1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/DivisionByConstantInfo.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include <cctype> 34 using namespace llvm; 35 36 /// NOTE: The TargetMachine owns TLOF. 37 TargetLowering::TargetLowering(const TargetMachine &tm) 38 : TargetLoweringBase(tm) {} 39 40 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 41 return nullptr; 42 } 43 44 bool TargetLowering::isPositionIndependent() const { 45 return getTargetMachine().isPositionIndependent(); 46 } 47 48 /// Check whether a given call node is in tail position within its function. If 49 /// so, it sets Chain to the input chain of the tail call. 50 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 51 SDValue &Chain) const { 52 const Function &F = DAG.getMachineFunction().getFunction(); 53 54 // First, check if tail calls have been disabled in this function. 55 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 56 return false; 57 58 // Conservatively require the attributes of the call to match those of 59 // the return. Ignore following attributes because they don't affect the 60 // call sequence. 61 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 62 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 63 Attribute::DereferenceableOrNull, Attribute::NoAlias, 64 Attribute::NonNull, Attribute::NoUndef}) 65 CallerAttrs.removeAttribute(Attr); 66 67 if (CallerAttrs.hasAttributes()) 68 return false; 69 70 // It's not safe to eliminate the sign / zero extension of the return value. 71 if (CallerAttrs.contains(Attribute::ZExt) || 72 CallerAttrs.contains(Attribute::SExt)) 73 return false; 74 75 // Check if the only use is a function return node. 76 return isUsedByReturnOnly(Node, Chain); 77 } 78 79 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 80 const uint32_t *CallerPreservedMask, 81 const SmallVectorImpl<CCValAssign> &ArgLocs, 82 const SmallVectorImpl<SDValue> &OutVals) const { 83 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 84 const CCValAssign &ArgLoc = ArgLocs[I]; 85 if (!ArgLoc.isRegLoc()) 86 continue; 87 MCRegister Reg = ArgLoc.getLocReg(); 88 // Only look at callee saved registers. 89 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 90 continue; 91 // Check that we pass the value used for the caller. 92 // (We look for a CopyFromReg reading a virtual register that is used 93 // for the function live-in value of register Reg) 94 SDValue Value = OutVals[I]; 95 if (Value->getOpcode() != ISD::CopyFromReg) 96 return false; 97 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 98 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 99 return false; 100 } 101 return true; 102 } 103 104 /// Set CallLoweringInfo attribute flags based on a call instruction 105 /// and called function attributes. 106 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 107 unsigned ArgIdx) { 108 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 109 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 110 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 111 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 112 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 113 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 114 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 115 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 116 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 117 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 118 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 119 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 120 Alignment = Call->getParamStackAlign(ArgIdx); 121 IndirectType = nullptr; 122 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 123 "multiple ABI attributes?"); 124 if (IsByVal) { 125 IndirectType = Call->getParamByValType(ArgIdx); 126 if (!Alignment) 127 Alignment = Call->getParamAlign(ArgIdx); 128 } 129 if (IsPreallocated) 130 IndirectType = Call->getParamPreallocatedType(ArgIdx); 131 if (IsInAlloca) 132 IndirectType = Call->getParamInAllocaType(ArgIdx); 133 if (IsSRet) 134 IndirectType = Call->getParamStructRetType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 const APInt &DemandedElts, 610 DAGCombinerInfo &DCI) const { 611 SelectionDAG &DAG = DCI.DAG; 612 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 613 !DCI.isBeforeLegalizeOps()); 614 KnownBits Known; 615 616 bool Simplified = 617 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 618 if (Simplified) { 619 DCI.AddToWorklist(Op.getNode()); 620 DCI.CommitTargetLoweringOpt(TLO); 621 } 622 return Simplified; 623 } 624 625 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 626 KnownBits &Known, 627 TargetLoweringOpt &TLO, 628 unsigned Depth, 629 bool AssumeSingleUse) const { 630 EVT VT = Op.getValueType(); 631 632 // TODO: We can probably do more work on calculating the known bits and 633 // simplifying the operations for scalable vectors, but for now we just 634 // bail out. 635 if (VT.isScalableVector()) { 636 // Pretend we don't know anything for now. 637 Known = KnownBits(DemandedBits.getBitWidth()); 638 return false; 639 } 640 641 APInt DemandedElts = VT.isVector() 642 ? APInt::getAllOnes(VT.getVectorNumElements()) 643 : APInt(1, 1); 644 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 645 AssumeSingleUse); 646 } 647 648 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 649 // TODO: Under what circumstances can we create nodes? Constant folding? 650 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 651 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 652 SelectionDAG &DAG, unsigned Depth) const { 653 // Limit search depth. 654 if (Depth >= SelectionDAG::MaxRecursionDepth) 655 return SDValue(); 656 657 // Ignore UNDEFs. 658 if (Op.isUndef()) 659 return SDValue(); 660 661 // Not demanding any bits/elts from Op. 662 if (DemandedBits == 0 || DemandedElts == 0) 663 return DAG.getUNDEF(Op.getValueType()); 664 665 bool IsLE = DAG.getDataLayout().isLittleEndian(); 666 unsigned NumElts = DemandedElts.getBitWidth(); 667 unsigned BitWidth = DemandedBits.getBitWidth(); 668 KnownBits LHSKnown, RHSKnown; 669 switch (Op.getOpcode()) { 670 case ISD::BITCAST: { 671 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 672 EVT SrcVT = Src.getValueType(); 673 EVT DstVT = Op.getValueType(); 674 if (SrcVT == DstVT) 675 return Src; 676 677 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 678 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 679 if (NumSrcEltBits == NumDstEltBits) 680 if (SDValue V = SimplifyMultipleUseDemandedBits( 681 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 682 return DAG.getBitcast(DstVT, V); 683 684 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 685 unsigned Scale = NumDstEltBits / NumSrcEltBits; 686 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 687 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 688 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 689 for (unsigned i = 0; i != Scale; ++i) { 690 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 691 unsigned BitOffset = EltOffset * NumSrcEltBits; 692 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 693 if (!Sub.isZero()) { 694 DemandedSrcBits |= Sub; 695 for (unsigned j = 0; j != NumElts; ++j) 696 if (DemandedElts[j]) 697 DemandedSrcElts.setBit((j * Scale) + i); 698 } 699 } 700 701 if (SDValue V = SimplifyMultipleUseDemandedBits( 702 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 703 return DAG.getBitcast(DstVT, V); 704 } 705 706 // TODO - bigendian once we have test coverage. 707 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 708 unsigned Scale = NumSrcEltBits / NumDstEltBits; 709 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 710 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 711 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 712 for (unsigned i = 0; i != NumElts; ++i) 713 if (DemandedElts[i]) { 714 unsigned Offset = (i % Scale) * NumDstEltBits; 715 DemandedSrcBits.insertBits(DemandedBits, Offset); 716 DemandedSrcElts.setBit(i / Scale); 717 } 718 719 if (SDValue V = SimplifyMultipleUseDemandedBits( 720 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 721 return DAG.getBitcast(DstVT, V); 722 } 723 724 break; 725 } 726 case ISD::AND: { 727 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 728 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 729 730 // If all of the demanded bits are known 1 on one side, return the other. 731 // These bits cannot contribute to the result of the 'and' in this 732 // context. 733 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::OR: { 740 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 741 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 742 743 // If all of the demanded bits are known zero on one side, return the 744 // other. These bits cannot contribute to the result of the 'or' in this 745 // context. 746 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 747 return Op.getOperand(0); 748 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 749 return Op.getOperand(1); 750 break; 751 } 752 case ISD::XOR: { 753 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 754 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 755 756 // If all of the demanded bits are known zero on one side, return the 757 // other. 758 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 759 return Op.getOperand(0); 760 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 761 return Op.getOperand(1); 762 break; 763 } 764 case ISD::SHL: { 765 // If we are only demanding sign bits then we can use the shift source 766 // directly. 767 if (const APInt *MaxSA = 768 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 769 SDValue Op0 = Op.getOperand(0); 770 unsigned ShAmt = MaxSA->getZExtValue(); 771 unsigned NumSignBits = 772 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 773 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 774 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 775 return Op0; 776 } 777 break; 778 } 779 case ISD::SETCC: { 780 SDValue Op0 = Op.getOperand(0); 781 SDValue Op1 = Op.getOperand(1); 782 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 783 // If (1) we only need the sign-bit, (2) the setcc operands are the same 784 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 785 // -1, we may be able to bypass the setcc. 786 if (DemandedBits.isSignMask() && 787 Op0.getScalarValueSizeInBits() == BitWidth && 788 getBooleanContents(Op0.getValueType()) == 789 BooleanContent::ZeroOrNegativeOneBooleanContent) { 790 // If we're testing X < 0, then this compare isn't needed - just use X! 791 // FIXME: We're limiting to integer types here, but this should also work 792 // if we don't care about FP signed-zero. The use of SETLT with FP means 793 // that we don't care about NaNs. 794 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 795 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 796 return Op0; 797 } 798 break; 799 } 800 case ISD::SIGN_EXTEND_INREG: { 801 // If none of the extended bits are demanded, eliminate the sextinreg. 802 SDValue Op0 = Op.getOperand(0); 803 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 804 unsigned ExBits = ExVT.getScalarSizeInBits(); 805 if (DemandedBits.getActiveBits() <= ExBits) 806 return Op0; 807 // If the input is already sign extended, just drop the extension. 808 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 809 if (NumSignBits >= (BitWidth - ExBits + 1)) 810 return Op0; 811 break; 812 } 813 case ISD::ANY_EXTEND_VECTOR_INREG: 814 case ISD::SIGN_EXTEND_VECTOR_INREG: 815 case ISD::ZERO_EXTEND_VECTOR_INREG: { 816 // If we only want the lowest element and none of extended bits, then we can 817 // return the bitcasted source vector. 818 SDValue Src = Op.getOperand(0); 819 EVT SrcVT = Src.getValueType(); 820 EVT DstVT = Op.getValueType(); 821 if (IsLE && DemandedElts == 1 && 822 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 823 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 824 return DAG.getBitcast(DstVT, Src); 825 } 826 break; 827 } 828 case ISD::INSERT_VECTOR_ELT: { 829 // If we don't demand the inserted element, return the base vector. 830 SDValue Vec = Op.getOperand(0); 831 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 832 EVT VecVT = Vec.getValueType(); 833 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 834 !DemandedElts[CIdx->getZExtValue()]) 835 return Vec; 836 break; 837 } 838 case ISD::INSERT_SUBVECTOR: { 839 SDValue Vec = Op.getOperand(0); 840 SDValue Sub = Op.getOperand(1); 841 uint64_t Idx = Op.getConstantOperandVal(2); 842 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 843 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 844 // If we don't demand the inserted subvector, return the base vector. 845 if (DemandedSubElts == 0) 846 return Vec; 847 // If this simply widens the lowest subvector, see if we can do it earlier. 848 if (Idx == 0 && Vec.isUndef()) { 849 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 850 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 851 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 852 Op.getOperand(0), NewSub, Op.getOperand(2)); 853 } 854 break; 855 } 856 case ISD::VECTOR_SHUFFLE: { 857 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 858 859 // If all the demanded elts are from one operand and are inline, 860 // then we can use the operand directly. 861 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 862 for (unsigned i = 0; i != NumElts; ++i) { 863 int M = ShuffleMask[i]; 864 if (M < 0 || !DemandedElts[i]) 865 continue; 866 AllUndef = false; 867 IdentityLHS &= (M == (int)i); 868 IdentityRHS &= ((M - NumElts) == i); 869 } 870 871 if (AllUndef) 872 return DAG.getUNDEF(Op.getValueType()); 873 if (IdentityLHS) 874 return Op.getOperand(0); 875 if (IdentityRHS) 876 return Op.getOperand(1); 877 break; 878 } 879 default: 880 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 881 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 882 Op, DemandedBits, DemandedElts, DAG, Depth)) 883 return V; 884 break; 885 } 886 return SDValue(); 887 } 888 889 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 890 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 891 unsigned Depth) const { 892 EVT VT = Op.getValueType(); 893 APInt DemandedElts = VT.isVector() 894 ? APInt::getAllOnes(VT.getVectorNumElements()) 895 : APInt(1, 1); 896 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 897 Depth); 898 } 899 900 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 901 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 902 unsigned Depth) const { 903 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 904 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 905 Depth); 906 } 907 908 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 909 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 910 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 911 const TargetLowering &TLI, 912 const APInt &DemandedBits, 913 const APInt &DemandedElts, 914 unsigned Depth) { 915 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 916 "SRL or SRA node is required here!"); 917 // Is the right shift using an immediate value of 1? 918 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 919 if (!N1C || !N1C->isOne()) 920 return SDValue(); 921 922 // We are looking for an avgfloor 923 // add(ext, ext) 924 // or one of these as a avgceil 925 // add(add(ext, ext), 1) 926 // add(add(ext, 1), ext) 927 // add(ext, add(ext, 1)) 928 SDValue Add = Op.getOperand(0); 929 if (Add.getOpcode() != ISD::ADD) 930 return SDValue(); 931 932 SDValue ExtOpA = Add.getOperand(0); 933 SDValue ExtOpB = Add.getOperand(1); 934 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 935 ConstantSDNode *ConstOp; 936 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 937 ConstOp->isOne()) { 938 ExtOpA = Op2; 939 ExtOpB = Op3; 940 return true; 941 } 942 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 943 ConstOp->isOne()) { 944 ExtOpA = Op1; 945 ExtOpB = Op3; 946 return true; 947 } 948 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 949 ConstOp->isOne()) { 950 ExtOpA = Op1; 951 ExtOpB = Op2; 952 return true; 953 } 954 return false; 955 }; 956 bool IsCeil = 957 (ExtOpA.getOpcode() == ISD::ADD && 958 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 959 (ExtOpB.getOpcode() == ISD::ADD && 960 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 961 962 // If the shift is signed (sra): 963 // - Needs >= 2 sign bit for both operands. 964 // - Needs >= 2 zero bits. 965 // If the shift is unsigned (srl): 966 // - Needs >= 1 zero bit for both operands. 967 // - Needs 1 demanded bit zero and >= 2 sign bits. 968 unsigned ShiftOpc = Op.getOpcode(); 969 bool IsSigned = false; 970 unsigned KnownBits; 971 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 972 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 973 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 974 unsigned NumZeroA = 975 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 976 unsigned NumZeroB = 977 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 978 unsigned NumZero = std::min(NumZeroA, NumZeroB); 979 980 switch (ShiftOpc) { 981 default: 982 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 983 case ISD::SRA: { 984 if (NumZero >= 2 && NumSigned < NumZero) { 985 IsSigned = false; 986 KnownBits = NumZero; 987 break; 988 } 989 if (NumSigned >= 1) { 990 IsSigned = true; 991 KnownBits = NumSigned; 992 break; 993 } 994 return SDValue(); 995 } 996 case ISD::SRL: { 997 if (NumZero >= 1 && NumSigned < NumZero) { 998 IsSigned = false; 999 KnownBits = NumZero; 1000 break; 1001 } 1002 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1003 IsSigned = true; 1004 KnownBits = NumSigned; 1005 break; 1006 } 1007 return SDValue(); 1008 } 1009 } 1010 1011 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1012 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1013 1014 // Find the smallest power-2 type that is legal for this vector size and 1015 // operation, given the original type size and the number of known sign/zero 1016 // bits. 1017 EVT VT = Op.getValueType(); 1018 unsigned MinWidth = 1019 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1020 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1021 if (VT.isVector()) 1022 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1023 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1024 return SDValue(); 1025 1026 SDLoc DL(Op); 1027 SDValue ResultAVG = 1028 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1029 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1030 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1031 ResultAVG); 1032 } 1033 1034 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1035 /// result of Op are ever used downstream. If we can use this information to 1036 /// simplify Op, create a new simplified DAG node and return true, returning the 1037 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1038 /// return a mask of Known bits for the expression (used to simplify the 1039 /// caller). The Known bits may only be accurate for those bits in the 1040 /// OriginalDemandedBits and OriginalDemandedElts. 1041 bool TargetLowering::SimplifyDemandedBits( 1042 SDValue Op, const APInt &OriginalDemandedBits, 1043 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1044 unsigned Depth, bool AssumeSingleUse) const { 1045 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1046 assert(Op.getScalarValueSizeInBits() == BitWidth && 1047 "Mask size mismatches value type size!"); 1048 1049 // Don't know anything. 1050 Known = KnownBits(BitWidth); 1051 1052 // TODO: We can probably do more work on calculating the known bits and 1053 // simplifying the operations for scalable vectors, but for now we just 1054 // bail out. 1055 if (Op.getValueType().isScalableVector()) 1056 return false; 1057 1058 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1059 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1060 assert((!Op.getValueType().isVector() || 1061 NumElts == Op.getValueType().getVectorNumElements()) && 1062 "Unexpected vector size"); 1063 1064 APInt DemandedBits = OriginalDemandedBits; 1065 APInt DemandedElts = OriginalDemandedElts; 1066 SDLoc dl(Op); 1067 auto &DL = TLO.DAG.getDataLayout(); 1068 1069 // Undef operand. 1070 if (Op.isUndef()) 1071 return false; 1072 1073 if (Op.getOpcode() == ISD::Constant) { 1074 // We know all of the bits for a constant! 1075 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1076 return false; 1077 } 1078 1079 if (Op.getOpcode() == ISD::ConstantFP) { 1080 // We know all of the bits for a floating point constant! 1081 Known = KnownBits::makeConstant( 1082 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1083 return false; 1084 } 1085 1086 // Other users may use these bits. 1087 EVT VT = Op.getValueType(); 1088 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1089 if (Depth != 0) { 1090 // If not at the root, Just compute the Known bits to 1091 // simplify things downstream. 1092 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1093 return false; 1094 } 1095 // If this is the root being simplified, allow it to have multiple uses, 1096 // just set the DemandedBits/Elts to all bits. 1097 DemandedBits = APInt::getAllOnes(BitWidth); 1098 DemandedElts = APInt::getAllOnes(NumElts); 1099 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1100 // Not demanding any bits/elts from Op. 1101 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1102 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1103 // Limit search depth. 1104 return false; 1105 } 1106 1107 KnownBits Known2; 1108 switch (Op.getOpcode()) { 1109 case ISD::TargetConstant: 1110 llvm_unreachable("Can't simplify this node"); 1111 case ISD::SCALAR_TO_VECTOR: { 1112 if (!DemandedElts[0]) 1113 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1114 1115 KnownBits SrcKnown; 1116 SDValue Src = Op.getOperand(0); 1117 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1118 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 1119 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1120 return true; 1121 1122 // Upper elements are undef, so only get the knownbits if we just demand 1123 // the bottom element. 1124 if (DemandedElts == 1) 1125 Known = SrcKnown.anyextOrTrunc(BitWidth); 1126 break; 1127 } 1128 case ISD::BUILD_VECTOR: 1129 // Collect the known bits that are shared by every demanded element. 1130 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1131 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1132 return false; // Don't fall through, will infinitely loop. 1133 case ISD::LOAD: { 1134 auto *LD = cast<LoadSDNode>(Op); 1135 if (getTargetConstantFromLoad(LD)) { 1136 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1137 return false; // Don't fall through, will infinitely loop. 1138 } 1139 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1140 // If this is a ZEXTLoad and we are looking at the loaded value. 1141 EVT MemVT = LD->getMemoryVT(); 1142 unsigned MemBits = MemVT.getScalarSizeInBits(); 1143 Known.Zero.setBitsFrom(MemBits); 1144 return false; // Don't fall through, will infinitely loop. 1145 } 1146 break; 1147 } 1148 case ISD::INSERT_VECTOR_ELT: { 1149 SDValue Vec = Op.getOperand(0); 1150 SDValue Scl = Op.getOperand(1); 1151 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1152 EVT VecVT = Vec.getValueType(); 1153 1154 // If index isn't constant, assume we need all vector elements AND the 1155 // inserted element. 1156 APInt DemandedVecElts(DemandedElts); 1157 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1158 unsigned Idx = CIdx->getZExtValue(); 1159 DemandedVecElts.clearBit(Idx); 1160 1161 // Inserted element is not required. 1162 if (!DemandedElts[Idx]) 1163 return TLO.CombineTo(Op, Vec); 1164 } 1165 1166 KnownBits KnownScl; 1167 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1168 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1169 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1170 return true; 1171 1172 Known = KnownScl.anyextOrTrunc(BitWidth); 1173 1174 KnownBits KnownVec; 1175 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1176 Depth + 1)) 1177 return true; 1178 1179 if (!!DemandedVecElts) 1180 Known = KnownBits::commonBits(Known, KnownVec); 1181 1182 return false; 1183 } 1184 case ISD::INSERT_SUBVECTOR: { 1185 // Demand any elements from the subvector and the remainder from the src its 1186 // inserted into. 1187 SDValue Src = Op.getOperand(0); 1188 SDValue Sub = Op.getOperand(1); 1189 uint64_t Idx = Op.getConstantOperandVal(2); 1190 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1191 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1192 APInt DemandedSrcElts = DemandedElts; 1193 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1194 1195 KnownBits KnownSub, KnownSrc; 1196 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1197 Depth + 1)) 1198 return true; 1199 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1200 Depth + 1)) 1201 return true; 1202 1203 Known.Zero.setAllBits(); 1204 Known.One.setAllBits(); 1205 if (!!DemandedSubElts) 1206 Known = KnownBits::commonBits(Known, KnownSub); 1207 if (!!DemandedSrcElts) 1208 Known = KnownBits::commonBits(Known, KnownSrc); 1209 1210 // Attempt to avoid multi-use src if we don't need anything from it. 1211 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1212 !DemandedSrcElts.isAllOnes()) { 1213 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1214 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1215 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1216 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1217 if (NewSub || NewSrc) { 1218 NewSub = NewSub ? NewSub : Sub; 1219 NewSrc = NewSrc ? NewSrc : Src; 1220 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1221 Op.getOperand(2)); 1222 return TLO.CombineTo(Op, NewOp); 1223 } 1224 } 1225 break; 1226 } 1227 case ISD::EXTRACT_SUBVECTOR: { 1228 // Offset the demanded elts by the subvector index. 1229 SDValue Src = Op.getOperand(0); 1230 if (Src.getValueType().isScalableVector()) 1231 break; 1232 uint64_t Idx = Op.getConstantOperandVal(1); 1233 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1234 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1235 1236 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1237 Depth + 1)) 1238 return true; 1239 1240 // Attempt to avoid multi-use src if we don't need anything from it. 1241 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1242 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1243 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1244 if (DemandedSrc) { 1245 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1246 Op.getOperand(1)); 1247 return TLO.CombineTo(Op, NewOp); 1248 } 1249 } 1250 break; 1251 } 1252 case ISD::CONCAT_VECTORS: { 1253 Known.Zero.setAllBits(); 1254 Known.One.setAllBits(); 1255 EVT SubVT = Op.getOperand(0).getValueType(); 1256 unsigned NumSubVecs = Op.getNumOperands(); 1257 unsigned NumSubElts = SubVT.getVectorNumElements(); 1258 for (unsigned i = 0; i != NumSubVecs; ++i) { 1259 APInt DemandedSubElts = 1260 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1261 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1262 Known2, TLO, Depth + 1)) 1263 return true; 1264 // Known bits are shared by every demanded subvector element. 1265 if (!!DemandedSubElts) 1266 Known = KnownBits::commonBits(Known, Known2); 1267 } 1268 break; 1269 } 1270 case ISD::VECTOR_SHUFFLE: { 1271 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1272 1273 // Collect demanded elements from shuffle operands.. 1274 APInt DemandedLHS(NumElts, 0); 1275 APInt DemandedRHS(NumElts, 0); 1276 for (unsigned i = 0; i != NumElts; ++i) { 1277 if (!DemandedElts[i]) 1278 continue; 1279 int M = ShuffleMask[i]; 1280 if (M < 0) { 1281 // For UNDEF elements, we don't know anything about the common state of 1282 // the shuffle result. 1283 DemandedLHS.clearAllBits(); 1284 DemandedRHS.clearAllBits(); 1285 break; 1286 } 1287 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1288 if (M < (int)NumElts) 1289 DemandedLHS.setBit(M); 1290 else 1291 DemandedRHS.setBit(M - NumElts); 1292 } 1293 1294 if (!!DemandedLHS || !!DemandedRHS) { 1295 SDValue Op0 = Op.getOperand(0); 1296 SDValue Op1 = Op.getOperand(1); 1297 1298 Known.Zero.setAllBits(); 1299 Known.One.setAllBits(); 1300 if (!!DemandedLHS) { 1301 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1302 Depth + 1)) 1303 return true; 1304 Known = KnownBits::commonBits(Known, Known2); 1305 } 1306 if (!!DemandedRHS) { 1307 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1308 Depth + 1)) 1309 return true; 1310 Known = KnownBits::commonBits(Known, Known2); 1311 } 1312 1313 // Attempt to avoid multi-use ops if we don't need anything from them. 1314 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1315 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1316 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1317 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1318 if (DemandedOp0 || DemandedOp1) { 1319 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1320 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1321 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1322 return TLO.CombineTo(Op, NewOp); 1323 } 1324 } 1325 break; 1326 } 1327 case ISD::AND: { 1328 SDValue Op0 = Op.getOperand(0); 1329 SDValue Op1 = Op.getOperand(1); 1330 1331 // If the RHS is a constant, check to see if the LHS would be zero without 1332 // using the bits from the RHS. Below, we use knowledge about the RHS to 1333 // simplify the LHS, here we're using information from the LHS to simplify 1334 // the RHS. 1335 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1336 // Do not increment Depth here; that can cause an infinite loop. 1337 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1338 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1339 if ((LHSKnown.Zero & DemandedBits) == 1340 (~RHSC->getAPIntValue() & DemandedBits)) 1341 return TLO.CombineTo(Op, Op0); 1342 1343 // If any of the set bits in the RHS are known zero on the LHS, shrink 1344 // the constant. 1345 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1346 DemandedElts, TLO)) 1347 return true; 1348 1349 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1350 // constant, but if this 'and' is only clearing bits that were just set by 1351 // the xor, then this 'and' can be eliminated by shrinking the mask of 1352 // the xor. For example, for a 32-bit X: 1353 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1354 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1355 LHSKnown.One == ~RHSC->getAPIntValue()) { 1356 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1357 return TLO.CombineTo(Op, Xor); 1358 } 1359 } 1360 1361 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1362 Depth + 1)) 1363 return true; 1364 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1365 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1366 Known2, TLO, Depth + 1)) 1367 return true; 1368 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1369 1370 // Attempt to avoid multi-use ops if we don't need anything from them. 1371 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1372 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1373 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1374 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1375 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1376 if (DemandedOp0 || DemandedOp1) { 1377 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1378 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1379 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1380 return TLO.CombineTo(Op, NewOp); 1381 } 1382 } 1383 1384 // If all of the demanded bits are known one on one side, return the other. 1385 // These bits cannot contribute to the result of the 'and'. 1386 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1387 return TLO.CombineTo(Op, Op0); 1388 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1389 return TLO.CombineTo(Op, Op1); 1390 // If all of the demanded bits in the inputs are known zeros, return zero. 1391 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1392 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1393 // If the RHS is a constant, see if we can simplify it. 1394 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1395 TLO)) 1396 return true; 1397 // If the operation can be done in a smaller type, do so. 1398 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1399 return true; 1400 1401 Known &= Known2; 1402 break; 1403 } 1404 case ISD::OR: { 1405 SDValue Op0 = Op.getOperand(0); 1406 SDValue Op1 = Op.getOperand(1); 1407 1408 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1409 Depth + 1)) 1410 return true; 1411 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1412 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1413 Known2, TLO, Depth + 1)) 1414 return true; 1415 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1416 1417 // Attempt to avoid multi-use ops if we don't need anything from them. 1418 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1419 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1420 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1421 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1422 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1423 if (DemandedOp0 || DemandedOp1) { 1424 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1425 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1426 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1427 return TLO.CombineTo(Op, NewOp); 1428 } 1429 } 1430 1431 // If all of the demanded bits are known zero on one side, return the other. 1432 // These bits cannot contribute to the result of the 'or'. 1433 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1434 return TLO.CombineTo(Op, Op0); 1435 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1436 return TLO.CombineTo(Op, Op1); 1437 // If the RHS is a constant, see if we can simplify it. 1438 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1439 return true; 1440 // If the operation can be done in a smaller type, do so. 1441 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1442 return true; 1443 1444 Known |= Known2; 1445 break; 1446 } 1447 case ISD::XOR: { 1448 SDValue Op0 = Op.getOperand(0); 1449 SDValue Op1 = Op.getOperand(1); 1450 1451 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1452 Depth + 1)) 1453 return true; 1454 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1455 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1456 Depth + 1)) 1457 return true; 1458 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1459 1460 // Attempt to avoid multi-use ops if we don't need anything from them. 1461 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1462 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1463 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1464 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1465 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1466 if (DemandedOp0 || DemandedOp1) { 1467 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1468 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1469 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1470 return TLO.CombineTo(Op, NewOp); 1471 } 1472 } 1473 1474 // If all of the demanded bits are known zero on one side, return the other. 1475 // These bits cannot contribute to the result of the 'xor'. 1476 if (DemandedBits.isSubsetOf(Known.Zero)) 1477 return TLO.CombineTo(Op, Op0); 1478 if (DemandedBits.isSubsetOf(Known2.Zero)) 1479 return TLO.CombineTo(Op, Op1); 1480 // If the operation can be done in a smaller type, do so. 1481 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1482 return true; 1483 1484 // If all of the unknown bits are known to be zero on one side or the other 1485 // turn this into an *inclusive* or. 1486 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1487 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1488 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1489 1490 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1491 if (C) { 1492 // If one side is a constant, and all of the set bits in the constant are 1493 // also known set on the other side, turn this into an AND, as we know 1494 // the bits will be cleared. 1495 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1496 // NB: it is okay if more bits are known than are requested 1497 if (C->getAPIntValue() == Known2.One) { 1498 SDValue ANDC = 1499 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1500 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1501 } 1502 1503 // If the RHS is a constant, see if we can change it. Don't alter a -1 1504 // constant because that's a 'not' op, and that is better for combining 1505 // and codegen. 1506 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1507 // We're flipping all demanded bits. Flip the undemanded bits too. 1508 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1509 return TLO.CombineTo(Op, New); 1510 } 1511 } 1512 1513 // If we can't turn this into a 'not', try to shrink the constant. 1514 if (!C || !C->isAllOnes()) 1515 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1516 return true; 1517 1518 Known ^= Known2; 1519 break; 1520 } 1521 case ISD::SELECT: 1522 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1523 Depth + 1)) 1524 return true; 1525 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1526 Depth + 1)) 1527 return true; 1528 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1529 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1530 1531 // If the operands are constants, see if we can simplify them. 1532 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1533 return true; 1534 1535 // Only known if known in both the LHS and RHS. 1536 Known = KnownBits::commonBits(Known, Known2); 1537 break; 1538 case ISD::SELECT_CC: 1539 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1540 Depth + 1)) 1541 return true; 1542 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1543 Depth + 1)) 1544 return true; 1545 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1546 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1547 1548 // If the operands are constants, see if we can simplify them. 1549 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1550 return true; 1551 1552 // Only known if known in both the LHS and RHS. 1553 Known = KnownBits::commonBits(Known, Known2); 1554 break; 1555 case ISD::SETCC: { 1556 SDValue Op0 = Op.getOperand(0); 1557 SDValue Op1 = Op.getOperand(1); 1558 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1559 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1560 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1561 // -1, we may be able to bypass the setcc. 1562 if (DemandedBits.isSignMask() && 1563 Op0.getScalarValueSizeInBits() == BitWidth && 1564 getBooleanContents(Op0.getValueType()) == 1565 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1566 // If we're testing X < 0, then this compare isn't needed - just use X! 1567 // FIXME: We're limiting to integer types here, but this should also work 1568 // if we don't care about FP signed-zero. The use of SETLT with FP means 1569 // that we don't care about NaNs. 1570 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1571 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1572 return TLO.CombineTo(Op, Op0); 1573 1574 // TODO: Should we check for other forms of sign-bit comparisons? 1575 // Examples: X <= -1, X >= 0 1576 } 1577 if (getBooleanContents(Op0.getValueType()) == 1578 TargetLowering::ZeroOrOneBooleanContent && 1579 BitWidth > 1) 1580 Known.Zero.setBitsFrom(1); 1581 break; 1582 } 1583 case ISD::SHL: { 1584 SDValue Op0 = Op.getOperand(0); 1585 SDValue Op1 = Op.getOperand(1); 1586 EVT ShiftVT = Op1.getValueType(); 1587 1588 if (const APInt *SA = 1589 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1590 unsigned ShAmt = SA->getZExtValue(); 1591 if (ShAmt == 0) 1592 return TLO.CombineTo(Op, Op0); 1593 1594 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1595 // single shift. We can do this if the bottom bits (which are shifted 1596 // out) are never demanded. 1597 // TODO - support non-uniform vector amounts. 1598 if (Op0.getOpcode() == ISD::SRL) { 1599 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1600 if (const APInt *SA2 = 1601 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1602 unsigned C1 = SA2->getZExtValue(); 1603 unsigned Opc = ISD::SHL; 1604 int Diff = ShAmt - C1; 1605 if (Diff < 0) { 1606 Diff = -Diff; 1607 Opc = ISD::SRL; 1608 } 1609 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1610 return TLO.CombineTo( 1611 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1612 } 1613 } 1614 } 1615 1616 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1617 // are not demanded. This will likely allow the anyext to be folded away. 1618 // TODO - support non-uniform vector amounts. 