1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 if (IsSRet) 136 IndirectType = Call->getParamStructRetType(ArgIdx); 137 } 138 139 /// Generate a libcall taking the given operands as arguments and returning a 140 /// result of type RetVT. 141 std::pair<SDValue, SDValue> 142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 143 ArrayRef<SDValue> Ops, 144 MakeLibCallOptions CallOptions, 145 const SDLoc &dl, 146 SDValue InChain) const { 147 if (!InChain) 148 InChain = DAG.getEntryNode(); 149 150 TargetLowering::ArgListTy Args; 151 Args.reserve(Ops.size()); 152 153 TargetLowering::ArgListEntry Entry; 154 for (unsigned i = 0; i < Ops.size(); ++i) { 155 SDValue NewOp = Ops[i]; 156 Entry.Node = NewOp; 157 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 158 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 159 CallOptions.IsSExt); 160 Entry.IsZExt = !Entry.IsSExt; 161 162 if (CallOptions.IsSoften && 163 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 164 Entry.IsSExt = Entry.IsZExt = false; 165 } 166 Args.push_back(Entry); 167 } 168 169 if (LC == RTLIB::UNKNOWN_LIBCALL) 170 report_fatal_error("Unsupported library call operation!"); 171 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 172 getPointerTy(DAG.getDataLayout())); 173 174 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 175 TargetLowering::CallLoweringInfo CLI(DAG); 176 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 177 bool zeroExtend = !signExtend; 178 179 if (CallOptions.IsSoften && 180 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 181 signExtend = zeroExtend = false; 182 } 183 184 CLI.setDebugLoc(dl) 185 .setChain(InChain) 186 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 187 .setNoReturn(CallOptions.DoesNotReturn) 188 .setDiscardResult(!CallOptions.IsReturnValueUsed) 189 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 190 .setSExtResult(signExtend) 191 .setZExtResult(zeroExtend); 192 return LowerCallTo(CLI); 193 } 194 195 bool TargetLowering::findOptimalMemOpLowering( 196 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 197 unsigned SrcAS, const AttributeList &FuncAttributes) const { 198 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 199 return false; 200 201 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 202 203 if (VT == MVT::Other) { 204 // Use the largest integer type whose alignment constraints are satisfied. 205 // We only need to check DstAlign here as SrcAlign is always greater or 206 // equal to DstAlign (or zero). 207 VT = MVT::i64; 208 if (Op.isFixedDstAlign()) 209 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 210 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 211 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 212 assert(VT.isInteger()); 213 214 // Find the largest legal integer type. 215 MVT LVT = MVT::i64; 216 while (!isTypeLegal(LVT)) 217 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 218 assert(LVT.isInteger()); 219 220 // If the type we've chosen is larger than the largest legal integer type 221 // then use that instead. 222 if (VT.bitsGT(LVT)) 223 VT = LVT; 224 } 225 226 unsigned NumMemOps = 0; 227 uint64_t Size = Op.size(); 228 while (Size) { 229 unsigned VTSize = VT.getSizeInBits() / 8; 230 while (VTSize > Size) { 231 // For now, only use non-vector load / store's for the left-over pieces. 232 EVT NewVT = VT; 233 unsigned NewVTSize; 234 235 bool Found = false; 236 if (VT.isVector() || VT.isFloatingPoint()) { 237 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 238 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 239 isSafeMemOpType(NewVT.getSimpleVT())) 240 Found = true; 241 else if (NewVT == MVT::i64 && 242 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 243 isSafeMemOpType(MVT::f64)) { 244 // i64 is usually not legal on 32-bit targets, but f64 may be. 245 NewVT = MVT::f64; 246 Found = true; 247 } 248 } 249 250 if (!Found) { 251 do { 252 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 253 if (NewVT == MVT::i8) 254 break; 255 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 256 } 257 NewVTSize = NewVT.getSizeInBits() / 8; 258 259 // If the new VT cannot cover all of the remaining bits, then consider 260 // issuing a (or a pair of) unaligned and overlapping load / store. 261 bool Fast; 262 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 263 allowsMisalignedMemoryAccesses( 264 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 265 MachineMemOperand::MONone, &Fast) && 266 Fast) 267 VTSize = Size; 268 else { 269 VT = NewVT; 270 VTSize = NewVTSize; 271 } 272 } 273 274 if (++NumMemOps > Limit) 275 return false; 276 277 MemOps.push_back(VT); 278 Size -= VTSize; 279 } 280 281 return true; 282 } 283 284 /// Soften the operands of a comparison. This code is shared among BR_CC, 285 /// SELECT_CC, and SETCC handlers. 286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 287 SDValue &NewLHS, SDValue &NewRHS, 288 ISD::CondCode &CCCode, 289 const SDLoc &dl, const SDValue OldLHS, 290 const SDValue OldRHS) const { 291 SDValue Chain; 292 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 293 OldRHS, Chain); 294 } 295 296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 297 SDValue &NewLHS, SDValue &NewRHS, 298 ISD::CondCode &CCCode, 299 const SDLoc &dl, const SDValue OldLHS, 300 const SDValue OldRHS, 301 SDValue &Chain, 302 bool IsSignaling) const { 303 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 304 // not supporting it. We can update this code when libgcc provides such 305 // functions. 306 307 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 308 && "Unsupported setcc type!"); 309 310 // Expand into one or more soft-fp libcall(s). 311 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 312 bool ShouldInvertCC = false; 313 switch (CCCode) { 314 case ISD::SETEQ: 315 case ISD::SETOEQ: 316 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 317 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 318 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 319 break; 320 case ISD::SETNE: 321 case ISD::SETUNE: 322 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 323 (VT == MVT::f64) ? RTLIB::UNE_F64 : 324 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 325 break; 326 case ISD::SETGE: 327 case ISD::SETOGE: 328 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 329 (VT == MVT::f64) ? RTLIB::OGE_F64 : 330 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 331 break; 332 case ISD::SETLT: 333 case ISD::SETOLT: 334 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 335 (VT == MVT::f64) ? RTLIB::OLT_F64 : 336 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 337 break; 338 case ISD::SETLE: 339 case ISD::SETOLE: 340 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 341 (VT == MVT::f64) ? RTLIB::OLE_F64 : 342 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 343 break; 344 case ISD::SETGT: 345 case ISD::SETOGT: 346 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 347 (VT == MVT::f64) ? RTLIB::OGT_F64 : 348 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 349 break; 350 case ISD::SETO: 351 ShouldInvertCC = true; 352 LLVM_FALLTHROUGH; 353 case ISD::SETUO: 354 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 355 (VT == MVT::f64) ? RTLIB::UO_F64 : 356 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 357 break; 358 case ISD::SETONE: 359 // SETONE = O && UNE 360 ShouldInvertCC = true; 361 LLVM_FALLTHROUGH; 362 case ISD::SETUEQ: 363 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 364 (VT == MVT::f64) ? RTLIB::UO_F64 : 365 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 366 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 367 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 368 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 369 break; 370 default: 371 // Invert CC for unordered comparisons 372 ShouldInvertCC = true; 373 switch (CCCode) { 374 case ISD::SETULT: 375 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 376 (VT == MVT::f64) ? RTLIB::OGE_F64 : 377 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 378 break; 379 case ISD::SETULE: 380 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 381 (VT == MVT::f64) ? RTLIB::OGT_F64 : 382 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 383 break; 384 case ISD::SETUGT: 385 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 386 (VT == MVT::f64) ? RTLIB::OLE_F64 : 387 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 388 break; 389 case ISD::SETUGE: 390 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 391 (VT == MVT::f64) ? RTLIB::OLT_F64 : 392 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 393 break; 394 default: llvm_unreachable("Do not know how to soften this setcc!"); 395 } 396 } 397 398 // Use the target specific return value for comparions lib calls. 399 EVT RetVT = getCmpLibcallReturnType(); 400 SDValue Ops[2] = {NewLHS, NewRHS}; 401 TargetLowering::MakeLibCallOptions CallOptions; 402 EVT OpsVT[2] = { OldLHS.getValueType(), 403 OldRHS.getValueType() }; 404 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 405 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 406 NewLHS = Call.first; 407 NewRHS = DAG.getConstant(0, dl, RetVT); 408 409 CCCode = getCmpLibcallCC(LC1); 410 if (ShouldInvertCC) { 411 assert(RetVT.isInteger()); 412 CCCode = getSetCCInverse(CCCode, RetVT); 413 } 414 415 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 416 // Update Chain. 417 Chain = Call.second; 418 } else { 419 EVT SetCCVT = 420 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 421 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 422 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 423 CCCode = getCmpLibcallCC(LC2); 424 if (ShouldInvertCC) 425 CCCode = getSetCCInverse(CCCode, RetVT); 426 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 427 if (Chain) 428 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 429 Call2.second); 430 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 431 Tmp.getValueType(), Tmp, NewLHS); 432 NewRHS = SDValue(); 433 } 434 } 435 436 /// Return the entry encoding for a jump table in the current function. The 437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 438 unsigned TargetLowering::getJumpTableEncoding() const { 439 // In non-pic modes, just use the address of a block. 440 if (!isPositionIndependent()) 441 return MachineJumpTableInfo::EK_BlockAddress; 442 443 // In PIC mode, if the target supports a GPRel32 directive, use it. 444 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 445 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 446 447 // Otherwise, use a label difference. 448 return MachineJumpTableInfo::EK_LabelDifference32; 449 } 450 451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 452 SelectionDAG &DAG) const { 453 // If our PIC model is GP relative, use the global offset table as the base. 454 unsigned JTEncoding = getJumpTableEncoding(); 455 456 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 457 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 458 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 459 460 return Table; 461 } 462 463 /// This returns the relocation base for the given PIC jumptable, the same as 464 /// getPICJumpTableRelocBase, but as an MCExpr. 465 const MCExpr * 466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 467 unsigned JTI,MCContext &Ctx) const{ 468 // The normal PIC reloc base is the label at the start of the jump table. 469 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 470 } 471 472 bool 473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 474 const TargetMachine &TM = getTargetMachine(); 475 const GlobalValue *GV = GA->getGlobal(); 476 477 // If the address is not even local to this DSO we will have to load it from 478 // a got and then add the offset. 479 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 480 return false; 481 482 // If the code is position independent we will have to add a base register. 483 if (isPositionIndependent()) 484 return false; 485 486 // Otherwise we can do it. 487 return true; 488 } 489 490 //===----------------------------------------------------------------------===// 491 // Optimization Methods 492 //===----------------------------------------------------------------------===// 493 494 /// If the specified instruction has a constant integer operand and there are 495 /// bits set in that constant that are not demanded, then clear those bits and 496 /// return true. 497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 498 const APInt &DemandedBits, 499 const APInt &DemandedElts, 500 TargetLoweringOpt &TLO) const { 501 SDLoc DL(Op); 502 unsigned Opcode = Op.getOpcode(); 503 504 // Do target-specific constant optimization. 505 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 506 return TLO.New.getNode(); 507 508 // FIXME: ISD::SELECT, ISD::SELECT_CC 509 switch (Opcode) { 510 default: 511 break; 512 case ISD::XOR: 513 case ISD::AND: 514 case ISD::OR: { 515 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 516 if (!Op1C || Op1C->isOpaque()) 517 return false; 518 519 // If this is a 'not' op, don't touch it because that's a canonical form. 520 const APInt &C = Op1C->getAPIntValue(); 521 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 522 return false; 523 524 if (!C.isSubsetOf(DemandedBits)) { 525 EVT VT = Op.getValueType(); 526 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 527 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 528 return TLO.CombineTo(Op, NewOp); 529 } 530 531 break; 532 } 533 } 534 535 return false; 536 } 537 538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 539 const APInt &DemandedBits, 540 TargetLoweringOpt &TLO) const { 541 EVT VT = Op.getValueType(); 542 APInt DemandedElts = VT.isVector() 543 ? APInt::getAllOnes(VT.getVectorNumElements()) 544 : APInt(1, 1); 545 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 546 } 547 548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 550 /// generalized for targets with other types of implicit widening casts. 551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 552 const APInt &Demanded, 553 TargetLoweringOpt &TLO) const { 554 assert(Op.getNumOperands() == 2 && 555 "ShrinkDemandedOp only supports binary operators!"); 556 assert(Op.getNode()->getNumValues() == 1 && 557 "ShrinkDemandedOp only supports nodes with one result!"); 558 559 SelectionDAG &DAG = TLO.DAG; 560 SDLoc dl(Op); 561 562 // Early return, as this function cannot handle vector types. 563 if (Op.getValueType().isVector()) 564 return false; 565 566 // Don't do this if the node has another user, which may require the 567 // full value. 568 if (!Op.getNode()->hasOneUse()) 569 return false; 570 571 // Search for the smallest integer type with free casts to and from 572 // Op's type. For expedience, just check power-of-2 integer types. 573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 574 unsigned DemandedSize = Demanded.getActiveBits(); 575 unsigned SmallVTBits = DemandedSize; 576 if (!isPowerOf2_32(SmallVTBits)) 577 SmallVTBits = NextPowerOf2(SmallVTBits); 578 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 579 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 580 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 581 TLI.isZExtFree(SmallVT, Op.getValueType())) { 582 // We found a type with free casts. 583 SDValue X = DAG.getNode( 584 Op.getOpcode(), dl, SmallVT, 585 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 586 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 587 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 588 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 589 return TLO.CombineTo(Op, Z); 590 } 591 } 592 return false; 593 } 594 595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 596 DAGCombinerInfo &DCI) const { 597 SelectionDAG &DAG = DCI.DAG; 598 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 599 !DCI.isBeforeLegalizeOps()); 600 KnownBits Known; 601 602 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 603 if (Simplified) { 604 DCI.AddToWorklist(Op.getNode()); 605 DCI.CommitTargetLoweringOpt(TLO); 606 } 607 return Simplified; 608 } 609 610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 611 const APInt &DemandedElts, 612 DAGCombinerInfo &DCI) const { 613 SelectionDAG &DAG = DCI.DAG; 614 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 615 !DCI.isBeforeLegalizeOps()); 616 KnownBits Known; 617 618 bool Simplified = 619 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 620 if (Simplified) { 621 DCI.AddToWorklist(Op.getNode()); 622 DCI.CommitTargetLoweringOpt(TLO); 623 } 624 return Simplified; 625 } 626 627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 628 KnownBits &Known, 629 TargetLoweringOpt &TLO, 630 unsigned Depth, 631 bool AssumeSingleUse) const { 632 EVT VT = Op.getValueType(); 633 634 // TODO: We can probably do more work on calculating the known bits and 635 // simplifying the operations for scalable vectors, but for now we just 636 // bail out. 637 if (VT.isScalableVector()) { 638 // Pretend we don't know anything for now. 639 Known = KnownBits(DemandedBits.getBitWidth()); 640 return false; 641 } 642 643 APInt DemandedElts = VT.isVector() 644 ? APInt::getAllOnes(VT.getVectorNumElements()) 645 : APInt(1, 1); 646 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 647 AssumeSingleUse); 648 } 649 650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 651 // TODO: Under what circumstances can we create nodes? Constant folding? 652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 653 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 654 SelectionDAG &DAG, unsigned Depth) const { 655 // Limit search depth. 656 if (Depth >= SelectionDAG::MaxRecursionDepth) 657 return SDValue(); 658 659 // Ignore UNDEFs. 660 if (Op.isUndef()) 661 return SDValue(); 662 663 // Not demanding any bits/elts from Op. 664 if (DemandedBits == 0 || DemandedElts == 0) 665 return DAG.getUNDEF(Op.getValueType()); 666 667 bool IsLE = DAG.getDataLayout().isLittleEndian(); 668 unsigned NumElts = DemandedElts.getBitWidth(); 669 unsigned BitWidth = DemandedBits.getBitWidth(); 670 KnownBits LHSKnown, RHSKnown; 671 switch (Op.getOpcode()) { 672 case ISD::BITCAST: { 673 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 674 EVT SrcVT = Src.getValueType(); 675 EVT DstVT = Op.getValueType(); 676 if (SrcVT == DstVT) 677 return Src; 678 679 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 680 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 681 if (NumSrcEltBits == NumDstEltBits) 682 if (SDValue V = SimplifyMultipleUseDemandedBits( 683 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 684 return DAG.getBitcast(DstVT, V); 685 686 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 687 unsigned Scale = NumDstEltBits / NumSrcEltBits; 688 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 689 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 690 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 691 for (unsigned i = 0; i != Scale; ++i) { 692 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 693 unsigned BitOffset = EltOffset * NumSrcEltBits; 694 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 695 if (!Sub.isZero()) { 696 DemandedSrcBits |= Sub; 697 for (unsigned j = 0; j != NumElts; ++j) 698 if (DemandedElts[j]) 699 DemandedSrcElts.setBit((j * Scale) + i); 700 } 701 } 702 703 if (SDValue V = SimplifyMultipleUseDemandedBits( 704 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 705 return DAG.getBitcast(DstVT, V); 706 } 707 708 // TODO - bigendian once we have test coverage. 709 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 710 unsigned Scale = NumSrcEltBits / NumDstEltBits; 711 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 712 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 713 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 714 for (unsigned i = 0; i != NumElts; ++i) 715 if (DemandedElts[i]) { 716 unsigned Offset = (i % Scale) * NumDstEltBits; 717 DemandedSrcBits.insertBits(DemandedBits, Offset); 718 DemandedSrcElts.setBit(i / Scale); 719 } 720 721 if (SDValue V = SimplifyMultipleUseDemandedBits( 722 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 723 return DAG.getBitcast(DstVT, V); 724 } 725 726 break; 727 } 728 case ISD::AND: { 729 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 730 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 731 732 // If all of the demanded bits are known 1 on one side, return the other. 733 // These bits cannot contribute to the result of the 'and' in this 734 // context. 735 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 736 return Op.getOperand(0); 737 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 738 return Op.getOperand(1); 739 break; 740 } 741 case ISD::OR: { 742 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 743 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 744 745 // If all of the demanded bits are known zero on one side, return the 746 // other. These bits cannot contribute to the result of the 'or' in this 747 // context. 748 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 749 return Op.getOperand(0); 750 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 751 return Op.getOperand(1); 752 break; 753 } 754 case ISD::XOR: { 755 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 756 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 757 758 // If all of the demanded bits are known zero on one side, return the 759 // other. 760 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 761 return Op.getOperand(0); 762 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 763 return Op.getOperand(1); 764 break; 765 } 766 case ISD::SHL: { 767 // If we are only demanding sign bits then we can use the shift source 768 // directly. 769 if (const APInt *MaxSA = 770 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 771 SDValue Op0 = Op.getOperand(0); 772 unsigned ShAmt = MaxSA->getZExtValue(); 773 unsigned NumSignBits = 774 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 775 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 776 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 777 return Op0; 778 } 779 break; 780 } 781 case ISD::SETCC: { 782 SDValue Op0 = Op.getOperand(0); 783 SDValue Op1 = Op.getOperand(1); 784 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 785 // If (1) we only need the sign-bit, (2) the setcc operands are the same 786 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 787 // -1, we may be able to bypass the setcc. 788 if (DemandedBits.isSignMask() && 789 Op0.getScalarValueSizeInBits() == BitWidth && 790 getBooleanContents(Op0.getValueType()) == 791 BooleanContent::ZeroOrNegativeOneBooleanContent) { 792 // If we're testing X < 0, then this compare isn't needed - just use X! 793 // FIXME: We're limiting to integer types here, but this should also work 794 // if we don't care about FP signed-zero. The use of SETLT with FP means 795 // that we don't care about NaNs. 796 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 797 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 798 return Op0; 799 } 800 break; 801 } 802 case ISD::SIGN_EXTEND_INREG: { 803 // If none of the extended bits are demanded, eliminate the sextinreg. 804 SDValue Op0 = Op.getOperand(0); 805 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 806 unsigned ExBits = ExVT.getScalarSizeInBits(); 807 if (DemandedBits.getActiveBits() <= ExBits) 808 return Op0; 809 // If the input is already sign extended, just drop the extension. 810 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 811 if (NumSignBits >= (BitWidth - ExBits + 1)) 812 return Op0; 813 break; 814 } 815 case ISD::ANY_EXTEND_VECTOR_INREG: 816 case ISD::SIGN_EXTEND_VECTOR_INREG: 817 case ISD::ZERO_EXTEND_VECTOR_INREG: { 818 // If we only want the lowest element and none of extended bits, then we can 819 // return the bitcasted source vector. 820 SDValue Src = Op.getOperand(0); 821 EVT SrcVT = Src.getValueType(); 822 EVT DstVT = Op.getValueType(); 823 if (IsLE && DemandedElts == 1 && 824 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 825 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 826 return DAG.getBitcast(DstVT, Src); 827 } 828 break; 829 } 830 case ISD::INSERT_VECTOR_ELT: { 831 // If we don't demand the inserted element, return the base vector. 832 SDValue Vec = Op.getOperand(0); 833 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 834 EVT VecVT = Vec.getValueType(); 835 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 836 !DemandedElts[CIdx->getZExtValue()]) 837 return Vec; 838 break; 839 } 840 case ISD::INSERT_SUBVECTOR: { 841 SDValue Vec = Op.getOperand(0); 842 SDValue Sub = Op.getOperand(1); 843 uint64_t Idx = Op.getConstantOperandVal(2); 844 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 845 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 846 // If we don't demand the inserted subvector, return the base vector. 847 if (DemandedSubElts == 0) 848 return Vec; 849 // If this simply widens the lowest subvector, see if we can do it earlier. 850 if (Idx == 0 && Vec.isUndef()) { 851 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 852 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 853 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 854 Op.getOperand(0), NewSub, Op.getOperand(2)); 855 } 856 break; 857 } 858 case ISD::VECTOR_SHUFFLE: { 859 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 860 861 // If all the demanded elts are from one operand and are inline, 862 // then we can use the operand directly. 863 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 864 for (unsigned i = 0; i != NumElts; ++i) { 865 int M = ShuffleMask[i]; 866 if (M < 0 || !DemandedElts[i]) 867 continue; 868 AllUndef = false; 869 IdentityLHS &= (M == (int)i); 870 IdentityRHS &= ((M - NumElts) == i); 871 } 872 873 if (AllUndef) 874 return DAG.getUNDEF(Op.getValueType()); 875 if (IdentityLHS) 876 return Op.getOperand(0); 877 if (IdentityRHS) 878 return Op.getOperand(1); 879 break; 880 } 881 default: 882 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 883 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 884 Op, DemandedBits, DemandedElts, DAG, Depth)) 885 return V; 886 break; 887 } 888 return SDValue(); 889 } 890 891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 892 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 893 unsigned Depth) const { 894 EVT VT = Op.getValueType(); 895 APInt DemandedElts = VT.isVector() 896 ? APInt::getAllOnes(VT.getVectorNumElements()) 897 : APInt(1, 1); 898 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 899 Depth); 900 } 901 902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 903 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 904 unsigned Depth) const { 905 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 906 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 907 Depth); 908 } 909 910 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 911 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 912 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 913 const TargetLowering &TLI, 914 const APInt &DemandedBits, 915 const APInt &DemandedElts, 916 unsigned Depth) { 917 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 918 "SRL or SRA node is required here!"); 919 // Is the right shift using an immediate value of 1? 920 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 921 if (!N1C || !N1C->isOne()) 922 return SDValue(); 923 924 // We are looking for an avgfloor 925 // add(ext, ext) 926 // or one of these as a avgceil 927 // add(add(ext, ext), 1) 928 // add(add(ext, 1), ext) 929 // add(ext, add(ext, 1)) 930 SDValue Add = Op.getOperand(0); 931 if (Add.getOpcode() != ISD::ADD) 932 return SDValue(); 933 934 SDValue ExtOpA = Add.getOperand(0); 935 SDValue ExtOpB = Add.getOperand(1); 936 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 937 ConstantSDNode *ConstOp; 938 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 939 ConstOp->isOne()) { 940 ExtOpA = Op2; 941 ExtOpB = Op3; 942 return true; 943 } 944 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 945 ConstOp->isOne()) { 946 ExtOpA = Op1; 947 ExtOpB = Op3; 948 return true; 949 } 950 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 951 ConstOp->isOne()) { 952 ExtOpA = Op1; 953 ExtOpB = Op2; 954 return true; 955 } 956 return false; 957 }; 958 bool IsCeil = 959 (ExtOpA.getOpcode() == ISD::ADD && 960 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 961 (ExtOpB.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 963 964 // If the shift is signed (sra): 965 // - Needs >= 2 sign bit for both operands. 966 // - Needs >= 2 zero bits. 967 // If the shift is unsigned (srl): 968 // - Needs >= 1 zero bit for both operands. 969 // - Needs 1 demanded bit zero and >= 2 sign bits. 970 unsigned ShiftOpc = Op.getOpcode(); 971 bool IsSigned = false; 972 unsigned KnownBits; 973 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 974 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 975 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 976 unsigned NumZeroA = 977 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 978 unsigned NumZeroB = 979 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZero = std::min(NumZeroA, NumZeroB); 981 982 switch (ShiftOpc) { 983 default: 984 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 985 case ISD::SRA: { 986 if (NumZero >= 2 && NumSigned < NumZero) { 987 IsSigned = false; 988 KnownBits = NumZero; 989 break; 990 } 991 if (NumSigned >= 1) { 992 IsSigned = true; 993 KnownBits = NumSigned; 994 break; 995 } 996 return SDValue(); 997 } 998 case ISD::SRL: { 999 if (NumZero >= 1 && NumSigned < NumZero) { 1000 IsSigned = false; 1001 KnownBits = NumZero; 1002 break; 1003 } 1004 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1005 IsSigned = true; 1006 KnownBits = NumSigned; 1007 break; 1008 } 1009 return SDValue(); 1010 } 1011 } 1012 1013 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1014 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1015 1016 // Find the smallest power-2 type that is legal for this vector size and 1017 // operation, given the original type size and the number of known sign/zero 1018 // bits. 1019 EVT VT = Op.getValueType(); 1020 unsigned MinWidth = 1021 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1022 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1023 if (VT.isVector()) 1024 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1025 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1026 return SDValue(); 1027 1028 SDLoc DL(Op); 1029 SDValue ResultAVG = 1030 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1031 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1032 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1033 ResultAVG); 1034 } 1035 1036 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1037 /// result of Op are ever used downstream. If we can use this information to 1038 /// simplify Op, create a new simplified DAG node and return true, returning the 1039 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1040 /// return a mask of Known bits for the expression (used to simplify the 1041 /// caller). The Known bits may only be accurate for those bits in the 1042 /// OriginalDemandedBits and OriginalDemandedElts. 1043 bool TargetLowering::SimplifyDemandedBits( 1044 SDValue Op, const APInt &OriginalDemandedBits, 1045 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1046 unsigned Depth, bool AssumeSingleUse) const { 1047 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1048 assert(Op.getScalarValueSizeInBits() == BitWidth && 1049 "Mask size mismatches value type size!"); 1050 1051 // Don't know anything. 1052 Known = KnownBits(BitWidth); 1053 1054 // TODO: We can probably do more work on calculating the known bits and 1055 // simplifying the operations for scalable vectors, but for now we just 1056 // bail out. 1057 if (Op.getValueType().isScalableVector()) 1058 return false; 1059 1060 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1061 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1062 assert((!Op.getValueType().isVector() || 1063 NumElts == Op.getValueType().getVectorNumElements()) && 1064 "Unexpected vector size"); 1065 1066 APInt DemandedBits = OriginalDemandedBits; 1067 APInt DemandedElts = OriginalDemandedElts; 1068 SDLoc dl(Op); 1069 auto &DL = TLO.DAG.getDataLayout(); 1070 1071 // Undef operand. 1072 if (Op.isUndef()) 1073 return false; 1074 1075 if (Op.getOpcode() == ISD::Constant) { 1076 // We know all of the bits for a constant! 1077 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1078 return false; 1079 } 1080 1081 if (Op.getOpcode() == ISD::ConstantFP) { 1082 // We know all of the bits for a floating point constant! 1083 Known = KnownBits::makeConstant( 1084 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1085 return false; 1086 } 1087 1088 // Other users may use these bits. 1089 EVT VT = Op.getValueType(); 1090 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1091 if (Depth != 0) { 1092 // If not at the root, Just compute the Known bits to 1093 // simplify things downstream. 1094 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1095 return false; 1096 } 1097 // If this is the root being simplified, allow it to have multiple uses, 1098 // just set the DemandedBits/Elts to all bits. 1099 DemandedBits = APInt::getAllOnes(BitWidth); 1100 DemandedElts = APInt::getAllOnes(NumElts); 1101 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1102 // Not demanding any bits/elts from Op. 1103 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1104 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1105 // Limit search depth. 1106 return false; 1107 } 1108 1109 KnownBits Known2; 1110 switch (Op.getOpcode()) { 1111 case ISD::TargetConstant: 1112 llvm_unreachable("Can't simplify this node"); 1113 case ISD::SCALAR_TO_VECTOR: { 1114 if (!DemandedElts[0]) 1115 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1116 1117 KnownBits SrcKnown; 1118 SDValue Src = Op.getOperand(0); 1119 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1120 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 1121 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1122 return true; 1123 1124 // Upper elements are undef, so only get the knownbits if we just demand 1125 // the bottom element. 1126 if (DemandedElts == 1) 1127 Known = SrcKnown.anyextOrTrunc(BitWidth); 1128 break; 1129 } 1130 case ISD::BUILD_VECTOR: 1131 // Collect the known bits that are shared by every demanded element. 1132 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1133 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1134 return false; // Don't fall through, will infinitely loop. 1135 case ISD::LOAD: { 1136 auto *LD = cast<LoadSDNode>(Op); 1137 if (getTargetConstantFromLoad(LD)) { 1138 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1139 return false; // Don't fall through, will infinitely loop. 1140 } 1141 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1142 // If this is a ZEXTLoad and we are looking at the loaded value. 1143 EVT MemVT = LD->getMemoryVT(); 1144 unsigned MemBits = MemVT.getScalarSizeInBits(); 1145 Known.Zero.setBitsFrom(MemBits); 1146 return false; // Don't fall through, will infinitely loop. 1147 } 1148 break; 1149 } 1150 case ISD::INSERT_VECTOR_ELT: { 1151 SDValue Vec = Op.getOperand(0); 1152 SDValue Scl = Op.getOperand(1); 1153 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1154 EVT VecVT = Vec.getValueType(); 1155 1156 // If index isn't constant, assume we need all vector elements AND the 1157 // inserted element. 1158 APInt DemandedVecElts(DemandedElts); 1159 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1160 unsigned Idx = CIdx->getZExtValue(); 1161 DemandedVecElts.clearBit(Idx); 1162 1163 // Inserted element is not required. 1164 if (!DemandedElts[Idx]) 1165 return TLO.CombineTo(Op, Vec); 1166 } 1167 1168 KnownBits KnownScl; 1169 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1170 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1171 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1172 return true; 1173 1174 Known = KnownScl.anyextOrTrunc(BitWidth); 1175 1176 KnownBits KnownVec; 1177 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1178 Depth + 1)) 1179 return true; 1180 1181 if (!!DemandedVecElts) 1182 Known = KnownBits::commonBits(Known, KnownVec); 1183 1184 return false; 1185 } 1186 case ISD::INSERT_SUBVECTOR: { 1187 // Demand any elements from the subvector and the remainder from the src its 1188 // inserted into. 1189 SDValue Src = Op.getOperand(0); 1190 SDValue Sub = Op.getOperand(1); 1191 uint64_t Idx = Op.getConstantOperandVal(2); 1192 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1193 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1194 APInt DemandedSrcElts = DemandedElts; 1195 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1196 1197 KnownBits KnownSub, KnownSrc; 1198 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1199 Depth + 1)) 1200 return true; 1201 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1202 Depth + 1)) 1203 return true; 1204 1205 Known.Zero.setAllBits(); 1206 Known.One.setAllBits(); 1207 if (!!DemandedSubElts) 1208 Known = KnownBits::commonBits(Known, KnownSub); 1209 if (!!DemandedSrcElts) 1210 Known = KnownBits::commonBits(Known, KnownSrc); 1211 1212 // Attempt to avoid multi-use src if we don't need anything from it. 1213 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1214 !DemandedSrcElts.isAllOnes()) { 1215 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1216 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1217 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1218 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1219 if (NewSub || NewSrc) { 1220 NewSub = NewSub ? NewSub : Sub; 1221 NewSrc = NewSrc ? NewSrc : Src; 1222 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1223 Op.getOperand(2)); 1224 return TLO.CombineTo(Op, NewOp); 1225 } 1226 } 1227 break; 1228 } 1229 case ISD::EXTRACT_SUBVECTOR: { 1230 // Offset the demanded elts by the subvector index. 1231 SDValue Src = Op.getOperand(0); 1232 if (Src.getValueType().isScalableVector()) 1233 break; 1234 uint64_t Idx = Op.getConstantOperandVal(1); 1235 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1236 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1237 1238 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1239 Depth + 1)) 1240 return true; 1241 1242 // Attempt to avoid multi-use src if we don't need anything from it. 1243 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1244 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1245 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1246 if (DemandedSrc) { 1247 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1248 Op.getOperand(1)); 1249 return TLO.CombineTo(Op, NewOp); 1250 } 1251 } 1252 break; 1253 } 1254 case ISD::CONCAT_VECTORS: { 1255 Known.Zero.setAllBits(); 1256 Known.One.setAllBits(); 1257 EVT SubVT = Op.getOperand(0).getValueType(); 1258 unsigned NumSubVecs = Op.getNumOperands(); 1259 unsigned NumSubElts = SubVT.getVectorNumElements(); 1260 for (unsigned i = 0; i != NumSubVecs; ++i) { 1261 APInt DemandedSubElts = 1262 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1263 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1264 Known2, TLO, Depth + 1)) 1265 return true; 1266 // Known bits are shared by every demanded subvector element. 1267 if (!!DemandedSubElts) 1268 Known = KnownBits::commonBits(Known, Known2); 1269 } 1270 break; 1271 } 1272 case ISD::VECTOR_SHUFFLE: { 1273 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1274 1275 // Collect demanded elements from shuffle operands.. 1276 APInt DemandedLHS(NumElts, 0); 1277 APInt DemandedRHS(NumElts, 0); 1278 for (unsigned i = 0; i != NumElts; ++i) { 1279 if (!DemandedElts[i]) 1280 continue; 1281 int M = ShuffleMask[i]; 1282 if (M < 0) { 1283 // For UNDEF elements, we don't know anything about the common state of 1284 // the shuffle result. 1285 DemandedLHS.clearAllBits(); 1286 DemandedRHS.clearAllBits(); 1287 break; 1288 } 1289 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1290 if (M < (int)NumElts) 1291 DemandedLHS.setBit(M); 1292 else 1293 DemandedRHS.setBit(M - NumElts); 1294 } 1295 1296 if (!!DemandedLHS || !!DemandedRHS) { 1297 SDValue Op0 = Op.getOperand(0); 1298 SDValue Op1 = Op.getOperand(1); 1299 1300 Known.Zero.setAllBits(); 1301 Known.One.setAllBits(); 1302 if (!!DemandedLHS) { 1303 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1304 Depth + 1)) 1305 return true; 1306 Known = KnownBits::commonBits(Known, Known2); 1307 } 1308 if (!!DemandedRHS) { 1309 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1310 Depth + 1)) 1311 return true; 1312 Known = KnownBits::commonBits(Known, Known2); 1313 } 1314 1315 // Attempt to avoid multi-use ops if we don't need anything from them. 1316 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1317 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1318 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1319 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1320 if (DemandedOp0 || DemandedOp1) { 1321 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1322 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1323 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1324 return TLO.CombineTo(Op, NewOp); 1325 } 1326 } 1327 break; 1328 } 1329 case ISD::AND: { 1330 SDValue Op0 = Op.getOperand(0); 1331 SDValue Op1 = Op.getOperand(1); 1332 1333 // If the RHS is a constant, check to see if the LHS would be zero without 1334 // using the bits from the RHS. Below, we use knowledge about the RHS to 1335 // simplify the LHS, here we're using information from the LHS to simplify 1336 // the RHS. 1337 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1338 // Do not increment Depth here; that can cause an infinite loop. 1339 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1340 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1341 if ((LHSKnown.Zero & DemandedBits) == 1342 (~RHSC->getAPIntValue() & DemandedBits)) 1343 return TLO.CombineTo(Op, Op0); 1344 1345 // If any of the set bits in the RHS are known zero on the LHS, shrink 1346 // the constant. 