 1848 } 1849 case ISD::TRUNCATE: { 1850 SDValue Src = Op.getOperand(0); 1851 1852 // Simplify the input, using demanded bit information, and compute the known 1853 // zero/one bits live out. 1854 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1855 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1856 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1857 return true; 1858 Known = Known.trunc(BitWidth); 1859 1860 // Attempt to avoid multi-use ops if we don't need anything from them. 1861 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1862 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1863 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1864 1865 // If the input is only used by this truncate, see if we can shrink it based 1866 // on the known demanded bits. 1867 if (Src.getNode()->hasOneUse()) { 1868 switch (Src.getOpcode()) { 1869 default: 1870 break; 1871 case ISD::SRL: 1872 // Shrink SRL by a constant if none of the high bits shifted in are 1873 // demanded. 1874 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1875 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1876 // undesirable. 1877 break; 1878 1879 SDValue ShAmt = Src.getOperand(1); 1880 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1881 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1882 break; 1883 uint64_t ShVal = ShAmtC->getZExtValue(); 1884 1885 APInt HighBits = 1886 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1887 HighBits.lshrInPlace(ShVal); 1888 HighBits = HighBits.trunc(BitWidth); 1889 1890 if (!(HighBits & DemandedBits)) { 1891 // None of the shifted in bits are needed. Add a truncate of the 1892 // shift input, then shift it. 1893 if (TLO.LegalTypes()) 1894 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1895 SDValue NewTrunc = 1896 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1897 return TLO.CombineTo( 1898 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1899 } 1900 break; 1901 } 1902 } 1903 1904 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1905 break; 1906 } 1907 case ISD::AssertZext: { 1908 // AssertZext demands all of the high bits, plus any of the low bits 1909 // demanded by its users. 1910 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1911 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1912 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1913 TLO, Depth + 1)) 1914 return true; 1915 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1916 1917 Known.Zero |= ~InMask; 1918 break; 1919 } 1920 case ISD::EXTRACT_VECTOR_ELT: { 1921 SDValue Src = Op.getOperand(0); 1922 SDValue Idx = Op.getOperand(1); 1923 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1924 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1925 1926 // Demand the bits from every vector element without a constant index. 1927 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1928 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1929 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1930 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1931 1932 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1933 // anything about the extended bits. 1934 APInt DemandedSrcBits = DemandedBits; 1935 if (BitWidth > EltBitWidth) 1936 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1937 1938 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1939 Depth + 1)) 1940 return true; 1941 1942 // Attempt to avoid multi-use ops if we don't need anything from them. 1943 if (!DemandedSrcBits.isAllOnesValue() || 1944 !DemandedSrcElts.isAllOnesValue()) { 1945 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1946 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1947 SDValue NewOp = 1948 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1949 return TLO.CombineTo(Op, NewOp); 1950 } 1951 } 1952 1953 Known = Known2; 1954 if (BitWidth > EltBitWidth) 1955 Known = Known.anyext(BitWidth); 1956 break; 1957 } 1958 case ISD::BITCAST: { 1959 SDValue Src = Op.getOperand(0); 1960 EVT SrcVT = Src.getValueType(); 1961 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1962 1963 // If this is an FP->Int bitcast and if the sign bit is the only 1964 // thing demanded, turn this into a FGETSIGN. 1965 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1966 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1967 SrcVT.isFloatingPoint()) { 1968 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1969 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1970 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1971 SrcVT != MVT::f128) { 1972 // Cannot eliminate/lower SHL for f128 yet. 1973 EVT Ty = OpVTLegal ? VT : MVT::i32; 1974 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1975 // place. We expect the SHL to be eliminated by other optimizations. 1976 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1977 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1978 if (!OpVTLegal && OpVTSizeInBits > 32) 1979 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1980 unsigned ShVal = Op.getValueSizeInBits() - 1; 1981 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1982 return TLO.CombineTo(Op, 1983 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1984 } 1985 } 1986 1987 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1988 // Demand the elt/bit if any of the original elts/bits are demanded. 1989 // TODO - bigendian once we have test coverage. 1990 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1991 TLO.DAG.getDataLayout().isLittleEndian()) { 1992 unsigned Scale = BitWidth / NumSrcEltBits; 1993 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1994 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1995 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1996 for (unsigned i = 0; i != Scale; ++i) { 1997 unsigned Offset = i * NumSrcEltBits; 1998 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1999 if (!Sub.isNullValue()) { 2000 DemandedSrcBits |= Sub; 2001 for (unsigned j = 0; j != NumElts; ++j) 2002 if (DemandedElts[j]) 2003 DemandedSrcElts.setBit((j * Scale) + i); 2004 } 2005 } 2006 2007 APInt KnownSrcUndef, KnownSrcZero; 2008 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2009 KnownSrcZero, TLO, Depth + 1)) 2010 return true; 2011 2012 KnownBits KnownSrcBits; 2013 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2014 KnownSrcBits, TLO, Depth + 1)) 2015 return true; 2016 } else if ((NumSrcEltBits % BitWidth) == 0 && 2017 TLO.DAG.getDataLayout().isLittleEndian()) { 2018 unsigned Scale = NumSrcEltBits / BitWidth; 2019 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2020 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2021 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2022 for (unsigned i = 0; i != NumElts; ++i) 2023 if (DemandedElts[i]) { 2024 unsigned Offset = (i % Scale) * BitWidth; 2025 DemandedSrcBits.insertBits(DemandedBits, Offset); 2026 DemandedSrcElts.setBit(i / Scale); 2027 } 2028 2029 if (SrcVT.isVector()) { 2030 APInt KnownSrcUndef, KnownSrcZero; 2031 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2032 KnownSrcZero, TLO, Depth + 1)) 2033 return true; 2034 } 2035 2036 KnownBits KnownSrcBits; 2037 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2038 KnownSrcBits, TLO, Depth + 1)) 2039 return true; 2040 } 2041 2042 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2043 // recursive call where Known may be useful to the caller. 2044 if (Depth > 0) { 2045 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2046 return false; 2047 } 2048 break; 2049 } 2050 case ISD::ADD: 2051 case ISD::MUL: 2052 case ISD::SUB: { 2053 // Add, Sub, and Mul don't demand any bits in positions beyond that 2054 // of the highest bit demanded of them. 2055 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2056 SDNodeFlags Flags = Op.getNode()->getFlags(); 2057 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2058 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2059 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2060 Depth + 1) || 2061 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2062 Depth + 1) || 2063 // See if the operation should be performed at a smaller bit width. 2064 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2065 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2066 // Disable the nsw and nuw flags. We can no longer guarantee that we 2067 // won't wrap after simplification. 2068 Flags.setNoSignedWrap(false); 2069 Flags.setNoUnsignedWrap(false); 2070 SDValue NewOp = 2071 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2072 return TLO.CombineTo(Op, NewOp); 2073 } 2074 return true; 2075 } 2076 2077 // Attempt to avoid multi-use ops if we don't need anything from them. 2078 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2079 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2080 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2081 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2082 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2083 if (DemandedOp0 || DemandedOp1) { 2084 Flags.setNoSignedWrap(false); 2085 Flags.setNoUnsignedWrap(false); 2086 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2087 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2088 SDValue NewOp = 2089 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2090 return TLO.CombineTo(Op, NewOp); 2091 } 2092 } 2093 2094 // If we have a constant operand, we may be able to turn it into -1 if we 2095 // do not demand the high bits. This can make the constant smaller to 2096 // encode, allow more general folding, or match specialized instruction 2097 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2098 // is probably not useful (and could be detrimental). 2099 ConstantSDNode *C = isConstOrConstSplat(Op1); 2100 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2101 if (C && !C->isAllOnesValue() && !C->isOne() && 2102 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2103 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2104 // Disable the nsw and nuw flags. We can no longer guarantee that we 2105 // won't wrap after simplification. 2106 Flags.setNoSignedWrap(false); 2107 Flags.setNoUnsignedWrap(false); 2108 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2109 return TLO.CombineTo(Op, NewOp); 2110 } 2111 2112 LLVM_FALLTHROUGH; 2113 } 2114 default: 2115 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2116 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2117 Known, TLO, Depth)) 2118 return true; 2119 break; 2120 } 2121 2122 // Just use computeKnownBits to compute output bits. 2123 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2124 break; 2125 } 2126 2127 // If we know the value of all of the demanded bits, return this as a 2128 // constant. 2129 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2130 // Avoid folding to a constant if any OpaqueConstant is involved. 2131 const SDNode *N = Op.getNode(); 2132 for (SDNodeIterator I = SDNodeIterator::begin(N), 2133 E = SDNodeIterator::end(N); 2134 I != E; ++I) { 2135 SDNode *Op = *I; 2136 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2137 if (C->isOpaque()) 2138 return false; 2139 } 2140 // TODO: Handle float bits as well. 2141 if (VT.isInteger()) 2142 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2143 } 2144 2145 return false; 2146 } 2147 2148 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2149 const APInt &DemandedElts, 2150 APInt &KnownUndef, 2151 APInt &KnownZero, 2152 DAGCombinerInfo &DCI) const { 2153 SelectionDAG &DAG = DCI.DAG; 2154 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2155 !DCI.isBeforeLegalizeOps()); 2156 2157 bool Simplified = 2158 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2159 if (Simplified) { 2160 DCI.AddToWorklist(Op.getNode()); 2161 DCI.CommitTargetLoweringOpt(TLO); 2162 } 2163 2164 return Simplified; 2165 } 2166 2167 /// Given a vector binary operation and known undefined elements for each input 2168 /// operand, compute whether each element of the output is undefined. 2169 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2170 const APInt &UndefOp0, 2171 const APInt &UndefOp1) { 2172 EVT VT = BO.getValueType(); 2173 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2174 "Vector binop only"); 2175 2176 EVT EltVT = VT.getVectorElementType(); 2177 unsigned NumElts = VT.getVectorNumElements(); 2178 assert(UndefOp0.getBitWidth() == NumElts && 2179 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2180 2181 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2182 const APInt &UndefVals) { 2183 if (UndefVals[Index]) 2184 return DAG.getUNDEF(EltVT); 2185 2186 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2187 // Try hard to make sure that the getNode() call is not creating temporary 2188 // nodes. Ignore opaque integers because they do not constant fold. 2189 SDValue Elt = BV->getOperand(Index); 2190 auto *C = dyn_cast<ConstantSDNode>(Elt); 2191 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2192 return Elt; 2193 } 2194 2195 return SDValue(); 2196 }; 2197 2198 APInt KnownUndef = APInt::getNullValue(NumElts); 2199 for (unsigned i = 0; i != NumElts; ++i) { 2200 // If both inputs for this element are either constant or undef and match 2201 // the element type, compute the constant/undef result for this element of 2202 // the vector. 2203 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2204 // not handle FP constants. The code within getNode() should be refactored 2205 // to avoid the danger of creating a bogus temporary node here. 2206 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2207 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2208 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2209 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2210 KnownUndef.setBit(i); 2211 } 2212 return KnownUndef; 2213 } 2214 2215 bool TargetLowering::SimplifyDemandedVectorElts( 2216 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2217 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2218 bool AssumeSingleUse) const { 2219 EVT VT = Op.getValueType(); 2220 APInt DemandedElts = OriginalDemandedElts; 2221 unsigned NumElts = DemandedElts.getBitWidth(); 2222 assert(VT.isVector() && "Expected vector op"); 2223 assert(VT.getVectorNumElements() == NumElts && 2224 "Mask size mismatches value type element count!"); 2225 2226 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2227 2228 // Undef operand. 2229 if (Op.isUndef()) { 2230 KnownUndef.setAllBits(); 2231 return false; 2232 } 2233 2234 // If Op has other users, assume that all elements are needed. 2235 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2236 DemandedElts.setAllBits(); 2237 2238 // Not demanding any elements from Op. 2239 if (DemandedElts == 0) { 2240 KnownUndef.setAllBits(); 2241 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2242 } 2243 2244 // Limit search depth. 2245 if (Depth >= SelectionDAG::MaxRecursionDepth) 2246 return false; 2247 2248 SDLoc DL(Op); 2249 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2250 2251 switch (Op.getOpcode()) { 2252 case ISD::SCALAR_TO_VECTOR: { 2253 if (!DemandedElts[0]) { 2254 KnownUndef.setAllBits(); 2255 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2256 } 2257 KnownUndef.setHighBits(NumElts - 1); 2258 break; 2259 } 2260 case ISD::BITCAST: { 2261 SDValue Src = Op.getOperand(0); 2262 EVT SrcVT = Src.getValueType(); 2263 2264 // We only handle vectors here. 2265 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2266 if (!SrcVT.isVector()) 2267 break; 2268 2269 // Fast handling of 'identity' bitcasts. 2270 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2271 if (NumSrcElts == NumElts) 2272 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2273 KnownZero, TLO, Depth + 1); 2274 2275 APInt SrcZero, SrcUndef; 2276 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2277 2278 // Bitcast from 'large element' src vector to 'small element' vector, we 2279 // must demand a source element if any DemandedElt maps to it. 2280 if ((NumElts % NumSrcElts) == 0) { 2281 unsigned Scale = NumElts / NumSrcElts; 2282 for (unsigned i = 0; i != NumElts; ++i) 2283 if (DemandedElts[i]) 2284 SrcDemandedElts.setBit(i / Scale); 2285 2286 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2287 TLO, Depth + 1)) 2288 return true; 2289 2290 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2291 // of the large element. 2292 // TODO - bigendian once we have test coverage. 2293 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2294 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2295 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2296 for (unsigned i = 0; i != NumElts; ++i) 2297 if (DemandedElts[i]) { 2298 unsigned Ofs = (i % Scale) * EltSizeInBits; 2299 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2300 } 2301 2302 KnownBits Known; 2303 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2304 return true; 2305 } 2306 2307 // If the src element is zero/undef then all the output elements will be - 2308 // only demanded elements are guaranteed to be correct. 2309 for (unsigned i = 0; i != NumSrcElts; ++i) { 2310 if (SrcDemandedElts[i]) { 2311 if (SrcZero[i]) 2312 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2313 if (SrcUndef[i]) 2314 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2315 } 2316 } 2317 } 2318 2319 // Bitcast from 'small element' src vector to 'large element' vector, we 2320 // demand all smaller source elements covered by the larger demanded element 2321 // of this vector. 2322 if ((NumSrcElts % NumElts) == 0) { 2323 unsigned Scale = NumSrcElts / NumElts; 2324 for (unsigned i = 0; i != NumElts; ++i) 2325 if (DemandedElts[i]) 2326 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2327 2328 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2329 TLO, Depth + 1)) 2330 return true; 2331 2332 // If all the src elements covering an output element are zero/undef, then 2333 // the output element will be as well, assuming it was demanded. 2334 for (unsigned i = 0; i != NumElts; ++i) { 2335 if (DemandedElts[i]) { 2336 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2337 KnownZero.setBit(i); 2338 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2339 KnownUndef.setBit(i); 2340 } 2341 } 2342 } 2343 break; 2344 } 2345 case ISD::BUILD_VECTOR: { 2346 // Check all elements and simplify any unused elements with UNDEF. 2347 if (!DemandedElts.isAllOnesValue()) { 2348 // Don't simplify BROADCASTS. 2349 if (llvm::any_of(Op->op_values(), 2350 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2351 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2352 bool Updated = false; 2353 for (unsigned i = 0; i != NumElts; ++i) { 2354 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2355 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2356 KnownUndef.setBit(i); 2357 Updated = true; 2358 } 2359 } 2360 if (Updated) 2361 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2362 } 2363 } 2364 for (unsigned i = 0; i != NumElts; ++i) { 2365 SDValue SrcOp = Op.getOperand(i); 2366 if (SrcOp.isUndef()) { 2367 KnownUndef.setBit(i); 2368 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2369 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2370 KnownZero.setBit(i); 2371 } 2372 } 2373 break; 2374 } 2375 case ISD::CONCAT_VECTORS: { 2376 EVT SubVT = Op.getOperand(0).getValueType(); 2377 unsigned NumSubVecs = Op.getNumOperands(); 2378 unsigned NumSubElts = SubVT.getVectorNumElements(); 2379 for (unsigned i = 0; i != NumSubVecs; ++i) { 2380 SDValue SubOp = Op.getOperand(i); 2381 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2382 APInt SubUndef, SubZero; 2383 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2384 Depth + 1)) 2385 return true; 2386 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2387 KnownZero.insertBits(SubZero, i * NumSubElts); 2388 } 2389 break; 2390 } 2391 case ISD::INSERT_SUBVECTOR: { 2392 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2393 break; 2394 SDValue Base = Op.getOperand(0); 2395 SDValue Sub = Op.getOperand(1); 2396 EVT SubVT = Sub.getValueType(); 2397 unsigned NumSubElts = SubVT.getVectorNumElements(); 2398 const APInt &Idx = Op.getConstantOperandAPInt(2); 2399 if (Idx.ugt(NumElts - NumSubElts)) 2400 break; 2401 unsigned SubIdx = Idx.getZExtValue(); 2402 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2403 APInt SubUndef, SubZero; 2404 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2405 Depth + 1)) 2406 return true; 2407 APInt BaseElts = DemandedElts; 2408 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2409 2410 // If none of the base operand elements are demanded, replace it with undef. 2411 if (!BaseElts && !Base.isUndef()) 2412 return TLO.CombineTo(Op, 2413 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2414 TLO.DAG.getUNDEF(VT), 2415 Op.getOperand(1), 2416 Op.getOperand(2))); 2417 2418 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2419 Depth + 1)) 2420 return true; 2421 KnownUndef.insertBits(SubUndef, SubIdx); 2422 KnownZero.insertBits(SubZero, SubIdx); 2423 break; 2424 } 2425 case ISD::EXTRACT_SUBVECTOR: { 2426 SDValue Src = Op.getOperand(0); 2427 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2428 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2429 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2430 // Offset the demanded elts by the subvector index. 2431 uint64_t Idx = SubIdx->getZExtValue(); 2432 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2433 APInt SrcUndef, SrcZero; 2434 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2435 Depth + 1)) 2436 return true; 2437 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2438 KnownZero = SrcZero.extractBits(NumElts, Idx); 2439 } 2440 break; 2441 } 2442 case ISD::INSERT_VECTOR_ELT: { 2443 SDValue Vec = Op.getOperand(0); 2444 SDValue Scl = Op.getOperand(1); 2445 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2446 2447 // For a legal, constant insertion index, if we don't need this insertion 2448 // then strip it, else remove it from the demanded elts. 2449 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2450 unsigned Idx = CIdx->getZExtValue(); 2451 if (!DemandedElts[Idx]) 2452 return TLO.CombineTo(Op, Vec); 2453 2454 APInt DemandedVecElts(DemandedElts); 2455 DemandedVecElts.clearBit(Idx); 2456 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2457 KnownZero, TLO, Depth + 1)) 2458 return true; 2459 2460 KnownUndef.clearBit(Idx); 2461 if (Scl.isUndef()) 2462 KnownUndef.setBit(Idx); 2463 2464 KnownZero.clearBit(Idx); 2465 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2466 KnownZero.setBit(Idx); 2467 break; 2468 } 2469 2470 APInt VecUndef, VecZero; 2471 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2472 Depth + 1)) 2473 return true; 2474 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2475 break; 2476 } 2477 case ISD::VSELECT: { 2478 // Try to transform the select condition based on the current demanded 2479 // elements. 2480 // TODO: If a condition element is undef, we can choose from one arm of the 2481 // select (and if one arm is undef, then we can propagate that to the 2482 // result). 2483 // TODO - add support for constant vselect masks (see IR version of this). 2484 APInt UnusedUndef, UnusedZero; 2485 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2486 UnusedZero, TLO, Depth + 1)) 2487 return true; 2488 2489 // See if we can simplify either vselect operand. 2490 APInt DemandedLHS(DemandedElts); 2491 APInt DemandedRHS(DemandedElts); 2492 APInt UndefLHS, ZeroLHS; 2493 APInt UndefRHS, ZeroRHS; 2494 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2495 ZeroLHS, TLO, Depth + 1)) 2496 return true; 2497 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2498 ZeroRHS, TLO, Depth + 1)) 2499 return true; 2500 2501 KnownUndef = UndefLHS & UndefRHS; 2502 KnownZero = ZeroLHS & ZeroRHS; 2503 break; 2504 } 2505 case ISD::VECTOR_SHUFFLE: { 2506 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2507 2508 // Collect demanded elements from shuffle operands.. 2509 APInt DemandedLHS(NumElts, 0); 2510 APInt DemandedRHS(NumElts, 0); 2511 for (unsigned i = 0; i != NumElts; ++i) { 2512 int M = ShuffleMask[i]; 2513 if (M < 0 || !DemandedElts[i]) 2514 continue; 2515 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2516 if (M < (int)NumElts) 2517 DemandedLHS.setBit(M); 2518 else 2519 DemandedRHS.setBit(M - NumElts); 2520 } 2521 2522 // See if we can simplify either shuffle operand. 2523 APInt UndefLHS, ZeroLHS; 2524 APInt UndefRHS, ZeroRHS; 2525 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2526 ZeroLHS, TLO, Depth + 1)) 2527 return true; 2528 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2529 ZeroRHS, TLO, Depth + 1)) 2530 return true; 2531 2532 // Simplify mask using undef elements from LHS/RHS. 2533 bool Updated = false; 2534 bool IdentityLHS = true, IdentityRHS = true; 2535 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2536 for (unsigned i = 0; i != NumElts; ++i) { 2537 int &M = NewMask[i]; 2538 if (M < 0) 2539 continue; 2540 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2541 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2542 Updated = true; 2543 M = -1; 2544 } 2545 IdentityLHS &= (M < 0) || (M == (int)i); 2546 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2547 } 2548 2549 // Update legal shuffle masks based on demanded elements if it won't reduce 2550 // to Identity which can cause premature removal of the shuffle mask. 2551 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2552 SDValue LegalShuffle = 2553 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2554 NewMask, TLO.DAG); 2555 if (LegalShuffle) 2556 return TLO.CombineTo(Op, LegalShuffle); 2557 } 2558 2559 // Propagate undef/zero elements from LHS/RHS. 2560 for (unsigned i = 0; i != NumElts; ++i) { 2561 int M = ShuffleMask[i]; 2562 if (M < 0) { 2563 KnownUndef.setBit(i); 2564 } else if (M < (int)NumElts) { 2565 if (UndefLHS[M]) 2566 KnownUndef.setBit(i); 2567 if (ZeroLHS[M]) 2568 KnownZero.setBit(i); 2569 } else { 2570 if (UndefRHS[M - NumElts]) 2571 KnownUndef.setBit(i); 2572 if (ZeroRHS[M - NumElts]) 2573 KnownZero.setBit(i); 2574 } 2575 } 2576 break; 2577 } 2578 case ISD::ANY_EXTEND_VECTOR_INREG: 2579 case ISD::SIGN_EXTEND_VECTOR_INREG: 2580 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2581 APInt SrcUndef, SrcZero; 2582 SDValue Src = Op.getOperand(0); 2583 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2584 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2585 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2586 Depth + 1)) 2587 return true; 2588 KnownZero = SrcZero.zextOrTrunc(NumElts); 2589 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2590 2591 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2592 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2593 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2594 // aext - if we just need the bottom element then we can bitcast. 