1619 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1620 SDValue InnerOp = Op0.getOperand(0); 1621 EVT InnerVT = InnerOp.getValueType(); 1622 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1623 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1624 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1625 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1626 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1627 ShTy = InnerVT; 1628 SDValue NarrowShl = 1629 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1630 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1631 return TLO.CombineTo( 1632 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1633 } 1634 1635 // Repeat the SHL optimization above in cases where an extension 1636 // intervenes: (shl (anyext (shr x, c1)), c2) to 1637 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1638 // aren't demanded (as above) and that the shifted upper c1 bits of 1639 // x aren't demanded. 1640 // TODO - support non-uniform vector amounts. 1641 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1642 InnerOp.hasOneUse()) { 1643 if (const APInt *SA2 = 1644 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1645 unsigned InnerShAmt = SA2->getZExtValue(); 1646 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1647 DemandedBits.getActiveBits() <= 1648 (InnerBits - InnerShAmt + ShAmt) && 1649 DemandedBits.countTrailingZeros() >= ShAmt) { 1650 SDValue NewSA = 1651 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1652 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1653 InnerOp.getOperand(0)); 1654 return TLO.CombineTo( 1655 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1656 } 1657 } 1658 } 1659 } 1660 1661 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1662 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1663 Depth + 1)) 1664 return true; 1665 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1666 Known.Zero <<= ShAmt; 1667 Known.One <<= ShAmt; 1668 // low bits known zero. 1669 Known.Zero.setLowBits(ShAmt); 1670 1671 // Try shrinking the operation as long as the shift amount will still be 1672 // in range. 1673 if ((ShAmt < DemandedBits.getActiveBits()) && 1674 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1675 return true; 1676 } 1677 1678 // If we are only demanding sign bits then we can use the shift source 1679 // directly. 1680 if (const APInt *MaxSA = 1681 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1682 unsigned ShAmt = MaxSA->getZExtValue(); 1683 unsigned NumSignBits = 1684 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1685 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1686 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1687 return TLO.CombineTo(Op, Op0); 1688 } 1689 break; 1690 } 1691 case ISD::SRL: { 1692 SDValue Op0 = Op.getOperand(0); 1693 SDValue Op1 = Op.getOperand(1); 1694 EVT ShiftVT = Op1.getValueType(); 1695 1696 // Try to match AVG patterns. 1697 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1698 DemandedElts, Depth + 1)) 1699 return TLO.CombineTo(Op, AVG); 1700 1701 if (const APInt *SA = 1702 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1703 unsigned ShAmt = SA->getZExtValue(); 1704 if (ShAmt == 0) 1705 return TLO.CombineTo(Op, Op0); 1706 1707 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1708 // single shift. We can do this if the top bits (which are shifted out) 1709 // are never demanded. 1710 // TODO - support non-uniform vector amounts. 1711 if (Op0.getOpcode() == ISD::SHL) { 1712 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1713 if (const APInt *SA2 = 1714 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1715 unsigned C1 = SA2->getZExtValue(); 1716 unsigned Opc = ISD::SRL; 1717 int Diff = ShAmt - C1; 1718 if (Diff < 0) { 1719 Diff = -Diff; 1720 Opc = ISD::SHL; 1721 } 1722 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1723 return TLO.CombineTo( 1724 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1725 } 1726 } 1727 } 1728 1729 APInt InDemandedMask = (DemandedBits << ShAmt); 1730 1731 // If the shift is exact, then it does demand the low bits (and knows that 1732 // they are zero). 1733 if (Op->getFlags().hasExact()) 1734 InDemandedMask.setLowBits(ShAmt); 1735 1736 // Compute the new bits that are at the top now. 1737 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1738 Depth + 1)) 1739 return true; 1740 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1741 Known.Zero.lshrInPlace(ShAmt); 1742 Known.One.lshrInPlace(ShAmt); 1743 // High bits known zero. 1744 Known.Zero.setHighBits(ShAmt); 1745 } 1746 break; 1747 } 1748 case ISD::SRA: { 1749 SDValue Op0 = Op.getOperand(0); 1750 SDValue Op1 = Op.getOperand(1); 1751 EVT ShiftVT = Op1.getValueType(); 1752 1753 // If we only want bits that already match the signbit then we don't need 1754 // to shift. 1755 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1756 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1757 NumHiDemandedBits) 1758 return TLO.CombineTo(Op, Op0); 1759 1760 // If this is an arithmetic shift right and only the low-bit is set, we can 1761 // always convert this into a logical shr, even if the shift amount is 1762 // variable. The low bit of the shift cannot be an input sign bit unless 1763 // the shift amount is >= the size of the datatype, which is undefined. 1764 if (DemandedBits.isOne()) 1765 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1766 1767 // Try to match AVG patterns. 1768 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1769 DemandedElts, Depth + 1)) 1770 return TLO.CombineTo(Op, AVG); 1771 1772 if (const APInt *SA = 1773 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1774 unsigned ShAmt = SA->getZExtValue(); 1775 if (ShAmt == 0) 1776 return TLO.CombineTo(Op, Op0); 1777 1778 APInt InDemandedMask = (DemandedBits << ShAmt); 1779 1780 // If the shift is exact, then it does demand the low bits (and knows that 1781 // they are zero). 1782 if (Op->getFlags().hasExact()) 1783 InDemandedMask.setLowBits(ShAmt); 1784 1785 // If any of the demanded bits are produced by the sign extension, we also 1786 // demand the input sign bit. 1787 if (DemandedBits.countLeadingZeros() < ShAmt) 1788 InDemandedMask.setSignBit(); 1789 1790 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1791 Depth + 1)) 1792 return true; 1793 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1794 Known.Zero.lshrInPlace(ShAmt); 1795 Known.One.lshrInPlace(ShAmt); 1796 1797 // If the input sign bit is known to be zero, or if none of the top bits 1798 // are demanded, turn this into an unsigned shift right. 1799 if (Known.Zero[BitWidth - ShAmt - 1] || 1800 DemandedBits.countLeadingZeros() >= ShAmt) { 1801 SDNodeFlags Flags; 1802 Flags.setExact(Op->getFlags().hasExact()); 1803 return TLO.CombineTo( 1804 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1805 } 1806 1807 int Log2 = DemandedBits.exactLogBase2(); 1808 if (Log2 >= 0) { 1809 // The bit must come from the sign. 1810 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1811 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1812 } 1813 1814 if (Known.One[BitWidth - ShAmt - 1]) 1815 // New bits are known one. 1816 Known.One.setHighBits(ShAmt); 1817 1818 // Attempt to avoid multi-use ops if we don't need anything from them. 1819 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1820 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1821 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1822 if (DemandedOp0) { 1823 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1824 return TLO.CombineTo(Op, NewOp); 1825 } 1826 } 1827 } 1828 break; 1829 } 1830 case ISD::FSHL: 1831 case ISD::FSHR: { 1832 SDValue Op0 = Op.getOperand(0); 1833 SDValue Op1 = Op.getOperand(1); 1834 SDValue Op2 = Op.getOperand(2); 1835 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1836 1837 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1838 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1839 1840 // For fshl, 0-shift returns the 1st arg. 1841 // For fshr, 0-shift returns the 2nd arg. 1842 if (Amt == 0) { 1843 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1844 Known, TLO, Depth + 1)) 1845 return true; 1846 break; 1847 } 1848 1849 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1850 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1851 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1852 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1853 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1854 Depth + 1)) 1855 return true; 1856 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1857 Depth + 1)) 1858 return true; 1859 1860 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1861 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1862 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1863 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1864 Known.One |= Known2.One; 1865 Known.Zero |= Known2.Zero; 1866 } 1867 1868 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1869 if (isPowerOf2_32(BitWidth)) { 1870 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1871 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1872 Known2, TLO, Depth + 1)) 1873 return true; 1874 } 1875 break; 1876 } 1877 case ISD::ROTL: 1878 case ISD::ROTR: { 1879 SDValue Op0 = Op.getOperand(0); 1880 SDValue Op1 = Op.getOperand(1); 1881 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1882 1883 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1884 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1885 return TLO.CombineTo(Op, Op0); 1886 1887 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1888 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1889 unsigned RevAmt = BitWidth - Amt; 1890 1891 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1892 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1893 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1894 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1895 Depth + 1)) 1896 return true; 1897 1898 // rot*(x, 0) --> x 1899 if (Amt == 0) 1900 return TLO.CombineTo(Op, Op0); 1901 1902 // See if we don't demand either half of the rotated bits. 1903 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1904 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1905 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1906 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1907 } 1908 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1909 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1910 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1911 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1912 } 1913 } 1914 1915 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1916 if (isPowerOf2_32(BitWidth)) { 1917 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1918 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1919 Depth + 1)) 1920 return true; 1921 } 1922 break; 1923 } 1924 case ISD::UMIN: { 1925 // Check if one arg is always less than (or equal) to the other arg. 1926 SDValue Op0 = Op.getOperand(0); 1927 SDValue Op1 = Op.getOperand(1); 1928 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1929 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1930 Known = KnownBits::umin(Known0, Known1); 1931 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1932 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1933 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1934 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1935 break; 1936 } 1937 case ISD::UMAX: { 1938 // Check if one arg is always greater than (or equal) to the other arg. 1939 SDValue Op0 = Op.getOperand(0); 1940 SDValue Op1 = Op.getOperand(1); 1941 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1942 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1943 Known = KnownBits::umax(Known0, Known1); 1944 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1945 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1946 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1947 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1948 break; 1949 } 1950 case ISD::BITREVERSE: { 1951 SDValue Src = Op.getOperand(0); 1952 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1953 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1954 Depth + 1)) 1955 return true; 1956 Known.One = Known2.One.reverseBits(); 1957 Known.Zero = Known2.Zero.reverseBits(); 1958 break; 1959 } 1960 case ISD::BSWAP: { 1961 SDValue Src = Op.getOperand(0); 1962 1963 // If the only bits demanded come from one byte of the bswap result, 1964 // just shift the input byte into position to eliminate the bswap. 1965 unsigned NLZ = DemandedBits.countLeadingZeros(); 1966 unsigned NTZ = DemandedBits.countTrailingZeros(); 1967 1968 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1969 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1970 // have 14 leading zeros, round to 8. 1971 NLZ = alignDown(NLZ, 8); 1972 NTZ = alignDown(NTZ, 8); 1973 // If we need exactly one byte, we can do this transformation. 1974 if (BitWidth - NLZ - NTZ == 8) { 1975 // Replace this with either a left or right shift to get the byte into 1976 // the right place. 1977 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1978 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1979 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1980 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1981 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1982 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1983 return TLO.CombineTo(Op, NewOp); 1984 } 1985 } 1986 1987 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1988 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1989 Depth + 1)) 1990 return true; 1991 Known.One = Known2.One.byteSwap(); 1992 Known.Zero = Known2.Zero.byteSwap(); 1993 break; 1994 } 1995 case ISD::CTPOP: { 1996 // If only 1 bit is demanded, replace with PARITY as long as we're before 1997 // op legalization. 1998 // FIXME: Limit to scalars for now. 1999 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2000 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2001 Op.getOperand(0))); 2002 2003 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2004 break; 2005 } 2006 case ISD::SIGN_EXTEND_INREG: { 2007 SDValue Op0 = Op.getOperand(0); 2008 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2009 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2010 2011 // If we only care about the highest bit, don't bother shifting right. 2012 if (DemandedBits.isSignMask()) { 2013 unsigned MinSignedBits = 2014 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2015 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2016 // However if the input is already sign extended we expect the sign 2017 // extension to be dropped altogether later and do not simplify. 2018 if (!AlreadySignExtended) { 2019 // Compute the correct shift amount type, which must be getShiftAmountTy 2020 // for scalar types after legalization. 2021 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2022 getShiftAmountTy(VT, DL)); 2023 return TLO.CombineTo(Op, 2024 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2025 } 2026 } 2027 2028 // If none of the extended bits are demanded, eliminate the sextinreg. 2029 if (DemandedBits.getActiveBits() <= ExVTBits) 2030 return TLO.CombineTo(Op, Op0); 2031 2032 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2033 2034 // Since the sign extended bits are demanded, we know that the sign 2035 // bit is demanded. 2036 InputDemandedBits.setBit(ExVTBits - 1); 2037 2038 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 2039 return true; 2040 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2041 2042 // If the sign bit of the input is known set or clear, then we know the 2043 // top bits of the result. 2044 2045 // If the input sign bit is known zero, convert this into a zero extension. 2046 if (Known.Zero[ExVTBits - 1]) 2047 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2048 2049 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2050 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2051 Known.One.setBitsFrom(ExVTBits); 2052 Known.Zero &= Mask; 2053 } else { // Input sign bit unknown 2054 Known.Zero &= Mask; 2055 Known.One &= Mask; 2056 } 2057 break; 2058 } 2059 case ISD::BUILD_PAIR: { 2060 EVT HalfVT = Op.getOperand(0).getValueType(); 2061 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2062 2063 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2064 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2065 2066 KnownBits KnownLo, KnownHi; 2067 2068 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2069 return true; 2070 2071 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2072 return true; 2073 2074 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2075 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2076 2077 Known.One = KnownLo.One.zext(BitWidth) | 2078 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2079 break; 2080 } 2081 case ISD::ZERO_EXTEND: 2082 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2083 SDValue Src = Op.getOperand(0); 2084 EVT SrcVT = Src.getValueType(); 2085 unsigned InBits = SrcVT.getScalarSizeInBits(); 2086 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2087 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2088 2089 // If none of the top bits are demanded, convert this into an any_extend. 2090 if (DemandedBits.getActiveBits() <= InBits) { 2091 // If we only need the non-extended bits of the bottom element 2092 // then we can just bitcast to the result. 2093 if (IsLE && IsVecInReg && DemandedElts == 1 && 2094 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2095 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2096 2097 unsigned Opc = 2098 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2099 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2100 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2101 } 2102 2103 APInt InDemandedBits = DemandedBits.trunc(InBits); 2104 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2105 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2106 Depth + 1)) 2107 return true; 2108 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2109 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2110 Known = Known.zext(BitWidth); 2111 2112 // Attempt to avoid multi-use ops if we don't need anything from them. 2113 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2114 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2115 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2116 break; 2117 } 2118 case ISD::SIGN_EXTEND: 2119 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2120 SDValue Src = Op.getOperand(0); 2121 EVT SrcVT = Src.getValueType(); 2122 unsigned InBits = SrcVT.getScalarSizeInBits(); 2123 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2124 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2125 2126 // If none of the top bits are demanded, convert this into an any_extend. 2127 if (DemandedBits.getActiveBits() <= InBits) { 2128 // If we only need the non-extended bits of the bottom element 2129 // then we can just bitcast to the result. 2130 if (IsLE && IsVecInReg && DemandedElts == 1 && 2131 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2132 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2133 2134 unsigned Opc = 2135 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2136 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2137 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2138 } 2139 2140 APInt InDemandedBits = DemandedBits.trunc(InBits); 2141 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2142 2143 // Since some of the sign extended bits are demanded, we know that the sign 2144 // bit is demanded. 2145 InDemandedBits.setBit(InBits - 1); 2146 2147 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2148 Depth + 1)) 2149 return true; 2150 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2151 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2152 2153 // If the sign bit is known one, the top bits match. 2154 Known = Known.sext(BitWidth); 2155 2156 // If the sign bit is known zero, convert this to a zero extend. 2157 if (Known.isNonNegative()) { 2158 unsigned Opc = 2159 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2160 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2161 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2162 } 2163 2164 // Attempt to avoid multi-use ops if we don't need anything from them. 2165 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2166 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2167 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2168 break; 2169 } 2170 case ISD::ANY_EXTEND: 2171 case ISD::ANY_EXTEND_VECTOR_INREG: { 2172 SDValue Src = Op.getOperand(0); 2173 EVT SrcVT = Src.getValueType(); 2174 unsigned InBits = SrcVT.getScalarSizeInBits(); 2175 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2176 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2177 2178 // If we only need the bottom element then we can just bitcast. 2179 // TODO: Handle ANY_EXTEND? 2180 if (IsLE && IsVecInReg && DemandedElts == 1 && 2181 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2182 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2183 2184 APInt InDemandedBits = DemandedBits.trunc(InBits); 2185 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2186 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2187 Depth + 1)) 2188 return true; 2189 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2190 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2191 Known = Known.anyext(BitWidth); 2192 2193 // Attempt to avoid multi-use ops if we don't need anything from them. 2194 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2195 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2196 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2197 break; 2198 } 2199 case ISD::TRUNCATE: { 2200 SDValue Src = Op.getOperand(0); 2201 2202 // Simplify the input, using demanded bit information, and compute the known 2203 // zero/one bits live out. 2204 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2205 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2206 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2207 Depth + 1)) 2208 return true; 2209 Known = Known.trunc(BitWidth); 2210 2211 // Attempt to avoid multi-use ops if we don't need anything from them. 2212 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2213 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2214 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2215 2216 // If the input is only used by this truncate, see if we can shrink it based 2217 // on the known demanded bits. 2218 if (Src.getNode()->hasOneUse()) { 2219 switch (Src.getOpcode()) { 2220 default: 2221 break; 2222 case ISD::SRL: 2223 // Shrink SRL by a constant if none of the high bits shifted in are 2224 // demanded. 2225 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2226 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2227 // undesirable. 2228 break; 2229 2230 const APInt *ShAmtC = 2231 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2232 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2233 break; 2234 uint64_t ShVal = ShAmtC->getZExtValue(); 2235 2236 APInt HighBits = 2237 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2238 HighBits.lshrInPlace(ShVal); 2239 HighBits = HighBits.trunc(BitWidth); 2240 2241 if (!(HighBits & DemandedBits)) { 2242 // None of the shifted in bits are needed. Add a truncate of the 2243 // shift input, then shift it. 2244 SDValue NewShAmt = TLO.DAG.getConstant( 2245 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2246 SDValue NewTrunc = 2247 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2248 return TLO.CombineTo( 2249 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2250 } 2251 break; 2252 } 2253 } 2254 2255 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2256 break; 2257 } 2258 case ISD::AssertZext: { 2259 // AssertZext demands all of the high bits, plus any of the low bits 2260 // demanded by its users. 2261 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2262 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2263 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2264 TLO, Depth + 1)) 2265 return true; 2266 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2267 2268 Known.Zero |= ~InMask; 2269 break; 2270 } 2271 case ISD::EXTRACT_VECTOR_ELT: { 2272 SDValue Src = Op.getOperand(0); 2273 SDValue Idx = Op.getOperand(1); 2274 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2275 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2276 2277 if (SrcEltCnt.isScalable()) 2278 return false; 2279 2280 // Demand the bits from every vector element without a constant index. 2281 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2282 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2283 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2284 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2285 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2286 2287 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2288 // anything about the extended bits. 2289 APInt DemandedSrcBits = DemandedBits; 2290 if (BitWidth > EltBitWidth) 2291 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2292 2293 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2294 Depth + 1)) 2295 return true; 2296 2297 // Attempt to avoid multi-use ops if we don't need anything from them. 2298 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2299 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2300 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2301 SDValue NewOp = 2302 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2303 return TLO.CombineTo(Op, NewOp); 2304 } 2305 } 2306 2307 Known = Known2; 2308 if (BitWidth > EltBitWidth) 2309 Known = Known.anyext(BitWidth); 2310 break; 2311 } 2312 case ISD::BITCAST: { 2313 SDValue Src = Op.getOperand(0); 2314 EVT SrcVT = Src.getValueType(); 2315 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2316 2317 // If this is an FP->Int bitcast and if the sign bit is the only 2318 // thing demanded, turn this into a FGETSIGN. 2319 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2320 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2321 SrcVT.isFloatingPoint()) { 2322 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2323 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2324 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2325 SrcVT != MVT::f128) { 2326 // Cannot eliminate/lower SHL for f128 yet. 2327 EVT Ty = OpVTLegal ? VT : MVT::i32; 2328 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2329 // place. We expect the SHL to be eliminated by other optimizations. 2330 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2331 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2332 if (!OpVTLegal && OpVTSizeInBits > 32) 2333 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2334 unsigned ShVal = Op.getValueSizeInBits() - 1; 2335 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2336 return TLO.CombineTo(Op, 2337 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2338 } 2339 } 2340 2341 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2342 // Demand the elt/bit if any of the original elts/bits are demanded. 2343 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2344 unsigned Scale = BitWidth / NumSrcEltBits; 2345 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2346 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2347 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2348 for (unsigned i = 0; i != Scale; ++i) { 2349 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2350 unsigned BitOffset = EltOffset * NumSrcEltBits; 2351 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2352 if (!Sub.isZero()) { 2353 DemandedSrcBits |= Sub; 2354 for (unsigned j = 0; j != NumElts; ++j) 2355 if (DemandedElts[j]) 2356 DemandedSrcElts.setBit((j * Scale) + i); 2357 } 2358 } 2359 2360 APInt KnownSrcUndef, KnownSrcZero; 2361 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2362 KnownSrcZero, TLO, Depth + 1)) 2363 return true; 2364 2365 KnownBits KnownSrcBits; 2366 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2367 KnownSrcBits, TLO, Depth + 1)) 2368 return true; 2369 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2370 // TODO - bigendian once we have test coverage. 2371 unsigned Scale = NumSrcEltBits / BitWidth; 2372 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2373 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2374 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2375 for (unsigned i = 0; i != NumElts; ++i) 2376 if (DemandedElts[i]) { 2377 unsigned Offset = (i % Scale) * BitWidth; 2378 DemandedSrcBits.insertBits(DemandedBits, Offset); 2379 DemandedSrcElts.setBit(i / Scale); 2380 } 2381 2382 if (SrcVT.isVector()) { 2383 APInt KnownSrcUndef, KnownSrcZero; 2384 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2385 KnownSrcZero, TLO, Depth + 1)) 2386 return true; 2387 } 2388 2389 KnownBits KnownSrcBits; 2390 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2391 KnownSrcBits, TLO, Depth + 1)) 2392 return true; 2393 } 2394 2395 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2396 // recursive call where Known may be useful to the caller. 2397 if (Depth > 0) { 2398 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2399 return false; 2400 } 2401 break; 2402 } 2403 case ISD::MUL: 2404 if (DemandedBits.isPowerOf2()) { 2405 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2406 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2407 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2408 unsigned CTZ = DemandedBits.countTrailingZeros(); 2409 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2410 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2411 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2412 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2413 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2414 return TLO.CombineTo(Op, Shl); 2415 } 2416 } 2417 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2418 // X * X is odd iff X is odd. 2419 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2420 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2421 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2422 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2423 return TLO.CombineTo(Op, And1); 2424 } 2425 LLVM_FALLTHROUGH; 2426 case ISD::ADD: 2427 case ISD::SUB: { 2428 // Add, Sub, and Mul don't demand any bits in positions beyond that 2429 // of the highest bit demanded of them. 2430 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2431 SDNodeFlags Flags = Op.getNode()->getFlags(); 2432 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2433 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2434 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2435 Depth + 1) || 2436 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2437 Depth + 1) || 2438 // See if the operation should be performed at a smaller bit width. 2439 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2440 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2441 // Disable the nsw and nuw flags. We can no longer guarantee that we 2442 // won't wrap after simplification. 2443 Flags.setNoSignedWrap(false); 2444 Flags.setNoUnsignedWrap(false); 2445 SDValue NewOp = 2446 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2447 return TLO.CombineTo(Op, NewOp); 2448 } 2449 return true; 2450 } 2451 2452 // Attempt to avoid multi-use ops if we don't need anything from them. 2453 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2454 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2455 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2456 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2457 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2458 if (DemandedOp0 || DemandedOp1) { 2459 Flags.setNoSignedWrap(false); 2460 Flags.setNoUnsignedWrap(false); 2461 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2462 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2463 SDValue NewOp = 2464 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2465 return TLO.CombineTo(Op, NewOp); 2466 } 2467 } 2468 2469 // If we have a constant operand, we may be able to turn it into -1 if we 2470 // do not demand the high bits. This can make the constant smaller to 2471 // encode, allow more general folding, or match specialized instruction 2472 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2473 // is probably not useful (and could be detrimental). 2474 ConstantSDNode *C = isConstOrConstSplat(Op1); 2475 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2476 if (C && !C->isAllOnes() && !C->isOne() && 2477 (C->getAPIntValue() | HighMask).isAllOnes()) { 2478 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2479 // Disable the nsw and nuw flags. We can no longer guarantee that we 2480 // won't wrap after simplification. 2481 Flags.setNoSignedWrap(false); 2482 Flags.setNoUnsignedWrap(false); 2483 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2484 return TLO.CombineTo(Op, NewOp); 2485 } 2486 2487 // Match a multiply with a disguised negated-power-of-2 and convert to a 2488 // an equivalent shift-left amount. 2489 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2490 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2491 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2492 return 0; 2493 2494 // Don't touch opaque constants. Also, ignore zero and power-of-2 2495 // multiplies. Those will get folded later. 2496 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2497 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2498 !MulC->getAPIntValue().isPowerOf2()) { 2499 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2500 if (UnmaskedC.isNegatedPowerOf2()) 2501 return (-UnmaskedC).logBase2(); 2502 } 2503 return 0; 2504 }; 2505 2506 auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) { 2507 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2508 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2509 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2510 SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl); 2511 return TLO.CombineTo(Op, Sub); 2512 }; 2513 2514 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2515 if (Op.getOpcode() == ISD::ADD) { 2516 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2517 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2518 return foldMul(Op0.getOperand(0), Op1, ShAmt); 2519 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2520 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2521 return foldMul(Op1.getOperand(0), Op0, ShAmt); 2522 // TODO: 2523 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2524 } 2525 } 2526 2527 LLVM_FALLTHROUGH; 2528 } 2529 default: 2530 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2531 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2532 Known, TLO, Depth)) 2533 return true; 2534 break; 2535 } 2536 2537 // Just use computeKnownBits to compute output bits. 2538 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2539 break; 2540 } 2541 2542 // If we know the value of all of the demanded bits, return this as a 2543 // constant. 2544 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2545 // Avoid folding to a constant if any OpaqueConstant is involved. 2546 const SDNode *N = Op.getNode(); 2547 for (SDNode *Op : 2548 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2550 if (C->isOpaque()) 2551 return false; 2552 } 2553 if (VT.isInteger()) 2554 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2555 if (VT.isFloatingPoint()) 2556 return TLO.CombineTo( 2557 Op, 2558 TLO.DAG.getConstantFP( 2559 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2560 } 2561 2562 return false; 2563 } 2564 2565 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2566 const APInt &DemandedElts, 2567 DAGCombinerInfo &DCI) const { 2568 SelectionDAG &DAG = DCI.DAG; 2569 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2570 !DCI.isBeforeLegalizeOps()); 2571 2572 APInt KnownUndef, KnownZero; 2573 bool Simplified = 2574 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2575 if (Simplified) { 2576 DCI.AddToWorklist(Op.getNode()); 2577 DCI.CommitTargetLoweringOpt(TLO); 2578 } 2579 2580 return Simplified; 2581 } 2582 2583 /// Given a vector binary operation and known undefined elements for each input 2584 /// operand, compute whether each element of the output is undefined. 2585 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2586 const APInt &UndefOp0, 2587 const APInt &UndefOp1) { 2588 EVT VT = BO.getValueType(); 2589 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2590 "Vector binop only"); 2591 2592 EVT EltVT = VT.getVectorElementType(); 2593 unsigned NumElts = VT.getVectorNumElements(); 2594 assert(UndefOp0.getBitWidth() == NumElts && 2595 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2596 2597 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2598 const APInt &UndefVals) { 2599 if (UndefVals[Index]) 2600 return DAG.getUNDEF(EltVT); 2601 2602 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2603 // Try hard to make sure that the getNode() call is not creating temporary 2604 // nodes. Ignore opaque integers because they do not constant fold. 2605 SDValue Elt = BV->getOperand(Index); 2606 auto *C = dyn_cast<ConstantSDNode>(Elt); 2607 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2608 return Elt; 2609 } 2610 2611 return SDValue(); 2612 }; 2613 2614 APInt KnownUndef = APInt::getZero(NumElts); 2615 for (unsigned i = 0; i != NumElts; ++i) { 2616 // If both inputs for this element are either constant or undef and match 2617 // the element type, compute the constant/undef result for this element of 2618 // the vector. 2619 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2620 // not handle FP constants. The code within getNode() should be refactored 2621 // to avoid the danger of creating a bogus temporary node here. 2622 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2623 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2624 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2625 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2626 KnownUndef.setBit(i); 2627 } 2628 return KnownUndef; 2629 } 2630 2631 bool TargetLowering::SimplifyDemandedVectorElts( 2632 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2633 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2634 bool AssumeSingleUse) const { 2635 EVT VT = Op.getValueType(); 2636 unsigned Opcode = Op.getOpcode(); 2637 APInt DemandedElts = OriginalDemandedElts; 2638 unsigned NumElts = DemandedElts.getBitWidth(); 2639 assert(VT.isVector() && "Expected vector op"); 2640 2641 KnownUndef = KnownZero = APInt::getZero(NumElts); 2642 2643 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2644 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2645 return false; 2646 2647 // TODO: For now we assume we know nothing about scalable vectors. 2648 if (VT.isScalableVector()) 2649 return false; 2650 2651 assert(VT.getVectorNumElements() == NumElts && 2652 "Mask size mismatches value type element count!"); 2653 2654 // Undef operand. 2655 if (Op.isUndef()) { 2656 KnownUndef.setAllBits(); 2657 return false; 2658 } 2659 2660 // If Op has other users, assume that all elements are needed. 2661 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2662 DemandedElts.setAllBits(); 2663 2664 // Not demanding any elements from Op. 2665 if (DemandedElts == 0) { 2666 KnownUndef.setAllBits(); 2667 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2668 } 2669 2670 // Limit search depth. 2671 if (Depth >= SelectionDAG::MaxRecursionDepth) 2672 return false; 2673 2674 SDLoc DL(Op); 2675 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2676 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2677 2678 // Helper for demanding the specified elements and all the bits of both binary 2679 // operands. 2680 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2681 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2682 TLO.DAG, Depth + 1); 2683 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2684 TLO.DAG, Depth + 1); 2685 if (NewOp0 || NewOp1) { 2686 SDValue NewOp = TLO.DAG.getNode( 2687 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2688 return TLO.CombineTo(Op, NewOp); 2689 } 2690 return false; 2691 }; 2692 2693 switch (Opcode) { 2694 case ISD::SCALAR_TO_VECTOR: { 2695 if (!DemandedElts[0]) { 2696 KnownUndef.setAllBits(); 2697 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2698 } 2699 SDValue ScalarSrc = Op.getOperand(0); 2700 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2701 SDValue Src = ScalarSrc.getOperand(0); 2702 SDValue Idx = ScalarSrc.getOperand(1); 2703 EVT SrcVT = Src.getValueType(); 2704 2705 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2706 2707 if (SrcEltCnt.isScalable()) 2708 return false; 2709 2710 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2711 if (isNullConstant(Idx)) { 2712 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2713 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2714 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2715 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2716 TLO, Depth + 1)) 2717 return true; 2718 } 2719 } 2720 KnownUndef.setHighBits(NumElts - 1); 2721 break; 2722 } 2723 case ISD::BITCAST: { 2724 SDValue Src = Op.getOperand(0); 2725 EVT SrcVT = Src.getValueType(); 2726 2727 // We only handle vectors here. 2728 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2729 if (!SrcVT.isVector()) 2730 break; 2731 2732 // Fast handling of 'identity' bitcasts. 