1347 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1348 DemandedElts, TLO)) 1349 return true; 1350 1351 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1352 // constant, but if this 'and' is only clearing bits that were just set by 1353 // the xor, then this 'and' can be eliminated by shrinking the mask of 1354 // the xor. For example, for a 32-bit X: 1355 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1356 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1357 LHSKnown.One == ~RHSC->getAPIntValue()) { 1358 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1359 return TLO.CombineTo(Op, Xor); 1360 } 1361 } 1362 1363 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1364 Depth + 1)) 1365 return true; 1366 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1367 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1368 Known2, TLO, Depth + 1)) 1369 return true; 1370 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1371 1372 // Attempt to avoid multi-use ops if we don't need anything from them. 1373 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1374 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1375 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1376 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1377 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1378 if (DemandedOp0 || DemandedOp1) { 1379 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1380 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1381 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1382 return TLO.CombineTo(Op, NewOp); 1383 } 1384 } 1385 1386 // If all of the demanded bits are known one on one side, return the other. 1387 // These bits cannot contribute to the result of the 'and'. 1388 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1389 return TLO.CombineTo(Op, Op0); 1390 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1391 return TLO.CombineTo(Op, Op1); 1392 // If all of the demanded bits in the inputs are known zeros, return zero. 1393 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1394 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1395 // If the RHS is a constant, see if we can simplify it. 1396 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1397 TLO)) 1398 return true; 1399 // If the operation can be done in a smaller type, do so. 1400 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1401 return true; 1402 1403 Known &= Known2; 1404 break; 1405 } 1406 case ISD::OR: { 1407 SDValue Op0 = Op.getOperand(0); 1408 SDValue Op1 = Op.getOperand(1); 1409 1410 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1411 Depth + 1)) 1412 return true; 1413 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1414 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1415 Known2, TLO, Depth + 1)) 1416 return true; 1417 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1418 1419 // Attempt to avoid multi-use ops if we don't need anything from them. 1420 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1421 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1422 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1423 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1424 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1425 if (DemandedOp0 || DemandedOp1) { 1426 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1427 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1428 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1429 return TLO.CombineTo(Op, NewOp); 1430 } 1431 } 1432 1433 // If all of the demanded bits are known zero on one side, return the other. 1434 // These bits cannot contribute to the result of the 'or'. 1435 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1436 return TLO.CombineTo(Op, Op0); 1437 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1438 return TLO.CombineTo(Op, Op1); 1439 // If the RHS is a constant, see if we can simplify it. 1440 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1441 return true; 1442 // If the operation can be done in a smaller type, do so. 1443 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1444 return true; 1445 1446 Known |= Known2; 1447 break; 1448 } 1449 case ISD::XOR: { 1450 SDValue Op0 = Op.getOperand(0); 1451 SDValue Op1 = Op.getOperand(1); 1452 1453 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1454 Depth + 1)) 1455 return true; 1456 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1457 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1458 Depth + 1)) 1459 return true; 1460 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1461 1462 // Attempt to avoid multi-use ops if we don't need anything from them. 1463 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1464 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1465 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1466 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1467 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1468 if (DemandedOp0 || DemandedOp1) { 1469 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1470 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1471 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1472 return TLO.CombineTo(Op, NewOp); 1473 } 1474 } 1475 1476 // If all of the demanded bits are known zero on one side, return the other. 1477 // These bits cannot contribute to the result of the 'xor'. 1478 if (DemandedBits.isSubsetOf(Known.Zero)) 1479 return TLO.CombineTo(Op, Op0); 1480 if (DemandedBits.isSubsetOf(Known2.Zero)) 1481 return TLO.CombineTo(Op, Op1); 1482 // If the operation can be done in a smaller type, do so. 1483 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1484 return true; 1485 1486 // If all of the unknown bits are known to be zero on one side or the other 1487 // turn this into an *inclusive* or. 1488 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1489 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1490 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1491 1492 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1493 if (C) { 1494 // If one side is a constant, and all of the set bits in the constant are 1495 // also known set on the other side, turn this into an AND, as we know 1496 // the bits will be cleared. 1497 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1498 // NB: it is okay if more bits are known than are requested 1499 if (C->getAPIntValue() == Known2.One) { 1500 SDValue ANDC = 1501 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1502 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1503 } 1504 1505 // If the RHS is a constant, see if we can change it. Don't alter a -1 1506 // constant because that's a 'not' op, and that is better for combining 1507 // and codegen. 1508 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1509 // We're flipping all demanded bits. Flip the undemanded bits too. 1510 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1511 return TLO.CombineTo(Op, New); 1512 } 1513 } 1514 1515 // If we can't turn this into a 'not', try to shrink the constant. 1516 if (!C || !C->isAllOnes()) 1517 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1518 return true; 1519 1520 Known ^= Known2; 1521 break; 1522 } 1523 case ISD::SELECT: 1524 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1525 Depth + 1)) 1526 return true; 1527 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1528 Depth + 1)) 1529 return true; 1530 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1531 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1532 1533 // If the operands are constants, see if we can simplify them. 1534 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1535 return true; 1536 1537 // Only known if known in both the LHS and RHS. 1538 Known = KnownBits::commonBits(Known, Known2); 1539 break; 1540 case ISD::SELECT_CC: 1541 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1542 Depth + 1)) 1543 return true; 1544 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1545 Depth + 1)) 1546 return true; 1547 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1548 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1549 1550 // If the operands are constants, see if we can simplify them. 1551 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1552 return true; 1553 1554 // Only known if known in both the LHS and RHS. 1555 Known = KnownBits::commonBits(Known, Known2); 1556 break; 1557 case ISD::SETCC: { 1558 SDValue Op0 = Op.getOperand(0); 1559 SDValue Op1 = Op.getOperand(1); 1560 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1561 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1562 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1563 // -1, we may be able to bypass the setcc. 1564 if (DemandedBits.isSignMask() && 1565 Op0.getScalarValueSizeInBits() == BitWidth && 1566 getBooleanContents(Op0.getValueType()) == 1567 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1568 // If we're testing X < 0, then this compare isn't needed - just use X! 1569 // FIXME: We're limiting to integer types here, but this should also work 1570 // if we don't care about FP signed-zero. The use of SETLT with FP means 1571 // that we don't care about NaNs. 1572 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1573 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1574 return TLO.CombineTo(Op, Op0); 1575 1576 // TODO: Should we check for other forms of sign-bit comparisons? 1577 // Examples: X <= -1, X >= 0 1578 } 1579 if (getBooleanContents(Op0.getValueType()) == 1580 TargetLowering::ZeroOrOneBooleanContent && 1581 BitWidth > 1) 1582 Known.Zero.setBitsFrom(1); 1583 break; 1584 } 1585 case ISD::SHL: { 1586 SDValue Op0 = Op.getOperand(0); 1587 SDValue Op1 = Op.getOperand(1); 1588 EVT ShiftVT = Op1.getValueType(); 1589 1590 if (const APInt *SA = 1591 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1592 unsigned ShAmt = SA->getZExtValue(); 1593 if (ShAmt == 0) 1594 return TLO.CombineTo(Op, Op0); 1595 1596 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1597 // single shift. We can do this if the bottom bits (which are shifted 1598 // out) are never demanded. 1599 // TODO - support non-uniform vector amounts. 1600 if (Op0.getOpcode() == ISD::SRL) { 1601 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1602 if (const APInt *SA2 = 1603 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1604 unsigned C1 = SA2->getZExtValue(); 1605 unsigned Opc = ISD::SHL; 1606 int Diff = ShAmt - C1; 1607 if (Diff < 0) { 1608 Diff = -Diff; 1609 Opc = ISD::SRL; 1610 } 1611 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1612 return TLO.CombineTo( 1613 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1614 } 1615 } 1616 } 1617 1618 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1619 // are not demanded. This will likely allow the anyext to be folded away. 1620 // TODO - support non-uniform vector amounts. 1621 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1622 SDValue InnerOp = Op0.getOperand(0); 1623 EVT InnerVT = InnerOp.getValueType(); 1624 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1625 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1626 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1627 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1628 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1629 ShTy = InnerVT; 1630 SDValue NarrowShl = 1631 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1632 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1633 return TLO.CombineTo( 1634 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1635 } 1636 1637 // Repeat the SHL optimization above in cases where an extension 1638 // intervenes: (shl (anyext (shr x, c1)), c2) to 1639 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1640 // aren't demanded (as above) and that the shifted upper c1 bits of 1641 // x aren't demanded. 1642 // TODO - support non-uniform vector amounts. 1643 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1644 InnerOp.hasOneUse()) { 1645 if (const APInt *SA2 = 1646 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1647 unsigned InnerShAmt = SA2->getZExtValue(); 1648 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1649 DemandedBits.getActiveBits() <= 1650 (InnerBits - InnerShAmt + ShAmt) && 1651 DemandedBits.countTrailingZeros() >= ShAmt) { 1652 SDValue NewSA = 1653 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1654 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1655 InnerOp.getOperand(0)); 1656 return TLO.CombineTo( 1657 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1658 } 1659 } 1660 } 1661 } 1662 1663 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1664 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1665 Depth + 1)) 1666 return true; 1667 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1668 Known.Zero <<= ShAmt; 1669 Known.One <<= ShAmt; 1670 // low bits known zero. 1671 Known.Zero.setLowBits(ShAmt); 1672 1673 // Try shrinking the operation as long as the shift amount will still be 1674 // in range. 1675 if ((ShAmt < DemandedBits.getActiveBits()) && 1676 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1677 return true; 1678 } 1679 1680 // If we are only demanding sign bits then we can use the shift source 1681 // directly. 1682 if (const APInt *MaxSA = 1683 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1684 unsigned ShAmt = MaxSA->getZExtValue(); 1685 unsigned NumSignBits = 1686 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1687 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1688 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1689 return TLO.CombineTo(Op, Op0); 1690 } 1691 break; 1692 } 1693 case ISD::SRL: { 1694 SDValue Op0 = Op.getOperand(0); 1695 SDValue Op1 = Op.getOperand(1); 1696 EVT ShiftVT = Op1.getValueType(); 1697 1698 // Try to match AVG patterns. 1699 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1700 DemandedElts, Depth + 1)) 1701 return TLO.CombineTo(Op, AVG); 1702 1703 if (const APInt *SA = 1704 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1705 unsigned ShAmt = SA->getZExtValue(); 1706 if (ShAmt == 0) 1707 return TLO.CombineTo(Op, Op0); 1708 1709 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1710 // single shift. We can do this if the top bits (which are shifted out) 1711 // are never demanded. 1712 // TODO - support non-uniform vector amounts. 1713 if (Op0.getOpcode() == ISD::SHL) { 1714 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1715 if (const APInt *SA2 = 1716 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1717 unsigned C1 = SA2->getZExtValue(); 1718 unsigned Opc = ISD::SRL; 1719 int Diff = ShAmt - C1; 1720 if (Diff < 0) { 1721 Diff = -Diff; 1722 Opc = ISD::SHL; 1723 } 1724 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1725 return TLO.CombineTo( 1726 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1727 } 1728 } 1729 } 1730 1731 APInt InDemandedMask = (DemandedBits << ShAmt); 1732 1733 // If the shift is exact, then it does demand the low bits (and knows that 1734 // they are zero). 1735 if (Op->getFlags().hasExact()) 1736 InDemandedMask.setLowBits(ShAmt); 1737 1738 // Compute the new bits that are at the top now. 1739 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1740 Depth + 1)) 1741 return true; 1742 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1743 Known.Zero.lshrInPlace(ShAmt); 1744 Known.One.lshrInPlace(ShAmt); 1745 // High bits known zero. 1746 Known.Zero.setHighBits(ShAmt); 1747 } 1748 break; 1749 } 1750 case ISD::SRA: { 1751 SDValue Op0 = Op.getOperand(0); 1752 SDValue Op1 = Op.getOperand(1); 1753 EVT ShiftVT = Op1.getValueType(); 1754 1755 // If we only want bits that already match the signbit then we don't need 1756 // to shift. 1757 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1758 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1759 NumHiDemandedBits) 1760 return TLO.CombineTo(Op, Op0); 1761 1762 // If this is an arithmetic shift right and only the low-bit is set, we can 1763 // always convert this into a logical shr, even if the shift amount is 1764 // variable. The low bit of the shift cannot be an input sign bit unless 1765 // the shift amount is >= the size of the datatype, which is undefined. 1766 if (DemandedBits.isOne()) 1767 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1768 1769 // Try to match AVG patterns. 1770 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1771 DemandedElts, Depth + 1)) 1772 return TLO.CombineTo(Op, AVG); 1773 1774 if (const APInt *SA = 1775 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1776 unsigned ShAmt = SA->getZExtValue(); 1777 if (ShAmt == 0) 1778 return TLO.CombineTo(Op, Op0); 1779 1780 APInt InDemandedMask = (DemandedBits << ShAmt); 1781 1782 // If the shift is exact, then it does demand the low bits (and knows that 1783 // they are zero). 1784 if (Op->getFlags().hasExact()) 1785 InDemandedMask.setLowBits(ShAmt); 1786 1787 // If any of the demanded bits are produced by the sign extension, we also 1788 // demand the input sign bit. 1789 if (DemandedBits.countLeadingZeros() < ShAmt) 1790 InDemandedMask.setSignBit(); 1791 1792 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1793 Depth + 1)) 1794 return true; 1795 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1796 Known.Zero.lshrInPlace(ShAmt); 1797 Known.One.lshrInPlace(ShAmt); 1798 1799 // If the input sign bit is known to be zero, or if none of the top bits 1800 // are demanded, turn this into an unsigned shift right. 1801 if (Known.Zero[BitWidth - ShAmt - 1] || 1802 DemandedBits.countLeadingZeros() >= ShAmt) { 1803 SDNodeFlags Flags; 1804 Flags.setExact(Op->getFlags().hasExact()); 1805 return TLO.CombineTo( 1806 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1807 } 1808 1809 int Log2 = DemandedBits.exactLogBase2(); 1810 if (Log2 >= 0) { 1811 // The bit must come from the sign. 1812 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1813 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1814 } 1815 1816 if (Known.One[BitWidth - ShAmt - 1]) 1817 // New bits are known one. 1818 Known.One.setHighBits(ShAmt); 1819 1820 // Attempt to avoid multi-use ops if we don't need anything from them. 1821 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1822 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1823 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1824 if (DemandedOp0) { 1825 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1826 return TLO.CombineTo(Op, NewOp); 1827 } 1828 } 1829 } 1830 break; 1831 } 1832 case ISD::FSHL: 1833 case ISD::FSHR: { 1834 SDValue Op0 = Op.getOperand(0); 1835 SDValue Op1 = Op.getOperand(1); 1836 SDValue Op2 = Op.getOperand(2); 1837 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1838 1839 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1840 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1841 1842 // For fshl, 0-shift returns the 1st arg. 1843 // For fshr, 0-shift returns the 2nd arg. 1844 if (Amt == 0) { 1845 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1846 Known, TLO, Depth + 1)) 1847 return true; 1848 break; 1849 } 1850 1851 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1852 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1853 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1854 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1855 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1856 Depth + 1)) 1857 return true; 1858 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1859 Depth + 1)) 1860 return true; 1861 1862 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1863 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1864 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1865 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1866 Known.One |= Known2.One; 1867 Known.Zero |= Known2.Zero; 1868 } 1869 1870 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1871 if (isPowerOf2_32(BitWidth)) { 1872 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1873 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1874 Known2, TLO, Depth + 1)) 1875 return true; 1876 } 1877 break; 1878 } 1879 case ISD::ROTL: 1880 case ISD::ROTR: { 1881 SDValue Op0 = Op.getOperand(0); 1882 SDValue Op1 = Op.getOperand(1); 1883 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1884 1885 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1886 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1887 return TLO.CombineTo(Op, Op0); 1888 1889 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1890 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1891 unsigned RevAmt = BitWidth - Amt; 1892 1893 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1894 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1895 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1896 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1897 Depth + 1)) 1898 return true; 1899 1900 // rot*(x, 0) --> x 1901 if (Amt == 0) 1902 return TLO.CombineTo(Op, Op0); 1903 1904 // See if we don't demand either half of the rotated bits. 1905 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1906 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1907 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1908 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1909 } 1910 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1911 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1912 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1913 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1914 } 1915 } 1916 1917 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1918 if (isPowerOf2_32(BitWidth)) { 1919 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1920 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1921 Depth + 1)) 1922 return true; 1923 } 1924 break; 1925 } 1926 case ISD::UMIN: { 1927 // Check if one arg is always less than (or equal) to the other arg. 1928 SDValue Op0 = Op.getOperand(0); 1929 SDValue Op1 = Op.getOperand(1); 1930 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1931 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1932 Known = KnownBits::umin(Known0, Known1); 1933 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1934 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1935 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1936 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1937 break; 1938 } 1939 case ISD::UMAX: { 1940 // Check if one arg is always greater than (or equal) to the other arg. 1941 SDValue Op0 = Op.getOperand(0); 1942 SDValue Op1 = Op.getOperand(1); 1943 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1944 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1945 Known = KnownBits::umax(Known0, Known1); 1946 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1947 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1948 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1949 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1950 break; 1951 } 1952 case ISD::BITREVERSE: { 1953 SDValue Src = Op.getOperand(0); 1954 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1955 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1956 Depth + 1)) 1957 return true; 1958 Known.One = Known2.One.reverseBits(); 1959 Known.Zero = Known2.Zero.reverseBits(); 1960 break; 1961 } 1962 case ISD::BSWAP: { 1963 SDValue Src = Op.getOperand(0); 1964 1965 // If the only bits demanded come from one byte of the bswap result, 1966 // just shift the input byte into position to eliminate the bswap. 1967 unsigned NLZ = DemandedBits.countLeadingZeros(); 1968 unsigned NTZ = DemandedBits.countTrailingZeros(); 1969 1970 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1971 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1972 // have 14 leading zeros, round to 8. 1973 NLZ = alignDown(NLZ, 8); 1974 NTZ = alignDown(NTZ, 8); 1975 // If we need exactly one byte, we can do this transformation. 1976 if (BitWidth - NLZ - NTZ == 8) { 1977 // Replace this with either a left or right shift to get the byte into 1978 // the right place. 1979 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1980 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1981 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1982 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1983 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1984 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1985 return TLO.CombineTo(Op, NewOp); 1986 } 1987 } 1988 1989 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1990 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1991 Depth + 1)) 1992 return true; 1993 Known.One = Known2.One.byteSwap(); 1994 Known.Zero = Known2.Zero.byteSwap(); 1995 break; 1996 } 1997 case ISD::CTPOP: { 1998 // If only 1 bit is demanded, replace with PARITY as long as we're before 1999 // op legalization. 2000 // FIXME: Limit to scalars for now. 2001 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2002 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2003 Op.getOperand(0))); 2004 2005 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2006 break; 2007 } 2008 case ISD::SIGN_EXTEND_INREG: { 2009 SDValue Op0 = Op.getOperand(0); 2010 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2011 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2012 2013 // If we only care about the highest bit, don't bother shifting right. 2014 if (DemandedBits.isSignMask()) { 2015 unsigned MinSignedBits = 2016 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2017 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2018 // However if the input is already sign extended we expect the sign 2019 // extension to be dropped altogether later and do not simplify. 2020 if (!AlreadySignExtended) { 2021 // Compute the correct shift amount type, which must be getShiftAmountTy 2022 // for scalar types after legalization. 2023 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2024 getShiftAmountTy(VT, DL)); 2025 return TLO.CombineTo(Op, 2026 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2027 } 2028 } 2029 2030 // If none of the extended bits are demanded, eliminate the sextinreg. 2031 if (DemandedBits.getActiveBits() <= ExVTBits) 2032 return TLO.CombineTo(Op, Op0); 2033 2034 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2035 2036 // Since the sign extended bits are demanded, we know that the sign 2037 // bit is demanded. 2038 InputDemandedBits.setBit(ExVTBits - 1); 2039 2040 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 2041 return true; 2042 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2043 2044 // If the sign bit of the input is known set or clear, then we know the 2045 // top bits of the result. 2046 2047 // If the input sign bit is known zero, convert this into a zero extension. 2048 if (Known.Zero[ExVTBits - 1]) 2049 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2050 2051 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2052 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2053 Known.One.setBitsFrom(ExVTBits); 2054 Known.Zero &= Mask; 2055 } else { // Input sign bit unknown 2056 Known.Zero &= Mask; 2057 Known.One &= Mask; 2058 } 2059 break; 2060 } 2061 case ISD::BUILD_PAIR: { 2062 EVT HalfVT = Op.getOperand(0).getValueType(); 2063 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2064 2065 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2066 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2067 2068 KnownBits KnownLo, KnownHi; 2069 2070 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2071 return true; 2072 2073 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2074 return true; 2075 2076 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2077 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2078 2079 Known.One = KnownLo.One.zext(BitWidth) | 2080 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2081 break; 2082 } 2083 case ISD::ZERO_EXTEND: 2084 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2085 SDValue Src = Op.getOperand(0); 2086 EVT SrcVT = Src.getValueType(); 2087 unsigned InBits = SrcVT.getScalarSizeInBits(); 2088 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2089 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2090 2091 // If none of the top bits are demanded, convert this into an any_extend. 2092 if (DemandedBits.getActiveBits() <= InBits) { 2093 // If we only need the non-extended bits of the bottom element 2094 // then we can just bitcast to the result. 2095 if (IsLE && IsVecInReg && DemandedElts == 1 && 2096 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2097 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2098 2099 unsigned Opc = 2100 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2101 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2102 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2103 } 2104 2105 APInt InDemandedBits = DemandedBits.trunc(InBits); 2106 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2107 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2108 Depth + 1)) 2109 return true; 2110 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2111 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2112 Known = Known.zext(BitWidth); 2113 2114 // Attempt to avoid multi-use ops if we don't need anything from them. 2115 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2116 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2117 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2118 break; 2119 } 2120 case ISD::SIGN_EXTEND: 2121 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2122 SDValue Src = Op.getOperand(0); 2123 EVT SrcVT = Src.getValueType(); 2124 unsigned InBits = SrcVT.getScalarSizeInBits(); 2125 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2126 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2127 2128 // If none of the top bits are demanded, convert this into an any_extend. 2129 if (DemandedBits.getActiveBits() <= InBits) { 2130 // If we only need the non-extended bits of the bottom element 2131 // then we can just bitcast to the result. 2132 if (IsLE && IsVecInReg && DemandedElts == 1 && 2133 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2134 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2135 2136 unsigned Opc = 2137 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2138 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2139 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2140 } 2141 2142 APInt InDemandedBits = DemandedBits.trunc(InBits); 2143 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2144 2145 // Since some of the sign extended bits are demanded, we know that the sign 2146 // bit is demanded. 2147 InDemandedBits.setBit(InBits - 1); 2148 2149 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2150 Depth + 1)) 2151 return true; 2152 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2153 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2154 2155 // If the sign bit is known one, the top bits match. 2156 Known = Known.sext(BitWidth); 2157 2158 // If the sign bit is known zero, convert this to a zero extend. 2159 if (Known.isNonNegative()) { 2160 unsigned Opc = 2161 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2162 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2163 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2164 } 2165 2166 // Attempt to avoid multi-use ops if we don't need anything from them. 2167 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2168 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2169 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2170 break; 2171 } 2172 case ISD::ANY_EXTEND: 2173 case ISD::ANY_EXTEND_VECTOR_INREG: { 2174 SDValue Src = Op.getOperand(0); 2175 EVT SrcVT = Src.getValueType(); 2176 unsigned InBits = SrcVT.getScalarSizeInBits(); 2177 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2178 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2179 2180 // If we only need the bottom element then we can just bitcast. 2181 // TODO: Handle ANY_EXTEND? 2182 if (IsLE && IsVecInReg && DemandedElts == 1 && 2183 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2184 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2185 2186 APInt InDemandedBits = DemandedBits.trunc(InBits); 2187 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2188 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2189 Depth + 1)) 2190 return true; 2191 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2192 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2193 Known = Known.anyext(BitWidth); 2194 2195 // Attempt to avoid multi-use ops if we don't need anything from them. 2196 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2197 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2198 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2199 break; 2200 } 2201 case ISD::TRUNCATE: { 2202 SDValue Src = Op.getOperand(0); 2203 2204 // Simplify the input, using demanded bit information, and compute the known 2205 // zero/one bits live out. 2206 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2207 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2208 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2209 Depth + 1)) 2210 return true; 2211 Known = Known.trunc(BitWidth); 2212 2213 // Attempt to avoid multi-use ops if we don't need anything from them. 2214 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2215 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2216 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2217 2218 // If the input is only used by this truncate, see if we can shrink it based 2219 // on the known demanded bits. 2220 if (Src.getNode()->hasOneUse()) { 2221 switch (Src.getOpcode()) { 2222 default: 2223 break; 2224 case ISD::SRL: 2225 // Shrink SRL by a constant if none of the high bits shifted in are 2226 // demanded. 2227 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2228 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2229 // undesirable. 2230 break; 2231 2232 const APInt *ShAmtC = 2233 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2234 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2235 break; 2236 uint64_t ShVal = ShAmtC->getZExtValue(); 2237 2238 APInt HighBits = 2239 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2240 HighBits.lshrInPlace(ShVal); 2241 HighBits = HighBits.trunc(BitWidth); 2242 2243 if (!(HighBits & DemandedBits)) { 2244 // None of the shifted in bits are needed. Add a truncate of the 2245 // shift input, then shift it. 2246 SDValue NewShAmt = TLO.DAG.getConstant( 2247 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2248 SDValue NewTrunc = 2249 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2250 return TLO.CombineTo( 2251 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2252 } 2253 break; 2254 } 2255 } 2256 2257 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2258 break; 2259 } 2260 case ISD::AssertZext: { 2261 // AssertZext demands all of the high bits, plus any of the low bits 2262 // demanded by its users. 2263 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2264 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2265 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2266 TLO, Depth + 1)) 2267 return true; 2268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2269 2270 Known.Zero |= ~InMask; 2271 break; 2272 } 2273 case ISD::EXTRACT_VECTOR_ELT: { 2274 SDValue Src = Op.getOperand(0); 2275 SDValue Idx = Op.getOperand(1); 2276 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2277 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2278 2279 if (SrcEltCnt.isScalable()) 2280 return false; 2281 2282 // Demand the bits from every vector element without a constant index. 2283 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2284 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2285 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2286 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2287 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2288 2289 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2290 // anything about the extended bits. 2291 APInt DemandedSrcBits = DemandedBits; 2292 if (BitWidth > EltBitWidth) 2293 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2294 2295 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2296 Depth + 1)) 2297 return true; 2298 2299 // Attempt to avoid multi-use ops if we don't need anything from them. 2300 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2301 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2302 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2303 SDValue NewOp = 2304 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2305 return TLO.CombineTo(Op, NewOp); 2306 } 2307 } 2308 2309 Known = Known2; 2310 if (BitWidth > EltBitWidth) 2311 Known = Known.anyext(BitWidth); 2312 break; 2313 } 2314 case ISD::BITCAST: { 2315 SDValue Src = Op.getOperand(0); 2316 EVT SrcVT = Src.getValueType(); 2317 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2318 2319 // If this is an FP->Int bitcast and if the sign bit is the only 2320 // thing demanded, turn this into a FGETSIGN. 2321 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2322 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2323 SrcVT.isFloatingPoint()) { 2324 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2325 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2326 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2327 SrcVT != MVT::f128) { 2328 // Cannot eliminate/lower SHL for f128 yet. 2329 EVT Ty = OpVTLegal ? VT : MVT::i32; 2330 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2331 // place. We expect the SHL to be eliminated by other optimizations. 2332 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2333 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2334 if (!OpVTLegal && OpVTSizeInBits > 32) 2335 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2336 unsigned ShVal = Op.getValueSizeInBits() - 1; 2337 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2338 return TLO.CombineTo(Op, 2339 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2340 } 2341 } 2342 2343 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2344 // Demand the elt/bit if any of the original elts/bits are demanded. 2345 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2346 unsigned Scale = BitWidth / NumSrcEltBits; 2347 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2348 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2349 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2350 for (unsigned i = 0; i != Scale; ++i) { 2351 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2352 unsigned BitOffset = EltOffset * NumSrcEltBits; 2353 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2354 if (!Sub.isZero()) { 2355 DemandedSrcBits |= Sub; 2356 for (unsigned j = 0; j != NumElts; ++j) 2357 if (DemandedElts[j]) 2358 DemandedSrcElts.setBit((j * Scale) + i); 2359 } 2360 } 2361 2362 APInt KnownSrcUndef, KnownSrcZero; 2363 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2364 KnownSrcZero, TLO, Depth + 1)) 2365 return true; 2366 2367 KnownBits KnownSrcBits; 2368 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2369 KnownSrcBits, TLO, Depth + 1)) 2370 return true; 2371 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2372 // TODO - bigendian once we have test coverage. 2373 unsigned Scale = NumSrcEltBits / BitWidth; 2374 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2375 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2376 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2377 for (unsigned i = 0; i != NumElts; ++i) 2378 if (DemandedElts[i]) { 2379 unsigned Offset = (i % Scale) * BitWidth; 2380 DemandedSrcBits.insertBits(DemandedBits, Offset); 2381 DemandedSrcElts.setBit(i / Scale); 2382 } 2383 2384 if (SrcVT.isVector()) { 2385 APInt KnownSrcUndef, KnownSrcZero; 2386 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2387 KnownSrcZero, TLO, Depth + 1)) 2388 return true; 2389 } 2390 2391 KnownBits KnownSrcBits; 2392 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2393 KnownSrcBits, TLO, Depth + 1)) 2394 return true; 2395 } 2396 2397 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2398 // recursive call where Known may be useful to the caller. 2399 if (Depth > 0) { 2400 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2401 return false; 2402 } 2403 break; 2404 } 2405 case ISD::MUL: 2406 if (DemandedBits.isPowerOf2()) { 2407 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2408 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2409 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2410 unsigned CTZ = DemandedBits.countTrailingZeros(); 2411 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2412 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2413 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2414 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2415 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2416 return TLO.CombineTo(Op, Shl); 2417 } 2418 } 2419 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2420 // X * X is odd iff X is odd. 2421 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2422 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2423 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2424 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2425 return TLO.CombineTo(Op, And1); 2426 } 2427 LLVM_FALLTHROUGH; 2428 case ISD::ADD: 2429 case ISD::SUB: { 2430 // Add, Sub, and Mul don't demand any bits in positions beyond that 2431 // of the highest bit demanded of them. 2432 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2433 SDNodeFlags Flags = Op.getNode()->getFlags(); 2434 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2435 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2436 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2437 Depth + 1) || 2438 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2439 Depth + 1) || 2440 // See if the operation should be performed at a smaller bit width. 2441 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2442 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2443 // Disable the nsw and nuw flags. We can no longer guarantee that we 2444 // won't wrap after simplification. 2445 Flags.setNoSignedWrap(false); 2446 Flags.setNoUnsignedWrap(false); 2447 SDValue NewOp = 2448 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2449 return TLO.CombineTo(Op, NewOp); 2450 } 2451 return true; 2452 } 2453 2454 // Attempt to avoid multi-use ops if we don't need anything from them. 2455 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2456 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2457 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2458 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2459 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2460 if (DemandedOp0 || DemandedOp1) { 2461 Flags.setNoSignedWrap(false); 2462 Flags.setNoUnsignedWrap(false); 2463 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2464 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2465 SDValue NewOp = 2466 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2467 return TLO.CombineTo(Op, NewOp); 2468 } 2469 } 2470 2471 // If we have a constant operand, we may be able to turn it into -1 if we 2472 // do not demand the high bits. This can make the constant smaller to 2473 // encode, allow more general folding, or match specialized instruction 2474 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2475 // is probably not useful (and could be detrimental). 