1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 198 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 199 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 200 assert(VT.isInteger()); 201 202 // Find the largest legal integer type. 203 MVT LVT = MVT::i64; 204 while (!isTypeLegal(LVT)) 205 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 206 assert(LVT.isInteger()); 207 208 // If the type we've chosen is larger than the largest legal integer type 209 // then use that instead. 210 if (VT.bitsGT(LVT)) 211 VT = LVT; 212 } 213 214 unsigned NumMemOps = 0; 215 uint64_t Size = Op.size(); 216 while (Size) { 217 unsigned VTSize = VT.getSizeInBits() / 8; 218 while (VTSize > Size) { 219 // For now, only use non-vector load / store's for the left-over pieces. 220 EVT NewVT = VT; 221 unsigned NewVTSize; 222 223 bool Found = false; 224 if (VT.isVector() || VT.isFloatingPoint()) { 225 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 226 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 227 isSafeMemOpType(NewVT.getSimpleVT())) 228 Found = true; 229 else if (NewVT == MVT::i64 && 230 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 231 isSafeMemOpType(MVT::f64)) { 232 // i64 is usually not legal on 32-bit targets, but f64 may be. 233 NewVT = MVT::f64; 234 Found = true; 235 } 236 } 237 238 if (!Found) { 239 do { 240 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 241 if (NewVT == MVT::i8) 242 break; 243 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 244 } 245 NewVTSize = NewVT.getSizeInBits() / 8; 246 247 // If the new VT cannot cover all of the remaining bits, then consider 248 // issuing a (or a pair of) unaligned and overlapping load / store. 249 bool Fast; 250 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 251 allowsMisalignedMemoryAccesses( 252 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 253 MachineMemOperand::MONone, &Fast) && 254 Fast) 255 VTSize = Size; 256 else { 257 VT = NewVT; 258 VTSize = NewVTSize; 259 } 260 } 261 262 if (++NumMemOps > Limit) 263 return false; 264 265 MemOps.push_back(VT); 266 Size -= VTSize; 267 } 268 269 return true; 270 } 271 272 /// Soften the operands of a comparison. This code is shared among BR_CC, 273 /// SELECT_CC, and SETCC handlers. 274 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 275 SDValue &NewLHS, SDValue &NewRHS, 276 ISD::CondCode &CCCode, 277 const SDLoc &dl, const SDValue OldLHS, 278 const SDValue OldRHS) const { 279 SDValue Chain; 280 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 281 OldRHS, Chain); 282 } 283 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS, 289 SDValue &Chain, 290 bool IsSignaling) const { 291 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 292 // not supporting it. We can update this code when libgcc provides such 293 // functions. 294 295 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 296 && "Unsupported setcc type!"); 297 298 // Expand into one or more soft-fp libcall(s). 299 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 300 bool ShouldInvertCC = false; 301 switch (CCCode) { 302 case ISD::SETEQ: 303 case ISD::SETOEQ: 304 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 305 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 306 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 307 break; 308 case ISD::SETNE: 309 case ISD::SETUNE: 310 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 311 (VT == MVT::f64) ? RTLIB::UNE_F64 : 312 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 313 break; 314 case ISD::SETGE: 315 case ISD::SETOGE: 316 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 317 (VT == MVT::f64) ? RTLIB::OGE_F64 : 318 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 319 break; 320 case ISD::SETLT: 321 case ISD::SETOLT: 322 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 323 (VT == MVT::f64) ? RTLIB::OLT_F64 : 324 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 325 break; 326 case ISD::SETLE: 327 case ISD::SETOLE: 328 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 329 (VT == MVT::f64) ? RTLIB::OLE_F64 : 330 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 331 break; 332 case ISD::SETGT: 333 case ISD::SETOGT: 334 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 335 (VT == MVT::f64) ? RTLIB::OGT_F64 : 336 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 337 break; 338 case ISD::SETO: 339 ShouldInvertCC = true; 340 LLVM_FALLTHROUGH; 341 case ISD::SETUO: 342 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 343 (VT == MVT::f64) ? RTLIB::UO_F64 : 344 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 345 break; 346 case ISD::SETONE: 347 // SETONE = O && UNE 348 ShouldInvertCC = true; 349 LLVM_FALLTHROUGH; 350 case ISD::SETUEQ: 351 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 352 (VT == MVT::f64) ? RTLIB::UO_F64 : 353 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 354 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 355 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 356 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 357 break; 358 default: 359 // Invert CC for unordered comparisons 360 ShouldInvertCC = true; 361 switch (CCCode) { 362 case ISD::SETULT: 363 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 364 (VT == MVT::f64) ? RTLIB::OGE_F64 : 365 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 366 break; 367 case ISD::SETULE: 368 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 369 (VT == MVT::f64) ? RTLIB::OGT_F64 : 370 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 371 break; 372 case ISD::SETUGT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 374 (VT == MVT::f64) ? RTLIB::OLE_F64 : 375 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 376 break; 377 case ISD::SETUGE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 379 (VT == MVT::f64) ? RTLIB::OLT_F64 : 380 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 381 break; 382 default: llvm_unreachable("Do not know how to soften this setcc!"); 383 } 384 } 385 386 // Use the target specific return value for comparions lib calls. 387 EVT RetVT = getCmpLibcallReturnType(); 388 SDValue Ops[2] = {NewLHS, NewRHS}; 389 TargetLowering::MakeLibCallOptions CallOptions; 390 EVT OpsVT[2] = { OldLHS.getValueType(), 391 OldRHS.getValueType() }; 392 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 393 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 394 NewLHS = Call.first; 395 NewRHS = DAG.getConstant(0, dl, RetVT); 396 397 CCCode = getCmpLibcallCC(LC1); 398 if (ShouldInvertCC) { 399 assert(RetVT.isInteger()); 400 CCCode = getSetCCInverse(CCCode, RetVT); 401 } 402 403 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 404 // Update Chain. 