2733 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2734 if (NumSrcElts == NumElts) 2735 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2736 KnownZero, TLO, Depth + 1); 2737 2738 APInt SrcDemandedElts, SrcZero, SrcUndef; 2739 2740 // Bitcast from 'large element' src vector to 'small element' vector, we 2741 // must demand a source element if any DemandedElt maps to it. 2742 if ((NumElts % NumSrcElts) == 0) { 2743 unsigned Scale = NumElts / NumSrcElts; 2744 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2745 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2746 TLO, Depth + 1)) 2747 return true; 2748 2749 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2750 // of the large element. 2751 // TODO - bigendian once we have test coverage. 2752 if (IsLE) { 2753 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2754 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2755 for (unsigned i = 0; i != NumElts; ++i) 2756 if (DemandedElts[i]) { 2757 unsigned Ofs = (i % Scale) * EltSizeInBits; 2758 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2759 } 2760 2761 KnownBits Known; 2762 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2763 TLO, Depth + 1)) 2764 return true; 2765 } 2766 2767 // If the src element is zero/undef then all the output elements will be - 2768 // only demanded elements are guaranteed to be correct. 2769 for (unsigned i = 0; i != NumSrcElts; ++i) { 2770 if (SrcDemandedElts[i]) { 2771 if (SrcZero[i]) 2772 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2773 if (SrcUndef[i]) 2774 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2775 } 2776 } 2777 } 2778 2779 // Bitcast from 'small element' src vector to 'large element' vector, we 2780 // demand all smaller source elements covered by the larger demanded element 2781 // of this vector. 2782 if ((NumSrcElts % NumElts) == 0) { 2783 unsigned Scale = NumSrcElts / NumElts; 2784 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2785 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2786 TLO, Depth + 1)) 2787 return true; 2788 2789 // If all the src elements covering an output element are zero/undef, then 2790 // the output element will be as well, assuming it was demanded. 2791 for (unsigned i = 0; i != NumElts; ++i) { 2792 if (DemandedElts[i]) { 2793 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2794 KnownZero.setBit(i); 2795 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2796 KnownUndef.setBit(i); 2797 } 2798 } 2799 } 2800 break; 2801 } 2802 case ISD::BUILD_VECTOR: { 2803 // Check all elements and simplify any unused elements with UNDEF. 2804 if (!DemandedElts.isAllOnes()) { 2805 // Don't simplify BROADCASTS. 2806 if (llvm::any_of(Op->op_values(), 2807 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2808 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2809 bool Updated = false; 2810 for (unsigned i = 0; i != NumElts; ++i) { 2811 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2812 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2813 KnownUndef.setBit(i); 2814 Updated = true; 2815 } 2816 } 2817 if (Updated) 2818 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2819 } 2820 } 2821 for (unsigned i = 0; i != NumElts; ++i) { 2822 SDValue SrcOp = Op.getOperand(i); 2823 if (SrcOp.isUndef()) { 2824 KnownUndef.setBit(i); 2825 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2826 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2827 KnownZero.setBit(i); 2828 } 2829 } 2830 break; 2831 } 2832 case ISD::CONCAT_VECTORS: { 2833 EVT SubVT = Op.getOperand(0).getValueType(); 2834 unsigned NumSubVecs = Op.getNumOperands(); 2835 unsigned NumSubElts = SubVT.getVectorNumElements(); 2836 for (unsigned i = 0; i != NumSubVecs; ++i) { 2837 SDValue SubOp = Op.getOperand(i); 2838 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2839 APInt SubUndef, SubZero; 2840 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2841 Depth + 1)) 2842 return true; 2843 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2844 KnownZero.insertBits(SubZero, i * NumSubElts); 2845 } 2846 break; 2847 } 2848 case ISD::INSERT_SUBVECTOR: { 2849 // Demand any elements from the subvector and the remainder from the src its 2850 // inserted into. 2851 SDValue Src = Op.getOperand(0); 2852 SDValue Sub = Op.getOperand(1); 2853 uint64_t Idx = Op.getConstantOperandVal(2); 2854 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2855 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2856 APInt DemandedSrcElts = DemandedElts; 2857 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2858 2859 APInt SubUndef, SubZero; 2860 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2861 Depth + 1)) 2862 return true; 2863 2864 // If none of the src operand elements are demanded, replace it with undef. 2865 if (!DemandedSrcElts && !Src.isUndef()) 2866 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2867 TLO.DAG.getUNDEF(VT), Sub, 2868 Op.getOperand(2))); 2869 2870 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2871 TLO, Depth + 1)) 2872 return true; 2873 KnownUndef.insertBits(SubUndef, Idx); 2874 KnownZero.insertBits(SubZero, Idx); 2875 2876 // Attempt to avoid multi-use ops if we don't need anything from them. 2877 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2878 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2879 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2880 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2881 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2882 if (NewSrc || NewSub) { 2883 NewSrc = NewSrc ? NewSrc : Src; 2884 NewSub = NewSub ? NewSub : Sub; 2885 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2886 NewSub, Op.getOperand(2)); 2887 return TLO.CombineTo(Op, NewOp); 2888 } 2889 } 2890 break; 2891 } 2892 case ISD::EXTRACT_SUBVECTOR: { 2893 // Offset the demanded elts by the subvector index. 2894 SDValue Src = Op.getOperand(0); 2895 if (Src.getValueType().isScalableVector()) 2896 break; 2897 uint64_t Idx = Op.getConstantOperandVal(1); 2898 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2899 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2900 2901 APInt SrcUndef, SrcZero; 2902 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2903 Depth + 1)) 2904 return true; 2905 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2906 KnownZero = SrcZero.extractBits(NumElts, Idx); 2907 2908 // Attempt to avoid multi-use ops if we don't need anything from them. 2909 if (!DemandedElts.isAllOnes()) { 2910 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2911 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2912 if (NewSrc) { 2913 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2914 Op.getOperand(1)); 2915 return TLO.CombineTo(Op, NewOp); 2916 } 2917 } 2918 break; 2919 } 2920 case ISD::INSERT_VECTOR_ELT: { 2921 SDValue Vec = Op.getOperand(0); 2922 SDValue Scl = Op.getOperand(1); 2923 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2924 2925 // For a legal, constant insertion index, if we don't need this insertion 2926 // then strip it, else remove it from the demanded elts. 2927 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2928 unsigned Idx = CIdx->getZExtValue(); 2929 if (!DemandedElts[Idx]) 2930 return TLO.CombineTo(Op, Vec); 2931 2932 APInt DemandedVecElts(DemandedElts); 2933 DemandedVecElts.clearBit(Idx); 2934 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2935 KnownZero, TLO, Depth + 1)) 2936 return true; 2937 2938 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2939 2940 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2941 break; 2942 } 2943 2944 APInt VecUndef, VecZero; 2945 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2946 Depth + 1)) 2947 return true; 2948 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2949 break; 2950 } 2951 case ISD::VSELECT: { 2952 // Try to transform the select condition based on the current demanded 2953 // elements. 2954 // TODO: If a condition element is undef, we can choose from one arm of the 2955 // select (and if one arm is undef, then we can propagate that to the 2956 // result). 2957 // TODO - add support for constant vselect masks (see IR version of this). 2958 APInt UnusedUndef, UnusedZero; 2959 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2960 UnusedZero, TLO, Depth + 1)) 2961 return true; 2962 2963 // See if we can simplify either vselect operand. 2964 APInt DemandedLHS(DemandedElts); 2965 APInt DemandedRHS(DemandedElts); 2966 APInt UndefLHS, ZeroLHS; 2967 APInt UndefRHS, ZeroRHS; 2968 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2969 ZeroLHS, TLO, Depth + 1)) 2970 return true; 2971 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2972 ZeroRHS, TLO, Depth + 1)) 2973 return true; 2974 2975 KnownUndef = UndefLHS & UndefRHS; 2976 KnownZero = ZeroLHS & ZeroRHS; 2977 break; 2978 } 2979 case ISD::VECTOR_SHUFFLE: { 2980 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2981 2982 // Collect demanded elements from shuffle operands.. 2983 APInt DemandedLHS(NumElts, 0); 2984 APInt DemandedRHS(NumElts, 0); 2985 for (unsigned i = 0; i != NumElts; ++i) { 2986 int M = ShuffleMask[i]; 2987 if (M < 0 || !DemandedElts[i]) 2988 continue; 2989 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2990 if (M < (int)NumElts) 2991 DemandedLHS.setBit(M); 2992 else 2993 DemandedRHS.setBit(M - NumElts); 2994 } 2995 2996 // See if we can simplify either shuffle operand. 2997 APInt UndefLHS, ZeroLHS; 2998 APInt UndefRHS, ZeroRHS; 2999 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3000 ZeroLHS, TLO, Depth + 1)) 3001 return true; 3002 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3003 ZeroRHS, TLO, Depth + 1)) 3004 return true; 3005 3006 // Simplify mask using undef elements from LHS/RHS. 3007 bool Updated = false; 3008 bool IdentityLHS = true, IdentityRHS = true; 3009 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3010 for (unsigned i = 0; i != NumElts; ++i) { 3011 int &M = NewMask[i]; 3012 if (M < 0) 3013 continue; 3014 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3015 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3016 Updated = true; 3017 M = -1; 3018 } 3019 IdentityLHS &= (M < 0) || (M == (int)i); 3020 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3021 } 3022 3023 // Update legal shuffle masks based on demanded elements if it won't reduce 3024 // to Identity which can cause premature removal of the shuffle mask. 3025 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3026 SDValue LegalShuffle = 3027 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3028 NewMask, TLO.DAG); 3029 if (LegalShuffle) 3030 return TLO.CombineTo(Op, LegalShuffle); 3031 } 3032 3033 // Propagate undef/zero elements from LHS/RHS. 3034 for (unsigned i = 0; i != NumElts; ++i) { 3035 int M = ShuffleMask[i]; 3036 if (M < 0) { 3037 KnownUndef.setBit(i); 3038 } else if (M < (int)NumElts) { 3039 if (UndefLHS[M]) 3040 KnownUndef.setBit(i); 3041 if (ZeroLHS[M]) 3042 KnownZero.setBit(i); 3043 } else { 3044 if (UndefRHS[M - NumElts]) 3045 KnownUndef.setBit(i); 3046 if (ZeroRHS[M - NumElts]) 3047 KnownZero.setBit(i); 3048 } 3049 } 3050 break; 3051 } 3052 case ISD::ANY_EXTEND_VECTOR_INREG: 3053 case ISD::SIGN_EXTEND_VECTOR_INREG: 3054 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3055 APInt SrcUndef, SrcZero; 3056 SDValue Src = Op.getOperand(0); 3057 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3058 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 3059 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3060 Depth + 1)) 3061 return true; 3062 KnownZero = SrcZero.zextOrTrunc(NumElts); 3063 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3064 3065 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3066 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3067 DemandedSrcElts == 1) { 3068 // aext - if we just need the bottom element then we can bitcast. 3069 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3070 } 3071 3072 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3073 // zext(undef) upper bits are guaranteed to be zero. 3074 if (DemandedElts.isSubsetOf(KnownUndef)) 3075 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3076 KnownUndef.clearAllBits(); 3077 3078 // zext - if we just need the bottom element then we can mask: 3079 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3080 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3081 Op->isOnlyUserOf(Src.getNode()) && 3082 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3083 SDLoc DL(Op); 3084 EVT SrcVT = Src.getValueType(); 3085 EVT SrcSVT = SrcVT.getScalarType(); 3086 SmallVector<SDValue> MaskElts; 3087 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3088 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3089 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3090 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3091 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3092 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3093 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3094 } 3095 } 3096 } 3097 break; 3098 } 3099 3100 // TODO: There are more binop opcodes that could be handled here - MIN, 3101 // MAX, saturated math, etc. 3102 case ISD::ADD: { 3103 SDValue Op0 = Op.getOperand(0); 3104 SDValue Op1 = Op.getOperand(1); 3105 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3106 APInt UndefLHS, ZeroLHS; 3107 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3108 Depth + 1, /*AssumeSingleUse*/ true)) 3109 return true; 3110 } 3111 LLVM_FALLTHROUGH; 3112 } 3113 case ISD::OR: 3114 case ISD::XOR: 3115 case ISD::SUB: 3116 case ISD::FADD: 3117 case ISD::FSUB: 3118 case ISD::FMUL: 3119 case ISD::FDIV: 3120 case ISD::FREM: { 3121 SDValue Op0 = Op.getOperand(0); 3122 SDValue Op1 = Op.getOperand(1); 3123 3124 APInt UndefRHS, ZeroRHS; 3125 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3126 Depth + 1)) 3127 return true; 3128 APInt UndefLHS, ZeroLHS; 3129 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3130 Depth + 1)) 3131 return true; 3132 3133 KnownZero = ZeroLHS & ZeroRHS; 3134 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3135 3136 // Attempt to avoid multi-use ops if we don't need anything from them. 3137 // TODO - use KnownUndef to relax the demandedelts? 3138 if (!DemandedElts.isAllOnes()) 3139 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3140 return true; 3141 break; 3142 } 3143 case ISD::SHL: 3144 case ISD::SRL: 3145 case ISD::SRA: 3146 case ISD::ROTL: 3147 case ISD::ROTR: { 3148 SDValue Op0 = Op.getOperand(0); 3149 SDValue Op1 = Op.getOperand(1); 3150 3151 APInt UndefRHS, ZeroRHS; 3152 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3153 Depth + 1)) 3154 return true; 3155 APInt UndefLHS, ZeroLHS; 3156 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3157 Depth + 1)) 3158 return true; 3159 3160 KnownZero = ZeroLHS; 3161 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3162 3163 // Attempt to avoid multi-use ops if we don't need anything from them. 3164 // TODO - use KnownUndef to relax the demandedelts? 3165 if (!DemandedElts.isAllOnes()) 3166 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3167 return true; 3168 break; 3169 } 3170 case ISD::MUL: 3171 case ISD::AND: { 3172 SDValue Op0 = Op.getOperand(0); 3173 SDValue Op1 = Op.getOperand(1); 3174 3175 APInt SrcUndef, SrcZero; 3176 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3177 Depth + 1)) 3178 return true; 3179 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3180 TLO, Depth + 1)) 3181 return true; 3182 3183 // If either side has a zero element, then the result element is zero, even 3184 // if the other is an UNDEF. 3185 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3186 // and then handle 'and' nodes with the rest of the binop opcodes. 3187 KnownZero |= SrcZero; 3188 KnownUndef &= SrcUndef; 3189 KnownUndef &= ~KnownZero; 3190 3191 // Attempt to avoid multi-use ops if we don't need anything from them. 3192 // TODO - use KnownUndef to relax the demandedelts? 3193 if (!DemandedElts.isAllOnes()) 3194 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3195 return true; 3196 break; 3197 } 3198 case ISD::TRUNCATE: 3199 case ISD::SIGN_EXTEND: 3200 case ISD::ZERO_EXTEND: 3201 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3202 KnownZero, TLO, Depth + 1)) 3203 return true; 3204 3205 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3206 // zext(undef) upper bits are guaranteed to be zero. 3207 if (DemandedElts.isSubsetOf(KnownUndef)) 3208 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3209 KnownUndef.clearAllBits(); 3210 } 3211 break; 3212 default: { 3213 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3214 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3215 KnownZero, TLO, Depth)) 3216 return true; 3217 } else { 3218 KnownBits Known; 3219 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3220 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3221 TLO, Depth, AssumeSingleUse)) 3222 return true; 3223 } 3224 break; 3225 } 3226 } 3227 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3228 3229 // Constant fold all undef cases. 3230 // TODO: Handle zero cases as well. 3231 if (DemandedElts.isSubsetOf(KnownUndef)) 3232 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3233 3234 return false; 3235 } 3236 3237 /// Determine which of the bits specified in Mask are known to be either zero or 3238 /// one and return them in the Known. 3239 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3240 KnownBits &Known, 3241 const APInt &DemandedElts, 3242 const SelectionDAG &DAG, 3243 unsigned Depth) const { 3244 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3245 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3246 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3247 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3248 "Should use MaskedValueIsZero if you don't know whether Op" 3249 " is a target node!"); 3250 Known.resetAll(); 3251 } 3252 3253 void TargetLowering::computeKnownBitsForTargetInstr( 3254 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3255 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3256 unsigned Depth) const { 3257 Known.resetAll(); 3258 } 3259 3260 void TargetLowering::computeKnownBitsForFrameIndex( 3261 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3262 // The low bits are known zero if the pointer is aligned. 3263 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3264 } 3265 3266 Align TargetLowering::computeKnownAlignForTargetInstr( 3267 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3268 unsigned Depth) const { 3269 return Align(1); 3270 } 3271 3272 /// This method can be implemented by targets that want to expose additional 3273 /// information about sign bits to the DAG Combiner. 3274 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3275 const APInt &, 3276 const SelectionDAG &, 3277 unsigned Depth) const { 3278 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3279 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3280 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3281 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3282 "Should use ComputeNumSignBits if you don't know whether Op" 3283 " is a target node!"); 3284 return 1; 3285 } 3286 3287 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3288 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3289 const MachineRegisterInfo &MRI, unsigned Depth) const { 3290 return 1; 3291 } 3292 3293 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3294 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3295 TargetLoweringOpt &TLO, unsigned Depth) const { 3296 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3297 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3298 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3299 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3300 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3301 " is a target node!"); 3302 return false; 3303 } 3304 3305 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3306 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3307 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3308 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3309 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3310 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3311 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3312 "Should use SimplifyDemandedBits if you don't know whether Op" 3313 " is a target node!"); 3314 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3315 return false; 3316 } 3317 3318 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3319 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3320 SelectionDAG &DAG, unsigned Depth) const { 3321 assert( 3322 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3323 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3324 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3325 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3326 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3327 " is a target node!"); 3328 return SDValue(); 3329 } 3330 3331 SDValue 3332 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3333 SDValue N1, MutableArrayRef<int> Mask, 3334 SelectionDAG &DAG) const { 3335 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3336 if (!LegalMask) { 3337 std::swap(N0, N1); 3338 ShuffleVectorSDNode::commuteMask(Mask); 3339 LegalMask = isShuffleMaskLegal(Mask, VT); 3340 } 3341 3342 if (!LegalMask) 3343 return SDValue(); 3344 3345 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3346 } 3347 3348 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3349 return nullptr; 3350 } 3351 3352 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3353 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3354 bool PoisonOnly, unsigned Depth) const { 3355 assert( 3356 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3357 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3358 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3359 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3360 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3361 " is a target node!"); 3362 return false; 3363 } 3364 3365 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3366 const SelectionDAG &DAG, 3367 bool SNaN, 3368 unsigned Depth) const { 3369 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3370 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3371 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3372 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3373 "Should use isKnownNeverNaN if you don't know whether Op" 3374 " is a target node!"); 3375 return false; 3376 } 3377 3378 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3379 const APInt &DemandedElts, 3380 APInt &UndefElts, 3381 unsigned Depth) const { 3382 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3383 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3384 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3385 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3386 "Should use isSplatValue if you don't know whether Op" 3387 " is a target node!"); 3388 return false; 3389 } 3390 3391 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3392 // work with truncating build vectors and vectors with elements of less than 3393 // 8 bits. 3394 bool TargetLowering::isConstTrueVal(SDValue N) const { 3395 if (!N) 3396 return false; 3397 3398 unsigned EltWidth; 3399 APInt CVal; 3400 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3401 /*AllowTruncation=*/true)) { 3402 CVal = CN->getAPIntValue(); 3403 EltWidth = N.getValueType().getScalarSizeInBits(); 3404 } else 3405 return false; 3406 3407 // If this is a truncating splat, truncate the splat value. 3408 // Otherwise, we may fail to match the expected values below. 3409 if (EltWidth < CVal.getBitWidth()) 3410 CVal = CVal.trunc(EltWidth); 3411 3412 switch (getBooleanContents(N.getValueType())) { 3413 case UndefinedBooleanContent: 3414 return CVal[0]; 3415 case ZeroOrOneBooleanContent: 3416 return CVal.isOne(); 3417 case ZeroOrNegativeOneBooleanContent: 3418 return CVal.isAllOnes(); 3419 } 3420 3421 llvm_unreachable("Invalid boolean contents"); 3422 } 3423 3424 bool TargetLowering::isConstFalseVal(SDValue N) const { 3425 if (!N) 3426 return false; 3427 3428 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3429 if (!CN) { 3430 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3431 if (!BV) 3432 return false; 3433 3434 // Only interested in constant splats, we don't care about undef 3435 // elements in identifying boolean constants and getConstantSplatNode 3436 // returns NULL if all ops are undef; 3437 CN = BV->getConstantSplatNode(); 3438 if (!CN) 3439 return false; 3440 } 3441 3442 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3443 return !CN->getAPIntValue()[0]; 3444 3445 return CN->isZero(); 3446 } 3447 3448 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3449 bool SExt) const { 3450 if (VT == MVT::i1) 3451 return N->isOne(); 3452 3453 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3454 switch (Cnt) { 3455 case TargetLowering::ZeroOrOneBooleanContent: 3456 // An extended value of 1 is always true, unless its original type is i1, 3457 // in which case it will be sign extended to -1. 3458 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3459 case TargetLowering::UndefinedBooleanContent: 3460 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3461 return N->isAllOnes() && SExt; 3462 } 3463 llvm_unreachable("Unexpected enumeration."); 3464 } 3465 3466 /// This helper function of SimplifySetCC tries to optimize the comparison when 3467 /// either operand of the SetCC node is a bitwise-and instruction. 3468 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3469 ISD::CondCode Cond, const SDLoc &DL, 3470 DAGCombinerInfo &DCI) const { 3471 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3472 std::swap(N0, N1); 3473 3474 SelectionDAG &DAG = DCI.DAG; 3475 EVT OpVT = N0.getValueType(); 3476 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3477 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3478 return SDValue(); 3479 3480 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3481 // iff everything but LSB is known zero: 3482 if (Cond == ISD::SETNE && isNullConstant(N1) && 3483 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3484 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3485 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3486 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3487 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3488 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3489 } 3490 3491 // Match these patterns in any of their permutations: 3492 // (X & Y) == Y 3493 // (X & Y) != Y 3494 SDValue X, Y; 3495 if (N0.getOperand(0) == N1) { 3496 X = N0.getOperand(1); 3497 Y = N0.getOperand(0); 3498 } else if (N0.getOperand(1) == N1) { 3499 X = N0.getOperand(0); 3500 Y = N0.getOperand(1); 3501 } else { 3502 return SDValue(); 3503 } 3504 3505 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3506 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3507 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3508 // Note that where Y is variable and is known to have at most one bit set 3509 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3510 // equivalent when Y == 0. 3511 assert(OpVT.isInteger()); 3512 Cond = ISD::getSetCCInverse(Cond, OpVT); 3513 if (DCI.isBeforeLegalizeOps() || 3514 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3515 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3516 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3517 // If the target supports an 'and-not' or 'and-complement' logic operation, 3518 // try to use that to make a comparison operation more efficient. 3519 // But don't do this transform if the mask is a single bit because there are 3520 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3521 // 'rlwinm' on PPC). 3522 3523 // Bail out if the compare operand that we want to turn into a zero is 3524 // already a zero (otherwise, infinite loop). 3525 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3526 if (YConst && YConst->isZero()) 3527 return SDValue(); 3528 3529 // Transform this into: ~X & Y == 0. 3530 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3531 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3532 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3533 } 3534 3535 return SDValue(); 3536 } 3537 3538 /// There are multiple IR patterns that could be checking whether certain 3539 /// truncation of a signed number would be lossy or not. The pattern which is 3540 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3541 /// We are looking for the following pattern: (KeptBits is a constant) 3542 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3543 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3544 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3545 /// We will unfold it into the natural trunc+sext pattern: 3546 /// ((%x << C) a>> C) dstcond %x 3547 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3548 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3549 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3550 const SDLoc &DL) const { 3551 // We must be comparing with a constant. 3552 ConstantSDNode *C1; 3553 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3554 return SDValue(); 3555 3556 // N0 should be: add %x, (1 << (KeptBits-1)) 3557 if (N0->getOpcode() != ISD::ADD) 3558 return SDValue(); 3559 3560 // And we must be 'add'ing a constant. 3561 ConstantSDNode *C01; 3562 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3563 return SDValue(); 3564 3565 SDValue X = N0->getOperand(0); 3566 EVT XVT = X.getValueType(); 3567 3568 // Validate constants ... 3569 3570 APInt I1 = C1->getAPIntValue(); 3571 3572 ISD::CondCode NewCond; 3573 if (Cond == ISD::CondCode::SETULT) { 3574 NewCond = ISD::CondCode::SETEQ; 3575 } else if (Cond == ISD::CondCode::SETULE) { 3576 NewCond = ISD::CondCode::SETEQ; 3577 // But need to 'canonicalize' the constant. 3578 I1 += 1; 3579 } else if (Cond == ISD::CondCode::SETUGT) { 3580 NewCond = ISD::CondCode::SETNE; 3581 // But need to 'canonicalize' the constant. 3582 I1 += 1; 3583 } else if (Cond == ISD::CondCode::SETUGE) { 3584 NewCond = ISD::CondCode::SETNE; 3585 } else 3586 return SDValue(); 3587 3588 APInt I01 = C01->getAPIntValue(); 3589 3590 auto checkConstants = [&I1, &I01]() -> bool { 3591 // Both of them must be power-of-two, and the constant from setcc is bigger. 3592 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3593 }; 3594 3595 if (checkConstants()) { 3596 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3597 } else { 3598 // What if we invert constants? (and the target predicate) 3599 I1.negate(); 3600 I01.negate(); 3601 assert(XVT.isInteger()); 3602 NewCond = getSetCCInverse(NewCond, XVT); 3603 if (!checkConstants()) 3604 return SDValue(); 3605 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3606 } 3607 3608 // They are power-of-two, so which bit is set? 3609 const unsigned KeptBits = I1.logBase2(); 3610 const unsigned KeptBitsMinusOne = I01.logBase2(); 3611 3612 // Magic! 3613 if (KeptBits != (KeptBitsMinusOne + 1)) 3614 return SDValue(); 3615 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3616 3617 // We don't want to do this in every single case. 3618 SelectionDAG &DAG = DCI.DAG; 3619 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3620 XVT, KeptBits)) 3621 return SDValue(); 3622 3623 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3624 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3625 3626 // Unfold into: ((%x << C) a>> C) cond %x 3627 // Where 'cond' will be either 'eq' or 'ne'. 3628 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3629 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3630 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3631 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3632 3633 return T2; 3634 } 3635 3636 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3637 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3638 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3639 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3640 assert(isConstOrConstSplat(N1C) && 3641 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3642 "Should be a comparison with 0."); 3643 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3644 "Valid only for [in]equality comparisons."); 3645 3646 unsigned NewShiftOpcode; 3647 SDValue X, C, Y; 3648 3649 SelectionDAG &DAG = DCI.DAG; 3650 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3651 3652 // Look for '(C l>>/<< Y)'. 3653 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3654 // The shift should be one-use. 3655 if (!V.hasOneUse()) 3656 return false; 3657 unsigned OldShiftOpcode = V.getOpcode(); 3658 switch (OldShiftOpcode) { 3659 case ISD::SHL: 3660 NewShiftOpcode = ISD::SRL; 3661 break; 3662 case ISD::SRL: 3663 NewShiftOpcode = ISD::SHL; 3664 break; 3665 default: 3666 return false; // must be a logical shift. 3667 } 3668 // We should be shifting a constant. 3669 // FIXME: best to use isConstantOrConstantVector(). 3670 C = V.getOperand(0); 3671 ConstantSDNode *CC = 3672 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3673 if (!CC) 3674 return false; 3675 Y = V.getOperand(1); 3676 3677 ConstantSDNode *XC = 3678 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3679 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3680 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3681 }; 3682 3683 // LHS of comparison should be an one-use 'and'. 3684 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3685 return SDValue(); 3686 3687 X = N0.getOperand(0); 3688 SDValue Mask = N0.getOperand(1); 3689 3690 // 'and' is commutative! 3691 if (!Match(Mask)) { 3692 std::swap(X, Mask); 3693 if (!Match(Mask)) 3694 return SDValue(); 3695 } 3696 3697 EVT VT = X.getValueType(); 3698 3699 // Produce: 3700 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3701 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3702 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3703 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3704 return T2; 3705 } 3706 3707 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3708 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3709 /// handle the commuted versions of these patterns. 3710 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3711 ISD::CondCode Cond, const SDLoc &DL, 3712 DAGCombinerInfo &DCI) const { 3713 unsigned BOpcode = N0.getOpcode(); 3714 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3715 "Unexpected binop"); 3716 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3717 3718 // (X + Y) == X --> Y == 0 3719 // (X - Y) == X --> Y == 0 3720 // (X ^ Y) == X --> Y == 0 3721 SelectionDAG &DAG = DCI.DAG; 3722 EVT OpVT = N0.getValueType(); 3723 SDValue X = N0.getOperand(0); 3724 SDValue Y = N0.getOperand(1); 3725 if (X == N1) 3726 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3727 3728 if (Y != N1) 3729 return SDValue(); 3730 3731 // (X + Y) == Y --> X == 0 3732 // (X ^ Y) == Y --> X == 0 3733 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3734 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3735 3736 // The shift would not be valid if the operands are boolean (i1). 3737 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3738 return SDValue(); 3739 3740 // (X - Y) == Y --> X == Y << 1 3741 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3742 !DCI.isBeforeLegalize()); 3743 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3744 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3745 if (!DCI.isCalledByLegalizer()) 3746 DCI.AddToWorklist(YShl1.getNode()); 3747 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3748 } 3749 3750 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3751 SDValue N0, const APInt &C1, 3752 ISD::CondCode Cond, const SDLoc &dl, 3753 SelectionDAG &DAG) { 3754 // Look through truncs that don't change the value of a ctpop. 3755 // FIXME: Add vector support? Need to be careful with setcc result type below. 3756 SDValue CTPOP = N0; 3757 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3758 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3759 CTPOP = N0.getOperand(0); 3760 3761 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3762 return SDValue(); 3763 3764 EVT CTVT = CTPOP.getValueType(); 3765 SDValue CTOp = CTPOP.getOperand(0); 3766 3767 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3768 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3769 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3770 return SDValue(); 3771 3772 // (ctpop x) u< 2 -> (x & x-1) == 0 3773 // (ctpop x) u> 1 -> (x & x-1) != 0 3774 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3775 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3776 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3777 return SDValue(); 3778 if (C1 == 0 && (Cond == ISD::SETULT)) 3779 return SDValue(); // This is handled elsewhere. 3780 3781 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3782 3783 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3784 SDValue Result = CTOp; 3785 for (unsigned i = 0; i < Passes; i++) { 3786 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3787 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3788 } 3789 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3790 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3791 } 3792 3793 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3794 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3795 // For scalars, keep CTPOP if it is legal or custom. 3796 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3797 return SDValue(); 3798 // This is based on X86's custom lowering for CTPOP which produces more 3799 // instructions than the expansion here. 3800 3801 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3802 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3803 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3804 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3805 assert(CTVT.isInteger()); 3806 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3807 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3808 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3809 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3810 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3811 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3812 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3813 } 3814 3815 return SDValue(); 3816 } 3817 3818 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3819 ISD::CondCode Cond, const SDLoc &dl, 3820 SelectionDAG &DAG) { 3821 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3822 return SDValue(); 3823 3824 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3825 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3826 return SDValue(); 3827 3828 auto getRotateSource = [](SDValue X) { 3829 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3830 return X.getOperand(0); 3831 return SDValue(); 3832 }; 3833 3834 // Peek through a rotated value compared against 0 or -1: 3835 // (rot X, Y) == 0/-1 --> X == 0/-1 3836 // (rot X, Y) != 0/-1 --> X != 0/-1 3837 if (SDValue R = getRotateSource(N0)) 3838 return DAG.getSetCC(dl, VT, R, N1, Cond); 3839 3840 // Peek through an 'or' of a rotated value compared against 0: 3841 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3842 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3843 // 3844 // TODO: Add the 'and' with -1 sibling. 3845 // TODO: Recurse through a series of 'or' ops to find the rotate. 3846 EVT OpVT = N0.getValueType(); 3847 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3848 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3849 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3850 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3851 } 3852 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3853 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3854 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3855 } 3856 } 3857 3858 return SDValue(); 3859 } 3860 3861 /// Try to simplify a setcc built with the specified operands and cc. If it is 3862 /// unable to simplify it, return a null SDValue. 3863 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3864 ISD::CondCode Cond, bool foldBooleans, 3865 DAGCombinerInfo &DCI, 3866 const SDLoc &dl) const { 3867 SelectionDAG &DAG = DCI.DAG; 3868 const DataLayout &Layout = DAG.getDataLayout(); 3869 EVT OpVT = N0.getValueType(); 3870 3871 // Constant fold or commute setcc. 3872 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3873 return Fold; 3874 3875 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3876 // TODO: Handle non-splat vector constants. All undef causes trouble. 