2476 ConstantSDNode *C = isConstOrConstSplat(Op1); 2477 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2478 if (C && !C->isAllOnes() && !C->isOne() && 2479 (C->getAPIntValue() | HighMask).isAllOnes()) { 2480 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2481 // Disable the nsw and nuw flags. We can no longer guarantee that we 2482 // won't wrap after simplification. 2483 Flags.setNoSignedWrap(false); 2484 Flags.setNoUnsignedWrap(false); 2485 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2486 return TLO.CombineTo(Op, NewOp); 2487 } 2488 2489 // Match a multiply with a disguised negated-power-of-2 and convert to a 2490 // an equivalent shift-left amount. 2491 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2492 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2493 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2494 return 0; 2495 2496 // Don't touch opaque constants. Also, ignore zero and power-of-2 2497 // multiplies. Those will get folded later. 2498 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2499 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2500 !MulC->getAPIntValue().isPowerOf2()) { 2501 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2502 if (UnmaskedC.isNegatedPowerOf2()) 2503 return (-UnmaskedC).logBase2(); 2504 } 2505 return 0; 2506 }; 2507 2508 auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) { 2509 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2510 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2511 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2512 SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl); 2513 return TLO.CombineTo(Op, Sub); 2514 }; 2515 2516 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2517 if (Op.getOpcode() == ISD::ADD) { 2518 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2519 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2520 return foldMul(Op0.getOperand(0), Op1, ShAmt); 2521 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2522 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2523 return foldMul(Op1.getOperand(0), Op0, ShAmt); 2524 // TODO: 2525 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2526 } 2527 } 2528 2529 LLVM_FALLTHROUGH; 2530 } 2531 default: 2532 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2533 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2534 Known, TLO, Depth)) 2535 return true; 2536 break; 2537 } 2538 2539 // Just use computeKnownBits to compute output bits. 2540 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2541 break; 2542 } 2543 2544 // If we know the value of all of the demanded bits, return this as a 2545 // constant. 2546 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2547 // Avoid folding to a constant if any OpaqueConstant is involved. 2548 const SDNode *N = Op.getNode(); 2549 for (SDNode *Op : 2550 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2551 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2552 if (C->isOpaque()) 2553 return false; 2554 } 2555 if (VT.isInteger()) 2556 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2557 if (VT.isFloatingPoint()) 2558 return TLO.CombineTo( 2559 Op, 2560 TLO.DAG.getConstantFP( 2561 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2562 } 2563 2564 return false; 2565 } 2566 2567 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2568 const APInt &DemandedElts, 2569 DAGCombinerInfo &DCI) const { 2570 SelectionDAG &DAG = DCI.DAG; 2571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2572 !DCI.isBeforeLegalizeOps()); 2573 2574 APInt KnownUndef, KnownZero; 2575 bool Simplified = 2576 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2577 if (Simplified) { 2578 DCI.AddToWorklist(Op.getNode()); 2579 DCI.CommitTargetLoweringOpt(TLO); 2580 } 2581 2582 return Simplified; 2583 } 2584 2585 /// Given a vector binary operation and known undefined elements for each input 2586 /// operand, compute whether each element of the output is undefined. 2587 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2588 const APInt &UndefOp0, 2589 const APInt &UndefOp1) { 2590 EVT VT = BO.getValueType(); 2591 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2592 "Vector binop only"); 2593 2594 EVT EltVT = VT.getVectorElementType(); 2595 unsigned NumElts = VT.getVectorNumElements(); 2596 assert(UndefOp0.getBitWidth() == NumElts && 2597 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2598 2599 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2600 const APInt &UndefVals) { 2601 if (UndefVals[Index]) 2602 return DAG.getUNDEF(EltVT); 2603 2604 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2605 // Try hard to make sure that the getNode() call is not creating temporary 2606 // nodes. Ignore opaque integers because they do not constant fold. 2607 SDValue Elt = BV->getOperand(Index); 2608 auto *C = dyn_cast<ConstantSDNode>(Elt); 2609 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2610 return Elt; 2611 } 2612 2613 return SDValue(); 2614 }; 2615 2616 APInt KnownUndef = APInt::getZero(NumElts); 2617 for (unsigned i = 0; i != NumElts; ++i) { 2618 // If both inputs for this element are either constant or undef and match 2619 // the element type, compute the constant/undef result for this element of 2620 // the vector. 2621 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2622 // not handle FP constants. The code within getNode() should be refactored 2623 // to avoid the danger of creating a bogus temporary node here. 2624 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2625 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2626 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2627 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2628 KnownUndef.setBit(i); 2629 } 2630 return KnownUndef; 2631 } 2632 2633 bool TargetLowering::SimplifyDemandedVectorElts( 2634 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2635 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2636 bool AssumeSingleUse) const { 2637 EVT VT = Op.getValueType(); 2638 unsigned Opcode = Op.getOpcode(); 2639 APInt DemandedElts = OriginalDemandedElts; 2640 unsigned NumElts = DemandedElts.getBitWidth(); 2641 assert(VT.isVector() && "Expected vector op"); 2642 2643 KnownUndef = KnownZero = APInt::getZero(NumElts); 2644 2645 // TODO: For now we assume we know nothing about scalable vectors. 2646 if (VT.isScalableVector()) 2647 return false; 2648 2649 assert(VT.getVectorNumElements() == NumElts && 2650 "Mask size mismatches value type element count!"); 2651 2652 // Undef operand. 2653 if (Op.isUndef()) { 2654 KnownUndef.setAllBits(); 2655 return false; 2656 } 2657 2658 // If Op has other users, assume that all elements are needed. 2659 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2660 DemandedElts.setAllBits(); 2661 2662 // Not demanding any elements from Op. 2663 if (DemandedElts == 0) { 2664 KnownUndef.setAllBits(); 2665 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2666 } 2667 2668 // Limit search depth. 2669 if (Depth >= SelectionDAG::MaxRecursionDepth) 2670 return false; 2671 2672 SDLoc DL(Op); 2673 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2674 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2675 2676 // Helper for demanding the specified elements and all the bits of both binary 2677 // operands. 2678 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2679 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2680 TLO.DAG, Depth + 1); 2681 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2682 TLO.DAG, Depth + 1); 2683 if (NewOp0 || NewOp1) { 2684 SDValue NewOp = TLO.DAG.getNode( 2685 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2686 return TLO.CombineTo(Op, NewOp); 2687 } 2688 return false; 2689 }; 2690 2691 switch (Opcode) { 2692 case ISD::SCALAR_TO_VECTOR: { 2693 if (!DemandedElts[0]) { 2694 KnownUndef.setAllBits(); 2695 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2696 } 2697 SDValue ScalarSrc = Op.getOperand(0); 2698 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2699 SDValue Src = ScalarSrc.getOperand(0); 2700 SDValue Idx = ScalarSrc.getOperand(1); 2701 EVT SrcVT = Src.getValueType(); 2702 2703 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2704 2705 if (SrcEltCnt.isScalable()) 2706 return false; 2707 2708 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2709 if (isNullConstant(Idx)) { 2710 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2711 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2712 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2713 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2714 TLO, Depth + 1)) 2715 return true; 2716 } 2717 } 2718 KnownUndef.setHighBits(NumElts - 1); 2719 break; 2720 } 2721 case ISD::BITCAST: { 2722 SDValue Src = Op.getOperand(0); 2723 EVT SrcVT = Src.getValueType(); 2724 2725 // We only handle vectors here. 2726 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2727 if (!SrcVT.isVector()) 2728 break; 2729 2730 // Fast handling of 'identity' bitcasts. 2731 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2732 if (NumSrcElts == NumElts) 2733 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2734 KnownZero, TLO, Depth + 1); 2735 2736 APInt SrcDemandedElts, SrcZero, SrcUndef; 2737 2738 // Bitcast from 'large element' src vector to 'small element' vector, we 2739 // must demand a source element if any DemandedElt maps to it. 2740 if ((NumElts % NumSrcElts) == 0) { 2741 unsigned Scale = NumElts / NumSrcElts; 2742 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2743 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2744 TLO, Depth + 1)) 2745 return true; 2746 2747 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2748 // of the large element. 2749 // TODO - bigendian once we have test coverage. 2750 if (IsLE) { 2751 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2752 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2753 for (unsigned i = 0; i != NumElts; ++i) 2754 if (DemandedElts[i]) { 2755 unsigned Ofs = (i % Scale) * EltSizeInBits; 2756 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2757 } 2758 2759 KnownBits Known; 2760 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2761 TLO, Depth + 1)) 2762 return true; 2763 } 2764 2765 // If the src element is zero/undef then all the output elements will be - 2766 // only demanded elements are guaranteed to be correct. 2767 for (unsigned i = 0; i != NumSrcElts; ++i) { 2768 if (SrcDemandedElts[i]) { 2769 if (SrcZero[i]) 2770 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2771 if (SrcUndef[i]) 2772 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2773 } 2774 } 2775 } 2776 2777 // Bitcast from 'small element' src vector to 'large element' vector, we 2778 // demand all smaller source elements covered by the larger demanded element 2779 // of this vector. 2780 if ((NumSrcElts % NumElts) == 0) { 2781 unsigned Scale = NumSrcElts / NumElts; 2782 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2783 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2784 TLO, Depth + 1)) 2785 return true; 2786 2787 // If all the src elements covering an output element are zero/undef, then 2788 // the output element will be as well, assuming it was demanded. 2789 for (unsigned i = 0; i != NumElts; ++i) { 2790 if (DemandedElts[i]) { 2791 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2792 KnownZero.setBit(i); 2793 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2794 KnownUndef.setBit(i); 2795 } 2796 } 2797 } 2798 break; 2799 } 2800 case ISD::BUILD_VECTOR: { 2801 // Check all elements and simplify any unused elements with UNDEF. 2802 if (!DemandedElts.isAllOnes()) { 2803 // Don't simplify BROADCASTS. 2804 if (llvm::any_of(Op->op_values(), 2805 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2806 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2807 bool Updated = false; 2808 for (unsigned i = 0; i != NumElts; ++i) { 2809 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2810 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2811 KnownUndef.setBit(i); 2812 Updated = true; 2813 } 2814 } 2815 if (Updated) 2816 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2817 } 2818 } 2819 for (unsigned i = 0; i != NumElts; ++i) { 2820 SDValue SrcOp = Op.getOperand(i); 2821 if (SrcOp.isUndef()) { 2822 KnownUndef.setBit(i); 2823 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2824 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2825 KnownZero.setBit(i); 2826 } 2827 } 2828 break; 2829 } 2830 case ISD::CONCAT_VECTORS: { 2831 EVT SubVT = Op.getOperand(0).getValueType(); 2832 unsigned NumSubVecs = Op.getNumOperands(); 2833 unsigned NumSubElts = SubVT.getVectorNumElements(); 2834 for (unsigned i = 0; i != NumSubVecs; ++i) { 2835 SDValue SubOp = Op.getOperand(i); 2836 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2837 APInt SubUndef, SubZero; 2838 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2839 Depth + 1)) 2840 return true; 2841 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2842 KnownZero.insertBits(SubZero, i * NumSubElts); 2843 } 2844 break; 2845 } 2846 case ISD::INSERT_SUBVECTOR: { 2847 // Demand any elements from the subvector and the remainder from the src its 2848 // inserted into. 2849 SDValue Src = Op.getOperand(0); 2850 SDValue Sub = Op.getOperand(1); 2851 uint64_t Idx = Op.getConstantOperandVal(2); 2852 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2853 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2854 APInt DemandedSrcElts = DemandedElts; 2855 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2856 2857 APInt SubUndef, SubZero; 2858 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2859 Depth + 1)) 2860 return true; 2861 2862 // If none of the src operand elements are demanded, replace it with undef. 2863 if (!DemandedSrcElts && !Src.isUndef()) 2864 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2865 TLO.DAG.getUNDEF(VT), Sub, 2866 Op.getOperand(2))); 2867 2868 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2869 TLO, Depth + 1)) 2870 return true; 2871 KnownUndef.insertBits(SubUndef, Idx); 2872 KnownZero.insertBits(SubZero, Idx); 2873 2874 // Attempt to avoid multi-use ops if we don't need anything from them. 2875 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2876 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2877 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2878 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2879 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2880 if (NewSrc || NewSub) { 2881 NewSrc = NewSrc ? NewSrc : Src; 2882 NewSub = NewSub ? NewSub : Sub; 2883 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2884 NewSub, Op.getOperand(2)); 2885 return TLO.CombineTo(Op, NewOp); 2886 } 2887 } 2888 break; 2889 } 2890 case ISD::EXTRACT_SUBVECTOR: { 2891 // Offset the demanded elts by the subvector index. 2892 SDValue Src = Op.getOperand(0); 2893 if (Src.getValueType().isScalableVector()) 2894 break; 2895 uint64_t Idx = Op.getConstantOperandVal(1); 2896 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2897 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2898 2899 APInt SrcUndef, SrcZero; 2900 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2901 Depth + 1)) 2902 return true; 2903 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2904 KnownZero = SrcZero.extractBits(NumElts, Idx); 2905 2906 // Attempt to avoid multi-use ops if we don't need anything from them. 2907 if (!DemandedElts.isAllOnes()) { 2908 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2909 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2910 if (NewSrc) { 2911 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2912 Op.getOperand(1)); 2913 return TLO.CombineTo(Op, NewOp); 2914 } 2915 } 2916 break; 2917 } 2918 case ISD::INSERT_VECTOR_ELT: { 2919 SDValue Vec = Op.getOperand(0); 2920 SDValue Scl = Op.getOperand(1); 2921 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2922 2923 // For a legal, constant insertion index, if we don't need this insertion 2924 // then strip it, else remove it from the demanded elts. 2925 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2926 unsigned Idx = CIdx->getZExtValue(); 2927 if (!DemandedElts[Idx]) 2928 return TLO.CombineTo(Op, Vec); 2929 2930 APInt DemandedVecElts(DemandedElts); 2931 DemandedVecElts.clearBit(Idx); 2932 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2933 KnownZero, TLO, Depth + 1)) 2934 return true; 2935 2936 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2937 2938 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2939 break; 2940 } 2941 2942 APInt VecUndef, VecZero; 2943 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2944 Depth + 1)) 2945 return true; 2946 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2947 break; 2948 } 2949 case ISD::VSELECT: { 2950 // Try to transform the select condition based on the current demanded 2951 // elements. 2952 // TODO: If a condition element is undef, we can choose from one arm of the 2953 // select (and if one arm is undef, then we can propagate that to the 2954 // result). 2955 // TODO - add support for constant vselect masks (see IR version of this). 2956 APInt UnusedUndef, UnusedZero; 2957 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2958 UnusedZero, TLO, Depth + 1)) 2959 return true; 2960 2961 // See if we can simplify either vselect operand. 2962 APInt DemandedLHS(DemandedElts); 2963 APInt DemandedRHS(DemandedElts); 2964 APInt UndefLHS, ZeroLHS; 2965 APInt UndefRHS, ZeroRHS; 2966 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2967 ZeroLHS, TLO, Depth + 1)) 2968 return true; 2969 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2970 ZeroRHS, TLO, Depth + 1)) 2971 return true; 2972 2973 KnownUndef = UndefLHS & UndefRHS; 2974 KnownZero = ZeroLHS & ZeroRHS; 2975 break; 2976 } 2977 case ISD::VECTOR_SHUFFLE: { 2978 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2979 2980 // Collect demanded elements from shuffle operands.. 2981 APInt DemandedLHS(NumElts, 0); 2982 APInt DemandedRHS(NumElts, 0); 2983 for (unsigned i = 0; i != NumElts; ++i) { 2984 int M = ShuffleMask[i]; 2985 if (M < 0 || !DemandedElts[i]) 2986 continue; 2987 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2988 if (M < (int)NumElts) 2989 DemandedLHS.setBit(M); 2990 else 2991 DemandedRHS.setBit(M - NumElts); 2992 } 2993 2994 // See if we can simplify either shuffle operand. 2995 APInt UndefLHS, ZeroLHS; 2996 APInt UndefRHS, ZeroRHS; 2997 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2998 ZeroLHS, TLO, Depth + 1)) 2999 return true; 3000 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3001 ZeroRHS, TLO, Depth + 1)) 3002 return true; 3003 3004 // Simplify mask using undef elements from LHS/RHS. 3005 bool Updated = false; 3006 bool IdentityLHS = true, IdentityRHS = true; 3007 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3008 for (unsigned i = 0; i != NumElts; ++i) { 3009 int &M = NewMask[i]; 3010 if (M < 0) 3011 continue; 3012 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3013 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3014 Updated = true; 3015 M = -1; 3016 } 3017 IdentityLHS &= (M < 0) || (M == (int)i); 3018 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3019 } 3020 3021 // Update legal shuffle masks based on demanded elements if it won't reduce 3022 // to Identity which can cause premature removal of the shuffle mask. 3023 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3024 SDValue LegalShuffle = 3025 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3026 NewMask, TLO.DAG); 3027 if (LegalShuffle) 3028 return TLO.CombineTo(Op, LegalShuffle); 3029 } 3030 3031 // Propagate undef/zero elements from LHS/RHS. 3032 for (unsigned i = 0; i != NumElts; ++i) { 3033 int M = ShuffleMask[i]; 3034 if (M < 0) { 3035 KnownUndef.setBit(i); 3036 } else if (M < (int)NumElts) { 3037 if (UndefLHS[M]) 3038 KnownUndef.setBit(i); 3039 if (ZeroLHS[M]) 3040 KnownZero.setBit(i); 3041 } else { 3042 if (UndefRHS[M - NumElts]) 3043 KnownUndef.setBit(i); 3044 if (ZeroRHS[M - NumElts]) 3045 KnownZero.setBit(i); 3046 } 3047 } 3048 break; 3049 } 3050 case ISD::ANY_EXTEND_VECTOR_INREG: 3051 case ISD::SIGN_EXTEND_VECTOR_INREG: 3052 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3053 APInt SrcUndef, SrcZero; 3054 SDValue Src = Op.getOperand(0); 3055 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3056 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 3057 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3058 Depth + 1)) 3059 return true; 3060 KnownZero = SrcZero.zextOrTrunc(NumElts); 3061 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3062 3063 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3064 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3065 DemandedSrcElts == 1) { 3066 // aext - if we just need the bottom element then we can bitcast. 3067 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3068 } 3069 3070 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3071 // zext(undef) upper bits are guaranteed to be zero. 3072 if (DemandedElts.isSubsetOf(KnownUndef)) 3073 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3074 KnownUndef.clearAllBits(); 3075 3076 // zext - if we just need the bottom element then we can mask: 3077 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3078 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3079 Op->isOnlyUserOf(Src.getNode()) && 3080 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3081 SDLoc DL(Op); 3082 EVT SrcVT = Src.getValueType(); 3083 EVT SrcSVT = SrcVT.getScalarType(); 3084 SmallVector<SDValue> MaskElts; 3085 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3086 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3087 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3088 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3089 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3090 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3091 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3092 } 3093 } 3094 } 3095 break; 3096 } 3097 3098 // TODO: There are more binop opcodes that could be handled here - MIN, 3099 // MAX, saturated math, etc. 3100 case ISD::ADD: { 3101 SDValue Op0 = Op.getOperand(0); 3102 SDValue Op1 = Op.getOperand(1); 3103 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3104 APInt UndefLHS, ZeroLHS; 3105 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3106 Depth + 1, /*AssumeSingleUse*/ true)) 3107 return true; 3108 } 3109 LLVM_FALLTHROUGH; 3110 } 3111 case ISD::OR: 3112 case ISD::XOR: 3113 case ISD::SUB: 3114 case ISD::FADD: 3115 case ISD::FSUB: 3116 case ISD::FMUL: 3117 case ISD::FDIV: 3118 case ISD::FREM: { 3119 SDValue Op0 = Op.getOperand(0); 3120 SDValue Op1 = Op.getOperand(1); 3121 3122 APInt UndefRHS, ZeroRHS; 3123 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3124 Depth + 1)) 3125 return true; 3126 APInt UndefLHS, ZeroLHS; 3127 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3128 Depth + 1)) 3129 return true; 3130 3131 KnownZero = ZeroLHS & ZeroRHS; 3132 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3133 3134 // Attempt to avoid multi-use ops if we don't need anything from them. 3135 // TODO - use KnownUndef to relax the demandedelts? 3136 if (!DemandedElts.isAllOnes()) 3137 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3138 return true; 3139 break; 3140 } 3141 case ISD::SHL: 3142 case ISD::SRL: 3143 case ISD::SRA: 3144 case ISD::ROTL: 3145 case ISD::ROTR: { 3146 SDValue Op0 = Op.getOperand(0); 3147 SDValue Op1 = Op.getOperand(1); 3148 3149 APInt UndefRHS, ZeroRHS; 3150 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3151 Depth + 1)) 3152 return true; 3153 APInt UndefLHS, ZeroLHS; 3154 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3155 Depth + 1)) 3156 return true; 3157 3158 KnownZero = ZeroLHS; 3159 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3160 3161 // Attempt to avoid multi-use ops if we don't need anything from them. 3162 // TODO - use KnownUndef to relax the demandedelts? 3163 if (!DemandedElts.isAllOnes()) 3164 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3165 return true; 3166 break; 3167 } 3168 case ISD::MUL: 3169 case ISD::AND: { 3170 SDValue Op0 = Op.getOperand(0); 3171 SDValue Op1 = Op.getOperand(1); 3172 3173 APInt SrcUndef, SrcZero; 3174 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3175 Depth + 1)) 3176 return true; 3177 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3178 TLO, Depth + 1)) 3179 return true; 3180 3181 // If either side has a zero element, then the result element is zero, even 3182 // if the other is an UNDEF. 3183 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3184 // and then handle 'and' nodes with the rest of the binop opcodes. 3185 KnownZero |= SrcZero; 3186 KnownUndef &= SrcUndef; 3187 KnownUndef &= ~KnownZero; 3188 3189 // Attempt to avoid multi-use ops if we don't need anything from them. 3190 // TODO - use KnownUndef to relax the demandedelts? 3191 if (!DemandedElts.isAllOnes()) 3192 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3193 return true; 3194 break; 3195 } 3196 case ISD::TRUNCATE: 3197 case ISD::SIGN_EXTEND: 3198 case ISD::ZERO_EXTEND: 3199 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3200 KnownZero, TLO, Depth + 1)) 3201 return true; 3202 3203 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3204 // zext(undef) upper bits are guaranteed to be zero. 3205 if (DemandedElts.isSubsetOf(KnownUndef)) 3206 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3207 KnownUndef.clearAllBits(); 3208 } 3209 break; 3210 default: { 3211 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3212 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3213 KnownZero, TLO, Depth)) 3214 return true; 3215 } else { 3216 KnownBits Known; 3217 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3218 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3219 TLO, Depth, AssumeSingleUse)) 3220 return true; 3221 } 3222 break; 3223 } 3224 } 3225 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3226 3227 // Constant fold all undef cases. 3228 // TODO: Handle zero cases as well. 3229 if (DemandedElts.isSubsetOf(KnownUndef)) 3230 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3231 3232 return false; 3233 } 3234 3235 /// Determine which of the bits specified in Mask are known to be either zero or 3236 /// one and return them in the Known. 3237 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3238 KnownBits &Known, 3239 const APInt &DemandedElts, 3240 const SelectionDAG &DAG, 3241 unsigned Depth) const { 3242 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3243 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3244 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3245 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3246 "Should use MaskedValueIsZero if you don't know whether Op" 3247 " is a target node!"); 3248 Known.resetAll(); 3249 } 3250 3251 void TargetLowering::computeKnownBitsForTargetInstr( 3252 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3253 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3254 unsigned Depth) const { 3255 Known.resetAll(); 3256 } 3257 3258 void TargetLowering::computeKnownBitsForFrameIndex( 3259 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3260 // The low bits are known zero if the pointer is aligned. 3261 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3262 } 3263 3264 Align TargetLowering::computeKnownAlignForTargetInstr( 3265 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3266 unsigned Depth) const { 3267 return Align(1); 3268 } 3269 3270 /// This method can be implemented by targets that want to expose additional 3271 /// information about sign bits to the DAG Combiner. 3272 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3273 const APInt &, 3274 const SelectionDAG &, 3275 unsigned Depth) const { 3276 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3277 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3278 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3279 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3280 "Should use ComputeNumSignBits if you don't know whether Op" 3281 " is a target node!"); 3282 return 1; 3283 } 3284 3285 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3286 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3287 const MachineRegisterInfo &MRI, unsigned Depth) const { 3288 return 1; 3289 } 3290 3291 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3292 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3293 TargetLoweringOpt &TLO, unsigned Depth) const { 3294 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3295 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3296 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3297 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3298 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3299 " is a target node!"); 3300 return false; 3301 } 3302 3303 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3304 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3305 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3306 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3307 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3308 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3309 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3310 "Should use SimplifyDemandedBits if you don't know whether Op" 3311 " is a target node!"); 3312 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3313 return false; 3314 } 3315 3316 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3317 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3318 SelectionDAG &DAG, unsigned Depth) const { 3319 assert( 3320 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3321 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3322 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3323 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3324 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3325 " is a target node!"); 3326 return SDValue(); 3327 } 3328 3329 SDValue 3330 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3331 SDValue N1, MutableArrayRef<int> Mask, 3332 SelectionDAG &DAG) const { 3333 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3334 if (!LegalMask) { 3335 std::swap(N0, N1); 3336 ShuffleVectorSDNode::commuteMask(Mask); 3337 LegalMask = isShuffleMaskLegal(Mask, VT); 3338 } 3339 3340 if (!LegalMask) 3341 return SDValue(); 3342 3343 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3344 } 3345 3346 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3347 return nullptr; 3348 } 3349 3350 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3351 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3352 bool PoisonOnly, unsigned Depth) const { 3353 assert( 3354 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3355 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3356 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3357 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3358 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3359 " is a target node!"); 3360 return false; 3361 } 3362 3363 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3364 const SelectionDAG &DAG, 3365 bool SNaN, 3366 unsigned Depth) const { 3367 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3368 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3369 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3370 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3371 "Should use isKnownNeverNaN if you don't know whether Op" 3372 " is a target node!"); 3373 return false; 3374 } 3375 3376 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3377 const APInt &DemandedElts, 3378 APInt &UndefElts, 3379 unsigned Depth) const { 3380 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3381 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3382 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3383 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3384 "Should use isSplatValue if you don't know whether Op" 3385 " is a target node!"); 3386 return false; 3387 } 3388 3389 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3390 // work with truncating build vectors and vectors with elements of less than 3391 // 8 bits. 3392 bool TargetLowering::isConstTrueVal(SDValue N) const { 3393 if (!N) 3394 return false; 3395 3396 unsigned EltWidth; 3397 APInt CVal; 3398 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3399 /*AllowTruncation=*/true)) { 3400 CVal = CN->getAPIntValue(); 3401 EltWidth = N.getValueType().getScalarSizeInBits(); 3402 } else 3403 return false; 3404 3405 // If this is a truncating splat, truncate the splat value. 3406 // Otherwise, we may fail to match the expected values below. 3407 if (EltWidth < CVal.getBitWidth()) 3408 CVal = CVal.trunc(EltWidth); 3409 3410 switch (getBooleanContents(N.getValueType())) { 3411 case UndefinedBooleanContent: 3412 return CVal[0]; 3413 case ZeroOrOneBooleanContent: 3414 return CVal.isOne(); 3415 case ZeroOrNegativeOneBooleanContent: 3416 return CVal.isAllOnes(); 3417 } 3418 3419 llvm_unreachable("Invalid boolean contents"); 3420 } 3421 3422 bool TargetLowering::isConstFalseVal(SDValue N) const { 3423 if (!N) 3424 return false; 3425 3426 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3427 if (!CN) { 3428 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3429 if (!BV) 3430 return false; 3431 3432 // Only interested in constant splats, we don't care about undef 3433 // elements in identifying boolean constants and getConstantSplatNode 3434 // returns NULL if all ops are undef; 3435 CN = BV->getConstantSplatNode(); 3436 if (!CN) 3437 return false; 3438 } 3439 3440 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3441 return !CN->getAPIntValue()[0]; 3442 3443 return CN->isZero(); 3444 } 3445 3446 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3447 bool SExt) const { 3448 if (VT == MVT::i1) 3449 return N->isOne(); 3450 3451 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3452 switch (Cnt) { 3453 case TargetLowering::ZeroOrOneBooleanContent: 3454 // An extended value of 1 is always true, unless its original type is i1, 3455 // in which case it will be sign extended to -1. 3456 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3457 case TargetLowering::UndefinedBooleanContent: 3458 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3459 return N->isAllOnes() && SExt; 3460 } 3461 llvm_unreachable("Unexpected enumeration."); 3462 } 3463 3464 /// This helper function of SimplifySetCC tries to optimize the comparison when 3465 /// either operand of the SetCC node is a bitwise-and instruction. 3466 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3467 ISD::CondCode Cond, const SDLoc &DL, 3468 DAGCombinerInfo &DCI) const { 3469 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3470 std::swap(N0, N1); 3471 3472 SelectionDAG &DAG = DCI.DAG; 3473 EVT OpVT = N0.getValueType(); 3474 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3475 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3476 return SDValue(); 3477 3478 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3479 // iff everything but LSB is known zero: 3480 if (Cond == ISD::SETNE && isNullConstant(N1) && 3481 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3482 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3483 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3484 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3485 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3486 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3487 } 3488 3489 // Match these patterns in any of their permutations: 3490 // (X & Y) == Y 3491 // (X & Y) != Y 3492 SDValue X, Y; 3493 if (N0.getOperand(0) == N1) { 3494 X = N0.getOperand(1); 3495 Y = N0.getOperand(0); 3496 } else if (N0.getOperand(1) == N1) { 3497 X = N0.getOperand(0); 3498 Y = N0.getOperand(1); 3499 } else { 3500 return SDValue(); 3501 } 3502 3503 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3504 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3505 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3506 // Note that where Y is variable and is known to have at most one bit set 3507 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3508 // equivalent when Y == 0. 3509 assert(OpVT.isInteger()); 3510 Cond = ISD::getSetCCInverse(Cond, OpVT); 3511 if (DCI.isBeforeLegalizeOps() || 3512 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3513 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3514 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3515 // If the target supports an 'and-not' or 'and-complement' logic operation, 3516 // try to use that to make a comparison operation more efficient. 3517 // But don't do this transform if the mask is a single bit because there are 3518 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3519 // 'rlwinm' on PPC). 3520 3521 // Bail out if the compare operand that we want to turn into a zero is 3522 // already a zero (otherwise, infinite loop). 3523 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3524 if (YConst && YConst->isZero()) 3525 return SDValue(); 3526 3527 // Transform this into: ~X & Y == 0. 3528 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3529 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3530 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3531 } 3532 3533 return SDValue(); 3534 } 3535 3536 /// There are multiple IR patterns that could be checking whether certain 3537 /// truncation of a signed number would be lossy or not. The pattern which is 3538 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3539 /// We are looking for the following pattern: (KeptBits is a constant) 3540 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3541 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3542 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3543 /// We will unfold it into the natural trunc+sext pattern: 3544 /// ((%x << C) a>> C) dstcond %x 3545 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3546 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3547 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3548 const SDLoc &DL) const { 3549 // We must be comparing with a constant. 3550 ConstantSDNode *C1; 3551 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3552 return SDValue(); 3553 3554 // N0 should be: add %x, (1 << (KeptBits-1)) 3555 if (N0->getOpcode() != ISD::ADD) 3556 return SDValue(); 3557 3558 // And we must be 'add'ing a constant. 3559 ConstantSDNode *C01; 3560 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3561 return SDValue(); 3562 3563 SDValue X = N0->getOperand(0); 3564 EVT XVT = X.getValueType(); 3565 3566 // Validate constants ... 3567 3568 APInt I1 = C1->getAPIntValue(); 3569 3570 ISD::CondCode NewCond; 3571 if (Cond == ISD::CondCode::SETULT) { 3572 NewCond = ISD::CondCode::SETEQ; 3573 } else if (Cond == ISD::CondCode::SETULE) { 3574 NewCond = ISD::CondCode::SETEQ; 3575 // But need to 'canonicalize' the constant. 3576 I1 += 1; 3577 } else if (Cond == ISD::CondCode::SETUGT) { 3578 NewCond = ISD::CondCode::SETNE; 3579 // But need to 'canonicalize' the constant. 3580 I1 += 1; 3581 } else if (Cond == ISD::CondCode::SETUGE) { 3582 NewCond = ISD::CondCode::SETNE; 3583 } else 3584 return SDValue(); 3585 3586 APInt I01 = C01->getAPIntValue(); 3587 3588 auto checkConstants = [&I1, &I01]() -> bool { 3589 // Both of them must be power-of-two, and the constant from setcc is bigger. 3590 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3591 }; 3592 3593 if (checkConstants()) { 3594 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3595 } else { 3596 // What if we invert constants? (and the target predicate) 3597 I1.negate(); 3598 I01.negate(); 3599 assert(XVT.isInteger()); 3600 NewCond = getSetCCInverse(NewCond, XVT); 3601 if (!checkConstants()) 3602 return SDValue(); 3603 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3604 } 3605 3606 // They are power-of-two, so which bit is set? 3607 const unsigned KeptBits = I1.logBase2(); 3608 const unsigned KeptBitsMinusOne = I01.logBase2(); 3609 3610 // Magic! 3611 if (KeptBits != (KeptBitsMinusOne + 1)) 3612 return SDValue(); 3613 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3614 3615 // We don't want to do this in every single case. 3616 SelectionDAG &DAG = DCI.DAG; 3617 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3618 XVT, KeptBits)) 3619 return SDValue(); 3620 3621 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3622 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3623 3624 // Unfold into: ((%x << C) a>> C) cond %x 3625 // Where 'cond' will be either 'eq' or 'ne'. 3626 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3627 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3628 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3629 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3630 3631 return T2; 3632 } 3633 3634 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3635 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3636 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3637 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3638 assert(isConstOrConstSplat(N1C) && 3639 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3640 "Should be a comparison with 0."); 3641 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3642 "Valid only for [in]equality comparisons."); 3643 3644 unsigned NewShiftOpcode; 3645 SDValue X, C, Y; 3646 3647 SelectionDAG &DAG = DCI.DAG; 3648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3649 3650 // Look for '(C l>>/<< Y)'. 3651 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3652 // The shift should be one-use. 3653 if (!V.hasOneUse()) 3654 return false; 3655 unsigned OldShiftOpcode = V.getOpcode(); 3656 switch (OldShiftOpcode) { 3657 case ISD::SHL: 3658 NewShiftOpcode = ISD::SRL; 3659 break; 3660 case ISD::SRL: 3661 NewShiftOpcode = ISD::SHL; 3662 break; 3663 default: 3664 return false; // must be a logical shift. 3665 } 3666 // We should be shifting a constant. 3667 // FIXME: best to use isConstantOrConstantVector(). 