1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 } 116 117 /// Generate a libcall taking the given operands as arguments and returning a 118 /// result of type RetVT. 119 std::pair<SDValue, SDValue> 120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 121 ArrayRef<SDValue> Ops, bool isSigned, 122 const SDLoc &dl, bool doesNotReturn, 123 bool isReturnValueUsed, 124 bool isPostTypeLegalization) const { 125 TargetLowering::ArgListTy Args; 126 Args.reserve(Ops.size()); 127 128 TargetLowering::ArgListEntry Entry; 129 for (SDValue Op : Ops) { 130 Entry.Node = Op; 131 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 132 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 134 Args.push_back(Entry); 135 } 136 137 if (LC == RTLIB::UNKNOWN_LIBCALL) 138 report_fatal_error("Unsupported library call operation!"); 139 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 140 getPointerTy(DAG.getDataLayout())); 141 142 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 143 TargetLowering::CallLoweringInfo CLI(DAG); 144 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 145 CLI.setDebugLoc(dl) 146 .setChain(DAG.getEntryNode()) 147 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 148 .setNoReturn(doesNotReturn) 149 .setDiscardResult(!isReturnValueUsed) 150 .setIsPostTypeLegalization(isPostTypeLegalization) 151 .setSExtResult(signExtend) 152 .setZExtResult(!signExtend); 153 return LowerCallTo(CLI); 154 } 155 156 /// Soften the operands of a comparison. This code is shared among BR_CC, 157 /// SELECT_CC, and SETCC handlers. 158 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 159 SDValue &NewLHS, SDValue &NewRHS, 160 ISD::CondCode &CCCode, 161 const SDLoc &dl) const { 162 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 163 && "Unsupported setcc type!"); 164 165 // Expand into one or more soft-fp libcall(s). 166 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 167 bool ShouldInvertCC = false; 168 switch (CCCode) { 169 case ISD::SETEQ: 170 case ISD::SETOEQ: 171 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 172 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 173 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 174 break; 175 case ISD::SETNE: 176 case ISD::SETUNE: 177 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 178 (VT == MVT::f64) ? RTLIB::UNE_F64 : 179 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 180 break; 181 case ISD::SETGE: 182 case ISD::SETOGE: 183 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 184 (VT == MVT::f64) ? RTLIB::OGE_F64 : 185 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 186 break; 187 case ISD::SETLT: 188 case ISD::SETOLT: 189 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 190 (VT == MVT::f64) ? RTLIB::OLT_F64 : 191 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 192 break; 193 case ISD::SETLE: 194 case ISD::SETOLE: 195 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 196 (VT == MVT::f64) ? RTLIB::OLE_F64 : 197 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 198 break; 199 case ISD::SETGT: 200 case ISD::SETOGT: 201 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 202 (VT == MVT::f64) ? RTLIB::OGT_F64 : 203 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 204 break; 205 case ISD::SETUO: 206 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 207 (VT == MVT::f64) ? RTLIB::UO_F64 : 208 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 209 break; 210 case ISD::SETO: 211 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 212 (VT == MVT::f64) ? RTLIB::O_F64 : 213 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 214 break; 215 case ISD::SETONE: 216 // SETONE = SETOLT | SETOGT 217 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 218 (VT == MVT::f64) ? RTLIB::OLT_F64 : 219 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 221 (VT == MVT::f64) ? RTLIB::OGT_F64 : 222 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 223 break; 224 case ISD::SETUEQ: 225 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 226 (VT == MVT::f64) ? RTLIB::UO_F64 : 227 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 228 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 229 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 230 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 231 break; 232 default: 233 // Invert CC for unordered comparisons 234 ShouldInvertCC = true; 235 switch (CCCode) { 236 case ISD::SETULT: 237 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 238 (VT == MVT::f64) ? RTLIB::OGE_F64 : 239 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 240 break; 241 case ISD::SETULE: 242 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 243 (VT == MVT::f64) ? RTLIB::OGT_F64 : 244 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 245 break; 246 case ISD::SETUGT: 247 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 248 (VT == MVT::f64) ? RTLIB::OLE_F64 : 249 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 250 break; 251 case ISD::SETUGE: 252 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 253 (VT == MVT::f64) ? RTLIB::OLT_F64 : 254 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 255 break; 256 default: llvm_unreachable("Do not know how to soften this setcc!"); 257 } 258 } 259 260 // Use the target specific return value for comparions lib calls. 261 EVT RetVT = getCmpLibcallReturnType(); 262 SDValue Ops[2] = {NewLHS, NewRHS}; 263 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 264 dl).first; 265 NewRHS = DAG.getConstant(0, dl, RetVT); 266 267 CCCode = getCmpLibcallCC(LC1); 268 if (ShouldInvertCC) 269 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 270 271 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 272 SDValue Tmp = DAG.getNode( 273 ISD::SETCC, dl, 274 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 275 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 276 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 277 dl).first; 278 NewLHS = DAG.getNode( 279 ISD::SETCC, dl, 280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 281 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 282 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 283 NewRHS = SDValue(); 284 } 285 } 286 287 /// Return the entry encoding for a jump table in the current function. The 288 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 289 unsigned TargetLowering::getJumpTableEncoding() const { 290 // In non-pic modes, just use the address of a block. 291 if (!isPositionIndependent()) 292 return MachineJumpTableInfo::EK_BlockAddress; 293 294 // In PIC mode, if the target supports a GPRel32 directive, use it. 295 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 296 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 297 298 // Otherwise, use a label difference. 299 return MachineJumpTableInfo::EK_LabelDifference32; 300 } 301 302 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 303 SelectionDAG &DAG) const { 304 // If our PIC model is GP relative, use the global offset table as the base. 305 unsigned JTEncoding = getJumpTableEncoding(); 306 307 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 308 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 309 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 310 311 return Table; 312 } 313 314 /// This returns the relocation base for the given PIC jumptable, the same as 315 /// getPICJumpTableRelocBase, but as an MCExpr. 316 const MCExpr * 317 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 318 unsigned JTI,MCContext &Ctx) const{ 319 // The normal PIC reloc base is the label at the start of the jump table. 320 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 321 } 322 323 bool 324 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 325 const TargetMachine &TM = getTargetMachine(); 326 const GlobalValue *GV = GA->getGlobal(); 327 328 // If the address is not even local to this DSO we will have to load it from 329 // a got and then add the offset. 330 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 331 return false; 332 333 // If the code is position independent we will have to add a base register. 334 if (isPositionIndependent()) 335 return false; 336 337 // Otherwise we can do it. 338 return true; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Optimization Methods 343 //===----------------------------------------------------------------------===// 344 345 /// If the specified instruction has a constant integer operand and there are 346 /// bits set in that constant that are not demanded, then clear those bits and 347 /// return true. 348 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 349 TargetLoweringOpt &TLO) const { 350 SelectionDAG &DAG = TLO.DAG; 351 SDLoc DL(Op); 352 unsigned Opcode = Op.getOpcode(); 353 354 // Do target-specific constant optimization. 355 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 356 return TLO.New.getNode(); 357 358 // FIXME: ISD::SELECT, ISD::SELECT_CC 359 switch (Opcode) { 360 default: 361 break; 362 case ISD::XOR: 363 case ISD::AND: 364 case ISD::OR: { 365 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 366 if (!Op1C) 367 return false; 368 369 // If this is a 'not' op, don't touch it because that's a canonical form. 370 const APInt &C = Op1C->getAPIntValue(); 371 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 372 return false; 373 374 if (!C.isSubsetOf(Demanded)) { 375 EVT VT = Op.getValueType(); 376 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 377 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 378 return TLO.CombineTo(Op, NewOp); 379 } 380 381 break; 382 } 383 } 384 385 return false; 386 } 387 388 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 389 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 390 /// generalized for targets with other types of implicit widening casts. 391 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 392 const APInt &Demanded, 393 TargetLoweringOpt &TLO) const { 394 assert(Op.getNumOperands() == 2 && 395 "ShrinkDemandedOp only supports binary operators!"); 396 assert(Op.getNode()->getNumValues() == 1 && 397 "ShrinkDemandedOp only supports nodes with one result!"); 398 399 SelectionDAG &DAG = TLO.DAG; 400 SDLoc dl(Op); 401 402 // Early return, as this function cannot handle vector types. 403 if (Op.getValueType().isVector()) 404 return false; 405 406 // Don't do this if the node has another user, which may require the 407 // full value. 408 if (!Op.getNode()->hasOneUse()) 409 return false; 410 411 // Search for the smallest integer type with free casts to and from 412 // Op's type. For expedience, just check power-of-2 integer types. 413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 414 unsigned DemandedSize = Demanded.getActiveBits(); 415 unsigned SmallVTBits = DemandedSize; 416 if (!isPowerOf2_32(SmallVTBits)) 417 SmallVTBits = NextPowerOf2(SmallVTBits); 418 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 419 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 420 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 421 TLI.isZExtFree(SmallVT, Op.getValueType())) { 422 // We found a type with free casts. 423 SDValue X = DAG.getNode( 424 Op.getOpcode(), dl, SmallVT, 425 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 426 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 427 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 428 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 429 return TLO.CombineTo(Op, Z); 430 } 431 } 432 return false; 433 } 434 435 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 436 DAGCombinerInfo &DCI) const { 437 SelectionDAG &DAG = DCI.DAG; 438 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 439 !DCI.isBeforeLegalizeOps()); 440 KnownBits Known; 441 442 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 443 if (Simplified) { 444 DCI.AddToWorklist(Op.getNode()); 445 DCI.CommitTargetLoweringOpt(TLO); 446 } 447 return Simplified; 448 } 449 450 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 451 KnownBits &Known, 452 TargetLoweringOpt &TLO, 453 unsigned Depth, 454 bool AssumeSingleUse) const { 455 EVT VT = Op.getValueType(); 456 APInt DemandedElts = VT.isVector() 457 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 458 : APInt(1, 1); 459 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 460 AssumeSingleUse); 461 } 462 463 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 464 /// result of Op are ever used downstream. If we can use this information to 465 /// simplify Op, create a new simplified DAG node and return true, returning the 466 /// original and new nodes in Old and New. Otherwise, analyze the expression and 467 /// return a mask of Known bits for the expression (used to simplify the 468 /// caller). The Known bits may only be accurate for those bits in the 469 /// OriginalDemandedBits and OriginalDemandedElts. 470 bool TargetLowering::SimplifyDemandedBits( 471 SDValue Op, const APInt &OriginalDemandedBits, 472 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 473 unsigned Depth, bool AssumeSingleUse) const { 474 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 475 assert(Op.getScalarValueSizeInBits() == BitWidth && 476 "Mask size mismatches value type size!"); 477 478 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 479 assert((!Op.getValueType().isVector() || 480 NumElts == Op.getValueType().getVectorNumElements()) && 481 "Unexpected vector size"); 482 483 APInt DemandedBits = OriginalDemandedBits; 484 APInt DemandedElts = OriginalDemandedElts; 485 SDLoc dl(Op); 486 auto &DL = TLO.DAG.getDataLayout(); 487 488 // Don't know anything. 489 Known = KnownBits(BitWidth); 490 491 if (Op.getOpcode() == ISD::Constant) { 492 // We know all of the bits for a constant! 493 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 494 Known.Zero = ~Known.One; 495 return false; 496 } 497 498 // Other users may use these bits. 499 EVT VT = Op.getValueType(); 500 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 501 if (Depth != 0) { 502 // If not at the root, Just compute the Known bits to 503 // simplify things downstream. 504 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 505 return false; 506 } 507 // If this is the root being simplified, allow it to have multiple uses, 508 // just set the DemandedBits/Elts to all bits. 509 DemandedBits = APInt::getAllOnesValue(BitWidth); 510 DemandedElts = APInt::getAllOnesValue(NumElts); 511 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 512 // Not demanding any bits/elts from Op. 513 if (!Op.isUndef()) 514 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 515 return false; 516 } else if (Depth == 6) { // Limit search depth. 517 return false; 518 } 519 520 KnownBits Known2, KnownOut; 521 switch (Op.getOpcode()) { 522 case ISD::SCALAR_TO_VECTOR: { 523 if (!DemandedElts[0]) 524 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 525 526 KnownBits SrcKnown; 527 SDValue Src = Op.getOperand(0); 528 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 529 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 530 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 531 return true; 532 Known = SrcKnown.zextOrTrunc(BitWidth, false); 533 break; 534 } 535 case ISD::BUILD_VECTOR: 536 // Collect the known bits that are shared by every constant vector element. 537 Known.Zero.setAllBits(); Known.One.setAllBits(); 538 for (SDValue SrcOp : Op->ops()) { 539 if (!isa<ConstantSDNode>(SrcOp)) { 540 // We can only handle all constant values - bail out with no known bits. 541 Known = KnownBits(BitWidth); 542 return false; 543 } 544 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 545 Known2.Zero = ~Known2.One; 546 547 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 548 if (Known2.One.getBitWidth() != BitWidth) { 549 assert(Known2.getBitWidth() > BitWidth && 550 "Expected BUILD_VECTOR implicit truncation"); 551 Known2 = Known2.trunc(BitWidth); 552 } 553 554 // Known bits are the values that are shared by every element. 555 // TODO: support per-element known bits. 556 Known.One &= Known2.One; 557 Known.Zero &= Known2.Zero; 558 } 559 return false; // Don't fall through, will infinitely loop. 560 case ISD::INSERT_VECTOR_ELT: { 561 SDValue Vec = Op.getOperand(0); 562 SDValue Scl = Op.getOperand(1); 563 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 564 EVT VecVT = Vec.getValueType(); 565 566 // If index isn't constant, assume we need all vector elements AND the 567 // inserted element. 568 APInt DemandedVecElts(OriginalDemandedElts); 569 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 570 unsigned Idx = CIdx->getZExtValue(); 571 DemandedVecElts.clearBit(Idx); 572 573 // Inserted element is not required. 574 if (!OriginalDemandedElts[Idx]) 575 return TLO.CombineTo(Op, Vec); 576 } 577 578 KnownBits KnownScl; 579 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 580 APInt DemandedSclBits = OriginalDemandedBits.zextOrTrunc(NumSclBits); 581 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 582 return true; 583 584 Known = KnownScl.zextOrTrunc(BitWidth, false); 585 586 KnownBits KnownVec; 587 if (SimplifyDemandedBits(Vec, OriginalDemandedBits, DemandedVecElts, 588 KnownVec, TLO, Depth + 1)) 589 return true; 590 591 if (!!DemandedVecElts) { 592 Known.One &= KnownVec.One; 593 Known.Zero &= KnownVec.Zero; 594 } 595 596 return false; 597 } 598 case ISD::INSERT_SUBVECTOR: { 599 SDValue Base = Op.getOperand(0); 600 SDValue Sub = Op.getOperand(1); 601 EVT SubVT = Sub.getValueType(); 602 unsigned NumSubElts = SubVT.getVectorNumElements(); 603 604 // If index isn't constant, assume we need the original demanded base 605 // elements and ALL the inserted subvector elements. 606 APInt BaseElts = DemandedElts; 607 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 608 if (isa<ConstantSDNode>(Op.getOperand(2))) { 609 const APInt &Idx = Op.getConstantOperandAPInt(2); 610 if (Idx.ule(NumElts - NumSubElts)) { 611 unsigned SubIdx = Idx.getZExtValue(); 612 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 613 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 614 } 615 } 616 617 KnownBits KnownSub, KnownBase; 618 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 619 Depth + 1)) 620 return true; 621 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 622 Depth + 1)) 623 return true; 624 625 Known.Zero.setAllBits(); 626 Known.One.setAllBits(); 627 if (!!SubElts) { 628 Known.One &= KnownSub.One; 629 Known.Zero &= KnownSub.Zero; 630 } 631 if (!!BaseElts) { 632 Known.One &= KnownBase.One; 633 Known.Zero &= KnownBase.Zero; 634 } 635 break; 636 } 637 case ISD::CONCAT_VECTORS: { 638 Known.Zero.setAllBits(); 639 Known.One.setAllBits(); 640 EVT SubVT = Op.getOperand(0).getValueType(); 641 unsigned NumSubVecs = Op.getNumOperands(); 642 unsigned NumSubElts = SubVT.getVectorNumElements(); 643 for (unsigned i = 0; i != NumSubVecs; ++i) { 644 APInt DemandedSubElts = 645 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 646 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 647 Known2, TLO, Depth + 1)) 648 return true; 649 // Known bits are shared by every demanded subvector element. 650 if (!!DemandedSubElts) { 651 Known.One &= Known2.One; 652 Known.Zero &= Known2.Zero; 653 } 654 } 655 break; 656 } 657 case ISD::VECTOR_SHUFFLE: { 658 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 659 660 // Collect demanded elements from shuffle operands.. 661 APInt DemandedLHS(NumElts, 0); 662 APInt DemandedRHS(NumElts, 0); 663 for (unsigned i = 0; i != NumElts; ++i) { 664 if (!DemandedElts[i]) 665 continue; 666 int M = ShuffleMask[i]; 667 if (M < 0) { 668 // For UNDEF elements, we don't know anything about the common state of 669 // the shuffle result. 670 DemandedLHS.clearAllBits(); 671 DemandedRHS.clearAllBits(); 672 break; 673 } 674 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 675 if (M < (int)NumElts) 676 DemandedLHS.setBit(M); 677 else 678 DemandedRHS.setBit(M - NumElts); 679 } 680 681 if (!!DemandedLHS || !!DemandedRHS) { 682 Known.Zero.setAllBits(); 683 Known.One.setAllBits(); 684 if (!!DemandedLHS) { 685 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 686 Known2, TLO, Depth + 1)) 687 return true; 688 Known.One &= Known2.One; 689 Known.Zero &= Known2.Zero; 690 } 691 if (!!DemandedRHS) { 692 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 693 Known2, TLO, Depth + 1)) 694 return true; 695 Known.One &= Known2.One; 696 Known.Zero &= Known2.Zero; 697 } 698 } 699 break; 700 } 701 case ISD::AND: { 702 SDValue Op0 = Op.getOperand(0); 703 SDValue Op1 = Op.getOperand(1); 704 705 // If the RHS is a constant, check to see if the LHS would be zero without 706 // using the bits from the RHS. Below, we use knowledge about the RHS to 707 // simplify the LHS, here we're using information from the LHS to simplify 708 // the RHS. 709 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 710 // Do not increment Depth here; that can cause an infinite loop. 711 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 712 // If the LHS already has zeros where RHSC does, this 'and' is dead. 713 if ((LHSKnown.Zero & DemandedBits) == 714 (~RHSC->getAPIntValue() & DemandedBits)) 715 return TLO.CombineTo(Op, Op0); 716 717 // If any of the set bits in the RHS are known zero on the LHS, shrink 718 // the constant. 719 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 720 return true; 721 722 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 723 // constant, but if this 'and' is only clearing bits that were just set by 724 // the xor, then this 'and' can be eliminated by shrinking the mask of 725 // the xor. For example, for a 32-bit X: 726 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 727 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 728 LHSKnown.One == ~RHSC->getAPIntValue()) { 729 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 730 return TLO.CombineTo(Op, Xor); 731 } 732 } 733 734 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 735 Depth + 1)) 736 return true; 737 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 738 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 739 Known2, TLO, Depth + 1)) 740 return true; 741 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 742 743 // If all of the demanded bits are known one on one side, return the other. 744 // These bits cannot contribute to the result of the 'and'. 745 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 746 return TLO.CombineTo(Op, Op0); 747 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 748 return TLO.CombineTo(Op, Op1); 749 // If all of the demanded bits in the inputs are known zeros, return zero. 750 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 751 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 752 // If the RHS is a constant, see if we can simplify it. 753 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 754 return true; 755 // If the operation can be done in a smaller type, do so. 756 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 757 return true; 758 759 // Output known-1 bits are only known if set in both the LHS & RHS. 760 Known.One &= Known2.One; 761 // Output known-0 are known to be clear if zero in either the LHS | RHS. 762 Known.Zero |= Known2.Zero; 763 break; 764 } 765 case ISD::OR: { 766 SDValue Op0 = Op.getOperand(0); 767 SDValue Op1 = Op.getOperand(1); 768 769 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 770 Depth + 1)) 771 return true; 772 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 773 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 774 Known2, TLO, Depth + 1)) 775 return true; 776 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 777 778 // If all of the demanded bits are known zero on one side, return the other. 779 // These bits cannot contribute to the result of the 'or'. 780 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 781 return TLO.CombineTo(Op, Op0); 782 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 783 return TLO.CombineTo(Op, Op1); 784 // If the RHS is a constant, see if we can simplify it. 785 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 786 return true; 787 // If the operation can be done in a smaller type, do so. 788 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 789 return true; 790 791 // Output known-0 bits are only known if clear in both the LHS & RHS. 792 Known.Zero &= Known2.Zero; 793 // Output known-1 are known to be set if set in either the LHS | RHS. 794 Known.One |= Known2.One; 795 break; 796 } 797 case ISD::XOR: { 798 SDValue Op0 = Op.getOperand(0); 799 SDValue Op1 = Op.getOperand(1); 800 801 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 802 Depth + 1)) 803 return true; 804 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 805 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 806 Depth + 1)) 807 return true; 808 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 809 810 // If all of the demanded bits are known zero on one side, return the other. 811 // These bits cannot contribute to the result of the 'xor'. 812 if (DemandedBits.isSubsetOf(Known.Zero)) 813 return TLO.CombineTo(Op, Op0); 814 if (DemandedBits.isSubsetOf(Known2.Zero)) 815 return TLO.CombineTo(Op, Op1); 816 // If the operation can be done in a smaller type, do so. 817 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 818 return true; 819 820 // If all of the unknown bits are known to be zero on one side or the other 821 // (but not both) turn this into an *inclusive* or. 822 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 823 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 824 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 825 826 // Output known-0 bits are known if clear or set in both the LHS & RHS. 827 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 828 // Output known-1 are known to be set if set in only one of the LHS, RHS. 829 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 830 831 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 832 // If one side is a constant, and all of the known set bits on the other 833 // side are also set in the constant, turn this into an AND, as we know 834 // the bits will be cleared. 835 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 836 // NB: it is okay if more bits are known than are requested 837 if (C->getAPIntValue() == Known2.One) { 838 SDValue ANDC = 839 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 840 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 841 } 842 843 // If the RHS is a constant, see if we can change it. Don't alter a -1 844 // constant because that's a 'not' op, and that is better for combining 845 // and codegen. 