3877 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3878 // infinite loop here when we encounter one. 3879 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3880 if (isConstOrConstSplat(N0) && 3881 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3882 (DCI.isBeforeLegalizeOps() || 3883 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3884 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3885 3886 // If we have a subtract with the same 2 non-constant operands as this setcc 3887 // -- but in reverse order -- then try to commute the operands of this setcc 3888 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3889 // instruction on some targets. 3890 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3891 (DCI.isBeforeLegalizeOps() || 3892 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3893 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3894 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3895 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3896 3897 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 3898 return V; 3899 3900 if (auto *N1C = isConstOrConstSplat(N1)) { 3901 const APInt &C1 = N1C->getAPIntValue(); 3902 3903 // Optimize some CTPOP cases. 3904 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3905 return V; 3906 3907 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3908 // equality comparison, then we're just comparing whether X itself is 3909 // zero. 3910 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3911 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3912 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3913 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3914 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3915 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3916 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3917 // (srl (ctlz x), 5) == 0 -> X != 0 3918 // (srl (ctlz x), 5) != 1 -> X != 0 3919 Cond = ISD::SETNE; 3920 } else { 3921 // (srl (ctlz x), 5) != 0 -> X == 0 3922 // (srl (ctlz x), 5) == 1 -> X == 0 3923 Cond = ISD::SETEQ; 3924 } 3925 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3926 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3927 Cond); 3928 } 3929 } 3930 } 3931 } 3932 3933 // FIXME: Support vectors. 3934 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3935 const APInt &C1 = N1C->getAPIntValue(); 3936 3937 // (zext x) == C --> x == (trunc C) 3938 // (sext x) == C --> x == (trunc C) 3939 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3940 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3941 unsigned MinBits = N0.getValueSizeInBits(); 3942 SDValue PreExt; 3943 bool Signed = false; 3944 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3945 // ZExt 3946 MinBits = N0->getOperand(0).getValueSizeInBits(); 3947 PreExt = N0->getOperand(0); 3948 } else if (N0->getOpcode() == ISD::AND) { 3949 // DAGCombine turns costly ZExts into ANDs 3950 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3951 if ((C->getAPIntValue()+1).isPowerOf2()) { 3952 MinBits = C->getAPIntValue().countTrailingOnes(); 3953 PreExt = N0->getOperand(0); 3954 } 3955 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3956 // SExt 3957 MinBits = N0->getOperand(0).getValueSizeInBits(); 3958 PreExt = N0->getOperand(0); 3959 Signed = true; 3960 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3961 // ZEXTLOAD / SEXTLOAD 3962 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3963 MinBits = LN0->getMemoryVT().getSizeInBits(); 3964 PreExt = N0; 3965 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3966 Signed = true; 3967 MinBits = LN0->getMemoryVT().getSizeInBits(); 3968 PreExt = N0; 3969 } 3970 } 3971 3972 // Figure out how many bits we need to preserve this constant. 3973 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3974 3975 // Make sure we're not losing bits from the constant. 3976 if (MinBits > 0 && 3977 MinBits < C1.getBitWidth() && 3978 MinBits >= ReqdBits) { 3979 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3980 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3981 // Will get folded away. 3982 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3983 if (MinBits == 1 && C1 == 1) 3984 // Invert the condition. 3985 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3986 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3987 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3988 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3989 } 3990 3991 // If truncating the setcc operands is not desirable, we can still 3992 // simplify the expression in some cases: 3993 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3994 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3995 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3996 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3997 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3998 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3999 SDValue TopSetCC = N0->getOperand(0); 4000 unsigned N0Opc = N0->getOpcode(); 4001 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4002 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4003 TopSetCC.getOpcode() == ISD::SETCC && 4004 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4005 (isConstFalseVal(N1) || 4006 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4007 4008 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4009 (!N1C->isZero() && Cond == ISD::SETNE); 4010 4011 if (!Inverse) 4012 return TopSetCC; 4013 4014 ISD::CondCode InvCond = ISD::getSetCCInverse( 4015 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4016 TopSetCC.getOperand(0).getValueType()); 4017 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4018 TopSetCC.getOperand(1), 4019 InvCond); 4020 } 4021 } 4022 } 4023 4024 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4025 // equality or unsigned, and all 1 bits of the const are in the same 4026 // partial word, see if we can shorten the load. 4027 if (DCI.isBeforeLegalize() && 4028 !ISD::isSignedIntSetCC(Cond) && 4029 N0.getOpcode() == ISD::AND && C1 == 0 && 4030 N0.getNode()->hasOneUse() && 4031 isa<LoadSDNode>(N0.getOperand(0)) && 4032 N0.getOperand(0).getNode()->hasOneUse() && 4033 isa<ConstantSDNode>(N0.getOperand(1))) { 4034 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4035 APInt bestMask; 4036 unsigned bestWidth = 0, bestOffset = 0; 4037 if (Lod->isSimple() && Lod->isUnindexed()) { 4038 unsigned origWidth = N0.getValueSizeInBits(); 4039 unsigned maskWidth = origWidth; 4040 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4041 // 8 bits, but have to be careful... 4042 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4043 origWidth = Lod->getMemoryVT().getSizeInBits(); 4044 const APInt &Mask = N0.getConstantOperandAPInt(1); 4045 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4046 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4047 for (unsigned offset=0; offset<origWidth/width; offset++) { 4048 if (Mask.isSubsetOf(newMask)) { 4049 if (Layout.isLittleEndian()) 4050 bestOffset = (uint64_t)offset * (width/8); 4051 else 4052 bestOffset = (origWidth/width - offset - 1) * (width/8); 4053 bestMask = Mask.lshr(offset * (width/8) * 8); 4054 bestWidth = width; 4055 break; 4056 } 4057 newMask <<= width; 4058 } 4059 } 4060 } 4061 if (bestWidth) { 4062 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4063 if (newVT.isRound() && 4064 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4065 SDValue Ptr = Lod->getBasePtr(); 4066 if (bestOffset != 0) 4067 Ptr = 4068 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4069 SDValue NewLoad = 4070 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4071 Lod->getPointerInfo().getWithOffset(bestOffset), 4072 Lod->getOriginalAlign()); 4073 return DAG.getSetCC(dl, VT, 4074 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4075 DAG.getConstant(bestMask.trunc(bestWidth), 4076 dl, newVT)), 4077 DAG.getConstant(0LL, dl, newVT), Cond); 4078 } 4079 } 4080 } 4081 4082 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4083 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4084 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4085 4086 // If the comparison constant has bits in the upper part, the 4087 // zero-extended value could never match. 4088 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4089 C1.getBitWidth() - InSize))) { 4090 switch (Cond) { 4091 case ISD::SETUGT: 4092 case ISD::SETUGE: 4093 case ISD::SETEQ: 4094 return DAG.getConstant(0, dl, VT); 4095 case ISD::SETULT: 4096 case ISD::SETULE: 4097 case ISD::SETNE: 4098 return DAG.getConstant(1, dl, VT); 4099 case ISD::SETGT: 4100 case ISD::SETGE: 4101 // True if the sign bit of C1 is set. 4102 return DAG.getConstant(C1.isNegative(), dl, VT); 4103 case ISD::SETLT: 4104 case ISD::SETLE: 4105 // True if the sign bit of C1 isn't set. 4106 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4107 default: 4108 break; 4109 } 4110 } 4111 4112 // Otherwise, we can perform the comparison with the low bits. 4113 switch (Cond) { 4114 case ISD::SETEQ: 4115 case ISD::SETNE: 4116 case ISD::SETUGT: 4117 case ISD::SETUGE: 4118 case ISD::SETULT: 4119 case ISD::SETULE: { 4120 EVT newVT = N0.getOperand(0).getValueType(); 4121 if (DCI.isBeforeLegalizeOps() || 4122 (isOperationLegal(ISD::SETCC, newVT) && 4123 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4124 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4125 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4126 4127 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4128 NewConst, Cond); 4129 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4130 } 4131 break; 4132 } 4133 default: 4134 break; // todo, be more careful with signed comparisons 4135 } 4136 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4137 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4138 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4139 OpVT)) { 4140 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4141 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4142 EVT ExtDstTy = N0.getValueType(); 4143 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4144 4145 // If the constant doesn't fit into the number of bits for the source of 4146 // the sign extension, it is impossible for both sides to be equal. 4147 if (C1.getMinSignedBits() > ExtSrcTyBits) 4148 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4149 4150 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4151 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4152 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4153 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4154 DAG.getConstant(Imm, dl, ExtDstTy)); 4155 if (!DCI.isCalledByLegalizer()) 4156 DCI.AddToWorklist(ZextOp.getNode()); 4157 // Otherwise, make this a use of a zext. 4158 return DAG.getSetCC(dl, VT, ZextOp, 4159 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4160 } else if ((N1C->isZero() || N1C->isOne()) && 4161 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4162 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4163 if (N0.getOpcode() == ISD::SETCC && 4164 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4165 (N0.getValueType() == MVT::i1 || 4166 getBooleanContents(N0.getOperand(0).getValueType()) == 4167 ZeroOrOneBooleanContent)) { 4168 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4169 if (TrueWhenTrue) 4170 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4171 // Invert the condition. 4172 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4173 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4174 if (DCI.isBeforeLegalizeOps() || 4175 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4176 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4177 } 4178 4179 if ((N0.getOpcode() == ISD::XOR || 4180 (N0.getOpcode() == ISD::AND && 4181 N0.getOperand(0).getOpcode() == ISD::XOR && 4182 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4183 isOneConstant(N0.getOperand(1))) { 4184 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4185 // can only do this if the top bits are known zero. 4186 unsigned BitWidth = N0.getValueSizeInBits(); 4187 if (DAG.MaskedValueIsZero(N0, 4188 APInt::getHighBitsSet(BitWidth, 4189 BitWidth-1))) { 4190 // Okay, get the un-inverted input value. 4191 SDValue Val; 4192 if (N0.getOpcode() == ISD::XOR) { 4193 Val = N0.getOperand(0); 4194 } else { 4195 assert(N0.getOpcode() == ISD::AND && 4196 N0.getOperand(0).getOpcode() == ISD::XOR); 4197 // ((X^1)&1)^1 -> X & 1 4198 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4199 N0.getOperand(0).getOperand(0), 4200 N0.getOperand(1)); 4201 } 4202 4203 return DAG.getSetCC(dl, VT, Val, N1, 4204 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4205 } 4206 } else if (N1C->isOne()) { 4207 SDValue Op0 = N0; 4208 if (Op0.getOpcode() == ISD::TRUNCATE) 4209 Op0 = Op0.getOperand(0); 4210 4211 if ((Op0.getOpcode() == ISD::XOR) && 4212 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4213 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4214 SDValue XorLHS = Op0.getOperand(0); 4215 SDValue XorRHS = Op0.getOperand(1); 4216 // Ensure that the input setccs return an i1 type or 0/1 value. 4217 if (Op0.getValueType() == MVT::i1 || 4218 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4219 ZeroOrOneBooleanContent && 4220 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4221 ZeroOrOneBooleanContent)) { 4222 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4223 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4224 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4225 } 4226 } 4227 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4228 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4229 if (Op0.getValueType().bitsGT(VT)) 4230 Op0 = DAG.getNode(ISD::AND, dl, VT, 4231 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4232 DAG.getConstant(1, dl, VT)); 4233 else if (Op0.getValueType().bitsLT(VT)) 4234 Op0 = DAG.getNode(ISD::AND, dl, VT, 4235 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4236 DAG.getConstant(1, dl, VT)); 4237 4238 return DAG.getSetCC(dl, VT, Op0, 4239 DAG.getConstant(0, dl, Op0.getValueType()), 4240 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4241 } 4242 if (Op0.getOpcode() == ISD::AssertZext && 4243 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4244 return DAG.getSetCC(dl, VT, Op0, 4245 DAG.getConstant(0, dl, Op0.getValueType()), 4246 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4247 } 4248 } 4249 4250 // Given: 4251 // icmp eq/ne (urem %x, %y), 0 4252 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4253 // icmp eq/ne %x, 0 4254 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4255 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4256 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4257 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4258 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4259 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4260 } 4261 4262 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4263 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4264 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4265 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4266 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4267 N1C && N1C->isAllOnes()) { 4268 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4269 DAG.getConstant(0, dl, OpVT), 4270 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4271 } 4272 4273 if (SDValue V = 4274 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4275 return V; 4276 } 4277 4278 // These simplifications apply to splat vectors as well. 4279 // TODO: Handle more splat vector cases. 4280 if (auto *N1C = isConstOrConstSplat(N1)) { 4281 const APInt &C1 = N1C->getAPIntValue(); 4282 4283 APInt MinVal, MaxVal; 4284 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4285 if (ISD::isSignedIntSetCC(Cond)) { 4286 MinVal = APInt::getSignedMinValue(OperandBitSize); 4287 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4288 } else { 4289 MinVal = APInt::getMinValue(OperandBitSize); 4290 MaxVal = APInt::getMaxValue(OperandBitSize); 4291 } 4292 4293 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4294 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4295 // X >= MIN --> true 4296 if (C1 == MinVal) 4297 return DAG.getBoolConstant(true, dl, VT, OpVT); 4298 4299 if (!VT.isVector()) { // TODO: Support this for vectors. 4300 // X >= C0 --> X > (C0 - 1) 4301 APInt C = C1 - 1; 4302 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4303 if ((DCI.isBeforeLegalizeOps() || 4304 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4305 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4306 isLegalICmpImmediate(C.getSExtValue())))) { 4307 return DAG.getSetCC(dl, VT, N0, 4308 DAG.getConstant(C, dl, N1.getValueType()), 4309 NewCC); 4310 } 4311 } 4312 } 4313 4314 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4315 // X <= MAX --> true 4316 if (C1 == MaxVal) 4317 return DAG.getBoolConstant(true, dl, VT, OpVT); 4318 4319 // X <= C0 --> X < (C0 + 1) 4320 if (!VT.isVector()) { // TODO: Support this for vectors. 4321 APInt C = C1 + 1; 4322 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4323 if ((DCI.isBeforeLegalizeOps() || 4324 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4325 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4326 isLegalICmpImmediate(C.getSExtValue())))) { 4327 return DAG.getSetCC(dl, VT, N0, 4328 DAG.getConstant(C, dl, N1.getValueType()), 4329 NewCC); 4330 } 4331 } 4332 } 4333 4334 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4335 if (C1 == MinVal) 4336 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4337 4338 // TODO: Support this for vectors after legalize ops. 4339 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4340 // Canonicalize setlt X, Max --> setne X, Max 4341 if (C1 == MaxVal) 4342 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4343 4344 // If we have setult X, 1, turn it into seteq X, 0 4345 if (C1 == MinVal+1) 4346 return DAG.getSetCC(dl, VT, N0, 4347 DAG.getConstant(MinVal, dl, N0.getValueType()), 4348 ISD::SETEQ); 4349 } 4350 } 4351 4352 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4353 if (C1 == MaxVal) 4354 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4355 4356 // TODO: Support this for vectors after legalize ops. 4357 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4358 // Canonicalize setgt X, Min --> setne X, Min 4359 if (C1 == MinVal) 4360 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4361 4362 // If we have setugt X, Max-1, turn it into seteq X, Max 4363 if (C1 == MaxVal-1) 4364 return DAG.getSetCC(dl, VT, N0, 4365 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4366 ISD::SETEQ); 4367 } 4368 } 4369 4370 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4371 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4372 if (C1.isZero()) 4373 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4374 VT, N0, N1, Cond, DCI, dl)) 4375 return CC; 4376 4377 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4378 // For example, when high 32-bits of i64 X are known clear: 4379 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4380 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4381 bool CmpZero = N1C->getAPIntValue().isZero(); 4382 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4383 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4384 // Match or(lo,shl(hi,bw/2)) pattern. 4385 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4386 unsigned EltBits = V.getScalarValueSizeInBits(); 4387 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4388 return false; 4389 SDValue LHS = V.getOperand(0); 4390 SDValue RHS = V.getOperand(1); 4391 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4392 // Unshifted element must have zero upperbits. 4393 if (RHS.getOpcode() == ISD::SHL && 4394 isa<ConstantSDNode>(RHS.getOperand(1)) && 4395 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4396 DAG.MaskedValueIsZero(LHS, HiBits)) { 4397 Lo = LHS; 4398 Hi = RHS.getOperand(0); 4399 return true; 4400 } 4401 if (LHS.getOpcode() == ISD::SHL && 4402 isa<ConstantSDNode>(LHS.getOperand(1)) && 4403 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4404 DAG.MaskedValueIsZero(RHS, HiBits)) { 4405 Lo = RHS; 4406 Hi = LHS.getOperand(0); 4407 return true; 4408 } 4409 return false; 4410 }; 4411 4412 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4413 unsigned EltBits = N0.getScalarValueSizeInBits(); 4414 unsigned HalfBits = EltBits / 2; 4415 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4416 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4417 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4418 SDValue NewN0 = 4419 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4420 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4421 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4422 }; 4423 4424 SDValue Lo, Hi; 4425 if (IsConcat(N0, Lo, Hi)) 4426 return MergeConcat(Lo, Hi); 4427 4428 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4429 SDValue Lo0, Lo1, Hi0, Hi1; 4430 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4431 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4432 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4433 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4434 } 4435 } 4436 } 4437 } 4438 4439 // If we have "setcc X, C0", check to see if we can shrink the immediate 4440 // by changing cc. 4441 // TODO: Support this for vectors after legalize ops. 4442 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4443 // SETUGT X, SINTMAX -> SETLT X, 0 4444 // SETUGE X, SINTMIN -> SETLT X, 0 4445 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4446 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4447 return DAG.getSetCC(dl, VT, N0, 4448 DAG.getConstant(0, dl, N1.getValueType()), 4449 ISD::SETLT); 4450 4451 // SETULT X, SINTMIN -> SETGT X, -1 4452 // SETULE X, SINTMAX -> SETGT X, -1 4453 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4454 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4455 return DAG.getSetCC(dl, VT, N0, 4456 DAG.getAllOnesConstant(dl, N1.getValueType()), 4457 ISD::SETGT); 4458 } 4459 } 4460 4461 // Back to non-vector simplifications. 4462 // TODO: Can we do these for vector splats? 4463 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4465 const APInt &C1 = N1C->getAPIntValue(); 4466 EVT ShValTy = N0.getValueType(); 4467 4468 // Fold bit comparisons when we can. This will result in an 4469 // incorrect value when boolean false is negative one, unless 4470 // the bitsize is 1 in which case the false value is the same 4471 // in practice regardless of the representation. 4472 if ((VT.getSizeInBits() == 1 || 4473 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4474 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4475 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4476 N0.getOpcode() == ISD::AND) { 4477 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4478 EVT ShiftTy = 4479 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4480 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4481 // Perform the xform if the AND RHS is a single bit. 4482 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4483 if (AndRHS->getAPIntValue().isPowerOf2() && 4484 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4485 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4486 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4487 DAG.getConstant(ShCt, dl, ShiftTy))); 4488 } 4489 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4490 // (X & 8) == 8 --> (X & 8) >> 3 4491 // Perform the xform if C1 is a single bit. 4492 unsigned ShCt = C1.logBase2(); 4493 if (C1.isPowerOf2() && 4494 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4495 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4496 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4497 DAG.getConstant(ShCt, dl, ShiftTy))); 4498 } 4499 } 4500 } 4501 } 4502 4503 if (C1.getMinSignedBits() <= 64 && 4504 !isLegalICmpImmediate(C1.getSExtValue())) { 4505 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4506 // (X & -256) == 256 -> (X >> 8) == 1 4507 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4508 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4509 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4510 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4511 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4512 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4513 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4514 SDValue Shift = 4515 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4516 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4517 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4518 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4519 } 4520 } 4521 } 4522 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4523 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4524 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4525 // X < 0x100000000 -> (X >> 32) < 1 4526 // X >= 0x100000000 -> (X >> 32) >= 1 4527 // X <= 0x0ffffffff -> (X >> 32) < 1 4528 // X > 0x0ffffffff -> (X >> 32) >= 1 4529 unsigned ShiftBits; 4530 APInt NewC = C1; 4531 ISD::CondCode NewCond = Cond; 4532 if (AdjOne) { 4533 ShiftBits = C1.countTrailingOnes(); 4534 NewC = NewC + 1; 4535 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4536 } else { 4537 ShiftBits = C1.countTrailingZeros(); 4538 } 4539 NewC.lshrInPlace(ShiftBits); 4540 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4541 isLegalICmpImmediate(NewC.getSExtValue()) && 4542 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4543 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4544 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4545 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4546 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4547 } 4548 } 4549 } 4550 } 4551 4552 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4553 auto *CFP = cast<ConstantFPSDNode>(N1); 4554 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4555 4556 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4557 // constant if knowing that the operand is non-nan is enough. We prefer to 4558 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4559 // materialize 0.0. 4560 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4561 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4562 4563 // setcc (fneg x), C -> setcc swap(pred) x, -C 4564 if (N0.getOpcode() == ISD::FNEG) { 4565 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4566 if (DCI.isBeforeLegalizeOps() || 4567 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4568 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4569 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4570 } 4571 } 4572 4573 // If the condition is not legal, see if we can find an equivalent one 4574 // which is legal. 4575 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4576 // If the comparison was an awkward floating-point == or != and one of 4577 // the comparison operands is infinity or negative infinity, convert the 4578 // condition to a less-awkward <= or >=. 4579 if (CFP->getValueAPF().isInfinity()) { 4580 bool IsNegInf = CFP->getValueAPF().isNegative(); 4581 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4582 switch (Cond) { 4583 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4584 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4585 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4586 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4587 default: break; 4588 } 4589 if (NewCond != ISD::SETCC_INVALID && 4590 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4591 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4592 } 4593 } 4594 } 4595 4596 if (N0 == N1) { 4597 // The sext(setcc()) => setcc() optimization relies on the appropriate 4598 // constant being emitted. 4599 assert(!N0.getValueType().isInteger() && 4600 "Integer types should be handled by FoldSetCC"); 4601 4602 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4603 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4604 if (UOF == 2) // FP operators that are undefined on NaNs. 4605 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4606 if (UOF == unsigned(EqTrue)) 4607 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4608 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4609 // if it is not already. 4610 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4611 if (NewCond != Cond && 4612 (DCI.isBeforeLegalizeOps() || 4613 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4614 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4615 } 4616 4617 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4618 N0.getValueType().isInteger()) { 4619 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4620 N0.getOpcode() == ISD::XOR) { 4621 // Simplify (X+Y) == (X+Z) --> Y == Z 4622 if (N0.getOpcode() == N1.getOpcode()) { 4623 if (N0.getOperand(0) == N1.getOperand(0)) 4624 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4625 if (N0.getOperand(1) == N1.getOperand(1)) 4626 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4627 if (isCommutativeBinOp(N0.getOpcode())) { 4628 // If X op Y == Y op X, try other combinations. 4629 if (N0.getOperand(0) == N1.getOperand(1)) 4630 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4631 Cond); 4632 if (N0.getOperand(1) == N1.getOperand(0)) 4633 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4634 Cond); 4635 } 4636 } 4637 4638 // If RHS is a legal immediate value for a compare instruction, we need 4639 // to be careful about increasing register pressure needlessly. 4640 bool LegalRHSImm = false; 4641 4642 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4643 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4644 // Turn (X+C1) == C2 --> X == C2-C1 4645 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4646 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4647 DAG.getConstant(RHSC->getAPIntValue()- 4648 LHSR->getAPIntValue(), 4649 dl, N0.getValueType()), Cond); 4650 } 4651 4652 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4653 if (N0.getOpcode() == ISD::XOR) 4654 // If we know that all of the inverted bits are zero, don't bother 4655 // performing the inversion. 4656 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4657 return 4658 DAG.getSetCC(dl, VT, N0.getOperand(0), 4659 DAG.getConstant(LHSR->getAPIntValue() ^ 4660 RHSC->getAPIntValue(), 4661 dl, N0.getValueType()), 4662 Cond); 4663 } 4664 4665 // Turn (C1-X) == C2 --> X == C1-C2 4666 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4667 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4668 return 4669 DAG.getSetCC(dl, VT, N0.getOperand(1), 4670 DAG.getConstant(SUBC->getAPIntValue() - 4671 RHSC->getAPIntValue(), 4672 dl, N0.getValueType()), 4673 Cond); 4674 } 4675 } 4676 4677 // Could RHSC fold directly into a compare? 4678 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4679 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4680 } 4681 4682 // (X+Y) == X --> Y == 0 and similar folds. 4683 // Don't do this if X is an immediate that can fold into a cmp 4684 // instruction and X+Y has other uses. It could be an induction variable 4685 // chain, and the transform would increase register pressure. 4686 if (!LegalRHSImm || N0.hasOneUse()) 4687 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4688 return V; 4689 } 4690 4691 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4692 N1.getOpcode() == ISD::XOR) 4693 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4694 return V; 4695 4696 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4697 return V; 4698 } 4699 4700 // Fold remainder of division by a constant. 4701 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4702 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4703 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4704 4705 // When division is cheap or optimizing for minimum size, 4706 // fall through to DIVREM creation by skipping this fold. 4707 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4708 if (N0.getOpcode() == ISD::UREM) { 4709 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4710 return Folded; 4711 } else if (N0.getOpcode() == ISD::SREM) { 4712 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4713 return Folded; 4714 } 4715 } 4716 } 4717 4718 // Fold away ALL boolean setcc's. 4719 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4720 SDValue Temp; 4721 switch (Cond) { 4722 default: llvm_unreachable("Unknown integer setcc!"); 4723 case ISD::SETEQ: // X == Y -> ~(X^Y) 4724 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4725 N0 = DAG.getNOT(dl, Temp, OpVT); 4726 if (!DCI.isCalledByLegalizer()) 4727 DCI.AddToWorklist(Temp.getNode()); 4728 break; 4729 case ISD::SETNE: // X != Y --> (X^Y) 4730 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4731 break; 4732 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4733 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4734 Temp = DAG.getNOT(dl, N0, OpVT); 4735 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4736 if (!DCI.isCalledByLegalizer()) 4737 DCI.AddToWorklist(Temp.getNode()); 4738 break; 4739 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4740 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4741 Temp = DAG.getNOT(dl, N1, OpVT); 4742 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4743 if (!DCI.isCalledByLegalizer()) 4744 DCI.AddToWorklist(Temp.getNode()); 4745 break; 4746 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4747 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4748 Temp = DAG.getNOT(dl, N0, OpVT); 4749 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4750 if (!DCI.isCalledByLegalizer()) 4751 DCI.AddToWorklist(Temp.getNode()); 4752 break; 4753 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4754 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4755 Temp = DAG.getNOT(dl, N1, OpVT); 4756 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4757 break; 4758 } 4759 if (VT.getScalarType() != MVT::i1) { 4760 if (!DCI.isCalledByLegalizer()) 4761 DCI.AddToWorklist(N0.getNode()); 4762 // FIXME: If running after legalize, we probably can't do this. 4763 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4764 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4765 } 4766 return N0; 4767 } 4768 4769 // Could not fold it. 4770 return SDValue(); 4771 } 4772 4773 /// Returns true (and the GlobalValue and the offset) if the node is a 4774 /// GlobalAddress + offset. 4775 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4776 int64_t &Offset) const { 4777 4778 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4779 4780 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4781 GA = GASD->getGlobal(); 4782 Offset += GASD->getOffset(); 4783 return true; 4784 } 4785 4786 if (N->getOpcode() == ISD::ADD) { 4787 SDValue N1 = N->getOperand(0); 4788 SDValue N2 = N->getOperand(1); 4789 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4790 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4791 Offset += V->getSExtValue(); 4792 return true; 4793 } 4794 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4795 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4796 Offset += V->getSExtValue(); 4797 return true; 4798 } 4799 } 4800 } 4801 4802 return false; 4803 } 4804 4805 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4806 DAGCombinerInfo &DCI) const { 4807 // Default implementation: no optimization. 4808 return SDValue(); 4809 } 4810 4811 //===----------------------------------------------------------------------===// 4812 // Inline Assembler Implementation Methods 4813 //===----------------------------------------------------------------------===// 4814 4815 TargetLowering::ConstraintType 4816 TargetLowering::getConstraintType(StringRef Constraint) const { 4817 unsigned S = Constraint.size(); 4818 4819 if (S == 1) { 4820 switch (Constraint[0]) { 4821 default: break; 4822 case 'r': 4823 return C_RegisterClass; 4824 case 'm': // memory 4825 case 'o': // offsetable 4826 case 'V': // not offsetable 4827 return C_Memory; 4828 case 'n': // Simple Integer 4829 case 'E': // Floating Point Constant 4830 case 'F': // Floating Point Constant 4831 return C_Immediate; 4832 case 'i': // Simple Integer or Relocatable Constant 4833 case 's': // Relocatable Constant 4834 case 'p': // Address. 4835 case 'X': // Allow ANY value. 4836 case 'I': // Target registers. 4837 case 'J': 4838 case 'K': 4839 case 'L': 4840 case 'M': 4841 case 'N': 4842 case 'O': 4843 case 'P': 4844 case '<': 4845 case '>': 4846 return C_Other; 4847 } 4848 } 4849 4850 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4851 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4852 return C_Memory; 4853 return C_Register; 4854 } 4855 return C_Unknown; 4856 } 4857 4858 /// Try to replace an X constraint, which matches anything, with another that 4859 /// has more specific requirements based on the type of the corresponding 4860 /// operand. 4861 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4862 if (ConstraintVT.isInteger()) 4863 return "r"; 4864 if (ConstraintVT.isFloatingPoint()) 4865 return "f"; // works for many targets 4866 return nullptr; 4867 } 4868 4869 SDValue TargetLowering::LowerAsmOutputForConstraint( 4870 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4871 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4872 return SDValue(); 4873 } 4874 4875 /// Lower the specified operand into the Ops vector. 4876 /// If it is invalid, don't add anything to Ops. 4877 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4878 std::string &Constraint, 4879 std::vector<SDValue> &Ops, 4880 SelectionDAG &DAG) const { 4881 4882 if (Constraint.length() > 1) return; 4883 4884 char ConstraintLetter = Constraint[0]; 4885 switch (ConstraintLetter) { 4886 default: break; 4887 case 'X': // Allows any operand 4888 case 'i': // Simple Integer or Relocatable Constant 4889 case 'n': // Simple Integer 4890 case 's': { // Relocatable Constant 4891 4892 ConstantSDNode *C; 4893 uint64_t Offset = 0; 4894 4895 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4896 // etc., since getelementpointer is variadic. We can't use 4897 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4898 // while in this case the GA may be furthest from the root node which is 4899 // likely an ISD::ADD. 4900 while (true) { 4901 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4902 // gcc prints these as sign extended. Sign extend value to 64 bits 4903 // now; without this it would get ZExt'd later in 4904 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4905 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4906 BooleanContent BCont = getBooleanContents(MVT::i64); 4907 ISD::NodeType ExtOpc = 4908 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4909 int64_t ExtVal = 4910 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4911 Ops.push_back( 4912 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4913 return; 4914 } 4915 if (ConstraintLetter != 'n') { 4916 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4917 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4918 GA->getValueType(0), 4919 Offset + GA->getOffset())); 4920 return; 4921 } 4922 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4923 Ops.push_back(DAG.getTargetBlockAddress( 4924 BA->getBlockAddress(), BA->getValueType(0), 4925 Offset + BA->getOffset(), BA->getTargetFlags())); 4926 return; 4927 } 4928 if (isa<BasicBlockSDNode>(Op)) { 4929 Ops.push_back(Op); 4930 return; 4931 } 4932 } 4933 const unsigned OpCode = Op.getOpcode(); 4934 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4935 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4936 Op = Op.getOperand(1); 4937 // Subtraction is not commutative. 4938 else if (OpCode == ISD::ADD && 4939 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4940 Op = Op.getOperand(0); 4941 else 4942 return; 4943 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4944 continue; 4945 } 4946 return; 4947 } 4948 break; 4949 } 4950 } 4951 } 4952 4953 std::pair<unsigned, const TargetRegisterClass *> 4954 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4955 StringRef Constraint, 4956 MVT VT) const { 4957 if (Constraint.empty() || Constraint[0] != '{') 4958 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4959 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4960 4961 // Remove the braces from around the name. 4962 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4963 4964 std::pair<unsigned, const TargetRegisterClass *> R = 4965 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4966 4967 // Figure out which register class contains this reg. 4968 for (const TargetRegisterClass *RC : RI->regclasses()) { 4969 // If none of the value types for this register class are valid, we 4970 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4971 if (!isLegalRC(*RI, *RC)) 4972 continue; 4973 4974 for (const MCPhysReg &PR : *RC) { 4975 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4976 std::pair<unsigned, const TargetRegisterClass *> S = 4977 std::make_pair(PR, RC); 4978 4979 // If this register class has the requested value type, return it, 4980 // otherwise keep searching and return the first class found 4981 // if no other is found which explicitly has the requested type. 4982 if (RI->isTypeLegalForClass(*RC, VT)) 4983 return S; 4984 if (!R.second) 4985 R = S; 4986 } 4987 } 4988 } 4989 4990 return R; 4991 } 4992 4993 //===----------------------------------------------------------------------===// 4994 // Constraint Selection. 