3668 C = V.getOperand(0); 3669 ConstantSDNode *CC = 3670 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3671 if (!CC) 3672 return false; 3673 Y = V.getOperand(1); 3674 3675 ConstantSDNode *XC = 3676 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3677 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3678 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3679 }; 3680 3681 // LHS of comparison should be an one-use 'and'. 3682 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3683 return SDValue(); 3684 3685 X = N0.getOperand(0); 3686 SDValue Mask = N0.getOperand(1); 3687 3688 // 'and' is commutative! 3689 if (!Match(Mask)) { 3690 std::swap(X, Mask); 3691 if (!Match(Mask)) 3692 return SDValue(); 3693 } 3694 3695 EVT VT = X.getValueType(); 3696 3697 // Produce: 3698 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3699 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3700 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3701 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3702 return T2; 3703 } 3704 3705 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3706 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3707 /// handle the commuted versions of these patterns. 3708 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3709 ISD::CondCode Cond, const SDLoc &DL, 3710 DAGCombinerInfo &DCI) const { 3711 unsigned BOpcode = N0.getOpcode(); 3712 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3713 "Unexpected binop"); 3714 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3715 3716 // (X + Y) == X --> Y == 0 3717 // (X - Y) == X --> Y == 0 3718 // (X ^ Y) == X --> Y == 0 3719 SelectionDAG &DAG = DCI.DAG; 3720 EVT OpVT = N0.getValueType(); 3721 SDValue X = N0.getOperand(0); 3722 SDValue Y = N0.getOperand(1); 3723 if (X == N1) 3724 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3725 3726 if (Y != N1) 3727 return SDValue(); 3728 3729 // (X + Y) == Y --> X == 0 3730 // (X ^ Y) == Y --> X == 0 3731 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3732 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3733 3734 // The shift would not be valid if the operands are boolean (i1). 3735 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3736 return SDValue(); 3737 3738 // (X - Y) == Y --> X == Y << 1 3739 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3740 !DCI.isBeforeLegalize()); 3741 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3742 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3743 if (!DCI.isCalledByLegalizer()) 3744 DCI.AddToWorklist(YShl1.getNode()); 3745 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3746 } 3747 3748 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3749 SDValue N0, const APInt &C1, 3750 ISD::CondCode Cond, const SDLoc &dl, 3751 SelectionDAG &DAG) { 3752 // Look through truncs that don't change the value of a ctpop. 3753 // FIXME: Add vector support? Need to be careful with setcc result type below. 3754 SDValue CTPOP = N0; 3755 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3756 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3757 CTPOP = N0.getOperand(0); 3758 3759 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3760 return SDValue(); 3761 3762 EVT CTVT = CTPOP.getValueType(); 3763 SDValue CTOp = CTPOP.getOperand(0); 3764 3765 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3766 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3767 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3768 return SDValue(); 3769 3770 // (ctpop x) u< 2 -> (x & x-1) == 0 3771 // (ctpop x) u> 1 -> (x & x-1) != 0 3772 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3773 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3774 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3775 return SDValue(); 3776 if (C1 == 0 && (Cond == ISD::SETULT)) 3777 return SDValue(); // This is handled elsewhere. 3778 3779 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3780 3781 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3782 SDValue Result = CTOp; 3783 for (unsigned i = 0; i < Passes; i++) { 3784 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3785 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3786 } 3787 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3788 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3789 } 3790 3791 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3792 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3793 // For scalars, keep CTPOP if it is legal or custom. 3794 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3795 return SDValue(); 3796 // This is based on X86's custom lowering for CTPOP which produces more 3797 // instructions than the expansion here. 3798 3799 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3800 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3801 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3802 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3803 assert(CTVT.isInteger()); 3804 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3805 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3806 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3807 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3808 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3809 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3810 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3811 } 3812 3813 return SDValue(); 3814 } 3815 3816 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3817 ISD::CondCode Cond, const SDLoc &dl, 3818 SelectionDAG &DAG) { 3819 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3820 return SDValue(); 3821 3822 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3823 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3824 return SDValue(); 3825 3826 auto getRotateSource = [](SDValue X) { 3827 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3828 return X.getOperand(0); 3829 return SDValue(); 3830 }; 3831 3832 // Peek through a rotated value compared against 0 or -1: 3833 // (rot X, Y) == 0/-1 --> X == 0/-1 3834 // (rot X, Y) != 0/-1 --> X != 0/-1 3835 if (SDValue R = getRotateSource(N0)) 3836 return DAG.getSetCC(dl, VT, R, N1, Cond); 3837 3838 // Peek through an 'or' of a rotated value compared against 0: 3839 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3840 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3841 // 3842 // TODO: Add the 'and' with -1 sibling. 3843 // TODO: Recurse through a series of 'or' ops to find the rotate. 3844 EVT OpVT = N0.getValueType(); 3845 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3846 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3847 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3848 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3849 } 3850 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3851 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3852 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3853 } 3854 } 3855 3856 return SDValue(); 3857 } 3858 3859 /// Try to simplify a setcc built with the specified operands and cc. If it is 3860 /// unable to simplify it, return a null SDValue. 3861 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3862 ISD::CondCode Cond, bool foldBooleans, 3863 DAGCombinerInfo &DCI, 3864 const SDLoc &dl) const { 3865 SelectionDAG &DAG = DCI.DAG; 3866 const DataLayout &Layout = DAG.getDataLayout(); 3867 EVT OpVT = N0.getValueType(); 3868 3869 // Constant fold or commute setcc. 3870 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3871 return Fold; 3872 3873 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3874 // TODO: Handle non-splat vector constants. All undef causes trouble. 3875 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3876 // infinite loop here when we encounter one. 3877 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3878 if (isConstOrConstSplat(N0) && 3879 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3880 (DCI.isBeforeLegalizeOps() || 3881 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3882 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3883 3884 // If we have a subtract with the same 2 non-constant operands as this setcc 3885 // -- but in reverse order -- then try to commute the operands of this setcc 3886 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3887 // instruction on some targets. 3888 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3889 (DCI.isBeforeLegalizeOps() || 3890 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3891 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3892 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3893 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3894 3895 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 3896 return V; 3897 3898 if (auto *N1C = isConstOrConstSplat(N1)) { 3899 const APInt &C1 = N1C->getAPIntValue(); 3900 3901 // Optimize some CTPOP cases. 3902 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3903 return V; 3904 3905 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3906 // equality comparison, then we're just comparing whether X itself is 3907 // zero. 3908 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3909 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3910 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3911 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3912 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3913 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3914 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3915 // (srl (ctlz x), 5) == 0 -> X != 0 3916 // (srl (ctlz x), 5) != 1 -> X != 0 3917 Cond = ISD::SETNE; 3918 } else { 3919 // (srl (ctlz x), 5) != 0 -> X == 0 3920 // (srl (ctlz x), 5) == 1 -> X == 0 3921 Cond = ISD::SETEQ; 3922 } 3923 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3924 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3925 Cond); 3926 } 3927 } 3928 } 3929 } 3930 3931 // FIXME: Support vectors. 3932 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3933 const APInt &C1 = N1C->getAPIntValue(); 3934 3935 // (zext x) == C --> x == (trunc C) 3936 // (sext x) == C --> x == (trunc C) 3937 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3938 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3939 unsigned MinBits = N0.getValueSizeInBits(); 3940 SDValue PreExt; 3941 bool Signed = false; 3942 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3943 // ZExt 3944 MinBits = N0->getOperand(0).getValueSizeInBits(); 3945 PreExt = N0->getOperand(0); 3946 } else if (N0->getOpcode() == ISD::AND) { 3947 // DAGCombine turns costly ZExts into ANDs 3948 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3949 if ((C->getAPIntValue()+1).isPowerOf2()) { 3950 MinBits = C->getAPIntValue().countTrailingOnes(); 3951 PreExt = N0->getOperand(0); 3952 } 3953 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3954 // SExt 3955 MinBits = N0->getOperand(0).getValueSizeInBits(); 3956 PreExt = N0->getOperand(0); 3957 Signed = true; 3958 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3959 // ZEXTLOAD / SEXTLOAD 3960 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3961 MinBits = LN0->getMemoryVT().getSizeInBits(); 3962 PreExt = N0; 3963 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3964 Signed = true; 3965 MinBits = LN0->getMemoryVT().getSizeInBits(); 3966 PreExt = N0; 3967 } 3968 } 3969 3970 // Figure out how many bits we need to preserve this constant. 3971 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3972 3973 // Make sure we're not losing bits from the constant. 3974 if (MinBits > 0 && 3975 MinBits < C1.getBitWidth() && 3976 MinBits >= ReqdBits) { 3977 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3978 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3979 // Will get folded away. 3980 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3981 if (MinBits == 1 && C1 == 1) 3982 // Invert the condition. 3983 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3984 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3985 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3986 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3987 } 3988 3989 // If truncating the setcc operands is not desirable, we can still 3990 // simplify the expression in some cases: 3991 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3992 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3993 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3994 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3995 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3996 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3997 SDValue TopSetCC = N0->getOperand(0); 3998 unsigned N0Opc = N0->getOpcode(); 3999 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4000 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4001 TopSetCC.getOpcode() == ISD::SETCC && 4002 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4003 (isConstFalseVal(N1) || 4004 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4005 4006 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4007 (!N1C->isZero() && Cond == ISD::SETNE); 4008 4009 if (!Inverse) 4010 return TopSetCC; 4011 4012 ISD::CondCode InvCond = ISD::getSetCCInverse( 4013 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4014 TopSetCC.getOperand(0).getValueType()); 4015 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4016 TopSetCC.getOperand(1), 4017 InvCond); 4018 } 4019 } 4020 } 4021 4022 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4023 // equality or unsigned, and all 1 bits of the const are in the same 4024 // partial word, see if we can shorten the load. 4025 if (DCI.isBeforeLegalize() && 4026 !ISD::isSignedIntSetCC(Cond) && 4027 N0.getOpcode() == ISD::AND && C1 == 0 && 4028 N0.getNode()->hasOneUse() && 4029 isa<LoadSDNode>(N0.getOperand(0)) && 4030 N0.getOperand(0).getNode()->hasOneUse() && 4031 isa<ConstantSDNode>(N0.getOperand(1))) { 4032 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4033 APInt bestMask; 4034 unsigned bestWidth = 0, bestOffset = 0; 4035 if (Lod->isSimple() && Lod->isUnindexed()) { 4036 unsigned origWidth = N0.getValueSizeInBits(); 4037 unsigned maskWidth = origWidth; 4038 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4039 // 8 bits, but have to be careful... 4040 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4041 origWidth = Lod->getMemoryVT().getSizeInBits(); 4042 const APInt &Mask = N0.getConstantOperandAPInt(1); 4043 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4044 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4045 for (unsigned offset=0; offset<origWidth/width; offset++) { 4046 if (Mask.isSubsetOf(newMask)) { 4047 if (Layout.isLittleEndian()) 4048 bestOffset = (uint64_t)offset * (width/8); 4049 else 4050 bestOffset = (origWidth/width - offset - 1) * (width/8); 4051 bestMask = Mask.lshr(offset * (width/8) * 8); 4052 bestWidth = width; 4053 break; 4054 } 4055 newMask <<= width; 4056 } 4057 } 4058 } 4059 if (bestWidth) { 4060 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4061 if (newVT.isRound() && 4062 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4063 SDValue Ptr = Lod->getBasePtr(); 4064 if (bestOffset != 0) 4065 Ptr = 4066 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4067 SDValue NewLoad = 4068 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4069 Lod->getPointerInfo().getWithOffset(bestOffset), 4070 Lod->getOriginalAlign()); 4071 return DAG.getSetCC(dl, VT, 4072 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4073 DAG.getConstant(bestMask.trunc(bestWidth), 4074 dl, newVT)), 4075 DAG.getConstant(0LL, dl, newVT), Cond); 4076 } 4077 } 4078 } 4079 4080 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4081 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4082 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4083 4084 // If the comparison constant has bits in the upper part, the 4085 // zero-extended value could never match. 4086 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4087 C1.getBitWidth() - InSize))) { 4088 switch (Cond) { 4089 case ISD::SETUGT: 4090 case ISD::SETUGE: 4091 case ISD::SETEQ: 4092 return DAG.getConstant(0, dl, VT); 4093 case ISD::SETULT: 4094 case ISD::SETULE: 4095 case ISD::SETNE: 4096 return DAG.getConstant(1, dl, VT); 4097 case ISD::SETGT: 4098 case ISD::SETGE: 4099 // True if the sign bit of C1 is set. 4100 return DAG.getConstant(C1.isNegative(), dl, VT); 4101 case ISD::SETLT: 4102 case ISD::SETLE: 4103 // True if the sign bit of C1 isn't set. 4104 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4105 default: 4106 break; 4107 } 4108 } 4109 4110 // Otherwise, we can perform the comparison with the low bits. 4111 switch (Cond) { 4112 case ISD::SETEQ: 4113 case ISD::SETNE: 4114 case ISD::SETUGT: 4115 case ISD::SETUGE: 4116 case ISD::SETULT: 4117 case ISD::SETULE: { 4118 EVT newVT = N0.getOperand(0).getValueType(); 4119 if (DCI.isBeforeLegalizeOps() || 4120 (isOperationLegal(ISD::SETCC, newVT) && 4121 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4122 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4123 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4124 4125 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4126 NewConst, Cond); 4127 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4128 } 4129 break; 4130 } 4131 default: 4132 break; // todo, be more careful with signed comparisons 4133 } 4134 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4135 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4136 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4137 OpVT)) { 4138 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4139 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4140 EVT ExtDstTy = N0.getValueType(); 4141 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4142 4143 // If the constant doesn't fit into the number of bits for the source of 4144 // the sign extension, it is impossible for both sides to be equal. 4145 if (C1.getMinSignedBits() > ExtSrcTyBits) 4146 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4147 4148 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4149 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4150 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4151 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4152 DAG.getConstant(Imm, dl, ExtDstTy)); 4153 if (!DCI.isCalledByLegalizer()) 4154 DCI.AddToWorklist(ZextOp.getNode()); 4155 // Otherwise, make this a use of a zext. 4156 return DAG.getSetCC(dl, VT, ZextOp, 4157 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4158 } else if ((N1C->isZero() || N1C->isOne()) && 4159 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4160 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4161 if (N0.getOpcode() == ISD::SETCC && 4162 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4163 (N0.getValueType() == MVT::i1 || 4164 getBooleanContents(N0.getOperand(0).getValueType()) == 4165 ZeroOrOneBooleanContent)) { 4166 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4167 if (TrueWhenTrue) 4168 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4169 // Invert the condition. 4170 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4171 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4172 if (DCI.isBeforeLegalizeOps() || 4173 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4174 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4175 } 4176 4177 if ((N0.getOpcode() == ISD::XOR || 4178 (N0.getOpcode() == ISD::AND && 4179 N0.getOperand(0).getOpcode() == ISD::XOR && 4180 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4181 isOneConstant(N0.getOperand(1))) { 4182 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4183 // can only do this if the top bits are known zero. 4184 unsigned BitWidth = N0.getValueSizeInBits(); 4185 if (DAG.MaskedValueIsZero(N0, 4186 APInt::getHighBitsSet(BitWidth, 4187 BitWidth-1))) { 4188 // Okay, get the un-inverted input value. 4189 SDValue Val; 4190 if (N0.getOpcode() == ISD::XOR) { 4191 Val = N0.getOperand(0); 4192 } else { 4193 assert(N0.getOpcode() == ISD::AND && 4194 N0.getOperand(0).getOpcode() == ISD::XOR); 4195 // ((X^1)&1)^1 -> X & 1 4196 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4197 N0.getOperand(0).getOperand(0), 4198 N0.getOperand(1)); 4199 } 4200 4201 return DAG.getSetCC(dl, VT, Val, N1, 4202 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4203 } 4204 } else if (N1C->isOne()) { 4205 SDValue Op0 = N0; 4206 if (Op0.getOpcode() == ISD::TRUNCATE) 4207 Op0 = Op0.getOperand(0); 4208 4209 if ((Op0.getOpcode() == ISD::XOR) && 4210 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4211 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4212 SDValue XorLHS = Op0.getOperand(0); 4213 SDValue XorRHS = Op0.getOperand(1); 4214 // Ensure that the input setccs return an i1 type or 0/1 value. 4215 if (Op0.getValueType() == MVT::i1 || 4216 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4217 ZeroOrOneBooleanContent && 4218 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4219 ZeroOrOneBooleanContent)) { 4220 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4221 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4222 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4223 } 4224 } 4225 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4226 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4227 if (Op0.getValueType().bitsGT(VT)) 4228 Op0 = DAG.getNode(ISD::AND, dl, VT, 4229 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4230 DAG.getConstant(1, dl, VT)); 4231 else if (Op0.getValueType().bitsLT(VT)) 4232 Op0 = DAG.getNode(ISD::AND, dl, VT, 4233 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4234 DAG.getConstant(1, dl, VT)); 4235 4236 return DAG.getSetCC(dl, VT, Op0, 4237 DAG.getConstant(0, dl, Op0.getValueType()), 4238 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4239 } 4240 if (Op0.getOpcode() == ISD::AssertZext && 4241 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4242 return DAG.getSetCC(dl, VT, Op0, 4243 DAG.getConstant(0, dl, Op0.getValueType()), 4244 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4245 } 4246 } 4247 4248 // Given: 4249 // icmp eq/ne (urem %x, %y), 0 4250 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4251 // icmp eq/ne %x, 0 4252 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4253 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4254 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4255 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4256 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4257 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4258 } 4259 4260 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4261 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4262 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4263 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4264 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4265 N1C && N1C->isAllOnes()) { 4266 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4267 DAG.getConstant(0, dl, OpVT), 4268 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4269 } 4270 4271 if (SDValue V = 4272 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4273 return V; 4274 } 4275 4276 // These simplifications apply to splat vectors as well. 4277 // TODO: Handle more splat vector cases. 4278 if (auto *N1C = isConstOrConstSplat(N1)) { 4279 const APInt &C1 = N1C->getAPIntValue(); 4280 4281 APInt MinVal, MaxVal; 4282 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4283 if (ISD::isSignedIntSetCC(Cond)) { 4284 MinVal = APInt::getSignedMinValue(OperandBitSize); 4285 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4286 } else { 4287 MinVal = APInt::getMinValue(OperandBitSize); 4288 MaxVal = APInt::getMaxValue(OperandBitSize); 4289 } 4290 4291 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4292 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4293 // X >= MIN --> true 4294 if (C1 == MinVal) 4295 return DAG.getBoolConstant(true, dl, VT, OpVT); 4296 4297 if (!VT.isVector()) { // TODO: Support this for vectors. 4298 // X >= C0 --> X > (C0 - 1) 4299 APInt C = C1 - 1; 4300 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4301 if ((DCI.isBeforeLegalizeOps() || 4302 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4303 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4304 isLegalICmpImmediate(C.getSExtValue())))) { 4305 return DAG.getSetCC(dl, VT, N0, 4306 DAG.getConstant(C, dl, N1.getValueType()), 4307 NewCC); 4308 } 4309 } 4310 } 4311 4312 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4313 // X <= MAX --> true 4314 if (C1 == MaxVal) 4315 return DAG.getBoolConstant(true, dl, VT, OpVT); 4316 4317 // X <= C0 --> X < (C0 + 1) 4318 if (!VT.isVector()) { // TODO: Support this for vectors. 4319 APInt C = C1 + 1; 4320 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4321 if ((DCI.isBeforeLegalizeOps() || 4322 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4323 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4324 isLegalICmpImmediate(C.getSExtValue())))) { 4325 return DAG.getSetCC(dl, VT, N0, 4326 DAG.getConstant(C, dl, N1.getValueType()), 4327 NewCC); 4328 } 4329 } 4330 } 4331 4332 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4333 if (C1 == MinVal) 4334 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4335 4336 // TODO: Support this for vectors after legalize ops. 4337 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4338 // Canonicalize setlt X, Max --> setne X, Max 4339 if (C1 == MaxVal) 4340 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4341 4342 // If we have setult X, 1, turn it into seteq X, 0 4343 if (C1 == MinVal+1) 4344 return DAG.getSetCC(dl, VT, N0, 4345 DAG.getConstant(MinVal, dl, N0.getValueType()), 4346 ISD::SETEQ); 4347 } 4348 } 4349 4350 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4351 if (C1 == MaxVal) 4352 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4353 4354 // TODO: Support this for vectors after legalize ops. 4355 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4356 // Canonicalize setgt X, Min --> setne X, Min 4357 if (C1 == MinVal) 4358 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4359 4360 // If we have setugt X, Max-1, turn it into seteq X, Max 4361 if (C1 == MaxVal-1) 4362 return DAG.getSetCC(dl, VT, N0, 4363 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4364 ISD::SETEQ); 4365 } 4366 } 4367 4368 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4369 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4370 if (C1.isZero()) 4371 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4372 VT, N0, N1, Cond, DCI, dl)) 4373 return CC; 4374 4375 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4376 // For example, when high 32-bits of i64 X are known clear: 4377 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4378 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4379 bool CmpZero = N1C->getAPIntValue().isZero(); 4380 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4381 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4382 // Match or(lo,shl(hi,bw/2)) pattern. 4383 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4384 unsigned EltBits = V.getScalarValueSizeInBits(); 4385 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4386 return false; 4387 SDValue LHS = V.getOperand(0); 4388 SDValue RHS = V.getOperand(1); 4389 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4390 // Unshifted element must have zero upperbits. 4391 if (RHS.getOpcode() == ISD::SHL && 4392 isa<ConstantSDNode>(RHS.getOperand(1)) && 4393 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4394 DAG.MaskedValueIsZero(LHS, HiBits)) { 4395 Lo = LHS; 4396 Hi = RHS.getOperand(0); 4397 return true; 4398 } 4399 if (LHS.getOpcode() == ISD::SHL && 4400 isa<ConstantSDNode>(LHS.getOperand(1)) && 4401 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4402 DAG.MaskedValueIsZero(RHS, HiBits)) { 4403 Lo = RHS; 4404 Hi = LHS.getOperand(0); 4405 return true; 4406 } 4407 return false; 4408 }; 4409 4410 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4411 unsigned EltBits = N0.getScalarValueSizeInBits(); 4412 unsigned HalfBits = EltBits / 2; 4413 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4414 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4415 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4416 SDValue NewN0 = 4417 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4418 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4419 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4420 }; 4421 4422 SDValue Lo, Hi; 4423 if (IsConcat(N0, Lo, Hi)) 4424 return MergeConcat(Lo, Hi); 4425 4426 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4427 SDValue Lo0, Lo1, Hi0, Hi1; 4428 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4429 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4430 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4431 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4432 } 4433 } 4434 } 4435 } 4436 4437 // If we have "setcc X, C0", check to see if we can shrink the immediate 4438 // by changing cc. 4439 // TODO: Support this for vectors after legalize ops. 4440 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4441 // SETUGT X, SINTMAX -> SETLT X, 0 4442 // SETUGE X, SINTMIN -> SETLT X, 0 4443 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4444 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4445 return DAG.getSetCC(dl, VT, N0, 4446 DAG.getConstant(0, dl, N1.getValueType()), 4447 ISD::SETLT); 4448 4449 // SETULT X, SINTMIN -> SETGT X, -1 4450 // SETULE X, SINTMAX -> SETGT X, -1 4451 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4452 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4453 return DAG.getSetCC(dl, VT, N0, 4454 DAG.getAllOnesConstant(dl, N1.getValueType()), 4455 ISD::SETGT); 4456 } 4457 } 4458 4459 // Back to non-vector simplifications. 4460 // TODO: Can we do these for vector splats? 4461 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4463 const APInt &C1 = N1C->getAPIntValue(); 4464 EVT ShValTy = N0.getValueType(); 4465 4466 // Fold bit comparisons when we can. This will result in an 4467 // incorrect value when boolean false is negative one, unless 4468 // the bitsize is 1 in which case the false value is the same 4469 // in practice regardless of the representation. 4470 if ((VT.getSizeInBits() == 1 || 4471 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4472 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4473 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4474 N0.getOpcode() == ISD::AND) { 4475 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4476 EVT ShiftTy = 4477 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4478 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4479 // Perform the xform if the AND RHS is a single bit. 4480 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4481 if (AndRHS->getAPIntValue().isPowerOf2() && 4482 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4483 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4484 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4485 DAG.getConstant(ShCt, dl, ShiftTy))); 4486 } 4487 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4488 // (X & 8) == 8 --> (X & 8) >> 3 4489 // Perform the xform if C1 is a single bit. 4490 unsigned ShCt = C1.logBase2(); 4491 if (C1.isPowerOf2() && 4492 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4493 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4494 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4495 DAG.getConstant(ShCt, dl, ShiftTy))); 4496 } 4497 } 4498 } 4499 } 4500 4501 if (C1.getMinSignedBits() <= 64 && 4502 !isLegalICmpImmediate(C1.getSExtValue())) { 4503 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4504 // (X & -256) == 256 -> (X >> 8) == 1 4505 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4506 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4507 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4508 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4509 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4510 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4511 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4512 SDValue Shift = 4513 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4514 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4515 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4516 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4517 } 4518 } 4519 } 4520 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4521 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4522 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4523 // X < 0x100000000 -> (X >> 32) < 1 4524 // X >= 0x100000000 -> (X >> 32) >= 1 4525 // X <= 0x0ffffffff -> (X >> 32) < 1 4526 // X > 0x0ffffffff -> (X >> 32) >= 1 4527 unsigned ShiftBits; 4528 APInt NewC = C1; 4529 ISD::CondCode NewCond = Cond; 4530 if (AdjOne) { 4531 ShiftBits = C1.countTrailingOnes(); 4532 NewC = NewC + 1; 4533 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4534 } else { 4535 ShiftBits = C1.countTrailingZeros(); 4536 } 4537 NewC.lshrInPlace(ShiftBits); 4538 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4539 isLegalICmpImmediate(NewC.getSExtValue()) && 4540 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4541 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4542 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4543 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4544 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4545 } 4546 } 4547 } 4548 } 4549 4550 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4551 auto *CFP = cast<ConstantFPSDNode>(N1); 4552 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4553 4554 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4555 // constant if knowing that the operand is non-nan is enough. We prefer to 4556 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4557 // materialize 0.0. 4558 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4559 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4560 4561 // setcc (fneg x), C -> setcc swap(pred) x, -C 4562 if (N0.getOpcode() == ISD::FNEG) { 4563 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4564 if (DCI.isBeforeLegalizeOps() || 4565 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4566 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4567 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4568 } 4569 } 4570 4571 // If the condition is not legal, see if we can find an equivalent one 4572 // which is legal. 4573 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4574 // If the comparison was an awkward floating-point == or != and one of 4575 // the comparison operands is infinity or negative infinity, convert the 4576 // condition to a less-awkward <= or >=. 4577 if (CFP->getValueAPF().isInfinity()) { 4578 bool IsNegInf = CFP->getValueAPF().isNegative(); 4579 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4580 switch (Cond) { 4581 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4582 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4583 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4584 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4585 default: break; 4586 } 4587 if (NewCond != ISD::SETCC_INVALID && 4588 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4589 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4590 } 4591 } 4592 } 4593 4594 if (N0 == N1) { 4595 // The sext(setcc()) => setcc() optimization relies on the appropriate 4596 // constant being emitted. 4597 assert(!N0.getValueType().isInteger() && 4598 "Integer types should be handled by FoldSetCC"); 4599 4600 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4601 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4602 if (UOF == 2) // FP operators that are undefined on NaNs. 4603 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4604 if (UOF == unsigned(EqTrue)) 4605 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4606 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4607 // if it is not already. 4608 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4609 if (NewCond != Cond && 4610 (DCI.isBeforeLegalizeOps() || 4611 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4612 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4613 } 4614 4615 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4616 N0.getValueType().isInteger()) { 4617 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4618 N0.getOpcode() == ISD::XOR) { 4619 // Simplify (X+Y) == (X+Z) --> Y == Z 4620 if (N0.getOpcode() == N1.getOpcode()) { 4621 if (N0.getOperand(0) == N1.getOperand(0)) 4622 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4623 if (N0.getOperand(1) == N1.getOperand(1)) 4624 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4625 if (isCommutativeBinOp(N0.getOpcode())) { 4626 // If X op Y == Y op X, try other combinations. 4627 if (N0.getOperand(0) == N1.getOperand(1)) 4628 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4629 Cond); 4630 if (N0.getOperand(1) == N1.getOperand(0)) 4631 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4632 Cond); 4633 } 4634 } 4635 4636 // If RHS is a legal immediate value for a compare instruction, we need 4637 // to be careful about increasing register pressure needlessly. 4638 bool LegalRHSImm = false; 4639 4640 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4641 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4642 // Turn (X+C1) == C2 --> X == C2-C1 4643 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4644 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4645 DAG.getConstant(RHSC->getAPIntValue()- 4646 LHSR->getAPIntValue(), 4647 dl, N0.getValueType()), Cond); 4648 } 4649 4650 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4651 if (N0.getOpcode() == ISD::XOR) 4652 // If we know that all of the inverted bits are zero, don't bother 4653 // performing the inversion. 4654 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4655 return 4656 DAG.getSetCC(dl, VT, N0.getOperand(0), 4657 DAG.getConstant(LHSR->getAPIntValue() ^ 4658 RHSC->getAPIntValue(), 4659 dl, N0.getValueType()), 4660 Cond); 4661 } 4662 4663 // Turn (C1-X) == C2 --> X == C1-C2 4664 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4665 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4666 return 4667 DAG.getSetCC(dl, VT, N0.getOperand(1), 4668 DAG.getConstant(SUBC->getAPIntValue() - 4669 RHSC->getAPIntValue(), 4670 dl, N0.getValueType()), 4671 Cond); 4672 } 4673 } 4674 4675 // Could RHSC fold directly into a compare? 4676 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4677 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4678 } 4679 4680 // (X+Y) == X --> Y == 0 and similar folds. 4681 // Don't do this if X is an immediate that can fold into a cmp 4682 // instruction and X+Y has other uses. It could be an induction variable 4683 // chain, and the transform would increase register pressure. 4684 if (!LegalRHSImm || N0.hasOneUse()) 4685 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4686 return V; 4687 } 4688 4689 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4690 N1.getOpcode() == ISD::XOR) 4691 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4692 return V; 4693 4694 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4695 return V; 4696 } 4697 4698 // Fold remainder of division by a constant. 4699 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4700 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4701 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4702 4703 // When division is cheap or optimizing for minimum size, 4704 // fall through to DIVREM creation by skipping this fold. 4705 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4706 if (N0.getOpcode() == ISD::UREM) { 4707 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4708 return Folded; 4709 } else if (N0.getOpcode() == ISD::SREM) { 4710 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4711 return Folded; 4712 } 4713 } 4714 } 4715 4716 // Fold away ALL boolean setcc's. 4717 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4718 SDValue Temp; 4719 switch (Cond) { 4720 default: llvm_unreachable("Unknown integer setcc!"); 4721 case ISD::SETEQ: // X == Y -> ~(X^Y) 4722 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4723 N0 = DAG.getNOT(dl, Temp, OpVT); 4724 if (!DCI.isCalledByLegalizer()) 4725 DCI.AddToWorklist(Temp.getNode()); 4726 break; 4727 case ISD::SETNE: // X != Y --> (X^Y) 4728 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4729 break; 4730 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4731 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4732 Temp = DAG.getNOT(dl, N0, OpVT); 4733 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4734 if (!DCI.isCalledByLegalizer()) 4735 DCI.AddToWorklist(Temp.getNode()); 4736 break; 4737 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4738 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4739 Temp = DAG.getNOT(dl, N1, OpVT); 4740 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4741 if (!DCI.isCalledByLegalizer()) 4742 DCI.AddToWorklist(Temp.getNode()); 4743 break; 4744 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4745 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4746 Temp = DAG.getNOT(dl, N0, OpVT); 4747 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4748 if (!DCI.isCalledByLegalizer()) 4749 DCI.AddToWorklist(Temp.getNode()); 4750 break; 4751 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4752 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4753 Temp = DAG.getNOT(dl, N1, OpVT); 4754 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4755 break; 4756 } 4757 if (VT.getScalarType() != MVT::i1) { 4758 if (!DCI.isCalledByLegalizer()) 4759 DCI.AddToWorklist(N0.getNode()); 4760 // FIXME: If running after legalize, we probably can't do this. 4761 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4762 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4763 } 4764 return N0; 4765 } 4766 4767 // Could not fold it. 4768 return SDValue(); 4769 } 4770 4771 /// Returns true (and the GlobalValue and the offset) if the node is a 4772 /// GlobalAddress + offset. 4773 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4774 int64_t &Offset) const { 4775 4776 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4777 4778 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4779 GA = GASD->getGlobal(); 4780 Offset += GASD->getOffset(); 4781 return true; 4782 } 4783 4784 if (N->getOpcode() == ISD::ADD) { 4785 SDValue N1 = N->getOperand(0); 4786 SDValue N2 = N->getOperand(1); 4787 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4788 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4789 Offset += V->getSExtValue(); 4790 return true; 4791 } 4792 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4793 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4794 Offset += V->getSExtValue(); 4795 return true; 4796 } 4797 } 4798 } 4799 4800 return false; 4801 } 4802 4803 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4804 DAGCombinerInfo &DCI) const { 4805 // Default implementation: no optimization. 