2595 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2596 } 2597 2598 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2599 // zext(undef) upper bits are guaranteed to be zero. 2600 if (DemandedElts.isSubsetOf(KnownUndef)) 2601 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2602 KnownUndef.clearAllBits(); 2603 } 2604 break; 2605 } 2606 2607 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2608 // MAX, saturated math, etc. 2609 case ISD::OR: 2610 case ISD::XOR: 2611 case ISD::ADD: 2612 case ISD::SUB: 2613 case ISD::FADD: 2614 case ISD::FSUB: 2615 case ISD::FMUL: 2616 case ISD::FDIV: 2617 case ISD::FREM: { 2618 APInt UndefRHS, ZeroRHS; 2619 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2620 ZeroRHS, TLO, Depth + 1)) 2621 return true; 2622 APInt UndefLHS, ZeroLHS; 2623 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2624 ZeroLHS, TLO, Depth + 1)) 2625 return true; 2626 2627 KnownZero = ZeroLHS & ZeroRHS; 2628 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2629 break; 2630 } 2631 case ISD::SHL: 2632 case ISD::SRL: 2633 case ISD::SRA: 2634 case ISD::ROTL: 2635 case ISD::ROTR: { 2636 APInt UndefRHS, ZeroRHS; 2637 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2638 ZeroRHS, TLO, Depth + 1)) 2639 return true; 2640 APInt UndefLHS, ZeroLHS; 2641 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2642 ZeroLHS, TLO, Depth + 1)) 2643 return true; 2644 2645 KnownZero = ZeroLHS; 2646 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2647 break; 2648 } 2649 case ISD::MUL: 2650 case ISD::AND: { 2651 APInt SrcUndef, SrcZero; 2652 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2653 SrcZero, TLO, Depth + 1)) 2654 return true; 2655 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2656 KnownZero, TLO, Depth + 1)) 2657 return true; 2658 2659 // If either side has a zero element, then the result element is zero, even 2660 // if the other is an UNDEF. 2661 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2662 // and then handle 'and' nodes with the rest of the binop opcodes. 2663 KnownZero |= SrcZero; 2664 KnownUndef &= SrcUndef; 2665 KnownUndef &= ~KnownZero; 2666 break; 2667 } 2668 case ISD::TRUNCATE: 2669 case ISD::SIGN_EXTEND: 2670 case ISD::ZERO_EXTEND: 2671 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2672 KnownZero, TLO, Depth + 1)) 2673 return true; 2674 2675 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2676 // zext(undef) upper bits are guaranteed to be zero. 2677 if (DemandedElts.isSubsetOf(KnownUndef)) 2678 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2679 KnownUndef.clearAllBits(); 2680 } 2681 break; 2682 default: { 2683 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2684 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2685 KnownZero, TLO, Depth)) 2686 return true; 2687 } else { 2688 KnownBits Known; 2689 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2690 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2691 TLO, Depth, AssumeSingleUse)) 2692 return true; 2693 } 2694 break; 2695 } 2696 } 2697 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2698 2699 // Constant fold all undef cases. 2700 // TODO: Handle zero cases as well. 2701 if (DemandedElts.isSubsetOf(KnownUndef)) 2702 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2703 2704 return false; 2705 } 2706 2707 /// Determine which of the bits specified in Mask are known to be either zero or 2708 /// one and return them in the Known. 2709 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2710 KnownBits &Known, 2711 const APInt &DemandedElts, 2712 const SelectionDAG &DAG, 2713 unsigned Depth) const { 2714 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2715 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2716 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2717 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2718 "Should use MaskedValueIsZero if you don't know whether Op" 2719 " is a target node!"); 2720 Known.resetAll(); 2721 } 2722 2723 void TargetLowering::computeKnownBitsForTargetInstr( 2724 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2725 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2726 unsigned Depth) const { 2727 Known.resetAll(); 2728 } 2729 2730 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2731 KnownBits &Known, 2732 const APInt &DemandedElts, 2733 const SelectionDAG &DAG, 2734 unsigned Depth) const { 2735 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2736 2737 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2738 // The low bits are known zero if the pointer is aligned. 2739 Known.Zero.setLowBits(Log2_32(Align)); 2740 } 2741 } 2742 2743 /// This method can be implemented by targets that want to expose additional 2744 /// information about sign bits to the DAG Combiner. 2745 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2746 const APInt &, 2747 const SelectionDAG &, 2748 unsigned Depth) const { 2749 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2750 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2751 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2752 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2753 "Should use ComputeNumSignBits if you don't know whether Op" 2754 " is a target node!"); 2755 return 1; 2756 } 2757 2758 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2759 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2760 TargetLoweringOpt &TLO, unsigned Depth) const { 2761 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2762 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2763 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2764 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2765 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2766 " is a target node!"); 2767 return false; 2768 } 2769 2770 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2771 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2772 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2773 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2774 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2775 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2776 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2777 "Should use SimplifyDemandedBits if you don't know whether Op" 2778 " is a target node!"); 2779 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2780 return false; 2781 } 2782 2783 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2784 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2785 SelectionDAG &DAG, unsigned Depth) const { 2786 assert( 2787 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2788 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2789 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2790 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2791 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2792 " is a target node!"); 2793 return SDValue(); 2794 } 2795 2796 SDValue 2797 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2798 SDValue N1, MutableArrayRef<int> Mask, 2799 SelectionDAG &DAG) const { 2800 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2801 if (!LegalMask) { 2802 std::swap(N0, N1); 2803 ShuffleVectorSDNode::commuteMask(Mask); 2804 LegalMask = isShuffleMaskLegal(Mask, VT); 2805 } 2806 2807 if (!LegalMask) 2808 return SDValue(); 2809 2810 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2811 } 2812 2813 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2814 return nullptr; 2815 } 2816 2817 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2818 const SelectionDAG &DAG, 2819 bool SNaN, 2820 unsigned Depth) const { 2821 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2822 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2823 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2824 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2825 "Should use isKnownNeverNaN if you don't know whether Op" 2826 " is a target node!"); 2827 return false; 2828 } 2829 2830 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2831 // work with truncating build vectors and vectors with elements of less than 2832 // 8 bits. 2833 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2834 if (!N) 2835 return false; 2836 2837 APInt CVal; 2838 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2839 CVal = CN->getAPIntValue(); 2840 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2841 auto *CN = BV->getConstantSplatNode(); 2842 if (!CN) 2843 return false; 2844 2845 // If this is a truncating build vector, truncate the splat value. 2846 // Otherwise, we may fail to match the expected values below. 2847 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2848 CVal = CN->getAPIntValue(); 2849 if (BVEltWidth < CVal.getBitWidth()) 2850 CVal = CVal.trunc(BVEltWidth); 2851 } else { 2852 return false; 2853 } 2854 2855 switch (getBooleanContents(N->getValueType(0))) { 2856 case UndefinedBooleanContent: 2857 return CVal[0]; 2858 case ZeroOrOneBooleanContent: 2859 return CVal.isOneValue(); 2860 case ZeroOrNegativeOneBooleanContent: 2861 return CVal.isAllOnesValue(); 2862 } 2863 2864 llvm_unreachable("Invalid boolean contents"); 2865 } 2866 2867 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2868 if (!N) 2869 return false; 2870 2871 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2872 if (!CN) { 2873 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2874 if (!BV) 2875 return false; 2876 2877 // Only interested in constant splats, we don't care about undef 2878 // elements in identifying boolean constants and getConstantSplatNode 2879 // returns NULL if all ops are undef; 2880 CN = BV->getConstantSplatNode(); 2881 if (!CN) 2882 return false; 2883 } 2884 2885 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2886 return !CN->getAPIntValue()[0]; 2887 2888 return CN->isNullValue(); 2889 } 2890 2891 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2892 bool SExt) const { 2893 if (VT == MVT::i1) 2894 return N->isOne(); 2895 2896 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2897 switch (Cnt) { 2898 case TargetLowering::ZeroOrOneBooleanContent: 2899 // An extended value of 1 is always true, unless its original type is i1, 2900 // in which case it will be sign extended to -1. 2901 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2902 case TargetLowering::UndefinedBooleanContent: 2903 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2904 return N->isAllOnesValue() && SExt; 2905 } 2906 llvm_unreachable("Unexpected enumeration."); 2907 } 2908 2909 /// This helper function of SimplifySetCC tries to optimize the comparison when 2910 /// either operand of the SetCC node is a bitwise-and instruction. 2911 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2912 ISD::CondCode Cond, const SDLoc &DL, 2913 DAGCombinerInfo &DCI) const { 2914 // Match these patterns in any of their permutations: 2915 // (X & Y) == Y 2916 // (X & Y) != Y 2917 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2918 std::swap(N0, N1); 2919 2920 EVT OpVT = N0.getValueType(); 2921 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2922 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2923 return SDValue(); 2924 2925 SDValue X, Y; 2926 if (N0.getOperand(0) == N1) { 2927 X = N0.getOperand(1); 2928 Y = N0.getOperand(0); 2929 } else if (N0.getOperand(1) == N1) { 2930 X = N0.getOperand(0); 2931 Y = N0.getOperand(1); 2932 } else { 2933 return SDValue(); 2934 } 2935 2936 SelectionDAG &DAG = DCI.DAG; 2937 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2938 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2939 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2940 // Note that where Y is variable and is known to have at most one bit set 2941 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2942 // equivalent when Y == 0. 2943 assert(OpVT.isInteger()); 2944 Cond = ISD::getSetCCInverse(Cond, OpVT); 2945 if (DCI.isBeforeLegalizeOps() || 2946 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2947 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2948 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2949 // If the target supports an 'and-not' or 'and-complement' logic operation, 2950 // try to use that to make a comparison operation more efficient. 2951 // But don't do this transform if the mask is a single bit because there are 2952 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2953 // 'rlwinm' on PPC). 2954 2955 // Bail out if the compare operand that we want to turn into a zero is 2956 // already a zero (otherwise, infinite loop). 2957 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2958 if (YConst && YConst->isNullValue()) 2959 return SDValue(); 2960 2961 // Transform this into: ~X & Y == 0. 2962 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2963 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2964 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2965 } 2966 2967 return SDValue(); 2968 } 2969 2970 /// There are multiple IR patterns that could be checking whether certain 2971 /// truncation of a signed number would be lossy or not. The pattern which is 2972 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2973 /// We are looking for the following pattern: (KeptBits is a constant) 2974 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2975 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2976 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2977 /// We will unfold it into the natural trunc+sext pattern: 2978 /// ((%x << C) a>> C) dstcond %x 2979 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2980 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2981 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2982 const SDLoc &DL) const { 2983 // We must be comparing with a constant. 2984 ConstantSDNode *C1; 2985 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2986 return SDValue(); 2987 2988 // N0 should be: add %x, (1 << (KeptBits-1)) 2989 if (N0->getOpcode() != ISD::ADD) 2990 return SDValue(); 2991 2992 // And we must be 'add'ing a constant. 2993 ConstantSDNode *C01; 2994 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2995 return SDValue(); 2996 2997 SDValue X = N0->getOperand(0); 2998 EVT XVT = X.getValueType(); 2999 3000 // Validate constants ... 3001 3002 APInt I1 = C1->getAPIntValue(); 3003 3004 ISD::CondCode NewCond; 3005 if (Cond == ISD::CondCode::SETULT) { 3006 NewCond = ISD::CondCode::SETEQ; 3007 } else if (Cond == ISD::CondCode::SETULE) { 3008 NewCond = ISD::CondCode::SETEQ; 3009 // But need to 'canonicalize' the constant. 3010 I1 += 1; 3011 } else if (Cond == ISD::CondCode::SETUGT) { 3012 NewCond = ISD::CondCode::SETNE; 3013 // But need to 'canonicalize' the constant. 3014 I1 += 1; 3015 } else if (Cond == ISD::CondCode::SETUGE) { 3016 NewCond = ISD::CondCode::SETNE; 3017 } else 3018 return SDValue(); 3019 3020 APInt I01 = C01->getAPIntValue(); 3021 3022 auto checkConstants = [&I1, &I01]() -> bool { 3023 // Both of them must be power-of-two, and the constant from setcc is bigger. 3024 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3025 }; 3026 3027 if (checkConstants()) { 3028 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3029 } else { 3030 // What if we invert constants? (and the target predicate) 3031 I1.negate(); 3032 I01.negate(); 3033 assert(XVT.isInteger()); 3034 NewCond = getSetCCInverse(NewCond, XVT); 3035 if (!checkConstants()) 3036 return SDValue(); 3037 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3038 } 3039 3040 // They are power-of-two, so which bit is set? 3041 const unsigned KeptBits = I1.logBase2(); 3042 const unsigned KeptBitsMinusOne = I01.logBase2(); 3043 3044 // Magic! 3045 if (KeptBits != (KeptBitsMinusOne + 1)) 3046 return SDValue(); 3047 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3048 3049 // We don't want to do this in every single case. 3050 SelectionDAG &DAG = DCI.DAG; 3051 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3052 XVT, KeptBits)) 3053 return SDValue(); 3054 3055 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3056 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3057 3058 // Unfold into: ((%x << C) a>> C) cond %x 3059 // Where 'cond' will be either 'eq' or 'ne'. 3060 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3061 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3062 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3063 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3064 3065 return T2; 3066 } 3067 3068 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3069 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3070 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3071 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3072 assert(isConstOrConstSplat(N1C) && 3073 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3074 "Should be a comparison with 0."); 3075 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3076 "Valid only for [in]equality comparisons."); 3077 3078 unsigned NewShiftOpcode; 3079 SDValue X, C, Y; 3080 3081 SelectionDAG &DAG = DCI.DAG; 3082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3083 3084 // Look for '(C l>>/<< Y)'. 3085 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3086 // The shift should be one-use. 3087 if (!V.hasOneUse()) 3088 return false; 3089 unsigned OldShiftOpcode = V.getOpcode(); 3090 switch (OldShiftOpcode) { 3091 case ISD::SHL: 3092 NewShiftOpcode = ISD::SRL; 3093 break; 3094 case ISD::SRL: 3095 NewShiftOpcode = ISD::SHL; 3096 break; 3097 default: 3098 return false; // must be a logical shift. 3099 } 3100 // We should be shifting a constant. 3101 // FIXME: best to use isConstantOrConstantVector(). 3102 C = V.getOperand(0); 3103 ConstantSDNode *CC = 3104 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3105 if (!CC) 3106 return false; 3107 Y = V.getOperand(1); 3108 3109 ConstantSDNode *XC = 3110 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3111 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3112 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3113 }; 3114 3115 // LHS of comparison should be an one-use 'and'. 3116 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3117 return SDValue(); 3118 3119 X = N0.getOperand(0); 3120 SDValue Mask = N0.getOperand(1); 3121 3122 // 'and' is commutative! 3123 if (!Match(Mask)) { 3124 std::swap(X, Mask); 3125 if (!Match(Mask)) 3126 return SDValue(); 3127 } 3128 3129 EVT VT = X.getValueType(); 3130 3131 // Produce: 3132 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3133 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3134 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3135 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3136 return T2; 3137 } 3138 3139 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3140 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3141 /// handle the commuted versions of these patterns. 3142 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3143 ISD::CondCode Cond, const SDLoc &DL, 3144 DAGCombinerInfo &DCI) const { 3145 unsigned BOpcode = N0.getOpcode(); 3146 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3147 "Unexpected binop"); 3148 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3149 3150 // (X + Y) == X --> Y == 0 3151 // (X - Y) == X --> Y == 0 3152 // (X ^ Y) == X --> Y == 0 3153 SelectionDAG &DAG = DCI.DAG; 3154 EVT OpVT = N0.getValueType(); 3155 SDValue X = N0.getOperand(0); 3156 SDValue Y = N0.getOperand(1); 3157 if (X == N1) 3158 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3159 3160 if (Y != N1) 3161 return SDValue(); 3162 3163 // (X + Y) == Y --> X == 0 3164 // (X ^ Y) == Y --> X == 0 3165 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3166 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3167 3168 // The shift would not be valid if the operands are boolean (i1). 3169 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3170 return SDValue(); 3171 3172 // (X - Y) == Y --> X == Y << 1 3173 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3174 !DCI.isBeforeLegalize()); 3175 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3176 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3177 if (!DCI.isCalledByLegalizer()) 3178 DCI.AddToWorklist(YShl1.getNode()); 3179 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3180 } 3181 3182 /// Try to simplify a setcc built with the specified operands and cc. If it is 3183 /// unable to simplify it, return a null SDValue. 3184 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3185 ISD::CondCode Cond, bool foldBooleans, 3186 DAGCombinerInfo &DCI, 3187 const SDLoc &dl) const { 3188 SelectionDAG &DAG = DCI.DAG; 3189 const DataLayout &Layout = DAG.getDataLayout(); 3190 EVT OpVT = N0.getValueType(); 3191 3192 // Constant fold or commute setcc. 3193 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3194 return Fold; 3195 3196 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3197 // TODO: Handle non-splat vector constants. All undef causes trouble. 3198 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3199 if (isConstOrConstSplat(N0) && 3200 (DCI.isBeforeLegalizeOps() || 3201 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3202 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3203 3204 // If we have a subtract with the same 2 non-constant operands as this setcc 3205 // -- but in reverse order -- then try to commute the operands of this setcc 3206 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3207 // instruction on some targets. 3208 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3209 (DCI.isBeforeLegalizeOps() || 3210 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3211 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3212 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3213 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3214 3215 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3216 const APInt &C1 = N1C->getAPIntValue(); 3217 3218 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3219 // equality comparison, then we're just comparing whether X itself is 3220 // zero. 3221 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3222 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3223 N0.getOperand(1).getOpcode() == ISD::Constant) { 3224 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3225 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3226 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3227 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3228 // (srl (ctlz x), 5) == 0 -> X != 0 3229 // (srl (ctlz x), 5) != 1 -> X != 0 3230 Cond = ISD::SETNE; 3231 } else { 3232 // (srl (ctlz x), 5) != 0 -> X == 0 3233 // (srl (ctlz x), 5) == 1 -> X == 0 3234 Cond = ISD::SETEQ; 3235 } 3236 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3237 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3238 Zero, Cond); 3239 } 3240 } 3241 3242 SDValue CTPOP = N0; 3243 // Look through truncs that don't change the value of a ctpop. 3244 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3245 CTPOP = N0.getOperand(0); 3246 3247 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3248 (N0 == CTPOP || 3249 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3250 EVT CTVT = CTPOP.getValueType(); 3251 SDValue CTOp = CTPOP.getOperand(0); 3252 3253 // (ctpop x) u< 2 -> (x & x-1) == 0 3254 // (ctpop x) u> 1 -> (x & x-1) != 0 3255 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3256 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3257 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3258 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3259 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3260 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3261 } 3262 3263 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3264 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3265 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3266 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3267 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3268 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3269 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3270 assert(CTVT.isInteger()); 3271 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3272 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3273 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3274 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3275 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3276 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3277 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3278 } 3279 } 3280 3281 // (zext x) == C --> x == (trunc C) 3282 // (sext x) == C --> x == (trunc C) 3283 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3284 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3285 unsigned MinBits = N0.getValueSizeInBits(); 3286 SDValue PreExt; 3287 bool Signed = false; 3288 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3289 // ZExt 3290 MinBits = N0->getOperand(0).getValueSizeInBits(); 3291 PreExt = N0->getOperand(0); 3292 } else if (N0->getOpcode() == ISD::AND) { 3293 // DAGCombine turns costly ZExts into ANDs 3294 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3295 if ((C->getAPIntValue()+1).isPowerOf2()) { 3296 MinBits = C->getAPIntValue().countTrailingOnes(); 3297 PreExt = N0->getOperand(0); 3298 } 3299 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3300 // SExt 3301 MinBits = N0->getOperand(0).getValueSizeInBits(); 3302 PreExt = N0->getOperand(0); 3303 Signed = true; 3304 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3305 // ZEXTLOAD / SEXTLOAD 3306 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3307 MinBits = LN0->getMemoryVT().getSizeInBits(); 3308 PreExt = N0; 3309 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3310 Signed = true; 3311 MinBits = LN0->getMemoryVT().getSizeInBits(); 3312 PreExt = N0; 3313 } 3314 } 3315 3316 // Figure out how many bits we need to preserve this constant. 3317 unsigned ReqdBits = Signed ? 3318 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3319 C1.getActiveBits(); 3320 3321 // Make sure we're not losing bits from the constant. 3322 if (MinBits > 0 && 3323 MinBits < C1.getBitWidth() && 3324 MinBits >= ReqdBits) { 3325 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3326 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3327 // Will get folded away. 3328 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3329 if (MinBits == 1 && C1 == 1) 3330 // Invert the condition. 