846 if (!C->isAllOnesValue()) { 847 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 848 // We're flipping all demanded bits. Flip the undemanded bits too. 849 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 850 return TLO.CombineTo(Op, New); 851 } 852 // If we can't turn this into a 'not', try to shrink the constant. 853 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 854 return true; 855 } 856 } 857 858 Known = std::move(KnownOut); 859 break; 860 } 861 case ISD::SELECT: 862 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 863 Depth + 1)) 864 return true; 865 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 866 Depth + 1)) 867 return true; 868 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 869 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 870 871 // If the operands are constants, see if we can simplify them. 872 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 873 return true; 874 875 // Only known if known in both the LHS and RHS. 876 Known.One &= Known2.One; 877 Known.Zero &= Known2.Zero; 878 break; 879 case ISD::SELECT_CC: 880 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 881 Depth + 1)) 882 return true; 883 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 884 Depth + 1)) 885 return true; 886 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 887 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 888 889 // If the operands are constants, see if we can simplify them. 890 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 891 return true; 892 893 // Only known if known in both the LHS and RHS. 894 Known.One &= Known2.One; 895 Known.Zero &= Known2.Zero; 896 break; 897 case ISD::SETCC: { 898 SDValue Op0 = Op.getOperand(0); 899 SDValue Op1 = Op.getOperand(1); 900 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 901 // If (1) we only need the sign-bit, (2) the setcc operands are the same 902 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 903 // -1, we may be able to bypass the setcc. 904 if (DemandedBits.isSignMask() && 905 Op0.getScalarValueSizeInBits() == BitWidth && 906 getBooleanContents(VT) == 907 BooleanContent::ZeroOrNegativeOneBooleanContent) { 908 // If we're testing X < 0, then this compare isn't needed - just use X! 909 // FIXME: We're limiting to integer types here, but this should also work 910 // if we don't care about FP signed-zero. The use of SETLT with FP means 911 // that we don't care about NaNs. 912 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 913 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 914 return TLO.CombineTo(Op, Op0); 915 916 // TODO: Should we check for other forms of sign-bit comparisons? 917 // Examples: X <= -1, X >= 0 918 } 919 if (getBooleanContents(Op0.getValueType()) == 920 TargetLowering::ZeroOrOneBooleanContent && 921 BitWidth > 1) 922 Known.Zero.setBitsFrom(1); 923 break; 924 } 925 case ISD::SHL: { 926 SDValue Op0 = Op.getOperand(0); 927 SDValue Op1 = Op.getOperand(1); 928 929 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 930 // If the shift count is an invalid immediate, don't do anything. 931 if (SA->getAPIntValue().uge(BitWidth)) 932 break; 933 934 unsigned ShAmt = SA->getZExtValue(); 935 936 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 937 // single shift. We can do this if the bottom bits (which are shifted 938 // out) are never demanded. 939 if (Op0.getOpcode() == ISD::SRL) { 940 if (ShAmt && 941 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 942 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 943 if (SA2->getAPIntValue().ult(BitWidth)) { 944 unsigned C1 = SA2->getZExtValue(); 945 unsigned Opc = ISD::SHL; 946 int Diff = ShAmt - C1; 947 if (Diff < 0) { 948 Diff = -Diff; 949 Opc = ISD::SRL; 950 } 951 952 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 953 return TLO.CombineTo( 954 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 955 } 956 } 957 } 958 } 959 960 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 961 Known, TLO, Depth + 1)) 962 return true; 963 964 // Try shrinking the operation as long as the shift amount will still be 965 // in range. 966 if ((ShAmt < DemandedBits.getActiveBits()) && 967 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 968 return true; 969 970 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 971 // are not demanded. This will likely allow the anyext to be folded away. 972 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 973 SDValue InnerOp = Op0.getOperand(0); 974 EVT InnerVT = InnerOp.getValueType(); 975 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 976 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 977 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 978 EVT ShTy = getShiftAmountTy(InnerVT, DL); 979 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 980 ShTy = InnerVT; 981 SDValue NarrowShl = 982 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 983 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 984 return TLO.CombineTo( 985 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 986 } 987 // Repeat the SHL optimization above in cases where an extension 988 // intervenes: (shl (anyext (shr x, c1)), c2) to 989 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 990 // aren't demanded (as above) and that the shifted upper c1 bits of 991 // x aren't demanded. 992 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 993 InnerOp.hasOneUse()) { 994 if (ConstantSDNode *SA2 = 995 isConstOrConstSplat(InnerOp.getOperand(1))) { 996 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 997 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 998 DemandedBits.getActiveBits() <= 999 (InnerBits - InnerShAmt + ShAmt) && 1000 DemandedBits.countTrailingZeros() >= ShAmt) { 1001 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1002 Op1.getValueType()); 1003 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1004 InnerOp.getOperand(0)); 1005 return TLO.CombineTo( 1006 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1007 } 1008 } 1009 } 1010 } 1011 1012 Known.Zero <<= ShAmt; 1013 Known.One <<= ShAmt; 1014 // low bits known zero. 1015 Known.Zero.setLowBits(ShAmt); 1016 } 1017 break; 1018 } 1019 case ISD::SRL: { 1020 SDValue Op0 = Op.getOperand(0); 1021 SDValue Op1 = Op.getOperand(1); 1022 1023 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1024 // If the shift count is an invalid immediate, don't do anything. 1025 if (SA->getAPIntValue().uge(BitWidth)) 1026 break; 1027 1028 unsigned ShAmt = SA->getZExtValue(); 1029 APInt InDemandedMask = (DemandedBits << ShAmt); 1030 1031 // If the shift is exact, then it does demand the low bits (and knows that 1032 // they are zero). 1033 if (Op->getFlags().hasExact()) 1034 InDemandedMask.setLowBits(ShAmt); 1035 1036 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1037 // single shift. We can do this if the top bits (which are shifted out) 1038 // are never demanded. 1039 if (Op0.getOpcode() == ISD::SHL) { 1040 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 1041 if (ShAmt && 1042 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 1043 if (SA2->getAPIntValue().ult(BitWidth)) { 1044 unsigned C1 = SA2->getZExtValue(); 1045 unsigned Opc = ISD::SRL; 1046 int Diff = ShAmt - C1; 1047 if (Diff < 0) { 1048 Diff = -Diff; 1049 Opc = ISD::SHL; 1050 } 1051 1052 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1053 return TLO.CombineTo( 1054 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1055 } 1056 } 1057 } 1058 } 1059 1060 // Compute the new bits that are at the top now. 1061 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1062 Depth + 1)) 1063 return true; 1064 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1065 Known.Zero.lshrInPlace(ShAmt); 1066 Known.One.lshrInPlace(ShAmt); 1067 1068 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1069 } 1070 break; 1071 } 1072 case ISD::SRA: { 1073 SDValue Op0 = Op.getOperand(0); 1074 SDValue Op1 = Op.getOperand(1); 1075 1076 // If this is an arithmetic shift right and only the low-bit is set, we can 1077 // always convert this into a logical shr, even if the shift amount is 1078 // variable. The low bit of the shift cannot be an input sign bit unless 1079 // the shift amount is >= the size of the datatype, which is undefined. 1080 if (DemandedBits.isOneValue()) 1081 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1082 1083 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1084 // If the shift count is an invalid immediate, don't do anything. 1085 if (SA->getAPIntValue().uge(BitWidth)) 1086 break; 1087 1088 unsigned ShAmt = SA->getZExtValue(); 1089 APInt InDemandedMask = (DemandedBits << ShAmt); 1090 1091 // If the shift is exact, then it does demand the low bits (and knows that 1092 // they are zero). 1093 if (Op->getFlags().hasExact()) 1094 InDemandedMask.setLowBits(ShAmt); 1095 1096 // If any of the demanded bits are produced by the sign extension, we also 1097 // demand the input sign bit. 1098 if (DemandedBits.countLeadingZeros() < ShAmt) 1099 InDemandedMask.setSignBit(); 1100 1101 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1102 Depth + 1)) 1103 return true; 1104 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1105 Known.Zero.lshrInPlace(ShAmt); 1106 Known.One.lshrInPlace(ShAmt); 1107 1108 // If the input sign bit is known to be zero, or if none of the top bits 1109 // are demanded, turn this into an unsigned shift right. 1110 if (Known.Zero[BitWidth - ShAmt - 1] || 1111 DemandedBits.countLeadingZeros() >= ShAmt) { 1112 SDNodeFlags Flags; 1113 Flags.setExact(Op->getFlags().hasExact()); 1114 return TLO.CombineTo( 1115 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1116 } 1117 1118 int Log2 = DemandedBits.exactLogBase2(); 1119 if (Log2 >= 0) { 1120 // The bit must come from the sign. 1121 SDValue NewSA = 1122 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1123 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1124 } 1125 1126 if (Known.One[BitWidth - ShAmt - 1]) 1127 // New bits are known one. 1128 Known.One.setHighBits(ShAmt); 1129 } 1130 break; 1131 } 1132 case ISD::FSHL: 1133 case ISD::FSHR: { 1134 SDValue Op0 = Op.getOperand(0); 1135 SDValue Op1 = Op.getOperand(1); 1136 SDValue Op2 = Op.getOperand(2); 1137 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1138 1139 if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) { 1140 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1141 1142 // For fshl, 0-shift returns the 1st arg. 1143 // For fshr, 0-shift returns the 2nd arg. 1144 if (Amt == 0) { 1145 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1146 Known, TLO, Depth + 1)) 1147 return true; 1148 break; 1149 } 1150 1151 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1152 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1153 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1154 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1155 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1156 Depth + 1)) 1157 return true; 1158 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1159 Depth + 1)) 1160 return true; 1161 1162 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1163 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1164 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1165 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1166 Known.One |= Known2.One; 1167 Known.Zero |= Known2.Zero; 1168 } 1169 break; 1170 } 1171 case ISD::SIGN_EXTEND_INREG: { 1172 SDValue Op0 = Op.getOperand(0); 1173 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1174 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1175 1176 // If we only care about the highest bit, don't bother shifting right. 1177 if (DemandedBits.isSignMask()) { 1178 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1179 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1180 // However if the input is already sign extended we expect the sign 1181 // extension to be dropped altogether later and do not simplify. 1182 if (!AlreadySignExtended) { 1183 // Compute the correct shift amount type, which must be getShiftAmountTy 1184 // for scalar types after legalization. 1185 EVT ShiftAmtTy = VT; 1186 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1187 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1188 1189 SDValue ShiftAmt = 1190 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1191 return TLO.CombineTo(Op, 1192 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1193 } 1194 } 1195 1196 // If none of the extended bits are demanded, eliminate the sextinreg. 1197 if (DemandedBits.getActiveBits() <= ExVTBits) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1201 1202 // Since the sign extended bits are demanded, we know that the sign 1203 // bit is demanded. 1204 InputDemandedBits.setBit(ExVTBits - 1); 1205 1206 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1207 return true; 1208 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1209 1210 // If the sign bit of the input is known set or clear, then we know the 1211 // top bits of the result. 1212 1213 // If the input sign bit is known zero, convert this into a zero extension. 1214 if (Known.Zero[ExVTBits - 1]) 1215 return TLO.CombineTo( 1216 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1217 1218 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1219 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1220 Known.One.setBitsFrom(ExVTBits); 1221 Known.Zero &= Mask; 1222 } else { // Input sign bit unknown 1223 Known.Zero &= Mask; 1224 Known.One &= Mask; 1225 } 1226 break; 1227 } 1228 case ISD::BUILD_PAIR: { 1229 EVT HalfVT = Op.getOperand(0).getValueType(); 1230 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1231 1232 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1233 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1234 1235 KnownBits KnownLo, KnownHi; 1236 1237 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1238 return true; 1239 1240 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1241 return true; 1242 1243 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1244 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1245 1246 Known.One = KnownLo.One.zext(BitWidth) | 1247 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1248 break; 1249 } 1250 case ISD::ZERO_EXTEND: { 1251 SDValue Src = Op.getOperand(0); 1252 unsigned InBits = Src.getScalarValueSizeInBits(); 1253 1254 // If none of the top bits are demanded, convert this into an any_extend. 1255 if (DemandedBits.getActiveBits() <= InBits) 1256 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1257 1258 APInt InDemandedBits = DemandedBits.trunc(InBits); 1259 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1260 return true; 1261 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1262 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1263 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1264 break; 1265 } 1266 case ISD::SIGN_EXTEND: { 1267 SDValue Src = Op.getOperand(0); 1268 unsigned InBits = Src.getScalarValueSizeInBits(); 1269 1270 // If none of the top bits are demanded, convert this into an any_extend. 1271 if (DemandedBits.getActiveBits() <= InBits) 1272 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1273 1274 // Since some of the sign extended bits are demanded, we know that the sign 1275 // bit is demanded. 1276 APInt InDemandedBits = DemandedBits.trunc(InBits); 1277 InDemandedBits.setBit(InBits - 1); 1278 1279 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1280 return true; 1281 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1282 // If the sign bit is known one, the top bits match. 1283 Known = Known.sext(BitWidth); 1284 1285 // If the sign bit is known zero, convert this to a zero extend. 1286 if (Known.isNonNegative()) 1287 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1288 break; 1289 } 1290 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1291 // TODO - merge this with SIGN_EXTEND above? 1292 SDValue Src = Op.getOperand(0); 1293 unsigned InBits = Src.getScalarValueSizeInBits(); 1294 1295 APInt InDemandedBits = DemandedBits.trunc(InBits); 1296 1297 // If some of the sign extended bits are demanded, we know that the sign 1298 // bit is demanded. 1299 if (InBits < DemandedBits.getActiveBits()) 1300 InDemandedBits.setBit(InBits - 1); 1301 1302 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1303 return true; 1304 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1305 // If the sign bit is known one, the top bits match. 1306 Known = Known.sext(BitWidth); 1307 break; 1308 } 1309 case ISD::ANY_EXTEND: { 1310 SDValue Src = Op.getOperand(0); 1311 unsigned InBits = Src.getScalarValueSizeInBits(); 1312 APInt InDemandedBits = DemandedBits.trunc(InBits); 1313 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1314 return true; 1315 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1316 Known = Known.zext(BitWidth, false /* => any extend */); 1317 break; 1318 } 1319 case ISD::TRUNCATE: { 1320 SDValue Src = Op.getOperand(0); 1321 1322 // Simplify the input, using demanded bit information, and compute the known 1323 // zero/one bits live out. 1324 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1325 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1326 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1327 return true; 1328 Known = Known.trunc(BitWidth); 1329 1330 // If the input is only used by this truncate, see if we can shrink it based 1331 // on the known demanded bits. 1332 if (Src.getNode()->hasOneUse()) { 1333 switch (Src.getOpcode()) { 1334 default: 1335 break; 1336 case ISD::SRL: 1337 // Shrink SRL by a constant if none of the high bits shifted in are 1338 // demanded. 1339 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1340 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1341 // undesirable. 1342 break; 1343 1344 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1345 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1346 break; 1347 1348 SDValue Shift = Src.getOperand(1); 1349 uint64_t ShVal = ShAmt->getZExtValue(); 1350 1351 if (TLO.LegalTypes()) 1352 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1353 1354 APInt HighBits = 1355 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1356 HighBits.lshrInPlace(ShVal); 1357 HighBits = HighBits.trunc(BitWidth); 1358 1359 if (!(HighBits & DemandedBits)) { 1360 // None of the shifted in bits are needed. Add a truncate of the 1361 // shift input, then shift it. 1362 SDValue NewTrunc = 1363 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1364 return TLO.CombineTo( 1365 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1366 } 1367 break; 1368 } 1369 } 1370 1371 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1372 break; 1373 } 1374 case ISD::AssertZext: { 1375 // AssertZext demands all of the high bits, plus any of the low bits 1376 // demanded by its users. 1377 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1378 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1379 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1380 TLO, Depth + 1)) 1381 return true; 1382 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1383 1384 Known.Zero |= ~InMask; 1385 break; 1386 } 1387 case ISD::EXTRACT_VECTOR_ELT: { 1388 SDValue Src = Op.getOperand(0); 1389 SDValue Idx = Op.getOperand(1); 1390 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1391 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1392 1393 // Demand the bits from every vector element without a constant index. 1394 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1395 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1396 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1397 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1398 1399 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1400 // anything about the extended bits. 1401 APInt DemandedSrcBits = DemandedBits; 1402 if (BitWidth > EltBitWidth) 1403 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1404 1405 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1406 Depth + 1)) 1407 return true; 1408 1409 Known = Known2; 1410 if (BitWidth > EltBitWidth) 1411 Known = Known.zext(BitWidth, false /* => any extend */); 1412 break; 1413 } 1414 case ISD::BITCAST: { 1415 SDValue Src = Op.getOperand(0); 1416 EVT SrcVT = Src.getValueType(); 1417 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1418 1419 // If this is an FP->Int bitcast and if the sign bit is the only 1420 // thing demanded, turn this into a FGETSIGN. 1421 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1422 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1423 SrcVT.isFloatingPoint()) { 1424 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1425 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1426 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1427 SrcVT != MVT::f128) { 1428 // Cannot eliminate/lower SHL for f128 yet. 1429 EVT Ty = OpVTLegal ? VT : MVT::i32; 1430 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1431 // place. We expect the SHL to be eliminated by other optimizations. 1432 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1433 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1434 if (!OpVTLegal && OpVTSizeInBits > 32) 1435 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1436 unsigned ShVal = Op.getValueSizeInBits() - 1; 1437 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1438 return TLO.CombineTo(Op, 1439 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1440 } 1441 } 1442 1443 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1444 // Demand the elt/bit if any of the original elts/bits are demanded. 1445 // TODO - bigendian once we have test coverage. 1446 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1447 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1448 (BitWidth % NumSrcEltBits) == 0 && 1449 TLO.DAG.getDataLayout().isLittleEndian()) { 1450 unsigned Scale = BitWidth / NumSrcEltBits; 1451 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1452 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1453 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1454 for (unsigned i = 0; i != Scale; ++i) { 1455 unsigned Offset = i * NumSrcEltBits; 1456 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1457 if (!Sub.isNullValue()) { 1458 DemandedSrcBits |= Sub; 1459 for (unsigned j = 0; j != NumElts; ++j) 1460 if (DemandedElts[j]) 1461 DemandedSrcElts.setBit((j * Scale) + i); 1462 } 1463 } 1464 1465 APInt KnownSrcUndef, KnownSrcZero; 1466 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1467 KnownSrcZero, TLO, Depth + 1)) 1468 return true; 1469 1470 KnownBits KnownSrcBits; 1471 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1472 KnownSrcBits, TLO, Depth + 1)) 1473 return true; 1474 } else if ((NumSrcEltBits % BitWidth) == 0 && 1475 TLO.DAG.getDataLayout().isLittleEndian()) { 1476 unsigned Scale = NumSrcEltBits / BitWidth; 1477 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1478 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1479 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1480 for (unsigned i = 0; i != NumElts; ++i) 1481 if (DemandedElts[i]) { 1482 unsigned Offset = (i % Scale) * BitWidth; 1483 DemandedSrcBits.insertBits(DemandedBits, Offset); 1484 DemandedSrcElts.setBit(i / Scale); 1485 } 1486 1487 if (SrcVT.isVector()) { 1488 APInt KnownSrcUndef, KnownSrcZero; 1489 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1490 KnownSrcZero, TLO, Depth + 1)) 1491 return true; 1492 } 1493 1494 KnownBits KnownSrcBits; 1495 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1496 KnownSrcBits, TLO, Depth + 1)) 1497 return true; 1498 } 1499 1500 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1501 // recursive call where Known may be useful to the caller. 1502 if (Depth > 0) { 1503 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1504 return false; 1505 } 1506 break; 1507 } 1508 case ISD::ADD: 1509 case ISD::MUL: 1510 case ISD::SUB: { 1511 // Add, Sub, and Mul don't demand any bits in positions beyond that 1512 // of the highest bit demanded of them. 1513 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1514 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1515 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1516 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1517 Depth + 1) || 1518 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1519 Depth + 1) || 1520 // See if the operation should be performed at a smaller bit width. 1521 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1522 SDNodeFlags Flags = Op.getNode()->getFlags(); 1523 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1524 // Disable the nsw and nuw flags. We can no longer guarantee that we 1525 // won't wrap after simplification. 1526 Flags.setNoSignedWrap(false); 1527 Flags.setNoUnsignedWrap(false); 1528 SDValue NewOp = 1529 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1530 return TLO.CombineTo(Op, NewOp); 1531 } 1532 return true; 1533 } 1534 1535 // If we have a constant operand, we may be able to turn it into -1 if we 1536 // do not demand the high bits. This can make the constant smaller to 1537 // encode, allow more general folding, or match specialized instruction 1538 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1539 // is probably not useful (and could be detrimental). 1540 ConstantSDNode *C = isConstOrConstSplat(Op1); 1541 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1542 if (C && !C->isAllOnesValue() && !C->isOne() && 1543 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1544 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1545 // We can't guarantee that the new math op doesn't wrap, so explicitly 1546 // clear those flags to prevent folding with a potential existing node 1547 // that has those flags set. 1548 SDNodeFlags Flags; 1549 Flags.setNoSignedWrap(false); 1550 Flags.setNoUnsignedWrap(false); 1551 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1552 return TLO.CombineTo(Op, NewOp); 1553 } 1554 1555 LLVM_FALLTHROUGH; 1556 } 1557 default: 1558 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1559 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1560 Known, TLO, Depth)) 1561 return true; 1562 break; 1563 } 1564 1565 // Just use computeKnownBits to compute output bits. 1566 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1567 break; 1568 } 1569 1570 // If we know the value of all of the demanded bits, return this as a 1571 // constant. 