4806 return SDValue(); 4807 } 4808 4809 //===----------------------------------------------------------------------===// 4810 // Inline Assembler Implementation Methods 4811 //===----------------------------------------------------------------------===// 4812 4813 TargetLowering::ConstraintType 4814 TargetLowering::getConstraintType(StringRef Constraint) const { 4815 unsigned S = Constraint.size(); 4816 4817 if (S == 1) { 4818 switch (Constraint[0]) { 4819 default: break; 4820 case 'r': 4821 return C_RegisterClass; 4822 case 'm': // memory 4823 case 'o': // offsetable 4824 case 'V': // not offsetable 4825 return C_Memory; 4826 case 'n': // Simple Integer 4827 case 'E': // Floating Point Constant 4828 case 'F': // Floating Point Constant 4829 return C_Immediate; 4830 case 'i': // Simple Integer or Relocatable Constant 4831 case 's': // Relocatable Constant 4832 case 'p': // Address. 4833 case 'X': // Allow ANY value. 4834 case 'I': // Target registers. 4835 case 'J': 4836 case 'K': 4837 case 'L': 4838 case 'M': 4839 case 'N': 4840 case 'O': 4841 case 'P': 4842 case '<': 4843 case '>': 4844 return C_Other; 4845 } 4846 } 4847 4848 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4849 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4850 return C_Memory; 4851 return C_Register; 4852 } 4853 return C_Unknown; 4854 } 4855 4856 /// Try to replace an X constraint, which matches anything, with another that 4857 /// has more specific requirements based on the type of the corresponding 4858 /// operand. 4859 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4860 if (ConstraintVT.isInteger()) 4861 return "r"; 4862 if (ConstraintVT.isFloatingPoint()) 4863 return "f"; // works for many targets 4864 return nullptr; 4865 } 4866 4867 SDValue TargetLowering::LowerAsmOutputForConstraint( 4868 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4869 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4870 return SDValue(); 4871 } 4872 4873 /// Lower the specified operand into the Ops vector. 4874 /// If it is invalid, don't add anything to Ops. 4875 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4876 std::string &Constraint, 4877 std::vector<SDValue> &Ops, 4878 SelectionDAG &DAG) const { 4879 4880 if (Constraint.length() > 1) return; 4881 4882 char ConstraintLetter = Constraint[0]; 4883 switch (ConstraintLetter) { 4884 default: break; 4885 case 'X': // Allows any operand 4886 case 'i': // Simple Integer or Relocatable Constant 4887 case 'n': // Simple Integer 4888 case 's': { // Relocatable Constant 4889 4890 ConstantSDNode *C; 4891 uint64_t Offset = 0; 4892 4893 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4894 // etc., since getelementpointer is variadic. We can't use 4895 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4896 // while in this case the GA may be furthest from the root node which is 4897 // likely an ISD::ADD. 4898 while (true) { 4899 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4900 // gcc prints these as sign extended. Sign extend value to 64 bits 4901 // now; without this it would get ZExt'd later in 4902 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4903 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4904 BooleanContent BCont = getBooleanContents(MVT::i64); 4905 ISD::NodeType ExtOpc = 4906 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4907 int64_t ExtVal = 4908 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4909 Ops.push_back( 4910 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4911 return; 4912 } 4913 if (ConstraintLetter != 'n') { 4914 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4915 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4916 GA->getValueType(0), 4917 Offset + GA->getOffset())); 4918 return; 4919 } 4920 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4921 Ops.push_back(DAG.getTargetBlockAddress( 4922 BA->getBlockAddress(), BA->getValueType(0), 4923 Offset + BA->getOffset(), BA->getTargetFlags())); 4924 return; 4925 } 4926 if (isa<BasicBlockSDNode>(Op)) { 4927 Ops.push_back(Op); 4928 return; 4929 } 4930 } 4931 const unsigned OpCode = Op.getOpcode(); 4932 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4933 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4934 Op = Op.getOperand(1); 4935 // Subtraction is not commutative. 4936 else if (OpCode == ISD::ADD && 4937 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4938 Op = Op.getOperand(0); 4939 else 4940 return; 4941 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4942 continue; 4943 } 4944 return; 4945 } 4946 break; 4947 } 4948 } 4949 } 4950 4951 std::pair<unsigned, const TargetRegisterClass *> 4952 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4953 StringRef Constraint, 4954 MVT VT) const { 4955 if (Constraint.empty() || Constraint[0] != '{') 4956 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4957 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4958 4959 // Remove the braces from around the name. 4960 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4961 4962 std::pair<unsigned, const TargetRegisterClass *> R = 4963 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4964 4965 // Figure out which register class contains this reg. 4966 for (const TargetRegisterClass *RC : RI->regclasses()) { 4967 // If none of the value types for this register class are valid, we 4968 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4969 if (!isLegalRC(*RI, *RC)) 4970 continue; 4971 4972 for (const MCPhysReg &PR : *RC) { 4973 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4974 std::pair<unsigned, const TargetRegisterClass *> S = 4975 std::make_pair(PR, RC); 4976 4977 // If this register class has the requested value type, return it, 4978 // otherwise keep searching and return the first class found 4979 // if no other is found which explicitly has the requested type. 4980 if (RI->isTypeLegalForClass(*RC, VT)) 4981 return S; 4982 if (!R.second) 4983 R = S; 4984 } 4985 } 4986 } 4987 4988 return R; 4989 } 4990 4991 //===----------------------------------------------------------------------===// 4992 // Constraint Selection. 4993 4994 /// Return true of this is an input operand that is a matching constraint like 4995 /// "4". 4996 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4997 assert(!ConstraintCode.empty() && "No known constraint!"); 4998 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4999 } 5000 5001 /// If this is an input matching constraint, this method returns the output 5002 /// operand it matches. 5003 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5004 assert(!ConstraintCode.empty() && "No known constraint!"); 5005 return atoi(ConstraintCode.c_str()); 5006 } 5007 5008 /// Split up the constraint string from the inline assembly value into the 5009 /// specific constraints and their prefixes, and also tie in the associated 5010 /// operand values. 5011 /// If this returns an empty vector, and if the constraint string itself 5012 /// isn't empty, there was an error parsing. 5013 TargetLowering::AsmOperandInfoVector 5014 TargetLowering::ParseConstraints(const DataLayout &DL, 5015 const TargetRegisterInfo *TRI, 5016 const CallBase &Call) const { 5017 /// Information about all of the constraints. 5018 AsmOperandInfoVector ConstraintOperands; 5019 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5020 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5021 5022 // Do a prepass over the constraints, canonicalizing them, and building up the 5023 // ConstraintOperands list. 5024 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5025 unsigned ResNo = 0; // ResNo - The result number of the next output. 5026 5027 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5028 ConstraintOperands.emplace_back(std::move(CI)); 5029 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5030 5031 // Update multiple alternative constraint count. 5032 if (OpInfo.multipleAlternatives.size() > maCount) 5033 maCount = OpInfo.multipleAlternatives.size(); 5034 5035 OpInfo.ConstraintVT = MVT::Other; 5036 5037 // Compute the value type for each operand. 5038 switch (OpInfo.Type) { 5039 case InlineAsm::isOutput: 5040 // Indirect outputs just consume an argument. 5041 if (OpInfo.isIndirect) { 5042 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5043 break; 5044 } 5045 5046 // The return value of the call is this value. As such, there is no 5047 // corresponding argument. 5048 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5049 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5050 OpInfo.ConstraintVT = 5051 getSimpleValueType(DL, STy->getElementType(ResNo)); 5052 } else { 5053 assert(ResNo == 0 && "Asm only has one result!"); 5054 OpInfo.ConstraintVT = 5055 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5056 } 5057 ++ResNo; 5058 break; 5059 case InlineAsm::isInput: 5060 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5061 break; 5062 case InlineAsm::isClobber: 5063 // Nothing to do. 5064 break; 5065 } 5066 5067 if (OpInfo.CallOperandVal) { 5068 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5069 if (OpInfo.isIndirect) { 5070 OpTy = Call.getParamElementType(ArgNo); 5071 assert(OpTy && "Indirect operand must have elementtype attribute"); 5072 } 5073 5074 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5075 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5076 if (STy->getNumElements() == 1) 5077 OpTy = STy->getElementType(0); 5078 5079 // If OpTy is not a single value, it may be a struct/union that we 5080 // can tile with integers. 5081 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5082 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5083 switch (BitSize) { 5084 default: break; 5085 case 1: 5086 case 8: 5087 case 16: 5088 case 32: 5089 case 64: 5090 case 128: 5091 OpInfo.ConstraintVT = 5092 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5093 break; 5094 } 5095 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5096 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5097 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5098 } else { 5099 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5100 } 5101 5102 ArgNo++; 5103 } 5104 } 5105 5106 // If we have multiple alternative constraints, select the best alternative. 5107 if (!ConstraintOperands.empty()) { 5108 if (maCount) { 5109 unsigned bestMAIndex = 0; 5110 int bestWeight = -1; 5111 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5112 int weight = -1; 5113 unsigned maIndex; 5114 // Compute the sums of the weights for each alternative, keeping track 5115 // of the best (highest weight) one so far. 5116 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5117 int weightSum = 0; 5118 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5119 cIndex != eIndex; ++cIndex) { 5120 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5121 if (OpInfo.Type == InlineAsm::isClobber) 5122 continue; 5123 5124 // If this is an output operand with a matching input operand, 5125 // look up the matching input. If their types mismatch, e.g. one 5126 // is an integer, the other is floating point, or their sizes are 5127 // different, flag it as an maCantMatch. 5128 if (OpInfo.hasMatchingInput()) { 5129 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5130 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5131 if ((OpInfo.ConstraintVT.isInteger() != 5132 Input.ConstraintVT.isInteger()) || 5133 (OpInfo.ConstraintVT.getSizeInBits() != 5134 Input.ConstraintVT.getSizeInBits())) { 5135 weightSum = -1; // Can't match. 5136 break; 5137 } 5138 } 5139 } 5140 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5141 if (weight == -1) { 5142 weightSum = -1; 5143 break; 5144 } 5145 weightSum += weight; 5146 } 5147 // Update best. 5148 if (weightSum > bestWeight) { 5149 bestWeight = weightSum; 5150 bestMAIndex = maIndex; 5151 } 5152 } 5153 5154 // Now select chosen alternative in each constraint. 5155 for (AsmOperandInfo &cInfo : ConstraintOperands) 5156 if (cInfo.Type != InlineAsm::isClobber) 5157 cInfo.selectAlternative(bestMAIndex); 5158 } 5159 } 5160 5161 // Check and hook up tied operands, choose constraint code to use. 5162 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5163 cIndex != eIndex; ++cIndex) { 5164 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5165 5166 // If this is an output operand with a matching input operand, look up the 5167 // matching input. If their types mismatch, e.g. one is an integer, the 5168 // other is floating point, or their sizes are different, flag it as an 5169 // error. 5170 if (OpInfo.hasMatchingInput()) { 5171 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5172 5173 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5174 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5175 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5176 OpInfo.ConstraintVT); 5177 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5178 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5179 Input.ConstraintVT); 5180 if ((OpInfo.ConstraintVT.isInteger() != 5181 Input.ConstraintVT.isInteger()) || 5182 (MatchRC.second != InputRC.second)) { 5183 report_fatal_error("Unsupported asm: input constraint" 5184 " with a matching output constraint of" 5185 " incompatible type!"); 5186 } 5187 } 5188 } 5189 } 5190 5191 return ConstraintOperands; 5192 } 5193 5194 /// Return an integer indicating how general CT is. 5195 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5196 switch (CT) { 5197 case TargetLowering::C_Immediate: 5198 case TargetLowering::C_Other: 5199 case TargetLowering::C_Unknown: 5200 return 0; 5201 case TargetLowering::C_Register: 5202 return 1; 5203 case TargetLowering::C_RegisterClass: 5204 return 2; 5205 case TargetLowering::C_Memory: 5206 return 3; 5207 } 5208 llvm_unreachable("Invalid constraint type"); 5209 } 5210 5211 /// Examine constraint type and operand type and determine a weight value. 5212 /// This object must already have been set up with the operand type 5213 /// and the current alternative constraint selected. 5214 TargetLowering::ConstraintWeight 5215 TargetLowering::getMultipleConstraintMatchWeight( 5216 AsmOperandInfo &info, int maIndex) const { 5217 InlineAsm::ConstraintCodeVector *rCodes; 5218 if (maIndex >= (int)info.multipleAlternatives.size()) 5219 rCodes = &info.Codes; 5220 else 5221 rCodes = &info.multipleAlternatives[maIndex].Codes; 5222 ConstraintWeight BestWeight = CW_Invalid; 5223 5224 // Loop over the options, keeping track of the most general one. 5225 for (const std::string &rCode : *rCodes) { 5226 ConstraintWeight weight = 5227 getSingleConstraintMatchWeight(info, rCode.c_str()); 5228 if (weight > BestWeight) 5229 BestWeight = weight; 5230 } 5231 5232 return BestWeight; 5233 } 5234 5235 /// Examine constraint type and operand type and determine a weight value. 5236 /// This object must already have been set up with the operand type 5237 /// and the current alternative constraint selected. 5238 TargetLowering::ConstraintWeight 5239 TargetLowering::getSingleConstraintMatchWeight( 5240 AsmOperandInfo &info, const char *constraint) const { 5241 ConstraintWeight weight = CW_Invalid; 5242 Value *CallOperandVal = info.CallOperandVal; 5243 // If we don't have a value, we can't do a match, 5244 // but allow it at the lowest weight. 5245 if (!CallOperandVal) 5246 return CW_Default; 5247 // Look at the constraint type. 5248 switch (*constraint) { 5249 case 'i': // immediate integer. 5250 case 'n': // immediate integer with a known value. 5251 if (isa<ConstantInt>(CallOperandVal)) 5252 weight = CW_Constant; 5253 break; 5254 case 's': // non-explicit intregal immediate. 5255 if (isa<GlobalValue>(CallOperandVal)) 5256 weight = CW_Constant; 5257 break; 5258 case 'E': // immediate float if host format. 5259 case 'F': // immediate float. 5260 if (isa<ConstantFP>(CallOperandVal)) 5261 weight = CW_Constant; 5262 break; 5263 case '<': // memory operand with autodecrement. 5264 case '>': // memory operand with autoincrement. 5265 case 'm': // memory operand. 5266 case 'o': // offsettable memory operand 5267 case 'V': // non-offsettable memory operand 5268 weight = CW_Memory; 5269 break; 5270 case 'r': // general register. 5271 case 'g': // general register, memory operand or immediate integer. 5272 // note: Clang converts "g" to "imr". 5273 if (CallOperandVal->getType()->isIntegerTy()) 5274 weight = CW_Register; 5275 break; 5276 case 'X': // any operand. 5277 default: 5278 weight = CW_Default; 5279 break; 5280 } 5281 return weight; 5282 } 5283 5284 /// If there are multiple different constraints that we could pick for this 5285 /// operand (e.g. "imr") try to pick the 'best' one. 5286 /// This is somewhat tricky: constraints fall into four classes: 5287 /// Other -> immediates and magic values 5288 /// Register -> one specific register 5289 /// RegisterClass -> a group of regs 5290 /// Memory -> memory 5291 /// Ideally, we would pick the most specific constraint possible: if we have 5292 /// something that fits into a register, we would pick it. The problem here 5293 /// is that if we have something that could either be in a register or in 5294 /// memory that use of the register could cause selection of *other* 5295 /// operands to fail: they might only succeed if we pick memory. Because of 5296 /// this the heuristic we use is: 5297 /// 5298 /// 1) If there is an 'other' constraint, and if the operand is valid for 5299 /// that constraint, use it. This makes us take advantage of 'i' 5300 /// constraints when available. 5301 /// 2) Otherwise, pick the most general constraint present. This prefers 5302 /// 'm' over 'r', for example. 5303 /// 5304 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5305 const TargetLowering &TLI, 5306 SDValue Op, SelectionDAG *DAG) { 5307 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5308 unsigned BestIdx = 0; 5309 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5310 int BestGenerality = -1; 5311 5312 // Loop over the options, keeping track of the most general one. 5313 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5314 TargetLowering::ConstraintType CType = 5315 TLI.getConstraintType(OpInfo.Codes[i]); 5316 5317 // Indirect 'other' or 'immediate' constraints are not allowed. 5318 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5319 CType == TargetLowering::C_Register || 5320 CType == TargetLowering::C_RegisterClass)) 5321 continue; 5322 5323 // If this is an 'other' or 'immediate' constraint, see if the operand is 5324 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5325 // the operand is an integer in the range [0..31] we want to use I (saving a 5326 // load of a register), otherwise we must use 'r'. 5327 if ((CType == TargetLowering::C_Other || 5328 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5329 assert(OpInfo.Codes[i].size() == 1 && 5330 "Unhandled multi-letter 'other' constraint"); 5331 std::vector<SDValue> ResultOps; 5332 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5333 ResultOps, *DAG); 5334 if (!ResultOps.empty()) { 5335 BestType = CType; 5336 BestIdx = i; 5337 break; 5338 } 5339 } 5340 5341 // Things with matching constraints can only be registers, per gcc 5342 // documentation. This mainly affects "g" constraints. 5343 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5344 continue; 5345 5346 // This constraint letter is more general than the previous one, use it. 5347 int Generality = getConstraintGenerality(CType); 5348 if (Generality > BestGenerality) { 5349 BestType = CType; 5350 BestIdx = i; 5351 BestGenerality = Generality; 5352 } 5353 } 5354 5355 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5356 OpInfo.ConstraintType = BestType; 5357 } 5358 5359 /// Determines the constraint code and constraint type to use for the specific 5360 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5361 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5362 SDValue Op, 5363 SelectionDAG *DAG) const { 5364 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5365 5366 // Single-letter constraints ('r') are very common. 5367 if (OpInfo.Codes.size() == 1) { 5368 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5369 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5370 } else { 5371 ChooseConstraint(OpInfo, *this, Op, DAG); 5372 } 5373 5374 // 'X' matches anything. 5375 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5376 // Constants are handled elsewhere. For Functions, the type here is the 5377 // type of the result, which is not what we want to look at; leave them 5378 // alone. 5379 Value *v = OpInfo.CallOperandVal; 5380 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5381 return; 5382 } 5383 5384 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5385 OpInfo.ConstraintCode = "i"; 5386 return; 5387 } 5388 5389 // Otherwise, try to resolve it to something we know about by looking at 5390 // the actual operand type. 5391 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5392 OpInfo.ConstraintCode = Repl; 5393 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5394 } 5395 } 5396 } 5397 5398 /// Given an exact SDIV by a constant, create a multiplication 5399 /// with the multiplicative inverse of the constant. 5400 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5401 const SDLoc &dl, SelectionDAG &DAG, 5402 SmallVectorImpl<SDNode *> &Created) { 5403 SDValue Op0 = N->getOperand(0); 5404 SDValue Op1 = N->getOperand(1); 5405 EVT VT = N->getValueType(0); 5406 EVT SVT = VT.getScalarType(); 5407 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5408 EVT ShSVT = ShVT.getScalarType(); 5409 5410 bool UseSRA = false; 5411 SmallVector<SDValue, 16> Shifts, Factors; 5412 5413 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5414 if (C->isZero()) 5415 return false; 5416 APInt Divisor = C->getAPIntValue(); 5417 unsigned Shift = Divisor.countTrailingZeros(); 5418 if (Shift) { 5419 Divisor.ashrInPlace(Shift); 5420 UseSRA = true; 5421 } 5422 // Calculate the multiplicative inverse, using Newton's method. 5423 APInt t; 5424 APInt Factor = Divisor; 5425 while ((t = Divisor * Factor) != 1) 5426 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5427 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5428 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5429 return true; 5430 }; 5431 5432 // Collect all magic values from the build vector. 5433 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5434 return SDValue(); 5435 5436 SDValue Shift, Factor; 5437 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5438 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5439 Factor = DAG.getBuildVector(VT, dl, Factors); 5440 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5441 assert(Shifts.size() == 1 && Factors.size() == 1 && 5442 "Expected matchUnaryPredicate to return one element for scalable " 5443 "vectors"); 5444 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5445 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5446 } else { 5447 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5448 Shift = Shifts[0]; 5449 Factor = Factors[0]; 5450 } 5451 5452 SDValue Res = Op0; 5453 5454 // Shift the value upfront if it is even, so the LSB is one. 5455 if (UseSRA) { 5456 // TODO: For UDIV use SRL instead of SRA. 5457 SDNodeFlags Flags; 5458 Flags.setExact(true); 5459 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5460 Created.push_back(Res.getNode()); 5461 } 5462 5463 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5464 } 5465 5466 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5467 SelectionDAG &DAG, 5468 SmallVectorImpl<SDNode *> &Created) const { 5469 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5471 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5472 return SDValue(N, 0); // Lower SDIV as SDIV 5473 return SDValue(); 5474 } 5475 5476 /// Given an ISD::SDIV node expressing a divide by constant, 5477 /// return a DAG expression to select that will generate the same value by 5478 /// multiplying by a magic number. 5479 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5480 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5481 bool IsAfterLegalization, 5482 SmallVectorImpl<SDNode *> &Created) const { 5483 SDLoc dl(N); 5484 EVT VT = N->getValueType(0); 5485 EVT SVT = VT.getScalarType(); 5486 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5487 EVT ShSVT = ShVT.getScalarType(); 5488 unsigned EltBits = VT.getScalarSizeInBits(); 5489 EVT MulVT; 5490 5491 // Check to see if we can do this. 5492 // FIXME: We should be more aggressive here. 5493 if (!isTypeLegal(VT)) { 5494 // Limit this to simple scalars for now. 5495 if (VT.isVector() || !VT.isSimple()) 5496 return SDValue(); 5497 5498 // If this type will be promoted to a large enough type with a legal 5499 // multiply operation, we can go ahead and do this transform. 5500 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5501 return SDValue(); 5502 5503 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5504 if (MulVT.getSizeInBits() < (2 * EltBits) || 5505 !isOperationLegal(ISD::MUL, MulVT)) 5506 return SDValue(); 5507 } 5508 5509 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5510 if (N->getFlags().hasExact()) 5511 return BuildExactSDIV(*this, N, dl, DAG, Created); 5512 5513 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5514 5515 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5516 if (C->isZero()) 5517 return false; 5518 5519 const APInt &Divisor = C->getAPIntValue(); 5520 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5521 int NumeratorFactor = 0; 5522 int ShiftMask = -1; 5523 5524 if (Divisor.isOne() || Divisor.isAllOnes()) { 5525 // If d is +1/-1, we just multiply the numerator by +1/-1. 5526 NumeratorFactor = Divisor.getSExtValue(); 5527 magics.Magic = 0; 5528 magics.ShiftAmount = 0; 5529 ShiftMask = 0; 5530 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5531 // If d > 0 and m < 0, add the numerator. 5532 NumeratorFactor = 1; 5533 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5534 // If d < 0 and m > 0, subtract the numerator. 5535 NumeratorFactor = -1; 5536 } 5537 5538 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5539 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5540 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5541 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5542 return true; 5543 }; 5544 5545 SDValue N0 = N->getOperand(0); 5546 SDValue N1 = N->getOperand(1); 5547 5548 // Collect the shifts / magic values from each element. 5549 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5550 return SDValue(); 5551 5552 SDValue MagicFactor, Factor, Shift, ShiftMask; 5553 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5554 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5555 Factor = DAG.getBuildVector(VT, dl, Factors); 5556 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5557 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5558 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5559 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5560 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5561 "Expected matchUnaryPredicate to return one element for scalable " 5562 "vectors"); 5563 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5564 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5565 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5566 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5567 } else { 5568 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5569 MagicFactor = MagicFactors[0]; 5570 Factor = Factors[0]; 5571 Shift = Shifts[0]; 5572 ShiftMask = ShiftMasks[0]; 5573 } 5574 5575 // Multiply the numerator (operand 0) by the magic value. 5576 // FIXME: We should support doing a MUL in a wider type. 5577 auto GetMULHS = [&](SDValue X, SDValue Y) { 5578 // If the type isn't legal, use a wider mul of the the type calculated 5579 // earlier. 5580 if (!isTypeLegal(VT)) { 5581 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5582 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5583 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5584 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5585 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5586 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5587 } 5588 5589 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5590 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5591 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5592 SDValue LoHi = 5593 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5594 return SDValue(LoHi.getNode(), 1); 5595 } 5596 return SDValue(); 5597 }; 5598 5599 SDValue Q = GetMULHS(N0, MagicFactor); 5600 if (!Q) 5601 return SDValue(); 5602 5603 Created.push_back(Q.getNode()); 5604 5605 // (Optionally) Add/subtract the numerator using Factor. 5606 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5607 Created.push_back(Factor.getNode()); 5608 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5609 Created.push_back(Q.getNode()); 5610 5611 // Shift right algebraic by shift value. 5612 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5613 Created.push_back(Q.getNode()); 5614 5615 // Extract the sign bit, mask it and add it to the quotient. 5616 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5617 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5618 Created.push_back(T.getNode()); 5619 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5620 Created.push_back(T.getNode()); 5621 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5622 } 5623 5624 /// Given an ISD::UDIV node expressing a divide by constant, 5625 /// return a DAG expression to select that will generate the same value by 5626 /// multiplying by a magic number. 5627 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5628 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5629 bool IsAfterLegalization, 5630 SmallVectorImpl<SDNode *> &Created) const { 5631 SDLoc dl(N); 5632 EVT VT = N->getValueType(0); 5633 EVT SVT = VT.getScalarType(); 5634 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5635 EVT ShSVT = ShVT.getScalarType(); 5636 unsigned EltBits = VT.getScalarSizeInBits(); 5637 EVT MulVT; 5638 5639 // Check to see if we can do this. 5640 // FIXME: We should be more aggressive here. 5641 if (!isTypeLegal(VT)) { 5642 // Limit this to simple scalars for now. 5643 if (VT.isVector() || !VT.isSimple()) 5644 return SDValue(); 5645 5646 // If this type will be promoted to a large enough type with a legal 5647 // multiply operation, we can go ahead and do this transform. 5648 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5649 return SDValue(); 5650 5651 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5652 if (MulVT.getSizeInBits() < (2 * EltBits) || 5653 !isOperationLegal(ISD::MUL, MulVT)) 5654 return SDValue(); 5655 } 5656 5657 bool UseNPQ = false; 5658 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5659 5660 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5661 if (C->isZero()) 5662 return false; 5663 // FIXME: We should use a narrower constant when the upper 5664 // bits are known to be zero. 5665 const APInt& Divisor = C->getAPIntValue(); 5666 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5667 unsigned PreShift = 0, PostShift = 0; 5668 5669 // If the divisor is even, we can avoid using the expensive fixup by 5670 // shifting the divided value upfront. 5671 if (magics.IsAdd != 0 && !Divisor[0]) { 5672 PreShift = Divisor.countTrailingZeros(); 5673 // Get magic number for the shifted divisor. 5674 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5675 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5676 } 5677 5678 APInt Magic = magics.Magic; 5679 5680 unsigned SelNPQ; 5681 if (magics.IsAdd == 0 || Divisor.isOne()) { 5682 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5683 "We shouldn't generate an undefined shift!"); 5684 PostShift = magics.ShiftAmount; 5685 SelNPQ = false; 5686 } else { 5687 PostShift = magics.ShiftAmount - 1; 5688 SelNPQ = true; 5689 } 5690 5691 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5692 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5693 NPQFactors.push_back( 5694 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5695 : APInt::getZero(EltBits), 5696 dl, SVT)); 5697 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5698 UseNPQ |= SelNPQ; 5699 return true; 5700 }; 5701 5702 SDValue N0 = N->getOperand(0); 5703 SDValue N1 = N->getOperand(1); 5704 5705 // Collect the shifts/magic values from each element. 5706 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5707 return SDValue(); 5708 5709 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5710 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5711 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5712 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5713 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5714 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5715 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5716 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5717 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5718 "Expected matchUnaryPredicate to return one for scalable vectors"); 5719 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5720 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5721 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5722 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5723 } else { 5724 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5725 PreShift = PreShifts[0]; 5726 MagicFactor = MagicFactors[0]; 5727 PostShift = PostShifts[0]; 5728 } 5729 5730 SDValue Q = N0; 5731 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5732 Created.push_back(Q.getNode()); 5733 5734 // FIXME: We should support doing a MUL in a wider type. 5735 auto GetMULHU = [&](SDValue X, SDValue Y) { 5736 // If the type isn't legal, use a wider mul of the the type calculated 5737 // earlier. 5738 if (!isTypeLegal(VT)) { 5739 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5740 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5741 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5742 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5743 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5744 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5745 } 5746 5747 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5748 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5749 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5750 SDValue LoHi = 5751 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5752 return SDValue(LoHi.getNode(), 1); 5753 } 5754 return SDValue(); // No mulhu or equivalent 5755 }; 5756 5757 // Multiply the numerator (operand 0) by the magic value. 5758 Q = GetMULHU(Q, MagicFactor); 5759 if (!Q) 5760 return SDValue(); 5761 5762 Created.push_back(Q.getNode()); 5763 5764 if (UseNPQ) { 5765 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5766 Created.push_back(NPQ.getNode()); 5767 5768 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5769 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5770 if (VT.isVector()) 5771 NPQ = GetMULHU(NPQ, NPQFactor); 5772 else 5773 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5774 5775 Created.push_back(NPQ.getNode()); 5776 5777 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5778 Created.push_back(Q.getNode()); 5779 } 5780 5781 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5782 Created.push_back(Q.getNode()); 5783 5784 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5785 5786 SDValue One = DAG.getConstant(1, dl, VT); 5787 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5788 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5789 } 5790 5791 /// If all values in Values that *don't* match the predicate are same 'splat' 5792 /// value, then replace all values with that splat value. 5793 /// Else, if AlternativeReplacement was provided, then replace all values that 5794 /// do match predicate with AlternativeReplacement value. 5795 static void 5796 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5797 std::function<bool(SDValue)> Predicate, 5798 SDValue AlternativeReplacement = SDValue()) { 5799 SDValue Replacement; 5800 // Is there a value for which the Predicate does *NOT* match? What is it? 5801 auto SplatValue = llvm::find_if_not(Values, Predicate); 5802 if (SplatValue != Values.end()) { 5803 // Does Values consist only of SplatValue's and values matching Predicate? 5804 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5805 return Value == *SplatValue || Predicate(Value); 5806 })) // Then we shall replace values matching predicate with SplatValue. 5807 Replacement = *SplatValue; 5808 } 5809 if (!Replacement) { 5810 // Oops, we did not find the "baseline" splat value. 5811 if (!AlternativeReplacement) 5812 return; // Nothing to do. 5813 // Let's replace with provided value then. 5814 Replacement = AlternativeReplacement; 5815 } 5816 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5817 } 5818 5819 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5820 /// where the divisor is constant and the comparison target is zero, 5821 /// return a DAG expression that will generate the same comparison result 5822 /// using only multiplications, additions and shifts/rotations. 5823 /// Ref: "Hacker's Delight" 10-17. 5824 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5825 SDValue CompTargetNode, 5826 ISD::CondCode Cond, 5827 DAGCombinerInfo &DCI, 5828 const SDLoc &DL) const { 5829 SmallVector<SDNode *, 5> Built; 5830 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5831 DCI, DL, Built)) { 5832 for (SDNode *N : Built) 5833 DCI.AddToWorklist(N); 5834 return Folded; 5835 } 5836 5837 return SDValue(); 5838 } 5839 5840 SDValue 5841 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5842 SDValue CompTargetNode, ISD::CondCode Cond, 5843 DAGCombinerInfo &DCI, const SDLoc &DL, 5844 SmallVectorImpl<SDNode *> &Created) const { 5845 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5846 // - D must be constant, with D = D0 * 2^K where D0 is odd 5847 // - P is the multiplicative inverse of D0 modulo 2^W 5848 // - Q = floor(((2^W) - 1) / D) 5849 // where W is the width of the common type of N and D. 5850 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5851 "Only applicable for (in)equality comparisons."); 5852 5853 SelectionDAG &DAG = DCI.DAG; 5854 5855 EVT VT = REMNode.getValueType(); 5856 EVT SVT = VT.getScalarType(); 5857 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5858 EVT ShSVT = ShVT.getScalarType(); 5859 5860 // If MUL is unavailable, we cannot proceed in any case. 5861 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5862 return SDValue(); 5863 5864 bool ComparingWithAllZeros = true; 5865 bool AllComparisonsWithNonZerosAreTautological = true; 5866 bool HadTautologicalLanes = false; 5867 bool AllLanesAreTautological = true; 5868 bool HadEvenDivisor = false; 5869 bool AllDivisorsArePowerOfTwo = true; 5870 bool HadTautologicalInvertedLanes = false; 5871 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5872 5873 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5874 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5875 if (CDiv->isZero()) 5876 return false; 5877 5878 const APInt &D = CDiv->getAPIntValue(); 5879 const APInt &Cmp = CCmp->getAPIntValue(); 5880 5881 ComparingWithAllZeros &= Cmp.isZero(); 5882 5883 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5884 // if C2 is not less than C1, the comparison is always false. 5885 // But we will only be able to produce the comparison that will give the 5886 // opposive tautological answer. So this lane would need to be fixed up. 5887 bool TautologicalInvertedLane = D.ule(Cmp); 5888 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5889 5890 // If all lanes are tautological (either all divisors are ones, or divisor 5891 // is not greater than the constant we are comparing with), 5892 // we will prefer to avoid the fold. 5893 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5894 HadTautologicalLanes |= TautologicalLane; 5895 AllLanesAreTautological &= TautologicalLane; 5896 5897 // If we are comparing with non-zero, we need'll need to subtract said 5898 // comparison value from the LHS. But there is no point in doing that if 5899 // every lane where we are comparing with non-zero is tautological.. 5900 if (!Cmp.isZero()) 5901 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5902 5903 // Decompose D into D0 * 2^K 5904 unsigned K = D.countTrailingZeros(); 5905 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5906 APInt D0 = D.lshr(K); 5907 5908 // D is even if it has trailing zeros. 5909 HadEvenDivisor |= (K != 0); 5910 // D is a power-of-two if D0 is one. 5911 // If all divisors are power-of-two, we will prefer to avoid the fold. 5912 AllDivisorsArePowerOfTwo &= D0.isOne(); 5913 5914 // P = inv(D0, 2^W) 5915 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5916 unsigned W = D.getBitWidth(); 5917 APInt P = D0.zext(W + 1) 5918 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5919 .trunc(W); 5920 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5921 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5922 5923 // Q = floor((2^W - 1) u/ D) 5924 // R = ((2^W - 1) u% D) 5925 APInt Q, R; 5926 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5927 5928 // If we are comparing with zero, then that comparison constant is okay, 5929 // else it may need to be one less than that. 5930 if (Cmp.ugt(R)) 5931 Q -= 1; 5932 5933 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5934 "We are expecting that K is always less than all-ones for ShSVT"); 5935 5936 // If the lane is tautological the result can be constant-folded. 5937 if (TautologicalLane) { 5938 // Set P and K amount to a bogus values so we can try to splat them. 5939 P = 0; 5940 K = -1; 5941 // And ensure that comparison constant is tautological, 5942 // it will always compare true/false. 5943 Q = -1; 5944 } 5945 5946 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5947 KAmts.push_back( 5948 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5949 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5950 return true; 5951 }; 5952 5953 SDValue N = REMNode.getOperand(0); 5954 SDValue D = REMNode.getOperand(1); 5955 5956 // Collect the values from each element. 