4995 4996 /// Return true of this is an input operand that is a matching constraint like 4997 /// "4". 4998 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4999 assert(!ConstraintCode.empty() && "No known constraint!"); 5000 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5001 } 5002 5003 /// If this is an input matching constraint, this method returns the output 5004 /// operand it matches. 5005 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5006 assert(!ConstraintCode.empty() && "No known constraint!"); 5007 return atoi(ConstraintCode.c_str()); 5008 } 5009 5010 /// Split up the constraint string from the inline assembly value into the 5011 /// specific constraints and their prefixes, and also tie in the associated 5012 /// operand values. 5013 /// If this returns an empty vector, and if the constraint string itself 5014 /// isn't empty, there was an error parsing. 5015 TargetLowering::AsmOperandInfoVector 5016 TargetLowering::ParseConstraints(const DataLayout &DL, 5017 const TargetRegisterInfo *TRI, 5018 const CallBase &Call) const { 5019 /// Information about all of the constraints. 5020 AsmOperandInfoVector ConstraintOperands; 5021 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5022 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5023 5024 // Do a prepass over the constraints, canonicalizing them, and building up the 5025 // ConstraintOperands list. 5026 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5027 unsigned ResNo = 0; // ResNo - The result number of the next output. 5028 5029 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5030 ConstraintOperands.emplace_back(std::move(CI)); 5031 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5032 5033 // Update multiple alternative constraint count. 5034 if (OpInfo.multipleAlternatives.size() > maCount) 5035 maCount = OpInfo.multipleAlternatives.size(); 5036 5037 OpInfo.ConstraintVT = MVT::Other; 5038 5039 // Compute the value type for each operand. 5040 switch (OpInfo.Type) { 5041 case InlineAsm::isOutput: 5042 // Indirect outputs just consume an argument. 5043 if (OpInfo.isIndirect) { 5044 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5045 break; 5046 } 5047 5048 // The return value of the call is this value. As such, there is no 5049 // corresponding argument. 5050 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5051 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5052 OpInfo.ConstraintVT = 5053 getSimpleValueType(DL, STy->getElementType(ResNo)); 5054 } else { 5055 assert(ResNo == 0 && "Asm only has one result!"); 5056 OpInfo.ConstraintVT = 5057 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5058 } 5059 ++ResNo; 5060 break; 5061 case InlineAsm::isInput: 5062 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5063 break; 5064 case InlineAsm::isClobber: 5065 // Nothing to do. 5066 break; 5067 } 5068 5069 if (OpInfo.CallOperandVal) { 5070 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5071 if (OpInfo.isIndirect) { 5072 OpTy = Call.getParamElementType(ArgNo); 5073 assert(OpTy && "Indirect operand must have elementtype attribute"); 5074 } 5075 5076 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5077 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5078 if (STy->getNumElements() == 1) 5079 OpTy = STy->getElementType(0); 5080 5081 // If OpTy is not a single value, it may be a struct/union that we 5082 // can tile with integers. 5083 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5084 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5085 switch (BitSize) { 5086 default: break; 5087 case 1: 5088 case 8: 5089 case 16: 5090 case 32: 5091 case 64: 5092 case 128: 5093 OpInfo.ConstraintVT = 5094 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5095 break; 5096 } 5097 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5098 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5099 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5100 } else { 5101 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5102 } 5103 5104 ArgNo++; 5105 } 5106 } 5107 5108 // If we have multiple alternative constraints, select the best alternative. 5109 if (!ConstraintOperands.empty()) { 5110 if (maCount) { 5111 unsigned bestMAIndex = 0; 5112 int bestWeight = -1; 5113 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5114 int weight = -1; 5115 unsigned maIndex; 5116 // Compute the sums of the weights for each alternative, keeping track 5117 // of the best (highest weight) one so far. 5118 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5119 int weightSum = 0; 5120 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5121 cIndex != eIndex; ++cIndex) { 5122 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5123 if (OpInfo.Type == InlineAsm::isClobber) 5124 continue; 5125 5126 // If this is an output operand with a matching input operand, 5127 // look up the matching input. If their types mismatch, e.g. one 5128 // is an integer, the other is floating point, or their sizes are 5129 // different, flag it as an maCantMatch. 5130 if (OpInfo.hasMatchingInput()) { 5131 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5132 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5133 if ((OpInfo.ConstraintVT.isInteger() != 5134 Input.ConstraintVT.isInteger()) || 5135 (OpInfo.ConstraintVT.getSizeInBits() != 5136 Input.ConstraintVT.getSizeInBits())) { 5137 weightSum = -1; // Can't match. 5138 break; 5139 } 5140 } 5141 } 5142 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5143 if (weight == -1) { 5144 weightSum = -1; 5145 break; 5146 } 5147 weightSum += weight; 5148 } 5149 // Update best. 5150 if (weightSum > bestWeight) { 5151 bestWeight = weightSum; 5152 bestMAIndex = maIndex; 5153 } 5154 } 5155 5156 // Now select chosen alternative in each constraint. 5157 for (AsmOperandInfo &cInfo : ConstraintOperands) 5158 if (cInfo.Type != InlineAsm::isClobber) 5159 cInfo.selectAlternative(bestMAIndex); 5160 } 5161 } 5162 5163 // Check and hook up tied operands, choose constraint code to use. 5164 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5165 cIndex != eIndex; ++cIndex) { 5166 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5167 5168 // If this is an output operand with a matching input operand, look up the 5169 // matching input. If their types mismatch, e.g. one is an integer, the 5170 // other is floating point, or their sizes are different, flag it as an 5171 // error. 5172 if (OpInfo.hasMatchingInput()) { 5173 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5174 5175 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5176 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5177 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5178 OpInfo.ConstraintVT); 5179 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5180 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5181 Input.ConstraintVT); 5182 if ((OpInfo.ConstraintVT.isInteger() != 5183 Input.ConstraintVT.isInteger()) || 5184 (MatchRC.second != InputRC.second)) { 5185 report_fatal_error("Unsupported asm: input constraint" 5186 " with a matching output constraint of" 5187 " incompatible type!"); 5188 } 5189 } 5190 } 5191 } 5192 5193 return ConstraintOperands; 5194 } 5195 5196 /// Return an integer indicating how general CT is. 5197 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5198 switch (CT) { 5199 case TargetLowering::C_Immediate: 5200 case TargetLowering::C_Other: 5201 case TargetLowering::C_Unknown: 5202 return 0; 5203 case TargetLowering::C_Register: 5204 return 1; 5205 case TargetLowering::C_RegisterClass: 5206 return 2; 5207 case TargetLowering::C_Memory: 5208 return 3; 5209 } 5210 llvm_unreachable("Invalid constraint type"); 5211 } 5212 5213 /// Examine constraint type and operand type and determine a weight value. 5214 /// This object must already have been set up with the operand type 5215 /// and the current alternative constraint selected. 5216 TargetLowering::ConstraintWeight 5217 TargetLowering::getMultipleConstraintMatchWeight( 5218 AsmOperandInfo &info, int maIndex) const { 5219 InlineAsm::ConstraintCodeVector *rCodes; 5220 if (maIndex >= (int)info.multipleAlternatives.size()) 5221 rCodes = &info.Codes; 5222 else 5223 rCodes = &info.multipleAlternatives[maIndex].Codes; 5224 ConstraintWeight BestWeight = CW_Invalid; 5225 5226 // Loop over the options, keeping track of the most general one. 5227 for (const std::string &rCode : *rCodes) { 5228 ConstraintWeight weight = 5229 getSingleConstraintMatchWeight(info, rCode.c_str()); 5230 if (weight > BestWeight) 5231 BestWeight = weight; 5232 } 5233 5234 return BestWeight; 5235 } 5236 5237 /// Examine constraint type and operand type and determine a weight value. 5238 /// This object must already have been set up with the operand type 5239 /// and the current alternative constraint selected. 5240 TargetLowering::ConstraintWeight 5241 TargetLowering::getSingleConstraintMatchWeight( 5242 AsmOperandInfo &info, const char *constraint) const { 5243 ConstraintWeight weight = CW_Invalid; 5244 Value *CallOperandVal = info.CallOperandVal; 5245 // If we don't have a value, we can't do a match, 5246 // but allow it at the lowest weight. 5247 if (!CallOperandVal) 5248 return CW_Default; 5249 // Look at the constraint type. 5250 switch (*constraint) { 5251 case 'i': // immediate integer. 5252 case 'n': // immediate integer with a known value. 5253 if (isa<ConstantInt>(CallOperandVal)) 5254 weight = CW_Constant; 5255 break; 5256 case 's': // non-explicit intregal immediate. 5257 if (isa<GlobalValue>(CallOperandVal)) 5258 weight = CW_Constant; 5259 break; 5260 case 'E': // immediate float if host format. 5261 case 'F': // immediate float. 5262 if (isa<ConstantFP>(CallOperandVal)) 5263 weight = CW_Constant; 5264 break; 5265 case '<': // memory operand with autodecrement. 5266 case '>': // memory operand with autoincrement. 5267 case 'm': // memory operand. 5268 case 'o': // offsettable memory operand 5269 case 'V': // non-offsettable memory operand 5270 weight = CW_Memory; 5271 break; 5272 case 'r': // general register. 5273 case 'g': // general register, memory operand or immediate integer. 5274 // note: Clang converts "g" to "imr". 5275 if (CallOperandVal->getType()->isIntegerTy()) 5276 weight = CW_Register; 5277 break; 5278 case 'X': // any operand. 5279 default: 5280 weight = CW_Default; 5281 break; 5282 } 5283 return weight; 5284 } 5285 5286 /// If there are multiple different constraints that we could pick for this 5287 /// operand (e.g. "imr") try to pick the 'best' one. 5288 /// This is somewhat tricky: constraints fall into four classes: 5289 /// Other -> immediates and magic values 5290 /// Register -> one specific register 5291 /// RegisterClass -> a group of regs 5292 /// Memory -> memory 5293 /// Ideally, we would pick the most specific constraint possible: if we have 5294 /// something that fits into a register, we would pick it. The problem here 5295 /// is that if we have something that could either be in a register or in 5296 /// memory that use of the register could cause selection of *other* 5297 /// operands to fail: they might only succeed if we pick memory. Because of 5298 /// this the heuristic we use is: 5299 /// 5300 /// 1) If there is an 'other' constraint, and if the operand is valid for 5301 /// that constraint, use it. This makes us take advantage of 'i' 5302 /// constraints when available. 5303 /// 2) Otherwise, pick the most general constraint present. This prefers 5304 /// 'm' over 'r', for example. 5305 /// 5306 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5307 const TargetLowering &TLI, 5308 SDValue Op, SelectionDAG *DAG) { 5309 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5310 unsigned BestIdx = 0; 5311 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5312 int BestGenerality = -1; 5313 5314 // Loop over the options, keeping track of the most general one. 5315 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5316 TargetLowering::ConstraintType CType = 5317 TLI.getConstraintType(OpInfo.Codes[i]); 5318 5319 // Indirect 'other' or 'immediate' constraints are not allowed. 5320 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5321 CType == TargetLowering::C_Register || 5322 CType == TargetLowering::C_RegisterClass)) 5323 continue; 5324 5325 // If this is an 'other' or 'immediate' constraint, see if the operand is 5326 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5327 // the operand is an integer in the range [0..31] we want to use I (saving a 5328 // load of a register), otherwise we must use 'r'. 5329 if ((CType == TargetLowering::C_Other || 5330 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5331 assert(OpInfo.Codes[i].size() == 1 && 5332 "Unhandled multi-letter 'other' constraint"); 5333 std::vector<SDValue> ResultOps; 5334 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5335 ResultOps, *DAG); 5336 if (!ResultOps.empty()) { 5337 BestType = CType; 5338 BestIdx = i; 5339 break; 5340 } 5341 } 5342 5343 // Things with matching constraints can only be registers, per gcc 5344 // documentation. This mainly affects "g" constraints. 5345 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5346 continue; 5347 5348 // This constraint letter is more general than the previous one, use it. 5349 int Generality = getConstraintGenerality(CType); 5350 if (Generality > BestGenerality) { 5351 BestType = CType; 5352 BestIdx = i; 5353 BestGenerality = Generality; 5354 } 5355 } 5356 5357 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5358 OpInfo.ConstraintType = BestType; 5359 } 5360 5361 /// Determines the constraint code and constraint type to use for the specific 5362 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5363 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5364 SDValue Op, 5365 SelectionDAG *DAG) const { 5366 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5367 5368 // Single-letter constraints ('r') are very common. 5369 if (OpInfo.Codes.size() == 1) { 5370 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5371 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5372 } else { 5373 ChooseConstraint(OpInfo, *this, Op, DAG); 5374 } 5375 5376 // 'X' matches anything. 5377 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5378 // Constants are handled elsewhere. For Functions, the type here is the 5379 // type of the result, which is not what we want to look at; leave them 5380 // alone. 5381 Value *v = OpInfo.CallOperandVal; 5382 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5383 return; 5384 } 5385 5386 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5387 OpInfo.ConstraintCode = "i"; 5388 return; 5389 } 5390 5391 // Otherwise, try to resolve it to something we know about by looking at 5392 // the actual operand type. 5393 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5394 OpInfo.ConstraintCode = Repl; 5395 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5396 } 5397 } 5398 } 5399 5400 /// Given an exact SDIV by a constant, create a multiplication 5401 /// with the multiplicative inverse of the constant. 5402 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5403 const SDLoc &dl, SelectionDAG &DAG, 5404 SmallVectorImpl<SDNode *> &Created) { 5405 SDValue Op0 = N->getOperand(0); 5406 SDValue Op1 = N->getOperand(1); 5407 EVT VT = N->getValueType(0); 5408 EVT SVT = VT.getScalarType(); 5409 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5410 EVT ShSVT = ShVT.getScalarType(); 5411 5412 bool UseSRA = false; 5413 SmallVector<SDValue, 16> Shifts, Factors; 5414 5415 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5416 if (C->isZero()) 5417 return false; 5418 APInt Divisor = C->getAPIntValue(); 5419 unsigned Shift = Divisor.countTrailingZeros(); 5420 if (Shift) { 5421 Divisor.ashrInPlace(Shift); 5422 UseSRA = true; 5423 } 5424 // Calculate the multiplicative inverse, using Newton's method. 5425 APInt t; 5426 APInt Factor = Divisor; 5427 while ((t = Divisor * Factor) != 1) 5428 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5429 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5430 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5431 return true; 5432 }; 5433 5434 // Collect all magic values from the build vector. 5435 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5436 return SDValue(); 5437 5438 SDValue Shift, Factor; 5439 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5440 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5441 Factor = DAG.getBuildVector(VT, dl, Factors); 5442 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5443 assert(Shifts.size() == 1 && Factors.size() == 1 && 5444 "Expected matchUnaryPredicate to return one element for scalable " 5445 "vectors"); 5446 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5447 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5448 } else { 5449 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5450 Shift = Shifts[0]; 5451 Factor = Factors[0]; 5452 } 5453 5454 SDValue Res = Op0; 5455 5456 // Shift the value upfront if it is even, so the LSB is one. 5457 if (UseSRA) { 5458 // TODO: For UDIV use SRL instead of SRA. 5459 SDNodeFlags Flags; 5460 Flags.setExact(true); 5461 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5462 Created.push_back(Res.getNode()); 5463 } 5464 5465 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5466 } 5467 5468 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5469 SelectionDAG &DAG, 5470 SmallVectorImpl<SDNode *> &Created) const { 5471 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5473 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5474 return SDValue(N, 0); // Lower SDIV as SDIV 5475 return SDValue(); 5476 } 5477 5478 /// Given an ISD::SDIV node expressing a divide by constant, 5479 /// return a DAG expression to select that will generate the same value by 5480 /// multiplying by a magic number. 5481 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5482 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5483 bool IsAfterLegalization, 5484 SmallVectorImpl<SDNode *> &Created) const { 5485 SDLoc dl(N); 5486 EVT VT = N->getValueType(0); 5487 EVT SVT = VT.getScalarType(); 5488 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5489 EVT ShSVT = ShVT.getScalarType(); 5490 unsigned EltBits = VT.getScalarSizeInBits(); 5491 EVT MulVT; 5492 5493 // Check to see if we can do this. 5494 // FIXME: We should be more aggressive here. 5495 if (!isTypeLegal(VT)) { 5496 // Limit this to simple scalars for now. 5497 if (VT.isVector() || !VT.isSimple()) 5498 return SDValue(); 5499 5500 // If this type will be promoted to a large enough type with a legal 5501 // multiply operation, we can go ahead and do this transform. 5502 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5503 return SDValue(); 5504 5505 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5506 if (MulVT.getSizeInBits() < (2 * EltBits) || 5507 !isOperationLegal(ISD::MUL, MulVT)) 5508 return SDValue(); 5509 } 5510 5511 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5512 if (N->getFlags().hasExact()) 5513 return BuildExactSDIV(*this, N, dl, DAG, Created); 5514 5515 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5516 5517 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5518 if (C->isZero()) 5519 return false; 5520 5521 const APInt &Divisor = C->getAPIntValue(); 5522 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5523 int NumeratorFactor = 0; 5524 int ShiftMask = -1; 5525 5526 if (Divisor.isOne() || Divisor.isAllOnes()) { 5527 // If d is +1/-1, we just multiply the numerator by +1/-1. 5528 NumeratorFactor = Divisor.getSExtValue(); 5529 magics.Magic = 0; 5530 magics.ShiftAmount = 0; 5531 ShiftMask = 0; 5532 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5533 // If d > 0 and m < 0, add the numerator. 5534 NumeratorFactor = 1; 5535 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5536 // If d < 0 and m > 0, subtract the numerator. 5537 NumeratorFactor = -1; 5538 } 5539 5540 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5541 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5542 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5543 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5544 return true; 5545 }; 5546 5547 SDValue N0 = N->getOperand(0); 5548 SDValue N1 = N->getOperand(1); 5549 5550 // Collect the shifts / magic values from each element. 5551 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5552 return SDValue(); 5553 5554 SDValue MagicFactor, Factor, Shift, ShiftMask; 5555 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5556 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5557 Factor = DAG.getBuildVector(VT, dl, Factors); 5558 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5559 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5560 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5561 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5562 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5563 "Expected matchUnaryPredicate to return one element for scalable " 5564 "vectors"); 5565 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5566 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5567 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5568 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5569 } else { 5570 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5571 MagicFactor = MagicFactors[0]; 5572 Factor = Factors[0]; 5573 Shift = Shifts[0]; 5574 ShiftMask = ShiftMasks[0]; 5575 } 5576 5577 // Multiply the numerator (operand 0) by the magic value. 5578 // FIXME: We should support doing a MUL in a wider type. 5579 auto GetMULHS = [&](SDValue X, SDValue Y) { 5580 // If the type isn't legal, use a wider mul of the the type calculated 5581 // earlier. 5582 if (!isTypeLegal(VT)) { 5583 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5584 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5585 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5586 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5587 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5588 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5589 } 5590 5591 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5592 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5593 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5594 SDValue LoHi = 5595 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5596 return SDValue(LoHi.getNode(), 1); 5597 } 5598 return SDValue(); 5599 }; 5600 5601 SDValue Q = GetMULHS(N0, MagicFactor); 5602 if (!Q) 5603 return SDValue(); 5604 5605 Created.push_back(Q.getNode()); 5606 5607 // (Optionally) Add/subtract the numerator using Factor. 5608 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5609 Created.push_back(Factor.getNode()); 5610 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5611 Created.push_back(Q.getNode()); 5612 5613 // Shift right algebraic by shift value. 5614 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5615 Created.push_back(Q.getNode()); 5616 5617 // Extract the sign bit, mask it and add it to the quotient. 5618 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5619 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5620 Created.push_back(T.getNode()); 5621 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5622 Created.push_back(T.getNode()); 5623 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5624 } 5625 5626 /// Given an ISD::UDIV node expressing a divide by constant, 5627 /// return a DAG expression to select that will generate the same value by 5628 /// multiplying by a magic number. 5629 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5630 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5631 bool IsAfterLegalization, 5632 SmallVectorImpl<SDNode *> &Created) const { 5633 SDLoc dl(N); 5634 EVT VT = N->getValueType(0); 5635 EVT SVT = VT.getScalarType(); 5636 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5637 EVT ShSVT = ShVT.getScalarType(); 5638 unsigned EltBits = VT.getScalarSizeInBits(); 5639 EVT MulVT; 5640 5641 // Check to see if we can do this. 5642 // FIXME: We should be more aggressive here. 5643 if (!isTypeLegal(VT)) { 5644 // Limit this to simple scalars for now. 5645 if (VT.isVector() || !VT.isSimple()) 5646 return SDValue(); 5647 5648 // If this type will be promoted to a large enough type with a legal 5649 // multiply operation, we can go ahead and do this transform. 5650 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5651 return SDValue(); 5652 5653 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5654 if (MulVT.getSizeInBits() < (2 * EltBits) || 5655 !isOperationLegal(ISD::MUL, MulVT)) 5656 return SDValue(); 5657 } 5658 5659 bool UseNPQ = false; 5660 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5661 5662 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5663 if (C->isZero()) 5664 return false; 5665 // FIXME: We should use a narrower constant when the upper 5666 // bits are known to be zero. 5667 const APInt& Divisor = C->getAPIntValue(); 5668 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5669 unsigned PreShift = 0, PostShift = 0; 5670 5671 // If the divisor is even, we can avoid using the expensive fixup by 5672 // shifting the divided value upfront. 5673 if (magics.IsAdd != 0 && !Divisor[0]) { 5674 PreShift = Divisor.countTrailingZeros(); 5675 // Get magic number for the shifted divisor. 5676 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5677 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5678 } 5679 5680 APInt Magic = magics.Magic; 5681 5682 unsigned SelNPQ; 5683 if (magics.IsAdd == 0 || Divisor.isOne()) { 5684 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5685 "We shouldn't generate an undefined shift!"); 5686 PostShift = magics.ShiftAmount; 5687 SelNPQ = false; 5688 } else { 5689 PostShift = magics.ShiftAmount - 1; 5690 SelNPQ = true; 5691 } 5692 5693 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5694 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5695 NPQFactors.push_back( 5696 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5697 : APInt::getZero(EltBits), 5698 dl, SVT)); 5699 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5700 UseNPQ |= SelNPQ; 5701 return true; 5702 }; 5703 5704 SDValue N0 = N->getOperand(0); 5705 SDValue N1 = N->getOperand(1); 5706 5707 // Collect the shifts/magic values from each element. 5708 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5709 return SDValue(); 5710 5711 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5712 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5713 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5714 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5715 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5716 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5717 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5718 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5719 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5720 "Expected matchUnaryPredicate to return one for scalable vectors"); 5721 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5722 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5723 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5724 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5725 } else { 5726 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5727 PreShift = PreShifts[0]; 5728 MagicFactor = MagicFactors[0]; 5729 PostShift = PostShifts[0]; 5730 } 5731 5732 SDValue Q = N0; 5733 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5734 Created.push_back(Q.getNode()); 5735 5736 // FIXME: We should support doing a MUL in a wider type. 5737 auto GetMULHU = [&](SDValue X, SDValue Y) { 5738 // If the type isn't legal, use a wider mul of the the type calculated 5739 // earlier. 5740 if (!isTypeLegal(VT)) { 5741 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5742 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5743 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5744 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5745 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5746 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5747 } 5748 5749 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5750 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5751 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5752 SDValue LoHi = 5753 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5754 return SDValue(LoHi.getNode(), 1); 5755 } 5756 return SDValue(); // No mulhu or equivalent 5757 }; 5758 5759 // Multiply the numerator (operand 0) by the magic value. 5760 Q = GetMULHU(Q, MagicFactor); 5761 if (!Q) 5762 return SDValue(); 5763 5764 Created.push_back(Q.getNode()); 5765 5766 if (UseNPQ) { 5767 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5768 Created.push_back(NPQ.getNode()); 5769 5770 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5771 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5772 if (VT.isVector()) 5773 NPQ = GetMULHU(NPQ, NPQFactor); 5774 else 5775 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5776 5777 Created.push_back(NPQ.getNode()); 5778 5779 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5780 Created.push_back(Q.getNode()); 5781 } 5782 5783 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5784 Created.push_back(Q.getNode()); 5785 5786 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5787 5788 SDValue One = DAG.getConstant(1, dl, VT); 5789 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5790 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5791 } 5792 5793 /// If all values in Values that *don't* match the predicate are same 'splat' 5794 /// value, then replace all values with that splat value. 5795 /// Else, if AlternativeReplacement was provided, then replace all values that 5796 /// do match predicate with AlternativeReplacement value. 5797 static void 5798 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5799 std::function<bool(SDValue)> Predicate, 5800 SDValue AlternativeReplacement = SDValue()) { 5801 SDValue Replacement; 5802 // Is there a value for which the Predicate does *NOT* match? What is it? 5803 auto SplatValue = llvm::find_if_not(Values, Predicate); 5804 if (SplatValue != Values.end()) { 5805 // Does Values consist only of SplatValue's and values matching Predicate? 5806 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5807 return Value == *SplatValue || Predicate(Value); 5808 })) // Then we shall replace values matching predicate with SplatValue. 5809 Replacement = *SplatValue; 5810 } 5811 if (!Replacement) { 5812 // Oops, we did not find the "baseline" splat value. 5813 if (!AlternativeReplacement) 5814 return; // Nothing to do. 5815 // Let's replace with provided value then. 5816 Replacement = AlternativeReplacement; 5817 } 5818 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5819 } 5820 5821 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5822 /// where the divisor is constant and the comparison target is zero, 5823 /// return a DAG expression that will generate the same comparison result 5824 /// using only multiplications, additions and shifts/rotations. 5825 /// Ref: "Hacker's Delight" 10-17. 5826 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5827 SDValue CompTargetNode, 5828 ISD::CondCode Cond, 5829 DAGCombinerInfo &DCI, 5830 const SDLoc &DL) const { 5831 SmallVector<SDNode *, 5> Built; 5832 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5833 DCI, DL, Built)) { 5834 for (SDNode *N : Built) 5835 DCI.AddToWorklist(N); 5836 return Folded; 5837 } 5838 5839 return SDValue(); 5840 } 5841 5842 SDValue 5843 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5844 SDValue CompTargetNode, ISD::CondCode Cond, 5845 DAGCombinerInfo &DCI, const SDLoc &DL, 5846 SmallVectorImpl<SDNode *> &Created) const { 5847 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5848 // - D must be constant, with D = D0 * 2^K where D0 is odd 5849 // - P is the multiplicative inverse of D0 modulo 2^W 5850 // - Q = floor(((2^W) - 1) / D) 5851 // where W is the width of the common type of N and D. 5852 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5853 "Only applicable for (in)equality comparisons."); 5854 5855 SelectionDAG &DAG = DCI.DAG; 5856 5857 EVT VT = REMNode.getValueType(); 5858 EVT SVT = VT.getScalarType(); 5859 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5860 EVT ShSVT = ShVT.getScalarType(); 5861 5862 // If MUL is unavailable, we cannot proceed in any case. 5863 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5864 return SDValue(); 5865 5866 bool ComparingWithAllZeros = true; 5867 bool AllComparisonsWithNonZerosAreTautological = true; 5868 bool HadTautologicalLanes = false; 5869 bool AllLanesAreTautological = true; 5870 bool HadEvenDivisor = false; 5871 bool AllDivisorsArePowerOfTwo = true; 5872 bool HadTautologicalInvertedLanes = false; 5873 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5874 5875 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5876 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5877 if (CDiv->isZero()) 5878 return false; 5879 5880 const APInt &D = CDiv->getAPIntValue(); 5881 const APInt &Cmp = CCmp->getAPIntValue(); 5882 5883 ComparingWithAllZeros &= Cmp.isZero(); 5884 5885 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5886 // if C2 is not less than C1, the comparison is always false. 5887 // But we will only be able to produce the comparison that will give the 5888 // opposive tautological answer. So this lane would need to be fixed up. 5889 bool TautologicalInvertedLane = D.ule(Cmp); 5890 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5891 5892 // If all lanes are tautological (either all divisors are ones, or divisor 5893 // is not greater than the constant we are comparing with), 5894 // we will prefer to avoid the fold. 5895 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5896 HadTautologicalLanes |= TautologicalLane; 5897 AllLanesAreTautological &= TautologicalLane; 5898 5899 // If we are comparing with non-zero, we need'll need to subtract said 5900 // comparison value from the LHS. But there is no point in doing that if 5901 // every lane where we are comparing with non-zero is tautological.. 5902 if (!Cmp.isZero()) 5903 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5904 5905 // Decompose D into D0 * 2^K 5906 unsigned K = D.countTrailingZeros(); 5907 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5908 APInt D0 = D.lshr(K); 5909 5910 // D is even if it has trailing zeros. 5911 HadEvenDivisor |= (K != 0); 5912 // D is a power-of-two if D0 is one. 5913 // If all divisors are power-of-two, we will prefer to avoid the fold. 5914 AllDivisorsArePowerOfTwo &= D0.isOne(); 5915 5916 // P = inv(D0, 2^W) 5917 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5918 unsigned W = D.getBitWidth(); 5919 APInt P = D0.zext(W + 1) 5920 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5921 .trunc(W); 5922 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5923 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5924 5925 // Q = floor((2^W - 1) u/ D) 5926 // R = ((2^W - 1) u% D) 5927 APInt Q, R; 5928 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5929 5930 // If we are comparing with zero, then that comparison constant is okay, 5931 // else it may need to be one less than that. 5932 if (Cmp.ugt(R)) 5933 Q -= 1; 5934 5935 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5936 "We are expecting that K is always less than all-ones for ShSVT"); 5937 5938 // If the lane is tautological the result can be constant-folded. 5939 if (TautologicalLane) { 5940 // Set P and K amount to a bogus values so we can try to splat them. 5941 P = 0; 5942 K = -1; 5943 // And ensure that comparison constant is tautological, 5944 // it will always compare true/false. 5945 Q = -1; 5946 } 5947 5948 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5949 KAmts.push_back( 5950 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5951 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5952 return true; 5953 }; 5954 5955 SDValue N = REMNode.getOperand(0); 5956 SDValue D = REMNode.getOperand(1); 5957 5958 // Collect the values from each element. 5959 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5960 return SDValue(); 5961 5962 // If all lanes are tautological, the result can be constant-folded. 5963 if (AllLanesAreTautological) 5964 return SDValue(); 5965 5966 // If this is a urem by a powers-of-two, avoid the fold since it can be 5967 // best implemented as a bit test. 5968 if (AllDivisorsArePowerOfTwo) 5969 return SDValue(); 5970 5971 SDValue PVal, KVal, QVal; 5972 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5973 if (HadTautologicalLanes) { 5974 // Try to turn PAmts into a splat, since we don't care about the values 5975 // that are currently '0'. If we can't, just keep '0'`s. 5976 turnVectorIntoSplatVector(PAmts, isNullConstant); 5977 // Try to turn KAmts into a splat, since we don't care about the values 5978 // that are currently '-1'. If we can't, change them to '0'`s. 5979 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5980 DAG.getConstant(0, DL, ShSVT)); 5981 } 5982 5983 PVal = DAG.getBuildVector(VT, DL, PAmts); 5984 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5985 QVal = DAG.getBuildVector(VT, DL, QAmts); 5986 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5987 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5988 "Expected matchBinaryPredicate to return one element for " 5989 "SPLAT_VECTORs"); 5990 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5991 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5992 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5993 } else { 5994 PVal = PAmts[0]; 5995 KVal = KAmts[0]; 5996 QVal = QAmts[0]; 5997 } 5998 5999 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6000 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6001 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6002 assert(CompTargetNode.getValueType() == N.getValueType() && 6003 "Expecting that the types on LHS and RHS of comparisons match."); 6004 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6005 } 6006 6007 // (mul N, P) 6008 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6009 Created.push_back(Op0.getNode()); 6010 6011 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6012 // divisors as a performance improvement, since rotating by 0 is a no-op. 6013 if (HadEvenDivisor) { 6014 // We need ROTR to do this. 6015 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6016 return SDValue(); 6017 // UREM: (rotr (mul N, P), K) 6018 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6019 Created.push_back(Op0.getNode()); 6020 } 6021 6022 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6023 SDValue NewCC = 6024 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6025 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6026 if (!HadTautologicalInvertedLanes) 6027 return NewCC; 6028 6029 // If any lanes previously compared always-false, the NewCC will give 6030 // always-true result for them, so we need to fixup those lanes. 6031 // Or the other way around for inequality predicate. 6032 assert(VT.isVector() && "Can/should only get here for vectors."); 6033 Created.push_back(NewCC.getNode()); 6034 6035 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6036 // if C2 is not less than C1, the comparison is always false. 6037 // But we have produced the comparison that will give the 6038 // opposive tautological answer. So these lanes would need to be fixed up. 6039 SDValue TautologicalInvertedChannels = 6040 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6041 Created.push_back(TautologicalInvertedChannels.getNode()); 6042 6043 // NOTE: we avoid letting illegal types through even if we're before legalize 6044 // ops – legalization has a hard time producing good code for this. 6045 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6046 // If we have a vector select, let's replace the comparison results in the 6047 // affected lanes with the correct tautological result. 6048 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6049 DL, SETCCVT, SETCCVT); 6050 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6051 Replacement, NewCC); 6052 } 6053 6054 // Else, we can just invert the comparison result in the appropriate lanes. 6055 // 6056 // NOTE: see the note above VSELECT above. 6057 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6058 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6059 TautologicalInvertedChannels); 6060 6061 return SDValue(); // Don't know how to lower. 