1572 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1573 // Avoid folding to a constant if any OpaqueConstant is involved. 1574 const SDNode *N = Op.getNode(); 1575 for (SDNodeIterator I = SDNodeIterator::begin(N), 1576 E = SDNodeIterator::end(N); 1577 I != E; ++I) { 1578 SDNode *Op = *I; 1579 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1580 if (C->isOpaque()) 1581 return false; 1582 } 1583 // TODO: Handle float bits as well. 1584 if (VT.isInteger()) 1585 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1586 } 1587 1588 return false; 1589 } 1590 1591 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1592 const APInt &DemandedElts, 1593 APInt &KnownUndef, 1594 APInt &KnownZero, 1595 DAGCombinerInfo &DCI) const { 1596 SelectionDAG &DAG = DCI.DAG; 1597 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1598 !DCI.isBeforeLegalizeOps()); 1599 1600 bool Simplified = 1601 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1602 if (Simplified) { 1603 DCI.AddToWorklist(Op.getNode()); 1604 DCI.CommitTargetLoweringOpt(TLO); 1605 } 1606 return Simplified; 1607 } 1608 1609 /// Given a vector binary operation and known undefined elements for each input 1610 /// operand, compute whether each element of the output is undefined. 1611 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1612 const APInt &UndefOp0, 1613 const APInt &UndefOp1) { 1614 EVT VT = BO.getValueType(); 1615 assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only"); 1616 1617 EVT EltVT = VT.getVectorElementType(); 1618 unsigned NumElts = VT.getVectorNumElements(); 1619 assert(UndefOp0.getBitWidth() == NumElts && 1620 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1621 1622 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1623 const APInt &UndefVals) { 1624 if (UndefVals[Index]) 1625 return DAG.getUNDEF(EltVT); 1626 1627 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1628 // Try hard to make sure that the getNode() call is not creating temporary 1629 // nodes. Ignore opaque integers because they do not constant fold. 1630 SDValue Elt = BV->getOperand(Index); 1631 auto *C = dyn_cast<ConstantSDNode>(Elt); 1632 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1633 return Elt; 1634 } 1635 1636 return SDValue(); 1637 }; 1638 1639 APInt KnownUndef = APInt::getNullValue(NumElts); 1640 for (unsigned i = 0; i != NumElts; ++i) { 1641 // If both inputs for this element are either constant or undef and match 1642 // the element type, compute the constant/undef result for this element of 1643 // the vector. 1644 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1645 // not handle FP constants. The code within getNode() should be refactored 1646 // to avoid the danger of creating a bogus temporary node here. 1647 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1648 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1649 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1650 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1651 KnownUndef.setBit(i); 1652 } 1653 return KnownUndef; 1654 } 1655 1656 bool TargetLowering::SimplifyDemandedVectorElts( 1657 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1658 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1659 bool AssumeSingleUse) const { 1660 EVT VT = Op.getValueType(); 1661 APInt DemandedElts = DemandedEltMask; 1662 unsigned NumElts = DemandedElts.getBitWidth(); 1663 assert(VT.isVector() && "Expected vector op"); 1664 assert(VT.getVectorNumElements() == NumElts && 1665 "Mask size mismatches value type element count!"); 1666 1667 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1668 1669 // Undef operand. 1670 if (Op.isUndef()) { 1671 KnownUndef.setAllBits(); 1672 return false; 1673 } 1674 1675 // If Op has other users, assume that all elements are needed. 1676 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1677 DemandedElts.setAllBits(); 1678 1679 // Not demanding any elements from Op. 1680 if (DemandedElts == 0) { 1681 KnownUndef.setAllBits(); 1682 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1683 } 1684 1685 // Limit search depth. 1686 if (Depth >= 6) 1687 return false; 1688 1689 SDLoc DL(Op); 1690 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1691 1692 switch (Op.getOpcode()) { 1693 case ISD::SCALAR_TO_VECTOR: { 1694 if (!DemandedElts[0]) { 1695 KnownUndef.setAllBits(); 1696 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1697 } 1698 KnownUndef.setHighBits(NumElts - 1); 1699 break; 1700 } 1701 case ISD::BITCAST: { 1702 SDValue Src = Op.getOperand(0); 1703 EVT SrcVT = Src.getValueType(); 1704 1705 // We only handle vectors here. 1706 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1707 if (!SrcVT.isVector()) 1708 break; 1709 1710 // Fast handling of 'identity' bitcasts. 1711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1712 if (NumSrcElts == NumElts) 1713 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1714 KnownZero, TLO, Depth + 1); 1715 1716 APInt SrcZero, SrcUndef; 1717 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1718 1719 // Bitcast from 'large element' src vector to 'small element' vector, we 1720 // must demand a source element if any DemandedElt maps to it. 1721 if ((NumElts % NumSrcElts) == 0) { 1722 unsigned Scale = NumElts / NumSrcElts; 1723 for (unsigned i = 0; i != NumElts; ++i) 1724 if (DemandedElts[i]) 1725 SrcDemandedElts.setBit(i / Scale); 1726 1727 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1728 TLO, Depth + 1)) 1729 return true; 1730 1731 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1732 // of the large element. 1733 // TODO - bigendian once we have test coverage. 1734 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1735 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1736 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1737 for (unsigned i = 0; i != NumElts; ++i) 1738 if (DemandedElts[i]) { 1739 unsigned Ofs = (i % Scale) * EltSizeInBits; 1740 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1741 } 1742 1743 KnownBits Known; 1744 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1745 return true; 1746 } 1747 1748 // If the src element is zero/undef then all the output elements will be - 1749 // only demanded elements are guaranteed to be correct. 1750 for (unsigned i = 0; i != NumSrcElts; ++i) { 1751 if (SrcDemandedElts[i]) { 1752 if (SrcZero[i]) 1753 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1754 if (SrcUndef[i]) 1755 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1756 } 1757 } 1758 } 1759 1760 // Bitcast from 'small element' src vector to 'large element' vector, we 1761 // demand all smaller source elements covered by the larger demanded element 1762 // of this vector. 1763 if ((NumSrcElts % NumElts) == 0) { 1764 unsigned Scale = NumSrcElts / NumElts; 1765 for (unsigned i = 0; i != NumElts; ++i) 1766 if (DemandedElts[i]) 1767 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1768 1769 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1770 TLO, Depth + 1)) 1771 return true; 1772 1773 // If all the src elements covering an output element are zero/undef, then 1774 // the output element will be as well, assuming it was demanded. 1775 for (unsigned i = 0; i != NumElts; ++i) { 1776 if (DemandedElts[i]) { 1777 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1778 KnownZero.setBit(i); 1779 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1780 KnownUndef.setBit(i); 1781 } 1782 } 1783 } 1784 break; 1785 } 1786 case ISD::BUILD_VECTOR: { 1787 // Check all elements and simplify any unused elements with UNDEF. 1788 if (!DemandedElts.isAllOnesValue()) { 1789 // Don't simplify BROADCASTS. 1790 if (llvm::any_of(Op->op_values(), 1791 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1792 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1793 bool Updated = false; 1794 for (unsigned i = 0; i != NumElts; ++i) { 1795 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1796 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1797 KnownUndef.setBit(i); 1798 Updated = true; 1799 } 1800 } 1801 if (Updated) 1802 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1803 } 1804 } 1805 for (unsigned i = 0; i != NumElts; ++i) { 1806 SDValue SrcOp = Op.getOperand(i); 1807 if (SrcOp.isUndef()) { 1808 KnownUndef.setBit(i); 1809 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1810 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1811 KnownZero.setBit(i); 1812 } 1813 } 1814 break; 1815 } 1816 case ISD::CONCAT_VECTORS: { 1817 EVT SubVT = Op.getOperand(0).getValueType(); 1818 unsigned NumSubVecs = Op.getNumOperands(); 1819 unsigned NumSubElts = SubVT.getVectorNumElements(); 1820 for (unsigned i = 0; i != NumSubVecs; ++i) { 1821 SDValue SubOp = Op.getOperand(i); 1822 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1823 APInt SubUndef, SubZero; 1824 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1825 Depth + 1)) 1826 return true; 1827 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1828 KnownZero.insertBits(SubZero, i * NumSubElts); 1829 } 1830 break; 1831 } 1832 case ISD::INSERT_SUBVECTOR: { 1833 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1834 break; 1835 SDValue Base = Op.getOperand(0); 1836 SDValue Sub = Op.getOperand(1); 1837 EVT SubVT = Sub.getValueType(); 1838 unsigned NumSubElts = SubVT.getVectorNumElements(); 1839 const APInt &Idx = Op.getConstantOperandAPInt(2); 1840 if (Idx.ugt(NumElts - NumSubElts)) 1841 break; 1842 unsigned SubIdx = Idx.getZExtValue(); 1843 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1844 APInt SubUndef, SubZero; 1845 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1846 Depth + 1)) 1847 return true; 1848 APInt BaseElts = DemandedElts; 1849 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1850 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1851 Depth + 1)) 1852 return true; 1853 KnownUndef.insertBits(SubUndef, SubIdx); 1854 KnownZero.insertBits(SubZero, SubIdx); 1855 break; 1856 } 1857 case ISD::EXTRACT_SUBVECTOR: { 1858 SDValue Src = Op.getOperand(0); 1859 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1860 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1861 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1862 // Offset the demanded elts by the subvector index. 1863 uint64_t Idx = SubIdx->getZExtValue(); 1864 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1865 APInt SrcUndef, SrcZero; 1866 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1867 Depth + 1)) 1868 return true; 1869 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1870 KnownZero = SrcZero.extractBits(NumElts, Idx); 1871 } 1872 break; 1873 } 1874 case ISD::INSERT_VECTOR_ELT: { 1875 SDValue Vec = Op.getOperand(0); 1876 SDValue Scl = Op.getOperand(1); 1877 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1878 1879 // For a legal, constant insertion index, if we don't need this insertion 1880 // then strip it, else remove it from the demanded elts. 1881 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1882 unsigned Idx = CIdx->getZExtValue(); 1883 if (!DemandedElts[Idx]) 1884 return TLO.CombineTo(Op, Vec); 1885 1886 APInt DemandedVecElts(DemandedElts); 1887 DemandedVecElts.clearBit(Idx); 1888 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 1889 KnownZero, TLO, Depth + 1)) 1890 return true; 1891 1892 KnownUndef.clearBit(Idx); 1893 if (Scl.isUndef()) 1894 KnownUndef.setBit(Idx); 1895 1896 KnownZero.clearBit(Idx); 1897 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1898 KnownZero.setBit(Idx); 1899 break; 1900 } 1901 1902 APInt VecUndef, VecZero; 1903 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1904 Depth + 1)) 1905 return true; 1906 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1907 break; 1908 } 1909 case ISD::VSELECT: { 1910 // Try to transform the select condition based on the current demanded 1911 // elements. 1912 // TODO: If a condition element is undef, we can choose from one arm of the 1913 // select (and if one arm is undef, then we can propagate that to the 1914 // result). 1915 // TODO - add support for constant vselect masks (see IR version of this). 1916 APInt UnusedUndef, UnusedZero; 1917 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1918 UnusedZero, TLO, Depth + 1)) 1919 return true; 1920 1921 // See if we can simplify either vselect operand. 1922 APInt DemandedLHS(DemandedElts); 1923 APInt DemandedRHS(DemandedElts); 1924 APInt UndefLHS, ZeroLHS; 1925 APInt UndefRHS, ZeroRHS; 1926 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1927 ZeroLHS, TLO, Depth + 1)) 1928 return true; 1929 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1930 ZeroRHS, TLO, Depth + 1)) 1931 return true; 1932 1933 KnownUndef = UndefLHS & UndefRHS; 1934 KnownZero = ZeroLHS & ZeroRHS; 1935 break; 1936 } 1937 case ISD::VECTOR_SHUFFLE: { 1938 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1939 1940 // Collect demanded elements from shuffle operands.. 1941 APInt DemandedLHS(NumElts, 0); 1942 APInt DemandedRHS(NumElts, 0); 1943 for (unsigned i = 0; i != NumElts; ++i) { 1944 int M = ShuffleMask[i]; 1945 if (M < 0 || !DemandedElts[i]) 1946 continue; 1947 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1948 if (M < (int)NumElts) 1949 DemandedLHS.setBit(M); 1950 else 1951 DemandedRHS.setBit(M - NumElts); 1952 } 1953 1954 // See if we can simplify either shuffle operand. 1955 APInt UndefLHS, ZeroLHS; 1956 APInt UndefRHS, ZeroRHS; 1957 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1958 ZeroLHS, TLO, Depth + 1)) 1959 return true; 1960 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1961 ZeroRHS, TLO, Depth + 1)) 1962 return true; 1963 1964 // Simplify mask using undef elements from LHS/RHS. 1965 bool Updated = false; 1966 bool IdentityLHS = true, IdentityRHS = true; 1967 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1968 for (unsigned i = 0; i != NumElts; ++i) { 1969 int &M = NewMask[i]; 1970 if (M < 0) 1971 continue; 1972 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1973 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1974 Updated = true; 1975 M = -1; 1976 } 1977 IdentityLHS &= (M < 0) || (M == (int)i); 1978 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1979 } 1980 1981 // Update legal shuffle masks based on demanded elements if it won't reduce 1982 // to Identity which can cause premature removal of the shuffle mask. 1983 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1984 isShuffleMaskLegal(NewMask, VT)) 1985 return TLO.CombineTo(Op, 1986 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1987 Op.getOperand(1), NewMask)); 1988 1989 // Propagate undef/zero elements from LHS/RHS. 1990 for (unsigned i = 0; i != NumElts; ++i) { 1991 int M = ShuffleMask[i]; 1992 if (M < 0) { 1993 KnownUndef.setBit(i); 1994 } else if (M < (int)NumElts) { 1995 if (UndefLHS[M]) 1996 KnownUndef.setBit(i); 1997 if (ZeroLHS[M]) 1998 KnownZero.setBit(i); 1999 } else { 2000 if (UndefRHS[M - NumElts]) 2001 KnownUndef.setBit(i); 2002 if (ZeroRHS[M - NumElts]) 2003 KnownZero.setBit(i); 2004 } 2005 } 2006 break; 2007 } 2008 case ISD::SIGN_EXTEND_VECTOR_INREG: 2009 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2010 APInt SrcUndef, SrcZero; 2011 SDValue Src = Op.getOperand(0); 2012 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2013 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2014 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2015 Depth + 1)) 2016 return true; 2017 KnownZero = SrcZero.zextOrTrunc(NumElts); 2018 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2019 2020 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2021 // zext(undef) upper bits are guaranteed to be zero. 2022 if (DemandedElts.isSubsetOf(KnownUndef)) 2023 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2024 KnownUndef.clearAllBits(); 2025 } 2026 break; 2027 } 2028 2029 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2030 // MAX, saturated math, etc. 2031 case ISD::OR: 2032 case ISD::XOR: 2033 case ISD::ADD: 2034 case ISD::SUB: 2035 case ISD::FADD: 2036 case ISD::FSUB: 2037 case ISD::FMUL: 2038 case ISD::FDIV: 2039 case ISD::FREM: { 2040 APInt UndefRHS, ZeroRHS; 2041 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2042 ZeroRHS, TLO, Depth + 1)) 2043 return true; 2044 APInt UndefLHS, ZeroLHS; 2045 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2046 ZeroLHS, TLO, Depth + 1)) 2047 return true; 2048 2049 KnownZero = ZeroLHS & ZeroRHS; 2050 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2051 break; 2052 } 2053 case ISD::AND: { 2054 APInt SrcUndef, SrcZero; 2055 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2056 SrcZero, TLO, Depth + 1)) 2057 return true; 2058 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2059 KnownZero, TLO, Depth + 1)) 2060 return true; 2061 2062 // If either side has a zero element, then the result element is zero, even 2063 // if the other is an UNDEF. 2064 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2065 // and then handle 'and' nodes with the rest of the binop opcodes. 2066 KnownZero |= SrcZero; 2067 KnownUndef &= SrcUndef; 2068 KnownUndef &= ~KnownZero; 2069 break; 2070 } 2071 case ISD::TRUNCATE: 2072 case ISD::SIGN_EXTEND: 2073 case ISD::ZERO_EXTEND: 2074 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2075 KnownZero, TLO, Depth + 1)) 2076 return true; 2077 2078 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2079 // zext(undef) upper bits are guaranteed to be zero. 2080 if (DemandedElts.isSubsetOf(KnownUndef)) 2081 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2082 KnownUndef.clearAllBits(); 2083 } 2084 break; 2085 default: { 2086 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2087 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2088 KnownZero, TLO, Depth)) 2089 return true; 2090 } else { 2091 KnownBits Known; 2092 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2093 if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO, 2094 Depth, AssumeSingleUse)) 2095 return true; 2096 } 2097 break; 2098 } 2099 } 2100 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2101 2102 // Constant fold all undef cases. 2103 // TODO: Handle zero cases as well. 2104 if (DemandedElts.isSubsetOf(KnownUndef)) 2105 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2106 2107 return false; 2108 } 2109 2110 /// Determine which of the bits specified in Mask are known to be either zero or 2111 /// one and return them in the Known. 2112 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2113 KnownBits &Known, 2114 const APInt &DemandedElts, 2115 const SelectionDAG &DAG, 2116 unsigned Depth) const { 2117 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2118 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2119 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2120 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2121 "Should use MaskedValueIsZero if you don't know whether Op" 2122 " is a target node!"); 2123 Known.resetAll(); 2124 } 2125 2126 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2127 KnownBits &Known, 2128 const APInt &DemandedElts, 2129 const SelectionDAG &DAG, 2130 unsigned Depth) const { 2131 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2132 2133 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2134 // The low bits are known zero if the pointer is aligned. 2135 Known.Zero.setLowBits(Log2_32(Align)); 2136 } 2137 } 2138 2139 /// This method can be implemented by targets that want to expose additional 2140 /// information about sign bits to the DAG Combiner. 2141 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2142 const APInt &, 2143 const SelectionDAG &, 2144 unsigned Depth) const { 2145 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2146 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2147 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2148 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2149 "Should use ComputeNumSignBits if you don't know whether Op" 2150 " is a target node!"); 2151 return 1; 2152 } 2153 2154 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2155 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2156 TargetLoweringOpt &TLO, unsigned Depth) const { 2157 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2158 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2159 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2160 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2161 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2162 " is a target node!"); 2163 return false; 2164 } 2165 2166 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2167 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2168 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2169 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2170 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2171 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2172 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2173 "Should use SimplifyDemandedBits if you don't know whether Op" 2174 " is a target node!"); 2175 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2176 return false; 2177 } 2178 2179 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2180 const SelectionDAG &DAG, 2181 bool SNaN, 2182 unsigned Depth) const { 2183 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2184 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2185 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2186 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2187 "Should use isKnownNeverNaN if you don't know whether Op" 2188 " is a target node!"); 2189 return false; 2190 } 2191 2192 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2193 // work with truncating build vectors and vectors with elements of less than 2194 // 8 bits. 2195 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2196 if (!N) 2197 return false; 2198 2199 APInt CVal; 2200 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2201 CVal = CN->getAPIntValue(); 2202 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2203 auto *CN = BV->getConstantSplatNode(); 2204 if (!CN) 2205 return false; 2206 2207 // If this is a truncating build vector, truncate the splat value. 2208 // Otherwise, we may fail to match the expected values below. 2209 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2210 CVal = CN->getAPIntValue(); 2211 if (BVEltWidth < CVal.getBitWidth()) 2212 CVal = CVal.trunc(BVEltWidth); 2213 } else { 2214 return false; 2215 } 2216 2217 switch (getBooleanContents(N->getValueType(0))) { 2218 case UndefinedBooleanContent: 2219 return CVal[0]; 2220 case ZeroOrOneBooleanContent: 2221 return CVal.isOneValue(); 2222 case ZeroOrNegativeOneBooleanContent: 2223 return CVal.isAllOnesValue(); 2224 } 2225 2226 llvm_unreachable("Invalid boolean contents"); 2227 } 2228 2229 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2230 if (!N) 2231 return false; 2232 2233 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2234 if (!CN) { 2235 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2236 if (!BV) 2237 return false; 2238 2239 // Only interested in constant splats, we don't care about undef 2240 // elements in identifying boolean constants and getConstantSplatNode 2241 // returns NULL if all ops are undef; 2242 CN = BV->getConstantSplatNode(); 2243 if (!CN) 2244 return false; 2245 } 2246 2247 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2248 return !CN->getAPIntValue()[0]; 2249 2250 return CN->isNullValue(); 2251 } 2252 2253 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2254 bool SExt) const { 2255 if (VT == MVT::i1) 2256 return N->isOne(); 2257 2258 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2259 switch (Cnt) { 2260 case TargetLowering::ZeroOrOneBooleanContent: 2261 // An extended value of 1 is always true, unless its original type is i1, 2262 // in which case it will be sign extended to -1. 2263 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2264 case TargetLowering::UndefinedBooleanContent: 2265 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2266 return N->isAllOnesValue() && SExt; 2267 } 2268 llvm_unreachable("Unexpected enumeration."); 2269 } 2270 2271 /// This helper function of SimplifySetCC tries to optimize the comparison when 2272 /// either operand of the SetCC node is a bitwise-and instruction. 2273 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2274 ISD::CondCode Cond, const SDLoc &DL, 2275 DAGCombinerInfo &DCI) const { 2276 // Match these patterns in any of their permutations: 2277 // (X & Y) == Y 2278 // (X & Y) != Y 2279 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2280 std::swap(N0, N1); 2281 2282 EVT OpVT = N0.getValueType(); 2283 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2284 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2285 return SDValue(); 2286 2287 SDValue X, Y; 2288 if (N0.getOperand(0) == N1) { 2289 X = N0.getOperand(1); 2290 Y = N0.getOperand(0); 2291 } else if (N0.getOperand(1) == N1) { 2292 X = N0.getOperand(0); 2293 Y = N0.getOperand(1); 2294 } else { 2295 return SDValue(); 2296 } 2297 2298 SelectionDAG &DAG = DCI.DAG; 2299 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2300 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2301 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2302 // Note that where Y is variable and is known to have at most one bit set 2303 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2304 // equivalent when Y == 0. 2305 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2306 if (DCI.isBeforeLegalizeOps() || 2307 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2308 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2309 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2310 // If the target supports an 'and-not' or 'and-complement' logic operation, 2311 // try to use that to make a comparison operation more efficient. 2312 // But don't do this transform if the mask is a single bit because there are 2313 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2314 // 'rlwinm' on PPC). 2315 2316 // Bail out if the compare operand that we want to turn into a zero is 2317 // already a zero (otherwise, infinite loop). 