3331 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3332 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3333 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3334 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3335 } 3336 3337 // If truncating the setcc operands is not desirable, we can still 3338 // simplify the expression in some cases: 3339 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3340 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3341 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3342 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3343 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3344 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3345 SDValue TopSetCC = N0->getOperand(0); 3346 unsigned N0Opc = N0->getOpcode(); 3347 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3348 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3349 TopSetCC.getOpcode() == ISD::SETCC && 3350 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3351 (isConstFalseVal(N1C) || 3352 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3353 3354 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3355 (!N1C->isNullValue() && Cond == ISD::SETNE); 3356 3357 if (!Inverse) 3358 return TopSetCC; 3359 3360 ISD::CondCode InvCond = ISD::getSetCCInverse( 3361 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3362 TopSetCC.getOperand(0).getValueType()); 3363 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3364 TopSetCC.getOperand(1), 3365 InvCond); 3366 } 3367 } 3368 } 3369 3370 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3371 // equality or unsigned, and all 1 bits of the const are in the same 3372 // partial word, see if we can shorten the load. 3373 if (DCI.isBeforeLegalize() && 3374 !ISD::isSignedIntSetCC(Cond) && 3375 N0.getOpcode() == ISD::AND && C1 == 0 && 3376 N0.getNode()->hasOneUse() && 3377 isa<LoadSDNode>(N0.getOperand(0)) && 3378 N0.getOperand(0).getNode()->hasOneUse() && 3379 isa<ConstantSDNode>(N0.getOperand(1))) { 3380 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3381 APInt bestMask; 3382 unsigned bestWidth = 0, bestOffset = 0; 3383 if (Lod->isSimple() && Lod->isUnindexed()) { 3384 unsigned origWidth = N0.getValueSizeInBits(); 3385 unsigned maskWidth = origWidth; 3386 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3387 // 8 bits, but have to be careful... 3388 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3389 origWidth = Lod->getMemoryVT().getSizeInBits(); 3390 const APInt &Mask = N0.getConstantOperandAPInt(1); 3391 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3392 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3393 for (unsigned offset=0; offset<origWidth/width; offset++) { 3394 if (Mask.isSubsetOf(newMask)) { 3395 if (Layout.isLittleEndian()) 3396 bestOffset = (uint64_t)offset * (width/8); 3397 else 3398 bestOffset = (origWidth/width - offset - 1) * (width/8); 3399 bestMask = Mask.lshr(offset * (width/8) * 8); 3400 bestWidth = width; 3401 break; 3402 } 3403 newMask <<= width; 3404 } 3405 } 3406 } 3407 if (bestWidth) { 3408 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3409 if (newVT.isRound() && 3410 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3411 SDValue Ptr = Lod->getBasePtr(); 3412 if (bestOffset != 0) 3413 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3414 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3415 SDValue NewLoad = DAG.getLoad( 3416 newVT, dl, Lod->getChain(), Ptr, 3417 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3418 return DAG.getSetCC(dl, VT, 3419 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3420 DAG.getConstant(bestMask.trunc(bestWidth), 3421 dl, newVT)), 3422 DAG.getConstant(0LL, dl, newVT), Cond); 3423 } 3424 } 3425 } 3426 3427 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3428 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3429 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3430 3431 // If the comparison constant has bits in the upper part, the 3432 // zero-extended value could never match. 3433 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3434 C1.getBitWidth() - InSize))) { 3435 switch (Cond) { 3436 case ISD::SETUGT: 3437 case ISD::SETUGE: 3438 case ISD::SETEQ: 3439 return DAG.getConstant(0, dl, VT); 3440 case ISD::SETULT: 3441 case ISD::SETULE: 3442 case ISD::SETNE: 3443 return DAG.getConstant(1, dl, VT); 3444 case ISD::SETGT: 3445 case ISD::SETGE: 3446 // True if the sign bit of C1 is set. 3447 return DAG.getConstant(C1.isNegative(), dl, VT); 3448 case ISD::SETLT: 3449 case ISD::SETLE: 3450 // True if the sign bit of C1 isn't set. 3451 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3452 default: 3453 break; 3454 } 3455 } 3456 3457 // Otherwise, we can perform the comparison with the low bits. 3458 switch (Cond) { 3459 case ISD::SETEQ: 3460 case ISD::SETNE: 3461 case ISD::SETUGT: 3462 case ISD::SETUGE: 3463 case ISD::SETULT: 3464 case ISD::SETULE: { 3465 EVT newVT = N0.getOperand(0).getValueType(); 3466 if (DCI.isBeforeLegalizeOps() || 3467 (isOperationLegal(ISD::SETCC, newVT) && 3468 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3469 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3470 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3471 3472 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3473 NewConst, Cond); 3474 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3475 } 3476 break; 3477 } 3478 default: 3479 break; // todo, be more careful with signed comparisons 3480 } 3481 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3482 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3483 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3484 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3485 EVT ExtDstTy = N0.getValueType(); 3486 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3487 3488 // If the constant doesn't fit into the number of bits for the source of 3489 // the sign extension, it is impossible for both sides to be equal. 3490 if (C1.getMinSignedBits() > ExtSrcTyBits) 3491 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3492 3493 SDValue ZextOp; 3494 EVT Op0Ty = N0.getOperand(0).getValueType(); 3495 if (Op0Ty == ExtSrcTy) { 3496 ZextOp = N0.getOperand(0); 3497 } else { 3498 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3499 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3500 DAG.getConstant(Imm, dl, Op0Ty)); 3501 } 3502 if (!DCI.isCalledByLegalizer()) 3503 DCI.AddToWorklist(ZextOp.getNode()); 3504 // Otherwise, make this a use of a zext. 3505 return DAG.getSetCC(dl, VT, ZextOp, 3506 DAG.getConstant(C1 & APInt::getLowBitsSet( 3507 ExtDstTyBits, 3508 ExtSrcTyBits), 3509 dl, ExtDstTy), 3510 Cond); 3511 } else if ((N1C->isNullValue() || N1C->isOne()) && 3512 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3513 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3514 if (N0.getOpcode() == ISD::SETCC && 3515 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3516 (N0.getValueType() == MVT::i1 || 3517 getBooleanContents(N0.getOperand(0).getValueType()) == 3518 ZeroOrOneBooleanContent)) { 3519 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3520 if (TrueWhenTrue) 3521 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3522 // Invert the condition. 3523 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3524 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3525 if (DCI.isBeforeLegalizeOps() || 3526 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3527 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3528 } 3529 3530 if ((N0.getOpcode() == ISD::XOR || 3531 (N0.getOpcode() == ISD::AND && 3532 N0.getOperand(0).getOpcode() == ISD::XOR && 3533 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3534 isa<ConstantSDNode>(N0.getOperand(1)) && 3535 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3536 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3537 // can only do this if the top bits are known zero. 3538 unsigned BitWidth = N0.getValueSizeInBits(); 3539 if (DAG.MaskedValueIsZero(N0, 3540 APInt::getHighBitsSet(BitWidth, 3541 BitWidth-1))) { 3542 // Okay, get the un-inverted input value. 3543 SDValue Val; 3544 if (N0.getOpcode() == ISD::XOR) { 3545 Val = N0.getOperand(0); 3546 } else { 3547 assert(N0.getOpcode() == ISD::AND && 3548 N0.getOperand(0).getOpcode() == ISD::XOR); 3549 // ((X^1)&1)^1 -> X & 1 3550 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3551 N0.getOperand(0).getOperand(0), 3552 N0.getOperand(1)); 3553 } 3554 3555 return DAG.getSetCC(dl, VT, Val, N1, 3556 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3557 } 3558 } else if (N1C->isOne()) { 3559 SDValue Op0 = N0; 3560 if (Op0.getOpcode() == ISD::TRUNCATE) 3561 Op0 = Op0.getOperand(0); 3562 3563 if ((Op0.getOpcode() == ISD::XOR) && 3564 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3565 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3566 SDValue XorLHS = Op0.getOperand(0); 3567 SDValue XorRHS = Op0.getOperand(1); 3568 // Ensure that the input setccs return an i1 type or 0/1 value. 3569 if (Op0.getValueType() == MVT::i1 || 3570 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3571 ZeroOrOneBooleanContent && 3572 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3573 ZeroOrOneBooleanContent)) { 3574 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3575 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3576 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3577 } 3578 } 3579 if (Op0.getOpcode() == ISD::AND && 3580 isa<ConstantSDNode>(Op0.getOperand(1)) && 3581 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3582 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3583 if (Op0.getValueType().bitsGT(VT)) 3584 Op0 = DAG.getNode(ISD::AND, dl, VT, 3585 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3586 DAG.getConstant(1, dl, VT)); 3587 else if (Op0.getValueType().bitsLT(VT)) 3588 Op0 = DAG.getNode(ISD::AND, dl, VT, 3589 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3590 DAG.getConstant(1, dl, VT)); 3591 3592 return DAG.getSetCC(dl, VT, Op0, 3593 DAG.getConstant(0, dl, Op0.getValueType()), 3594 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3595 } 3596 if (Op0.getOpcode() == ISD::AssertZext && 3597 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3598 return DAG.getSetCC(dl, VT, Op0, 3599 DAG.getConstant(0, dl, Op0.getValueType()), 3600 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3601 } 3602 } 3603 3604 // Given: 3605 // icmp eq/ne (urem %x, %y), 0 3606 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3607 // icmp eq/ne %x, 0 3608 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3609 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3610 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3611 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3612 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3613 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3614 } 3615 3616 if (SDValue V = 3617 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3618 return V; 3619 } 3620 3621 // These simplifications apply to splat vectors as well. 3622 // TODO: Handle more splat vector cases. 3623 if (auto *N1C = isConstOrConstSplat(N1)) { 3624 const APInt &C1 = N1C->getAPIntValue(); 3625 3626 APInt MinVal, MaxVal; 3627 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3628 if (ISD::isSignedIntSetCC(Cond)) { 3629 MinVal = APInt::getSignedMinValue(OperandBitSize); 3630 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3631 } else { 3632 MinVal = APInt::getMinValue(OperandBitSize); 3633 MaxVal = APInt::getMaxValue(OperandBitSize); 3634 } 3635 3636 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3637 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3638 // X >= MIN --> true 3639 if (C1 == MinVal) 3640 return DAG.getBoolConstant(true, dl, VT, OpVT); 3641 3642 if (!VT.isVector()) { // TODO: Support this for vectors. 3643 // X >= C0 --> X > (C0 - 1) 3644 APInt C = C1 - 1; 3645 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3646 if ((DCI.isBeforeLegalizeOps() || 3647 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3648 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3649 isLegalICmpImmediate(C.getSExtValue())))) { 3650 return DAG.getSetCC(dl, VT, N0, 3651 DAG.getConstant(C, dl, N1.getValueType()), 3652 NewCC); 3653 } 3654 } 3655 } 3656 3657 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3658 // X <= MAX --> true 3659 if (C1 == MaxVal) 3660 return DAG.getBoolConstant(true, dl, VT, OpVT); 3661 3662 // X <= C0 --> X < (C0 + 1) 3663 if (!VT.isVector()) { // TODO: Support this for vectors. 3664 APInt C = C1 + 1; 3665 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3666 if ((DCI.isBeforeLegalizeOps() || 3667 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3668 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3669 isLegalICmpImmediate(C.getSExtValue())))) { 3670 return DAG.getSetCC(dl, VT, N0, 3671 DAG.getConstant(C, dl, N1.getValueType()), 3672 NewCC); 3673 } 3674 } 3675 } 3676 3677 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3678 if (C1 == MinVal) 3679 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3680 3681 // TODO: Support this for vectors after legalize ops. 3682 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3683 // Canonicalize setlt X, Max --> setne X, Max 3684 if (C1 == MaxVal) 3685 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3686 3687 // If we have setult X, 1, turn it into seteq X, 0 3688 if (C1 == MinVal+1) 3689 return DAG.getSetCC(dl, VT, N0, 3690 DAG.getConstant(MinVal, dl, N0.getValueType()), 3691 ISD::SETEQ); 3692 } 3693 } 3694 3695 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3696 if (C1 == MaxVal) 3697 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3698 3699 // TODO: Support this for vectors after legalize ops. 3700 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3701 // Canonicalize setgt X, Min --> setne X, Min 3702 if (C1 == MinVal) 3703 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3704 3705 // If we have setugt X, Max-1, turn it into seteq X, Max 3706 if (C1 == MaxVal-1) 3707 return DAG.getSetCC(dl, VT, N0, 3708 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3709 ISD::SETEQ); 3710 } 3711 } 3712 3713 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3714 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3715 if (C1.isNullValue()) 3716 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3717 VT, N0, N1, Cond, DCI, dl)) 3718 return CC; 3719 } 3720 3721 // If we have "setcc X, C0", check to see if we can shrink the immediate 3722 // by changing cc. 3723 // TODO: Support this for vectors after legalize ops. 3724 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3725 // SETUGT X, SINTMAX -> SETLT X, 0 3726 if (Cond == ISD::SETUGT && 3727 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3728 return DAG.getSetCC(dl, VT, N0, 3729 DAG.getConstant(0, dl, N1.getValueType()), 3730 ISD::SETLT); 3731 3732 // SETULT X, SINTMIN -> SETGT X, -1 3733 if (Cond == ISD::SETULT && 3734 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3735 SDValue ConstMinusOne = 3736 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3737 N1.getValueType()); 3738 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3739 } 3740 } 3741 } 3742 3743 // Back to non-vector simplifications. 3744 // TODO: Can we do these for vector splats? 3745 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3747 const APInt &C1 = N1C->getAPIntValue(); 3748 EVT ShValTy = N0.getValueType(); 3749 3750 // Fold bit comparisons when we can. 3751 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3752 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3753 N0.getOpcode() == ISD::AND) { 3754 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3755 EVT ShiftTy = 3756 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3757 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3758 // Perform the xform if the AND RHS is a single bit. 3759 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3760 if (AndRHS->getAPIntValue().isPowerOf2() && 3761 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3762 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3763 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3764 DAG.getConstant(ShCt, dl, ShiftTy))); 3765 } 3766 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3767 // (X & 8) == 8 --> (X & 8) >> 3 3768 // Perform the xform if C1 is a single bit. 3769 unsigned ShCt = C1.logBase2(); 3770 if (C1.isPowerOf2() && 3771 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3772 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3773 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3774 DAG.getConstant(ShCt, dl, ShiftTy))); 3775 } 3776 } 3777 } 3778 } 3779 3780 if (C1.getMinSignedBits() <= 64 && 3781 !isLegalICmpImmediate(C1.getSExtValue())) { 3782 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3783 // (X & -256) == 256 -> (X >> 8) == 1 3784 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3785 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3786 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3787 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3788 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3789 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3790 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3791 SDValue Shift = 3792 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3793 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3794 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3795 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3796 } 3797 } 3798 } 3799 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3800 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3801 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3802 // X < 0x100000000 -> (X >> 32) < 1 3803 // X >= 0x100000000 -> (X >> 32) >= 1 3804 // X <= 0x0ffffffff -> (X >> 32) < 1 3805 // X > 0x0ffffffff -> (X >> 32) >= 1 3806 unsigned ShiftBits; 3807 APInt NewC = C1; 3808 ISD::CondCode NewCond = Cond; 3809 if (AdjOne) { 3810 ShiftBits = C1.countTrailingOnes(); 3811 NewC = NewC + 1; 3812 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3813 } else { 3814 ShiftBits = C1.countTrailingZeros(); 3815 } 3816 NewC.lshrInPlace(ShiftBits); 3817 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3818 isLegalICmpImmediate(NewC.getSExtValue()) && 3819 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3820 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3821 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3822 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3823 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3824 } 3825 } 3826 } 3827 } 3828 3829 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3830 auto *CFP = cast<ConstantFPSDNode>(N1); 3831 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3832 3833 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3834 // constant if knowing that the operand is non-nan is enough. We prefer to 3835 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3836 // materialize 0.0. 3837 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3838 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3839 3840 // setcc (fneg x), C -> setcc swap(pred) x, -C 3841 if (N0.getOpcode() == ISD::FNEG) { 3842 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3843 if (DCI.isBeforeLegalizeOps() || 3844 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3845 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3846 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3847 } 3848 } 3849 3850 // If the condition is not legal, see if we can find an equivalent one 3851 // which is legal. 3852 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3853 // If the comparison was an awkward floating-point == or != and one of 3854 // the comparison operands is infinity or negative infinity, convert the 3855 // condition to a less-awkward <= or >=. 3856 if (CFP->getValueAPF().isInfinity()) { 3857 if (CFP->getValueAPF().isNegative()) { 3858 if (Cond == ISD::SETOEQ && 3859 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3860 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3861 if (Cond == ISD::SETUEQ && 3862 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3863 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3864 if (Cond == ISD::SETUNE && 3865 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3866 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3867 if (Cond == ISD::SETONE && 3868 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3869 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3870 } else { 3871 if (Cond == ISD::SETOEQ && 3872 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3873 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3874 if (Cond == ISD::SETUEQ && 3875 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3876 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3877 if (Cond == ISD::SETUNE && 3878 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3879 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3880 if (Cond == ISD::SETONE && 3881 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3882 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3883 } 3884 } 3885 } 3886 } 3887 3888 if (N0 == N1) { 3889 // The sext(setcc()) => setcc() optimization relies on the appropriate 3890 // constant being emitted. 3891 assert(!N0.getValueType().isInteger() && 3892 "Integer types should be handled by FoldSetCC"); 3893 3894 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3895 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3896 if (UOF == 2) // FP operators that are undefined on NaNs. 3897 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3898 if (UOF == unsigned(EqTrue)) 3899 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3900 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3901 // if it is not already. 3902 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3903 if (NewCond != Cond && 3904 (DCI.isBeforeLegalizeOps() || 3905 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3906 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3907 } 3908 3909 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3910 N0.getValueType().isInteger()) { 3911 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3912 N0.getOpcode() == ISD::XOR) { 3913 // Simplify (X+Y) == (X+Z) --> Y == Z 3914 if (N0.getOpcode() == N1.getOpcode()) { 3915 if (N0.getOperand(0) == N1.getOperand(0)) 3916 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3917 if (N0.getOperand(1) == N1.getOperand(1)) 3918 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3919 if (isCommutativeBinOp(N0.getOpcode())) { 3920 // If X op Y == Y op X, try other combinations. 3921 if (N0.getOperand(0) == N1.getOperand(1)) 3922 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3923 Cond); 3924 if (N0.getOperand(1) == N1.getOperand(0)) 3925 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3926 Cond); 3927 } 3928 } 3929 3930 // If RHS is a legal immediate value for a compare instruction, we need 3931 // to be careful about increasing register pressure needlessly. 3932 bool LegalRHSImm = false; 3933 3934 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3935 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3936 // Turn (X+C1) == C2 --> X == C2-C1 3937 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3938 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3939 DAG.getConstant(RHSC->getAPIntValue()- 3940 LHSR->getAPIntValue(), 3941 dl, N0.getValueType()), Cond); 3942 } 3943 3944 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3945 if (N0.getOpcode() == ISD::XOR) 3946 // If we know that all of the inverted bits are zero, don't bother 3947 // performing the inversion. 3948 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3949 return 3950 DAG.getSetCC(dl, VT, N0.getOperand(0), 3951 DAG.getConstant(LHSR->getAPIntValue() ^ 3952 RHSC->getAPIntValue(), 3953 dl, N0.getValueType()), 3954 Cond); 3955 } 3956 3957 // Turn (C1-X) == C2 --> X == C1-C2 3958 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3959 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3960 return 3961 DAG.getSetCC(dl, VT, N0.getOperand(1), 3962 DAG.getConstant(SUBC->getAPIntValue() - 3963 RHSC->getAPIntValue(), 3964 dl, N0.getValueType()), 3965 Cond); 3966 } 3967 } 3968 3969 // Could RHSC fold directly into a compare? 3970 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3971 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3972 } 3973 3974 // (X+Y) == X --> Y == 0 and similar folds. 3975 // Don't do this if X is an immediate that can fold into a cmp 3976 // instruction and X+Y has other uses. It could be an induction variable 3977 // chain, and the transform would increase register pressure. 3978 if (!LegalRHSImm || N0.hasOneUse()) 3979 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3980 return V; 3981 } 3982 3983 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3984 N1.getOpcode() == ISD::XOR) 3985 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3986 return V; 3987 3988 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3989 return V; 3990 } 3991 3992 // Fold remainder of division by a constant. 3993 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3994 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3995 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3996 3997 // When division is cheap or optimizing for minimum size, 3998 // fall through to DIVREM creation by skipping this fold. 3999 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4000 if (N0.getOpcode() == ISD::UREM) { 4001 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4002 return Folded; 4003 } else if (N0.getOpcode() == ISD::SREM) { 4004 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4005 return Folded; 4006 } 4007 } 4008 } 4009 4010 // Fold away ALL boolean setcc's. 4011 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4012 SDValue Temp; 4013 switch (Cond) { 4014 default: llvm_unreachable("Unknown integer setcc!"); 4015 case ISD::SETEQ: // X == Y -> ~(X^Y) 4016 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4017 N0 = DAG.getNOT(dl, Temp, OpVT); 4018 if (!DCI.isCalledByLegalizer()) 4019 DCI.AddToWorklist(Temp.getNode()); 4020 break; 4021 case ISD::SETNE: // X != Y --> (X^Y) 4022 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4023 break; 4024 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4025 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4026 Temp = DAG.getNOT(dl, N0, OpVT); 4027 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4028 if (!DCI.isCalledByLegalizer()) 4029 DCI.AddToWorklist(Temp.getNode()); 4030 break; 4031 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4032 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4033 Temp = DAG.getNOT(dl, N1, OpVT); 4034 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4035 if (!DCI.isCalledByLegalizer()) 4036 DCI.AddToWorklist(Temp.getNode()); 4037 break; 4038 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4039 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4040 Temp = DAG.getNOT(dl, N0, OpVT); 4041 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4042 if (!DCI.isCalledByLegalizer()) 4043 DCI.AddToWorklist(Temp.getNode()); 4044 break; 4045 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4046 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4047 Temp = DAG.getNOT(dl, N1, OpVT); 4048 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4049 break; 4050 } 4051 if (VT.getScalarType() != MVT::i1) { 4052 if (!DCI.isCalledByLegalizer()) 4053 DCI.AddToWorklist(N0.getNode()); 4054 // FIXME: If running after legalize, we probably can't do this. 4055 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4056 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4057 } 4058 return N0; 4059 } 4060 4061 // Could not fold it. 4062 return SDValue(); 4063 } 4064 4065 /// Returns true (and the GlobalValue and the offset) if the node is a 4066 /// GlobalAddress + offset. 