6062 } 6063 6064 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6065 /// where the divisor is constant and the comparison target is zero, 6066 /// return a DAG expression that will generate the same comparison result 6067 /// using only multiplications, additions and shifts/rotations. 6068 /// Ref: "Hacker's Delight" 10-17. 6069 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6070 SDValue CompTargetNode, 6071 ISD::CondCode Cond, 6072 DAGCombinerInfo &DCI, 6073 const SDLoc &DL) const { 6074 SmallVector<SDNode *, 7> Built; 6075 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6076 DCI, DL, Built)) { 6077 assert(Built.size() <= 7 && "Max size prediction failed."); 6078 for (SDNode *N : Built) 6079 DCI.AddToWorklist(N); 6080 return Folded; 6081 } 6082 6083 return SDValue(); 6084 } 6085 6086 SDValue 6087 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6088 SDValue CompTargetNode, ISD::CondCode Cond, 6089 DAGCombinerInfo &DCI, const SDLoc &DL, 6090 SmallVectorImpl<SDNode *> &Created) const { 6091 // Fold: 6092 // (seteq/ne (srem N, D), 0) 6093 // To: 6094 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6095 // 6096 // - D must be constant, with D = D0 * 2^K where D0 is odd 6097 // - P is the multiplicative inverse of D0 modulo 2^W 6098 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6099 // - Q = floor((2 * A) / (2^K)) 6100 // where W is the width of the common type of N and D. 6101 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6102 "Only applicable for (in)equality comparisons."); 6103 6104 SelectionDAG &DAG = DCI.DAG; 6105 6106 EVT VT = REMNode.getValueType(); 6107 EVT SVT = VT.getScalarType(); 6108 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6109 EVT ShSVT = ShVT.getScalarType(); 6110 6111 // If we are after ops legalization, and MUL is unavailable, we can not 6112 // proceed. 6113 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6114 return SDValue(); 6115 6116 // TODO: Could support comparing with non-zero too. 6117 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6118 if (!CompTarget || !CompTarget->isZero()) 6119 return SDValue(); 6120 6121 bool HadIntMinDivisor = false; 6122 bool HadOneDivisor = false; 6123 bool AllDivisorsAreOnes = true; 6124 bool HadEvenDivisor = false; 6125 bool NeedToApplyOffset = false; 6126 bool AllDivisorsArePowerOfTwo = true; 6127 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6128 6129 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6130 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6131 if (C->isZero()) 6132 return false; 6133 6134 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6135 6136 // WARNING: this fold is only valid for positive divisors! 6137 APInt D = C->getAPIntValue(); 6138 if (D.isNegative()) 6139 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6140 6141 HadIntMinDivisor |= D.isMinSignedValue(); 6142 6143 // If all divisors are ones, we will prefer to avoid the fold. 6144 HadOneDivisor |= D.isOne(); 6145 AllDivisorsAreOnes &= D.isOne(); 6146 6147 // Decompose D into D0 * 2^K 6148 unsigned K = D.countTrailingZeros(); 6149 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6150 APInt D0 = D.lshr(K); 6151 6152 if (!D.isMinSignedValue()) { 6153 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6154 // we don't care about this lane in this fold, we'll special-handle it. 6155 HadEvenDivisor |= (K != 0); 6156 } 6157 6158 // D is a power-of-two if D0 is one. This includes INT_MIN. 6159 // If all divisors are power-of-two, we will prefer to avoid the fold. 6160 AllDivisorsArePowerOfTwo &= D0.isOne(); 6161 6162 // P = inv(D0, 2^W) 6163 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6164 unsigned W = D.getBitWidth(); 6165 APInt P = D0.zext(W + 1) 6166 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6167 .trunc(W); 6168 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6169 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6170 6171 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6172 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6173 A.clearLowBits(K); 6174 6175 if (!D.isMinSignedValue()) { 6176 // If divisor INT_MIN, then we don't care about this lane in this fold, 6177 // we'll special-handle it. 6178 NeedToApplyOffset |= A != 0; 6179 } 6180 6181 // Q = floor((2 * A) / (2^K)) 6182 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6183 6184 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6185 "We are expecting that A is always less than all-ones for SVT"); 6186 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6187 "We are expecting that K is always less than all-ones for ShSVT"); 6188 6189 // If the divisor is 1 the result can be constant-folded. Likewise, we 6190 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6191 if (D.isOne()) { 6192 // Set P, A and K to a bogus values so we can try to splat them. 6193 P = 0; 6194 A = -1; 6195 K = -1; 6196 6197 // x ?% 1 == 0 <--> true <--> x u<= -1 6198 Q = -1; 6199 } 6200 6201 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6202 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6203 KAmts.push_back( 6204 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6205 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6206 return true; 6207 }; 6208 6209 SDValue N = REMNode.getOperand(0); 6210 SDValue D = REMNode.getOperand(1); 6211 6212 // Collect the values from each element. 6213 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6214 return SDValue(); 6215 6216 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6217 if (AllDivisorsAreOnes) 6218 return SDValue(); 6219 6220 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6221 // since it can be best implemented as a bit test. 6222 if (AllDivisorsArePowerOfTwo) 6223 return SDValue(); 6224 6225 SDValue PVal, AVal, KVal, QVal; 6226 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6227 if (HadOneDivisor) { 6228 // Try to turn PAmts into a splat, since we don't care about the values 6229 // that are currently '0'. If we can't, just keep '0'`s. 6230 turnVectorIntoSplatVector(PAmts, isNullConstant); 6231 // Try to turn AAmts into a splat, since we don't care about the 6232 // values that are currently '-1'. If we can't, change them to '0'`s. 6233 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6234 DAG.getConstant(0, DL, SVT)); 6235 // Try to turn KAmts into a splat, since we don't care about the values 6236 // that are currently '-1'. If we can't, change them to '0'`s. 6237 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6238 DAG.getConstant(0, DL, ShSVT)); 6239 } 6240 6241 PVal = DAG.getBuildVector(VT, DL, PAmts); 6242 AVal = DAG.getBuildVector(VT, DL, AAmts); 6243 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6244 QVal = DAG.getBuildVector(VT, DL, QAmts); 6245 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6246 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6247 QAmts.size() == 1 && 6248 "Expected matchUnaryPredicate to return one element for scalable " 6249 "vectors"); 6250 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6251 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6252 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6253 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6254 } else { 6255 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6256 PVal = PAmts[0]; 6257 AVal = AAmts[0]; 6258 KVal = KAmts[0]; 6259 QVal = QAmts[0]; 6260 } 6261 6262 // (mul N, P) 6263 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6264 Created.push_back(Op0.getNode()); 6265 6266 if (NeedToApplyOffset) { 6267 // We need ADD to do this. 6268 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6269 return SDValue(); 6270 6271 // (add (mul N, P), A) 6272 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6273 Created.push_back(Op0.getNode()); 6274 } 6275 6276 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6277 // divisors as a performance improvement, since rotating by 0 is a no-op. 6278 if (HadEvenDivisor) { 6279 // We need ROTR to do this. 6280 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6281 return SDValue(); 6282 // SREM: (rotr (add (mul N, P), A), K) 6283 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6284 Created.push_back(Op0.getNode()); 6285 } 6286 6287 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6288 SDValue Fold = 6289 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6290 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6291 6292 // If we didn't have lanes with INT_MIN divisor, then we're done. 6293 if (!HadIntMinDivisor) 6294 return Fold; 6295 6296 // That fold is only valid for positive divisors. Which effectively means, 6297 // it is invalid for INT_MIN divisors. So if we have such a lane, 6298 // we must fix-up results for said lanes. 6299 assert(VT.isVector() && "Can/should only get here for vectors."); 6300 6301 // NOTE: we avoid letting illegal types through even if we're before legalize 6302 // ops – legalization has a hard time producing good code for the code that 6303 // follows. 6304 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6305 !isOperationLegalOrCustom(ISD::AND, VT) || 6306 !isOperationLegalOrCustom(Cond, VT) || 6307 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6308 return SDValue(); 6309 6310 Created.push_back(Fold.getNode()); 6311 6312 SDValue IntMin = DAG.getConstant( 6313 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6314 SDValue IntMax = DAG.getConstant( 6315 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6316 SDValue Zero = 6317 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6318 6319 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6320 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6321 Created.push_back(DivisorIsIntMin.getNode()); 6322 6323 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6324 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6325 Created.push_back(Masked.getNode()); 6326 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6327 Created.push_back(MaskedIsZero.getNode()); 6328 6329 // To produce final result we need to blend 2 vectors: 'SetCC' and 6330 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6331 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6332 // constant-folded, select can get lowered to a shuffle with constant mask. 6333 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6334 MaskedIsZero, Fold); 6335 6336 return Blended; 6337 } 6338 6339 bool TargetLowering:: 6340 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6341 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6342 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6343 "be a constant integer"); 6344 return true; 6345 } 6346 6347 return false; 6348 } 6349 6350 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6351 const DenormalMode &Mode) const { 6352 SDLoc DL(Op); 6353 EVT VT = Op.getValueType(); 6354 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6355 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6356 // Testing it with denormal inputs to avoid wrong estimate. 6357 if (Mode.Input == DenormalMode::IEEE) { 6358 // This is specifically a check for the handling of denormal inputs, 6359 // not the result. 6360 6361 // Test = fabs(X) < SmallestNormal 6362 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6363 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6364 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6365 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6366 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6367 } 6368 // Test = X == 0.0 6369 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6370 } 6371 6372 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6373 bool LegalOps, bool OptForSize, 6374 NegatibleCost &Cost, 6375 unsigned Depth) const { 6376 // fneg is removable even if it has multiple uses. 6377 if (Op.getOpcode() == ISD::FNEG) { 6378 Cost = NegatibleCost::Cheaper; 6379 return Op.getOperand(0); 6380 } 6381 6382 // Don't recurse exponentially. 6383 if (Depth > SelectionDAG::MaxRecursionDepth) 6384 return SDValue(); 6385 6386 // Pre-increment recursion depth for use in recursive calls. 6387 ++Depth; 6388 const SDNodeFlags Flags = Op->getFlags(); 6389 const TargetOptions &Options = DAG.getTarget().Options; 6390 EVT VT = Op.getValueType(); 6391 unsigned Opcode = Op.getOpcode(); 6392 6393 // Don't allow anything with multiple uses unless we know it is free. 6394 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6395 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6396 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6397 if (!IsFreeExtend) 6398 return SDValue(); 6399 } 6400 6401 auto RemoveDeadNode = [&](SDValue N) { 6402 if (N && N.getNode()->use_empty()) 6403 DAG.RemoveDeadNode(N.getNode()); 6404 }; 6405 6406 SDLoc DL(Op); 6407 6408 // Because getNegatedExpression can delete nodes we need a handle to keep 6409 // temporary nodes alive in case the recursion manages to create an identical 6410 // node. 6411 std::list<HandleSDNode> Handles; 6412 6413 switch (Opcode) { 6414 case ISD::ConstantFP: { 6415 // Don't invert constant FP values after legalization unless the target says 6416 // the negated constant is legal. 6417 bool IsOpLegal = 6418 isOperationLegal(ISD::ConstantFP, VT) || 6419 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6420 OptForSize); 6421 6422 if (LegalOps && !IsOpLegal) 6423 break; 6424 6425 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6426 V.changeSign(); 6427 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6428 6429 // If we already have the use of the negated floating constant, it is free 6430 // to negate it even it has multiple uses. 6431 if (!Op.hasOneUse() && CFP.use_empty()) 6432 break; 6433 Cost = NegatibleCost::Neutral; 6434 return CFP; 6435 } 6436 case ISD::BUILD_VECTOR: { 6437 // Only permit BUILD_VECTOR of constants. 6438 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6439 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6440 })) 6441 break; 6442 6443 bool IsOpLegal = 6444 (isOperationLegal(ISD::ConstantFP, VT) && 6445 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6446 llvm::all_of(Op->op_values(), [&](SDValue N) { 6447 return N.isUndef() || 6448 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6449 OptForSize); 6450 }); 6451 6452 if (LegalOps && !IsOpLegal) 6453 break; 6454 6455 SmallVector<SDValue, 4> Ops; 6456 for (SDValue C : Op->op_values()) { 6457 if (C.isUndef()) { 6458 Ops.push_back(C); 6459 continue; 6460 } 6461 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6462 V.changeSign(); 6463 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6464 } 6465 Cost = NegatibleCost::Neutral; 6466 return DAG.getBuildVector(VT, DL, Ops); 6467 } 6468 case ISD::FADD: { 6469 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6470 break; 6471 6472 // After operation legalization, it might not be legal to create new FSUBs. 6473 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6474 break; 6475 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6476 6477 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6478 NegatibleCost CostX = NegatibleCost::Expensive; 6479 SDValue NegX = 6480 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6481 // Prevent this node from being deleted by the next call. 6482 if (NegX) 6483 Handles.emplace_back(NegX); 6484 6485 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6486 NegatibleCost CostY = NegatibleCost::Expensive; 6487 SDValue NegY = 6488 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6489 6490 // We're done with the handles. 6491 Handles.clear(); 6492 6493 // Negate the X if its cost is less or equal than Y. 6494 if (NegX && (CostX <= CostY)) { 6495 Cost = CostX; 6496 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6497 if (NegY != N) 6498 RemoveDeadNode(NegY); 6499 return N; 6500 } 6501 6502 // Negate the Y if it is not expensive. 6503 if (NegY) { 6504 Cost = CostY; 6505 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6506 if (NegX != N) 6507 RemoveDeadNode(NegX); 6508 return N; 6509 } 6510 break; 6511 } 6512 case ISD::FSUB: { 6513 // We can't turn -(A-B) into B-A when we honor signed zeros. 6514 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6515 break; 6516 6517 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6518 // fold (fneg (fsub 0, Y)) -> Y 6519 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6520 if (C->isZero()) { 6521 Cost = NegatibleCost::Cheaper; 6522 return Y; 6523 } 6524 6525 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6526 Cost = NegatibleCost::Neutral; 6527 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6528 } 6529 case ISD::FMUL: 6530 case ISD::FDIV: { 6531 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6532 6533 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6534 NegatibleCost CostX = NegatibleCost::Expensive; 6535 SDValue NegX = 6536 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6537 // Prevent this node from being deleted by the next call. 6538 if (NegX) 6539 Handles.emplace_back(NegX); 6540 6541 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6542 NegatibleCost CostY = NegatibleCost::Expensive; 6543 SDValue NegY = 6544 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6545 6546 // We're done with the handles. 6547 Handles.clear(); 6548 6549 // Negate the X if its cost is less or equal than Y. 6550 if (NegX && (CostX <= CostY)) { 6551 Cost = CostX; 6552 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6553 if (NegY != N) 6554 RemoveDeadNode(NegY); 6555 return N; 6556 } 6557 6558 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6559 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6560 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6561 break; 6562 6563 // Negate the Y if it is not expensive. 6564 if (NegY) { 6565 Cost = CostY; 6566 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6567 if (NegX != N) 6568 RemoveDeadNode(NegX); 6569 return N; 6570 } 6571 break; 6572 } 6573 case ISD::FMA: 6574 case ISD::FMAD: { 6575 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6576 break; 6577 6578 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6579 NegatibleCost CostZ = NegatibleCost::Expensive; 6580 SDValue NegZ = 6581 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6582 // Give up if fail to negate the Z. 6583 if (!NegZ) 6584 break; 6585 6586 // Prevent this node from being deleted by the next two calls. 6587 Handles.emplace_back(NegZ); 6588 6589 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6590 NegatibleCost CostX = NegatibleCost::Expensive; 6591 SDValue NegX = 6592 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6593 // Prevent this node from being deleted by the next call. 6594 if (NegX) 6595 Handles.emplace_back(NegX); 6596 6597 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6598 NegatibleCost CostY = NegatibleCost::Expensive; 6599 SDValue NegY = 6600 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6601 6602 // We're done with the handles. 6603 Handles.clear(); 6604 6605 // Negate the X if its cost is less or equal than Y. 6606 if (NegX && (CostX <= CostY)) { 6607 Cost = std::min(CostX, CostZ); 6608 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6609 if (NegY != N) 6610 RemoveDeadNode(NegY); 6611 return N; 6612 } 6613 6614 // Negate the Y if it is not expensive. 6615 if (NegY) { 6616 Cost = std::min(CostY, CostZ); 6617 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6618 if (NegX != N) 6619 RemoveDeadNode(NegX); 6620 return N; 6621 } 6622 break; 6623 } 6624 6625 case ISD::FP_EXTEND: 6626 case ISD::FSIN: 6627 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6628 OptForSize, Cost, Depth)) 6629 return DAG.getNode(Opcode, DL, VT, NegV); 6630 break; 6631 case ISD::FP_ROUND: 6632 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6633 OptForSize, Cost, Depth)) 6634 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6635 break; 6636 } 6637 6638 return SDValue(); 6639 } 6640 6641 //===----------------------------------------------------------------------===// 6642 // Legalization Utilities 6643 //===----------------------------------------------------------------------===// 6644 6645 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6646 SDValue LHS, SDValue RHS, 6647 SmallVectorImpl<SDValue> &Result, 6648 EVT HiLoVT, SelectionDAG &DAG, 6649 MulExpansionKind Kind, SDValue LL, 6650 SDValue LH, SDValue RL, SDValue RH) const { 6651 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6652 Opcode == ISD::SMUL_LOHI); 6653 6654 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6655 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6656 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6657 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6658 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6659 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6660 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6661 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6662 6663 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6664 return false; 6665 6666 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6667 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6668 6669 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6670 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6671 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6672 6673 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6674 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6675 bool Signed) -> bool { 6676 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6677 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6678 Hi = SDValue(Lo.getNode(), 1); 6679 return true; 6680 } 6681 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6682 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6683 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6684 return true; 6685 } 6686 return false; 6687 }; 6688 6689 SDValue Lo, Hi; 6690 6691 if (!LL.getNode() && !RL.getNode() && 6692 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6693 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6694 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6695 } 6696 6697 if (!LL.getNode()) 6698 return false; 6699 6700 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6701 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6702 DAG.MaskedValueIsZero(RHS, HighMask)) { 6703 // The inputs are both zero-extended. 6704 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6705 Result.push_back(Lo); 6706 Result.push_back(Hi); 6707 if (Opcode != ISD::MUL) { 6708 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6709 Result.push_back(Zero); 6710 Result.push_back(Zero); 6711 } 6712 return true; 6713 } 6714 } 6715 6716 if (!VT.isVector() && Opcode == ISD::MUL && 6717 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6718 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6719 // The input values are both sign-extended. 6720 // TODO non-MUL case? 6721 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6722 Result.push_back(Lo); 6723 Result.push_back(Hi); 6724 return true; 6725 } 6726 } 6727 6728 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6729 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6730 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6731 6732 if (!LH.getNode() && !RH.getNode() && 6733 isOperationLegalOrCustom(ISD::SRL, VT) && 6734 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6735 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6736 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6737 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6738 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6739 } 6740 6741 if (!LH.getNode()) 6742 return false; 6743 6744 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6745 return false; 6746 6747 Result.push_back(Lo); 6748 6749 if (Opcode == ISD::MUL) { 6750 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6751 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6752 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6753 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6754 Result.push_back(Hi); 6755 return true; 6756 } 6757 6758 // Compute the full width result. 6759 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6760 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6761 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6762 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6763 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6764 }; 6765 6766 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6767 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6768 return false; 6769 6770 // This is effectively the add part of a multiply-add of half-sized operands, 6771 // so it cannot overflow. 6772 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6773 6774 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6775 return false; 6776 6777 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6778 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6779 6780 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6781 isOperationLegalOrCustom(ISD::ADDE, VT)); 6782 if (UseGlue) 6783 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6784 Merge(Lo, Hi)); 6785 else 6786 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6787 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6788 6789 SDValue Carry = Next.getValue(1); 6790 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6791 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6792 6793 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6794 return false; 6795 6796 if (UseGlue) 6797 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6798 Carry); 6799 else 6800 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6801 Zero, Carry); 6802 6803 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6804 6805 if (Opcode == ISD::SMUL_LOHI) { 6806 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6807 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6808 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6809 6810 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6811 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6812 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6813 } 6814 6815 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6816 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6817 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6818 return true; 6819 } 6820 6821 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6822 SelectionDAG &DAG, MulExpansionKind Kind, 6823 SDValue LL, SDValue LH, SDValue RL, 6824 SDValue RH) const { 6825 SmallVector<SDValue, 2> Result; 6826 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6827 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6828 DAG, Kind, LL, LH, RL, RH); 6829 if (Ok) { 6830 assert(Result.size() == 2); 6831 Lo = Result[0]; 6832 Hi = Result[1]; 6833 } 6834 return Ok; 6835 } 6836 6837 // Check that (every element of) Z is undef or not an exact multiple of BW. 6838 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6839 return ISD::matchUnaryPredicate( 6840 Z, 6841 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6842 true); 6843 } 6844 6845 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6846 SelectionDAG &DAG) const { 6847 EVT VT = Node->getValueType(0); 6848 6849 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6850 !isOperationLegalOrCustom(ISD::SRL, VT) || 6851 !isOperationLegalOrCustom(ISD::SUB, VT) || 6852 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6853 return SDValue(); 6854 6855 SDValue X = Node->getOperand(0); 6856 SDValue Y = Node->getOperand(1); 6857 SDValue Z = Node->getOperand(2); 6858 6859 unsigned BW = VT.getScalarSizeInBits(); 6860 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6861 SDLoc DL(SDValue(Node, 0)); 6862 6863 EVT ShVT = Z.getValueType(); 6864 6865 // If a funnel shift in the other direction is more supported, use it. 6866 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6867 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6868 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6869 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6870 // fshl X, Y, Z -> fshr X, Y, -Z 6871 // fshr X, Y, Z -> fshl X, Y, -Z 6872 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6873 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6874 } else { 6875 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6876 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6877 SDValue One = DAG.getConstant(1, DL, ShVT); 6878 if (IsFSHL) { 6879 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6880 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6881 } else { 6882 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6883 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6884 } 6885 Z = DAG.getNOT(DL, Z, ShVT); 6886 } 6887 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6888 } 6889 6890 SDValue ShX, ShY; 6891 SDValue ShAmt, InvShAmt; 6892 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6893 // fshl: X << C | Y >> (BW - C) 6894 // fshr: X << (BW - C) | Y >> C 6895 // where C = Z % BW is not zero 6896 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6897 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6898 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6899 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6900 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6901 } else { 6902 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6903 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6904 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6905 if (isPowerOf2_32(BW)) { 6906 // Z % BW -> Z & (BW - 1) 6907 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6908 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6909 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6910 } else { 6911 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6912 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6913 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6914 } 6915 6916 SDValue One = DAG.getConstant(1, DL, ShVT); 6917 if (IsFSHL) { 6918 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6919 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6920 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6921 } else { 6922 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6923 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6924 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6925 } 6926 } 6927 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6928 } 6929 6930 // TODO: Merge with expandFunnelShift. 6931 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6932 SelectionDAG &DAG) const { 6933 EVT VT = Node->getValueType(0); 6934 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6935 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6936 SDValue Op0 = Node->getOperand(0); 6937 SDValue Op1 = Node->getOperand(1); 6938 SDLoc DL(SDValue(Node, 0)); 6939 6940 EVT ShVT = Op1.getValueType(); 6941 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6942 6943 // If a rotate in the other direction is more supported, use it. 6944 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6945 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6946 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6947 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6948 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6949 } 6950 6951 if (!AllowVectorOps && VT.isVector() && 6952 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6953 !isOperationLegalOrCustom(ISD::SRL, VT) || 6954 !isOperationLegalOrCustom(ISD::SUB, VT) || 6955 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6956 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6957 return SDValue(); 6958 6959 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6960 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6961 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6962 SDValue ShVal; 6963 SDValue HsVal; 6964 if (isPowerOf2_32(EltSizeInBits)) { 6965 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6966 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6967 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6968 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6969 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6970 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6971 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6972 } else { 6973 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6974 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6975 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6976 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6977 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6978 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6979 SDValue One = DAG.getConstant(1, DL, ShVT); 6980 HsVal = 6981 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6982 } 6983 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6984 } 6985 6986 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6987 SelectionDAG &DAG) const { 6988 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6989 EVT VT = Node->getValueType(0); 6990 unsigned VTBits = VT.getScalarSizeInBits(); 6991 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6992 6993 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6994 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6995 SDValue ShOpLo = Node->getOperand(0); 6996 SDValue ShOpHi = Node->getOperand(1); 6997 SDValue ShAmt = Node->getOperand(2); 6998 EVT ShAmtVT = ShAmt.getValueType(); 6999 EVT ShAmtCCVT = 7000 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7001 SDLoc dl(Node); 7002 7003 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7004 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7005 // away during isel. 7006 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7007 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7008 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7009 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7010 : DAG.getConstant(0, dl, VT); 7011 7012 SDValue Tmp2, Tmp3; 7013 if (IsSHL) { 7014 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7015 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7016 } else { 7017 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7018 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7019 } 7020 7021 // If the shift amount is larger or equal than the width of a part we don't 7022 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7023 // values for large shift amounts. 7024 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7025 DAG.getConstant(VTBits, dl, ShAmtVT)); 7026 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7027 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7028 7029 if (IsSHL) { 7030 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7031 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7032 } else { 7033 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7034 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7035 } 7036 } 7037 7038 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7039 SelectionDAG &DAG) const { 7040 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7041 SDValue Src = Node->getOperand(OpNo); 7042 EVT SrcVT = Src.getValueType(); 7043 EVT DstVT = Node->getValueType(0); 7044 SDLoc dl(SDValue(Node, 0)); 7045 7046 // FIXME: Only f32 to i64 conversions are supported. 7047 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7048 return false; 7049 7050 if (Node->isStrictFPOpcode()) 7051 // When a NaN is converted to an integer a trap is allowed. We can't 7052 // use this expansion here because it would eliminate that trap. Other 7053 // traps are also allowed and cannot be eliminated. See 7054 // IEEE 754-2008 sec 5.8. 7055 return false; 7056 7057 // Expand f32 -> i64 conversion 7058 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7059 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7060 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7061 EVT IntVT = SrcVT.changeTypeToInteger(); 7062 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7063 7064 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7065 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7066 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7067 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7068 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7069 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7070 7071 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7072 7073 SDValue ExponentBits = DAG.getNode( 7074 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7075 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7076 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7077 7078 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7079 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7080 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7081 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7082 7083 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7084 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7085 DAG.getConstant(0x00800000, dl, IntVT)); 7086 7087 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7088 7089 R = DAG.getSelectCC( 7090 dl, Exponent, ExponentLoBit, 7091 DAG.getNode(ISD::SHL, dl, DstVT, R, 7092 DAG.getZExtOrTrunc( 7093 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7094 dl, IntShVT)), 7095 DAG.getNode(ISD::SRL, dl, DstVT, R, 7096 DAG.getZExtOrTrunc( 7097 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7098 dl, IntShVT)), 7099 ISD::SETGT); 7100 7101 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7102 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7103 7104 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7105 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7106 return true; 7107 } 7108 7109 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7110 SDValue &Chain, 7111 SelectionDAG &DAG) const { 7112 SDLoc dl(SDValue(Node, 0)); 7113 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7114 SDValue Src = Node->getOperand(OpNo); 7115 7116 EVT SrcVT = Src.getValueType(); 7117 EVT DstVT = Node->getValueType(0); 7118 EVT SetCCVT = 7119 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7120 EVT DstSetCCVT = 7121 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7122 7123 // Only expand vector types if we have the appropriate vector bit operations. 7124 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7125 ISD::FP_TO_SINT; 7126 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7127 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7128 return false; 7129 7130 // If the maximum float value is smaller then the signed integer range, 7131 // the destination signmask can't be represented by the float, so we can 7132 // just use FP_TO_SINT directly. 7133 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7134 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7135 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7136 if (APFloat::opOverflow & 7137 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7138 if (Node->isStrictFPOpcode()) { 7139 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7140 { Node->getOperand(0), Src }); 7141 Chain = Result.getValue(1); 7142 } else 7143 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7144 return true; 7145 } 7146 7147 // Don't expand it if there isn't cheap fsub instruction. 7148 if (!isOperationLegalOrCustom( 7149 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7150 return false; 7151 7152 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7153 SDValue Sel; 7154 7155 if (Node->isStrictFPOpcode()) { 7156 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7157 Node->getOperand(0), /*IsSignaling*/ true); 7158 Chain = Sel.getValue(1); 7159 } else { 7160 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7161 } 7162 7163 bool Strict = Node->isStrictFPOpcode() || 7164 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7165 7166 if (Strict) { 7167 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7168 // signmask then offset (the result of which should be fully representable). 7169 // Sel = Src < 0x8000000000000000 7170 // FltOfs = select Sel, 0, 0x8000000000000000 7171 // IntOfs = select Sel, 0, 0x8000000000000000 7172 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7173 7174 // TODO: Should any fast-math-flags be set for the FSUB? 7175 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7176 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7177 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7178 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7179 DAG.getConstant(0, dl, DstVT), 7180 DAG.getConstant(SignMask, dl, DstVT)); 7181 SDValue SInt; 7182 if (Node->isStrictFPOpcode()) { 7183 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7184 { Chain, Src, FltOfs }); 7185 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7186 { Val.getValue(1), Val }); 7187 Chain = SInt.getValue(1); 7188 } else { 7189 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7190 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7191 } 7192 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7193 } else { 7194 // Expand based on maximum range of FP_TO_SINT: 7195 // True = fp_to_sint(Src) 7196 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7197 // Result = select (Src < 0x8000000000000000), True, False 7198 7199 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7200 // TODO: Should any fast-math-flags be set for the FSUB? 7201 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7202 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7203 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7204 DAG.getConstant(SignMask, dl, DstVT)); 7205 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7206 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7207 } 7208 return true; 7209 } 7210 7211 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7212 SDValue &Chain, 7213 SelectionDAG &DAG) const { 7214 // This transform is not correct for converting 0 when rounding mode is set 7215 // to round toward negative infinity which will produce -0.0. So disable under 7216 // strictfp. 