2318 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2319 if (YConst && YConst->isNullValue()) 2320 return SDValue(); 2321 2322 // Transform this into: ~X & Y == 0. 2323 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2324 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2325 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2326 } 2327 2328 return SDValue(); 2329 } 2330 2331 /// There are multiple IR patterns that could be checking whether certain 2332 /// truncation of a signed number would be lossy or not. The pattern which is 2333 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2334 /// We are looking for the following pattern: (KeptBits is a constant) 2335 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2336 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2337 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2338 /// We will unfold it into the natural trunc+sext pattern: 2339 /// ((%x << C) a>> C) dstcond %x 2340 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2341 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2342 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2343 const SDLoc &DL) const { 2344 // We must be comparing with a constant. 2345 ConstantSDNode *C1; 2346 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2347 return SDValue(); 2348 2349 // N0 should be: add %x, (1 << (KeptBits-1)) 2350 if (N0->getOpcode() != ISD::ADD) 2351 return SDValue(); 2352 2353 // And we must be 'add'ing a constant. 2354 ConstantSDNode *C01; 2355 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2356 return SDValue(); 2357 2358 SDValue X = N0->getOperand(0); 2359 EVT XVT = X.getValueType(); 2360 2361 // Validate constants ... 2362 2363 APInt I1 = C1->getAPIntValue(); 2364 2365 ISD::CondCode NewCond; 2366 if (Cond == ISD::CondCode::SETULT) { 2367 NewCond = ISD::CondCode::SETEQ; 2368 } else if (Cond == ISD::CondCode::SETULE) { 2369 NewCond = ISD::CondCode::SETEQ; 2370 // But need to 'canonicalize' the constant. 2371 I1 += 1; 2372 } else if (Cond == ISD::CondCode::SETUGT) { 2373 NewCond = ISD::CondCode::SETNE; 2374 // But need to 'canonicalize' the constant. 2375 I1 += 1; 2376 } else if (Cond == ISD::CondCode::SETUGE) { 2377 NewCond = ISD::CondCode::SETNE; 2378 } else 2379 return SDValue(); 2380 2381 APInt I01 = C01->getAPIntValue(); 2382 2383 auto checkConstants = [&I1, &I01]() -> bool { 2384 // Both of them must be power-of-two, and the constant from setcc is bigger. 2385 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2386 }; 2387 2388 if (checkConstants()) { 2389 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2390 } else { 2391 // What if we invert constants? (and the target predicate) 2392 I1.negate(); 2393 I01.negate(); 2394 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2395 if (!checkConstants()) 2396 return SDValue(); 2397 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2398 } 2399 2400 // They are power-of-two, so which bit is set? 2401 const unsigned KeptBits = I1.logBase2(); 2402 const unsigned KeptBitsMinusOne = I01.logBase2(); 2403 2404 // Magic! 2405 if (KeptBits != (KeptBitsMinusOne + 1)) 2406 return SDValue(); 2407 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2408 2409 // We don't want to do this in every single case. 2410 SelectionDAG &DAG = DCI.DAG; 2411 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2412 XVT, KeptBits)) 2413 return SDValue(); 2414 2415 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2416 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2417 2418 // Unfold into: ((%x << C) a>> C) cond %x 2419 // Where 'cond' will be either 'eq' or 'ne'. 2420 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2421 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2422 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2423 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2424 2425 return T2; 2426 } 2427 2428 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2429 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2430 /// handle the commuted versions of these patterns. 2431 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2432 ISD::CondCode Cond, const SDLoc &DL, 2433 DAGCombinerInfo &DCI) const { 2434 unsigned BOpcode = N0.getOpcode(); 2435 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2436 "Unexpected binop"); 2437 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2438 2439 // (X + Y) == X --> Y == 0 2440 // (X - Y) == X --> Y == 0 2441 // (X ^ Y) == X --> Y == 0 2442 SelectionDAG &DAG = DCI.DAG; 2443 EVT OpVT = N0.getValueType(); 2444 SDValue X = N0.getOperand(0); 2445 SDValue Y = N0.getOperand(1); 2446 if (X == N1) 2447 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2448 2449 if (Y != N1) 2450 return SDValue(); 2451 2452 // (X + Y) == Y --> X == 0 2453 // (X ^ Y) == Y --> X == 0 2454 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2455 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2456 2457 // The shift would not be valid if the operands are boolean (i1). 2458 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2459 return SDValue(); 2460 2461 // (X - Y) == Y --> X == Y << 1 2462 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2463 !DCI.isBeforeLegalize()); 2464 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2465 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2466 if (!DCI.isCalledByLegalizer()) 2467 DCI.AddToWorklist(YShl1.getNode()); 2468 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2469 } 2470 2471 /// Try to simplify a setcc built with the specified operands and cc. If it is 2472 /// unable to simplify it, return a null SDValue. 2473 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2474 ISD::CondCode Cond, bool foldBooleans, 2475 DAGCombinerInfo &DCI, 2476 const SDLoc &dl) const { 2477 SelectionDAG &DAG = DCI.DAG; 2478 EVT OpVT = N0.getValueType(); 2479 2480 // Constant fold or commute setcc. 2481 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 2482 return Fold; 2483 2484 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2485 // TODO: Handle non-splat vector constants. All undef causes trouble. 2486 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2487 if (isConstOrConstSplat(N0) && 2488 (DCI.isBeforeLegalizeOps() || 2489 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2490 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2491 2492 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2493 const APInt &C1 = N1C->getAPIntValue(); 2494 2495 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2496 // equality comparison, then we're just comparing whether X itself is 2497 // zero. 2498 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2499 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2500 N0.getOperand(1).getOpcode() == ISD::Constant) { 2501 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 2502 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2503 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2504 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2505 // (srl (ctlz x), 5) == 0 -> X != 0 2506 // (srl (ctlz x), 5) != 1 -> X != 0 2507 Cond = ISD::SETNE; 2508 } else { 2509 // (srl (ctlz x), 5) != 0 -> X == 0 2510 // (srl (ctlz x), 5) == 1 -> X == 0 2511 Cond = ISD::SETEQ; 2512 } 2513 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2514 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2515 Zero, Cond); 2516 } 2517 } 2518 2519 SDValue CTPOP = N0; 2520 // Look through truncs that don't change the value of a ctpop. 2521 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2522 CTPOP = N0.getOperand(0); 2523 2524 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2525 (N0 == CTPOP || 2526 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2527 EVT CTVT = CTPOP.getValueType(); 2528 SDValue CTOp = CTPOP.getOperand(0); 2529 2530 // (ctpop x) u< 2 -> (x & x-1) == 0 2531 // (ctpop x) u> 1 -> (x & x-1) != 0 2532 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2533 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2534 DAG.getConstant(1, dl, CTVT)); 2535 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2536 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2537 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2538 } 2539 2540 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2541 } 2542 2543 // (zext x) == C --> x == (trunc C) 2544 // (sext x) == C --> x == (trunc C) 2545 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2546 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2547 unsigned MinBits = N0.getValueSizeInBits(); 2548 SDValue PreExt; 2549 bool Signed = false; 2550 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2551 // ZExt 2552 MinBits = N0->getOperand(0).getValueSizeInBits(); 2553 PreExt = N0->getOperand(0); 2554 } else if (N0->getOpcode() == ISD::AND) { 2555 // DAGCombine turns costly ZExts into ANDs 2556 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2557 if ((C->getAPIntValue()+1).isPowerOf2()) { 2558 MinBits = C->getAPIntValue().countTrailingOnes(); 2559 PreExt = N0->getOperand(0); 2560 } 2561 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2562 // SExt 2563 MinBits = N0->getOperand(0).getValueSizeInBits(); 2564 PreExt = N0->getOperand(0); 2565 Signed = true; 2566 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2567 // ZEXTLOAD / SEXTLOAD 2568 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2569 MinBits = LN0->getMemoryVT().getSizeInBits(); 2570 PreExt = N0; 2571 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2572 Signed = true; 2573 MinBits = LN0->getMemoryVT().getSizeInBits(); 2574 PreExt = N0; 2575 } 2576 } 2577 2578 // Figure out how many bits we need to preserve this constant. 2579 unsigned ReqdBits = Signed ? 2580 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2581 C1.getActiveBits(); 2582 2583 // Make sure we're not losing bits from the constant. 2584 if (MinBits > 0 && 2585 MinBits < C1.getBitWidth() && 2586 MinBits >= ReqdBits) { 2587 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2588 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2589 // Will get folded away. 2590 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2591 if (MinBits == 1 && C1 == 1) 2592 // Invert the condition. 2593 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2594 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2595 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2596 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2597 } 2598 2599 // If truncating the setcc operands is not desirable, we can still 2600 // simplify the expression in some cases: 2601 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2602 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2603 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2604 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2605 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2606 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2607 SDValue TopSetCC = N0->getOperand(0); 2608 unsigned N0Opc = N0->getOpcode(); 2609 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2610 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2611 TopSetCC.getOpcode() == ISD::SETCC && 2612 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2613 (isConstFalseVal(N1C) || 2614 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2615 2616 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2617 (!N1C->isNullValue() && Cond == ISD::SETNE); 2618 2619 if (!Inverse) 2620 return TopSetCC; 2621 2622 ISD::CondCode InvCond = ISD::getSetCCInverse( 2623 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2624 TopSetCC.getOperand(0).getValueType().isInteger()); 2625 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2626 TopSetCC.getOperand(1), 2627 InvCond); 2628 } 2629 } 2630 } 2631 2632 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2633 // equality or unsigned, and all 1 bits of the const are in the same 2634 // partial word, see if we can shorten the load. 2635 if (DCI.isBeforeLegalize() && 2636 !ISD::isSignedIntSetCC(Cond) && 2637 N0.getOpcode() == ISD::AND && C1 == 0 && 2638 N0.getNode()->hasOneUse() && 2639 isa<LoadSDNode>(N0.getOperand(0)) && 2640 N0.getOperand(0).getNode()->hasOneUse() && 2641 isa<ConstantSDNode>(N0.getOperand(1))) { 2642 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2643 APInt bestMask; 2644 unsigned bestWidth = 0, bestOffset = 0; 2645 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2646 unsigned origWidth = N0.getValueSizeInBits(); 2647 unsigned maskWidth = origWidth; 2648 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2649 // 8 bits, but have to be careful... 2650 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2651 origWidth = Lod->getMemoryVT().getSizeInBits(); 2652 const APInt &Mask = N0.getConstantOperandAPInt(1); 2653 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2654 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2655 for (unsigned offset=0; offset<origWidth/width; offset++) { 2656 if (Mask.isSubsetOf(newMask)) { 2657 if (DAG.getDataLayout().isLittleEndian()) 2658 bestOffset = (uint64_t)offset * (width/8); 2659 else 2660 bestOffset = (origWidth/width - offset - 1) * (width/8); 2661 bestMask = Mask.lshr(offset * (width/8) * 8); 2662 bestWidth = width; 2663 break; 2664 } 2665 newMask <<= width; 2666 } 2667 } 2668 } 2669 if (bestWidth) { 2670 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2671 if (newVT.isRound() && 2672 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2673 EVT PtrType = Lod->getOperand(1).getValueType(); 2674 SDValue Ptr = Lod->getBasePtr(); 2675 if (bestOffset != 0) 2676 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2677 DAG.getConstant(bestOffset, dl, PtrType)); 2678 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2679 SDValue NewLoad = DAG.getLoad( 2680 newVT, dl, Lod->getChain(), Ptr, 2681 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2682 return DAG.getSetCC(dl, VT, 2683 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2684 DAG.getConstant(bestMask.trunc(bestWidth), 2685 dl, newVT)), 2686 DAG.getConstant(0LL, dl, newVT), Cond); 2687 } 2688 } 2689 } 2690 2691 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2692 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2693 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2694 2695 // If the comparison constant has bits in the upper part, the 2696 // zero-extended value could never match. 2697 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2698 C1.getBitWidth() - InSize))) { 2699 switch (Cond) { 2700 case ISD::SETUGT: 2701 case ISD::SETUGE: 2702 case ISD::SETEQ: 2703 return DAG.getConstant(0, dl, VT); 2704 case ISD::SETULT: 2705 case ISD::SETULE: 2706 case ISD::SETNE: 2707 return DAG.getConstant(1, dl, VT); 2708 case ISD::SETGT: 2709 case ISD::SETGE: 2710 // True if the sign bit of C1 is set. 2711 return DAG.getConstant(C1.isNegative(), dl, VT); 2712 case ISD::SETLT: 2713 case ISD::SETLE: 2714 // True if the sign bit of C1 isn't set. 2715 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2716 default: 2717 break; 2718 } 2719 } 2720 2721 // Otherwise, we can perform the comparison with the low bits. 2722 switch (Cond) { 2723 case ISD::SETEQ: 2724 case ISD::SETNE: 2725 case ISD::SETUGT: 2726 case ISD::SETUGE: 2727 case ISD::SETULT: 2728 case ISD::SETULE: { 2729 EVT newVT = N0.getOperand(0).getValueType(); 2730 if (DCI.isBeforeLegalizeOps() || 2731 (isOperationLegal(ISD::SETCC, newVT) && 2732 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2733 EVT NewSetCCVT = 2734 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2735 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2736 2737 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2738 NewConst, Cond); 2739 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2740 } 2741 break; 2742 } 2743 default: 2744 break; // todo, be more careful with signed comparisons 2745 } 2746 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2747 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2748 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2749 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2750 EVT ExtDstTy = N0.getValueType(); 2751 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2752 2753 // If the constant doesn't fit into the number of bits for the source of 2754 // the sign extension, it is impossible for both sides to be equal. 2755 if (C1.getMinSignedBits() > ExtSrcTyBits) 2756 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2757 2758 SDValue ZextOp; 2759 EVT Op0Ty = N0.getOperand(0).getValueType(); 2760 if (Op0Ty == ExtSrcTy) { 2761 ZextOp = N0.getOperand(0); 2762 } else { 2763 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2764 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2765 DAG.getConstant(Imm, dl, Op0Ty)); 2766 } 2767 if (!DCI.isCalledByLegalizer()) 2768 DCI.AddToWorklist(ZextOp.getNode()); 2769 // Otherwise, make this a use of a zext. 2770 return DAG.getSetCC(dl, VT, ZextOp, 2771 DAG.getConstant(C1 & APInt::getLowBitsSet( 2772 ExtDstTyBits, 2773 ExtSrcTyBits), 2774 dl, ExtDstTy), 2775 Cond); 2776 } else if ((N1C->isNullValue() || N1C->isOne()) && 2777 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2778 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2779 if (N0.getOpcode() == ISD::SETCC && 2780 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2781 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2782 if (TrueWhenTrue) 2783 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2784 // Invert the condition. 2785 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2786 CC = ISD::getSetCCInverse(CC, 2787 N0.getOperand(0).getValueType().isInteger()); 2788 if (DCI.isBeforeLegalizeOps() || 2789 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2790 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2791 } 2792 2793 if ((N0.getOpcode() == ISD::XOR || 2794 (N0.getOpcode() == ISD::AND && 2795 N0.getOperand(0).getOpcode() == ISD::XOR && 2796 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2797 isa<ConstantSDNode>(N0.getOperand(1)) && 2798 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2799 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2800 // can only do this if the top bits are known zero. 2801 unsigned BitWidth = N0.getValueSizeInBits(); 2802 if (DAG.MaskedValueIsZero(N0, 2803 APInt::getHighBitsSet(BitWidth, 2804 BitWidth-1))) { 2805 // Okay, get the un-inverted input value. 2806 SDValue Val; 2807 if (N0.getOpcode() == ISD::XOR) { 2808 Val = N0.getOperand(0); 2809 } else { 2810 assert(N0.getOpcode() == ISD::AND && 2811 N0.getOperand(0).getOpcode() == ISD::XOR); 2812 // ((X^1)&1)^1 -> X & 1 2813 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2814 N0.getOperand(0).getOperand(0), 2815 N0.getOperand(1)); 2816 } 2817 2818 return DAG.getSetCC(dl, VT, Val, N1, 2819 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2820 } 2821 } else if (N1C->isOne() && 2822 (VT == MVT::i1 || 2823 getBooleanContents(N0->getValueType(0)) == 2824 ZeroOrOneBooleanContent)) { 2825 SDValue Op0 = N0; 2826 if (Op0.getOpcode() == ISD::TRUNCATE) 2827 Op0 = Op0.getOperand(0); 2828 2829 if ((Op0.getOpcode() == ISD::XOR) && 2830 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2831 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2832 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2833 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2834 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2835 Cond); 2836 } 2837 if (Op0.getOpcode() == ISD::AND && 2838 isa<ConstantSDNode>(Op0.getOperand(1)) && 2839 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2840 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2841 if (Op0.getValueType().bitsGT(VT)) 2842 Op0 = DAG.getNode(ISD::AND, dl, VT, 2843 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2844 DAG.getConstant(1, dl, VT)); 2845 else if (Op0.getValueType().bitsLT(VT)) 2846 Op0 = DAG.getNode(ISD::AND, dl, VT, 2847 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2848 DAG.getConstant(1, dl, VT)); 2849 2850 return DAG.getSetCC(dl, VT, Op0, 2851 DAG.getConstant(0, dl, Op0.getValueType()), 2852 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2853 } 2854 if (Op0.getOpcode() == ISD::AssertZext && 2855 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2856 return DAG.getSetCC(dl, VT, Op0, 2857 DAG.getConstant(0, dl, Op0.getValueType()), 2858 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2859 } 2860 } 2861 2862 if (SDValue V = 2863 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2864 return V; 2865 } 2866 2867 // These simplifications apply to splat vectors as well. 2868 // TODO: Handle more splat vector cases. 2869 if (auto *N1C = isConstOrConstSplat(N1)) { 2870 const APInt &C1 = N1C->getAPIntValue(); 2871 2872 APInt MinVal, MaxVal; 2873 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2874 if (ISD::isSignedIntSetCC(Cond)) { 2875 MinVal = APInt::getSignedMinValue(OperandBitSize); 2876 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2877 } else { 2878 MinVal = APInt::getMinValue(OperandBitSize); 2879 MaxVal = APInt::getMaxValue(OperandBitSize); 2880 } 2881 2882 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2883 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2884 // X >= MIN --> true 2885 if (C1 == MinVal) 2886 return DAG.getBoolConstant(true, dl, VT, OpVT); 2887 2888 if (!VT.isVector()) { // TODO: Support this for vectors. 2889 // X >= C0 --> X > (C0 - 1) 2890 APInt C = C1 - 1; 2891 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2892 if ((DCI.isBeforeLegalizeOps() || 2893 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2894 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2895 isLegalICmpImmediate(C.getSExtValue())))) { 2896 return DAG.getSetCC(dl, VT, N0, 2897 DAG.getConstant(C, dl, N1.getValueType()), 2898 NewCC); 2899 } 2900 } 2901 } 2902 2903 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2904 // X <= MAX --> true 2905 if (C1 == MaxVal) 2906 return DAG.getBoolConstant(true, dl, VT, OpVT); 2907 2908 // X <= C0 --> X < (C0 + 1) 2909 if (!VT.isVector()) { // TODO: Support this for vectors. 2910 APInt C = C1 + 1; 2911 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2912 if ((DCI.isBeforeLegalizeOps() || 2913 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2914 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2915 isLegalICmpImmediate(C.getSExtValue())))) { 2916 return DAG.getSetCC(dl, VT, N0, 2917 DAG.getConstant(C, dl, N1.getValueType()), 2918 NewCC); 2919 } 2920 } 2921 } 2922 2923 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2924 if (C1 == MinVal) 2925 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2926 2927 // TODO: Support this for vectors after legalize ops. 2928 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2929 // Canonicalize setlt X, Max --> setne X, Max 2930 if (C1 == MaxVal) 2931 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2932 2933 // If we have setult X, 1, turn it into seteq X, 0 2934 if (C1 == MinVal+1) 2935 return DAG.getSetCC(dl, VT, N0, 2936 DAG.getConstant(MinVal, dl, N0.getValueType()), 2937 ISD::SETEQ); 2938 } 2939 } 2940 2941 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2942 if (C1 == MaxVal) 2943 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2944 2945 // TODO: Support this for vectors after legalize ops. 2946 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2947 // Canonicalize setgt X, Min --> setne X, Min 2948 if (C1 == MinVal) 2949 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2950 2951 // If we have setugt X, Max-1, turn it into seteq X, Max 2952 if (C1 == MaxVal-1) 2953 return DAG.getSetCC(dl, VT, N0, 2954 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2955 ISD::SETEQ); 2956 } 2957 } 2958 2959 // If we have "setcc X, C0", check to see if we can shrink the immediate 2960 // by changing cc. 2961 // TODO: Support this for vectors after legalize ops. 2962 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2963 // SETUGT X, SINTMAX -> SETLT X, 0 2964 if (Cond == ISD::SETUGT && 2965 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2966 return DAG.getSetCC(dl, VT, N0, 2967 DAG.getConstant(0, dl, N1.getValueType()), 2968 ISD::SETLT); 2969 2970 // SETULT X, SINTMIN -> SETGT X, -1 2971 if (Cond == ISD::SETULT && 2972 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2973 SDValue ConstMinusOne = 2974 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2975 N1.getValueType()); 2976 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2977 } 2978 } 2979 } 2980 2981 // Back to non-vector simplifications. 2982 // TODO: Can we do these for vector splats? 