4067 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4068 int64_t &Offset) const { 4069 4070 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4071 4072 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4073 GA = GASD->getGlobal(); 4074 Offset += GASD->getOffset(); 4075 return true; 4076 } 4077 4078 if (N->getOpcode() == ISD::ADD) { 4079 SDValue N1 = N->getOperand(0); 4080 SDValue N2 = N->getOperand(1); 4081 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4082 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4083 Offset += V->getSExtValue(); 4084 return true; 4085 } 4086 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4087 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4088 Offset += V->getSExtValue(); 4089 return true; 4090 } 4091 } 4092 } 4093 4094 return false; 4095 } 4096 4097 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4098 DAGCombinerInfo &DCI) const { 4099 // Default implementation: no optimization. 4100 return SDValue(); 4101 } 4102 4103 //===----------------------------------------------------------------------===// 4104 // Inline Assembler Implementation Methods 4105 //===----------------------------------------------------------------------===// 4106 4107 TargetLowering::ConstraintType 4108 TargetLowering::getConstraintType(StringRef Constraint) const { 4109 unsigned S = Constraint.size(); 4110 4111 if (S == 1) { 4112 switch (Constraint[0]) { 4113 default: break; 4114 case 'r': 4115 return C_RegisterClass; 4116 case 'm': // memory 4117 case 'o': // offsetable 4118 case 'V': // not offsetable 4119 return C_Memory; 4120 case 'n': // Simple Integer 4121 case 'E': // Floating Point Constant 4122 case 'F': // Floating Point Constant 4123 return C_Immediate; 4124 case 'i': // Simple Integer or Relocatable Constant 4125 case 's': // Relocatable Constant 4126 case 'p': // Address. 4127 case 'X': // Allow ANY value. 4128 case 'I': // Target registers. 4129 case 'J': 4130 case 'K': 4131 case 'L': 4132 case 'M': 4133 case 'N': 4134 case 'O': 4135 case 'P': 4136 case '<': 4137 case '>': 4138 return C_Other; 4139 } 4140 } 4141 4142 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4143 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4144 return C_Memory; 4145 return C_Register; 4146 } 4147 return C_Unknown; 4148 } 4149 4150 /// Try to replace an X constraint, which matches anything, with another that 4151 /// has more specific requirements based on the type of the corresponding 4152 /// operand. 4153 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4154 if (ConstraintVT.isInteger()) 4155 return "r"; 4156 if (ConstraintVT.isFloatingPoint()) 4157 return "f"; // works for many targets 4158 return nullptr; 4159 } 4160 4161 SDValue TargetLowering::LowerAsmOutputForConstraint( 4162 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4163 SelectionDAG &DAG) const { 4164 return SDValue(); 4165 } 4166 4167 /// Lower the specified operand into the Ops vector. 4168 /// If it is invalid, don't add anything to Ops. 4169 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4170 std::string &Constraint, 4171 std::vector<SDValue> &Ops, 4172 SelectionDAG &DAG) const { 4173 4174 if (Constraint.length() > 1) return; 4175 4176 char ConstraintLetter = Constraint[0]; 4177 switch (ConstraintLetter) { 4178 default: break; 4179 case 'X': // Allows any operand; labels (basic block) use this. 4180 if (Op.getOpcode() == ISD::BasicBlock || 4181 Op.getOpcode() == ISD::TargetBlockAddress) { 4182 Ops.push_back(Op); 4183 return; 4184 } 4185 LLVM_FALLTHROUGH; 4186 case 'i': // Simple Integer or Relocatable Constant 4187 case 'n': // Simple Integer 4188 case 's': { // Relocatable Constant 4189 4190 GlobalAddressSDNode *GA; 4191 ConstantSDNode *C; 4192 BlockAddressSDNode *BA; 4193 uint64_t Offset = 0; 4194 4195 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4196 // etc., since getelementpointer is variadic. We can't use 4197 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4198 // while in this case the GA may be furthest from the root node which is 4199 // likely an ISD::ADD. 4200 while (1) { 4201 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4202 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4203 GA->getValueType(0), 4204 Offset + GA->getOffset())); 4205 return; 4206 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4207 ConstraintLetter != 's') { 4208 // gcc prints these as sign extended. Sign extend value to 64 bits 4209 // now; without this it would get ZExt'd later in 4210 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4211 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4212 BooleanContent BCont = getBooleanContents(MVT::i64); 4213 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4214 : ISD::SIGN_EXTEND; 4215 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4216 : C->getSExtValue(); 4217 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4218 SDLoc(C), MVT::i64)); 4219 return; 4220 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4221 ConstraintLetter != 'n') { 4222 Ops.push_back(DAG.getTargetBlockAddress( 4223 BA->getBlockAddress(), BA->getValueType(0), 4224 Offset + BA->getOffset(), BA->getTargetFlags())); 4225 return; 4226 } else { 4227 const unsigned OpCode = Op.getOpcode(); 4228 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4229 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4230 Op = Op.getOperand(1); 4231 // Subtraction is not commutative. 4232 else if (OpCode == ISD::ADD && 4233 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4234 Op = Op.getOperand(0); 4235 else 4236 return; 4237 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4238 continue; 4239 } 4240 } 4241 return; 4242 } 4243 break; 4244 } 4245 } 4246 } 4247 4248 std::pair<unsigned, const TargetRegisterClass *> 4249 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4250 StringRef Constraint, 4251 MVT VT) const { 4252 if (Constraint.empty() || Constraint[0] != '{') 4253 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4254 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4255 4256 // Remove the braces from around the name. 4257 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4258 4259 std::pair<unsigned, const TargetRegisterClass *> R = 4260 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4261 4262 // Figure out which register class contains this reg. 4263 for (const TargetRegisterClass *RC : RI->regclasses()) { 4264 // If none of the value types for this register class are valid, we 4265 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4266 if (!isLegalRC(*RI, *RC)) 4267 continue; 4268 4269 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4270 I != E; ++I) { 4271 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4272 std::pair<unsigned, const TargetRegisterClass *> S = 4273 std::make_pair(*I, RC); 4274 4275 // If this register class has the requested value type, return it, 4276 // otherwise keep searching and return the first class found 4277 // if no other is found which explicitly has the requested type. 4278 if (RI->isTypeLegalForClass(*RC, VT)) 4279 return S; 4280 if (!R.second) 4281 R = S; 4282 } 4283 } 4284 } 4285 4286 return R; 4287 } 4288 4289 //===----------------------------------------------------------------------===// 4290 // Constraint Selection. 4291 4292 /// Return true of this is an input operand that is a matching constraint like 4293 /// "4". 4294 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4295 assert(!ConstraintCode.empty() && "No known constraint!"); 4296 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4297 } 4298 4299 /// If this is an input matching constraint, this method returns the output 4300 /// operand it matches. 4301 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4302 assert(!ConstraintCode.empty() && "No known constraint!"); 4303 return atoi(ConstraintCode.c_str()); 4304 } 4305 4306 /// Split up the constraint string from the inline assembly value into the 4307 /// specific constraints and their prefixes, and also tie in the associated 4308 /// operand values. 4309 /// If this returns an empty vector, and if the constraint string itself 4310 /// isn't empty, there was an error parsing. 4311 TargetLowering::AsmOperandInfoVector 4312 TargetLowering::ParseConstraints(const DataLayout &DL, 4313 const TargetRegisterInfo *TRI, 4314 ImmutableCallSite CS) const { 4315 /// Information about all of the constraints. 4316 AsmOperandInfoVector ConstraintOperands; 4317 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4318 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4319 4320 // Do a prepass over the constraints, canonicalizing them, and building up the 4321 // ConstraintOperands list. 4322 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4323 unsigned ResNo = 0; // ResNo - The result number of the next output. 4324 4325 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4326 ConstraintOperands.emplace_back(std::move(CI)); 4327 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4328 4329 // Update multiple alternative constraint count. 4330 if (OpInfo.multipleAlternatives.size() > maCount) 4331 maCount = OpInfo.multipleAlternatives.size(); 4332 4333 OpInfo.ConstraintVT = MVT::Other; 4334 4335 // Compute the value type for each operand. 4336 switch (OpInfo.Type) { 4337 case InlineAsm::isOutput: 4338 // Indirect outputs just consume an argument. 4339 if (OpInfo.isIndirect) { 4340 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4341 break; 4342 } 4343 4344 // The return value of the call is this value. As such, there is no 4345 // corresponding argument. 4346 assert(!CS.getType()->isVoidTy() && 4347 "Bad inline asm!"); 4348 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4349 OpInfo.ConstraintVT = 4350 getSimpleValueType(DL, STy->getElementType(ResNo)); 4351 } else { 4352 assert(ResNo == 0 && "Asm only has one result!"); 4353 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4354 } 4355 ++ResNo; 4356 break; 4357 case InlineAsm::isInput: 4358 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4359 break; 4360 case InlineAsm::isClobber: 4361 // Nothing to do. 4362 break; 4363 } 4364 4365 if (OpInfo.CallOperandVal) { 4366 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4367 if (OpInfo.isIndirect) { 4368 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4369 if (!PtrTy) 4370 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4371 OpTy = PtrTy->getElementType(); 4372 } 4373 4374 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4375 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4376 if (STy->getNumElements() == 1) 4377 OpTy = STy->getElementType(0); 4378 4379 // If OpTy is not a single value, it may be a struct/union that we 4380 // can tile with integers. 4381 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4382 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4383 switch (BitSize) { 4384 default: break; 4385 case 1: 4386 case 8: 4387 case 16: 4388 case 32: 4389 case 64: 4390 case 128: 4391 OpInfo.ConstraintVT = 4392 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4393 break; 4394 } 4395 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4396 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4397 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4398 } else { 4399 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4400 } 4401 } 4402 } 4403 4404 // If we have multiple alternative constraints, select the best alternative. 4405 if (!ConstraintOperands.empty()) { 4406 if (maCount) { 4407 unsigned bestMAIndex = 0; 4408 int bestWeight = -1; 4409 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4410 int weight = -1; 4411 unsigned maIndex; 4412 // Compute the sums of the weights for each alternative, keeping track 4413 // of the best (highest weight) one so far. 4414 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4415 int weightSum = 0; 4416 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4417 cIndex != eIndex; ++cIndex) { 4418 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4419 if (OpInfo.Type == InlineAsm::isClobber) 4420 continue; 4421 4422 // If this is an output operand with a matching input operand, 4423 // look up the matching input. If their types mismatch, e.g. one 4424 // is an integer, the other is floating point, or their sizes are 4425 // different, flag it as an maCantMatch. 4426 if (OpInfo.hasMatchingInput()) { 4427 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4428 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4429 if ((OpInfo.ConstraintVT.isInteger() != 4430 Input.ConstraintVT.isInteger()) || 4431 (OpInfo.ConstraintVT.getSizeInBits() != 4432 Input.ConstraintVT.getSizeInBits())) { 4433 weightSum = -1; // Can't match. 4434 break; 4435 } 4436 } 4437 } 4438 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4439 if (weight == -1) { 4440 weightSum = -1; 4441 break; 4442 } 4443 weightSum += weight; 4444 } 4445 // Update best. 4446 if (weightSum > bestWeight) { 4447 bestWeight = weightSum; 4448 bestMAIndex = maIndex; 4449 } 4450 } 4451 4452 // Now select chosen alternative in each constraint. 4453 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4454 cIndex != eIndex; ++cIndex) { 4455 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4456 if (cInfo.Type == InlineAsm::isClobber) 4457 continue; 4458 cInfo.selectAlternative(bestMAIndex); 4459 } 4460 } 4461 } 4462 4463 // Check and hook up tied operands, choose constraint code to use. 4464 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4465 cIndex != eIndex; ++cIndex) { 4466 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4467 4468 // If this is an output operand with a matching input operand, look up the 4469 // matching input. If their types mismatch, e.g. one is an integer, the 4470 // other is floating point, or their sizes are different, flag it as an 4471 // error. 4472 if (OpInfo.hasMatchingInput()) { 4473 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4474 4475 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4476 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4477 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4478 OpInfo.ConstraintVT); 4479 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4480 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4481 Input.ConstraintVT); 4482 if ((OpInfo.ConstraintVT.isInteger() != 4483 Input.ConstraintVT.isInteger()) || 4484 (MatchRC.second != InputRC.second)) { 4485 report_fatal_error("Unsupported asm: input constraint" 4486 " with a matching output constraint of" 4487 " incompatible type!"); 4488 } 4489 } 4490 } 4491 } 4492 4493 return ConstraintOperands; 4494 } 4495 4496 /// Return an integer indicating how general CT is. 4497 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4498 switch (CT) { 4499 case TargetLowering::C_Immediate: 4500 case TargetLowering::C_Other: 4501 case TargetLowering::C_Unknown: 4502 return 0; 4503 case TargetLowering::C_Register: 4504 return 1; 4505 case TargetLowering::C_RegisterClass: 4506 return 2; 4507 case TargetLowering::C_Memory: 4508 return 3; 4509 } 4510 llvm_unreachable("Invalid constraint type"); 4511 } 4512 4513 /// Examine constraint type and operand type and determine a weight value. 4514 /// This object must already have been set up with the operand type 4515 /// and the current alternative constraint selected. 4516 TargetLowering::ConstraintWeight 4517 TargetLowering::getMultipleConstraintMatchWeight( 4518 AsmOperandInfo &info, int maIndex) const { 4519 InlineAsm::ConstraintCodeVector *rCodes; 4520 if (maIndex >= (int)info.multipleAlternatives.size()) 4521 rCodes = &info.Codes; 4522 else 4523 rCodes = &info.multipleAlternatives[maIndex].Codes; 4524 ConstraintWeight BestWeight = CW_Invalid; 4525 4526 // Loop over the options, keeping track of the most general one. 4527 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4528 ConstraintWeight weight = 4529 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4530 if (weight > BestWeight) 4531 BestWeight = weight; 4532 } 4533 4534 return BestWeight; 4535 } 4536 4537 /// Examine constraint type and operand type and determine a weight value. 4538 /// This object must already have been set up with the operand type 4539 /// and the current alternative constraint selected. 4540 TargetLowering::ConstraintWeight 4541 TargetLowering::getSingleConstraintMatchWeight( 4542 AsmOperandInfo &info, const char *constraint) const { 4543 ConstraintWeight weight = CW_Invalid; 4544 Value *CallOperandVal = info.CallOperandVal; 4545 // If we don't have a value, we can't do a match, 4546 // but allow it at the lowest weight. 4547 if (!CallOperandVal) 4548 return CW_Default; 4549 // Look at the constraint type. 4550 switch (*constraint) { 4551 case 'i': // immediate integer. 4552 case 'n': // immediate integer with a known value. 4553 if (isa<ConstantInt>(CallOperandVal)) 4554 weight = CW_Constant; 4555 break; 4556 case 's': // non-explicit intregal immediate. 4557 if (isa<GlobalValue>(CallOperandVal)) 4558 weight = CW_Constant; 4559 break; 4560 case 'E': // immediate float if host format. 4561 case 'F': // immediate float. 4562 if (isa<ConstantFP>(CallOperandVal)) 4563 weight = CW_Constant; 4564 break; 4565 case '<': // memory operand with autodecrement. 4566 case '>': // memory operand with autoincrement. 4567 case 'm': // memory operand. 4568 case 'o': // offsettable memory operand 4569 case 'V': // non-offsettable memory operand 4570 weight = CW_Memory; 4571 break; 4572 case 'r': // general register. 4573 case 'g': // general register, memory operand or immediate integer. 4574 // note: Clang converts "g" to "imr". 4575 if (CallOperandVal->getType()->isIntegerTy()) 4576 weight = CW_Register; 4577 break; 4578 case 'X': // any operand. 4579 default: 4580 weight = CW_Default; 4581 break; 4582 } 4583 return weight; 4584 } 4585 4586 /// If there are multiple different constraints that we could pick for this 4587 /// operand (e.g. "imr") try to pick the 'best' one. 4588 /// This is somewhat tricky: constraints fall into four classes: 4589 /// Other -> immediates and magic values 4590 /// Register -> one specific register 4591 /// RegisterClass -> a group of regs 4592 /// Memory -> memory 4593 /// Ideally, we would pick the most specific constraint possible: if we have 4594 /// something that fits into a register, we would pick it. The problem here 4595 /// is that if we have something that could either be in a register or in 4596 /// memory that use of the register could cause selection of *other* 4597 /// operands to fail: they might only succeed if we pick memory. Because of 4598 /// this the heuristic we use is: 4599 /// 4600 /// 1) If there is an 'other' constraint, and if the operand is valid for 4601 /// that constraint, use it. This makes us take advantage of 'i' 4602 /// constraints when available. 4603 /// 2) Otherwise, pick the most general constraint present. This prefers 4604 /// 'm' over 'r', for example. 4605 /// 4606 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4607 const TargetLowering &TLI, 4608 SDValue Op, SelectionDAG *DAG) { 4609 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4610 unsigned BestIdx = 0; 4611 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4612 int BestGenerality = -1; 4613 4614 // Loop over the options, keeping track of the most general one. 4615 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4616 TargetLowering::ConstraintType CType = 4617 TLI.getConstraintType(OpInfo.Codes[i]); 4618 4619 // Indirect 'other' or 'immediate' constraints are not allowed. 4620 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4621 CType == TargetLowering::C_Register || 4622 CType == TargetLowering::C_RegisterClass)) 4623 continue; 4624 4625 // If this is an 'other' or 'immediate' constraint, see if the operand is 4626 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4627 // the operand is an integer in the range [0..31] we want to use I (saving a 4628 // load of a register), otherwise we must use 'r'. 4629 if ((CType == TargetLowering::C_Other || 4630 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4631 assert(OpInfo.Codes[i].size() == 1 && 4632 "Unhandled multi-letter 'other' constraint"); 4633 std::vector<SDValue> ResultOps; 4634 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4635 ResultOps, *DAG); 4636 if (!ResultOps.empty()) { 4637 BestType = CType; 4638 BestIdx = i; 4639 break; 4640 } 4641 } 4642 4643 // Things with matching constraints can only be registers, per gcc 4644 // documentation. This mainly affects "g" constraints. 4645 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4646 continue; 4647 4648 // This constraint letter is more general than the previous one, use it. 4649 int Generality = getConstraintGenerality(CType); 4650 if (Generality > BestGenerality) { 4651 BestType = CType; 4652 BestIdx = i; 4653 BestGenerality = Generality; 4654 } 4655 } 4656 4657 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4658 OpInfo.ConstraintType = BestType; 4659 } 4660 4661 /// Determines the constraint code and constraint type to use for the specific 4662 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4663 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4664 SDValue Op, 4665 SelectionDAG *DAG) const { 4666 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4667 4668 // Single-letter constraints ('r') are very common. 4669 if (OpInfo.Codes.size() == 1) { 4670 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4671 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4672 } else { 4673 ChooseConstraint(OpInfo, *this, Op, DAG); 4674 } 4675 4676 // 'X' matches anything. 4677 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4678 // Labels and constants are handled elsewhere ('X' is the only thing 4679 // that matches labels). For Functions, the type here is the type of 4680 // the result, which is not what we want to look at; leave them alone. 4681 Value *v = OpInfo.CallOperandVal; 4682 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4683 OpInfo.CallOperandVal = v; 4684 return; 4685 } 4686 4687 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4688 return; 4689 4690 // Otherwise, try to resolve it to something we know about by looking at 4691 // the actual operand type. 4692 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4693 OpInfo.ConstraintCode = Repl; 4694 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4695 } 4696 } 4697 } 4698 4699 /// Given an exact SDIV by a constant, create a multiplication 4700 /// with the multiplicative inverse of the constant. 4701 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4702 const SDLoc &dl, SelectionDAG &DAG, 4703 SmallVectorImpl<SDNode *> &Created) { 4704 SDValue Op0 = N->getOperand(0); 4705 SDValue Op1 = N->getOperand(1); 4706 EVT VT = N->getValueType(0); 4707 EVT SVT = VT.getScalarType(); 4708 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4709 EVT ShSVT = ShVT.getScalarType(); 4710 4711 bool UseSRA = false; 4712 SmallVector<SDValue, 16> Shifts, Factors; 4713 4714 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4715 if (C->isNullValue()) 4716 return false; 4717 APInt Divisor = C->getAPIntValue(); 4718 unsigned Shift = Divisor.countTrailingZeros(); 4719 if (Shift) { 4720 Divisor.ashrInPlace(Shift); 4721 UseSRA = true; 4722 } 4723 // Calculate the multiplicative inverse, using Newton's method. 4724 APInt t; 4725 APInt Factor = Divisor; 4726 while ((t = Divisor * Factor) != 1) 4727 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4728 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4729 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4730 return true; 4731 }; 4732 4733 // Collect all magic values from the build vector. 4734 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4735 return SDValue(); 4736 4737 SDValue Shift, Factor; 4738 if (VT.isVector()) { 4739 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4740 Factor = DAG.getBuildVector(VT, dl, Factors); 4741 } else { 4742 Shift = Shifts[0]; 4743 Factor = Factors[0]; 4744 } 4745 4746 SDValue Res = Op0; 4747 4748 // Shift the value upfront if it is even, so the LSB is one. 4749 if (UseSRA) { 4750 // TODO: For UDIV use SRL instead of SRA. 4751 SDNodeFlags Flags; 4752 Flags.setExact(true); 4753 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4754 Created.push_back(Res.getNode()); 4755 } 4756 4757 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4758 } 4759 4760 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4761 SelectionDAG &DAG, 4762 SmallVectorImpl<SDNode *> &Created) const { 4763 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4765 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4766 return SDValue(N, 0); // Lower SDIV as SDIV 4767 return SDValue(); 4768 } 4769 4770 /// Given an ISD::SDIV node expressing a divide by constant, 4771 /// return a DAG expression to select that will generate the same value by 4772 /// multiplying by a magic number. 4773 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4774 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4775 bool IsAfterLegalization, 4776 SmallVectorImpl<SDNode *> &Created) const { 4777 SDLoc dl(N); 4778 EVT VT = N->getValueType(0); 4779 EVT SVT = VT.getScalarType(); 4780 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4781 EVT ShSVT = ShVT.getScalarType(); 4782 unsigned EltBits = VT.getScalarSizeInBits(); 4783 4784 // Check to see if we can do this. 4785 // FIXME: We should be more aggressive here. 4786 if (!isTypeLegal(VT)) 4787 return SDValue(); 4788 4789 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4790 if (N->getFlags().hasExact()) 4791 return BuildExactSDIV(*this, N, dl, DAG, Created); 4792 4793 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4794 4795 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4796 if (C->isNullValue()) 4797 return false; 4798 4799 const APInt &Divisor = C->getAPIntValue(); 4800 APInt::ms magics = Divisor.magic(); 4801 int NumeratorFactor = 0; 4802 int ShiftMask = -1; 4803 4804 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4805 // If d is +1/-1, we just multiply the numerator by +1/-1. 4806 NumeratorFactor = Divisor.getSExtValue(); 4807 magics.m = 0; 4808 magics.s = 0; 4809 ShiftMask = 0; 4810 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4811 // If d > 0 and m < 0, add the numerator. 4812 NumeratorFactor = 1; 4813 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4814 // If d < 0 and m > 0, subtract the numerator. 4815 NumeratorFactor = -1; 4816 } 4817 4818 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4819 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4820 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4821 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4822 return true; 4823 }; 4824 4825 SDValue N0 = N->getOperand(0); 4826 SDValue N1 = N->getOperand(1); 4827 4828 // Collect the shifts / magic values from each element. 4829 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4830 return SDValue(); 4831 4832 SDValue MagicFactor, Factor, Shift, ShiftMask; 4833 if (VT.isVector()) { 4834 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4835 Factor = DAG.getBuildVector(VT, dl, Factors); 4836 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4837 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4838 } else { 4839 MagicFactor = MagicFactors[0]; 4840 Factor = Factors[0]; 4841 Shift = Shifts[0]; 4842 ShiftMask = ShiftMasks[0]; 4843 } 4844 4845 // Multiply the numerator (operand 0) by the magic value. 