7217 if (Node->isStrictFPOpcode()) 7218 return false; 7219 7220 SDValue Src = Node->getOperand(0); 7221 EVT SrcVT = Src.getValueType(); 7222 EVT DstVT = Node->getValueType(0); 7223 7224 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7225 return false; 7226 7227 // Only expand vector types if we have the appropriate vector bit operations. 7228 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7229 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7230 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7231 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7232 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7233 return false; 7234 7235 SDLoc dl(SDValue(Node, 0)); 7236 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7237 7238 // Implementation of unsigned i64 to f64 following the algorithm in 7239 // __floatundidf in compiler_rt. This implementation performs rounding 7240 // correctly in all rounding modes with the exception of converting 0 7241 // when rounding toward negative infinity. In that case the fsub will produce 7242 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7243 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7244 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7245 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7246 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7247 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7248 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7249 7250 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7251 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7252 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7253 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7254 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7255 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7256 SDValue HiSub = 7257 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7258 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7259 return true; 7260 } 7261 7262 SDValue 7263 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7264 SelectionDAG &DAG) const { 7265 unsigned Opcode = Node->getOpcode(); 7266 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7267 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7268 "Wrong opcode"); 7269 7270 if (Node->getFlags().hasNoNaNs()) { 7271 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7272 SDValue Op1 = Node->getOperand(0); 7273 SDValue Op2 = Node->getOperand(1); 7274 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7275 // Copy FMF flags, but always set the no-signed-zeros flag 7276 // as this is implied by the FMINNUM/FMAXNUM semantics. 7277 SDNodeFlags Flags = Node->getFlags(); 7278 Flags.setNoSignedZeros(true); 7279 SelCC->setFlags(Flags); 7280 return SelCC; 7281 } 7282 7283 return SDValue(); 7284 } 7285 7286 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7287 SelectionDAG &DAG) const { 7288 SDLoc dl(Node); 7289 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7290 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7291 EVT VT = Node->getValueType(0); 7292 7293 if (VT.isScalableVector()) 7294 report_fatal_error( 7295 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7296 7297 if (isOperationLegalOrCustom(NewOp, VT)) { 7298 SDValue Quiet0 = Node->getOperand(0); 7299 SDValue Quiet1 = Node->getOperand(1); 7300 7301 if (!Node->getFlags().hasNoNaNs()) { 7302 // Insert canonicalizes if it's possible we need to quiet to get correct 7303 // sNaN behavior. 7304 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7305 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7306 Node->getFlags()); 7307 } 7308 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7309 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7310 Node->getFlags()); 7311 } 7312 } 7313 7314 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7315 } 7316 7317 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7318 // instead if there are no NaNs. 7319 if (Node->getFlags().hasNoNaNs()) { 7320 unsigned IEEE2018Op = 7321 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7322 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7323 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7324 Node->getOperand(1), Node->getFlags()); 7325 } 7326 } 7327 7328 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7329 return SelCC; 7330 7331 return SDValue(); 7332 } 7333 7334 // Only expand vector types if we have the appropriate vector bit operations. 7335 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7336 assert(VT.isVector() && "Expected vector type"); 7337 unsigned Len = VT.getScalarSizeInBits(); 7338 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7339 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7340 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7341 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7342 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7343 } 7344 7345 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7346 SDLoc dl(Node); 7347 EVT VT = Node->getValueType(0); 7348 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7349 SDValue Op = Node->getOperand(0); 7350 unsigned Len = VT.getScalarSizeInBits(); 7351 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7352 7353 // TODO: Add support for irregular type lengths. 7354 if (!(Len <= 128 && Len % 8 == 0)) 7355 return SDValue(); 7356 7357 // Only expand vector types if we have the appropriate vector bit operations. 7358 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7359 return SDValue(); 7360 7361 // This is the "best" algorithm from 7362 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7363 SDValue Mask55 = 7364 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7365 SDValue Mask33 = 7366 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7367 SDValue Mask0F = 7368 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7369 SDValue Mask01 = 7370 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7371 7372 // v = v - ((v >> 1) & 0x55555555...) 7373 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7374 DAG.getNode(ISD::AND, dl, VT, 7375 DAG.getNode(ISD::SRL, dl, VT, Op, 7376 DAG.getConstant(1, dl, ShVT)), 7377 Mask55)); 7378 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7379 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7380 DAG.getNode(ISD::AND, dl, VT, 7381 DAG.getNode(ISD::SRL, dl, VT, Op, 7382 DAG.getConstant(2, dl, ShVT)), 7383 Mask33)); 7384 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7385 Op = DAG.getNode(ISD::AND, dl, VT, 7386 DAG.getNode(ISD::ADD, dl, VT, Op, 7387 DAG.getNode(ISD::SRL, dl, VT, Op, 7388 DAG.getConstant(4, dl, ShVT))), 7389 Mask0F); 7390 // v = (v * 0x01010101...) >> (Len - 8) 7391 if (Len > 8) 7392 Op = 7393 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7394 DAG.getConstant(Len - 8, dl, ShVT)); 7395 7396 return Op; 7397 } 7398 7399 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7400 SDLoc dl(Node); 7401 EVT VT = Node->getValueType(0); 7402 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7403 SDValue Op = Node->getOperand(0); 7404 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7405 7406 // If the non-ZERO_UNDEF version is supported we can use that instead. 7407 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7408 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7409 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7410 7411 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7412 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7413 EVT SetCCVT = 7414 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7415 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7416 SDValue Zero = DAG.getConstant(0, dl, VT); 7417 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7418 return DAG.getSelect(dl, VT, SrcIsZero, 7419 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7420 } 7421 7422 // Only expand vector types if we have the appropriate vector bit operations. 7423 // This includes the operations needed to expand CTPOP if it isn't supported. 7424 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7425 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7426 !canExpandVectorCTPOP(*this, VT)) || 7427 !isOperationLegalOrCustom(ISD::SRL, VT) || 7428 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7429 return SDValue(); 7430 7431 // for now, we do this: 7432 // x = x | (x >> 1); 7433 // x = x | (x >> 2); 7434 // ... 7435 // x = x | (x >>16); 7436 // x = x | (x >>32); // for 64-bit input 7437 // return popcount(~x); 7438 // 7439 // Ref: "Hacker's Delight" by Henry Warren 7440 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7441 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7442 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7443 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7444 } 7445 Op = DAG.getNOT(dl, Op, VT); 7446 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7447 } 7448 7449 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7450 SDLoc dl(Node); 7451 EVT VT = Node->getValueType(0); 7452 SDValue Op = Node->getOperand(0); 7453 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7454 7455 // If the non-ZERO_UNDEF version is supported we can use that instead. 7456 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7457 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7458 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7459 7460 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7461 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7462 EVT SetCCVT = 7463 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7464 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7465 SDValue Zero = DAG.getConstant(0, dl, VT); 7466 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7467 return DAG.getSelect(dl, VT, SrcIsZero, 7468 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7469 } 7470 7471 // Only expand vector types if we have the appropriate vector bit operations. 7472 // This includes the operations needed to expand CTPOP if it isn't supported. 7473 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7474 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7475 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7476 !canExpandVectorCTPOP(*this, VT)) || 7477 !isOperationLegalOrCustom(ISD::SUB, VT) || 7478 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7479 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7480 return SDValue(); 7481 7482 // for now, we use: { return popcount(~x & (x - 1)); } 7483 // unless the target has ctlz but not ctpop, in which case we use: 7484 // { return 32 - nlz(~x & (x-1)); } 7485 // Ref: "Hacker's Delight" by Henry Warren 7486 SDValue Tmp = DAG.getNode( 7487 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7488 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7489 7490 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7491 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7492 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7493 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7494 } 7495 7496 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7497 } 7498 7499 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7500 bool IsNegative) const { 7501 SDLoc dl(N); 7502 EVT VT = N->getValueType(0); 7503 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7504 SDValue Op = N->getOperand(0); 7505 7506 // abs(x) -> smax(x,sub(0,x)) 7507 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7508 isOperationLegal(ISD::SMAX, VT)) { 7509 SDValue Zero = DAG.getConstant(0, dl, VT); 7510 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7511 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7512 } 7513 7514 // abs(x) -> umin(x,sub(0,x)) 7515 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7516 isOperationLegal(ISD::UMIN, VT)) { 7517 SDValue Zero = DAG.getConstant(0, dl, VT); 7518 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7519 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7520 } 7521 7522 // 0 - abs(x) -> smin(x, sub(0,x)) 7523 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7524 isOperationLegal(ISD::SMIN, VT)) { 7525 SDValue Zero = DAG.getConstant(0, dl, VT); 7526 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7527 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7528 } 7529 7530 // Only expand vector types if we have the appropriate vector operations. 7531 if (VT.isVector() && 7532 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7533 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7534 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7535 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7536 return SDValue(); 7537 7538 SDValue Shift = 7539 DAG.getNode(ISD::SRA, dl, VT, Op, 7540 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7541 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7542 7543 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7544 if (!IsNegative) 7545 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7546 7547 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7548 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7549 } 7550 7551 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7552 SDLoc dl(N); 7553 EVT VT = N->getValueType(0); 7554 SDValue Op = N->getOperand(0); 7555 7556 if (!VT.isSimple()) 7557 return SDValue(); 7558 7559 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7560 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7561 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7562 default: 7563 return SDValue(); 7564 case MVT::i16: 7565 // Use a rotate by 8. This can be further expanded if necessary. 7566 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7567 case MVT::i32: 7568 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7569 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7570 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7571 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7572 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7573 DAG.getConstant(0xFF0000, dl, VT)); 7574 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7575 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7576 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7577 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7578 case MVT::i64: 7579 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7580 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7581 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7582 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7583 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7584 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7585 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7586 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7587 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7588 DAG.getConstant(255ULL<<48, dl, VT)); 7589 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7590 DAG.getConstant(255ULL<<40, dl, VT)); 7591 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7592 DAG.getConstant(255ULL<<32, dl, VT)); 7593 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7594 DAG.getConstant(255ULL<<24, dl, VT)); 7595 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7596 DAG.getConstant(255ULL<<16, dl, VT)); 7597 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7598 DAG.getConstant(255ULL<<8 , dl, VT)); 7599 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7600 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7601 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7602 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7603 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7604 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7605 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7606 } 7607 } 7608 7609 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7610 SDLoc dl(N); 7611 EVT VT = N->getValueType(0); 7612 SDValue Op = N->getOperand(0); 7613 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7614 unsigned Sz = VT.getScalarSizeInBits(); 7615 7616 SDValue Tmp, Tmp2, Tmp3; 7617 7618 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7619 // and finally the i1 pairs. 7620 // TODO: We can easily support i4/i2 legal types if any target ever does. 7621 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7622 // Create the masks - repeating the pattern every byte. 7623 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7624 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7625 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7626 7627 // BSWAP if the type is wider than a single byte. 7628 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7629 7630 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7631 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7632 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7633 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7634 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7635 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7636 7637 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7638 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7639 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7640 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7641 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7642 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7643 7644 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7645 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7646 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7647 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7648 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7649 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7650 return Tmp; 7651 } 7652 7653 Tmp = DAG.getConstant(0, dl, VT); 7654 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7655 if (I < J) 7656 Tmp2 = 7657 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7658 else 7659 Tmp2 = 7660 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7661 7662 APInt Shift(Sz, 1); 7663 Shift <<= J; 7664 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7665 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7666 } 7667 7668 return Tmp; 7669 } 7670 7671 std::pair<SDValue, SDValue> 7672 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7673 SelectionDAG &DAG) const { 7674 SDLoc SL(LD); 7675 SDValue Chain = LD->getChain(); 7676 SDValue BasePTR = LD->getBasePtr(); 7677 EVT SrcVT = LD->getMemoryVT(); 7678 EVT DstVT = LD->getValueType(0); 7679 ISD::LoadExtType ExtType = LD->getExtensionType(); 7680 7681 if (SrcVT.isScalableVector()) 7682 report_fatal_error("Cannot scalarize scalable vector loads"); 7683 7684 unsigned NumElem = SrcVT.getVectorNumElements(); 7685 7686 EVT SrcEltVT = SrcVT.getScalarType(); 7687 EVT DstEltVT = DstVT.getScalarType(); 7688 7689 // A vector must always be stored in memory as-is, i.e. without any padding 7690 // between the elements, since various code depend on it, e.g. in the 7691 // handling of a bitcast of a vector type to int, which may be done with a 7692 // vector store followed by an integer load. A vector that does not have 7693 // elements that are byte-sized must therefore be stored as an integer 7694 // built out of the extracted vector elements. 7695 if (!SrcEltVT.isByteSized()) { 7696 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7697 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7698 7699 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7700 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7701 7702 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7703 SDValue SrcEltBitMask = DAG.getConstant( 7704 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7705 7706 // Load the whole vector and avoid masking off the top bits as it makes 7707 // the codegen worse. 7708 SDValue Load = 7709 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7710 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7711 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7712 7713 SmallVector<SDValue, 8> Vals; 7714 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7715 unsigned ShiftIntoIdx = 7716 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7717 SDValue ShiftAmount = 7718 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7719 LoadVT, SL, /*LegalTypes=*/false); 7720 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7721 SDValue Elt = 7722 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7723 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7724 7725 if (ExtType != ISD::NON_EXTLOAD) { 7726 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7727 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7728 } 7729 7730 Vals.push_back(Scalar); 7731 } 7732 7733 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7734 return std::make_pair(Value, Load.getValue(1)); 7735 } 7736 7737 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7738 assert(SrcEltVT.isByteSized()); 7739 7740 SmallVector<SDValue, 8> Vals; 7741 SmallVector<SDValue, 8> LoadChains; 7742 7743 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7744 SDValue ScalarLoad = 7745 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7746 LD->getPointerInfo().getWithOffset(Idx * Stride), 7747 SrcEltVT, LD->getOriginalAlign(), 7748 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7749 7750 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7751 7752 Vals.push_back(ScalarLoad.getValue(0)); 7753 LoadChains.push_back(ScalarLoad.getValue(1)); 7754 } 7755 7756 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7757 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7758 7759 return std::make_pair(Value, NewChain); 7760 } 7761 7762 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7763 SelectionDAG &DAG) const { 7764 SDLoc SL(ST); 7765 7766 SDValue Chain = ST->getChain(); 7767 SDValue BasePtr = ST->getBasePtr(); 7768 SDValue Value = ST->getValue(); 7769 EVT StVT = ST->getMemoryVT(); 7770 7771 if (StVT.isScalableVector()) 7772 report_fatal_error("Cannot scalarize scalable vector stores"); 7773 7774 // The type of the data we want to save 7775 EVT RegVT = Value.getValueType(); 7776 EVT RegSclVT = RegVT.getScalarType(); 7777 7778 // The type of data as saved in memory. 7779 EVT MemSclVT = StVT.getScalarType(); 7780 7781 unsigned NumElem = StVT.getVectorNumElements(); 7782 7783 // A vector must always be stored in memory as-is, i.e. without any padding 7784 // between the elements, since various code depend on it, e.g. in the 7785 // handling of a bitcast of a vector type to int, which may be done with a 7786 // vector store followed by an integer load. A vector that does not have 7787 // elements that are byte-sized must therefore be stored as an integer 7788 // built out of the extracted vector elements. 7789 if (!MemSclVT.isByteSized()) { 7790 unsigned NumBits = StVT.getSizeInBits(); 7791 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7792 7793 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7794 7795 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7796 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7797 DAG.getVectorIdxConstant(Idx, SL)); 7798 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7799 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7800 unsigned ShiftIntoIdx = 7801 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7802 SDValue ShiftAmount = 7803 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7804 SDValue ShiftedElt = 7805 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7806 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7807 } 7808 7809 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7810 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7811 ST->getAAInfo()); 7812 } 7813 7814 // Store Stride in bytes 7815 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7816 assert(Stride && "Zero stride!"); 7817 // Extract each of the elements from the original vector and save them into 7818 // memory individually. 7819 SmallVector<SDValue, 8> Stores; 7820 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7821 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7822 DAG.getVectorIdxConstant(Idx, SL)); 7823 7824 SDValue Ptr = 7825 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7826 7827 // This scalar TruncStore may be illegal, but we legalize it later. 7828 SDValue Store = DAG.getTruncStore( 7829 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7830 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7831 ST->getAAInfo()); 7832 7833 Stores.push_back(Store); 7834 } 7835 7836 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7837 } 7838 7839 std::pair<SDValue, SDValue> 7840 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7841 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7842 "unaligned indexed loads not implemented!"); 7843 SDValue Chain = LD->getChain(); 7844 SDValue Ptr = LD->getBasePtr(); 7845 EVT VT = LD->getValueType(0); 7846 EVT LoadedVT = LD->getMemoryVT(); 7847 SDLoc dl(LD); 7848 auto &MF = DAG.getMachineFunction(); 7849 7850 if (VT.isFloatingPoint() || VT.isVector()) { 7851 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7852 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7853 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7854 LoadedVT.isVector()) { 7855 // Scalarize the load and let the individual components be handled. 7856 return scalarizeVectorLoad(LD, DAG); 7857 } 7858 7859 // Expand to a (misaligned) integer load of the same size, 7860 // then bitconvert to floating point or vector. 7861 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7862 LD->getMemOperand()); 7863 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7864 if (LoadedVT != VT) 7865 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7866 ISD::ANY_EXTEND, dl, VT, Result); 7867 7868 return std::make_pair(Result, newLoad.getValue(1)); 7869 } 7870 7871 // Copy the value to a (aligned) stack slot using (unaligned) integer 7872 // loads and stores, then do a (aligned) load from the stack slot. 7873 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7874 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7875 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7876 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7877 7878 // Make sure the stack slot is also aligned for the register type. 7879 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7880 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7881 SmallVector<SDValue, 8> Stores; 7882 SDValue StackPtr = StackBase; 7883 unsigned Offset = 0; 7884 7885 EVT PtrVT = Ptr.getValueType(); 7886 EVT StackPtrVT = StackPtr.getValueType(); 7887 7888 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7889 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7890 7891 // Do all but one copies using the full register width. 7892 for (unsigned i = 1; i < NumRegs; i++) { 7893 // Load one integer register's worth from the original location. 7894 SDValue Load = DAG.getLoad( 7895 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7896 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7897 LD->getAAInfo()); 7898 // Follow the load with a store to the stack slot. Remember the store. 7899 Stores.push_back(DAG.getStore( 7900 Load.getValue(1), dl, Load, StackPtr, 7901 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7902 // Increment the pointers. 7903 Offset += RegBytes; 7904 7905 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7906 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7907 } 7908 7909 // The last copy may be partial. Do an extending load. 7910 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7911 8 * (LoadedBytes - Offset)); 7912 SDValue Load = 7913 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7914 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7915 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7916 LD->getAAInfo()); 7917 // Follow the load with a store to the stack slot. Remember the store. 7918 // On big-endian machines this requires a truncating store to ensure 7919 // that the bits end up in the right place. 7920 Stores.push_back(DAG.getTruncStore( 7921 Load.getValue(1), dl, Load, StackPtr, 7922 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7923 7924 // The order of the stores doesn't matter - say it with a TokenFactor. 7925 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7926 7927 // Finally, perform the original load only redirected to the stack slot. 7928 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7929 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7930 LoadedVT); 7931 7932 // Callers expect a MERGE_VALUES node. 7933 return std::make_pair(Load, TF); 7934 } 7935 7936 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7937 "Unaligned load of unsupported type."); 7938 7939 // Compute the new VT that is half the size of the old one. This is an 7940 // integer MVT. 7941 unsigned NumBits = LoadedVT.getSizeInBits(); 7942 EVT NewLoadedVT; 7943 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7944 NumBits >>= 1; 7945 7946 Align Alignment = LD->getOriginalAlign(); 7947 unsigned IncrementSize = NumBits / 8; 7948 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7949 7950 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7951 if (HiExtType == ISD::NON_EXTLOAD) 7952 HiExtType = ISD::ZEXTLOAD; 7953 7954 // Load the value in two parts 7955 SDValue Lo, Hi; 7956 if (DAG.getDataLayout().isLittleEndian()) { 7957 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7958 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7959 LD->getAAInfo()); 7960 7961 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7962 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7963 LD->getPointerInfo().getWithOffset(IncrementSize), 7964 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7965 LD->getAAInfo()); 7966 } else { 7967 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7968 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7969 LD->getAAInfo()); 7970 7971 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7972 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7973 LD->getPointerInfo().getWithOffset(IncrementSize), 7974 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7975 LD->getAAInfo()); 7976 } 7977 7978 // aggregate the two parts 7979 SDValue ShiftAmount = 7980 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7981 DAG.getDataLayout())); 7982 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7983 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7984 7985 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7986 Hi.getValue(1)); 7987 7988 return std::make_pair(Result, TF); 7989 } 7990 7991 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7992 SelectionDAG &DAG) const { 7993 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7994 "unaligned indexed stores not implemented!"); 7995 SDValue Chain = ST->getChain(); 7996 SDValue Ptr = ST->getBasePtr(); 7997 SDValue Val = ST->getValue(); 7998 EVT VT = Val.getValueType(); 7999 Align Alignment = ST->getOriginalAlign(); 8000 auto &MF = DAG.getMachineFunction(); 8001 EVT StoreMemVT = ST->getMemoryVT(); 8002 8003 SDLoc dl(ST); 8004 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8005 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8006 if (isTypeLegal(intVT)) { 8007 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8008 StoreMemVT.isVector()) { 8009 // Scalarize the store and let the individual components be handled. 8010 SDValue Result = scalarizeVectorStore(ST, DAG); 8011 return Result; 8012 } 8013 // Expand to a bitconvert of the value to the integer type of the 8014 // same size, then a (misaligned) int store. 8015 // FIXME: Does not handle truncating floating point stores! 8016 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8017 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8018 Alignment, ST->getMemOperand()->getFlags()); 8019 return Result; 8020 } 8021 // Do a (aligned) store to a stack slot, then copy from the stack slot 8022 // to the final destination using (unaligned) integer loads and stores. 8023 MVT RegVT = getRegisterType( 8024 *DAG.getContext(), 8025 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8026 EVT PtrVT = Ptr.getValueType(); 8027 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8028 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8029 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8030 8031 // Make sure the stack slot is also aligned for the register type. 8032 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8033 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8034 8035 // Perform the original store, only redirected to the stack slot. 8036 SDValue Store = DAG.getTruncStore( 8037 Chain, dl, Val, StackPtr, 8038 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8039 8040 EVT StackPtrVT = StackPtr.getValueType(); 8041 8042 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8043 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8044 SmallVector<SDValue, 8> Stores; 8045 unsigned Offset = 0; 8046 8047 // Do all but one copies using the full register width. 8048 for (unsigned i = 1; i < NumRegs; i++) { 8049 // Load one integer register's worth from the stack slot. 8050 SDValue Load = DAG.getLoad( 8051 RegVT, dl, Store, StackPtr, 8052 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8053 // Store it to the final location. Remember the store. 8054 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8055 ST->getPointerInfo().getWithOffset(Offset), 8056 ST->getOriginalAlign(), 8057 ST->getMemOperand()->getFlags())); 8058 // Increment the pointers. 8059 Offset += RegBytes; 8060 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8061 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8062 } 8063 8064 // The last store may be partial. Do a truncating store. On big-endian 8065 // machines this requires an extending load from the stack slot to ensure 8066 // that the bits are in the right place. 8067 EVT LoadMemVT = 8068 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8069 8070 // Load from the stack slot. 8071 SDValue Load = DAG.getExtLoad( 8072 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8073 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8074 8075 Stores.push_back( 8076 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8077 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8078 ST->getOriginalAlign(), 8079 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8080 // The order of the stores doesn't matter - say it with a TokenFactor. 8081 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8082 return Result; 8083 } 8084 8085 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8086 "Unaligned store of unknown type."); 8087 // Get the half-size VT 8088 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8089 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8090 unsigned IncrementSize = NumBits / 8; 8091 8092 // Divide the stored value in two parts. 8093 SDValue ShiftAmount = DAG.getConstant( 8094 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8095 SDValue Lo = Val; 8096 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8097 8098 // Store the two parts 8099 SDValue Store1, Store2; 8100 Store1 = DAG.getTruncStore(Chain, dl, 8101 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8102 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8103 ST->getMemOperand()->getFlags()); 8104 8105 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8106 Store2 = DAG.getTruncStore( 8107 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8108 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8109 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8110 8111 SDValue Result = 8112 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8113 return Result; 8114 } 8115 8116 SDValue 8117 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8118 const SDLoc &DL, EVT DataVT, 8119 SelectionDAG &DAG, 8120 bool IsCompressedMemory) const { 8121 SDValue Increment; 8122 EVT AddrVT = Addr.getValueType(); 8123 EVT MaskVT = Mask.getValueType(); 8124 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8125 "Incompatible types of Data and Mask"); 8126 if (IsCompressedMemory) { 8127 if (DataVT.isScalableVector()) 8128 report_fatal_error( 8129 "Cannot currently handle compressed memory with scalable vectors"); 8130 // Incrementing the pointer according to number of '1's in the mask. 8131 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8132 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8133 if (MaskIntVT.getSizeInBits() < 32) { 8134 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8135 MaskIntVT = MVT::i32; 8136 } 8137 8138 // Count '1's with POPCNT. 8139 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8140 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8141 // Scale is an element size in bytes. 8142 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8143 AddrVT); 8144 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8145 } else if (DataVT.isScalableVector()) { 8146 Increment = DAG.getVScale(DL, AddrVT, 8147 APInt(AddrVT.getFixedSizeInBits(), 8148 DataVT.getStoreSize().getKnownMinSize())); 8149 } else 8150 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8151 8152 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8153 } 8154 8155 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8156 EVT VecVT, const SDLoc &dl, 8157 ElementCount SubEC) { 8158 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8159 "Cannot index a scalable vector within a fixed-width vector"); 8160 8161 unsigned NElts = VecVT.getVectorMinNumElements(); 8162 unsigned NumSubElts = SubEC.getKnownMinValue(); 8163 EVT IdxVT = Idx.getValueType(); 8164 8165 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8166 // If this is a constant index and we know the value plus the number of the 8167 // elements in the subvector minus one is less than the minimum number of 8168 // elements then it's safe to return Idx. 8169 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8170 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8171 return Idx; 8172 SDValue VS = 8173 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8174 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8175 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8176 DAG.getConstant(NumSubElts, dl, IdxVT)); 8177 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8178 } 8179 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8180 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8181 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8182 DAG.getConstant(Imm, dl, IdxVT)); 8183 } 8184 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8185 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8186 DAG.getConstant(MaxIndex, dl, IdxVT)); 8187 } 8188 8189 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8190 SDValue VecPtr, EVT VecVT, 8191 SDValue Index) const { 8192 return getVectorSubVecPointer( 8193 DAG, VecPtr, VecVT, 8194 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8195 Index); 8196 } 8197 8198 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8199 SDValue VecPtr, EVT VecVT, 8200 EVT SubVecVT, 8201 SDValue Index) const { 8202 SDLoc dl(Index); 8203 // Make sure the index type is big enough to compute in. 8204 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8205 8206 EVT EltVT = VecVT.getVectorElementType(); 8207 8208 // Calculate the element offset and add it to the pointer. 