2983 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2984 const APInt &C1 = N1C->getAPIntValue(); 2985 2986 // Fold bit comparisons when we can. 2987 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2988 (VT == N0.getValueType() || 2989 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2990 N0.getOpcode() == ISD::AND) { 2991 auto &DL = DAG.getDataLayout(); 2992 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2993 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2994 !DCI.isBeforeLegalize()); 2995 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2996 // Perform the xform if the AND RHS is a single bit. 2997 if (AndRHS->getAPIntValue().isPowerOf2()) { 2998 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2999 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3000 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 3001 ShiftTy))); 3002 } 3003 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3004 // (X & 8) == 8 --> (X & 8) >> 3 3005 // Perform the xform if C1 is a single bit. 3006 if (C1.isPowerOf2()) { 3007 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3008 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3009 DAG.getConstant(C1.logBase2(), dl, 3010 ShiftTy))); 3011 } 3012 } 3013 } 3014 } 3015 3016 if (C1.getMinSignedBits() <= 64 && 3017 !isLegalICmpImmediate(C1.getSExtValue())) { 3018 // (X & -256) == 256 -> (X >> 8) == 1 3019 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3020 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3021 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3022 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3023 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3024 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3025 auto &DL = DAG.getDataLayout(); 3026 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3027 !DCI.isBeforeLegalize()); 3028 EVT CmpTy = N0.getValueType(); 3029 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 3030 DAG.getConstant(ShiftBits, dl, 3031 ShiftTy)); 3032 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 3033 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3034 } 3035 } 3036 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3037 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3038 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3039 // X < 0x100000000 -> (X >> 32) < 1 3040 // X >= 0x100000000 -> (X >> 32) >= 1 3041 // X <= 0x0ffffffff -> (X >> 32) < 1 3042 // X > 0x0ffffffff -> (X >> 32) >= 1 3043 unsigned ShiftBits; 3044 APInt NewC = C1; 3045 ISD::CondCode NewCond = Cond; 3046 if (AdjOne) { 3047 ShiftBits = C1.countTrailingOnes(); 3048 NewC = NewC + 1; 3049 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3050 } else { 3051 ShiftBits = C1.countTrailingZeros(); 3052 } 3053 NewC.lshrInPlace(ShiftBits); 3054 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3055 isLegalICmpImmediate(NewC.getSExtValue())) { 3056 auto &DL = DAG.getDataLayout(); 3057 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3058 !DCI.isBeforeLegalize()); 3059 EVT CmpTy = N0.getValueType(); 3060 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 3061 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3062 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 3063 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3064 } 3065 } 3066 } 3067 } 3068 3069 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3070 auto *CFP = cast<ConstantFPSDNode>(N1); 3071 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3072 3073 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3074 // constant if knowing that the operand is non-nan is enough. We prefer to 3075 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3076 // materialize 0.0. 3077 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3078 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3079 3080 // setcc (fneg x), C -> setcc swap(pred) x, -C 3081 if (N0.getOpcode() == ISD::FNEG) { 3082 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3083 if (DCI.isBeforeLegalizeOps() || 3084 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3085 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3086 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3087 } 3088 } 3089 3090 // If the condition is not legal, see if we can find an equivalent one 3091 // which is legal. 3092 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3093 // If the comparison was an awkward floating-point == or != and one of 3094 // the comparison operands is infinity or negative infinity, convert the 3095 // condition to a less-awkward <= or >=. 3096 if (CFP->getValueAPF().isInfinity()) { 3097 if (CFP->getValueAPF().isNegative()) { 3098 if (Cond == ISD::SETOEQ && 3099 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3100 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3101 if (Cond == ISD::SETUEQ && 3102 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3103 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3104 if (Cond == ISD::SETUNE && 3105 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3106 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3107 if (Cond == ISD::SETONE && 3108 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3109 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3110 } else { 3111 if (Cond == ISD::SETOEQ && 3112 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3113 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3114 if (Cond == ISD::SETUEQ && 3115 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3116 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3117 if (Cond == ISD::SETUNE && 3118 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3119 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3120 if (Cond == ISD::SETONE && 3121 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3122 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3123 } 3124 } 3125 } 3126 } 3127 3128 if (N0 == N1) { 3129 // The sext(setcc()) => setcc() optimization relies on the appropriate 3130 // constant being emitted. 3131 assert(!N0.getValueType().isInteger() && 3132 "Integer types should be handled by FoldSetCC"); 3133 3134 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3135 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3136 if (UOF == 2) // FP operators that are undefined on NaNs. 3137 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3138 if (UOF == unsigned(EqTrue)) 3139 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3140 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3141 // if it is not already. 3142 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3143 if (NewCond != Cond && 3144 (DCI.isBeforeLegalizeOps() || 3145 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3146 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3147 } 3148 3149 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3150 N0.getValueType().isInteger()) { 3151 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3152 N0.getOpcode() == ISD::XOR) { 3153 // Simplify (X+Y) == (X+Z) --> Y == Z 3154 if (N0.getOpcode() == N1.getOpcode()) { 3155 if (N0.getOperand(0) == N1.getOperand(0)) 3156 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3157 if (N0.getOperand(1) == N1.getOperand(1)) 3158 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3159 if (isCommutativeBinOp(N0.getOpcode())) { 3160 // If X op Y == Y op X, try other combinations. 3161 if (N0.getOperand(0) == N1.getOperand(1)) 3162 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3163 Cond); 3164 if (N0.getOperand(1) == N1.getOperand(0)) 3165 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3166 Cond); 3167 } 3168 } 3169 3170 // If RHS is a legal immediate value for a compare instruction, we need 3171 // to be careful about increasing register pressure needlessly. 3172 bool LegalRHSImm = false; 3173 3174 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3175 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3176 // Turn (X+C1) == C2 --> X == C2-C1 3177 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3178 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3179 DAG.getConstant(RHSC->getAPIntValue()- 3180 LHSR->getAPIntValue(), 3181 dl, N0.getValueType()), Cond); 3182 } 3183 3184 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3185 if (N0.getOpcode() == ISD::XOR) 3186 // If we know that all of the inverted bits are zero, don't bother 3187 // performing the inversion. 3188 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3189 return 3190 DAG.getSetCC(dl, VT, N0.getOperand(0), 3191 DAG.getConstant(LHSR->getAPIntValue() ^ 3192 RHSC->getAPIntValue(), 3193 dl, N0.getValueType()), 3194 Cond); 3195 } 3196 3197 // Turn (C1-X) == C2 --> X == C1-C2 3198 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3199 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3200 return 3201 DAG.getSetCC(dl, VT, N0.getOperand(1), 3202 DAG.getConstant(SUBC->getAPIntValue() - 3203 RHSC->getAPIntValue(), 3204 dl, N0.getValueType()), 3205 Cond); 3206 } 3207 } 3208 3209 // Could RHSC fold directly into a compare? 3210 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3211 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3212 } 3213 3214 // (X+Y) == X --> Y == 0 and similar folds. 3215 // Don't do this if X is an immediate that can fold into a cmp 3216 // instruction and X+Y has other uses. It could be an induction variable 3217 // chain, and the transform would increase register pressure. 3218 if (!LegalRHSImm || N0.hasOneUse()) 3219 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3220 return V; 3221 } 3222 3223 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3224 N1.getOpcode() == ISD::XOR) 3225 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3226 return V; 3227 3228 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3229 return V; 3230 } 3231 3232 // Fold away ALL boolean setcc's. 3233 SDValue Temp; 3234 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3235 EVT OpVT = N0.getValueType(); 3236 switch (Cond) { 3237 default: llvm_unreachable("Unknown integer setcc!"); 3238 case ISD::SETEQ: // X == Y -> ~(X^Y) 3239 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3240 N0 = DAG.getNOT(dl, Temp, OpVT); 3241 if (!DCI.isCalledByLegalizer()) 3242 DCI.AddToWorklist(Temp.getNode()); 3243 break; 3244 case ISD::SETNE: // X != Y --> (X^Y) 3245 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3246 break; 3247 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3248 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3249 Temp = DAG.getNOT(dl, N0, OpVT); 3250 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3251 if (!DCI.isCalledByLegalizer()) 3252 DCI.AddToWorklist(Temp.getNode()); 3253 break; 3254 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3255 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3256 Temp = DAG.getNOT(dl, N1, OpVT); 3257 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3258 if (!DCI.isCalledByLegalizer()) 3259 DCI.AddToWorklist(Temp.getNode()); 3260 break; 3261 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3262 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3263 Temp = DAG.getNOT(dl, N0, OpVT); 3264 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3265 if (!DCI.isCalledByLegalizer()) 3266 DCI.AddToWorklist(Temp.getNode()); 3267 break; 3268 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3269 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3270 Temp = DAG.getNOT(dl, N1, OpVT); 3271 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3272 break; 3273 } 3274 if (VT.getScalarType() != MVT::i1) { 3275 if (!DCI.isCalledByLegalizer()) 3276 DCI.AddToWorklist(N0.getNode()); 3277 // FIXME: If running after legalize, we probably can't do this. 3278 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3279 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3280 } 3281 return N0; 3282 } 3283 3284 // Could not fold it. 3285 return SDValue(); 3286 } 3287 3288 /// Returns true (and the GlobalValue and the offset) if the node is a 3289 /// GlobalAddress + offset. 3290 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3291 int64_t &Offset) const { 3292 3293 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3294 3295 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3296 GA = GASD->getGlobal(); 3297 Offset += GASD->getOffset(); 3298 return true; 3299 } 3300 3301 if (N->getOpcode() == ISD::ADD) { 3302 SDValue N1 = N->getOperand(0); 3303 SDValue N2 = N->getOperand(1); 3304 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3305 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3306 Offset += V->getSExtValue(); 3307 return true; 3308 } 3309 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3310 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3311 Offset += V->getSExtValue(); 3312 return true; 3313 } 3314 } 3315 } 3316 3317 return false; 3318 } 3319 3320 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3321 DAGCombinerInfo &DCI) const { 3322 // Default implementation: no optimization. 3323 return SDValue(); 3324 } 3325 3326 //===----------------------------------------------------------------------===// 3327 // Inline Assembler Implementation Methods 3328 //===----------------------------------------------------------------------===// 3329 3330 TargetLowering::ConstraintType 3331 TargetLowering::getConstraintType(StringRef Constraint) const { 3332 unsigned S = Constraint.size(); 3333 3334 if (S == 1) { 3335 switch (Constraint[0]) { 3336 default: break; 3337 case 'r': return C_RegisterClass; 3338 case 'm': // memory 3339 case 'o': // offsetable 3340 case 'V': // not offsetable 3341 return C_Memory; 3342 case 'i': // Simple Integer or Relocatable Constant 3343 case 'n': // Simple Integer 3344 case 'E': // Floating Point Constant 3345 case 'F': // Floating Point Constant 3346 case 's': // Relocatable Constant 3347 case 'p': // Address. 3348 case 'X': // Allow ANY value. 3349 case 'I': // Target registers. 3350 case 'J': 3351 case 'K': 3352 case 'L': 3353 case 'M': 3354 case 'N': 3355 case 'O': 3356 case 'P': 3357 case '<': 3358 case '>': 3359 return C_Other; 3360 } 3361 } 3362 3363 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3364 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3365 return C_Memory; 3366 return C_Register; 3367 } 3368 return C_Unknown; 3369 } 3370 3371 /// Try to replace an X constraint, which matches anything, with another that 3372 /// has more specific requirements based on the type of the corresponding 3373 /// operand. 3374 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3375 if (ConstraintVT.isInteger()) 3376 return "r"; 3377 if (ConstraintVT.isFloatingPoint()) 3378 return "f"; // works for many targets 3379 return nullptr; 3380 } 3381 3382 SDValue TargetLowering::LowerAsmOutputForConstraint( 3383 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3384 SelectionDAG &DAG) const { 3385 return SDValue(); 3386 } 3387 3388 /// Lower the specified operand into the Ops vector. 3389 /// If it is invalid, don't add anything to Ops. 3390 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3391 std::string &Constraint, 3392 std::vector<SDValue> &Ops, 3393 SelectionDAG &DAG) const { 3394 3395 if (Constraint.length() > 1) return; 3396 3397 char ConstraintLetter = Constraint[0]; 3398 switch (ConstraintLetter) { 3399 default: break; 3400 case 'X': // Allows any operand; labels (basic block) use this. 3401 if (Op.getOpcode() == ISD::BasicBlock || 3402 Op.getOpcode() == ISD::TargetBlockAddress) { 3403 Ops.push_back(Op); 3404 return; 3405 } 3406 LLVM_FALLTHROUGH; 3407 case 'i': // Simple Integer or Relocatable Constant 3408 case 'n': // Simple Integer 3409 case 's': { // Relocatable Constant 3410 // These operands are interested in values of the form (GV+C), where C may 3411 // be folded in as an offset of GV, or it may be explicitly added. Also, it 3412 // is possible and fine if either GV or C are missing. 3413 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3414 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 3415 3416 // If we have "(add GV, C)", pull out GV/C 3417 if (Op.getOpcode() == ISD::ADD) { 3418 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3419 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 3420 if (!C || !GA) { 3421 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 3422 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 3423 } 3424 if (!C || !GA) { 3425 C = nullptr; 3426 GA = nullptr; 3427 } 3428 } 3429 3430 // If we find a valid operand, map to the TargetXXX version so that the 3431 // value itself doesn't get selected. 3432 if (GA) { // Either &GV or &GV+C 3433 if (ConstraintLetter != 'n') { 3434 int64_t Offs = GA->getOffset(); 3435 if (C) Offs += C->getZExtValue(); 3436 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 3437 C ? SDLoc(C) : SDLoc(), 3438 Op.getValueType(), Offs)); 3439 } 3440 return; 3441 } 3442 if (C) { // just C, no GV. 3443 // Simple constants are not allowed for 's'. 3444 if (ConstraintLetter != 's') { 3445 // gcc prints these as sign extended. Sign extend value to 64 bits 3446 // now; without this it would get ZExt'd later in 3447 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3448 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3449 SDLoc(C), MVT::i64)); 3450 } 3451 return; 3452 } 3453 break; 3454 } 3455 } 3456 } 3457 3458 std::pair<unsigned, const TargetRegisterClass *> 3459 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3460 StringRef Constraint, 3461 MVT VT) const { 3462 if (Constraint.empty() || Constraint[0] != '{') 3463 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3464 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3465 3466 // Remove the braces from around the name. 3467 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3468 3469 std::pair<unsigned, const TargetRegisterClass *> R = 3470 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3471 3472 // Figure out which register class contains this reg. 3473 for (const TargetRegisterClass *RC : RI->regclasses()) { 3474 // If none of the value types for this register class are valid, we 3475 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3476 if (!isLegalRC(*RI, *RC)) 3477 continue; 3478 3479 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3480 I != E; ++I) { 3481 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3482 std::pair<unsigned, const TargetRegisterClass *> S = 3483 std::make_pair(*I, RC); 3484 3485 // If this register class has the requested value type, return it, 3486 // otherwise keep searching and return the first class found 3487 // if no other is found which explicitly has the requested type. 3488 if (RI->isTypeLegalForClass(*RC, VT)) 3489 return S; 3490 if (!R.second) 3491 R = S; 3492 } 3493 } 3494 } 3495 3496 return R; 3497 } 3498 3499 //===----------------------------------------------------------------------===// 3500 // Constraint Selection. 3501 3502 /// Return true of this is an input operand that is a matching constraint like 3503 /// "4". 3504 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3505 assert(!ConstraintCode.empty() && "No known constraint!"); 3506 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3507 } 3508 3509 /// If this is an input matching constraint, this method returns the output 3510 /// operand it matches. 3511 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3512 assert(!ConstraintCode.empty() && "No known constraint!"); 3513 return atoi(ConstraintCode.c_str()); 3514 } 3515 3516 /// Split up the constraint string from the inline assembly value into the 3517 /// specific constraints and their prefixes, and also tie in the associated 3518 /// operand values. 3519 /// If this returns an empty vector, and if the constraint string itself 3520 /// isn't empty, there was an error parsing. 3521 TargetLowering::AsmOperandInfoVector 3522 TargetLowering::ParseConstraints(const DataLayout &DL, 3523 const TargetRegisterInfo *TRI, 3524 ImmutableCallSite CS) const { 3525 /// Information about all of the constraints. 3526 AsmOperandInfoVector ConstraintOperands; 3527 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3528 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3529 3530 // Do a prepass over the constraints, canonicalizing them, and building up the 3531 // ConstraintOperands list. 3532 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3533 unsigned ResNo = 0; // ResNo - The result number of the next output. 3534 3535 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3536 ConstraintOperands.emplace_back(std::move(CI)); 3537 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3538 3539 // Update multiple alternative constraint count. 3540 if (OpInfo.multipleAlternatives.size() > maCount) 3541 maCount = OpInfo.multipleAlternatives.size(); 3542 3543 OpInfo.ConstraintVT = MVT::Other; 3544 3545 // Compute the value type for each operand. 3546 switch (OpInfo.Type) { 3547 case InlineAsm::isOutput: 3548 // Indirect outputs just consume an argument. 3549 if (OpInfo.isIndirect) { 3550 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3551 break; 3552 } 3553 3554 // The return value of the call is this value. As such, there is no 3555 // corresponding argument. 3556 assert(!CS.getType()->isVoidTy() && 3557 "Bad inline asm!"); 3558 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3559 OpInfo.ConstraintVT = 3560 getSimpleValueType(DL, STy->getElementType(ResNo)); 3561 } else { 3562 assert(ResNo == 0 && "Asm only has one result!"); 3563 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3564 } 3565 ++ResNo; 3566 break; 3567 case InlineAsm::isInput: 3568 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3569 break; 3570 case InlineAsm::isClobber: 3571 // Nothing to do. 3572 break; 3573 } 3574 3575 if (OpInfo.CallOperandVal) { 3576 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3577 if (OpInfo.isIndirect) { 3578 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3579 if (!PtrTy) 3580 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3581 OpTy = PtrTy->getElementType(); 3582 } 3583 3584 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3585 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3586 if (STy->getNumElements() == 1) 3587 OpTy = STy->getElementType(0); 3588 3589 // If OpTy is not a single value, it may be a struct/union that we 3590 // can tile with integers. 3591 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3592 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3593 switch (BitSize) { 3594 default: break; 3595 case 1: 3596 case 8: 3597 case 16: 3598 case 32: 3599 case 64: 3600 case 128: 3601 OpInfo.ConstraintVT = 3602 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3603 break; 3604 } 3605 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3606 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3607 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3608 } else { 3609 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3610 } 3611 } 3612 } 3613 3614 // If we have multiple alternative constraints, select the best alternative. 3615 if (!ConstraintOperands.empty()) { 3616 if (maCount) { 3617 unsigned bestMAIndex = 0; 3618 int bestWeight = -1; 3619 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3620 int weight = -1; 3621 unsigned maIndex; 3622 // Compute the sums of the weights for each alternative, keeping track 3623 // of the best (highest weight) one so far. 3624 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3625 int weightSum = 0; 3626 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3627 cIndex != eIndex; ++cIndex) { 3628 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3629 if (OpInfo.Type == InlineAsm::isClobber) 3630 continue; 3631 3632 // If this is an output operand with a matching input operand, 3633 // look up the matching input. If their types mismatch, e.g. one 3634 // is an integer, the other is floating point, or their sizes are 3635 // different, flag it as an maCantMatch. 3636 if (OpInfo.hasMatchingInput()) { 3637 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3638 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3639 if ((OpInfo.ConstraintVT.isInteger() != 3640 Input.ConstraintVT.isInteger()) || 3641 (OpInfo.ConstraintVT.getSizeInBits() != 3642 Input.ConstraintVT.getSizeInBits())) { 3643 weightSum = -1; // Can't match. 3644 break; 3645 } 3646 } 3647 } 3648 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3649 if (weight == -1) { 3650 weightSum = -1; 3651 break; 3652 } 3653 weightSum += weight; 3654 } 3655 // Update best. 3656 if (weightSum > bestWeight) { 3657 bestWeight = weightSum; 3658 bestMAIndex = maIndex; 3659 } 3660 } 3661 3662 // Now select chosen alternative in each constraint. 3663 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3664 cIndex != eIndex; ++cIndex) { 3665 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3666 if (cInfo.Type == InlineAsm::isClobber) 3667 continue; 3668 cInfo.selectAlternative(bestMAIndex); 3669 } 3670 } 3671 } 3672 3673 // Check and hook up tied operands, choose constraint code to use. 3674 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3675 cIndex != eIndex; ++cIndex) { 3676 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3677 3678 // If this is an output operand with a matching input operand, look up the 3679 // matching input. If their types mismatch, e.g. one is an integer, the 3680 // other is floating point, or their sizes are different, flag it as an 3681 // error. 3682 if (OpInfo.hasMatchingInput()) { 3683 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3684 3685 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3686 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3687 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3688 OpInfo.ConstraintVT); 3689 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3690 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3691 Input.ConstraintVT); 3692 if ((OpInfo.ConstraintVT.isInteger() != 3693 Input.ConstraintVT.isInteger()) || 3694 (MatchRC.second != InputRC.second)) { 3695 report_fatal_error("Unsupported asm: input constraint" 3696 " with a matching output constraint of" 3697 " incompatible type!"); 3698 } 3699 } 3700 } 3701 } 3702 3703 return ConstraintOperands; 3704 } 3705 3706 /// Return an integer indicating how general CT is. 3707 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3708 switch (CT) { 3709 case TargetLowering::C_Other: 3710 case TargetLowering::C_Unknown: 3711 return 0; 3712 case TargetLowering::C_Register: 3713 return 1; 3714 case TargetLowering::C_RegisterClass: 3715 return 2; 3716 case TargetLowering::C_Memory: 3717 return 3; 3718 } 3719 llvm_unreachable("Invalid constraint type"); 3720 } 3721 3722 /// Examine constraint type and operand type and determine a weight value. 3723 /// This object must already have been set up with the operand type 3724 /// and the current alternative constraint selected. 3725 TargetLowering::ConstraintWeight 3726 TargetLowering::getMultipleConstraintMatchWeight( 3727 AsmOperandInfo &info, int maIndex) const { 3728 InlineAsm::ConstraintCodeVector *rCodes; 3729 if (maIndex >= (int)info.multipleAlternatives.size()) 3730 rCodes = &info.Codes; 3731 else 3732 rCodes = &info.multipleAlternatives[maIndex].Codes; 3733 ConstraintWeight BestWeight = CW_Invalid; 3734 3735 // Loop over the options, keeping track of the most general one. 3736 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3737 ConstraintWeight weight = 3738 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3739 if (weight > BestWeight) 3740 BestWeight = weight; 3741 } 3742 3743 return BestWeight; 3744 } 3745 3746 /// Examine constraint type and operand type and determine a weight value. 3747 /// This object must already have been set up with the operand type 3748 /// and the current alternative constraint selected. 3749 TargetLowering::ConstraintWeight 3750 TargetLowering::getSingleConstraintMatchWeight( 3751 AsmOperandInfo &info, const char *constraint) const { 3752 ConstraintWeight weight = CW_Invalid; 3753 Value *CallOperandVal = info.CallOperandVal; 3754 // If we don't have a value, we can't do a match, 3755 // but allow it at the lowest weight. 