4846 // FIXME: We should support doing a MUL in a wider type. 4847 SDValue Q; 4848 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4849 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4850 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4851 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4852 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4853 SDValue LoHi = 4854 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4855 Q = SDValue(LoHi.getNode(), 1); 4856 } else 4857 return SDValue(); // No mulhs or equivalent. 4858 Created.push_back(Q.getNode()); 4859 4860 // (Optionally) Add/subtract the numerator using Factor. 4861 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4862 Created.push_back(Factor.getNode()); 4863 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4864 Created.push_back(Q.getNode()); 4865 4866 // Shift right algebraic by shift value. 4867 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4868 Created.push_back(Q.getNode()); 4869 4870 // Extract the sign bit, mask it and add it to the quotient. 4871 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4872 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4873 Created.push_back(T.getNode()); 4874 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4875 Created.push_back(T.getNode()); 4876 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4877 } 4878 4879 /// Given an ISD::UDIV node expressing a divide by constant, 4880 /// return a DAG expression to select that will generate the same value by 4881 /// multiplying by a magic number. 4882 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4883 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4884 bool IsAfterLegalization, 4885 SmallVectorImpl<SDNode *> &Created) const { 4886 SDLoc dl(N); 4887 EVT VT = N->getValueType(0); 4888 EVT SVT = VT.getScalarType(); 4889 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4890 EVT ShSVT = ShVT.getScalarType(); 4891 unsigned EltBits = VT.getScalarSizeInBits(); 4892 4893 // Check to see if we can do this. 4894 // FIXME: We should be more aggressive here. 4895 if (!isTypeLegal(VT)) 4896 return SDValue(); 4897 4898 bool UseNPQ = false; 4899 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4900 4901 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4902 if (C->isNullValue()) 4903 return false; 4904 // FIXME: We should use a narrower constant when the upper 4905 // bits are known to be zero. 4906 APInt Divisor = C->getAPIntValue(); 4907 APInt::mu magics = Divisor.magicu(); 4908 unsigned PreShift = 0, PostShift = 0; 4909 4910 // If the divisor is even, we can avoid using the expensive fixup by 4911 // shifting the divided value upfront. 4912 if (magics.a != 0 && !Divisor[0]) { 4913 PreShift = Divisor.countTrailingZeros(); 4914 // Get magic number for the shifted divisor. 4915 magics = Divisor.lshr(PreShift).magicu(PreShift); 4916 assert(magics.a == 0 && "Should use cheap fixup now"); 4917 } 4918 4919 APInt Magic = magics.m; 4920 4921 unsigned SelNPQ; 4922 if (magics.a == 0 || Divisor.isOneValue()) { 4923 assert(magics.s < Divisor.getBitWidth() && 4924 "We shouldn't generate an undefined shift!"); 4925 PostShift = magics.s; 4926 SelNPQ = false; 4927 } else { 4928 PostShift = magics.s - 1; 4929 SelNPQ = true; 4930 } 4931 4932 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4933 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4934 NPQFactors.push_back( 4935 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4936 : APInt::getNullValue(EltBits), 4937 dl, SVT)); 4938 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4939 UseNPQ |= SelNPQ; 4940 return true; 4941 }; 4942 4943 SDValue N0 = N->getOperand(0); 4944 SDValue N1 = N->getOperand(1); 4945 4946 // Collect the shifts/magic values from each element. 4947 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4948 return SDValue(); 4949 4950 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4951 if (VT.isVector()) { 4952 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4953 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4954 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4955 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4956 } else { 4957 PreShift = PreShifts[0]; 4958 MagicFactor = MagicFactors[0]; 4959 PostShift = PostShifts[0]; 4960 } 4961 4962 SDValue Q = N0; 4963 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4964 Created.push_back(Q.getNode()); 4965 4966 // FIXME: We should support doing a MUL in a wider type. 4967 auto GetMULHU = [&](SDValue X, SDValue Y) { 4968 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4969 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4970 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4971 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4972 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4973 SDValue LoHi = 4974 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4975 return SDValue(LoHi.getNode(), 1); 4976 } 4977 return SDValue(); // No mulhu or equivalent 4978 }; 4979 4980 // Multiply the numerator (operand 0) by the magic value. 4981 Q = GetMULHU(Q, MagicFactor); 4982 if (!Q) 4983 return SDValue(); 4984 4985 Created.push_back(Q.getNode()); 4986 4987 if (UseNPQ) { 4988 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4989 Created.push_back(NPQ.getNode()); 4990 4991 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4992 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4993 if (VT.isVector()) 4994 NPQ = GetMULHU(NPQ, NPQFactor); 4995 else 4996 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4997 4998 Created.push_back(NPQ.getNode()); 4999 5000 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5001 Created.push_back(Q.getNode()); 5002 } 5003 5004 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5005 Created.push_back(Q.getNode()); 5006 5007 SDValue One = DAG.getConstant(1, dl, VT); 5008 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5009 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5010 } 5011 5012 /// If all values in Values that *don't* match the predicate are same 'splat' 5013 /// value, then replace all values with that splat value. 5014 /// Else, if AlternativeReplacement was provided, then replace all values that 5015 /// do match predicate with AlternativeReplacement value. 5016 static void 5017 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5018 std::function<bool(SDValue)> Predicate, 5019 SDValue AlternativeReplacement = SDValue()) { 5020 SDValue Replacement; 5021 // Is there a value for which the Predicate does *NOT* match? What is it? 5022 auto SplatValue = llvm::find_if_not(Values, Predicate); 5023 if (SplatValue != Values.end()) { 5024 // Does Values consist only of SplatValue's and values matching Predicate? 5025 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5026 return Value == *SplatValue || Predicate(Value); 5027 })) // Then we shall replace values matching predicate with SplatValue. 5028 Replacement = *SplatValue; 5029 } 5030 if (!Replacement) { 5031 // Oops, we did not find the "baseline" splat value. 5032 if (!AlternativeReplacement) 5033 return; // Nothing to do. 5034 // Let's replace with provided value then. 5035 Replacement = AlternativeReplacement; 5036 } 5037 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5038 } 5039 5040 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5041 /// where the divisor is constant and the comparison target is zero, 5042 /// return a DAG expression that will generate the same comparison result 5043 /// using only multiplications, additions and shifts/rotations. 5044 /// Ref: "Hacker's Delight" 10-17. 5045 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5046 SDValue CompTargetNode, 5047 ISD::CondCode Cond, 5048 DAGCombinerInfo &DCI, 5049 const SDLoc &DL) const { 5050 SmallVector<SDNode *, 5> Built; 5051 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5052 DCI, DL, Built)) { 5053 for (SDNode *N : Built) 5054 DCI.AddToWorklist(N); 5055 return Folded; 5056 } 5057 5058 return SDValue(); 5059 } 5060 5061 SDValue 5062 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5063 SDValue CompTargetNode, ISD::CondCode Cond, 5064 DAGCombinerInfo &DCI, const SDLoc &DL, 5065 SmallVectorImpl<SDNode *> &Created) const { 5066 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5067 // - D must be constant, with D = D0 * 2^K where D0 is odd 5068 // - P is the multiplicative inverse of D0 modulo 2^W 5069 // - Q = floor(((2^W) - 1) / D) 5070 // where W is the width of the common type of N and D. 5071 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5072 "Only applicable for (in)equality comparisons."); 5073 5074 SelectionDAG &DAG = DCI.DAG; 5075 5076 EVT VT = REMNode.getValueType(); 5077 EVT SVT = VT.getScalarType(); 5078 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5079 EVT ShSVT = ShVT.getScalarType(); 5080 5081 // If MUL is unavailable, we cannot proceed in any case. 5082 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5083 return SDValue(); 5084 5085 bool ComparingWithAllZeros = true; 5086 bool AllComparisonsWithNonZerosAreTautological = true; 5087 bool HadTautologicalLanes = false; 5088 bool AllLanesAreTautological = true; 5089 bool HadEvenDivisor = false; 5090 bool AllDivisorsArePowerOfTwo = true; 5091 bool HadTautologicalInvertedLanes = false; 5092 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5093 5094 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5095 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5096 if (CDiv->isNullValue()) 5097 return false; 5098 5099 const APInt &D = CDiv->getAPIntValue(); 5100 const APInt &Cmp = CCmp->getAPIntValue(); 5101 5102 ComparingWithAllZeros &= Cmp.isNullValue(); 5103 5104 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5105 // if C2 is not less than C1, the comparison is always false. 5106 // But we will only be able to produce the comparison that will give the 5107 // opposive tautological answer. So this lane would need to be fixed up. 5108 bool TautologicalInvertedLane = D.ule(Cmp); 5109 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5110 5111 // If all lanes are tautological (either all divisors are ones, or divisor 5112 // is not greater than the constant we are comparing with), 5113 // we will prefer to avoid the fold. 5114 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5115 HadTautologicalLanes |= TautologicalLane; 5116 AllLanesAreTautological &= TautologicalLane; 5117 5118 // If we are comparing with non-zero, we need'll need to subtract said 5119 // comparison value from the LHS. But there is no point in doing that if 5120 // every lane where we are comparing with non-zero is tautological.. 5121 if (!Cmp.isNullValue()) 5122 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5123 5124 // Decompose D into D0 * 2^K 5125 unsigned K = D.countTrailingZeros(); 5126 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5127 APInt D0 = D.lshr(K); 5128 5129 // D is even if it has trailing zeros. 5130 HadEvenDivisor |= (K != 0); 5131 // D is a power-of-two if D0 is one. 5132 // If all divisors are power-of-two, we will prefer to avoid the fold. 5133 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5134 5135 // P = inv(D0, 2^W) 5136 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5137 unsigned W = D.getBitWidth(); 5138 APInt P = D0.zext(W + 1) 5139 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5140 .trunc(W); 5141 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5142 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5143 5144 // Q = floor((2^W - 1) u/ D) 5145 // R = ((2^W - 1) u% D) 5146 APInt Q, R; 5147 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5148 5149 // If we are comparing with zero, then that comparison constant is okay, 5150 // else it may need to be one less than that. 5151 if (Cmp.ugt(R)) 5152 Q -= 1; 5153 5154 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5155 "We are expecting that K is always less than all-ones for ShSVT"); 5156 5157 // If the lane is tautological the result can be constant-folded. 5158 if (TautologicalLane) { 5159 // Set P and K amount to a bogus values so we can try to splat them. 5160 P = 0; 5161 K = -1; 5162 // And ensure that comparison constant is tautological, 5163 // it will always compare true/false. 5164 Q = -1; 5165 } 5166 5167 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5168 KAmts.push_back( 5169 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5170 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5171 return true; 5172 }; 5173 5174 SDValue N = REMNode.getOperand(0); 5175 SDValue D = REMNode.getOperand(1); 5176 5177 // Collect the values from each element. 5178 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5179 return SDValue(); 5180 5181 // If all lanes are tautological, the result can be constant-folded. 5182 if (AllLanesAreTautological) 5183 return SDValue(); 5184 5185 // If this is a urem by a powers-of-two, avoid the fold since it can be 5186 // best implemented as a bit test. 5187 if (AllDivisorsArePowerOfTwo) 5188 return SDValue(); 5189 5190 SDValue PVal, KVal, QVal; 5191 if (VT.isVector()) { 5192 if (HadTautologicalLanes) { 5193 // Try to turn PAmts into a splat, since we don't care about the values 5194 // that are currently '0'. If we can't, just keep '0'`s. 5195 turnVectorIntoSplatVector(PAmts, isNullConstant); 5196 // Try to turn KAmts into a splat, since we don't care about the values 5197 // that are currently '-1'. If we can't, change them to '0'`s. 5198 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5199 DAG.getConstant(0, DL, ShSVT)); 5200 } 5201 5202 PVal = DAG.getBuildVector(VT, DL, PAmts); 5203 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5204 QVal = DAG.getBuildVector(VT, DL, QAmts); 5205 } else { 5206 PVal = PAmts[0]; 5207 KVal = KAmts[0]; 5208 QVal = QAmts[0]; 5209 } 5210 5211 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5212 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5213 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5214 assert(CompTargetNode.getValueType() == N.getValueType() && 5215 "Expecting that the types on LHS and RHS of comparisons match."); 5216 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5217 } 5218 5219 // (mul N, P) 5220 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5221 Created.push_back(Op0.getNode()); 5222 5223 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5224 // divisors as a performance improvement, since rotating by 0 is a no-op. 5225 if (HadEvenDivisor) { 5226 // We need ROTR to do this. 5227 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5228 return SDValue(); 5229 SDNodeFlags Flags; 5230 Flags.setExact(true); 5231 // UREM: (rotr (mul N, P), K) 5232 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5233 Created.push_back(Op0.getNode()); 5234 } 5235 5236 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5237 SDValue NewCC = 5238 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5239 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5240 if (!HadTautologicalInvertedLanes) 5241 return NewCC; 5242 5243 // If any lanes previously compared always-false, the NewCC will give 5244 // always-true result for them, so we need to fixup those lanes. 5245 // Or the other way around for inequality predicate. 5246 assert(VT.isVector() && "Can/should only get here for vectors."); 5247 Created.push_back(NewCC.getNode()); 5248 5249 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5250 // if C2 is not less than C1, the comparison is always false. 5251 // But we have produced the comparison that will give the 5252 // opposive tautological answer. So these lanes would need to be fixed up. 5253 SDValue TautologicalInvertedChannels = 5254 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5255 Created.push_back(TautologicalInvertedChannels.getNode()); 5256 5257 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5258 // If we have a vector select, let's replace the comparison results in the 5259 // affected lanes with the correct tautological result. 5260 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5261 DL, SETCCVT, SETCCVT); 5262 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5263 Replacement, NewCC); 5264 } 5265 5266 // Else, we can just invert the comparison result in the appropriate lanes. 5267 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5268 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5269 TautologicalInvertedChannels); 5270 5271 return SDValue(); // Don't know how to lower. 5272 } 5273 5274 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5275 /// where the divisor is constant and the comparison target is zero, 5276 /// return a DAG expression that will generate the same comparison result 5277 /// using only multiplications, additions and shifts/rotations. 5278 /// Ref: "Hacker's Delight" 10-17. 5279 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5280 SDValue CompTargetNode, 5281 ISD::CondCode Cond, 5282 DAGCombinerInfo &DCI, 5283 const SDLoc &DL) const { 5284 SmallVector<SDNode *, 7> Built; 5285 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5286 DCI, DL, Built)) { 5287 assert(Built.size() <= 7 && "Max size prediction failed."); 5288 for (SDNode *N : Built) 5289 DCI.AddToWorklist(N); 5290 return Folded; 5291 } 5292 5293 return SDValue(); 5294 } 5295 5296 SDValue 5297 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5298 SDValue CompTargetNode, ISD::CondCode Cond, 5299 DAGCombinerInfo &DCI, const SDLoc &DL, 5300 SmallVectorImpl<SDNode *> &Created) const { 5301 // Fold: 5302 // (seteq/ne (srem N, D), 0) 5303 // To: 5304 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5305 // 5306 // - D must be constant, with D = D0 * 2^K where D0 is odd 5307 // - P is the multiplicative inverse of D0 modulo 2^W 5308 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5309 // - Q = floor((2 * A) / (2^K)) 5310 // where W is the width of the common type of N and D. 5311 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5312 "Only applicable for (in)equality comparisons."); 5313 5314 SelectionDAG &DAG = DCI.DAG; 5315 5316 EVT VT = REMNode.getValueType(); 5317 EVT SVT = VT.getScalarType(); 5318 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5319 EVT ShSVT = ShVT.getScalarType(); 5320 5321 // If MUL is unavailable, we cannot proceed in any case. 5322 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5323 return SDValue(); 5324 5325 // TODO: Could support comparing with non-zero too. 5326 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5327 if (!CompTarget || !CompTarget->isNullValue()) 5328 return SDValue(); 5329 5330 bool HadIntMinDivisor = false; 5331 bool HadOneDivisor = false; 5332 bool AllDivisorsAreOnes = true; 5333 bool HadEvenDivisor = false; 5334 bool NeedToApplyOffset = false; 5335 bool AllDivisorsArePowerOfTwo = true; 5336 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5337 5338 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5339 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5340 if (C->isNullValue()) 5341 return false; 5342 5343 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5344 5345 // WARNING: this fold is only valid for positive divisors! 5346 APInt D = C->getAPIntValue(); 5347 if (D.isNegative()) 5348 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5349 5350 HadIntMinDivisor |= D.isMinSignedValue(); 5351 5352 // If all divisors are ones, we will prefer to avoid the fold. 5353 HadOneDivisor |= D.isOneValue(); 5354 AllDivisorsAreOnes &= D.isOneValue(); 5355 5356 // Decompose D into D0 * 2^K 5357 unsigned K = D.countTrailingZeros(); 5358 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5359 APInt D0 = D.lshr(K); 5360 5361 if (!D.isMinSignedValue()) { 5362 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5363 // we don't care about this lane in this fold, we'll special-handle it. 5364 HadEvenDivisor |= (K != 0); 5365 } 5366 5367 // D is a power-of-two if D0 is one. This includes INT_MIN. 5368 // If all divisors are power-of-two, we will prefer to avoid the fold. 5369 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5370 5371 // P = inv(D0, 2^W) 5372 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5373 unsigned W = D.getBitWidth(); 5374 APInt P = D0.zext(W + 1) 5375 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5376 .trunc(W); 5377 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5378 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5379 5380 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5381 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5382 A.clearLowBits(K); 5383 5384 if (!D.isMinSignedValue()) { 5385 // If divisor INT_MIN, then we don't care about this lane in this fold, 5386 // we'll special-handle it. 5387 NeedToApplyOffset |= A != 0; 5388 } 5389 5390 // Q = floor((2 * A) / (2^K)) 5391 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5392 5393 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5394 "We are expecting that A is always less than all-ones for SVT"); 5395 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5396 "We are expecting that K is always less than all-ones for ShSVT"); 5397 5398 // If the divisor is 1 the result can be constant-folded. Likewise, we 5399 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5400 if (D.isOneValue()) { 5401 // Set P, A and K to a bogus values so we can try to splat them. 5402 P = 0; 5403 A = -1; 5404 K = -1; 5405 5406 // x ?% 1 == 0 <--> true <--> x u<= -1 5407 Q = -1; 5408 } 5409 5410 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5411 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5412 KAmts.push_back( 5413 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5414 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5415 return true; 5416 }; 5417 5418 SDValue N = REMNode.getOperand(0); 5419 SDValue D = REMNode.getOperand(1); 5420 5421 // Collect the values from each element. 5422 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5423 return SDValue(); 5424 5425 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5426 if (AllDivisorsAreOnes) 5427 return SDValue(); 5428 5429 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5430 // since it can be best implemented as a bit test. 5431 if (AllDivisorsArePowerOfTwo) 5432 return SDValue(); 5433 5434 SDValue PVal, AVal, KVal, QVal; 5435 if (VT.isVector()) { 5436 if (HadOneDivisor) { 5437 // Try to turn PAmts into a splat, since we don't care about the values 5438 // that are currently '0'. If we can't, just keep '0'`s. 5439 turnVectorIntoSplatVector(PAmts, isNullConstant); 5440 // Try to turn AAmts into a splat, since we don't care about the 5441 // values that are currently '-1'. If we can't, change them to '0'`s. 5442 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5443 DAG.getConstant(0, DL, SVT)); 5444 // Try to turn KAmts into a splat, since we don't care about the values 5445 // that are currently '-1'. If we can't, change them to '0'`s. 5446 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5447 DAG.getConstant(0, DL, ShSVT)); 5448 } 5449 5450 PVal = DAG.getBuildVector(VT, DL, PAmts); 5451 AVal = DAG.getBuildVector(VT, DL, AAmts); 5452 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5453 QVal = DAG.getBuildVector(VT, DL, QAmts); 5454 } else { 5455 PVal = PAmts[0]; 5456 AVal = AAmts[0]; 5457 KVal = KAmts[0]; 5458 QVal = QAmts[0]; 5459 } 5460 5461 // (mul N, P) 5462 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5463 Created.push_back(Op0.getNode()); 5464 5465 if (NeedToApplyOffset) { 5466 // We need ADD to do this. 5467 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5468 return SDValue(); 5469 5470 // (add (mul N, P), A) 5471 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5472 Created.push_back(Op0.getNode()); 5473 } 5474 5475 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5476 // divisors as a performance improvement, since rotating by 0 is a no-op. 5477 if (HadEvenDivisor) { 5478 // We need ROTR to do this. 5479 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5480 return SDValue(); 5481 SDNodeFlags Flags; 5482 Flags.setExact(true); 5483 // SREM: (rotr (add (mul N, P), A), K) 5484 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5485 Created.push_back(Op0.getNode()); 5486 } 5487 5488 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5489 SDValue Fold = 5490 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5491 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5492 5493 // If we didn't have lanes with INT_MIN divisor, then we're done. 5494 if (!HadIntMinDivisor) 5495 return Fold; 5496 5497 // That fold is only valid for positive divisors. Which effectively means, 5498 // it is invalid for INT_MIN divisors. So if we have such a lane, 5499 // we must fix-up results for said lanes. 5500 assert(VT.isVector() && "Can/should only get here for vectors."); 5501 5502 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5503 !isOperationLegalOrCustom(ISD::AND, VT) || 5504 !isOperationLegalOrCustom(Cond, VT) || 5505 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5506 return SDValue(); 5507 5508 Created.push_back(Fold.getNode()); 5509 5510 SDValue IntMin = DAG.getConstant( 5511 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5512 SDValue IntMax = DAG.getConstant( 5513 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5514 SDValue Zero = 5515 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5516 5517 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5518 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5519 Created.push_back(DivisorIsIntMin.getNode()); 5520 5521 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5522 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5523 Created.push_back(Masked.getNode()); 5524 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5525 Created.push_back(MaskedIsZero.getNode()); 5526 5527 // To produce final result we need to blend 2 vectors: 'SetCC' and 5528 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5529 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5530 // constant-folded, select can get lowered to a shuffle with constant mask. 5531 SDValue Blended = 5532 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5533 5534 return Blended; 5535 } 5536 5537 bool TargetLowering:: 5538 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5539 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5540 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5541 "be a constant integer"); 5542 return true; 5543 } 5544 5545 return false; 5546 } 5547 5548 TargetLowering::NegatibleCost 5549 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5550 bool LegalOperations, bool ForCodeSize, 5551 unsigned Depth) const { 5552 // fneg is removable even if it has multiple uses. 5553 if (Op.getOpcode() == ISD::FNEG) 5554 return NegatibleCost::Cheaper; 5555 5556 // Don't allow anything with multiple uses unless we know it is free. 5557 EVT VT = Op.getValueType(); 5558 const SDNodeFlags Flags = Op->getFlags(); 5559 const TargetOptions &Options = DAG.getTarget().Options; 5560 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5561 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5562 return NegatibleCost::Expensive; 5563 5564 // Don't recurse exponentially. 