5957 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5958 return SDValue(); 5959 5960 // If all lanes are tautological, the result can be constant-folded. 5961 if (AllLanesAreTautological) 5962 return SDValue(); 5963 5964 // If this is a urem by a powers-of-two, avoid the fold since it can be 5965 // best implemented as a bit test. 5966 if (AllDivisorsArePowerOfTwo) 5967 return SDValue(); 5968 5969 SDValue PVal, KVal, QVal; 5970 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5971 if (HadTautologicalLanes) { 5972 // Try to turn PAmts into a splat, since we don't care about the values 5973 // that are currently '0'. If we can't, just keep '0'`s. 5974 turnVectorIntoSplatVector(PAmts, isNullConstant); 5975 // Try to turn KAmts into a splat, since we don't care about the values 5976 // that are currently '-1'. If we can't, change them to '0'`s. 5977 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5978 DAG.getConstant(0, DL, ShSVT)); 5979 } 5980 5981 PVal = DAG.getBuildVector(VT, DL, PAmts); 5982 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5983 QVal = DAG.getBuildVector(VT, DL, QAmts); 5984 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5985 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5986 "Expected matchBinaryPredicate to return one element for " 5987 "SPLAT_VECTORs"); 5988 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5989 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5990 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5991 } else { 5992 PVal = PAmts[0]; 5993 KVal = KAmts[0]; 5994 QVal = QAmts[0]; 5995 } 5996 5997 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5998 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5999 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6000 assert(CompTargetNode.getValueType() == N.getValueType() && 6001 "Expecting that the types on LHS and RHS of comparisons match."); 6002 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6003 } 6004 6005 // (mul N, P) 6006 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6007 Created.push_back(Op0.getNode()); 6008 6009 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6010 // divisors as a performance improvement, since rotating by 0 is a no-op. 6011 if (HadEvenDivisor) { 6012 // We need ROTR to do this. 6013 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6014 return SDValue(); 6015 // UREM: (rotr (mul N, P), K) 6016 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6017 Created.push_back(Op0.getNode()); 6018 } 6019 6020 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6021 SDValue NewCC = 6022 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6023 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6024 if (!HadTautologicalInvertedLanes) 6025 return NewCC; 6026 6027 // If any lanes previously compared always-false, the NewCC will give 6028 // always-true result for them, so we need to fixup those lanes. 6029 // Or the other way around for inequality predicate. 6030 assert(VT.isVector() && "Can/should only get here for vectors."); 6031 Created.push_back(NewCC.getNode()); 6032 6033 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6034 // if C2 is not less than C1, the comparison is always false. 6035 // But we have produced the comparison that will give the 6036 // opposive tautological answer. So these lanes would need to be fixed up. 6037 SDValue TautologicalInvertedChannels = 6038 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6039 Created.push_back(TautologicalInvertedChannels.getNode()); 6040 6041 // NOTE: we avoid letting illegal types through even if we're before legalize 6042 // ops – legalization has a hard time producing good code for this. 6043 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6044 // If we have a vector select, let's replace the comparison results in the 6045 // affected lanes with the correct tautological result. 6046 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6047 DL, SETCCVT, SETCCVT); 6048 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6049 Replacement, NewCC); 6050 } 6051 6052 // Else, we can just invert the comparison result in the appropriate lanes. 6053 // 6054 // NOTE: see the note above VSELECT above. 6055 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6056 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6057 TautologicalInvertedChannels); 6058 6059 return SDValue(); // Don't know how to lower. 6060 } 6061 6062 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6063 /// where the divisor is constant and the comparison target is zero, 6064 /// return a DAG expression that will generate the same comparison result 6065 /// using only multiplications, additions and shifts/rotations. 6066 /// Ref: "Hacker's Delight" 10-17. 6067 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6068 SDValue CompTargetNode, 6069 ISD::CondCode Cond, 6070 DAGCombinerInfo &DCI, 6071 const SDLoc &DL) const { 6072 SmallVector<SDNode *, 7> Built; 6073 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6074 DCI, DL, Built)) { 6075 assert(Built.size() <= 7 && "Max size prediction failed."); 6076 for (SDNode *N : Built) 6077 DCI.AddToWorklist(N); 6078 return Folded; 6079 } 6080 6081 return SDValue(); 6082 } 6083 6084 SDValue 6085 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6086 SDValue CompTargetNode, ISD::CondCode Cond, 6087 DAGCombinerInfo &DCI, const SDLoc &DL, 6088 SmallVectorImpl<SDNode *> &Created) const { 6089 // Fold: 6090 // (seteq/ne (srem N, D), 0) 6091 // To: 6092 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6093 // 6094 // - D must be constant, with D = D0 * 2^K where D0 is odd 6095 // - P is the multiplicative inverse of D0 modulo 2^W 6096 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6097 // - Q = floor((2 * A) / (2^K)) 6098 // where W is the width of the common type of N and D. 6099 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6100 "Only applicable for (in)equality comparisons."); 6101 6102 SelectionDAG &DAG = DCI.DAG; 6103 6104 EVT VT = REMNode.getValueType(); 6105 EVT SVT = VT.getScalarType(); 6106 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6107 EVT ShSVT = ShVT.getScalarType(); 6108 6109 // If we are after ops legalization, and MUL is unavailable, we can not 6110 // proceed. 6111 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6112 return SDValue(); 6113 6114 // TODO: Could support comparing with non-zero too. 6115 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6116 if (!CompTarget || !CompTarget->isZero()) 6117 return SDValue(); 6118 6119 bool HadIntMinDivisor = false; 6120 bool HadOneDivisor = false; 6121 bool AllDivisorsAreOnes = true; 6122 bool HadEvenDivisor = false; 6123 bool NeedToApplyOffset = false; 6124 bool AllDivisorsArePowerOfTwo = true; 6125 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6126 6127 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6128 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6129 if (C->isZero()) 6130 return false; 6131 6132 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6133 6134 // WARNING: this fold is only valid for positive divisors! 6135 APInt D = C->getAPIntValue(); 6136 if (D.isNegative()) 6137 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6138 6139 HadIntMinDivisor |= D.isMinSignedValue(); 6140 6141 // If all divisors are ones, we will prefer to avoid the fold. 6142 HadOneDivisor |= D.isOne(); 6143 AllDivisorsAreOnes &= D.isOne(); 6144 6145 // Decompose D into D0 * 2^K 6146 unsigned K = D.countTrailingZeros(); 6147 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6148 APInt D0 = D.lshr(K); 6149 6150 if (!D.isMinSignedValue()) { 6151 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6152 // we don't care about this lane in this fold, we'll special-handle it. 6153 HadEvenDivisor |= (K != 0); 6154 } 6155 6156 // D is a power-of-two if D0 is one. This includes INT_MIN. 6157 // If all divisors are power-of-two, we will prefer to avoid the fold. 6158 AllDivisorsArePowerOfTwo &= D0.isOne(); 6159 6160 // P = inv(D0, 2^W) 6161 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6162 unsigned W = D.getBitWidth(); 6163 APInt P = D0.zext(W + 1) 6164 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6165 .trunc(W); 6166 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6167 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6168 6169 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6170 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6171 A.clearLowBits(K); 6172 6173 if (!D.isMinSignedValue()) { 6174 // If divisor INT_MIN, then we don't care about this lane in this fold, 6175 // we'll special-handle it. 6176 NeedToApplyOffset |= A != 0; 6177 } 6178 6179 // Q = floor((2 * A) / (2^K)) 6180 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6181 6182 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6183 "We are expecting that A is always less than all-ones for SVT"); 6184 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6185 "We are expecting that K is always less than all-ones for ShSVT"); 6186 6187 // If the divisor is 1 the result can be constant-folded. Likewise, we 6188 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6189 if (D.isOne()) { 6190 // Set P, A and K to a bogus values so we can try to splat them. 6191 P = 0; 6192 A = -1; 6193 K = -1; 6194 6195 // x ?% 1 == 0 <--> true <--> x u<= -1 6196 Q = -1; 6197 } 6198 6199 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6200 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6201 KAmts.push_back( 6202 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6203 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6204 return true; 6205 }; 6206 6207 SDValue N = REMNode.getOperand(0); 6208 SDValue D = REMNode.getOperand(1); 6209 6210 // Collect the values from each element. 6211 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6212 return SDValue(); 6213 6214 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6215 if (AllDivisorsAreOnes) 6216 return SDValue(); 6217 6218 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6219 // since it can be best implemented as a bit test. 6220 if (AllDivisorsArePowerOfTwo) 6221 return SDValue(); 6222 6223 SDValue PVal, AVal, KVal, QVal; 6224 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6225 if (HadOneDivisor) { 6226 // Try to turn PAmts into a splat, since we don't care about the values 6227 // that are currently '0'. If we can't, just keep '0'`s. 6228 turnVectorIntoSplatVector(PAmts, isNullConstant); 6229 // Try to turn AAmts into a splat, since we don't care about the 6230 // values that are currently '-1'. If we can't, change them to '0'`s. 6231 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6232 DAG.getConstant(0, DL, SVT)); 6233 // Try to turn KAmts into a splat, since we don't care about the values 6234 // that are currently '-1'. If we can't, change them to '0'`s. 6235 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6236 DAG.getConstant(0, DL, ShSVT)); 6237 } 6238 6239 PVal = DAG.getBuildVector(VT, DL, PAmts); 6240 AVal = DAG.getBuildVector(VT, DL, AAmts); 6241 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6242 QVal = DAG.getBuildVector(VT, DL, QAmts); 6243 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6244 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6245 QAmts.size() == 1 && 6246 "Expected matchUnaryPredicate to return one element for scalable " 6247 "vectors"); 6248 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6249 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6250 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6251 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6252 } else { 6253 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6254 PVal = PAmts[0]; 6255 AVal = AAmts[0]; 6256 KVal = KAmts[0]; 6257 QVal = QAmts[0]; 6258 } 6259 6260 // (mul N, P) 6261 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6262 Created.push_back(Op0.getNode()); 6263 6264 if (NeedToApplyOffset) { 6265 // We need ADD to do this. 6266 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6267 return SDValue(); 6268 6269 // (add (mul N, P), A) 6270 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6271 Created.push_back(Op0.getNode()); 6272 } 6273 6274 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6275 // divisors as a performance improvement, since rotating by 0 is a no-op. 6276 if (HadEvenDivisor) { 6277 // We need ROTR to do this. 6278 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6279 return SDValue(); 6280 // SREM: (rotr (add (mul N, P), A), K) 6281 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6282 Created.push_back(Op0.getNode()); 6283 } 6284 6285 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6286 SDValue Fold = 6287 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6288 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6289 6290 // If we didn't have lanes with INT_MIN divisor, then we're done. 6291 if (!HadIntMinDivisor) 6292 return Fold; 6293 6294 // That fold is only valid for positive divisors. Which effectively means, 6295 // it is invalid for INT_MIN divisors. So if we have such a lane, 6296 // we must fix-up results for said lanes. 6297 assert(VT.isVector() && "Can/should only get here for vectors."); 6298 6299 // NOTE: we avoid letting illegal types through even if we're before legalize 6300 // ops – legalization has a hard time producing good code for the code that 6301 // follows. 6302 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6303 !isOperationLegalOrCustom(ISD::AND, VT) || 6304 !isOperationLegalOrCustom(Cond, VT) || 6305 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6306 return SDValue(); 6307 6308 Created.push_back(Fold.getNode()); 6309 6310 SDValue IntMin = DAG.getConstant( 6311 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6312 SDValue IntMax = DAG.getConstant( 6313 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6314 SDValue Zero = 6315 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6316 6317 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6318 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6319 Created.push_back(DivisorIsIntMin.getNode()); 6320 6321 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6322 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6323 Created.push_back(Masked.getNode()); 6324 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6325 Created.push_back(MaskedIsZero.getNode()); 6326 6327 // To produce final result we need to blend 2 vectors: 'SetCC' and 6328 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6329 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6330 // constant-folded, select can get lowered to a shuffle with constant mask. 6331 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6332 MaskedIsZero, Fold); 6333 6334 return Blended; 6335 } 6336 6337 bool TargetLowering:: 6338 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6339 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6340 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6341 "be a constant integer"); 6342 return true; 6343 } 6344 6345 return false; 6346 } 6347 6348 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6349 const DenormalMode &Mode) const { 6350 SDLoc DL(Op); 6351 EVT VT = Op.getValueType(); 6352 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6353 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6354 // Testing it with denormal inputs to avoid wrong estimate. 6355 if (Mode.Input == DenormalMode::IEEE) { 6356 // This is specifically a check for the handling of denormal inputs, 6357 // not the result. 6358 6359 // Test = fabs(X) < SmallestNormal 6360 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6361 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6362 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6363 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6364 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6365 } 6366 // Test = X == 0.0 6367 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6368 } 6369 6370 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6371 bool LegalOps, bool OptForSize, 6372 NegatibleCost &Cost, 6373 unsigned Depth) const { 6374 // fneg is removable even if it has multiple uses. 6375 if (Op.getOpcode() == ISD::FNEG) { 6376 Cost = NegatibleCost::Cheaper; 6377 return Op.getOperand(0); 6378 } 6379 6380 // Don't recurse exponentially. 6381 if (Depth > SelectionDAG::MaxRecursionDepth) 6382 return SDValue(); 6383 6384 // Pre-increment recursion depth for use in recursive calls. 6385 ++Depth; 6386 const SDNodeFlags Flags = Op->getFlags(); 6387 const TargetOptions &Options = DAG.getTarget().Options; 6388 EVT VT = Op.getValueType(); 6389 unsigned Opcode = Op.getOpcode(); 6390 6391 // Don't allow anything with multiple uses unless we know it is free. 6392 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6393 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6394 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6395 if (!IsFreeExtend) 6396 return SDValue(); 6397 } 6398 6399 auto RemoveDeadNode = [&](SDValue N) { 6400 if (N && N.getNode()->use_empty()) 6401 DAG.RemoveDeadNode(N.getNode()); 6402 }; 6403 6404 SDLoc DL(Op); 6405 6406 // Because getNegatedExpression can delete nodes we need a handle to keep 6407 // temporary nodes alive in case the recursion manages to create an identical 6408 // node. 6409 std::list<HandleSDNode> Handles; 6410 6411 switch (Opcode) { 6412 case ISD::ConstantFP: { 6413 // Don't invert constant FP values after legalization unless the target says 6414 // the negated constant is legal. 6415 bool IsOpLegal = 6416 isOperationLegal(ISD::ConstantFP, VT) || 6417 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6418 OptForSize); 6419 6420 if (LegalOps && !IsOpLegal) 6421 break; 6422 6423 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6424 V.changeSign(); 6425 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6426 6427 // If we already have the use of the negated floating constant, it is free 6428 // to negate it even it has multiple uses. 6429 if (!Op.hasOneUse() && CFP.use_empty()) 6430 break; 6431 Cost = NegatibleCost::Neutral; 6432 return CFP; 6433 } 6434 case ISD::BUILD_VECTOR: { 6435 // Only permit BUILD_VECTOR of constants. 6436 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6437 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6438 })) 6439 break; 6440 6441 bool IsOpLegal = 6442 (isOperationLegal(ISD::ConstantFP, VT) && 6443 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6444 llvm::all_of(Op->op_values(), [&](SDValue N) { 6445 return N.isUndef() || 6446 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6447 OptForSize); 6448 }); 6449 6450 if (LegalOps && !IsOpLegal) 6451 break; 6452 6453 SmallVector<SDValue, 4> Ops; 6454 for (SDValue C : Op->op_values()) { 6455 if (C.isUndef()) { 6456 Ops.push_back(C); 6457 continue; 6458 } 6459 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6460 V.changeSign(); 6461 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6462 } 6463 Cost = NegatibleCost::Neutral; 6464 return DAG.getBuildVector(VT, DL, Ops); 6465 } 6466 case ISD::FADD: { 6467 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6468 break; 6469 6470 // After operation legalization, it might not be legal to create new FSUBs. 6471 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6472 break; 6473 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6474 6475 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6476 NegatibleCost CostX = NegatibleCost::Expensive; 6477 SDValue NegX = 6478 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6479 // Prevent this node from being deleted by the next call. 6480 if (NegX) 6481 Handles.emplace_back(NegX); 6482 6483 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6484 NegatibleCost CostY = NegatibleCost::Expensive; 6485 SDValue NegY = 6486 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6487 6488 // We're done with the handles. 6489 Handles.clear(); 6490 6491 // Negate the X if its cost is less or equal than Y. 6492 if (NegX && (CostX <= CostY)) { 6493 Cost = CostX; 6494 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6495 if (NegY != N) 6496 RemoveDeadNode(NegY); 6497 return N; 6498 } 6499 6500 // Negate the Y if it is not expensive. 6501 if (NegY) { 6502 Cost = CostY; 6503 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6504 if (NegX != N) 6505 RemoveDeadNode(NegX); 6506 return N; 6507 } 6508 break; 6509 } 6510 case ISD::FSUB: { 6511 // We can't turn -(A-B) into B-A when we honor signed zeros. 6512 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6513 break; 6514 6515 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6516 // fold (fneg (fsub 0, Y)) -> Y 6517 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6518 if (C->isZero()) { 6519 Cost = NegatibleCost::Cheaper; 6520 return Y; 6521 } 6522 6523 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6524 Cost = NegatibleCost::Neutral; 6525 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6526 } 6527 case ISD::FMUL: 6528 case ISD::FDIV: { 6529 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6530 6531 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6532 NegatibleCost CostX = NegatibleCost::Expensive; 6533 SDValue NegX = 6534 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6535 // Prevent this node from being deleted by the next call. 6536 if (NegX) 6537 Handles.emplace_back(NegX); 6538 6539 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6540 NegatibleCost CostY = NegatibleCost::Expensive; 6541 SDValue NegY = 6542 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6543 6544 // We're done with the handles. 6545 Handles.clear(); 6546 6547 // Negate the X if its cost is less or equal than Y. 6548 if (NegX && (CostX <= CostY)) { 6549 Cost = CostX; 6550 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6551 if (NegY != N) 6552 RemoveDeadNode(NegY); 6553 return N; 6554 } 6555 6556 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6557 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6558 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6559 break; 6560 6561 // Negate the Y if it is not expensive. 6562 if (NegY) { 6563 Cost = CostY; 6564 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6565 if (NegX != N) 6566 RemoveDeadNode(NegX); 6567 return N; 6568 } 6569 break; 6570 } 6571 case ISD::FMA: 6572 case ISD::FMAD: { 6573 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6574 break; 6575 6576 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6577 NegatibleCost CostZ = NegatibleCost::Expensive; 6578 SDValue NegZ = 6579 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6580 // Give up if fail to negate the Z. 6581 if (!NegZ) 6582 break; 6583 6584 // Prevent this node from being deleted by the next two calls. 6585 Handles.emplace_back(NegZ); 6586 6587 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6588 NegatibleCost CostX = NegatibleCost::Expensive; 6589 SDValue NegX = 6590 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6591 // Prevent this node from being deleted by the next call. 6592 if (NegX) 6593 Handles.emplace_back(NegX); 6594 6595 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6596 NegatibleCost CostY = NegatibleCost::Expensive; 6597 SDValue NegY = 6598 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6599 6600 // We're done with the handles. 6601 Handles.clear(); 6602 6603 // Negate the X if its cost is less or equal than Y. 6604 if (NegX && (CostX <= CostY)) { 6605 Cost = std::min(CostX, CostZ); 6606 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6607 if (NegY != N) 6608 RemoveDeadNode(NegY); 6609 return N; 6610 } 6611 6612 // Negate the Y if it is not expensive. 6613 if (NegY) { 6614 Cost = std::min(CostY, CostZ); 6615 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6616 if (NegX != N) 6617 RemoveDeadNode(NegX); 6618 return N; 6619 } 6620 break; 6621 } 6622 6623 case ISD::FP_EXTEND: 6624 case ISD::FSIN: 6625 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6626 OptForSize, Cost, Depth)) 6627 return DAG.getNode(Opcode, DL, VT, NegV); 6628 break; 6629 case ISD::FP_ROUND: 6630 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6631 OptForSize, Cost, Depth)) 6632 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6633 break; 6634 } 6635 6636 return SDValue(); 6637 } 6638 6639 //===----------------------------------------------------------------------===// 6640 // Legalization Utilities 6641 //===----------------------------------------------------------------------===// 6642 6643 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6644 SDValue LHS, SDValue RHS, 6645 SmallVectorImpl<SDValue> &Result, 6646 EVT HiLoVT, SelectionDAG &DAG, 6647 MulExpansionKind Kind, SDValue LL, 6648 SDValue LH, SDValue RL, SDValue RH) const { 6649 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6650 Opcode == ISD::SMUL_LOHI); 6651 6652 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6653 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6654 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6655 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6656 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6657 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6658 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6659 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6660 6661 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6662 return false; 6663 6664 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6665 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6666 6667 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6668 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6669 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6670 6671 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6672 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6673 bool Signed) -> bool { 6674 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6675 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6676 Hi = SDValue(Lo.getNode(), 1); 6677 return true; 6678 } 6679 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6680 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6681 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6682 return true; 6683 } 6684 return false; 6685 }; 6686 6687 SDValue Lo, Hi; 6688 6689 if (!LL.getNode() && !RL.getNode() && 6690 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6691 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6692 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6693 } 6694 6695 if (!LL.getNode()) 6696 return false; 6697 6698 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6699 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6700 DAG.MaskedValueIsZero(RHS, HighMask)) { 6701 // The inputs are both zero-extended. 6702 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6703 Result.push_back(Lo); 6704 Result.push_back(Hi); 6705 if (Opcode != ISD::MUL) { 6706 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6707 Result.push_back(Zero); 6708 Result.push_back(Zero); 6709 } 6710 return true; 6711 } 6712 } 6713 6714 if (!VT.isVector() && Opcode == ISD::MUL && 6715 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6716 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6717 // The input values are both sign-extended. 6718 // TODO non-MUL case? 6719 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6720 Result.push_back(Lo); 6721 Result.push_back(Hi); 6722 return true; 6723 } 6724 } 6725 6726 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6727 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6728 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6729 6730 if (!LH.getNode() && !RH.getNode() && 6731 isOperationLegalOrCustom(ISD::SRL, VT) && 6732 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6733 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6734 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6735 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6736 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6737 } 6738 6739 if (!LH.getNode()) 6740 return false; 6741 6742 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6743 return false; 6744 6745 Result.push_back(Lo); 6746 6747 if (Opcode == ISD::MUL) { 6748 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6749 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6750 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6751 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6752 Result.push_back(Hi); 6753 return true; 6754 } 6755 6756 // Compute the full width result. 6757 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6758 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6759 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6760 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6761 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6762 }; 6763 6764 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6765 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6766 return false; 6767 6768 // This is effectively the add part of a multiply-add of half-sized operands, 6769 // so it cannot overflow. 6770 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6771 6772 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6773 return false; 6774 6775 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6776 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6777 6778 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6779 isOperationLegalOrCustom(ISD::ADDE, VT)); 6780 if (UseGlue) 6781 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6782 Merge(Lo, Hi)); 6783 else 6784 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6785 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6786 6787 SDValue Carry = Next.getValue(1); 6788 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6789 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6790 6791 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6792 return false; 6793 6794 if (UseGlue) 6795 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6796 Carry); 6797 else 6798 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6799 Zero, Carry); 6800 6801 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6802 6803 if (Opcode == ISD::SMUL_LOHI) { 6804 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6805 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6806 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6807 6808 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6809 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6810 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6811 } 6812 6813 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6814 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6815 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6816 return true; 6817 } 6818 6819 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6820 SelectionDAG &DAG, MulExpansionKind Kind, 6821 SDValue LL, SDValue LH, SDValue RL, 6822 SDValue RH) const { 6823 SmallVector<SDValue, 2> Result; 6824 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6825 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6826 DAG, Kind, LL, LH, RL, RH); 6827 if (Ok) { 6828 assert(Result.size() == 2); 6829 Lo = Result[0]; 6830 Hi = Result[1]; 6831 } 6832 return Ok; 6833 } 6834 6835 // Check that (every element of) Z is undef or not an exact multiple of BW. 6836 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6837 return ISD::matchUnaryPredicate( 6838 Z, 6839 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6840 true); 6841 } 6842 6843 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6844 SelectionDAG &DAG) const { 6845 EVT VT = Node->getValueType(0); 6846 6847 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6848 !isOperationLegalOrCustom(ISD::SRL, VT) || 6849 !isOperationLegalOrCustom(ISD::SUB, VT) || 6850 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6851 return SDValue(); 6852 6853 SDValue X = Node->getOperand(0); 6854 SDValue Y = Node->getOperand(1); 6855 SDValue Z = Node->getOperand(2); 6856 6857 unsigned BW = VT.getScalarSizeInBits(); 6858 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6859 SDLoc DL(SDValue(Node, 0)); 6860 6861 EVT ShVT = Z.getValueType(); 6862 6863 // If a funnel shift in the other direction is more supported, use it. 6864 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6865 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6866 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6867 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6868 // fshl X, Y, Z -> fshr X, Y, -Z 6869 // fshr X, Y, Z -> fshl X, Y, -Z 6870 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6871 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6872 } else { 6873 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6874 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6875 SDValue One = DAG.getConstant(1, DL, ShVT); 6876 if (IsFSHL) { 6877 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6878 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6879 } else { 6880 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6881 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6882 } 6883 Z = DAG.getNOT(DL, Z, ShVT); 6884 } 6885 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6886 } 6887 6888 SDValue ShX, ShY; 6889 SDValue ShAmt, InvShAmt; 6890 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6891 // fshl: X << C | Y >> (BW - C) 6892 // fshr: X << (BW - C) | Y >> C 6893 // where C = Z % BW is not zero 6894 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6895 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6896 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6897 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6898 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6899 } else { 6900 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6901 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6902 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6903 if (isPowerOf2_32(BW)) { 6904 // Z % BW -> Z & (BW - 1) 6905 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6906 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6907 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6908 } else { 6909 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6910 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6911 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6912 } 6913 6914 SDValue One = DAG.getConstant(1, DL, ShVT); 6915 if (IsFSHL) { 6916 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6917 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6918 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6919 } else { 6920 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6921 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6922 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6923 } 6924 } 6925 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6926 } 6927 6928 // TODO: Merge with expandFunnelShift. 6929 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6930 SelectionDAG &DAG) const { 6931 EVT VT = Node->getValueType(0); 6932 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6933 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6934 SDValue Op0 = Node->getOperand(0); 6935 SDValue Op1 = Node->getOperand(1); 6936 SDLoc DL(SDValue(Node, 0)); 6937 6938 EVT ShVT = Op1.getValueType(); 6939 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6940 6941 // If a rotate in the other direction is more supported, use it. 6942 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6943 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6944 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6945 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6946 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6947 } 6948 6949 if (!AllowVectorOps && VT.isVector() && 6950 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6951 !isOperationLegalOrCustom(ISD::SRL, VT) || 6952 !isOperationLegalOrCustom(ISD::SUB, VT) || 6953 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6954 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6955 return SDValue(); 6956 6957 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6958 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6959 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6960 SDValue ShVal; 6961 SDValue HsVal; 6962 if (isPowerOf2_32(EltSizeInBits)) { 6963 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6964 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6965 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6966 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6967 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6968 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6969 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6970 } else { 6971 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6972 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6973 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6974 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6975 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6976 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6977 SDValue One = DAG.getConstant(1, DL, ShVT); 6978 HsVal = 6979 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6980 } 6981 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6982 } 6983 6984 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6985 SelectionDAG &DAG) const { 6986 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6987 EVT VT = Node->getValueType(0); 6988 unsigned VTBits = VT.getScalarSizeInBits(); 6989 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6990 6991 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6992 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6993 SDValue ShOpLo = Node->getOperand(0); 6994 SDValue ShOpHi = Node->getOperand(1); 6995 SDValue ShAmt = Node->getOperand(2); 6996 EVT ShAmtVT = ShAmt.getValueType(); 6997 EVT ShAmtCCVT = 6998 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6999 SDLoc dl(Node); 7000 7001 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7002 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7003 // away during isel. 7004 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7005 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7006 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7007 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7008 : DAG.getConstant(0, dl, VT); 7009 7010 SDValue Tmp2, Tmp3; 7011 if (IsSHL) { 7012 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7013 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7014 } else { 7015 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7016 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7017 } 7018 7019 // If the shift amount is larger or equal than the width of a part we don't 7020 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7021 // values for large shift amounts. 7022 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7023 DAG.getConstant(VTBits, dl, ShAmtVT)); 7024 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7025 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7026 7027 if (IsSHL) { 7028 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7029 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7030 } else { 7031 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7032 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7033 } 7034 } 7035 7036 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7037 SelectionDAG &DAG) const { 7038 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7039 SDValue Src = Node->getOperand(OpNo); 7040 EVT SrcVT = Src.getValueType(); 7041 EVT DstVT = Node->getValueType(0); 7042 SDLoc dl(SDValue(Node, 0)); 7043 7044 // FIXME: Only f32 to i64 conversions are supported. 7045 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7046 return false; 7047 7048 if (Node->isStrictFPOpcode()) 7049 // When a NaN is converted to an integer a trap is allowed. We can't 7050 // use this expansion here because it would eliminate that trap. Other 7051 // traps are also allowed and cannot be eliminated. See 7052 // IEEE 754-2008 sec 5.8. 7053 return false; 7054 7055 // Expand f32 -> i64 conversion 7056 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7057 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7058 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7059 EVT IntVT = SrcVT.changeTypeToInteger(); 7060 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7061 7062 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7063 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7064 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7065 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7066 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7067 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7068 7069 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7070 7071 SDValue ExponentBits = DAG.getNode( 7072 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7073 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7074 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7075 7076 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7077 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7078 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7079 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7080 7081 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7082 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7083 DAG.getConstant(0x00800000, dl, IntVT)); 7084 7085 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7086 7087 R = DAG.getSelectCC( 7088 dl, Exponent, ExponentLoBit, 7089 DAG.getNode(ISD::SHL, dl, DstVT, R, 7090 DAG.getZExtOrTrunc( 7091 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7092 dl, IntShVT)), 7093 DAG.getNode(ISD::SRL, dl, DstVT, R, 7094 DAG.getZExtOrTrunc( 7095 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7096 dl, IntShVT)), 7097 ISD::SETGT); 7098 7099 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7100 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7101 7102 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7103 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7104 return true; 7105 } 7106 7107 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7108 SDValue &Chain, 7109 SelectionDAG &DAG) const { 7110 SDLoc dl(SDValue(Node, 0)); 7111 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7112 SDValue Src = Node->getOperand(OpNo); 7113 7114 EVT SrcVT = Src.getValueType(); 7115 EVT DstVT = Node->getValueType(0); 7116 EVT SetCCVT = 7117 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7118 EVT DstSetCCVT = 7119 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7120 7121 // Only expand vector types if we have the appropriate vector bit operations. 