3756 if (!CallOperandVal) 3757 return CW_Default; 3758 // Look at the constraint type. 3759 switch (*constraint) { 3760 case 'i': // immediate integer. 3761 case 'n': // immediate integer with a known value. 3762 if (isa<ConstantInt>(CallOperandVal)) 3763 weight = CW_Constant; 3764 break; 3765 case 's': // non-explicit intregal immediate. 3766 if (isa<GlobalValue>(CallOperandVal)) 3767 weight = CW_Constant; 3768 break; 3769 case 'E': // immediate float if host format. 3770 case 'F': // immediate float. 3771 if (isa<ConstantFP>(CallOperandVal)) 3772 weight = CW_Constant; 3773 break; 3774 case '<': // memory operand with autodecrement. 3775 case '>': // memory operand with autoincrement. 3776 case 'm': // memory operand. 3777 case 'o': // offsettable memory operand 3778 case 'V': // non-offsettable memory operand 3779 weight = CW_Memory; 3780 break; 3781 case 'r': // general register. 3782 case 'g': // general register, memory operand or immediate integer. 3783 // note: Clang converts "g" to "imr". 3784 if (CallOperandVal->getType()->isIntegerTy()) 3785 weight = CW_Register; 3786 break; 3787 case 'X': // any operand. 3788 default: 3789 weight = CW_Default; 3790 break; 3791 } 3792 return weight; 3793 } 3794 3795 /// If there are multiple different constraints that we could pick for this 3796 /// operand (e.g. "imr") try to pick the 'best' one. 3797 /// This is somewhat tricky: constraints fall into four classes: 3798 /// Other -> immediates and magic values 3799 /// Register -> one specific register 3800 /// RegisterClass -> a group of regs 3801 /// Memory -> memory 3802 /// Ideally, we would pick the most specific constraint possible: if we have 3803 /// something that fits into a register, we would pick it. The problem here 3804 /// is that if we have something that could either be in a register or in 3805 /// memory that use of the register could cause selection of *other* 3806 /// operands to fail: they might only succeed if we pick memory. Because of 3807 /// this the heuristic we use is: 3808 /// 3809 /// 1) If there is an 'other' constraint, and if the operand is valid for 3810 /// that constraint, use it. This makes us take advantage of 'i' 3811 /// constraints when available. 3812 /// 2) Otherwise, pick the most general constraint present. This prefers 3813 /// 'm' over 'r', for example. 3814 /// 3815 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3816 const TargetLowering &TLI, 3817 SDValue Op, SelectionDAG *DAG) { 3818 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3819 unsigned BestIdx = 0; 3820 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3821 int BestGenerality = -1; 3822 3823 // Loop over the options, keeping track of the most general one. 3824 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3825 TargetLowering::ConstraintType CType = 3826 TLI.getConstraintType(OpInfo.Codes[i]); 3827 3828 // If this is an 'other' constraint, see if the operand is valid for it. 3829 // For example, on X86 we might have an 'rI' constraint. If the operand 3830 // is an integer in the range [0..31] we want to use I (saving a load 3831 // of a register), otherwise we must use 'r'. 3832 if (CType == TargetLowering::C_Other && Op.getNode()) { 3833 assert(OpInfo.Codes[i].size() == 1 && 3834 "Unhandled multi-letter 'other' constraint"); 3835 std::vector<SDValue> ResultOps; 3836 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3837 ResultOps, *DAG); 3838 if (!ResultOps.empty()) { 3839 BestType = CType; 3840 BestIdx = i; 3841 break; 3842 } 3843 } 3844 3845 // Things with matching constraints can only be registers, per gcc 3846 // documentation. This mainly affects "g" constraints. 3847 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3848 continue; 3849 3850 // This constraint letter is more general than the previous one, use it. 3851 int Generality = getConstraintGenerality(CType); 3852 if (Generality > BestGenerality) { 3853 BestType = CType; 3854 BestIdx = i; 3855 BestGenerality = Generality; 3856 } 3857 } 3858 3859 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3860 OpInfo.ConstraintType = BestType; 3861 } 3862 3863 /// Determines the constraint code and constraint type to use for the specific 3864 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3865 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3866 SDValue Op, 3867 SelectionDAG *DAG) const { 3868 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3869 3870 // Single-letter constraints ('r') are very common. 3871 if (OpInfo.Codes.size() == 1) { 3872 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3873 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3874 } else { 3875 ChooseConstraint(OpInfo, *this, Op, DAG); 3876 } 3877 3878 // 'X' matches anything. 3879 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3880 // Labels and constants are handled elsewhere ('X' is the only thing 3881 // that matches labels). For Functions, the type here is the type of 3882 // the result, which is not what we want to look at; leave them alone. 3883 Value *v = OpInfo.CallOperandVal; 3884 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3885 OpInfo.CallOperandVal = v; 3886 return; 3887 } 3888 3889 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 3890 return; 3891 3892 // Otherwise, try to resolve it to something we know about by looking at 3893 // the actual operand type. 3894 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3895 OpInfo.ConstraintCode = Repl; 3896 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3897 } 3898 } 3899 } 3900 3901 /// Given an exact SDIV by a constant, create a multiplication 3902 /// with the multiplicative inverse of the constant. 3903 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3904 const SDLoc &dl, SelectionDAG &DAG, 3905 SmallVectorImpl<SDNode *> &Created) { 3906 SDValue Op0 = N->getOperand(0); 3907 SDValue Op1 = N->getOperand(1); 3908 EVT VT = N->getValueType(0); 3909 EVT SVT = VT.getScalarType(); 3910 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3911 EVT ShSVT = ShVT.getScalarType(); 3912 3913 bool UseSRA = false; 3914 SmallVector<SDValue, 16> Shifts, Factors; 3915 3916 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3917 if (C->isNullValue()) 3918 return false; 3919 APInt Divisor = C->getAPIntValue(); 3920 unsigned Shift = Divisor.countTrailingZeros(); 3921 if (Shift) { 3922 Divisor.ashrInPlace(Shift); 3923 UseSRA = true; 3924 } 3925 // Calculate the multiplicative inverse, using Newton's method. 3926 APInt t; 3927 APInt Factor = Divisor; 3928 while ((t = Divisor * Factor) != 1) 3929 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3930 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3931 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3932 return true; 3933 }; 3934 3935 // Collect all magic values from the build vector. 3936 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3937 return SDValue(); 3938 3939 SDValue Shift, Factor; 3940 if (VT.isVector()) { 3941 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3942 Factor = DAG.getBuildVector(VT, dl, Factors); 3943 } else { 3944 Shift = Shifts[0]; 3945 Factor = Factors[0]; 3946 } 3947 3948 SDValue Res = Op0; 3949 3950 // Shift the value upfront if it is even, so the LSB is one. 3951 if (UseSRA) { 3952 // TODO: For UDIV use SRL instead of SRA. 3953 SDNodeFlags Flags; 3954 Flags.setExact(true); 3955 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3956 Created.push_back(Res.getNode()); 3957 } 3958 3959 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3960 } 3961 3962 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3963 SelectionDAG &DAG, 3964 SmallVectorImpl<SDNode *> &Created) const { 3965 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3967 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3968 return SDValue(N, 0); // Lower SDIV as SDIV 3969 return SDValue(); 3970 } 3971 3972 /// Given an ISD::SDIV node expressing a divide by constant, 3973 /// return a DAG expression to select that will generate the same value by 3974 /// multiplying by a magic number. 3975 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3976 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3977 bool IsAfterLegalization, 3978 SmallVectorImpl<SDNode *> &Created) const { 3979 SDLoc dl(N); 3980 EVT VT = N->getValueType(0); 3981 EVT SVT = VT.getScalarType(); 3982 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3983 EVT ShSVT = ShVT.getScalarType(); 3984 unsigned EltBits = VT.getScalarSizeInBits(); 3985 3986 // Check to see if we can do this. 3987 // FIXME: We should be more aggressive here. 3988 if (!isTypeLegal(VT)) 3989 return SDValue(); 3990 3991 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3992 if (N->getFlags().hasExact()) 3993 return BuildExactSDIV(*this, N, dl, DAG, Created); 3994 3995 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3996 3997 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3998 if (C->isNullValue()) 3999 return false; 4000 4001 const APInt &Divisor = C->getAPIntValue(); 4002 APInt::ms magics = Divisor.magic(); 4003 int NumeratorFactor = 0; 4004 int ShiftMask = -1; 4005 4006 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4007 // If d is +1/-1, we just multiply the numerator by +1/-1. 4008 NumeratorFactor = Divisor.getSExtValue(); 4009 magics.m = 0; 4010 magics.s = 0; 4011 ShiftMask = 0; 4012 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4013 // If d > 0 and m < 0, add the numerator. 4014 NumeratorFactor = 1; 4015 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4016 // If d < 0 and m > 0, subtract the numerator. 4017 NumeratorFactor = -1; 4018 } 4019 4020 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4021 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4022 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4023 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4024 return true; 4025 }; 4026 4027 SDValue N0 = N->getOperand(0); 4028 SDValue N1 = N->getOperand(1); 4029 4030 // Collect the shifts / magic values from each element. 4031 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4032 return SDValue(); 4033 4034 SDValue MagicFactor, Factor, Shift, ShiftMask; 4035 if (VT.isVector()) { 4036 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4037 Factor = DAG.getBuildVector(VT, dl, Factors); 4038 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4039 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4040 } else { 4041 MagicFactor = MagicFactors[0]; 4042 Factor = Factors[0]; 4043 Shift = Shifts[0]; 4044 ShiftMask = ShiftMasks[0]; 4045 } 4046 4047 // Multiply the numerator (operand 0) by the magic value. 4048 // FIXME: We should support doing a MUL in a wider type. 4049 SDValue Q; 4050 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4051 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4052 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4053 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4054 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4055 SDValue LoHi = 4056 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4057 Q = SDValue(LoHi.getNode(), 1); 4058 } else 4059 return SDValue(); // No mulhs or equivalent. 4060 Created.push_back(Q.getNode()); 4061 4062 // (Optionally) Add/subtract the numerator using Factor. 4063 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4064 Created.push_back(Factor.getNode()); 4065 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4066 Created.push_back(Q.getNode()); 4067 4068 // Shift right algebraic by shift value. 4069 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4070 Created.push_back(Q.getNode()); 4071 4072 // Extract the sign bit, mask it and add it to the quotient. 4073 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4074 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4075 Created.push_back(T.getNode()); 4076 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4077 Created.push_back(T.getNode()); 4078 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4079 } 4080 4081 /// Given an ISD::UDIV node expressing a divide by constant, 4082 /// return a DAG expression to select that will generate the same value by 4083 /// multiplying by a magic number. 4084 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4085 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4086 bool IsAfterLegalization, 4087 SmallVectorImpl<SDNode *> &Created) const { 4088 SDLoc dl(N); 4089 EVT VT = N->getValueType(0); 4090 EVT SVT = VT.getScalarType(); 4091 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4092 EVT ShSVT = ShVT.getScalarType(); 4093 unsigned EltBits = VT.getScalarSizeInBits(); 4094 4095 // Check to see if we can do this. 4096 // FIXME: We should be more aggressive here. 4097 if (!isTypeLegal(VT)) 4098 return SDValue(); 4099 4100 bool UseNPQ = false; 4101 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4102 4103 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4104 if (C->isNullValue()) 4105 return false; 4106 // FIXME: We should use a narrower constant when the upper 4107 // bits are known to be zero. 4108 APInt Divisor = C->getAPIntValue(); 4109 APInt::mu magics = Divisor.magicu(); 4110 unsigned PreShift = 0, PostShift = 0; 4111 4112 // If the divisor is even, we can avoid using the expensive fixup by 4113 // shifting the divided value upfront. 4114 if (magics.a != 0 && !Divisor[0]) { 4115 PreShift = Divisor.countTrailingZeros(); 4116 // Get magic number for the shifted divisor. 4117 magics = Divisor.lshr(PreShift).magicu(PreShift); 4118 assert(magics.a == 0 && "Should use cheap fixup now"); 4119 } 4120 4121 APInt Magic = magics.m; 4122 4123 unsigned SelNPQ; 4124 if (magics.a == 0 || Divisor.isOneValue()) { 4125 assert(magics.s < Divisor.getBitWidth() && 4126 "We shouldn't generate an undefined shift!"); 4127 PostShift = magics.s; 4128 SelNPQ = false; 4129 } else { 4130 PostShift = magics.s - 1; 4131 SelNPQ = true; 4132 } 4133 4134 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4135 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4136 NPQFactors.push_back( 4137 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4138 : APInt::getNullValue(EltBits), 4139 dl, SVT)); 4140 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4141 UseNPQ |= SelNPQ; 4142 return true; 4143 }; 4144 4145 SDValue N0 = N->getOperand(0); 4146 SDValue N1 = N->getOperand(1); 4147 4148 // Collect the shifts/magic values from each element. 4149 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4150 return SDValue(); 4151 4152 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4153 if (VT.isVector()) { 4154 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4155 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4156 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4157 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4158 } else { 4159 PreShift = PreShifts[0]; 4160 MagicFactor = MagicFactors[0]; 4161 PostShift = PostShifts[0]; 4162 } 4163 4164 SDValue Q = N0; 4165 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4166 Created.push_back(Q.getNode()); 4167 4168 // FIXME: We should support doing a MUL in a wider type. 4169 auto GetMULHU = [&](SDValue X, SDValue Y) { 4170 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4171 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4172 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4173 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4174 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4175 SDValue LoHi = 4176 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4177 return SDValue(LoHi.getNode(), 1); 4178 } 4179 return SDValue(); // No mulhu or equivalent 4180 }; 4181 4182 // Multiply the numerator (operand 0) by the magic value. 4183 Q = GetMULHU(Q, MagicFactor); 4184 if (!Q) 4185 return SDValue(); 4186 4187 Created.push_back(Q.getNode()); 4188 4189 if (UseNPQ) { 4190 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4191 Created.push_back(NPQ.getNode()); 4192 4193 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4194 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4195 if (VT.isVector()) 4196 NPQ = GetMULHU(NPQ, NPQFactor); 4197 else 4198 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4199 4200 Created.push_back(NPQ.getNode()); 4201 4202 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4203 Created.push_back(Q.getNode()); 4204 } 4205 4206 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4207 Created.push_back(Q.getNode()); 4208 4209 SDValue One = DAG.getConstant(1, dl, VT); 4210 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4211 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4212 } 4213 4214 bool TargetLowering:: 4215 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4216 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4217 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4218 "be a constant integer"); 4219 return true; 4220 } 4221 4222 return false; 4223 } 4224 4225 //===----------------------------------------------------------------------===// 4226 // Legalization Utilities 4227 //===----------------------------------------------------------------------===// 4228 4229 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4230 SDValue LHS, SDValue RHS, 4231 SmallVectorImpl<SDValue> &Result, 4232 EVT HiLoVT, SelectionDAG &DAG, 4233 MulExpansionKind Kind, SDValue LL, 4234 SDValue LH, SDValue RL, SDValue RH) const { 4235 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4236 Opcode == ISD::SMUL_LOHI); 4237 4238 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4239 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4240 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4241 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4242 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4243 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4244 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4245 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4246 4247 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4248 return false; 4249 4250 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4251 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4252 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4253 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4254 4255 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4256 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4257 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4258 4259 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4260 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4261 bool Signed) -> bool { 4262 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4263 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4264 Hi = SDValue(Lo.getNode(), 1); 4265 return true; 4266 } 4267 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4268 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4269 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4270 return true; 4271 } 4272 return false; 4273 }; 4274 4275 SDValue Lo, Hi; 4276 4277 if (!LL.getNode() && !RL.getNode() && 4278 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4279 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4280 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4281 } 4282 4283 if (!LL.getNode()) 4284 return false; 4285 4286 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4287 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4288 DAG.MaskedValueIsZero(RHS, HighMask)) { 4289 // The inputs are both zero-extended. 4290 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4291 Result.push_back(Lo); 4292 Result.push_back(Hi); 4293 if (Opcode != ISD::MUL) { 4294 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4295 Result.push_back(Zero); 4296 Result.push_back(Zero); 4297 } 4298 return true; 4299 } 4300 } 4301 4302 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4303 RHSSB > InnerBitSize) { 4304 // The input values are both sign-extended. 4305 // TODO non-MUL case? 4306 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4307 Result.push_back(Lo); 4308 Result.push_back(Hi); 4309 return true; 4310 } 4311 } 4312 4313 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4314 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4315 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4316 // FIXME getShiftAmountTy does not always return a sensible result when VT 4317 // is an illegal type, and so the type may be too small to fit the shift 4318 // amount. Override it with i32. The shift will have to be legalized. 4319 ShiftAmountTy = MVT::i32; 4320 } 4321 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4322 4323 if (!LH.getNode() && !RH.getNode() && 4324 isOperationLegalOrCustom(ISD::SRL, VT) && 4325 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4326 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4327 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4328 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4329 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4330 } 4331 4332 if (!LH.getNode()) 4333 return false; 4334 4335 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4336 return false; 4337 4338 Result.push_back(Lo); 4339 4340 if (Opcode == ISD::MUL) { 4341 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4342 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4343 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4344 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4345 Result.push_back(Hi); 4346 return true; 4347 } 4348 4349 // Compute the full width result. 4350 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4351 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4352 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4353 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4354 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4355 }; 4356 4357 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4358 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4359 return false; 4360 4361 // This is effectively the add part of a multiply-add of half-sized operands, 4362 // so it cannot overflow. 4363 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4364 4365 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4366 return false; 4367 4368 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4369 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4370 4371 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4372 isOperationLegalOrCustom(ISD::ADDE, VT)); 4373 if (UseGlue) 4374 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4375 Merge(Lo, Hi)); 4376 else 4377 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4378 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4379 4380 SDValue Carry = Next.getValue(1); 4381 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4382 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4383 4384 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4385 return false; 4386 4387 if (UseGlue) 4388 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4389 Carry); 4390 else 4391 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4392 Zero, Carry); 4393 4394 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4395 4396 if (Opcode == ISD::SMUL_LOHI) { 4397 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4398 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4399 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4400 4401 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4402 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4403 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4404 } 4405 4406 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4407 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4408 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4409 return true; 4410 } 4411 4412 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4413 SelectionDAG &DAG, MulExpansionKind Kind, 4414 SDValue LL, SDValue LH, SDValue RL, 4415 SDValue RH) const { 4416 SmallVector<SDValue, 2> Result; 4417 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4418 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4419 DAG, Kind, LL, LH, RL, RH); 4420 if (Ok) { 4421 assert(Result.size() == 2); 4422 Lo = Result[0]; 4423 Hi = Result[1]; 4424 } 4425 return Ok; 4426 } 4427 4428 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4429 SelectionDAG &DAG) const { 4430 EVT VT = Node->getValueType(0); 4431 4432 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4433 !isOperationLegalOrCustom(ISD::SRL, VT) || 4434 !isOperationLegalOrCustom(ISD::SUB, VT) || 4435 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4436 return false; 4437 4438 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4439 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4440 SDValue X = Node->getOperand(0); 4441 SDValue Y = Node->getOperand(1); 4442 SDValue Z = Node->getOperand(2); 4443 4444 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4445 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4446 SDLoc DL(SDValue(Node, 0)); 4447 4448 EVT ShVT = Z.getValueType(); 4449 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4450 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4451 4452 SDValue ShAmt; 4453 if (isPowerOf2_32(EltSizeInBits)) { 4454 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4455 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4456 } else { 4457 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4458 } 4459 4460 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4461 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4462 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4463 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4464 4465 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4466 // and that is undefined. We must compare and select to avoid UB. 4467 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4468 4469 // For fshl, 0-shift returns the 1st arg (X). 4470 // For fshr, 0-shift returns the 2nd arg (Y). 4471 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4472 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4473 return true; 4474 } 4475 4476 // TODO: Merge with expandFunnelShift. 