5565 if (Depth > SelectionDAG::MaxRecursionDepth) 5566 return NegatibleCost::Expensive; 5567 5568 switch (Op.getOpcode()) { 5569 case ISD::ConstantFP: { 5570 if (!LegalOperations) 5571 return NegatibleCost::Neutral; 5572 5573 // Don't invert constant FP values after legalization unless the target says 5574 // the negated constant is legal. 5575 if (isOperationLegal(ISD::ConstantFP, VT) || 5576 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5577 ForCodeSize)) 5578 return NegatibleCost::Neutral; 5579 break; 5580 } 5581 case ISD::BUILD_VECTOR: { 5582 // Only permit BUILD_VECTOR of constants. 5583 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5584 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5585 })) 5586 return NegatibleCost::Expensive; 5587 if (!LegalOperations) 5588 return NegatibleCost::Neutral; 5589 if (isOperationLegal(ISD::ConstantFP, VT) && 5590 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5591 return NegatibleCost::Neutral; 5592 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5593 return N.isUndef() || 5594 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5595 ForCodeSize); 5596 })) 5597 return NegatibleCost::Neutral; 5598 break; 5599 } 5600 case ISD::FADD: { 5601 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5602 return NegatibleCost::Expensive; 5603 5604 // After operation legalization, it might not be legal to create new FSUBs. 5605 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5606 return NegatibleCost::Expensive; 5607 5608 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5609 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5610 ForCodeSize, Depth + 1); 5611 if (V0 != NegatibleCost::Expensive) 5612 return V0; 5613 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5614 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5615 Depth + 1); 5616 } 5617 case ISD::FSUB: 5618 // We can't turn -(A-B) into B-A when we honor signed zeros. 5619 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5620 return NegatibleCost::Expensive; 5621 5622 // fold (fneg (fsub A, B)) -> (fsub B, A) 5623 return NegatibleCost::Neutral; 5624 case ISD::FMUL: 5625 case ISD::FDIV: { 5626 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5627 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5628 ForCodeSize, Depth + 1); 5629 if (V0 != NegatibleCost::Expensive) 5630 return V0; 5631 5632 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5633 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5634 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5635 return NegatibleCost::Expensive; 5636 5637 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5638 Depth + 1); 5639 } 5640 case ISD::FMA: 5641 case ISD::FMAD: { 5642 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5643 return NegatibleCost::Expensive; 5644 5645 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5646 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5647 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5648 ForCodeSize, Depth + 1); 5649 if (NegatibleCost::Expensive == V2) 5650 return NegatibleCost::Expensive; 5651 5652 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5653 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5654 ForCodeSize, Depth + 1); 5655 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5656 ForCodeSize, Depth + 1); 5657 NegatibleCost V01 = std::max(V0, V1); 5658 if (V01 == NegatibleCost::Expensive) 5659 return NegatibleCost::Expensive; 5660 return std::max(V01, V2); 5661 } 5662 5663 case ISD::FP_EXTEND: 5664 case ISD::FP_ROUND: 5665 case ISD::FSIN: 5666 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5667 Depth + 1); 5668 } 5669 5670 return NegatibleCost::Expensive; 5671 } 5672 5673 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5674 bool LegalOperations, 5675 bool ForCodeSize, 5676 unsigned Depth) const { 5677 // fneg is removable even if it has multiple uses. 5678 if (Op.getOpcode() == ISD::FNEG) 5679 return Op.getOperand(0); 5680 5681 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5682 "getNegatedExpression doesn't match getNegatibleCost"); 5683 const SDNodeFlags Flags = Op->getFlags(); 5684 5685 switch (Op.getOpcode()) { 5686 case ISD::ConstantFP: { 5687 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5688 V.changeSign(); 5689 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5690 } 5691 case ISD::BUILD_VECTOR: { 5692 SmallVector<SDValue, 4> Ops; 5693 for (SDValue C : Op->op_values()) { 5694 if (C.isUndef()) { 5695 Ops.push_back(C); 5696 continue; 5697 } 5698 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5699 V.changeSign(); 5700 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5701 } 5702 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5703 } 5704 case ISD::FADD: { 5705 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5706 Flags.hasNoSignedZeros()) && 5707 "Expected NSZ fp-flag"); 5708 5709 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5710 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5711 ForCodeSize, Depth + 1); 5712 if (V0 != NegatibleCost::Expensive) 5713 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5714 getNegatedExpression(Op.getOperand(0), DAG, 5715 LegalOperations, ForCodeSize, 5716 Depth + 1), 5717 Op.getOperand(1), Flags); 5718 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5719 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5720 getNegatedExpression(Op.getOperand(1), DAG, 5721 LegalOperations, ForCodeSize, 5722 Depth + 1), 5723 Op.getOperand(0), Flags); 5724 } 5725 case ISD::FSUB: 5726 // fold (fneg (fsub 0, B)) -> B 5727 if (ConstantFPSDNode *N0CFP = 5728 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5729 if (N0CFP->isZero()) 5730 return Op.getOperand(1); 5731 5732 // fold (fneg (fsub A, B)) -> (fsub B, A) 5733 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5734 Op.getOperand(1), Op.getOperand(0), Flags); 5735 5736 case ISD::FMUL: 5737 case ISD::FDIV: { 5738 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5739 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5740 ForCodeSize, Depth + 1); 5741 if (V0 != NegatibleCost::Expensive) 5742 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5743 getNegatedExpression(Op.getOperand(0), DAG, 5744 LegalOperations, ForCodeSize, 5745 Depth + 1), 5746 Op.getOperand(1), Flags); 5747 5748 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5749 return DAG.getNode( 5750 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5751 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5752 ForCodeSize, Depth + 1), 5753 Flags); 5754 } 5755 case ISD::FMA: 5756 case ISD::FMAD: { 5757 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5758 Flags.hasNoSignedZeros()) && 5759 "Expected NSZ fp-flag"); 5760 5761 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5762 ForCodeSize, Depth + 1); 5763 5764 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5765 ForCodeSize, Depth + 1); 5766 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5767 ForCodeSize, Depth + 1); 5768 // TODO: This is a hack. It is possible that costs have changed between now 5769 // and the initial calls to getNegatibleCost(). That is because we 5770 // are rewriting the expression, and that may change the number of 5771 // uses (and therefore the cost) of values. If the negation costs are 5772 // equal, only negate this value if it is a constant. Otherwise, try 5773 // operand 1. A better fix would eliminate uses as a cost factor or 5774 // track the change in uses as we rewrite the expression. 5775 if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) { 5776 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5777 SDValue Neg0 = getNegatedExpression( 5778 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5779 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5780 Op.getOperand(1), Neg2, Flags); 5781 } 5782 5783 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5784 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5785 ForCodeSize, Depth + 1); 5786 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5787 Op.getOperand(0), Neg1, Neg2, Flags); 5788 } 5789 5790 case ISD::FP_EXTEND: 5791 case ISD::FSIN: 5792 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5793 getNegatedExpression(Op.getOperand(0), DAG, 5794 LegalOperations, ForCodeSize, 5795 Depth + 1)); 5796 case ISD::FP_ROUND: 5797 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5798 getNegatedExpression(Op.getOperand(0), DAG, 5799 LegalOperations, ForCodeSize, 5800 Depth + 1), 5801 Op.getOperand(1)); 5802 } 5803 5804 llvm_unreachable("Unknown code"); 5805 } 5806 5807 //===----------------------------------------------------------------------===// 5808 // Legalization Utilities 5809 //===----------------------------------------------------------------------===// 5810 5811 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5812 SDValue LHS, SDValue RHS, 5813 SmallVectorImpl<SDValue> &Result, 5814 EVT HiLoVT, SelectionDAG &DAG, 5815 MulExpansionKind Kind, SDValue LL, 5816 SDValue LH, SDValue RL, SDValue RH) const { 5817 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5818 Opcode == ISD::SMUL_LOHI); 5819 5820 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5821 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5822 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5823 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5824 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5825 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5826 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5827 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5828 5829 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5830 return false; 5831 5832 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5833 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5834 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5835 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5836 5837 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5838 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5839 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5840 5841 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5842 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5843 bool Signed) -> bool { 5844 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5845 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5846 Hi = SDValue(Lo.getNode(), 1); 5847 return true; 5848 } 5849 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5850 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5851 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5852 return true; 5853 } 5854 return false; 5855 }; 5856 5857 SDValue Lo, Hi; 5858 5859 if (!LL.getNode() && !RL.getNode() && 5860 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5861 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5862 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5863 } 5864 5865 if (!LL.getNode()) 5866 return false; 5867 5868 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5869 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5870 DAG.MaskedValueIsZero(RHS, HighMask)) { 5871 // The inputs are both zero-extended. 5872 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5873 Result.push_back(Lo); 5874 Result.push_back(Hi); 5875 if (Opcode != ISD::MUL) { 5876 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5877 Result.push_back(Zero); 5878 Result.push_back(Zero); 5879 } 5880 return true; 5881 } 5882 } 5883 5884 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5885 RHSSB > InnerBitSize) { 5886 // The input values are both sign-extended. 5887 // TODO non-MUL case? 5888 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5889 Result.push_back(Lo); 5890 Result.push_back(Hi); 5891 return true; 5892 } 5893 } 5894 5895 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5896 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5897 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5898 // FIXME getShiftAmountTy does not always return a sensible result when VT 5899 // is an illegal type, and so the type may be too small to fit the shift 5900 // amount. Override it with i32. The shift will have to be legalized. 5901 ShiftAmountTy = MVT::i32; 5902 } 5903 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5904 5905 if (!LH.getNode() && !RH.getNode() && 5906 isOperationLegalOrCustom(ISD::SRL, VT) && 5907 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5908 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5909 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5910 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5911 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5912 } 5913 5914 if (!LH.getNode()) 5915 return false; 5916 5917 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5918 return false; 5919 5920 Result.push_back(Lo); 5921 5922 if (Opcode == ISD::MUL) { 5923 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5924 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5925 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5926 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5927 Result.push_back(Hi); 5928 return true; 5929 } 5930 5931 // Compute the full width result. 5932 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5933 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5934 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5935 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5936 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5937 }; 5938 5939 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5940 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5941 return false; 5942 5943 // This is effectively the add part of a multiply-add of half-sized operands, 5944 // so it cannot overflow. 5945 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5946 5947 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5948 return false; 5949 5950 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5951 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5952 5953 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5954 isOperationLegalOrCustom(ISD::ADDE, VT)); 5955 if (UseGlue) 5956 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5957 Merge(Lo, Hi)); 5958 else 5959 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5960 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5961 5962 SDValue Carry = Next.getValue(1); 5963 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5964 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5965 5966 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5967 return false; 5968 5969 if (UseGlue) 5970 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5971 Carry); 5972 else 5973 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5974 Zero, Carry); 5975 5976 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5977 5978 if (Opcode == ISD::SMUL_LOHI) { 5979 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5980 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5981 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5982 5983 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5984 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5985 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5986 } 5987 5988 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5989 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5990 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5991 return true; 5992 } 5993 5994 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5995 SelectionDAG &DAG, MulExpansionKind Kind, 5996 SDValue LL, SDValue LH, SDValue RL, 5997 SDValue RH) const { 5998 SmallVector<SDValue, 2> Result; 5999 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6000 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6001 DAG, Kind, LL, LH, RL, RH); 6002 if (Ok) { 6003 assert(Result.size() == 2); 6004 Lo = Result[0]; 6005 Hi = Result[1]; 6006 } 6007 return Ok; 6008 } 6009 6010 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6011 SelectionDAG &DAG) const { 6012 EVT VT = Node->getValueType(0); 6013 6014 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6015 !isOperationLegalOrCustom(ISD::SRL, VT) || 6016 !isOperationLegalOrCustom(ISD::SUB, VT) || 6017 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6018 return false; 6019 6020 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6021 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6022 SDValue X = Node->getOperand(0); 6023 SDValue Y = Node->getOperand(1); 6024 SDValue Z = Node->getOperand(2); 6025 6026 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6027 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6028 SDLoc DL(SDValue(Node, 0)); 6029 6030 EVT ShVT = Z.getValueType(); 6031 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6032 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6033 6034 SDValue ShAmt; 6035 if (isPowerOf2_32(EltSizeInBits)) { 6036 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6037 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6038 } else { 6039 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6040 } 6041 6042 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6043 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6044 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6045 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6046 6047 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6048 // and that is undefined. We must compare and select to avoid UB. 6049 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6050 6051 // For fshl, 0-shift returns the 1st arg (X). 6052 // For fshr, 0-shift returns the 2nd arg (Y). 6053 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6054 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6055 return true; 6056 } 6057 6058 // TODO: Merge with expandFunnelShift. 6059 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6060 SelectionDAG &DAG) const { 6061 EVT VT = Node->getValueType(0); 6062 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6063 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6064 SDValue Op0 = Node->getOperand(0); 6065 SDValue Op1 = Node->getOperand(1); 6066 SDLoc DL(SDValue(Node, 0)); 6067 6068 EVT ShVT = Op1.getValueType(); 6069 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6070 6071 // If a rotate in the other direction is legal, use it. 6072 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6073 if (isOperationLegal(RevRot, VT)) { 6074 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6075 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6076 return true; 6077 } 6078 6079 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6080 !isOperationLegalOrCustom(ISD::SRL, VT) || 6081 !isOperationLegalOrCustom(ISD::SUB, VT) || 6082 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6083 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6084 return false; 6085 6086 // Otherwise, 6087 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6088 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6089 // 6090 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6091 "Expecting the type bitwidth to be a power of 2"); 6092 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6093 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6094 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6095 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6096 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6097 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6098 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6099 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6100 return true; 6101 } 6102 6103 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6104 SelectionDAG &DAG) const { 6105 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6106 SDValue Src = Node->getOperand(OpNo); 6107 EVT SrcVT = Src.getValueType(); 6108 EVT DstVT = Node->getValueType(0); 6109 SDLoc dl(SDValue(Node, 0)); 6110 6111 // FIXME: Only f32 to i64 conversions are supported. 6112 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6113 return false; 6114 6115 if (Node->isStrictFPOpcode()) 6116 // When a NaN is converted to an integer a trap is allowed. We can't 6117 // use this expansion here because it would eliminate that trap. Other 6118 // traps are also allowed and cannot be eliminated. See 6119 // IEEE 754-2008 sec 5.8. 6120 return false; 6121 6122 // Expand f32 -> i64 conversion 6123 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6124 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6125 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6126 EVT IntVT = SrcVT.changeTypeToInteger(); 6127 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6128 6129 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6130 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6131 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6132 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6133 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6134 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6135 6136 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6137 6138 SDValue ExponentBits = DAG.getNode( 6139 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6140 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6141 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6142 6143 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6144 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6145 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6146 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6147 6148 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6149 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6150 DAG.getConstant(0x00800000, dl, IntVT)); 6151 6152 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6153 6154 R = DAG.getSelectCC( 6155 dl, Exponent, ExponentLoBit, 6156 DAG.getNode(ISD::SHL, dl, DstVT, R, 6157 DAG.getZExtOrTrunc( 6158 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6159 dl, IntShVT)), 6160 DAG.getNode(ISD::SRL, dl, DstVT, R, 6161 DAG.getZExtOrTrunc( 6162 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6163 dl, IntShVT)), 6164 ISD::SETGT); 6165 6166 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6167 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6168 6169 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6170 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6171 return true; 6172 } 6173 6174 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6175 SDValue &Chain, 6176 SelectionDAG &DAG) const { 6177 SDLoc dl(SDValue(Node, 0)); 6178 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6179 SDValue Src = Node->getOperand(OpNo); 6180 6181 EVT SrcVT = Src.getValueType(); 6182 EVT DstVT = Node->getValueType(0); 6183 EVT SetCCVT = 6184 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6185 EVT DstSetCCVT = 6186 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6187 6188 // Only expand vector types if we have the appropriate vector bit operations. 6189 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6190 ISD::FP_TO_SINT; 6191 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6192 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6193 return false; 6194 6195 // If the maximum float value is smaller then the signed integer range, 6196 // the destination signmask can't be represented by the float, so we can 6197 // just use FP_TO_SINT directly. 6198 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6199 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6200 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6201 if (APFloat::opOverflow & 6202 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6203 if (Node->isStrictFPOpcode()) { 6204 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6205 { Node->getOperand(0), Src }); 6206 Chain = Result.getValue(1); 6207 } else 6208 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6209 return true; 6210 } 6211 6212 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6213 SDValue Sel; 6214 6215 if (Node->isStrictFPOpcode()) { 6216 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6217 Node->getOperand(0), /*IsSignaling*/ true); 6218 Chain = Sel.getValue(1); 6219 } else { 6220 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6221 } 6222 6223 bool Strict = Node->isStrictFPOpcode() || 6224 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6225 6226 if (Strict) { 6227 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6228 // signmask then offset (the result of which should be fully representable). 6229 // Sel = Src < 0x8000000000000000 6230 // FltOfs = select Sel, 0, 0x8000000000000000 6231 // IntOfs = select Sel, 0, 0x8000000000000000 6232 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6233 6234 // TODO: Should any fast-math-flags be set for the FSUB? 6235 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6236 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6237 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6238 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6239 DAG.getConstant(0, dl, DstVT), 6240 DAG.getConstant(SignMask, dl, DstVT)); 6241 SDValue SInt; 6242 if (Node->isStrictFPOpcode()) { 6243 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6244 { Chain, Src, FltOfs }); 6245 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6246 { Val.getValue(1), Val }); 6247 Chain = SInt.getValue(1); 6248 } else { 6249 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6250 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6251 } 6252 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6253 } else { 6254 // Expand based on maximum range of FP_TO_SINT: 6255 // True = fp_to_sint(Src) 6256 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6257 // Result = select (Src < 0x8000000000000000), True, False 6258 6259 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6260 // TODO: Should any fast-math-flags be set for the FSUB? 6261 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6262 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6263 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6264 DAG.getConstant(SignMask, dl, DstVT)); 6265 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6266 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6267 } 6268 return true; 6269 } 6270 6271 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6272 SDValue &Chain, 6273 SelectionDAG &DAG) const { 6274 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6275 SDValue Src = Node->getOperand(OpNo); 6276 EVT SrcVT = Src.getValueType(); 6277 EVT DstVT = Node->getValueType(0); 6278 6279 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6280 return false; 6281 6282 // Only expand vector types if we have the appropriate vector bit operations. 