8209 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8210 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8211 "Converting bits to bytes lost precision"); 8212 assert(SubVecVT.getVectorElementType() == EltVT && 8213 "Sub-vector must be a vector with matching element type"); 8214 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8215 SubVecVT.getVectorElementCount()); 8216 8217 EVT IdxVT = Index.getValueType(); 8218 if (SubVecVT.isScalableVector()) 8219 Index = 8220 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8221 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8222 8223 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8224 DAG.getConstant(EltSize, dl, IdxVT)); 8225 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8226 } 8227 8228 //===----------------------------------------------------------------------===// 8229 // Implementation of Emulated TLS Model 8230 //===----------------------------------------------------------------------===// 8231 8232 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8233 SelectionDAG &DAG) const { 8234 // Access to address of TLS varialbe xyz is lowered to a function call: 8235 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8236 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8237 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8238 SDLoc dl(GA); 8239 8240 ArgListTy Args; 8241 ArgListEntry Entry; 8242 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8243 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8244 StringRef EmuTlsVarName(NameString); 8245 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8246 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8247 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8248 Entry.Ty = VoidPtrType; 8249 Args.push_back(Entry); 8250 8251 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8252 8253 TargetLowering::CallLoweringInfo CLI(DAG); 8254 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8255 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8256 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8257 8258 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8259 // At last for X86 targets, maybe good for other targets too? 8260 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8261 MFI.setAdjustsStack(true); // Is this only for X86 target? 8262 MFI.setHasCalls(true); 8263 8264 assert((GA->getOffset() == 0) && 8265 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8266 return CallResult.first; 8267 } 8268 8269 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8270 SelectionDAG &DAG) const { 8271 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8272 if (!isCtlzFast()) 8273 return SDValue(); 8274 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8275 SDLoc dl(Op); 8276 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8277 if (C->isZero() && CC == ISD::SETEQ) { 8278 EVT VT = Op.getOperand(0).getValueType(); 8279 SDValue Zext = Op.getOperand(0); 8280 if (VT.bitsLT(MVT::i32)) { 8281 VT = MVT::i32; 8282 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8283 } 8284 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8285 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8286 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8287 DAG.getConstant(Log2b, dl, MVT::i32)); 8288 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8289 } 8290 } 8291 return SDValue(); 8292 } 8293 8294 // Convert redundant addressing modes (e.g. scaling is redundant 8295 // when accessing bytes). 8296 ISD::MemIndexType 8297 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8298 SDValue Offsets) const { 8299 bool IsScaledIndex = 8300 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8301 bool IsSignedIndex = 8302 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8303 8304 // Scaling is unimportant for bytes, canonicalize to unscaled. 8305 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8306 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8307 8308 return IndexType; 8309 } 8310 8311 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8312 SDValue Op0 = Node->getOperand(0); 8313 SDValue Op1 = Node->getOperand(1); 8314 EVT VT = Op0.getValueType(); 8315 unsigned Opcode = Node->getOpcode(); 8316 SDLoc DL(Node); 8317 8318 // umin(x,y) -> sub(x,usubsat(x,y)) 8319 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8320 isOperationLegal(ISD::USUBSAT, VT)) { 8321 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8322 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8323 } 8324 8325 // umax(x,y) -> add(x,usubsat(y,x)) 8326 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8327 isOperationLegal(ISD::USUBSAT, VT)) { 8328 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8329 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8330 } 8331 8332 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8333 ISD::CondCode CC; 8334 switch (Opcode) { 8335 default: llvm_unreachable("How did we get here?"); 8336 case ISD::SMAX: CC = ISD::SETGT; break; 8337 case ISD::SMIN: CC = ISD::SETLT; break; 8338 case ISD::UMAX: CC = ISD::SETUGT; break; 8339 case ISD::UMIN: CC = ISD::SETULT; break; 8340 } 8341 8342 // FIXME: Should really try to split the vector in case it's legal on a 8343 // subvector. 8344 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8345 return DAG.UnrollVectorOp(Node); 8346 8347 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8348 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8349 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8350 } 8351 8352 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8353 unsigned Opcode = Node->getOpcode(); 8354 SDValue LHS = Node->getOperand(0); 8355 SDValue RHS = Node->getOperand(1); 8356 EVT VT = LHS.getValueType(); 8357 SDLoc dl(Node); 8358 8359 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8360 assert(VT.isInteger() && "Expected operands to be integers"); 8361 8362 // usub.sat(a, b) -> umax(a, b) - b 8363 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8364 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8365 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8366 } 8367 8368 // uadd.sat(a, b) -> umin(a, ~b) + b 8369 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8370 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8371 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8372 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8373 } 8374 8375 unsigned OverflowOp; 8376 switch (Opcode) { 8377 case ISD::SADDSAT: 8378 OverflowOp = ISD::SADDO; 8379 break; 8380 case ISD::UADDSAT: 8381 OverflowOp = ISD::UADDO; 8382 break; 8383 case ISD::SSUBSAT: 8384 OverflowOp = ISD::SSUBO; 8385 break; 8386 case ISD::USUBSAT: 8387 OverflowOp = ISD::USUBO; 8388 break; 8389 default: 8390 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8391 "addition or subtraction node."); 8392 } 8393 8394 // FIXME: Should really try to split the vector in case it's legal on a 8395 // subvector. 8396 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8397 return DAG.UnrollVectorOp(Node); 8398 8399 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8400 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8401 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8402 SDValue SumDiff = Result.getValue(0); 8403 SDValue Overflow = Result.getValue(1); 8404 SDValue Zero = DAG.getConstant(0, dl, VT); 8405 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8406 8407 if (Opcode == ISD::UADDSAT) { 8408 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8409 // (LHS + RHS) | OverflowMask 8410 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8411 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8412 } 8413 // Overflow ? 0xffff.... : (LHS + RHS) 8414 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8415 } 8416 8417 if (Opcode == ISD::USUBSAT) { 8418 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8419 // (LHS - RHS) & ~OverflowMask 8420 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8421 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8422 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8423 } 8424 // Overflow ? 0 : (LHS - RHS) 8425 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8426 } 8427 8428 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8429 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8430 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8431 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8432 DAG.getConstant(BitWidth - 1, dl, VT)); 8433 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8434 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8435 } 8436 8437 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8438 unsigned Opcode = Node->getOpcode(); 8439 bool IsSigned = Opcode == ISD::SSHLSAT; 8440 SDValue LHS = Node->getOperand(0); 8441 SDValue RHS = Node->getOperand(1); 8442 EVT VT = LHS.getValueType(); 8443 SDLoc dl(Node); 8444 8445 assert((Node->getOpcode() == ISD::SSHLSAT || 8446 Node->getOpcode() == ISD::USHLSAT) && 8447 "Expected a SHLSAT opcode"); 8448 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8449 assert(VT.isInteger() && "Expected operands to be integers"); 8450 8451 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8452 8453 unsigned BW = VT.getScalarSizeInBits(); 8454 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8455 SDValue Orig = 8456 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8457 8458 SDValue SatVal; 8459 if (IsSigned) { 8460 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8461 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8462 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8463 SatMin, SatMax, ISD::SETLT); 8464 } else { 8465 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8466 } 8467 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8468 8469 return Result; 8470 } 8471 8472 SDValue 8473 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8474 assert((Node->getOpcode() == ISD::SMULFIX || 8475 Node->getOpcode() == ISD::UMULFIX || 8476 Node->getOpcode() == ISD::SMULFIXSAT || 8477 Node->getOpcode() == ISD::UMULFIXSAT) && 8478 "Expected a fixed point multiplication opcode"); 8479 8480 SDLoc dl(Node); 8481 SDValue LHS = Node->getOperand(0); 8482 SDValue RHS = Node->getOperand(1); 8483 EVT VT = LHS.getValueType(); 8484 unsigned Scale = Node->getConstantOperandVal(2); 8485 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8486 Node->getOpcode() == ISD::UMULFIXSAT); 8487 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8488 Node->getOpcode() == ISD::SMULFIXSAT); 8489 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8490 unsigned VTSize = VT.getScalarSizeInBits(); 8491 8492 if (!Scale) { 8493 // [us]mul.fix(a, b, 0) -> mul(a, b) 8494 if (!Saturating) { 8495 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8496 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8497 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8498 SDValue Result = 8499 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8500 SDValue Product = Result.getValue(0); 8501 SDValue Overflow = Result.getValue(1); 8502 SDValue Zero = DAG.getConstant(0, dl, VT); 8503 8504 APInt MinVal = APInt::getSignedMinValue(VTSize); 8505 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8506 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8507 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8508 // Xor the inputs, if resulting sign bit is 0 the product will be 8509 // positive, else negative. 8510 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8511 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8512 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8513 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8514 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8515 SDValue Result = 8516 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8517 SDValue Product = Result.getValue(0); 8518 SDValue Overflow = Result.getValue(1); 8519 8520 APInt MaxVal = APInt::getMaxValue(VTSize); 8521 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8522 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8523 } 8524 } 8525 8526 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8527 "Expected scale to be less than the number of bits if signed or at " 8528 "most the number of bits if unsigned."); 8529 assert(LHS.getValueType() == RHS.getValueType() && 8530 "Expected both operands to be the same type"); 8531 8532 // Get the upper and lower bits of the result. 8533 SDValue Lo, Hi; 8534 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8535 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8536 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8537 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8538 Lo = Result.getValue(0); 8539 Hi = Result.getValue(1); 8540 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8541 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8542 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8543 } else if (VT.isVector()) { 8544 return SDValue(); 8545 } else { 8546 report_fatal_error("Unable to expand fixed point multiplication."); 8547 } 8548 8549 if (Scale == VTSize) 8550 // Result is just the top half since we'd be shifting by the width of the 8551 // operand. Overflow impossible so this works for both UMULFIX and 8552 // UMULFIXSAT. 8553 return Hi; 8554 8555 // The result will need to be shifted right by the scale since both operands 8556 // are scaled. The result is given to us in 2 halves, so we only want part of 8557 // both in the result. 8558 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8559 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8560 DAG.getConstant(Scale, dl, ShiftTy)); 8561 if (!Saturating) 8562 return Result; 8563 8564 if (!Signed) { 8565 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8566 // widened multiplication) aren't all zeroes. 8567 8568 // Saturate to max if ((Hi >> Scale) != 0), 8569 // which is the same as if (Hi > ((1 << Scale) - 1)) 8570 APInt MaxVal = APInt::getMaxValue(VTSize); 8571 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8572 dl, VT); 8573 Result = DAG.getSelectCC(dl, Hi, LowMask, 8574 DAG.getConstant(MaxVal, dl, VT), Result, 8575 ISD::SETUGT); 8576 8577 return Result; 8578 } 8579 8580 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8581 // widened multiplication) aren't all ones or all zeroes. 8582 8583 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8584 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8585 8586 if (Scale == 0) { 8587 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8588 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8589 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8590 // Saturated to SatMin if wide product is negative, and SatMax if wide 8591 // product is positive ... 8592 SDValue Zero = DAG.getConstant(0, dl, VT); 8593 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8594 ISD::SETLT); 8595 // ... but only if we overflowed. 8596 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8597 } 8598 8599 // We handled Scale==0 above so all the bits to examine is in Hi. 8600 8601 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8602 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8603 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8604 dl, VT); 8605 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8606 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8607 // which is the same as if (HI < (-1 << (Scale - 1)) 8608 SDValue HighMask = 8609 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8610 dl, VT); 8611 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8612 return Result; 8613 } 8614 8615 SDValue 8616 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8617 SDValue LHS, SDValue RHS, 8618 unsigned Scale, SelectionDAG &DAG) const { 8619 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8620 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8621 "Expected a fixed point division opcode"); 8622 8623 EVT VT = LHS.getValueType(); 8624 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8625 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8626 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8627 8628 // If there is enough room in the type to upscale the LHS or downscale the 8629 // RHS before the division, we can perform it in this type without having to 8630 // resize. For signed operations, the LHS headroom is the number of 8631 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8632 // The headroom for the RHS is the number of trailing zeroes. 8633 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8634 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8635 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8636 8637 // For signed saturating operations, we need to be able to detect true integer 8638 // division overflow; that is, when you have MIN / -EPS. However, this 8639 // is undefined behavior and if we emit divisions that could take such 8640 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8641 // example). 8642 // Avoid this by requiring an extra bit so that we never get this case. 8643 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8644 // signed saturating division, we need to emit a whopping 32-bit division. 8645 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8646 return SDValue(); 8647 8648 unsigned LHSShift = std::min(LHSLead, Scale); 8649 unsigned RHSShift = Scale - LHSShift; 8650 8651 // At this point, we know that if we shift the LHS up by LHSShift and the 8652 // RHS down by RHSShift, we can emit a regular division with a final scaling 8653 // factor of Scale. 8654 8655 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8656 if (LHSShift) 8657 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8658 DAG.getConstant(LHSShift, dl, ShiftTy)); 8659 if (RHSShift) 8660 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8661 DAG.getConstant(RHSShift, dl, ShiftTy)); 8662 8663 SDValue Quot; 8664 if (Signed) { 8665 // For signed operations, if the resulting quotient is negative and the 8666 // remainder is nonzero, subtract 1 from the quotient to round towards 8667 // negative infinity. 8668 SDValue Rem; 8669 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8670 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8671 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8672 if (isTypeLegal(VT) && 8673 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8674 Quot = DAG.getNode(ISD::SDIVREM, dl, 8675 DAG.getVTList(VT, VT), 8676 LHS, RHS); 8677 Rem = Quot.getValue(1); 8678 Quot = Quot.getValue(0); 8679 } else { 8680 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8681 LHS, RHS); 8682 Rem = DAG.getNode(ISD::SREM, dl, VT, 8683 LHS, RHS); 8684 } 8685 SDValue Zero = DAG.getConstant(0, dl, VT); 8686 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8687 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8688 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8689 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8690 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8691 DAG.getConstant(1, dl, VT)); 8692 Quot = DAG.getSelect(dl, VT, 8693 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8694 Sub1, Quot); 8695 } else 8696 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8697 LHS, RHS); 8698 8699 return Quot; 8700 } 8701 8702 void TargetLowering::expandUADDSUBO( 8703 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8704 SDLoc dl(Node); 8705 SDValue LHS = Node->getOperand(0); 8706 SDValue RHS = Node->getOperand(1); 8707 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8708 8709 // If ADD/SUBCARRY is legal, use that instead. 8710 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8711 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8712 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8713 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8714 { LHS, RHS, CarryIn }); 8715 Result = SDValue(NodeCarry.getNode(), 0); 8716 Overflow = SDValue(NodeCarry.getNode(), 1); 8717 return; 8718 } 8719 8720 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8721 LHS.getValueType(), LHS, RHS); 8722 8723 EVT ResultType = Node->getValueType(1); 8724 EVT SetCCType = getSetCCResultType( 8725 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8726 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8727 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8728 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8729 } 8730 8731 void TargetLowering::expandSADDSUBO( 8732 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8733 SDLoc dl(Node); 8734 SDValue LHS = Node->getOperand(0); 8735 SDValue RHS = Node->getOperand(1); 8736 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8737 8738 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8739 LHS.getValueType(), LHS, RHS); 8740 8741 EVT ResultType = Node->getValueType(1); 8742 EVT OType = getSetCCResultType( 8743 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8744 8745 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8746 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8747 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8748 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8749 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8750 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8751 return; 8752 } 8753 8754 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8755 8756 // For an addition, the result should be less than one of the operands (LHS) 8757 // if and only if the other operand (RHS) is negative, otherwise there will 8758 // be overflow. 8759 // For a subtraction, the result should be less than one of the operands 8760 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8761 // otherwise there will be overflow. 8762 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8763 SDValue ConditionRHS = 8764 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8765 8766 Overflow = DAG.getBoolExtOrTrunc( 8767 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8768 ResultType, ResultType); 8769 } 8770 8771 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8772 SDValue &Overflow, SelectionDAG &DAG) const { 8773 SDLoc dl(Node); 8774 EVT VT = Node->getValueType(0); 8775 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8776 SDValue LHS = Node->getOperand(0); 8777 SDValue RHS = Node->getOperand(1); 8778 bool isSigned = Node->getOpcode() == ISD::SMULO; 8779 8780 // For power-of-two multiplications we can use a simpler shift expansion. 8781 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8782 const APInt &C = RHSC->getAPIntValue(); 8783 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8784 if (C.isPowerOf2()) { 8785 // smulo(x, signed_min) is same as umulo(x, signed_min). 8786 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8787 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8788 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8789 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8790 Overflow = DAG.getSetCC(dl, SetCCVT, 8791 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8792 dl, VT, Result, ShiftAmt), 8793 LHS, ISD::SETNE); 8794 return true; 8795 } 8796 } 8797 8798 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8799 if (VT.isVector()) 8800 WideVT = 8801 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8802 8803 SDValue BottomHalf; 8804 SDValue TopHalf; 8805 static const unsigned Ops[2][3] = 8806 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8807 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8808 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8809 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8810 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8811 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8812 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8813 RHS); 8814 TopHalf = BottomHalf.getValue(1); 8815 } else if (isTypeLegal(WideVT)) { 8816 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8817 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8818 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8819 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8820 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8821 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8822 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8823 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8824 } else { 8825 if (VT.isVector()) 8826 return false; 8827 8828 // We can fall back to a libcall with an illegal type for the MUL if we 8829 // have a libcall big enough. 8830 // Also, we can fall back to a division in some cases, but that's a big 8831 // performance hit in the general case. 8832 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8833 if (WideVT == MVT::i16) 8834 LC = RTLIB::MUL_I16; 8835 else if (WideVT == MVT::i32) 8836 LC = RTLIB::MUL_I32; 8837 else if (WideVT == MVT::i64) 8838 LC = RTLIB::MUL_I64; 8839 else if (WideVT == MVT::i128) 8840 LC = RTLIB::MUL_I128; 8841 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8842 8843 SDValue HiLHS; 8844 SDValue HiRHS; 8845 if (isSigned) { 8846 // The high part is obtained by SRA'ing all but one of the bits of low 8847 // part. 8848 unsigned LoSize = VT.getFixedSizeInBits(); 8849 HiLHS = 8850 DAG.getNode(ISD::SRA, dl, VT, LHS, 8851 DAG.getConstant(LoSize - 1, dl, 8852 getPointerTy(DAG.getDataLayout()))); 8853 HiRHS = 8854 DAG.getNode(ISD::SRA, dl, VT, RHS, 8855 DAG.getConstant(LoSize - 1, dl, 8856 getPointerTy(DAG.getDataLayout()))); 8857 } else { 8858 HiLHS = DAG.getConstant(0, dl, VT); 8859 HiRHS = DAG.getConstant(0, dl, VT); 8860 } 8861 8862 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8863 // pre-lowered to the correct types. This all depends upon WideVT not 8864 // being a legal type for the architecture and thus has to be split to 8865 // two arguments. 8866 SDValue Ret; 8867 TargetLowering::MakeLibCallOptions CallOptions; 8868 CallOptions.setSExt(isSigned); 8869 CallOptions.setIsPostTypeLegalization(true); 8870 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8871 // Halves of WideVT are packed into registers in different order 8872 // depending on platform endianness. This is usually handled by 8873 // the C calling convention, but we can't defer to it in 8874 // the legalizer. 8875 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8876 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8877 } else { 8878 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8879 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8880 } 8881 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8882 "Ret value is a collection of constituent nodes holding result."); 8883 if (DAG.getDataLayout().isLittleEndian()) { 8884 // Same as above. 8885 BottomHalf = Ret.getOperand(0); 8886 TopHalf = Ret.getOperand(1); 8887 } else { 8888 BottomHalf = Ret.getOperand(1); 8889 TopHalf = Ret.getOperand(0); 8890 } 8891 } 8892 8893 Result = BottomHalf; 8894 if (isSigned) { 8895 SDValue ShiftAmt = DAG.getConstant( 8896 VT.getScalarSizeInBits() - 1, dl, 8897 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8898 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8899 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8900 } else { 8901 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8902 DAG.getConstant(0, dl, VT), ISD::SETNE); 8903 } 8904 8905 // Truncate the result if SetCC returns a larger type than needed. 8906 EVT RType = Node->getValueType(1); 8907 if (RType.bitsLT(Overflow.getValueType())) 8908 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8909 8910 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8911 "Unexpected result type for S/UMULO legalization"); 8912 return true; 8913 } 8914 8915 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8916 SDLoc dl(Node); 8917 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8918 SDValue Op = Node->getOperand(0); 8919 EVT VT = Op.getValueType(); 8920 8921 if (VT.isScalableVector()) 8922 report_fatal_error( 8923 "Expanding reductions for scalable vectors is undefined."); 8924 8925 // Try to use a shuffle reduction for power of two vectors. 8926 if (VT.isPow2VectorType()) { 8927 while (VT.getVectorNumElements() > 1) { 8928 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8929 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8930 break; 8931 8932 SDValue Lo, Hi; 8933 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8934 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8935 VT = HalfVT; 8936 } 8937 } 8938 8939 EVT EltVT = VT.getVectorElementType(); 8940 unsigned NumElts = VT.getVectorNumElements(); 8941 8942 SmallVector<SDValue, 8> Ops; 8943 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8944 8945 SDValue Res = Ops[0]; 8946 for (unsigned i = 1; i < NumElts; i++) 8947 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8948 8949 // Result type may be wider than element type. 8950 if (EltVT != Node->getValueType(0)) 8951 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8952 return Res; 8953 } 8954 8955 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8956 SDLoc dl(Node); 8957 SDValue AccOp = Node->getOperand(0); 8958 SDValue VecOp = Node->getOperand(1); 8959 SDNodeFlags Flags = Node->getFlags(); 8960 8961 EVT VT = VecOp.getValueType(); 8962 EVT EltVT = VT.getVectorElementType(); 8963 8964 if (VT.isScalableVector()) 8965 report_fatal_error( 8966 "Expanding reductions for scalable vectors is undefined."); 8967 8968 unsigned NumElts = VT.getVectorNumElements(); 8969 8970 SmallVector<SDValue, 8> Ops; 8971 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8972 8973 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8974 8975 SDValue Res = AccOp; 8976 for (unsigned i = 0; i < NumElts; i++) 8977 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8978 8979 return Res; 8980 } 8981 8982 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8983 SelectionDAG &DAG) const { 8984 EVT VT = Node->getValueType(0); 8985 SDLoc dl(Node); 8986 bool isSigned = Node->getOpcode() == ISD::SREM; 8987 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8988 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8989 SDValue Dividend = Node->getOperand(0); 8990 SDValue Divisor = Node->getOperand(1); 8991 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8992 SDVTList VTs = DAG.getVTList(VT, VT); 8993 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8994 return true; 8995 } 8996 if (isOperationLegalOrCustom(DivOpc, VT)) { 8997 // X % Y -> X-X/Y*Y 8998 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8999 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9000 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9001 return true; 9002 } 9003 return false; 9004 } 9005 9006 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9007 SelectionDAG &DAG) const { 9008 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9009 SDLoc dl(SDValue(Node, 0)); 9010 SDValue Src = Node->getOperand(0); 9011 9012 // DstVT is the result type, while SatVT is the size to which we saturate 9013 EVT SrcVT = Src.getValueType(); 9014 EVT DstVT = Node->getValueType(0); 9015 9016 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9017 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9018 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9019 assert(SatWidth <= DstWidth && 9020 "Expected saturation width smaller than result width"); 9021 9022 // Determine minimum and maximum integer values and their corresponding 9023 // floating-point values. 9024 APInt MinInt, MaxInt; 9025 if (IsSigned) { 9026 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 9027 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 9028 } else { 9029 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 9030 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 9031 } 9032 9033 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9034 // libcall emission cannot handle this. Large result types will fail. 9035 if (SrcVT == MVT::f16) { 9036 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9037 SrcVT = Src.getValueType(); 9038 } 9039 9040 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9041 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9042 9043 APFloat::opStatus MinStatus = 9044 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9045 APFloat::opStatus MaxStatus = 9046 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9047 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9048 !(MaxStatus & APFloat::opStatus::opInexact); 9049 9050 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9051 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9052 9053 // If the integer bounds are exactly representable as floats and min/max are 9054 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9055 // of comparisons and selects. 9056 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9057 isOperationLegal(ISD::FMAXNUM, SrcVT); 9058 if (AreExactFloatBounds && MinMaxLegal) { 9059 SDValue Clamped = Src; 9060 9061 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9062 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9063 // Clamp by MaxFloat from above. NaN cannot occur. 9064 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9065 // Convert clamped value to integer. 9066 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9067 dl, DstVT, Clamped); 9068 9069 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9070 // which will cast to zero. 9071 if (!IsSigned) 9072 return FpToInt; 9073 9074 // Otherwise, select 0 if Src is NaN. 9075 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9076 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9077 ISD::CondCode::SETUO); 9078 } 9079 9080 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9081 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9082 9083 // Result of direct conversion. The assumption here is that the operation is 9084 // non-trapping and it's fine to apply it to an out-of-range value if we 9085 // select it away later. 9086 SDValue FpToInt = 9087 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9088 9089 SDValue Select = FpToInt; 9090 9091 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9092 // MinInt if Src is NaN. 9093 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9094 ISD::CondCode::SETULT); 9095 // If Src OGT MaxFloat, select MaxInt. 9096 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9097 ISD::CondCode::SETOGT); 9098 9099 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9100 // is already zero. 9101 if (!IsSigned) 9102 return Select; 9103 9104 // Otherwise, select 0 if Src is NaN. 9105 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9106 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9107 } 9108 9109 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9110 SelectionDAG &DAG) const { 9111 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9112 assert(Node->getValueType(0).isScalableVector() && 9113 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9114 9115 EVT VT = Node->getValueType(0); 9116 SDValue V1 = Node->getOperand(0); 9117 SDValue V2 = Node->getOperand(1); 9118 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9119 SDLoc DL(Node); 9120 9121 // Expand through memory thusly: 9122 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9123 // Store V1, Ptr 9124 // Store V2, Ptr + sizeof(V1) 9125 // If (Imm < 0) 9126 // TrailingElts = -Imm 9127 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9128 // else 9129 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9130 // Res = Load Ptr 9131 9132 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9133 9134 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9135 VT.getVectorElementCount() * 2); 9136 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9137 EVT PtrVT = StackPtr.getValueType(); 9138 auto &MF = DAG.getMachineFunction(); 9139 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9140 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9141 9142 // Store the lo part of CONCAT_VECTORS(V1, V2) 9143 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9144 // Store the hi part of CONCAT_VECTORS(V1, V2) 9145 SDValue OffsetToV2 = DAG.getVScale( 9146 DL, PtrVT, 9147 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9148 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9149 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9150 9151 if (Imm >= 0) { 9152 // Load back the required element. getVectorElementPointer takes care of 9153 // clamping the index if it's out-of-bounds. 9154 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9155 // Load the spliced result 9156 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9157 MachinePointerInfo::getUnknownStack(MF)); 9158 } 9159 9160 uint64_t TrailingElts = -Imm; 9161 9162 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9163 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9164 SDValue TrailingBytes = 9165 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9166 9167 if (TrailingElts > VT.getVectorMinNumElements()) { 9168 SDValue VLBytes = DAG.getVScale( 9169 DL, PtrVT, 9170 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9171 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9172 } 9173 9174 // Calculate the start address of the spliced result. 9175 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9176 9177 // Load the spliced result 9178 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9179 MachinePointerInfo::getUnknownStack(MF)); 9180 } 9181 9182 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9183 SDValue &LHS, SDValue &RHS, 9184 SDValue &CC, bool &NeedInvert, 9185 const SDLoc &dl, SDValue &Chain, 9186 bool IsSignaling) const { 9187 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9188 MVT OpVT = LHS.getSimpleValueType(); 9189 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9190 NeedInvert = false; 9191 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9192 default: 9193 llvm_unreachable("Unknown condition code action!"); 9194 case TargetLowering::Legal: 9195 // Nothing to do. 9196 break; 9197 case TargetLowering::Expand: { 9198 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9199 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9200 std::swap(LHS, RHS); 9201 CC = DAG.getCondCode(InvCC); 9202 return true; 9203 } 9204 // Swapping operands didn't work. Try inverting the condition. 9205 bool NeedSwap = false; 9206 InvCC = getSetCCInverse(CCCode, OpVT); 9207 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9208 // If inverting the condition is not enough, try swapping operands 9209 // on top of it. 9210 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9211 NeedSwap = true; 9212 } 9213 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9214 CC = DAG.getCondCode(InvCC); 9215 NeedInvert = true; 9216 if (NeedSwap) 9217 std::swap(LHS, RHS); 9218 return true; 9219 } 9220 9221 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9222 unsigned Opc = 0; 9223 switch (CCCode) { 9224 default: 9225 llvm_unreachable("Don't know how to expand this condition!"); 9226 case ISD::SETUO: 9227 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9228 CC1 = ISD::SETUNE; 9229 CC2 = ISD::SETUNE; 9230 Opc = ISD::OR; 9231 break; 9232 } 9233 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9234 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9235 NeedInvert = true; 9236 LLVM_FALLTHROUGH; 9237 case ISD::SETO: 9238 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9239 "If SETO is expanded, SETOEQ must be legal!"); 9240 CC1 = ISD::SETOEQ; 9241 CC2 = ISD::SETOEQ; 9242 Opc = ISD::AND; 9243 break; 9244 case ISD::SETONE: 9245 case ISD::SETUEQ: 9246 // If the SETUO or SETO CC isn't legal, we might be able to use 9247 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9248 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9249 // the operands. 9250 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9251 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9252 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9253 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9254 CC1 = ISD::SETOGT; 9255 CC2 = ISD::SETOLT; 9256 Opc = ISD::OR; 9257 NeedInvert = ((unsigned)CCCode & 0x8U); 9258 break; 9259 } 9260 LLVM_FALLTHROUGH; 9261 case ISD::SETOEQ: 9262 case ISD::SETOGT: 9263 case ISD::SETOGE: 9264 case ISD::SETOLT: 9265 case ISD::SETOLE: 9266 case ISD::SETUNE: 9267 case ISD::SETUGT: 9268 case ISD::SETUGE: 9269 case ISD::SETULT: 9270 case ISD::SETULE: 9271 // If we are floating point, assign and break, otherwise fall through. 9272 if (!OpVT.isInteger()) { 9273 // We can use the 4th bit to tell if we are the unordered 9274 // or ordered version of the opcode. 9275 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9276 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9277 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9278 break; 9279 } 9280 // Fallthrough if we are unsigned integer. 9281 LLVM_FALLTHROUGH; 9282 case ISD::SETLE: 9283 case ISD::SETGT: 9284 case ISD::SETGE: 9285 case ISD::SETLT: 9286 case ISD::SETNE: 9287 case ISD::SETEQ: 9288 // If all combinations of inverting the condition and swapping operands 9289 // didn't work then we have no means to expand the condition. 9290 llvm_unreachable("Don't know how to expand this condition!"); 9291 } 9292 9293 SDValue SetCC1, SetCC2; 9294 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9295 // If we aren't the ordered or unorder operation, 9296 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9297 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9298 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9299 } else { 9300 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9301 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9302 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9303 } 9304 if (Chain) 9305 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9306 SetCC2.getValue(1)); 9307 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9308 RHS = SDValue(); 9309 CC = SDValue(); 9310 return true; 9311 } 9312 } 9313 return false; 9314 } 9315