4477 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4478 SelectionDAG &DAG) const { 4479 EVT VT = Node->getValueType(0); 4480 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4481 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4482 SDValue Op0 = Node->getOperand(0); 4483 SDValue Op1 = Node->getOperand(1); 4484 SDLoc DL(SDValue(Node, 0)); 4485 4486 EVT ShVT = Op1.getValueType(); 4487 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4488 4489 // If a rotate in the other direction is legal, use it. 4490 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4491 if (isOperationLegal(RevRot, VT)) { 4492 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4493 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4494 return true; 4495 } 4496 4497 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4498 !isOperationLegalOrCustom(ISD::SRL, VT) || 4499 !isOperationLegalOrCustom(ISD::SUB, VT) || 4500 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4501 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4502 return false; 4503 4504 // Otherwise, 4505 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4506 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4507 // 4508 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4509 "Expecting the type bitwidth to be a power of 2"); 4510 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4511 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4512 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4513 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4514 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4515 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4516 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4517 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4518 return true; 4519 } 4520 4521 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4522 SelectionDAG &DAG) const { 4523 SDValue Src = Node->getOperand(0); 4524 EVT SrcVT = Src.getValueType(); 4525 EVT DstVT = Node->getValueType(0); 4526 SDLoc dl(SDValue(Node, 0)); 4527 4528 // FIXME: Only f32 to i64 conversions are supported. 4529 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4530 return false; 4531 4532 // Expand f32 -> i64 conversion 4533 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4534 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4535 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4536 EVT IntVT = SrcVT.changeTypeToInteger(); 4537 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4538 4539 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4540 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4541 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4542 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4543 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4544 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4545 4546 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4547 4548 SDValue ExponentBits = DAG.getNode( 4549 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4550 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4551 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4552 4553 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4554 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4555 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4556 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4557 4558 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4559 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4560 DAG.getConstant(0x00800000, dl, IntVT)); 4561 4562 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4563 4564 R = DAG.getSelectCC( 4565 dl, Exponent, ExponentLoBit, 4566 DAG.getNode(ISD::SHL, dl, DstVT, R, 4567 DAG.getZExtOrTrunc( 4568 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4569 dl, IntShVT)), 4570 DAG.getNode(ISD::SRL, dl, DstVT, R, 4571 DAG.getZExtOrTrunc( 4572 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4573 dl, IntShVT)), 4574 ISD::SETGT); 4575 4576 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4577 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4578 4579 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4580 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4581 return true; 4582 } 4583 4584 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4585 SelectionDAG &DAG) const { 4586 SDLoc dl(SDValue(Node, 0)); 4587 SDValue Src = Node->getOperand(0); 4588 4589 EVT SrcVT = Src.getValueType(); 4590 EVT DstVT = Node->getValueType(0); 4591 EVT SetCCVT = 4592 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4593 4594 // Only expand vector types if we have the appropriate vector bit operations. 4595 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4596 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4597 return false; 4598 4599 // If the maximum float value is smaller then the signed integer range, 4600 // the destination signmask can't be represented by the float, so we can 4601 // just use FP_TO_SINT directly. 4602 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4603 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4604 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4605 if (APFloat::opOverflow & 4606 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4607 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4608 return true; 4609 } 4610 4611 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4612 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4613 4614 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4615 if (Strict) { 4616 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4617 // signmask then offset (the result of which should be fully representable). 4618 // Sel = Src < 0x8000000000000000 4619 // Val = select Sel, Src, Src - 0x8000000000000000 4620 // Ofs = select Sel, 0, 0x8000000000000000 4621 // Result = fp_to_sint(Val) ^ Ofs 4622 4623 // TODO: Should any fast-math-flags be set for the FSUB? 4624 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4625 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4626 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4627 DAG.getConstant(SignMask, dl, DstVT)); 4628 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4629 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4630 } else { 4631 // Expand based on maximum range of FP_TO_SINT: 4632 // True = fp_to_sint(Src) 4633 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4634 // Result = select (Src < 0x8000000000000000), True, False 4635 4636 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4637 // TODO: Should any fast-math-flags be set for the FSUB? 4638 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4639 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4640 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4641 DAG.getConstant(SignMask, dl, DstVT)); 4642 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4643 } 4644 return true; 4645 } 4646 4647 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4648 SelectionDAG &DAG) const { 4649 SDValue Src = Node->getOperand(0); 4650 EVT SrcVT = Src.getValueType(); 4651 EVT DstVT = Node->getValueType(0); 4652 4653 if (SrcVT.getScalarType() != MVT::i64) 4654 return false; 4655 4656 SDLoc dl(SDValue(Node, 0)); 4657 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4658 4659 if (DstVT.getScalarType() == MVT::f32) { 4660 // Only expand vector types if we have the appropriate vector bit 4661 // operations. 4662 if (SrcVT.isVector() && 4663 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4664 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4665 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4666 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4667 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4668 return false; 4669 4670 // For unsigned conversions, convert them to signed conversions using the 4671 // algorithm from the x86_64 __floatundidf in compiler_rt. 4672 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4673 4674 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4675 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4676 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4677 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4678 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4679 4680 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4681 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4682 4683 // TODO: This really should be implemented using a branch rather than a 4684 // select. We happen to get lucky and machinesink does the right 4685 // thing most of the time. This would be a good candidate for a 4686 // pseudo-op, or, even better, for whole-function isel. 4687 EVT SetCCVT = 4688 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4689 4690 SDValue SignBitTest = DAG.getSetCC( 4691 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4692 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4693 return true; 4694 } 4695 4696 if (DstVT.getScalarType() == MVT::f64) { 4697 // Only expand vector types if we have the appropriate vector bit 4698 // operations. 4699 if (SrcVT.isVector() && 4700 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4701 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4702 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4703 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4704 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4705 return false; 4706 4707 // Implementation of unsigned i64 to f64 following the algorithm in 4708 // __floatundidf in compiler_rt. This implementation has the advantage 4709 // of performing rounding correctly, both in the default rounding mode 4710 // and in all alternate rounding modes. 4711 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4712 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4713 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4714 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4715 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4716 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4717 4718 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4719 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4720 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4721 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4722 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4723 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4724 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4725 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4726 return true; 4727 } 4728 4729 return false; 4730 } 4731 4732 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4733 SelectionDAG &DAG) const { 4734 SDLoc dl(Node); 4735 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4736 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4737 EVT VT = Node->getValueType(0); 4738 if (isOperationLegalOrCustom(NewOp, VT)) { 4739 SDValue Quiet0 = Node->getOperand(0); 4740 SDValue Quiet1 = Node->getOperand(1); 4741 4742 if (!Node->getFlags().hasNoNaNs()) { 4743 // Insert canonicalizes if it's possible we need to quiet to get correct 4744 // sNaN behavior. 4745 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4746 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4747 Node->getFlags()); 4748 } 4749 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4750 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4751 Node->getFlags()); 4752 } 4753 } 4754 4755 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4756 } 4757 4758 return SDValue(); 4759 } 4760 4761 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4762 SelectionDAG &DAG) const { 4763 SDLoc dl(Node); 4764 EVT VT = Node->getValueType(0); 4765 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4766 SDValue Op = Node->getOperand(0); 4767 unsigned Len = VT.getScalarSizeInBits(); 4768 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4769 4770 // TODO: Add support for irregular type lengths. 4771 if (!(Len <= 128 && Len % 8 == 0)) 4772 return false; 4773 4774 // Only expand vector types if we have the appropriate vector bit operations. 4775 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4776 !isOperationLegalOrCustom(ISD::SUB, VT) || 4777 !isOperationLegalOrCustom(ISD::SRL, VT) || 4778 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4779 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4780 return false; 4781 4782 // This is the "best" algorithm from 4783 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4784 SDValue Mask55 = 4785 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4786 SDValue Mask33 = 4787 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4788 SDValue Mask0F = 4789 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4790 SDValue Mask01 = 4791 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4792 4793 // v = v - ((v >> 1) & 0x55555555...) 4794 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4795 DAG.getNode(ISD::AND, dl, VT, 4796 DAG.getNode(ISD::SRL, dl, VT, Op, 4797 DAG.getConstant(1, dl, ShVT)), 4798 Mask55)); 4799 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4800 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4801 DAG.getNode(ISD::AND, dl, VT, 4802 DAG.getNode(ISD::SRL, dl, VT, Op, 4803 DAG.getConstant(2, dl, ShVT)), 4804 Mask33)); 4805 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4806 Op = DAG.getNode(ISD::AND, dl, VT, 4807 DAG.getNode(ISD::ADD, dl, VT, Op, 4808 DAG.getNode(ISD::SRL, dl, VT, Op, 4809 DAG.getConstant(4, dl, ShVT))), 4810 Mask0F); 4811 // v = (v * 0x01010101...) >> (Len - 8) 4812 if (Len > 8) 4813 Op = 4814 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4815 DAG.getConstant(Len - 8, dl, ShVT)); 4816 4817 Result = Op; 4818 return true; 4819 } 4820 4821 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4822 SelectionDAG &DAG) const { 4823 SDLoc dl(Node); 4824 EVT VT = Node->getValueType(0); 4825 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4826 SDValue Op = Node->getOperand(0); 4827 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4828 4829 // If the non-ZERO_UNDEF version is supported we can use that instead. 4830 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4831 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4832 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4833 return true; 4834 } 4835 4836 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4837 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4838 EVT SetCCVT = 4839 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4840 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4841 SDValue Zero = DAG.getConstant(0, dl, VT); 4842 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4843 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4844 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4845 return true; 4846 } 4847 4848 // Only expand vector types if we have the appropriate vector bit operations. 4849 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4850 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4851 !isOperationLegalOrCustom(ISD::SRL, VT) || 4852 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4853 return false; 4854 4855 // for now, we do this: 4856 // x = x | (x >> 1); 4857 // x = x | (x >> 2); 4858 // ... 4859 // x = x | (x >>16); 4860 // x = x | (x >>32); // for 64-bit input 4861 // return popcount(~x); 4862 // 4863 // Ref: "Hacker's Delight" by Henry Warren 4864 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4865 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4866 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4867 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4868 } 4869 Op = DAG.getNOT(dl, Op, VT); 4870 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 4871 return true; 4872 } 4873 4874 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 4875 SelectionDAG &DAG) const { 4876 SDLoc dl(Node); 4877 EVT VT = Node->getValueType(0); 4878 SDValue Op = Node->getOperand(0); 4879 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4880 4881 // If the non-ZERO_UNDEF version is supported we can use that instead. 4882 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 4883 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 4884 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 4885 return true; 4886 } 4887 4888 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4889 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 4890 EVT SetCCVT = 4891 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4892 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 4893 SDValue Zero = DAG.getConstant(0, dl, VT); 4894 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4895 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4896 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 4897 return true; 4898 } 4899 4900 // Only expand vector types if we have the appropriate vector bit operations. 4901 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4902 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 4903 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 4904 !isOperationLegalOrCustom(ISD::SUB, VT) || 4905 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 4906 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4907 return false; 4908 4909 // for now, we use: { return popcount(~x & (x - 1)); } 4910 // unless the target has ctlz but not ctpop, in which case we use: 4911 // { return 32 - nlz(~x & (x-1)); } 4912 // Ref: "Hacker's Delight" by Henry Warren 4913 SDValue Tmp = DAG.getNode( 4914 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 4915 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 4916 4917 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4918 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 4919 Result = 4920 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 4921 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 4922 return true; 4923 } 4924 4925 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 4926 return true; 4927 } 4928 4929 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 4930 SelectionDAG &DAG) const { 4931 SDLoc dl(N); 4932 EVT VT = N->getValueType(0); 4933 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4934 SDValue Op = N->getOperand(0); 4935 4936 // Only expand vector types if we have the appropriate vector operations. 4937 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 4938 !isOperationLegalOrCustom(ISD::ADD, VT) || 4939 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4940 return false; 4941 4942 SDValue Shift = 4943 DAG.getNode(ISD::SRA, dl, VT, Op, 4944 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 4945 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 4946 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 4947 return true; 4948 } 4949 4950 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4951 SelectionDAG &DAG) const { 4952 SDLoc SL(LD); 4953 SDValue Chain = LD->getChain(); 4954 SDValue BasePTR = LD->getBasePtr(); 4955 EVT SrcVT = LD->getMemoryVT(); 4956 ISD::LoadExtType ExtType = LD->getExtensionType(); 4957 4958 unsigned NumElem = SrcVT.getVectorNumElements(); 4959 4960 EVT SrcEltVT = SrcVT.getScalarType(); 4961 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4962 4963 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4964 assert(SrcEltVT.isByteSized()); 4965 4966 SmallVector<SDValue, 8> Vals; 4967 SmallVector<SDValue, 8> LoadChains; 4968 4969 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4970 SDValue ScalarLoad = 4971 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4972 LD->getPointerInfo().getWithOffset(Idx * Stride), 4973 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4974 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4975 4976 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4977 4978 Vals.push_back(ScalarLoad.getValue(0)); 4979 LoadChains.push_back(ScalarLoad.getValue(1)); 4980 } 4981 4982 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4983 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4984 4985 return DAG.getMergeValues({Value, NewChain}, SL); 4986 } 4987 4988 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4989 SelectionDAG &DAG) const { 4990 SDLoc SL(ST); 4991 4992 SDValue Chain = ST->getChain(); 4993 SDValue BasePtr = ST->getBasePtr(); 4994 SDValue Value = ST->getValue(); 4995 EVT StVT = ST->getMemoryVT(); 4996 4997 // The type of the data we want to save 4998 EVT RegVT = Value.getValueType(); 4999 EVT RegSclVT = RegVT.getScalarType(); 5000 5001 // The type of data as saved in memory. 5002 EVT MemSclVT = StVT.getScalarType(); 5003 5004 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 5005 unsigned NumElem = StVT.getVectorNumElements(); 5006 5007 // A vector must always be stored in memory as-is, i.e. without any padding 5008 // between the elements, since various code depend on it, e.g. in the 5009 // handling of a bitcast of a vector type to int, which may be done with a 5010 // vector store followed by an integer load. A vector that does not have 5011 // elements that are byte-sized must therefore be stored as an integer 5012 // built out of the extracted vector elements. 5013 if (!MemSclVT.isByteSized()) { 5014 unsigned NumBits = StVT.getSizeInBits(); 5015 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 5016 5017 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 5018 5019 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5020 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5021 DAG.getConstant(Idx, SL, IdxVT)); 5022 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 5023 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 5024 unsigned ShiftIntoIdx = 5025 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 5026 SDValue ShiftAmount = 5027 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 5028 SDValue ShiftedElt = 5029 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 5030 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 5031 } 5032 5033 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 5034 ST->getAlignment(), ST->getMemOperand()->getFlags(), 5035 ST->getAAInfo()); 5036 } 5037 5038 // Store Stride in bytes 5039 unsigned Stride = MemSclVT.getSizeInBits() / 8; 5040 assert(Stride && "Zero stride!"); 5041 // Extract each of the elements from the original vector and save them into 5042 // memory individually. 5043 SmallVector<SDValue, 8> Stores; 5044 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5045 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5046 DAG.getConstant(Idx, SL, IdxVT)); 5047 5048 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 5049 5050 // This scalar TruncStore may be illegal, but we legalize it later. 5051 SDValue Store = DAG.getTruncStore( 5052 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 5053 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 5054 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5055 5056 Stores.push_back(Store); 5057 } 5058 5059 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 5060 } 5061 5062 std::pair<SDValue, SDValue> 5063 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 5064 assert(LD->getAddressingMode() == ISD::UNINDEXED && 5065 "unaligned indexed loads not implemented!"); 5066 SDValue Chain = LD->getChain(); 5067 SDValue Ptr = LD->getBasePtr(); 5068 EVT VT = LD->getValueType(0); 5069 EVT LoadedVT = LD->getMemoryVT(); 5070 SDLoc dl(LD); 5071 auto &MF = DAG.getMachineFunction(); 5072 5073 if (VT.isFloatingPoint() || VT.isVector()) { 5074 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 5075 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 5076 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 5077 LoadedVT.isVector()) { 5078 // Scalarize the load and let the individual components be handled. 5079 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 5080 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 5081 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 5082 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 5083 } 5084 5085 // Expand to a (misaligned) integer load of the same size, 5086 // then bitconvert to floating point or vector. 5087 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 5088 LD->getMemOperand()); 5089 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 5090 if (LoadedVT != VT) 5091 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 5092 ISD::ANY_EXTEND, dl, VT, Result); 5093 5094 return std::make_pair(Result, newLoad.getValue(1)); 5095 } 5096 5097 // Copy the value to a (aligned) stack slot using (unaligned) integer 5098 // loads and stores, then do a (aligned) load from the stack slot. 5099 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 5100 unsigned LoadedBytes = LoadedVT.getStoreSize(); 5101 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5102 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 5103 5104 // Make sure the stack slot is also aligned for the register type. 5105 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 5106 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 5107 SmallVector<SDValue, 8> Stores; 5108 SDValue StackPtr = StackBase; 5109 unsigned Offset = 0; 5110 5111 EVT PtrVT = Ptr.getValueType(); 5112 EVT StackPtrVT = StackPtr.getValueType(); 5113 5114 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5115 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5116 5117 // Do all but one copies using the full register width. 5118 for (unsigned i = 1; i < NumRegs; i++) { 5119 // Load one integer register's worth from the original location. 5120 SDValue Load = DAG.getLoad( 5121 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5122 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5123 LD->getAAInfo()); 5124 // Follow the load with a store to the stack slot. Remember the store. 5125 Stores.push_back(DAG.getStore( 5126 Load.getValue(1), dl, Load, StackPtr, 5127 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5128 // Increment the pointers. 5129 Offset += RegBytes; 5130 5131 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5132 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5133 } 5134 5135 // The last copy may be partial. Do an extending load. 5136 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5137 8 * (LoadedBytes - Offset)); 5138 SDValue Load = 5139 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5140 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5141 MinAlign(LD->getAlignment(), Offset), 5142 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5143 // Follow the load with a store to the stack slot. Remember the store. 5144 // On big-endian machines this requires a truncating store to ensure 5145 // that the bits end up in the right place. 