6283 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6284 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6285 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6286 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6287 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6288 return false; 6289 6290 SDLoc dl(SDValue(Node, 0)); 6291 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6292 6293 // Implementation of unsigned i64 to f64 following the algorithm in 6294 // __floatundidf in compiler_rt. This implementation has the advantage 6295 // of performing rounding correctly, both in the default rounding mode 6296 // and in all alternate rounding modes. 6297 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6298 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6299 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6300 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6301 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6302 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6303 6304 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6305 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6306 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6307 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6308 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6309 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6310 if (Node->isStrictFPOpcode()) { 6311 SDValue HiSub = 6312 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6313 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6314 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6315 {HiSub.getValue(1), LoFlt, HiSub}); 6316 Chain = Result.getValue(1); 6317 } else { 6318 SDValue HiSub = 6319 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6320 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6321 } 6322 return true; 6323 } 6324 6325 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6326 SelectionDAG &DAG) const { 6327 SDLoc dl(Node); 6328 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6329 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6330 EVT VT = Node->getValueType(0); 6331 if (isOperationLegalOrCustom(NewOp, VT)) { 6332 SDValue Quiet0 = Node->getOperand(0); 6333 SDValue Quiet1 = Node->getOperand(1); 6334 6335 if (!Node->getFlags().hasNoNaNs()) { 6336 // Insert canonicalizes if it's possible we need to quiet to get correct 6337 // sNaN behavior. 6338 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6339 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6340 Node->getFlags()); 6341 } 6342 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6343 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6344 Node->getFlags()); 6345 } 6346 } 6347 6348 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6349 } 6350 6351 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6352 // instead if there are no NaNs. 6353 if (Node->getFlags().hasNoNaNs()) { 6354 unsigned IEEE2018Op = 6355 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6356 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6357 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6358 Node->getOperand(1), Node->getFlags()); 6359 } 6360 } 6361 6362 // If none of the above worked, but there are no NaNs, then expand to 6363 // a compare/select sequence. This is required for correctness since 6364 // InstCombine might have canonicalized a fcmp+select sequence to a 6365 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6366 // expansion to libcall, we might introduce a link-time dependency 6367 // on libm into a file that originally did not have one. 6368 if (Node->getFlags().hasNoNaNs()) { 6369 ISD::CondCode Pred = 6370 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6371 SDValue Op1 = Node->getOperand(0); 6372 SDValue Op2 = Node->getOperand(1); 6373 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6374 // Copy FMF flags, but always set the no-signed-zeros flag 6375 // as this is implied by the FMINNUM/FMAXNUM semantics. 6376 SDNodeFlags Flags = Node->getFlags(); 6377 Flags.setNoSignedZeros(true); 6378 SelCC->setFlags(Flags); 6379 return SelCC; 6380 } 6381 6382 return SDValue(); 6383 } 6384 6385 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6386 SelectionDAG &DAG) const { 6387 SDLoc dl(Node); 6388 EVT VT = Node->getValueType(0); 6389 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6390 SDValue Op = Node->getOperand(0); 6391 unsigned Len = VT.getScalarSizeInBits(); 6392 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6393 6394 // TODO: Add support for irregular type lengths. 6395 if (!(Len <= 128 && Len % 8 == 0)) 6396 return false; 6397 6398 // Only expand vector types if we have the appropriate vector bit operations. 6399 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6400 !isOperationLegalOrCustom(ISD::SUB, VT) || 6401 !isOperationLegalOrCustom(ISD::SRL, VT) || 6402 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6403 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6404 return false; 6405 6406 // This is the "best" algorithm from 6407 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6408 SDValue Mask55 = 6409 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6410 SDValue Mask33 = 6411 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6412 SDValue Mask0F = 6413 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6414 SDValue Mask01 = 6415 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6416 6417 // v = v - ((v >> 1) & 0x55555555...) 6418 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6419 DAG.getNode(ISD::AND, dl, VT, 6420 DAG.getNode(ISD::SRL, dl, VT, Op, 6421 DAG.getConstant(1, dl, ShVT)), 6422 Mask55)); 6423 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6424 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6425 DAG.getNode(ISD::AND, dl, VT, 6426 DAG.getNode(ISD::SRL, dl, VT, Op, 6427 DAG.getConstant(2, dl, ShVT)), 6428 Mask33)); 6429 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6430 Op = DAG.getNode(ISD::AND, dl, VT, 6431 DAG.getNode(ISD::ADD, dl, VT, Op, 6432 DAG.getNode(ISD::SRL, dl, VT, Op, 6433 DAG.getConstant(4, dl, ShVT))), 6434 Mask0F); 6435 // v = (v * 0x01010101...) >> (Len - 8) 6436 if (Len > 8) 6437 Op = 6438 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6439 DAG.getConstant(Len - 8, dl, ShVT)); 6440 6441 Result = Op; 6442 return true; 6443 } 6444 6445 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6446 SelectionDAG &DAG) const { 6447 SDLoc dl(Node); 6448 EVT VT = Node->getValueType(0); 6449 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6450 SDValue Op = Node->getOperand(0); 6451 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6452 6453 // If the non-ZERO_UNDEF version is supported we can use that instead. 6454 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6455 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6456 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6457 return true; 6458 } 6459 6460 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6461 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6462 EVT SetCCVT = 6463 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6464 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6465 SDValue Zero = DAG.getConstant(0, dl, VT); 6466 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6467 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6468 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6469 return true; 6470 } 6471 6472 // Only expand vector types if we have the appropriate vector bit operations. 6473 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6474 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6475 !isOperationLegalOrCustom(ISD::SRL, VT) || 6476 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6477 return false; 6478 6479 // for now, we do this: 6480 // x = x | (x >> 1); 6481 // x = x | (x >> 2); 6482 // ... 6483 // x = x | (x >>16); 6484 // x = x | (x >>32); // for 64-bit input 6485 // return popcount(~x); 6486 // 6487 // Ref: "Hacker's Delight" by Henry Warren 6488 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6489 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6490 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6491 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6492 } 6493 Op = DAG.getNOT(dl, Op, VT); 6494 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6495 return true; 6496 } 6497 6498 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6499 SelectionDAG &DAG) const { 6500 SDLoc dl(Node); 6501 EVT VT = Node->getValueType(0); 6502 SDValue Op = Node->getOperand(0); 6503 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6504 6505 // If the non-ZERO_UNDEF version is supported we can use that instead. 6506 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6507 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6508 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6509 return true; 6510 } 6511 6512 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6513 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6514 EVT SetCCVT = 6515 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6516 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6517 SDValue Zero = DAG.getConstant(0, dl, VT); 6518 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6519 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6520 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6521 return true; 6522 } 6523 6524 // Only expand vector types if we have the appropriate vector bit operations. 6525 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6526 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6527 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6528 !isOperationLegalOrCustom(ISD::SUB, VT) || 6529 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6530 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6531 return false; 6532 6533 // for now, we use: { return popcount(~x & (x - 1)); } 6534 // unless the target has ctlz but not ctpop, in which case we use: 6535 // { return 32 - nlz(~x & (x-1)); } 6536 // Ref: "Hacker's Delight" by Henry Warren 6537 SDValue Tmp = DAG.getNode( 6538 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6539 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6540 6541 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6542 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6543 Result = 6544 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6545 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6546 return true; 6547 } 6548 6549 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6550 return true; 6551 } 6552 6553 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6554 SelectionDAG &DAG) const { 6555 SDLoc dl(N); 6556 EVT VT = N->getValueType(0); 6557 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6558 SDValue Op = N->getOperand(0); 6559 6560 // Only expand vector types if we have the appropriate vector operations. 6561 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6562 !isOperationLegalOrCustom(ISD::ADD, VT) || 6563 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6564 return false; 6565 6566 SDValue Shift = 6567 DAG.getNode(ISD::SRA, dl, VT, Op, 6568 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6569 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6570 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6571 return true; 6572 } 6573 6574 std::pair<SDValue, SDValue> 6575 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6576 SelectionDAG &DAG) const { 6577 SDLoc SL(LD); 6578 SDValue Chain = LD->getChain(); 6579 SDValue BasePTR = LD->getBasePtr(); 6580 EVT SrcVT = LD->getMemoryVT(); 6581 ISD::LoadExtType ExtType = LD->getExtensionType(); 6582 6583 unsigned NumElem = SrcVT.getVectorNumElements(); 6584 6585 EVT SrcEltVT = SrcVT.getScalarType(); 6586 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6587 6588 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6589 assert(SrcEltVT.isByteSized()); 6590 6591 SmallVector<SDValue, 8> Vals; 6592 SmallVector<SDValue, 8> LoadChains; 6593 6594 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6595 SDValue ScalarLoad = 6596 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6597 LD->getPointerInfo().getWithOffset(Idx * Stride), 6598 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6599 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6600 6601 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6602 6603 Vals.push_back(ScalarLoad.getValue(0)); 6604 LoadChains.push_back(ScalarLoad.getValue(1)); 6605 } 6606 6607 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6608 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6609 6610 return std::make_pair(Value, NewChain); 6611 } 6612 6613 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6614 SelectionDAG &DAG) const { 6615 SDLoc SL(ST); 6616 6617 SDValue Chain = ST->getChain(); 6618 SDValue BasePtr = ST->getBasePtr(); 6619 SDValue Value = ST->getValue(); 6620 EVT StVT = ST->getMemoryVT(); 6621 6622 // The type of the data we want to save 6623 EVT RegVT = Value.getValueType(); 6624 EVT RegSclVT = RegVT.getScalarType(); 6625 6626 // The type of data as saved in memory. 6627 EVT MemSclVT = StVT.getScalarType(); 6628 6629 unsigned NumElem = StVT.getVectorNumElements(); 6630 6631 // A vector must always be stored in memory as-is, i.e. without any padding 6632 // between the elements, since various code depend on it, e.g. in the 6633 // handling of a bitcast of a vector type to int, which may be done with a 6634 // vector store followed by an integer load. A vector that does not have 6635 // elements that are byte-sized must therefore be stored as an integer 6636 // built out of the extracted vector elements. 6637 if (!MemSclVT.isByteSized()) { 6638 unsigned NumBits = StVT.getSizeInBits(); 6639 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6640 6641 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6642 6643 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6644 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6645 DAG.getVectorIdxConstant(Idx, SL)); 6646 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6647 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6648 unsigned ShiftIntoIdx = 6649 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6650 SDValue ShiftAmount = 6651 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6652 SDValue ShiftedElt = 6653 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6654 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6655 } 6656 6657 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6658 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6659 ST->getAAInfo()); 6660 } 6661 6662 // Store Stride in bytes 6663 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6664 assert(Stride && "Zero stride!"); 6665 // Extract each of the elements from the original vector and save them into 6666 // memory individually. 6667 SmallVector<SDValue, 8> Stores; 6668 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6669 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6670 DAG.getVectorIdxConstant(Idx, SL)); 6671 6672 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6673 6674 // This scalar TruncStore may be illegal, but we legalize it later. 6675 SDValue Store = DAG.getTruncStore( 6676 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6677 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6678 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6679 6680 Stores.push_back(Store); 6681 } 6682 6683 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6684 } 6685 6686 std::pair<SDValue, SDValue> 6687 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6688 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6689 "unaligned indexed loads not implemented!"); 6690 SDValue Chain = LD->getChain(); 6691 SDValue Ptr = LD->getBasePtr(); 6692 EVT VT = LD->getValueType(0); 6693 EVT LoadedVT = LD->getMemoryVT(); 6694 SDLoc dl(LD); 6695 auto &MF = DAG.getMachineFunction(); 6696 6697 if (VT.isFloatingPoint() || VT.isVector()) { 6698 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6699 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6700 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6701 LoadedVT.isVector()) { 6702 // Scalarize the load and let the individual components be handled. 6703 return scalarizeVectorLoad(LD, DAG); 6704 } 6705 6706 // Expand to a (misaligned) integer load of the same size, 6707 // then bitconvert to floating point or vector. 6708 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6709 LD->getMemOperand()); 6710 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6711 if (LoadedVT != VT) 6712 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6713 ISD::ANY_EXTEND, dl, VT, Result); 6714 6715 return std::make_pair(Result, newLoad.getValue(1)); 6716 } 6717 6718 // Copy the value to a (aligned) stack slot using (unaligned) integer 6719 // loads and stores, then do a (aligned) load from the stack slot. 6720 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6721 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6722 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6723 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6724 6725 // Make sure the stack slot is also aligned for the register type. 6726 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6727 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6728 SmallVector<SDValue, 8> Stores; 6729 SDValue StackPtr = StackBase; 6730 unsigned Offset = 0; 6731 6732 EVT PtrVT = Ptr.getValueType(); 6733 EVT StackPtrVT = StackPtr.getValueType(); 6734 6735 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6736 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6737 6738 // Do all but one copies using the full register width. 6739 for (unsigned i = 1; i < NumRegs; i++) { 6740 // Load one integer register's worth from the original location. 6741 SDValue Load = DAG.getLoad( 6742 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6743 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6744 LD->getAAInfo()); 6745 // Follow the load with a store to the stack slot. Remember the store. 6746 Stores.push_back(DAG.getStore( 6747 Load.getValue(1), dl, Load, StackPtr, 6748 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6749 // Increment the pointers. 6750 Offset += RegBytes; 6751 6752 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6753 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6754 } 6755 6756 // The last copy may be partial. Do an extending load. 6757 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6758 8 * (LoadedBytes - Offset)); 6759 SDValue Load = 6760 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6761 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6762 MinAlign(LD->getAlignment(), Offset), 6763 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6764 // Follow the load with a store to the stack slot. Remember the store. 6765 // On big-endian machines this requires a truncating store to ensure 6766 // that the bits end up in the right place. 6767 Stores.push_back(DAG.getTruncStore( 6768 Load.getValue(1), dl, Load, StackPtr, 6769 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6770 6771 // The order of the stores doesn't matter - say it with a TokenFactor. 6772 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6773 6774 // Finally, perform the original load only redirected to the stack slot. 6775 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6776 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6777 LoadedVT); 6778 6779 // Callers expect a MERGE_VALUES node. 6780 return std::make_pair(Load, TF); 6781 } 6782 6783 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6784 "Unaligned load of unsupported type."); 6785 6786 // Compute the new VT that is half the size of the old one. This is an 6787 // integer MVT. 6788 unsigned NumBits = LoadedVT.getSizeInBits(); 6789 EVT NewLoadedVT; 6790 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6791 NumBits >>= 1; 6792 6793 unsigned Alignment = LD->getAlignment(); 6794 unsigned IncrementSize = NumBits / 8; 6795 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6796 6797 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6798 if (HiExtType == ISD::NON_EXTLOAD) 6799 HiExtType = ISD::ZEXTLOAD; 6800 6801 // Load the value in two parts 6802 SDValue Lo, Hi; 6803 if (DAG.getDataLayout().isLittleEndian()) { 6804 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6805 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6806 LD->getAAInfo()); 6807 6808 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6809 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6810 LD->getPointerInfo().getWithOffset(IncrementSize), 6811 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6812 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6813 } else { 6814 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6815 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6816 LD->getAAInfo()); 6817 6818 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6819 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6820 LD->getPointerInfo().getWithOffset(IncrementSize), 6821 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6822 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6823 } 6824 6825 // aggregate the two parts 6826 SDValue ShiftAmount = 6827 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6828 DAG.getDataLayout())); 6829 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6830 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6831 6832 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6833 Hi.getValue(1)); 6834 6835 return std::make_pair(Result, TF); 6836 } 6837 6838 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6839 SelectionDAG &DAG) const { 6840 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6841 "unaligned indexed stores not implemented!"); 6842 SDValue Chain = ST->getChain(); 6843 SDValue Ptr = ST->getBasePtr(); 6844 SDValue Val = ST->getValue(); 6845 EVT VT = Val.getValueType(); 6846 int Alignment = ST->getAlignment(); 6847 auto &MF = DAG.getMachineFunction(); 6848 EVT StoreMemVT = ST->getMemoryVT(); 6849 6850 SDLoc dl(ST); 6851 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6852 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6853 if (isTypeLegal(intVT)) { 6854 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6855 StoreMemVT.isVector()) { 6856 // Scalarize the store and let the individual components be handled. 6857 SDValue Result = scalarizeVectorStore(ST, DAG); 6858 return Result; 6859 } 6860 // Expand to a bitconvert of the value to the integer type of the 6861 // same size, then a (misaligned) int store. 6862 // FIXME: Does not handle truncating floating point stores! 6863 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6864 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6865 Alignment, ST->getMemOperand()->getFlags()); 6866 return Result; 6867 } 6868 // Do a (aligned) store to a stack slot, then copy from the stack slot 6869 // to the final destination using (unaligned) integer loads and stores. 6870 MVT RegVT = getRegisterType( 6871 *DAG.getContext(), 6872 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6873 EVT PtrVT = Ptr.getValueType(); 6874 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6875 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6876 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6877 6878 // Make sure the stack slot is also aligned for the register type. 6879 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6880 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6881 6882 // Perform the original store, only redirected to the stack slot. 6883 SDValue Store = DAG.getTruncStore( 6884 Chain, dl, Val, StackPtr, 6885 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6886 6887 EVT StackPtrVT = StackPtr.getValueType(); 6888 6889 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6890 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6891 SmallVector<SDValue, 8> Stores; 6892 unsigned Offset = 0; 6893 6894 // Do all but one copies using the full register width. 6895 for (unsigned i = 1; i < NumRegs; i++) { 6896 // Load one integer register's worth from the stack slot. 6897 SDValue Load = DAG.getLoad( 6898 RegVT, dl, Store, StackPtr, 6899 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6900 // Store it to the final location. Remember the store. 6901 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6902 ST->getPointerInfo().getWithOffset(Offset), 6903 MinAlign(ST->getAlignment(), Offset), 6904 ST->getMemOperand()->getFlags())); 6905 // Increment the pointers. 6906 Offset += RegBytes; 6907 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6908 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6909 } 6910 6911 // The last store may be partial. Do a truncating store. On big-endian 6912 // machines this requires an extending load from the stack slot to ensure 6913 // that the bits are in the right place. 6914 EVT LoadMemVT = 6915 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6916 6917 // Load from the stack slot. 6918 SDValue Load = DAG.getExtLoad( 6919 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6920 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6921 6922 Stores.push_back( 6923 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6924 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6925 MinAlign(ST->getAlignment(), Offset), 6926 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6927 // The order of the stores doesn't matter - say it with a TokenFactor. 6928 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6929 return Result; 6930 } 6931 6932 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6933 "Unaligned store of unknown type."); 6934 // Get the half-size VT 6935 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6936 int NumBits = NewStoredVT.getSizeInBits(); 6937 int IncrementSize = NumBits / 8; 6938 6939 // Divide the stored value in two parts. 6940 SDValue ShiftAmount = DAG.getConstant( 6941 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6942 SDValue Lo = Val; 6943 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6944 6945 // Store the two parts 6946 SDValue Store1, Store2; 6947 Store1 = DAG.getTruncStore(Chain, dl, 6948 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6949 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6950 ST->getMemOperand()->getFlags()); 6951 6952 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6953 Alignment = MinAlign(Alignment, IncrementSize); 6954 Store2 = DAG.getTruncStore( 6955 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6956 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6957 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6958 6959 SDValue Result = 6960 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6961 return Result; 6962 } 6963 6964 SDValue 6965 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6966 const SDLoc &DL, EVT DataVT, 6967 SelectionDAG &DAG, 6968 bool IsCompressedMemory) const { 6969 SDValue Increment; 6970 EVT AddrVT = Addr.getValueType(); 6971 EVT MaskVT = Mask.getValueType(); 6972 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6973 "Incompatible types of Data and Mask"); 6974 if (IsCompressedMemory) { 6975 // Incrementing the pointer according to number of '1's in the mask. 6976 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6977 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6978 if (MaskIntVT.getSizeInBits() < 32) { 6979 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6980 MaskIntVT = MVT::i32; 6981 } 6982 6983 // Count '1's with POPCNT. 