7122 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7123 ISD::FP_TO_SINT; 7124 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7125 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7126 return false; 7127 7128 // If the maximum float value is smaller then the signed integer range, 7129 // the destination signmask can't be represented by the float, so we can 7130 // just use FP_TO_SINT directly. 7131 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7132 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7133 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7134 if (APFloat::opOverflow & 7135 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7136 if (Node->isStrictFPOpcode()) { 7137 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7138 { Node->getOperand(0), Src }); 7139 Chain = Result.getValue(1); 7140 } else 7141 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7142 return true; 7143 } 7144 7145 // Don't expand it if there isn't cheap fsub instruction. 7146 if (!isOperationLegalOrCustom( 7147 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7148 return false; 7149 7150 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7151 SDValue Sel; 7152 7153 if (Node->isStrictFPOpcode()) { 7154 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7155 Node->getOperand(0), /*IsSignaling*/ true); 7156 Chain = Sel.getValue(1); 7157 } else { 7158 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7159 } 7160 7161 bool Strict = Node->isStrictFPOpcode() || 7162 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7163 7164 if (Strict) { 7165 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7166 // signmask then offset (the result of which should be fully representable). 7167 // Sel = Src < 0x8000000000000000 7168 // FltOfs = select Sel, 0, 0x8000000000000000 7169 // IntOfs = select Sel, 0, 0x8000000000000000 7170 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7171 7172 // TODO: Should any fast-math-flags be set for the FSUB? 7173 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7174 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7175 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7176 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7177 DAG.getConstant(0, dl, DstVT), 7178 DAG.getConstant(SignMask, dl, DstVT)); 7179 SDValue SInt; 7180 if (Node->isStrictFPOpcode()) { 7181 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7182 { Chain, Src, FltOfs }); 7183 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7184 { Val.getValue(1), Val }); 7185 Chain = SInt.getValue(1); 7186 } else { 7187 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7188 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7189 } 7190 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7191 } else { 7192 // Expand based on maximum range of FP_TO_SINT: 7193 // True = fp_to_sint(Src) 7194 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7195 // Result = select (Src < 0x8000000000000000), True, False 7196 7197 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7198 // TODO: Should any fast-math-flags be set for the FSUB? 7199 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7200 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7201 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7202 DAG.getConstant(SignMask, dl, DstVT)); 7203 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7204 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7205 } 7206 return true; 7207 } 7208 7209 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7210 SDValue &Chain, 7211 SelectionDAG &DAG) const { 7212 // This transform is not correct for converting 0 when rounding mode is set 7213 // to round toward negative infinity which will produce -0.0. So disable under 7214 // strictfp. 7215 if (Node->isStrictFPOpcode()) 7216 return false; 7217 7218 SDValue Src = Node->getOperand(0); 7219 EVT SrcVT = Src.getValueType(); 7220 EVT DstVT = Node->getValueType(0); 7221 7222 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7223 return false; 7224 7225 // Only expand vector types if we have the appropriate vector bit operations. 7226 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7227 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7228 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7229 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7230 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7231 return false; 7232 7233 SDLoc dl(SDValue(Node, 0)); 7234 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7235 7236 // Implementation of unsigned i64 to f64 following the algorithm in 7237 // __floatundidf in compiler_rt. This implementation performs rounding 7238 // correctly in all rounding modes with the exception of converting 0 7239 // when rounding toward negative infinity. In that case the fsub will produce 7240 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7241 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7242 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7243 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7244 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7245 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7246 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7247 7248 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7249 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7250 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7251 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7252 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7253 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7254 SDValue HiSub = 7255 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7256 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7257 return true; 7258 } 7259 7260 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7261 SelectionDAG &DAG) const { 7262 SDLoc dl(Node); 7263 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7264 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7265 EVT VT = Node->getValueType(0); 7266 7267 if (VT.isScalableVector()) 7268 report_fatal_error( 7269 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7270 7271 if (isOperationLegalOrCustom(NewOp, VT)) { 7272 SDValue Quiet0 = Node->getOperand(0); 7273 SDValue Quiet1 = Node->getOperand(1); 7274 7275 if (!Node->getFlags().hasNoNaNs()) { 7276 // Insert canonicalizes if it's possible we need to quiet to get correct 7277 // sNaN behavior. 7278 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7279 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7280 Node->getFlags()); 7281 } 7282 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7283 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7284 Node->getFlags()); 7285 } 7286 } 7287 7288 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7289 } 7290 7291 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7292 // instead if there are no NaNs. 7293 if (Node->getFlags().hasNoNaNs()) { 7294 unsigned IEEE2018Op = 7295 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7296 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7297 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7298 Node->getOperand(1), Node->getFlags()); 7299 } 7300 } 7301 7302 // If none of the above worked, but there are no NaNs, then expand to 7303 // a compare/select sequence. This is required for correctness since 7304 // InstCombine might have canonicalized a fcmp+select sequence to a 7305 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7306 // expansion to libcall, we might introduce a link-time dependency 7307 // on libm into a file that originally did not have one. 7308 if (Node->getFlags().hasNoNaNs()) { 7309 ISD::CondCode Pred = 7310 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7311 SDValue Op1 = Node->getOperand(0); 7312 SDValue Op2 = Node->getOperand(1); 7313 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7314 // Copy FMF flags, but always set the no-signed-zeros flag 7315 // as this is implied by the FMINNUM/FMAXNUM semantics. 7316 SDNodeFlags Flags = Node->getFlags(); 7317 Flags.setNoSignedZeros(true); 7318 SelCC->setFlags(Flags); 7319 return SelCC; 7320 } 7321 7322 return SDValue(); 7323 } 7324 7325 // Only expand vector types if we have the appropriate vector bit operations. 7326 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7327 assert(VT.isVector() && "Expected vector type"); 7328 unsigned Len = VT.getScalarSizeInBits(); 7329 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7330 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7331 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7332 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7333 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7334 } 7335 7336 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7337 SDLoc dl(Node); 7338 EVT VT = Node->getValueType(0); 7339 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7340 SDValue Op = Node->getOperand(0); 7341 unsigned Len = VT.getScalarSizeInBits(); 7342 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7343 7344 // TODO: Add support for irregular type lengths. 7345 if (!(Len <= 128 && Len % 8 == 0)) 7346 return SDValue(); 7347 7348 // Only expand vector types if we have the appropriate vector bit operations. 7349 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7350 return SDValue(); 7351 7352 // This is the "best" algorithm from 7353 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7354 SDValue Mask55 = 7355 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7356 SDValue Mask33 = 7357 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7358 SDValue Mask0F = 7359 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7360 SDValue Mask01 = 7361 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7362 7363 // v = v - ((v >> 1) & 0x55555555...) 7364 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7365 DAG.getNode(ISD::AND, dl, VT, 7366 DAG.getNode(ISD::SRL, dl, VT, Op, 7367 DAG.getConstant(1, dl, ShVT)), 7368 Mask55)); 7369 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7370 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7371 DAG.getNode(ISD::AND, dl, VT, 7372 DAG.getNode(ISD::SRL, dl, VT, Op, 7373 DAG.getConstant(2, dl, ShVT)), 7374 Mask33)); 7375 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7376 Op = DAG.getNode(ISD::AND, dl, VT, 7377 DAG.getNode(ISD::ADD, dl, VT, Op, 7378 DAG.getNode(ISD::SRL, dl, VT, Op, 7379 DAG.getConstant(4, dl, ShVT))), 7380 Mask0F); 7381 // v = (v * 0x01010101...) >> (Len - 8) 7382 if (Len > 8) 7383 Op = 7384 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7385 DAG.getConstant(Len - 8, dl, ShVT)); 7386 7387 return Op; 7388 } 7389 7390 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7391 SDLoc dl(Node); 7392 EVT VT = Node->getValueType(0); 7393 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7394 SDValue Op = Node->getOperand(0); 7395 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7396 7397 // If the non-ZERO_UNDEF version is supported we can use that instead. 7398 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7399 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7400 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7401 7402 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7403 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7404 EVT SetCCVT = 7405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7406 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7407 SDValue Zero = DAG.getConstant(0, dl, VT); 7408 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7409 return DAG.getSelect(dl, VT, SrcIsZero, 7410 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7411 } 7412 7413 // Only expand vector types if we have the appropriate vector bit operations. 7414 // This includes the operations needed to expand CTPOP if it isn't supported. 7415 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7416 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7417 !canExpandVectorCTPOP(*this, VT)) || 7418 !isOperationLegalOrCustom(ISD::SRL, VT) || 7419 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7420 return SDValue(); 7421 7422 // for now, we do this: 7423 // x = x | (x >> 1); 7424 // x = x | (x >> 2); 7425 // ... 7426 // x = x | (x >>16); 7427 // x = x | (x >>32); // for 64-bit input 7428 // return popcount(~x); 7429 // 7430 // Ref: "Hacker's Delight" by Henry Warren 7431 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7432 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7433 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7434 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7435 } 7436 Op = DAG.getNOT(dl, Op, VT); 7437 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7438 } 7439 7440 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7441 SDLoc dl(Node); 7442 EVT VT = Node->getValueType(0); 7443 SDValue Op = Node->getOperand(0); 7444 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7445 7446 // If the non-ZERO_UNDEF version is supported we can use that instead. 7447 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7448 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7449 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7450 7451 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7452 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7453 EVT SetCCVT = 7454 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7455 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7456 SDValue Zero = DAG.getConstant(0, dl, VT); 7457 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7458 return DAG.getSelect(dl, VT, SrcIsZero, 7459 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7460 } 7461 7462 // Only expand vector types if we have the appropriate vector bit operations. 7463 // This includes the operations needed to expand CTPOP if it isn't supported. 7464 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7465 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7466 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7467 !canExpandVectorCTPOP(*this, VT)) || 7468 !isOperationLegalOrCustom(ISD::SUB, VT) || 7469 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7470 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7471 return SDValue(); 7472 7473 // for now, we use: { return popcount(~x & (x - 1)); } 7474 // unless the target has ctlz but not ctpop, in which case we use: 7475 // { return 32 - nlz(~x & (x-1)); } 7476 // Ref: "Hacker's Delight" by Henry Warren 7477 SDValue Tmp = DAG.getNode( 7478 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7479 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7480 7481 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7482 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7483 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7484 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7485 } 7486 7487 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7488 } 7489 7490 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7491 bool IsNegative) const { 7492 SDLoc dl(N); 7493 EVT VT = N->getValueType(0); 7494 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7495 SDValue Op = N->getOperand(0); 7496 7497 // abs(x) -> smax(x,sub(0,x)) 7498 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7499 isOperationLegal(ISD::SMAX, VT)) { 7500 SDValue Zero = DAG.getConstant(0, dl, VT); 7501 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7502 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7503 } 7504 7505 // abs(x) -> umin(x,sub(0,x)) 7506 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7507 isOperationLegal(ISD::UMIN, VT)) { 7508 SDValue Zero = DAG.getConstant(0, dl, VT); 7509 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7510 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7511 } 7512 7513 // 0 - abs(x) -> smin(x, sub(0,x)) 7514 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7515 isOperationLegal(ISD::SMIN, VT)) { 7516 SDValue Zero = DAG.getConstant(0, dl, VT); 7517 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7518 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7519 } 7520 7521 // Only expand vector types if we have the appropriate vector operations. 7522 if (VT.isVector() && 7523 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7524 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7525 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7526 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7527 return SDValue(); 7528 7529 SDValue Shift = 7530 DAG.getNode(ISD::SRA, dl, VT, Op, 7531 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7532 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7533 7534 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7535 if (!IsNegative) 7536 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7537 7538 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7539 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7540 } 7541 7542 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7543 SDLoc dl(N); 7544 EVT VT = N->getValueType(0); 7545 SDValue Op = N->getOperand(0); 7546 7547 if (!VT.isSimple()) 7548 return SDValue(); 7549 7550 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7551 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7552 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7553 default: 7554 return SDValue(); 7555 case MVT::i16: 7556 // Use a rotate by 8. This can be further expanded if necessary. 7557 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7558 case MVT::i32: 7559 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7560 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7561 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7562 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7563 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7564 DAG.getConstant(0xFF0000, dl, VT)); 7565 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7566 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7567 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7568 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7569 case MVT::i64: 7570 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7571 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7572 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7573 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7574 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7575 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7576 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7577 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7578 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7579 DAG.getConstant(255ULL<<48, dl, VT)); 7580 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7581 DAG.getConstant(255ULL<<40, dl, VT)); 7582 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7583 DAG.getConstant(255ULL<<32, dl, VT)); 7584 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7585 DAG.getConstant(255ULL<<24, dl, VT)); 7586 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7587 DAG.getConstant(255ULL<<16, dl, VT)); 7588 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7589 DAG.getConstant(255ULL<<8 , dl, VT)); 7590 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7591 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7592 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7593 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7594 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7595 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7596 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7597 } 7598 } 7599 7600 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7601 SDLoc dl(N); 7602 EVT VT = N->getValueType(0); 7603 SDValue Op = N->getOperand(0); 7604 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7605 unsigned Sz = VT.getScalarSizeInBits(); 7606 7607 SDValue Tmp, Tmp2, Tmp3; 7608 7609 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7610 // and finally the i1 pairs. 7611 // TODO: We can easily support i4/i2 legal types if any target ever does. 7612 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7613 // Create the masks - repeating the pattern every byte. 7614 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7615 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7616 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7617 7618 // BSWAP if the type is wider than a single byte. 7619 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7620 7621 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7622 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7623 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7624 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7625 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7626 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7627 7628 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7629 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7630 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7631 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7632 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7633 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7634 7635 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7636 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7637 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7638 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7639 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7640 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7641 return Tmp; 7642 } 7643 7644 Tmp = DAG.getConstant(0, dl, VT); 7645 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7646 if (I < J) 7647 Tmp2 = 7648 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7649 else 7650 Tmp2 = 7651 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7652 7653 APInt Shift(Sz, 1); 7654 Shift <<= J; 7655 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7656 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7657 } 7658 7659 return Tmp; 7660 } 7661 7662 std::pair<SDValue, SDValue> 7663 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7664 SelectionDAG &DAG) const { 7665 SDLoc SL(LD); 7666 SDValue Chain = LD->getChain(); 7667 SDValue BasePTR = LD->getBasePtr(); 7668 EVT SrcVT = LD->getMemoryVT(); 7669 EVT DstVT = LD->getValueType(0); 7670 ISD::LoadExtType ExtType = LD->getExtensionType(); 7671 7672 if (SrcVT.isScalableVector()) 7673 report_fatal_error("Cannot scalarize scalable vector loads"); 7674 7675 unsigned NumElem = SrcVT.getVectorNumElements(); 7676 7677 EVT SrcEltVT = SrcVT.getScalarType(); 7678 EVT DstEltVT = DstVT.getScalarType(); 7679 7680 // A vector must always be stored in memory as-is, i.e. without any padding 7681 // between the elements, since various code depend on it, e.g. in the 7682 // handling of a bitcast of a vector type to int, which may be done with a 7683 // vector store followed by an integer load. A vector that does not have 7684 // elements that are byte-sized must therefore be stored as an integer 7685 // built out of the extracted vector elements. 7686 if (!SrcEltVT.isByteSized()) { 7687 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7688 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7689 7690 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7691 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7692 7693 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7694 SDValue SrcEltBitMask = DAG.getConstant( 7695 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7696 7697 // Load the whole vector and avoid masking off the top bits as it makes 7698 // the codegen worse. 7699 SDValue Load = 7700 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7701 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7702 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7703 7704 SmallVector<SDValue, 8> Vals; 7705 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7706 unsigned ShiftIntoIdx = 7707 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7708 SDValue ShiftAmount = 7709 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7710 LoadVT, SL, /*LegalTypes=*/false); 7711 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7712 SDValue Elt = 7713 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7714 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7715 7716 if (ExtType != ISD::NON_EXTLOAD) { 7717 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7718 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7719 } 7720 7721 Vals.push_back(Scalar); 7722 } 7723 7724 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7725 return std::make_pair(Value, Load.getValue(1)); 7726 } 7727 7728 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7729 assert(SrcEltVT.isByteSized()); 7730 7731 SmallVector<SDValue, 8> Vals; 7732 SmallVector<SDValue, 8> LoadChains; 7733 7734 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7735 SDValue ScalarLoad = 7736 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7737 LD->getPointerInfo().getWithOffset(Idx * Stride), 7738 SrcEltVT, LD->getOriginalAlign(), 7739 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7740 7741 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7742 7743 Vals.push_back(ScalarLoad.getValue(0)); 7744 LoadChains.push_back(ScalarLoad.getValue(1)); 7745 } 7746 7747 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7748 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7749 7750 return std::make_pair(Value, NewChain); 7751 } 7752 7753 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7754 SelectionDAG &DAG) const { 7755 SDLoc SL(ST); 7756 7757 SDValue Chain = ST->getChain(); 7758 SDValue BasePtr = ST->getBasePtr(); 7759 SDValue Value = ST->getValue(); 7760 EVT StVT = ST->getMemoryVT(); 7761 7762 if (StVT.isScalableVector()) 7763 report_fatal_error("Cannot scalarize scalable vector stores"); 7764 7765 // The type of the data we want to save 7766 EVT RegVT = Value.getValueType(); 7767 EVT RegSclVT = RegVT.getScalarType(); 7768 7769 // The type of data as saved in memory. 7770 EVT MemSclVT = StVT.getScalarType(); 7771 7772 unsigned NumElem = StVT.getVectorNumElements(); 7773 7774 // A vector must always be stored in memory as-is, i.e. without any padding 7775 // between the elements, since various code depend on it, e.g. in the 7776 // handling of a bitcast of a vector type to int, which may be done with a 7777 // vector store followed by an integer load. A vector that does not have 7778 // elements that are byte-sized must therefore be stored as an integer 7779 // built out of the extracted vector elements. 7780 if (!MemSclVT.isByteSized()) { 7781 unsigned NumBits = StVT.getSizeInBits(); 7782 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7783 7784 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7785 7786 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7787 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7788 DAG.getVectorIdxConstant(Idx, SL)); 7789 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7790 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7791 unsigned ShiftIntoIdx = 7792 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7793 SDValue ShiftAmount = 7794 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7795 SDValue ShiftedElt = 7796 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7797 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7798 } 7799 7800 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7801 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7802 ST->getAAInfo()); 7803 } 7804 7805 // Store Stride in bytes 7806 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7807 assert(Stride && "Zero stride!"); 7808 // Extract each of the elements from the original vector and save them into 7809 // memory individually. 7810 SmallVector<SDValue, 8> Stores; 7811 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7812 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7813 DAG.getVectorIdxConstant(Idx, SL)); 7814 7815 SDValue Ptr = 7816 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7817 7818 // This scalar TruncStore may be illegal, but we legalize it later. 7819 SDValue Store = DAG.getTruncStore( 7820 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7821 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7822 ST->getAAInfo()); 7823 7824 Stores.push_back(Store); 7825 } 7826 7827 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7828 } 7829 7830 std::pair<SDValue, SDValue> 7831 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7832 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7833 "unaligned indexed loads not implemented!"); 7834 SDValue Chain = LD->getChain(); 7835 SDValue Ptr = LD->getBasePtr(); 7836 EVT VT = LD->getValueType(0); 7837 EVT LoadedVT = LD->getMemoryVT(); 7838 SDLoc dl(LD); 7839 auto &MF = DAG.getMachineFunction(); 7840 7841 if (VT.isFloatingPoint() || VT.isVector()) { 7842 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7843 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7844 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7845 LoadedVT.isVector()) { 7846 // Scalarize the load and let the individual components be handled. 7847 return scalarizeVectorLoad(LD, DAG); 7848 } 7849 7850 // Expand to a (misaligned) integer load of the same size, 7851 // then bitconvert to floating point or vector. 7852 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7853 LD->getMemOperand()); 7854 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7855 if (LoadedVT != VT) 7856 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7857 ISD::ANY_EXTEND, dl, VT, Result); 7858 7859 return std::make_pair(Result, newLoad.getValue(1)); 7860 } 7861 7862 // Copy the value to a (aligned) stack slot using (unaligned) integer 7863 // loads and stores, then do a (aligned) load from the stack slot. 7864 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7865 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7866 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7867 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7868 7869 // Make sure the stack slot is also aligned for the register type. 7870 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7871 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7872 SmallVector<SDValue, 8> Stores; 7873 SDValue StackPtr = StackBase; 7874 unsigned Offset = 0; 7875 7876 EVT PtrVT = Ptr.getValueType(); 7877 EVT StackPtrVT = StackPtr.getValueType(); 7878 7879 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7880 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7881 7882 // Do all but one copies using the full register width. 7883 for (unsigned i = 1; i < NumRegs; i++) { 7884 // Load one integer register's worth from the original location. 7885 SDValue Load = DAG.getLoad( 7886 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7887 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7888 LD->getAAInfo()); 7889 // Follow the load with a store to the stack slot. Remember the store. 7890 Stores.push_back(DAG.getStore( 7891 Load.getValue(1), dl, Load, StackPtr, 7892 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7893 // Increment the pointers. 7894 Offset += RegBytes; 7895 7896 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7897 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7898 } 7899 7900 // The last copy may be partial. Do an extending load. 7901 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7902 8 * (LoadedBytes - Offset)); 7903 SDValue Load = 7904 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7905 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7906 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7907 LD->getAAInfo()); 7908 // Follow the load with a store to the stack slot. Remember the store. 7909 // On big-endian machines this requires a truncating store to ensure 7910 // that the bits end up in the right place. 7911 Stores.push_back(DAG.getTruncStore( 7912 Load.getValue(1), dl, Load, StackPtr, 7913 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7914 7915 // The order of the stores doesn't matter - say it with a TokenFactor. 7916 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7917 7918 // Finally, perform the original load only redirected to the stack slot. 7919 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7920 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7921 LoadedVT); 7922 7923 // Callers expect a MERGE_VALUES node. 7924 return std::make_pair(Load, TF); 7925 } 7926 7927 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7928 "Unaligned load of unsupported type."); 7929 7930 // Compute the new VT that is half the size of the old one. This is an 7931 // integer MVT. 7932 unsigned NumBits = LoadedVT.getSizeInBits(); 7933 EVT NewLoadedVT; 7934 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7935 NumBits >>= 1; 7936 7937 Align Alignment = LD->getOriginalAlign(); 7938 unsigned IncrementSize = NumBits / 8; 7939 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7940 7941 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7942 if (HiExtType == ISD::NON_EXTLOAD) 7943 HiExtType = ISD::ZEXTLOAD; 7944 7945 // Load the value in two parts 7946 SDValue Lo, Hi; 7947 if (DAG.getDataLayout().isLittleEndian()) { 7948 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7949 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7950 LD->getAAInfo()); 7951 7952 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7953 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7954 LD->getPointerInfo().getWithOffset(IncrementSize), 7955 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7956 LD->getAAInfo()); 7957 } else { 7958 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7959 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7960 LD->getAAInfo()); 7961 7962 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7963 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7964 LD->getPointerInfo().getWithOffset(IncrementSize), 7965 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7966 LD->getAAInfo()); 7967 } 7968 7969 // aggregate the two parts 7970 SDValue ShiftAmount = 7971 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7972 DAG.getDataLayout())); 7973 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7974 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7975 7976 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7977 Hi.getValue(1)); 7978 7979 return std::make_pair(Result, TF); 7980 } 7981 7982 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7983 SelectionDAG &DAG) const { 7984 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7985 "unaligned indexed stores not implemented!"); 7986 SDValue Chain = ST->getChain(); 7987 SDValue Ptr = ST->getBasePtr(); 7988 SDValue Val = ST->getValue(); 7989 EVT VT = Val.getValueType(); 7990 Align Alignment = ST->getOriginalAlign(); 7991 auto &MF = DAG.getMachineFunction(); 7992 EVT StoreMemVT = ST->getMemoryVT(); 7993 7994 SDLoc dl(ST); 7995 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7996 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7997 if (isTypeLegal(intVT)) { 7998 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7999 StoreMemVT.isVector()) { 8000 // Scalarize the store and let the individual components be handled. 8001 SDValue Result = scalarizeVectorStore(ST, DAG); 8002 return Result; 8003 } 8004 // Expand to a bitconvert of the value to the integer type of the 8005 // same size, then a (misaligned) int store. 8006 // FIXME: Does not handle truncating floating point stores! 8007 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8008 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8009 Alignment, ST->getMemOperand()->getFlags()); 8010 return Result; 8011 } 8012 // Do a (aligned) store to a stack slot, then copy from the stack slot 8013 // to the final destination using (unaligned) integer loads and stores. 8014 MVT RegVT = getRegisterType( 8015 *DAG.getContext(), 8016 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8017 EVT PtrVT = Ptr.getValueType(); 8018 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8019 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8020 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8021 8022 // Make sure the stack slot is also aligned for the register type. 8023 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8024 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8025 8026 // Perform the original store, only redirected to the stack slot. 8027 SDValue Store = DAG.getTruncStore( 8028 Chain, dl, Val, StackPtr, 8029 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8030 8031 EVT StackPtrVT = StackPtr.getValueType(); 8032 8033 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8034 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8035 SmallVector<SDValue, 8> Stores; 8036 unsigned Offset = 0; 8037 8038 // Do all but one copies using the full register width. 8039 for (unsigned i = 1; i < NumRegs; i++) { 8040 // Load one integer register's worth from the stack slot. 8041 SDValue Load = DAG.getLoad( 8042 RegVT, dl, Store, StackPtr, 8043 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8044 // Store it to the final location. Remember the store. 8045 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8046 ST->getPointerInfo().getWithOffset(Offset), 8047 ST->getOriginalAlign(), 8048 ST->getMemOperand()->getFlags())); 8049 // Increment the pointers. 8050 Offset += RegBytes; 8051 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8052 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8053 } 8054 8055 // The last store may be partial. Do a truncating store. On big-endian 8056 // machines this requires an extending load from the stack slot to ensure 8057 // that the bits are in the right place. 8058 EVT LoadMemVT = 8059 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8060 8061 // Load from the stack slot. 8062 SDValue Load = DAG.getExtLoad( 8063 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8064 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8065 8066 Stores.push_back( 8067 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8068 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8069 ST->getOriginalAlign(), 8070 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8071 // The order of the stores doesn't matter - say it with a TokenFactor. 8072 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8073 return Result; 8074 } 8075 8076 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8077 "Unaligned store of unknown type."); 8078 // Get the half-size VT 8079 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8080 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8081 unsigned IncrementSize = NumBits / 8; 8082 8083 // Divide the stored value in two parts. 8084 SDValue ShiftAmount = DAG.getConstant( 8085 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8086 SDValue Lo = Val; 8087 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8088 8089 // Store the two parts 8090 SDValue Store1, Store2; 8091 Store1 = DAG.getTruncStore(Chain, dl, 8092 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8093 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8094 ST->getMemOperand()->getFlags()); 8095 8096 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8097 Store2 = DAG.getTruncStore( 8098 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8099 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8100 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8101 8102 SDValue Result = 8103 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8104 return Result; 8105 } 8106 8107 SDValue 8108 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8109 const SDLoc &DL, EVT DataVT, 8110 SelectionDAG &DAG, 8111 bool IsCompressedMemory) const { 8112 SDValue Increment; 8113 EVT AddrVT = Addr.getValueType(); 8114 EVT MaskVT = Mask.getValueType(); 8115 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8116 "Incompatible types of Data and Mask"); 8117 if (IsCompressedMemory) { 8118 if (DataVT.isScalableVector()) 8119 report_fatal_error( 8120 "Cannot currently handle compressed memory with scalable vectors"); 8121 // Incrementing the pointer according to number of '1's in the mask. 8122 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8123 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8124 if (MaskIntVT.getSizeInBits() < 32) { 8125 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8126 MaskIntVT = MVT::i32; 8127 } 8128 8129 // Count '1's with POPCNT. 8130 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8131 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8132 // Scale is an element size in bytes. 8133 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8134 AddrVT); 8135 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8136 } else if (DataVT.isScalableVector()) { 8137 Increment = DAG.getVScale(DL, AddrVT, 8138 APInt(AddrVT.getFixedSizeInBits(), 8139 DataVT.getStoreSize().getKnownMinSize())); 8140 } else 8141 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8142 8143 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8144 } 8145 8146 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8147 EVT VecVT, const SDLoc &dl, 8148 ElementCount SubEC) { 8149 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8150 "Cannot index a scalable vector within a fixed-width vector"); 8151 8152 unsigned NElts = VecVT.getVectorMinNumElements(); 8153 unsigned NumSubElts = SubEC.getKnownMinValue(); 8154 EVT IdxVT = Idx.getValueType(); 8155 8156 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8157 // If this is a constant index and we know the value plus the number of the 8158 // elements in the subvector minus one is less than the minimum number of 8159 // elements then it's safe to return Idx. 8160 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8161 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8162 return Idx; 8163 SDValue VS = 8164 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8165 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8166 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8167 DAG.getConstant(NumSubElts, dl, IdxVT)); 8168 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8169 } 8170 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8171 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8172 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8173 DAG.getConstant(Imm, dl, IdxVT)); 8174 } 8175 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8176 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8177 DAG.getConstant(MaxIndex, dl, IdxVT)); 8178 } 8179 8180 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8181 SDValue VecPtr, EVT VecVT, 8182 SDValue Index) const { 8183 return getVectorSubVecPointer( 8184 DAG, VecPtr, VecVT, 8185 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8186 Index); 8187 } 8188 8189 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8190 SDValue VecPtr, EVT VecVT, 8191 EVT SubVecVT, 8192 SDValue Index) const { 8193 SDLoc dl(Index); 8194 // Make sure the index type is big enough to compute in. 8195 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8196 8197 EVT EltVT = VecVT.getVectorElementType(); 8198 8199 // Calculate the element offset and add it to the pointer. 