5146 Stores.push_back(DAG.getTruncStore( 5147 Load.getValue(1), dl, Load, StackPtr, 5148 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5149 5150 // The order of the stores doesn't matter - say it with a TokenFactor. 5151 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5152 5153 // Finally, perform the original load only redirected to the stack slot. 5154 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5155 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5156 LoadedVT); 5157 5158 // Callers expect a MERGE_VALUES node. 5159 return std::make_pair(Load, TF); 5160 } 5161 5162 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5163 "Unaligned load of unsupported type."); 5164 5165 // Compute the new VT that is half the size of the old one. This is an 5166 // integer MVT. 5167 unsigned NumBits = LoadedVT.getSizeInBits(); 5168 EVT NewLoadedVT; 5169 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5170 NumBits >>= 1; 5171 5172 unsigned Alignment = LD->getAlignment(); 5173 unsigned IncrementSize = NumBits / 8; 5174 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5175 5176 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5177 if (HiExtType == ISD::NON_EXTLOAD) 5178 HiExtType = ISD::ZEXTLOAD; 5179 5180 // Load the value in two parts 5181 SDValue Lo, Hi; 5182 if (DAG.getDataLayout().isLittleEndian()) { 5183 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5184 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5185 LD->getAAInfo()); 5186 5187 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5188 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5189 LD->getPointerInfo().getWithOffset(IncrementSize), 5190 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5191 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5192 } else { 5193 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5194 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5195 LD->getAAInfo()); 5196 5197 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5198 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5199 LD->getPointerInfo().getWithOffset(IncrementSize), 5200 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5201 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5202 } 5203 5204 // aggregate the two parts 5205 SDValue ShiftAmount = 5206 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5207 DAG.getDataLayout())); 5208 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5209 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5210 5211 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5212 Hi.getValue(1)); 5213 5214 return std::make_pair(Result, TF); 5215 } 5216 5217 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5218 SelectionDAG &DAG) const { 5219 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5220 "unaligned indexed stores not implemented!"); 5221 SDValue Chain = ST->getChain(); 5222 SDValue Ptr = ST->getBasePtr(); 5223 SDValue Val = ST->getValue(); 5224 EVT VT = Val.getValueType(); 5225 int Alignment = ST->getAlignment(); 5226 auto &MF = DAG.getMachineFunction(); 5227 EVT MemVT = ST->getMemoryVT(); 5228 5229 SDLoc dl(ST); 5230 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 5231 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5232 if (isTypeLegal(intVT)) { 5233 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5234 MemVT.isVector()) { 5235 // Scalarize the store and let the individual components be handled. 5236 SDValue Result = scalarizeVectorStore(ST, DAG); 5237 5238 return Result; 5239 } 5240 // Expand to a bitconvert of the value to the integer type of the 5241 // same size, then a (misaligned) int store. 5242 // FIXME: Does not handle truncating floating point stores! 5243 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5244 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5245 Alignment, ST->getMemOperand()->getFlags()); 5246 return Result; 5247 } 5248 // Do a (aligned) store to a stack slot, then copy from the stack slot 5249 // to the final destination using (unaligned) integer loads and stores. 5250 EVT StoredVT = ST->getMemoryVT(); 5251 MVT RegVT = 5252 getRegisterType(*DAG.getContext(), 5253 EVT::getIntegerVT(*DAG.getContext(), 5254 StoredVT.getSizeInBits())); 5255 EVT PtrVT = Ptr.getValueType(); 5256 unsigned StoredBytes = StoredVT.getStoreSize(); 5257 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5258 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5259 5260 // Make sure the stack slot is also aligned for the register type. 5261 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 5262 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5263 5264 // Perform the original store, only redirected to the stack slot. 5265 SDValue Store = DAG.getTruncStore( 5266 Chain, dl, Val, StackPtr, 5267 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 5268 5269 EVT StackPtrVT = StackPtr.getValueType(); 5270 5271 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5272 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5273 SmallVector<SDValue, 8> Stores; 5274 unsigned Offset = 0; 5275 5276 // Do all but one copies using the full register width. 5277 for (unsigned i = 1; i < NumRegs; i++) { 5278 // Load one integer register's worth from the stack slot. 5279 SDValue Load = DAG.getLoad( 5280 RegVT, dl, Store, StackPtr, 5281 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5282 // Store it to the final location. Remember the store. 5283 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5284 ST->getPointerInfo().getWithOffset(Offset), 5285 MinAlign(ST->getAlignment(), Offset), 5286 ST->getMemOperand()->getFlags())); 5287 // Increment the pointers. 5288 Offset += RegBytes; 5289 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5290 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5291 } 5292 5293 // The last store may be partial. Do a truncating store. On big-endian 5294 // machines this requires an extending load from the stack slot to ensure 5295 // that the bits are in the right place. 5296 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5297 8 * (StoredBytes - Offset)); 5298 5299 // Load from the stack slot. 5300 SDValue Load = DAG.getExtLoad( 5301 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5302 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 5303 5304 Stores.push_back( 5305 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5306 ST->getPointerInfo().getWithOffset(Offset), MemVT, 5307 MinAlign(ST->getAlignment(), Offset), 5308 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5309 // The order of the stores doesn't matter - say it with a TokenFactor. 5310 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5311 return Result; 5312 } 5313 5314 assert(ST->getMemoryVT().isInteger() && 5315 !ST->getMemoryVT().isVector() && 5316 "Unaligned store of unknown type."); 5317 // Get the half-size VT 5318 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 5319 int NumBits = NewStoredVT.getSizeInBits(); 5320 int IncrementSize = NumBits / 8; 5321 5322 // Divide the stored value in two parts. 5323 SDValue ShiftAmount = 5324 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 5325 DAG.getDataLayout())); 5326 SDValue Lo = Val; 5327 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5328 5329 // Store the two parts 5330 SDValue Store1, Store2; 5331 Store1 = DAG.getTruncStore(Chain, dl, 5332 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5333 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5334 ST->getMemOperand()->getFlags()); 5335 5336 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5337 Alignment = MinAlign(Alignment, IncrementSize); 5338 Store2 = DAG.getTruncStore( 5339 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5340 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5341 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5342 5343 SDValue Result = 5344 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5345 return Result; 5346 } 5347 5348 SDValue 5349 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5350 const SDLoc &DL, EVT DataVT, 5351 SelectionDAG &DAG, 5352 bool IsCompressedMemory) const { 5353 SDValue Increment; 5354 EVT AddrVT = Addr.getValueType(); 5355 EVT MaskVT = Mask.getValueType(); 5356 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5357 "Incompatible types of Data and Mask"); 5358 if (IsCompressedMemory) { 5359 // Incrementing the pointer according to number of '1's in the mask. 5360 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5361 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5362 if (MaskIntVT.getSizeInBits() < 32) { 5363 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5364 MaskIntVT = MVT::i32; 5365 } 5366 5367 // Count '1's with POPCNT. 5368 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5369 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5370 // Scale is an element size in bytes. 5371 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5372 AddrVT); 5373 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5374 } else 5375 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5376 5377 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5378 } 5379 5380 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5381 SDValue Idx, 5382 EVT VecVT, 5383 const SDLoc &dl) { 5384 if (isa<ConstantSDNode>(Idx)) 5385 return Idx; 5386 5387 EVT IdxVT = Idx.getValueType(); 5388 unsigned NElts = VecVT.getVectorNumElements(); 5389 if (isPowerOf2_32(NElts)) { 5390 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5391 Log2_32(NElts)); 5392 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5393 DAG.getConstant(Imm, dl, IdxVT)); 5394 } 5395 5396 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5397 DAG.getConstant(NElts - 1, dl, IdxVT)); 5398 } 5399 5400 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5401 SDValue VecPtr, EVT VecVT, 5402 SDValue Index) const { 5403 SDLoc dl(Index); 5404 // Make sure the index type is big enough to compute in. 5405 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5406 5407 EVT EltVT = VecVT.getVectorElementType(); 5408 5409 // Calculate the element offset and add it to the pointer. 5410 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5411 assert(EltSize * 8 == EltVT.getSizeInBits() && 5412 "Converting bits to bytes lost precision"); 5413 5414 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5415 5416 EVT IdxVT = Index.getValueType(); 5417 5418 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5419 DAG.getConstant(EltSize, dl, IdxVT)); 5420 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5421 } 5422 5423 //===----------------------------------------------------------------------===// 5424 // Implementation of Emulated TLS Model 5425 //===----------------------------------------------------------------------===// 5426 5427 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5428 SelectionDAG &DAG) const { 5429 // Access to address of TLS varialbe xyz is lowered to a function call: 5430 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5431 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5432 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5433 SDLoc dl(GA); 5434 5435 ArgListTy Args; 5436 ArgListEntry Entry; 5437 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5438 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5439 StringRef EmuTlsVarName(NameString); 5440 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5441 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5442 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5443 Entry.Ty = VoidPtrType; 5444 Args.push_back(Entry); 5445 5446 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5447 5448 TargetLowering::CallLoweringInfo CLI(DAG); 5449 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5450 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5451 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5452 5453 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5454 // At last for X86 targets, maybe good for other targets too? 5455 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5456 MFI.setAdjustsStack(true); // Is this only for X86 target? 5457 MFI.setHasCalls(true); 5458 5459 assert((GA->getOffset() == 0) && 5460 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5461 return CallResult.first; 5462 } 5463 5464 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5465 SelectionDAG &DAG) const { 5466 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5467 if (!isCtlzFast()) 5468 return SDValue(); 5469 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5470 SDLoc dl(Op); 5471 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5472 if (C->isNullValue() && CC == ISD::SETEQ) { 5473 EVT VT = Op.getOperand(0).getValueType(); 5474 SDValue Zext = Op.getOperand(0); 5475 if (VT.bitsLT(MVT::i32)) { 5476 VT = MVT::i32; 5477 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5478 } 5479 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5480 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5481 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5482 DAG.getConstant(Log2b, dl, MVT::i32)); 5483 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5484 } 5485 } 5486 return SDValue(); 5487 } 5488 5489 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5490 unsigned Opcode = Node->getOpcode(); 5491 SDValue LHS = Node->getOperand(0); 5492 SDValue RHS = Node->getOperand(1); 5493 EVT VT = LHS.getValueType(); 5494 SDLoc dl(Node); 5495 5496 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 5497 assert(VT.isInteger() && "Expected operands to be integers"); 5498 5499 // usub.sat(a, b) -> umax(a, b) - b 5500 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5501 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5502 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5503 } 5504 5505 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5506 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5507 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5508 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5509 } 5510 5511 unsigned OverflowOp; 5512 switch (Opcode) { 5513 case ISD::SADDSAT: 5514 OverflowOp = ISD::SADDO; 5515 break; 5516 case ISD::UADDSAT: 5517 OverflowOp = ISD::UADDO; 5518 break; 5519 case ISD::SSUBSAT: 5520 OverflowOp = ISD::SSUBO; 5521 break; 5522 case ISD::USUBSAT: 5523 OverflowOp = ISD::USUBO; 5524 break; 5525 default: 5526 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5527 "addition or subtraction node."); 5528 } 5529 5530 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5531 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5532 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 5533 LHS, RHS); 5534 SDValue SumDiff = Result.getValue(0); 5535 SDValue Overflow = Result.getValue(1); 5536 SDValue Zero = DAG.getConstant(0, dl, VT); 5537 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 5538 5539 if (Opcode == ISD::UADDSAT) { 5540 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5541 // (LHS + RHS) | OverflowMask 5542 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5543 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 5544 } 5545 // Overflow ? 0xffff.... : (LHS + RHS) 5546 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 5547 } else if (Opcode == ISD::USUBSAT) { 5548 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5549 // (LHS - RHS) & ~OverflowMask 5550 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5551 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 5552 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 5553 } 5554 // Overflow ? 0 : (LHS - RHS) 5555 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 5556 } else { 5557 // SatMax -> Overflow && SumDiff < 0 5558 // SatMin -> Overflow && SumDiff >= 0 5559 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5560 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5561 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5562 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5563 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5564 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 5565 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 5566 } 5567 } 5568 5569 SDValue 5570 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5571 assert((Node->getOpcode() == ISD::SMULFIX || 5572 Node->getOpcode() == ISD::UMULFIX) && 5573 "Expected opcode to be SMULFIX or UMULFIX."); 5574 5575 SDLoc dl(Node); 5576 SDValue LHS = Node->getOperand(0); 5577 SDValue RHS = Node->getOperand(1); 5578 EVT VT = LHS.getValueType(); 5579 unsigned Scale = Node->getConstantOperandVal(2); 5580 5581 // [us]mul.fix(a, b, 0) -> mul(a, b) 5582 if (!Scale) { 5583 if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5584 return SDValue(); 5585 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5586 } 5587 5588 unsigned VTSize = VT.getScalarSizeInBits(); 5589 bool Signed = Node->getOpcode() == ISD::SMULFIX; 5590 5591 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5592 "Expected scale to be less than the number of bits if signed or at " 5593 "most the number of bits if unsigned."); 5594 assert(LHS.getValueType() == RHS.getValueType() && 5595 "Expected both operands to be the same type"); 5596 5597 // Get the upper and lower bits of the result. 5598 SDValue Lo, Hi; 5599 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5600 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5601 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5602 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5603 Lo = Result.getValue(0); 5604 Hi = Result.getValue(1); 5605 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5606 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5607 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5608 } else if (VT.isVector()) { 5609 return SDValue(); 5610 } else { 5611 report_fatal_error("Unable to expand fixed point multiplication."); 5612 } 5613 5614 if (Scale == VTSize) 5615 // Result is just the top half since we'd be shifting by the width of the 5616 // operand. 5617 return Hi; 5618 5619 // The result will need to be shifted right by the scale since both operands 5620 // are scaled. The result is given to us in 2 halves, so we only want part of 5621 // both in the result. 5622 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5623 return DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5624 DAG.getConstant(Scale, dl, ShiftTy)); 5625 } 5626 5627 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 5628 SDValue &Overflow, SelectionDAG &DAG) const { 5629 SDLoc dl(Node); 5630 EVT VT = Node->getValueType(0); 5631 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5632 SDValue LHS = Node->getOperand(0); 5633 SDValue RHS = Node->getOperand(1); 5634 bool isSigned = Node->getOpcode() == ISD::SMULO; 5635 5636 // For power-of-two multiplications we can use a simpler shift expansion. 5637 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5638 const APInt &C = RHSC->getAPIntValue(); 5639 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5640 if (C.isPowerOf2()) { 5641 // smulo(x, signed_min) is same as umulo(x, signed_min). 5642 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5643 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5644 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 5645 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 5646 Overflow = DAG.getSetCC(dl, SetCCVT, 5647 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5648 dl, VT, Result, ShiftAmt), 5649 LHS, ISD::SETNE); 5650 return true; 5651 } 5652 } 5653 5654 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 5655 if (VT.isVector()) 5656 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 5657 VT.getVectorNumElements()); 5658 5659 SDValue BottomHalf; 5660 SDValue TopHalf; 5661 static const unsigned Ops[2][3] = 5662 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 5663 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 5664 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 5665 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5666 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 5667 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 5668 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 5669 RHS); 5670 TopHalf = BottomHalf.getValue(1); 5671 } else if (isTypeLegal(WideVT)) { 5672 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 5673 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 5674 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 5675 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 5676 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 5677 getShiftAmountTy(WideVT, DAG.getDataLayout())); 5678 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 5679 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 5680 } else { 5681 if (VT.isVector()) 5682 return false; 5683 5684 // We can fall back to a libcall with an illegal type for the MUL if we 5685 // have a libcall big enough. 5686 // Also, we can fall back to a division in some cases, but that's a big 5687 // performance hit in the general case. 5688 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5689 if (WideVT == MVT::i16) 5690 LC = RTLIB::MUL_I16; 5691 else if (WideVT == MVT::i32) 5692 LC = RTLIB::MUL_I32; 5693 else if (WideVT == MVT::i64) 5694 LC = RTLIB::MUL_I64; 5695 else if (WideVT == MVT::i128) 5696 LC = RTLIB::MUL_I128; 5697 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 5698 5699 SDValue HiLHS; 5700 SDValue HiRHS; 5701 if (isSigned) { 5702 // The high part is obtained by SRA'ing all but one of the bits of low 5703 // part. 5704 unsigned LoSize = VT.getSizeInBits(); 5705 HiLHS = 5706 DAG.getNode(ISD::SRA, dl, VT, LHS, 5707 DAG.getConstant(LoSize - 1, dl, 5708 getPointerTy(DAG.getDataLayout()))); 5709 HiRHS = 5710 DAG.getNode(ISD::SRA, dl, VT, RHS, 5711 DAG.getConstant(LoSize - 1, dl, 5712 getPointerTy(DAG.getDataLayout()))); 5713 } else { 5714 HiLHS = DAG.getConstant(0, dl, VT); 5715 HiRHS = DAG.getConstant(0, dl, VT); 5716 } 5717 5718 // Here we're passing the 2 arguments explicitly as 4 arguments that are 5719 // pre-lowered to the correct types. This all depends upon WideVT not 5720 // being a legal type for the architecture and thus has to be split to 5721 // two arguments. 5722 SDValue Ret; 5723 if (DAG.getDataLayout().isLittleEndian()) { 5724 // Halves of WideVT are packed into registers in different order 5725 // depending on platform endianness. This is usually handled by 5726 // the C calling convention, but we can't defer to it in 5727 // the legalizer. 5728 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 5729 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5730 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5731 /* isPostTypeLegalization */ true).first; 5732 } else { 5733 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 5734 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5735 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5736 /* isPostTypeLegalization */ true).first; 5737 } 5738 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 5739 "Ret value is a collection of constituent nodes holding result."); 5740 if (DAG.getDataLayout().isLittleEndian()) { 5741 // Same as above. 5742 BottomHalf = Ret.getOperand(0); 5743 TopHalf = Ret.getOperand(1); 5744 } else { 5745 BottomHalf = Ret.getOperand(1); 5746 TopHalf = Ret.getOperand(0); 5747 } 5748 } 5749 5750 Result = BottomHalf; 5751 if (isSigned) { 5752 SDValue ShiftAmt = DAG.getConstant( 5753 VT.getScalarSizeInBits() - 1, dl, 5754 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 5755 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 5756 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 5757 } else { 5758 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 5759 DAG.getConstant(0, dl, VT), ISD::SETNE); 5760 } 5761 5762 // Truncate the result if SetCC returns a larger type than needed. 5763 EVT RType = Node->getValueType(1); 5764 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 5765 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 5766 5767 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 5768 "Unexpected result type for S/UMULO legalization"); 5769 return true; 5770 } 5771 5772 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 5773 SDLoc dl(Node); 5774 bool NoNaN = Node->getFlags().hasNoNaNs(); 5775 unsigned BaseOpcode = 0; 5776 switch (Node->getOpcode()) { 5777 default: llvm_unreachable("Expected VECREDUCE opcode"); 5778 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 5779 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 5780 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 5781 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 5782 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 5783 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 5784 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 5785 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 5786 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 5787 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 5788 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 5789 case ISD::VECREDUCE_FMAX: 5790 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 5791 break; 5792 case ISD::VECREDUCE_FMIN: 5793 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 5794 break; 5795 } 5796 5797 SDValue Op = Node->getOperand(0); 5798 EVT VT = Op.getValueType(); 5799 5800 // Try to use a shuffle reduction for power of two vectors. 5801 if (VT.isPow2VectorType()) { 5802 while (VT.getVectorNumElements() > 1) { 5803 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 5804 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 5805 break; 5806 5807 SDValue Lo, Hi; 5808 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 5809 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 5810 VT = HalfVT; 5811 } 5812 } 5813 5814 EVT EltVT = VT.getVectorElementType(); 5815 unsigned NumElts = VT.getVectorNumElements(); 5816 5817 SmallVector<SDValue, 8> Ops; 5818 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 5819 5820 SDValue Res = Ops[0]; 5821 for (unsigned i = 1; i < NumElts; i++) 5822 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 5823 5824 // Result type may be wider than element type. 5825 if (EltVT != Node->getValueType(0)) 5826 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 5827 return Res; 5828 } 5829