6984 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6985 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6986 // Scale is an element size in bytes. 6987 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6988 AddrVT); 6989 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6990 } else 6991 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6992 6993 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6994 } 6995 6996 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6997 SDValue Idx, 6998 EVT VecVT, 6999 const SDLoc &dl) { 7000 if (isa<ConstantSDNode>(Idx)) 7001 return Idx; 7002 7003 EVT IdxVT = Idx.getValueType(); 7004 unsigned NElts = VecVT.getVectorNumElements(); 7005 if (isPowerOf2_32(NElts)) { 7006 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7007 Log2_32(NElts)); 7008 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7009 DAG.getConstant(Imm, dl, IdxVT)); 7010 } 7011 7012 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7013 DAG.getConstant(NElts - 1, dl, IdxVT)); 7014 } 7015 7016 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7017 SDValue VecPtr, EVT VecVT, 7018 SDValue Index) const { 7019 SDLoc dl(Index); 7020 // Make sure the index type is big enough to compute in. 7021 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7022 7023 EVT EltVT = VecVT.getVectorElementType(); 7024 7025 // Calculate the element offset and add it to the pointer. 7026 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7027 assert(EltSize * 8 == EltVT.getSizeInBits() && 7028 "Converting bits to bytes lost precision"); 7029 7030 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7031 7032 EVT IdxVT = Index.getValueType(); 7033 7034 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7035 DAG.getConstant(EltSize, dl, IdxVT)); 7036 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7037 } 7038 7039 //===----------------------------------------------------------------------===// 7040 // Implementation of Emulated TLS Model 7041 //===----------------------------------------------------------------------===// 7042 7043 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7044 SelectionDAG &DAG) const { 7045 // Access to address of TLS varialbe xyz is lowered to a function call: 7046 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7047 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7048 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7049 SDLoc dl(GA); 7050 7051 ArgListTy Args; 7052 ArgListEntry Entry; 7053 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7054 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7055 StringRef EmuTlsVarName(NameString); 7056 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7057 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7058 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7059 Entry.Ty = VoidPtrType; 7060 Args.push_back(Entry); 7061 7062 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7063 7064 TargetLowering::CallLoweringInfo CLI(DAG); 7065 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7066 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7067 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7068 7069 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7070 // At last for X86 targets, maybe good for other targets too? 7071 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7072 MFI.setAdjustsStack(true); // Is this only for X86 target? 7073 MFI.setHasCalls(true); 7074 7075 assert((GA->getOffset() == 0) && 7076 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7077 return CallResult.first; 7078 } 7079 7080 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7081 SelectionDAG &DAG) const { 7082 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7083 if (!isCtlzFast()) 7084 return SDValue(); 7085 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7086 SDLoc dl(Op); 7087 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7088 if (C->isNullValue() && CC == ISD::SETEQ) { 7089 EVT VT = Op.getOperand(0).getValueType(); 7090 SDValue Zext = Op.getOperand(0); 7091 if (VT.bitsLT(MVT::i32)) { 7092 VT = MVT::i32; 7093 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7094 } 7095 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7096 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7097 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7098 DAG.getConstant(Log2b, dl, MVT::i32)); 7099 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7100 } 7101 } 7102 return SDValue(); 7103 } 7104 7105 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7106 unsigned Opcode = Node->getOpcode(); 7107 SDValue LHS = Node->getOperand(0); 7108 SDValue RHS = Node->getOperand(1); 7109 EVT VT = LHS.getValueType(); 7110 SDLoc dl(Node); 7111 7112 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7113 assert(VT.isInteger() && "Expected operands to be integers"); 7114 7115 // usub.sat(a, b) -> umax(a, b) - b 7116 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7117 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7118 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7119 } 7120 7121 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7122 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7123 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7124 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7125 } 7126 7127 unsigned OverflowOp; 7128 switch (Opcode) { 7129 case ISD::SADDSAT: 7130 OverflowOp = ISD::SADDO; 7131 break; 7132 case ISD::UADDSAT: 7133 OverflowOp = ISD::UADDO; 7134 break; 7135 case ISD::SSUBSAT: 7136 OverflowOp = ISD::SSUBO; 7137 break; 7138 case ISD::USUBSAT: 7139 OverflowOp = ISD::USUBO; 7140 break; 7141 default: 7142 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7143 "addition or subtraction node."); 7144 } 7145 7146 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7147 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7148 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7149 LHS, RHS); 7150 SDValue SumDiff = Result.getValue(0); 7151 SDValue Overflow = Result.getValue(1); 7152 SDValue Zero = DAG.getConstant(0, dl, VT); 7153 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7154 7155 if (Opcode == ISD::UADDSAT) { 7156 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7157 // (LHS + RHS) | OverflowMask 7158 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7159 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7160 } 7161 // Overflow ? 0xffff.... : (LHS + RHS) 7162 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7163 } else if (Opcode == ISD::USUBSAT) { 7164 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7165 // (LHS - RHS) & ~OverflowMask 7166 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7167 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7168 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7169 } 7170 // Overflow ? 0 : (LHS - RHS) 7171 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7172 } else { 7173 // SatMax -> Overflow && SumDiff < 0 7174 // SatMin -> Overflow && SumDiff >= 0 7175 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7176 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7177 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7178 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7179 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7180 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7181 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7182 } 7183 } 7184 7185 SDValue 7186 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7187 assert((Node->getOpcode() == ISD::SMULFIX || 7188 Node->getOpcode() == ISD::UMULFIX || 7189 Node->getOpcode() == ISD::SMULFIXSAT || 7190 Node->getOpcode() == ISD::UMULFIXSAT) && 7191 "Expected a fixed point multiplication opcode"); 7192 7193 SDLoc dl(Node); 7194 SDValue LHS = Node->getOperand(0); 7195 SDValue RHS = Node->getOperand(1); 7196 EVT VT = LHS.getValueType(); 7197 unsigned Scale = Node->getConstantOperandVal(2); 7198 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7199 Node->getOpcode() == ISD::UMULFIXSAT); 7200 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7201 Node->getOpcode() == ISD::SMULFIXSAT); 7202 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7203 unsigned VTSize = VT.getScalarSizeInBits(); 7204 7205 if (!Scale) { 7206 // [us]mul.fix(a, b, 0) -> mul(a, b) 7207 if (!Saturating) { 7208 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7209 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7210 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7211 SDValue Result = 7212 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7213 SDValue Product = Result.getValue(0); 7214 SDValue Overflow = Result.getValue(1); 7215 SDValue Zero = DAG.getConstant(0, dl, VT); 7216 7217 APInt MinVal = APInt::getSignedMinValue(VTSize); 7218 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7219 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7220 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7221 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7222 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7223 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7224 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7225 SDValue Result = 7226 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7227 SDValue Product = Result.getValue(0); 7228 SDValue Overflow = Result.getValue(1); 7229 7230 APInt MaxVal = APInt::getMaxValue(VTSize); 7231 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7232 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7233 } 7234 } 7235 7236 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7237 "Expected scale to be less than the number of bits if signed or at " 7238 "most the number of bits if unsigned."); 7239 assert(LHS.getValueType() == RHS.getValueType() && 7240 "Expected both operands to be the same type"); 7241 7242 // Get the upper and lower bits of the result. 7243 SDValue Lo, Hi; 7244 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7245 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7246 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7247 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7248 Lo = Result.getValue(0); 7249 Hi = Result.getValue(1); 7250 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7251 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7252 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7253 } else if (VT.isVector()) { 7254 return SDValue(); 7255 } else { 7256 report_fatal_error("Unable to expand fixed point multiplication."); 7257 } 7258 7259 if (Scale == VTSize) 7260 // Result is just the top half since we'd be shifting by the width of the 7261 // operand. Overflow impossible so this works for both UMULFIX and 7262 // UMULFIXSAT. 7263 return Hi; 7264 7265 // The result will need to be shifted right by the scale since both operands 7266 // are scaled. The result is given to us in 2 halves, so we only want part of 7267 // both in the result. 7268 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7269 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7270 DAG.getConstant(Scale, dl, ShiftTy)); 7271 if (!Saturating) 7272 return Result; 7273 7274 if (!Signed) { 7275 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7276 // widened multiplication) aren't all zeroes. 7277 7278 // Saturate to max if ((Hi >> Scale) != 0), 7279 // which is the same as if (Hi > ((1 << Scale) - 1)) 7280 APInt MaxVal = APInt::getMaxValue(VTSize); 7281 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7282 dl, VT); 7283 Result = DAG.getSelectCC(dl, Hi, LowMask, 7284 DAG.getConstant(MaxVal, dl, VT), Result, 7285 ISD::SETUGT); 7286 7287 return Result; 7288 } 7289 7290 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7291 // widened multiplication) aren't all ones or all zeroes. 7292 7293 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7294 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7295 7296 if (Scale == 0) { 7297 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7298 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7299 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7300 // Saturated to SatMin if wide product is negative, and SatMax if wide 7301 // product is positive ... 7302 SDValue Zero = DAG.getConstant(0, dl, VT); 7303 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7304 ISD::SETLT); 7305 // ... but only if we overflowed. 7306 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7307 } 7308 7309 // We handled Scale==0 above so all the bits to examine is in Hi. 7310 7311 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7312 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7313 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7314 dl, VT); 7315 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7316 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7317 // which is the same as if (HI < (-1 << (Scale - 1)) 7318 SDValue HighMask = 7319 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7320 dl, VT); 7321 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7322 return Result; 7323 } 7324 7325 SDValue 7326 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7327 SDValue LHS, SDValue RHS, 7328 unsigned Scale, SelectionDAG &DAG) const { 7329 assert((Opcode == ISD::SDIVFIX || 7330 Opcode == ISD::UDIVFIX) && 7331 "Expected a fixed point division opcode"); 7332 7333 EVT VT = LHS.getValueType(); 7334 bool Signed = Opcode == ISD::SDIVFIX; 7335 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7336 7337 // If there is enough room in the type to upscale the LHS or downscale the 7338 // RHS before the division, we can perform it in this type without having to 7339 // resize. For signed operations, the LHS headroom is the number of 7340 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7341 // The headroom for the RHS is the number of trailing zeroes. 7342 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7343 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7344 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7345 7346 if (LHSLead + RHSTrail < Scale) 7347 return SDValue(); 7348 7349 unsigned LHSShift = std::min(LHSLead, Scale); 7350 unsigned RHSShift = Scale - LHSShift; 7351 7352 // At this point, we know that if we shift the LHS up by LHSShift and the 7353 // RHS down by RHSShift, we can emit a regular division with a final scaling 7354 // factor of Scale. 7355 7356 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7357 if (LHSShift) 7358 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7359 DAG.getConstant(LHSShift, dl, ShiftTy)); 7360 if (RHSShift) 7361 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7362 DAG.getConstant(RHSShift, dl, ShiftTy)); 7363 7364 SDValue Quot; 7365 if (Signed) { 7366 // For signed operations, if the resulting quotient is negative and the 7367 // remainder is nonzero, subtract 1 from the quotient to round towards 7368 // negative infinity. 7369 SDValue Rem; 7370 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7371 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7372 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7373 if (isTypeLegal(VT) && 7374 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7375 Quot = DAG.getNode(ISD::SDIVREM, dl, 7376 DAG.getVTList(VT, VT), 7377 LHS, RHS); 7378 Rem = Quot.getValue(1); 7379 Quot = Quot.getValue(0); 7380 } else { 7381 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7382 LHS, RHS); 7383 Rem = DAG.getNode(ISD::SREM, dl, VT, 7384 LHS, RHS); 7385 } 7386 SDValue Zero = DAG.getConstant(0, dl, VT); 7387 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7388 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7389 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7390 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7391 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7392 DAG.getConstant(1, dl, VT)); 7393 Quot = DAG.getSelect(dl, VT, 7394 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7395 Sub1, Quot); 7396 } else 7397 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7398 LHS, RHS); 7399 7400 // TODO: Saturation. 7401 7402 return Quot; 7403 } 7404 7405 void TargetLowering::expandUADDSUBO( 7406 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7407 SDLoc dl(Node); 7408 SDValue LHS = Node->getOperand(0); 7409 SDValue RHS = Node->getOperand(1); 7410 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7411 7412 // If ADD/SUBCARRY is legal, use that instead. 7413 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7414 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7415 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7416 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7417 { LHS, RHS, CarryIn }); 7418 Result = SDValue(NodeCarry.getNode(), 0); 7419 Overflow = SDValue(NodeCarry.getNode(), 1); 7420 return; 7421 } 7422 7423 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7424 LHS.getValueType(), LHS, RHS); 7425 7426 EVT ResultType = Node->getValueType(1); 7427 EVT SetCCType = getSetCCResultType( 7428 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7429 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7430 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7431 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7432 } 7433 7434 void TargetLowering::expandSADDSUBO( 7435 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7436 SDLoc dl(Node); 7437 SDValue LHS = Node->getOperand(0); 7438 SDValue RHS = Node->getOperand(1); 7439 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7440 7441 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7442 LHS.getValueType(), LHS, RHS); 7443 7444 EVT ResultType = Node->getValueType(1); 7445 EVT OType = getSetCCResultType( 7446 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7447 7448 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7449 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7450 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7451 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7452 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7453 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7454 return; 7455 } 7456 7457 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7458 7459 // For an addition, the result should be less than one of the operands (LHS) 7460 // if and only if the other operand (RHS) is negative, otherwise there will 7461 // be overflow. 7462 // For a subtraction, the result should be less than one of the operands 7463 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7464 // otherwise there will be overflow. 7465 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7466 SDValue ConditionRHS = 7467 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7468 7469 Overflow = DAG.getBoolExtOrTrunc( 7470 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7471 ResultType, ResultType); 7472 } 7473 7474 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7475 SDValue &Overflow, SelectionDAG &DAG) const { 7476 SDLoc dl(Node); 7477 EVT VT = Node->getValueType(0); 7478 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7479 SDValue LHS = Node->getOperand(0); 7480 SDValue RHS = Node->getOperand(1); 7481 bool isSigned = Node->getOpcode() == ISD::SMULO; 7482 7483 // For power-of-two multiplications we can use a simpler shift expansion. 7484 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7485 const APInt &C = RHSC->getAPIntValue(); 7486 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7487 if (C.isPowerOf2()) { 7488 // smulo(x, signed_min) is same as umulo(x, signed_min). 7489 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7490 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7491 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7492 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7493 Overflow = DAG.getSetCC(dl, SetCCVT, 7494 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7495 dl, VT, Result, ShiftAmt), 7496 LHS, ISD::SETNE); 7497 return true; 7498 } 7499 } 7500 7501 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7502 if (VT.isVector()) 7503 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7504 VT.getVectorNumElements()); 7505 7506 SDValue BottomHalf; 7507 SDValue TopHalf; 7508 static const unsigned Ops[2][3] = 7509 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7510 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7511 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7512 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7513 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7514 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7515 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7516 RHS); 7517 TopHalf = BottomHalf.getValue(1); 7518 } else if (isTypeLegal(WideVT)) { 7519 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7520 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7521 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7522 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7523 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7524 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7525 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7526 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7527 } else { 7528 if (VT.isVector()) 7529 return false; 7530 7531 // We can fall back to a libcall with an illegal type for the MUL if we 7532 // have a libcall big enough. 7533 // Also, we can fall back to a division in some cases, but that's a big 7534 // performance hit in the general case. 7535 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7536 if (WideVT == MVT::i16) 7537 LC = RTLIB::MUL_I16; 7538 else if (WideVT == MVT::i32) 7539 LC = RTLIB::MUL_I32; 7540 else if (WideVT == MVT::i64) 7541 LC = RTLIB::MUL_I64; 7542 else if (WideVT == MVT::i128) 7543 LC = RTLIB::MUL_I128; 7544 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7545 7546 SDValue HiLHS; 7547 SDValue HiRHS; 7548 if (isSigned) { 7549 // The high part is obtained by SRA'ing all but one of the bits of low 7550 // part. 7551 unsigned LoSize = VT.getSizeInBits(); 7552 HiLHS = 7553 DAG.getNode(ISD::SRA, dl, VT, LHS, 7554 DAG.getConstant(LoSize - 1, dl, 7555 getPointerTy(DAG.getDataLayout()))); 7556 HiRHS = 7557 DAG.getNode(ISD::SRA, dl, VT, RHS, 7558 DAG.getConstant(LoSize - 1, dl, 7559 getPointerTy(DAG.getDataLayout()))); 7560 } else { 7561 HiLHS = DAG.getConstant(0, dl, VT); 7562 HiRHS = DAG.getConstant(0, dl, VT); 7563 } 7564 7565 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7566 // pre-lowered to the correct types. This all depends upon WideVT not 7567 // being a legal type for the architecture and thus has to be split to 7568 // two arguments. 7569 SDValue Ret; 7570 TargetLowering::MakeLibCallOptions CallOptions; 7571 CallOptions.setSExt(isSigned); 7572 CallOptions.setIsPostTypeLegalization(true); 7573 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7574 // Halves of WideVT are packed into registers in different order 7575 // depending on platform endianness. This is usually handled by 7576 // the C calling convention, but we can't defer to it in 7577 // the legalizer. 7578 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7579 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7580 } else { 7581 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7582 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7583 } 7584 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7585 "Ret value is a collection of constituent nodes holding result."); 7586 if (DAG.getDataLayout().isLittleEndian()) { 7587 // Same as above. 7588 BottomHalf = Ret.getOperand(0); 7589 TopHalf = Ret.getOperand(1); 7590 } else { 7591 BottomHalf = Ret.getOperand(1); 7592 TopHalf = Ret.getOperand(0); 7593 } 7594 } 7595 7596 Result = BottomHalf; 7597 if (isSigned) { 7598 SDValue ShiftAmt = DAG.getConstant( 7599 VT.getScalarSizeInBits() - 1, dl, 7600 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7601 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7602 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7603 } else { 7604 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7605 DAG.getConstant(0, dl, VT), ISD::SETNE); 7606 } 7607 7608 // Truncate the result if SetCC returns a larger type than needed. 7609 EVT RType = Node->getValueType(1); 7610 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7611 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7612 7613 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7614 "Unexpected result type for S/UMULO legalization"); 7615 return true; 7616 } 7617 7618 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7619 SDLoc dl(Node); 7620 bool NoNaN = Node->getFlags().hasNoNaNs(); 7621 unsigned BaseOpcode = 0; 7622 switch (Node->getOpcode()) { 7623 default: llvm_unreachable("Expected VECREDUCE opcode"); 7624 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7625 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7626 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7627 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7628 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7629 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7630 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7631 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7632 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7633 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7634 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7635 case ISD::VECREDUCE_FMAX: 7636 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7637 break; 7638 case ISD::VECREDUCE_FMIN: 7639 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7640 break; 7641 } 7642 7643 SDValue Op = Node->getOperand(0); 7644 EVT VT = Op.getValueType(); 7645 7646 // Try to use a shuffle reduction for power of two vectors. 7647 if (VT.isPow2VectorType()) { 7648 while (VT.getVectorNumElements() > 1) { 7649 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7650 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7651 break; 7652 7653 SDValue Lo, Hi; 7654 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7655 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7656 VT = HalfVT; 7657 } 7658 } 7659 7660 EVT EltVT = VT.getVectorElementType(); 7661 unsigned NumElts = VT.getVectorNumElements(); 7662 7663 SmallVector<SDValue, 8> Ops; 7664 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7665 7666 SDValue Res = Ops[0]; 7667 for (unsigned i = 1; i < NumElts; i++) 7668 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7669 7670 // Result type may be wider than element type. 7671 if (EltVT != Node->getValueType(0)) 7672 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7673 return Res; 7674 } 7675