8200 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8201 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8202 "Converting bits to bytes lost precision"); 8203 assert(SubVecVT.getVectorElementType() == EltVT && 8204 "Sub-vector must be a vector with matching element type"); 8205 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8206 SubVecVT.getVectorElementCount()); 8207 8208 EVT IdxVT = Index.getValueType(); 8209 if (SubVecVT.isScalableVector()) 8210 Index = 8211 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8212 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8213 8214 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8215 DAG.getConstant(EltSize, dl, IdxVT)); 8216 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8217 } 8218 8219 //===----------------------------------------------------------------------===// 8220 // Implementation of Emulated TLS Model 8221 //===----------------------------------------------------------------------===// 8222 8223 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8224 SelectionDAG &DAG) const { 8225 // Access to address of TLS varialbe xyz is lowered to a function call: 8226 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8227 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8228 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8229 SDLoc dl(GA); 8230 8231 ArgListTy Args; 8232 ArgListEntry Entry; 8233 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8234 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8235 StringRef EmuTlsVarName(NameString); 8236 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8237 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8238 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8239 Entry.Ty = VoidPtrType; 8240 Args.push_back(Entry); 8241 8242 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8243 8244 TargetLowering::CallLoweringInfo CLI(DAG); 8245 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8246 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8247 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8248 8249 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8250 // At last for X86 targets, maybe good for other targets too? 8251 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8252 MFI.setAdjustsStack(true); // Is this only for X86 target? 8253 MFI.setHasCalls(true); 8254 8255 assert((GA->getOffset() == 0) && 8256 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8257 return CallResult.first; 8258 } 8259 8260 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8261 SelectionDAG &DAG) const { 8262 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8263 if (!isCtlzFast()) 8264 return SDValue(); 8265 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8266 SDLoc dl(Op); 8267 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8268 if (C->isZero() && CC == ISD::SETEQ) { 8269 EVT VT = Op.getOperand(0).getValueType(); 8270 SDValue Zext = Op.getOperand(0); 8271 if (VT.bitsLT(MVT::i32)) { 8272 VT = MVT::i32; 8273 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8274 } 8275 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8276 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8277 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8278 DAG.getConstant(Log2b, dl, MVT::i32)); 8279 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8280 } 8281 } 8282 return SDValue(); 8283 } 8284 8285 // Convert redundant addressing modes (e.g. scaling is redundant 8286 // when accessing bytes). 8287 ISD::MemIndexType 8288 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8289 SDValue Offsets) const { 8290 bool IsScaledIndex = 8291 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8292 bool IsSignedIndex = 8293 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8294 8295 // Scaling is unimportant for bytes, canonicalize to unscaled. 8296 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8297 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8298 8299 return IndexType; 8300 } 8301 8302 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8303 SDValue Op0 = Node->getOperand(0); 8304 SDValue Op1 = Node->getOperand(1); 8305 EVT VT = Op0.getValueType(); 8306 unsigned Opcode = Node->getOpcode(); 8307 SDLoc DL(Node); 8308 8309 // umin(x,y) -> sub(x,usubsat(x,y)) 8310 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8311 isOperationLegal(ISD::USUBSAT, VT)) { 8312 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8313 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8314 } 8315 8316 // umax(x,y) -> add(x,usubsat(y,x)) 8317 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8318 isOperationLegal(ISD::USUBSAT, VT)) { 8319 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8320 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8321 } 8322 8323 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8324 ISD::CondCode CC; 8325 switch (Opcode) { 8326 default: llvm_unreachable("How did we get here?"); 8327 case ISD::SMAX: CC = ISD::SETGT; break; 8328 case ISD::SMIN: CC = ISD::SETLT; break; 8329 case ISD::UMAX: CC = ISD::SETUGT; break; 8330 case ISD::UMIN: CC = ISD::SETULT; break; 8331 } 8332 8333 // FIXME: Should really try to split the vector in case it's legal on a 8334 // subvector. 8335 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8336 return DAG.UnrollVectorOp(Node); 8337 8338 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8339 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8340 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8341 } 8342 8343 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8344 unsigned Opcode = Node->getOpcode(); 8345 SDValue LHS = Node->getOperand(0); 8346 SDValue RHS = Node->getOperand(1); 8347 EVT VT = LHS.getValueType(); 8348 SDLoc dl(Node); 8349 8350 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8351 assert(VT.isInteger() && "Expected operands to be integers"); 8352 8353 // usub.sat(a, b) -> umax(a, b) - b 8354 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8355 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8356 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8357 } 8358 8359 // uadd.sat(a, b) -> umin(a, ~b) + b 8360 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8361 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8362 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8363 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8364 } 8365 8366 unsigned OverflowOp; 8367 switch (Opcode) { 8368 case ISD::SADDSAT: 8369 OverflowOp = ISD::SADDO; 8370 break; 8371 case ISD::UADDSAT: 8372 OverflowOp = ISD::UADDO; 8373 break; 8374 case ISD::SSUBSAT: 8375 OverflowOp = ISD::SSUBO; 8376 break; 8377 case ISD::USUBSAT: 8378 OverflowOp = ISD::USUBO; 8379 break; 8380 default: 8381 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8382 "addition or subtraction node."); 8383 } 8384 8385 // FIXME: Should really try to split the vector in case it's legal on a 8386 // subvector. 8387 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8388 return DAG.UnrollVectorOp(Node); 8389 8390 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8391 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8392 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8393 SDValue SumDiff = Result.getValue(0); 8394 SDValue Overflow = Result.getValue(1); 8395 SDValue Zero = DAG.getConstant(0, dl, VT); 8396 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8397 8398 if (Opcode == ISD::UADDSAT) { 8399 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8400 // (LHS + RHS) | OverflowMask 8401 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8402 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8403 } 8404 // Overflow ? 0xffff.... : (LHS + RHS) 8405 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8406 } 8407 8408 if (Opcode == ISD::USUBSAT) { 8409 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8410 // (LHS - RHS) & ~OverflowMask 8411 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8412 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8413 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8414 } 8415 // Overflow ? 0 : (LHS - RHS) 8416 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8417 } 8418 8419 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8420 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8421 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8422 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8423 DAG.getConstant(BitWidth - 1, dl, VT)); 8424 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8425 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8426 } 8427 8428 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8429 unsigned Opcode = Node->getOpcode(); 8430 bool IsSigned = Opcode == ISD::SSHLSAT; 8431 SDValue LHS = Node->getOperand(0); 8432 SDValue RHS = Node->getOperand(1); 8433 EVT VT = LHS.getValueType(); 8434 SDLoc dl(Node); 8435 8436 assert((Node->getOpcode() == ISD::SSHLSAT || 8437 Node->getOpcode() == ISD::USHLSAT) && 8438 "Expected a SHLSAT opcode"); 8439 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8440 assert(VT.isInteger() && "Expected operands to be integers"); 8441 8442 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8443 8444 unsigned BW = VT.getScalarSizeInBits(); 8445 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8446 SDValue Orig = 8447 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8448 8449 SDValue SatVal; 8450 if (IsSigned) { 8451 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8452 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8453 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8454 SatMin, SatMax, ISD::SETLT); 8455 } else { 8456 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8457 } 8458 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8459 8460 return Result; 8461 } 8462 8463 SDValue 8464 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8465 assert((Node->getOpcode() == ISD::SMULFIX || 8466 Node->getOpcode() == ISD::UMULFIX || 8467 Node->getOpcode() == ISD::SMULFIXSAT || 8468 Node->getOpcode() == ISD::UMULFIXSAT) && 8469 "Expected a fixed point multiplication opcode"); 8470 8471 SDLoc dl(Node); 8472 SDValue LHS = Node->getOperand(0); 8473 SDValue RHS = Node->getOperand(1); 8474 EVT VT = LHS.getValueType(); 8475 unsigned Scale = Node->getConstantOperandVal(2); 8476 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8477 Node->getOpcode() == ISD::UMULFIXSAT); 8478 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8479 Node->getOpcode() == ISD::SMULFIXSAT); 8480 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8481 unsigned VTSize = VT.getScalarSizeInBits(); 8482 8483 if (!Scale) { 8484 // [us]mul.fix(a, b, 0) -> mul(a, b) 8485 if (!Saturating) { 8486 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8487 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8488 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8489 SDValue Result = 8490 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8491 SDValue Product = Result.getValue(0); 8492 SDValue Overflow = Result.getValue(1); 8493 SDValue Zero = DAG.getConstant(0, dl, VT); 8494 8495 APInt MinVal = APInt::getSignedMinValue(VTSize); 8496 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8497 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8498 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8499 // Xor the inputs, if resulting sign bit is 0 the product will be 8500 // positive, else negative. 8501 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8502 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8503 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8504 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8505 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8506 SDValue Result = 8507 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8508 SDValue Product = Result.getValue(0); 8509 SDValue Overflow = Result.getValue(1); 8510 8511 APInt MaxVal = APInt::getMaxValue(VTSize); 8512 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8513 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8514 } 8515 } 8516 8517 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8518 "Expected scale to be less than the number of bits if signed or at " 8519 "most the number of bits if unsigned."); 8520 assert(LHS.getValueType() == RHS.getValueType() && 8521 "Expected both operands to be the same type"); 8522 8523 // Get the upper and lower bits of the result. 8524 SDValue Lo, Hi; 8525 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8526 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8527 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8528 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8529 Lo = Result.getValue(0); 8530 Hi = Result.getValue(1); 8531 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8532 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8533 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8534 } else if (VT.isVector()) { 8535 return SDValue(); 8536 } else { 8537 report_fatal_error("Unable to expand fixed point multiplication."); 8538 } 8539 8540 if (Scale == VTSize) 8541 // Result is just the top half since we'd be shifting by the width of the 8542 // operand. Overflow impossible so this works for both UMULFIX and 8543 // UMULFIXSAT. 8544 return Hi; 8545 8546 // The result will need to be shifted right by the scale since both operands 8547 // are scaled. The result is given to us in 2 halves, so we only want part of 8548 // both in the result. 8549 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8550 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8551 DAG.getConstant(Scale, dl, ShiftTy)); 8552 if (!Saturating) 8553 return Result; 8554 8555 if (!Signed) { 8556 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8557 // widened multiplication) aren't all zeroes. 8558 8559 // Saturate to max if ((Hi >> Scale) != 0), 8560 // which is the same as if (Hi > ((1 << Scale) - 1)) 8561 APInt MaxVal = APInt::getMaxValue(VTSize); 8562 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8563 dl, VT); 8564 Result = DAG.getSelectCC(dl, Hi, LowMask, 8565 DAG.getConstant(MaxVal, dl, VT), Result, 8566 ISD::SETUGT); 8567 8568 return Result; 8569 } 8570 8571 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8572 // widened multiplication) aren't all ones or all zeroes. 8573 8574 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8575 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8576 8577 if (Scale == 0) { 8578 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8579 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8580 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8581 // Saturated to SatMin if wide product is negative, and SatMax if wide 8582 // product is positive ... 8583 SDValue Zero = DAG.getConstant(0, dl, VT); 8584 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8585 ISD::SETLT); 8586 // ... but only if we overflowed. 8587 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8588 } 8589 8590 // We handled Scale==0 above so all the bits to examine is in Hi. 8591 8592 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8593 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8594 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8595 dl, VT); 8596 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8597 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8598 // which is the same as if (HI < (-1 << (Scale - 1)) 8599 SDValue HighMask = 8600 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8601 dl, VT); 8602 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8603 return Result; 8604 } 8605 8606 SDValue 8607 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8608 SDValue LHS, SDValue RHS, 8609 unsigned Scale, SelectionDAG &DAG) const { 8610 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8611 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8612 "Expected a fixed point division opcode"); 8613 8614 EVT VT = LHS.getValueType(); 8615 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8616 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8617 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8618 8619 // If there is enough room in the type to upscale the LHS or downscale the 8620 // RHS before the division, we can perform it in this type without having to 8621 // resize. For signed operations, the LHS headroom is the number of 8622 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8623 // The headroom for the RHS is the number of trailing zeroes. 8624 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8625 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8626 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8627 8628 // For signed saturating operations, we need to be able to detect true integer 8629 // division overflow; that is, when you have MIN / -EPS. However, this 8630 // is undefined behavior and if we emit divisions that could take such 8631 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8632 // example). 8633 // Avoid this by requiring an extra bit so that we never get this case. 8634 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8635 // signed saturating division, we need to emit a whopping 32-bit division. 8636 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8637 return SDValue(); 8638 8639 unsigned LHSShift = std::min(LHSLead, Scale); 8640 unsigned RHSShift = Scale - LHSShift; 8641 8642 // At this point, we know that if we shift the LHS up by LHSShift and the 8643 // RHS down by RHSShift, we can emit a regular division with a final scaling 8644 // factor of Scale. 8645 8646 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8647 if (LHSShift) 8648 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8649 DAG.getConstant(LHSShift, dl, ShiftTy)); 8650 if (RHSShift) 8651 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8652 DAG.getConstant(RHSShift, dl, ShiftTy)); 8653 8654 SDValue Quot; 8655 if (Signed) { 8656 // For signed operations, if the resulting quotient is negative and the 8657 // remainder is nonzero, subtract 1 from the quotient to round towards 8658 // negative infinity. 8659 SDValue Rem; 8660 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8661 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8662 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8663 if (isTypeLegal(VT) && 8664 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8665 Quot = DAG.getNode(ISD::SDIVREM, dl, 8666 DAG.getVTList(VT, VT), 8667 LHS, RHS); 8668 Rem = Quot.getValue(1); 8669 Quot = Quot.getValue(0); 8670 } else { 8671 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8672 LHS, RHS); 8673 Rem = DAG.getNode(ISD::SREM, dl, VT, 8674 LHS, RHS); 8675 } 8676 SDValue Zero = DAG.getConstant(0, dl, VT); 8677 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8678 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8679 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8680 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8681 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8682 DAG.getConstant(1, dl, VT)); 8683 Quot = DAG.getSelect(dl, VT, 8684 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8685 Sub1, Quot); 8686 } else 8687 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8688 LHS, RHS); 8689 8690 return Quot; 8691 } 8692 8693 void TargetLowering::expandUADDSUBO( 8694 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8695 SDLoc dl(Node); 8696 SDValue LHS = Node->getOperand(0); 8697 SDValue RHS = Node->getOperand(1); 8698 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8699 8700 // If ADD/SUBCARRY is legal, use that instead. 8701 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8702 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8703 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8704 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8705 { LHS, RHS, CarryIn }); 8706 Result = SDValue(NodeCarry.getNode(), 0); 8707 Overflow = SDValue(NodeCarry.getNode(), 1); 8708 return; 8709 } 8710 8711 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8712 LHS.getValueType(), LHS, RHS); 8713 8714 EVT ResultType = Node->getValueType(1); 8715 EVT SetCCType = getSetCCResultType( 8716 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8717 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8718 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8719 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8720 } 8721 8722 void TargetLowering::expandSADDSUBO( 8723 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8724 SDLoc dl(Node); 8725 SDValue LHS = Node->getOperand(0); 8726 SDValue RHS = Node->getOperand(1); 8727 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8728 8729 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8730 LHS.getValueType(), LHS, RHS); 8731 8732 EVT ResultType = Node->getValueType(1); 8733 EVT OType = getSetCCResultType( 8734 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8735 8736 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8737 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8738 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8739 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8740 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8741 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8742 return; 8743 } 8744 8745 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8746 8747 // For an addition, the result should be less than one of the operands (LHS) 8748 // if and only if the other operand (RHS) is negative, otherwise there will 8749 // be overflow. 8750 // For a subtraction, the result should be less than one of the operands 8751 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8752 // otherwise there will be overflow. 8753 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8754 SDValue ConditionRHS = 8755 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8756 8757 Overflow = DAG.getBoolExtOrTrunc( 8758 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8759 ResultType, ResultType); 8760 } 8761 8762 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8763 SDValue &Overflow, SelectionDAG &DAG) const { 8764 SDLoc dl(Node); 8765 EVT VT = Node->getValueType(0); 8766 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8767 SDValue LHS = Node->getOperand(0); 8768 SDValue RHS = Node->getOperand(1); 8769 bool isSigned = Node->getOpcode() == ISD::SMULO; 8770 8771 // For power-of-two multiplications we can use a simpler shift expansion. 8772 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8773 const APInt &C = RHSC->getAPIntValue(); 8774 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8775 if (C.isPowerOf2()) { 8776 // smulo(x, signed_min) is same as umulo(x, signed_min). 8777 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8778 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8779 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8780 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8781 Overflow = DAG.getSetCC(dl, SetCCVT, 8782 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8783 dl, VT, Result, ShiftAmt), 8784 LHS, ISD::SETNE); 8785 return true; 8786 } 8787 } 8788 8789 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8790 if (VT.isVector()) 8791 WideVT = 8792 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8793 8794 SDValue BottomHalf; 8795 SDValue TopHalf; 8796 static const unsigned Ops[2][3] = 8797 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8798 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8799 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8800 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8801 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8802 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8803 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8804 RHS); 8805 TopHalf = BottomHalf.getValue(1); 8806 } else if (isTypeLegal(WideVT)) { 8807 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8808 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8809 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8810 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8811 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8812 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8813 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8814 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8815 } else { 8816 if (VT.isVector()) 8817 return false; 8818 8819 // We can fall back to a libcall with an illegal type for the MUL if we 8820 // have a libcall big enough. 8821 // Also, we can fall back to a division in some cases, but that's a big 8822 // performance hit in the general case. 8823 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8824 if (WideVT == MVT::i16) 8825 LC = RTLIB::MUL_I16; 8826 else if (WideVT == MVT::i32) 8827 LC = RTLIB::MUL_I32; 8828 else if (WideVT == MVT::i64) 8829 LC = RTLIB::MUL_I64; 8830 else if (WideVT == MVT::i128) 8831 LC = RTLIB::MUL_I128; 8832 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8833 8834 SDValue HiLHS; 8835 SDValue HiRHS; 8836 if (isSigned) { 8837 // The high part is obtained by SRA'ing all but one of the bits of low 8838 // part. 8839 unsigned LoSize = VT.getFixedSizeInBits(); 8840 HiLHS = 8841 DAG.getNode(ISD::SRA, dl, VT, LHS, 8842 DAG.getConstant(LoSize - 1, dl, 8843 getPointerTy(DAG.getDataLayout()))); 8844 HiRHS = 8845 DAG.getNode(ISD::SRA, dl, VT, RHS, 8846 DAG.getConstant(LoSize - 1, dl, 8847 getPointerTy(DAG.getDataLayout()))); 8848 } else { 8849 HiLHS = DAG.getConstant(0, dl, VT); 8850 HiRHS = DAG.getConstant(0, dl, VT); 8851 } 8852 8853 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8854 // pre-lowered to the correct types. This all depends upon WideVT not 8855 // being a legal type for the architecture and thus has to be split to 8856 // two arguments. 8857 SDValue Ret; 8858 TargetLowering::MakeLibCallOptions CallOptions; 8859 CallOptions.setSExt(isSigned); 8860 CallOptions.setIsPostTypeLegalization(true); 8861 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8862 // Halves of WideVT are packed into registers in different order 8863 // depending on platform endianness. This is usually handled by 8864 // the C calling convention, but we can't defer to it in 8865 // the legalizer. 8866 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8867 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8868 } else { 8869 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8870 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8871 } 8872 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8873 "Ret value is a collection of constituent nodes holding result."); 8874 if (DAG.getDataLayout().isLittleEndian()) { 8875 // Same as above. 8876 BottomHalf = Ret.getOperand(0); 8877 TopHalf = Ret.getOperand(1); 8878 } else { 8879 BottomHalf = Ret.getOperand(1); 8880 TopHalf = Ret.getOperand(0); 8881 } 8882 } 8883 8884 Result = BottomHalf; 8885 if (isSigned) { 8886 SDValue ShiftAmt = DAG.getConstant( 8887 VT.getScalarSizeInBits() - 1, dl, 8888 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8889 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8890 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8891 } else { 8892 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8893 DAG.getConstant(0, dl, VT), ISD::SETNE); 8894 } 8895 8896 // Truncate the result if SetCC returns a larger type than needed. 8897 EVT RType = Node->getValueType(1); 8898 if (RType.bitsLT(Overflow.getValueType())) 8899 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8900 8901 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8902 "Unexpected result type for S/UMULO legalization"); 8903 return true; 8904 } 8905 8906 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8907 SDLoc dl(Node); 8908 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8909 SDValue Op = Node->getOperand(0); 8910 EVT VT = Op.getValueType(); 8911 8912 if (VT.isScalableVector()) 8913 report_fatal_error( 8914 "Expanding reductions for scalable vectors is undefined."); 8915 8916 // Try to use a shuffle reduction for power of two vectors. 8917 if (VT.isPow2VectorType()) { 8918 while (VT.getVectorNumElements() > 1) { 8919 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8920 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8921 break; 8922 8923 SDValue Lo, Hi; 8924 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8925 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8926 VT = HalfVT; 8927 } 8928 } 8929 8930 EVT EltVT = VT.getVectorElementType(); 8931 unsigned NumElts = VT.getVectorNumElements(); 8932 8933 SmallVector<SDValue, 8> Ops; 8934 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8935 8936 SDValue Res = Ops[0]; 8937 for (unsigned i = 1; i < NumElts; i++) 8938 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8939 8940 // Result type may be wider than element type. 8941 if (EltVT != Node->getValueType(0)) 8942 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8943 return Res; 8944 } 8945 8946 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8947 SDLoc dl(Node); 8948 SDValue AccOp = Node->getOperand(0); 8949 SDValue VecOp = Node->getOperand(1); 8950 SDNodeFlags Flags = Node->getFlags(); 8951 8952 EVT VT = VecOp.getValueType(); 8953 EVT EltVT = VT.getVectorElementType(); 8954 8955 if (VT.isScalableVector()) 8956 report_fatal_error( 8957 "Expanding reductions for scalable vectors is undefined."); 8958 8959 unsigned NumElts = VT.getVectorNumElements(); 8960 8961 SmallVector<SDValue, 8> Ops; 8962 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8963 8964 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8965 8966 SDValue Res = AccOp; 8967 for (unsigned i = 0; i < NumElts; i++) 8968 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8969 8970 return Res; 8971 } 8972 8973 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8974 SelectionDAG &DAG) const { 8975 EVT VT = Node->getValueType(0); 8976 SDLoc dl(Node); 8977 bool isSigned = Node->getOpcode() == ISD::SREM; 8978 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8979 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8980 SDValue Dividend = Node->getOperand(0); 8981 SDValue Divisor = Node->getOperand(1); 8982 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8983 SDVTList VTs = DAG.getVTList(VT, VT); 8984 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8985 return true; 8986 } 8987 if (isOperationLegalOrCustom(DivOpc, VT)) { 8988 // X % Y -> X-X/Y*Y 8989 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8990 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8991 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8992 return true; 8993 } 8994 return false; 8995 } 8996 8997 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8998 SelectionDAG &DAG) const { 8999 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9000 SDLoc dl(SDValue(Node, 0)); 9001 SDValue Src = Node->getOperand(0); 9002 9003 // DstVT is the result type, while SatVT is the size to which we saturate 9004 EVT SrcVT = Src.getValueType(); 9005 EVT DstVT = Node->getValueType(0); 9006 9007 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9008 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9009 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9010 assert(SatWidth <= DstWidth && 9011 "Expected saturation width smaller than result width"); 9012 9013 // Determine minimum and maximum integer values and their corresponding 9014 // floating-point values. 9015 APInt MinInt, MaxInt; 9016 if (IsSigned) { 9017 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 9018 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 9019 } else { 9020 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 9021 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 9022 } 9023 9024 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9025 // libcall emission cannot handle this. Large result types will fail. 9026 if (SrcVT == MVT::f16) { 9027 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9028 SrcVT = Src.getValueType(); 9029 } 9030 9031 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9032 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9033 9034 APFloat::opStatus MinStatus = 9035 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9036 APFloat::opStatus MaxStatus = 9037 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9038 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9039 !(MaxStatus & APFloat::opStatus::opInexact); 9040 9041 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9042 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9043 9044 // If the integer bounds are exactly representable as floats and min/max are 9045 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9046 // of comparisons and selects. 9047 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9048 isOperationLegal(ISD::FMAXNUM, SrcVT); 9049 if (AreExactFloatBounds && MinMaxLegal) { 9050 SDValue Clamped = Src; 9051 9052 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9053 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9054 // Clamp by MaxFloat from above. NaN cannot occur. 9055 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9056 // Convert clamped value to integer. 9057 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9058 dl, DstVT, Clamped); 9059 9060 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9061 // which will cast to zero. 9062 if (!IsSigned) 9063 return FpToInt; 9064 9065 // Otherwise, select 0 if Src is NaN. 9066 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9067 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9068 ISD::CondCode::SETUO); 9069 } 9070 9071 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9072 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9073 9074 // Result of direct conversion. The assumption here is that the operation is 9075 // non-trapping and it's fine to apply it to an out-of-range value if we 9076 // select it away later. 9077 SDValue FpToInt = 9078 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9079 9080 SDValue Select = FpToInt; 9081 9082 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9083 // MinInt if Src is NaN. 9084 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9085 ISD::CondCode::SETULT); 9086 // If Src OGT MaxFloat, select MaxInt. 9087 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9088 ISD::CondCode::SETOGT); 9089 9090 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9091 // is already zero. 9092 if (!IsSigned) 9093 return Select; 9094 9095 // Otherwise, select 0 if Src is NaN. 9096 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9097 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9098 } 9099 9100 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9101 SelectionDAG &DAG) const { 9102 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9103 assert(Node->getValueType(0).isScalableVector() && 9104 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9105 9106 EVT VT = Node->getValueType(0); 9107 SDValue V1 = Node->getOperand(0); 9108 SDValue V2 = Node->getOperand(1); 9109 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9110 SDLoc DL(Node); 9111 9112 // Expand through memory thusly: 9113 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9114 // Store V1, Ptr 9115 // Store V2, Ptr + sizeof(V1) 9116 // If (Imm < 0) 9117 // TrailingElts = -Imm 9118 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9119 // else 9120 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9121 // Res = Load Ptr 9122 9123 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9124 9125 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9126 VT.getVectorElementCount() * 2); 9127 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9128 EVT PtrVT = StackPtr.getValueType(); 9129 auto &MF = DAG.getMachineFunction(); 9130 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9131 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9132 9133 // Store the lo part of CONCAT_VECTORS(V1, V2) 9134 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9135 // Store the hi part of CONCAT_VECTORS(V1, V2) 9136 SDValue OffsetToV2 = DAG.getVScale( 9137 DL, PtrVT, 9138 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9139 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9140 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9141 9142 if (Imm >= 0) { 9143 // Load back the required element. getVectorElementPointer takes care of 9144 // clamping the index if it's out-of-bounds. 9145 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9146 // Load the spliced result 9147 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9148 MachinePointerInfo::getUnknownStack(MF)); 9149 } 9150 9151 uint64_t TrailingElts = -Imm; 9152 9153 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9154 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9155 SDValue TrailingBytes = 9156 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9157 9158 if (TrailingElts > VT.getVectorMinNumElements()) { 9159 SDValue VLBytes = DAG.getVScale( 9160 DL, PtrVT, 9161 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9162 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9163 } 9164 9165 // Calculate the start address of the spliced result. 9166 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9167 9168 // Load the spliced result 9169 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9170 MachinePointerInfo::getUnknownStack(MF)); 9171 } 9172 9173 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9174 SDValue &LHS, SDValue &RHS, 9175 SDValue &CC, bool &NeedInvert, 9176 const SDLoc &dl, SDValue &Chain, 9177 bool IsSignaling) const { 9178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9179 MVT OpVT = LHS.getSimpleValueType(); 9180 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9181 NeedInvert = false; 9182 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9183 default: 9184 llvm_unreachable("Unknown condition code action!"); 9185 case TargetLowering::Legal: 9186 // Nothing to do. 9187 break; 9188 case TargetLowering::Expand: { 9189 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9190 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9191 std::swap(LHS, RHS); 9192 CC = DAG.getCondCode(InvCC); 9193 return true; 9194 } 9195 // Swapping operands didn't work. Try inverting the condition. 9196 bool NeedSwap = false; 9197 InvCC = getSetCCInverse(CCCode, OpVT); 9198 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9199 // If inverting the condition is not enough, try swapping operands 9200 // on top of it. 9201 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9202 NeedSwap = true; 9203 } 9204 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9205 CC = DAG.getCondCode(InvCC); 9206 NeedInvert = true; 9207 if (NeedSwap) 9208 std::swap(LHS, RHS); 9209 return true; 9210 } 9211 9212 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9213 unsigned Opc = 0; 9214 switch (CCCode) { 9215 default: 9216 llvm_unreachable("Don't know how to expand this condition!"); 9217 case ISD::SETUO: 9218 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9219 CC1 = ISD::SETUNE; 9220 CC2 = ISD::SETUNE; 9221 Opc = ISD::OR; 9222 break; 9223 } 9224 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9225 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9226 NeedInvert = true; 9227 LLVM_FALLTHROUGH; 9228 case ISD::SETO: 9229 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9230 "If SETO is expanded, SETOEQ must be legal!"); 9231 CC1 = ISD::SETOEQ; 9232 CC2 = ISD::SETOEQ; 9233 Opc = ISD::AND; 9234 break; 9235 case ISD::SETONE: 9236 case ISD::SETUEQ: 9237 // If the SETUO or SETO CC isn't legal, we might be able to use 9238 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9239 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9240 // the operands. 9241 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9242 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9243 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9244 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9245 CC1 = ISD::SETOGT; 9246 CC2 = ISD::SETOLT; 9247 Opc = ISD::OR; 9248 NeedInvert = ((unsigned)CCCode & 0x8U); 9249 break; 9250 } 9251 LLVM_FALLTHROUGH; 9252 case ISD::SETOEQ: 9253 case ISD::SETOGT: 9254 case ISD::SETOGE: 9255 case ISD::SETOLT: 9256 case ISD::SETOLE: 9257 case ISD::SETUNE: 9258 case ISD::SETUGT: 9259 case ISD::SETUGE: 9260 case ISD::SETULT: 9261 case ISD::SETULE: 9262 // If we are floating point, assign and break, otherwise fall through. 9263 if (!OpVT.isInteger()) { 9264 // We can use the 4th bit to tell if we are the unordered 9265 // or ordered version of the opcode. 9266 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9267 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9268 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9269 break; 9270 } 9271 // Fallthrough if we are unsigned integer. 9272 LLVM_FALLTHROUGH; 9273 case ISD::SETLE: 9274 case ISD::SETGT: 9275 case ISD::SETGE: 9276 case ISD::SETLT: 9277 case ISD::SETNE: 9278 case ISD::SETEQ: 9279 // If all combinations of inverting the condition and swapping operands 9280 // didn't work then we have no means to expand the condition. 9281 llvm_unreachable("Don't know how to expand this condition!"); 9282 } 9283 9284 SDValue SetCC1, SetCC2; 9285 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9286 // If we aren't the ordered or unorder operation, 9287 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9288 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9289 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9290 } else { 9291 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9292 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9293 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9294 } 9295 if (Chain) 9296 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9297 SetCC2.getValue(1)); 9298 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9299 RHS = SDValue(); 9300 CC = SDValue(); 9301 return true; 9302 } 9303 } 9304 return false; 9305 } 9306