405 Chain = Call.second; 406 } else { 407 EVT SetCCVT = 408 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 409 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 410 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 411 CCCode = getCmpLibcallCC(LC2); 412 if (ShouldInvertCC) 413 CCCode = getSetCCInverse(CCCode, RetVT); 414 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 415 if (Chain) 416 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 417 Call2.second); 418 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 419 Tmp.getValueType(), Tmp, NewLHS); 420 NewRHS = SDValue(); 421 } 422 } 423 424 /// Return the entry encoding for a jump table in the current function. The 425 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 426 unsigned TargetLowering::getJumpTableEncoding() const { 427 // In non-pic modes, just use the address of a block. 428 if (!isPositionIndependent()) 429 return MachineJumpTableInfo::EK_BlockAddress; 430 431 // In PIC mode, if the target supports a GPRel32 directive, use it. 432 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 433 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 434 435 // Otherwise, use a label difference. 436 return MachineJumpTableInfo::EK_LabelDifference32; 437 } 438 439 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 440 SelectionDAG &DAG) const { 441 // If our PIC model is GP relative, use the global offset table as the base. 442 unsigned JTEncoding = getJumpTableEncoding(); 443 444 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 445 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 446 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 447 448 return Table; 449 } 450 451 /// This returns the relocation base for the given PIC jumptable, the same as 452 /// getPICJumpTableRelocBase, but as an MCExpr. 453 const MCExpr * 454 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 455 unsigned JTI,MCContext &Ctx) const{ 456 // The normal PIC reloc base is the label at the start of the jump table. 457 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 458 } 459 460 bool 461 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 462 const TargetMachine &TM = getTargetMachine(); 463 const GlobalValue *GV = GA->getGlobal(); 464 465 // If the address is not even local to this DSO we will have to load it from 466 // a got and then add the offset. 467 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 468 return false; 469 470 // If the code is position independent we will have to add a base register. 471 if (isPositionIndependent()) 472 return false; 473 474 // Otherwise we can do it. 475 return true; 476 } 477 478 //===----------------------------------------------------------------------===// 479 // Optimization Methods 480 //===----------------------------------------------------------------------===// 481 482 /// If the specified instruction has a constant integer operand and there are 483 /// bits set in that constant that are not demanded, then clear those bits and 484 /// return true. 485 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 486 const APInt &DemandedBits, 487 const APInt &DemandedElts, 488 TargetLoweringOpt &TLO) const { 489 SDLoc DL(Op); 490 unsigned Opcode = Op.getOpcode(); 491 492 // Do target-specific constant optimization. 493 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 494 return TLO.New.getNode(); 495 496 // FIXME: ISD::SELECT, ISD::SELECT_CC 497 switch (Opcode) { 498 default: 499 break; 500 case ISD::XOR: 501 case ISD::AND: 502 case ISD::OR: { 503 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 504 if (!Op1C) 505 return false; 506 507 // If this is a 'not' op, don't touch it because that's a canonical form. 508 const APInt &C = Op1C->getAPIntValue(); 509 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 510 return false; 511 512 if (!C.isSubsetOf(DemandedBits)) { 513 EVT VT = Op.getValueType(); 514 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 515 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 516 return TLO.CombineTo(Op, NewOp); 517 } 518 519 break; 520 } 521 } 522 523 return false; 524 } 525 526 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 527 const APInt &DemandedBits, 528 TargetLoweringOpt &TLO) const { 529 EVT VT = Op.getValueType(); 530 APInt DemandedElts = VT.isVector() 531 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 532 : APInt(1, 1); 533 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 534 } 535 536 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 537 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 538 /// generalized for targets with other types of implicit widening casts. 539 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 540 const APInt &Demanded, 541 TargetLoweringOpt &TLO) const { 542 assert(Op.getNumOperands() == 2 && 543 "ShrinkDemandedOp only supports binary operators!"); 544 assert(Op.getNode()->getNumValues() == 1 && 545 "ShrinkDemandedOp only supports nodes with one result!"); 546 547 SelectionDAG &DAG = TLO.DAG; 548 SDLoc dl(Op); 549 550 // Early return, as this function cannot handle vector types. 551 if (Op.getValueType().isVector()) 552 return false; 553 554 // Don't do this if the node has another user, which may require the 555 // full value. 556 if (!Op.getNode()->hasOneUse()) 557 return false; 558 559 // Search for the smallest integer type with free casts to and from 560 // Op's type. For expedience, just check power-of-2 integer types. 561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 562 unsigned DemandedSize = Demanded.getActiveBits(); 563 unsigned SmallVTBits = DemandedSize; 564 if (!isPowerOf2_32(SmallVTBits)) 565 SmallVTBits = NextPowerOf2(SmallVTBits); 566 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 567 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 568 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 569 TLI.isZExtFree(SmallVT, Op.getValueType())) { 570 // We found a type with free casts. 571 SDValue X = DAG.getNode( 572 Op.getOpcode(), dl, SmallVT, 573 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 574 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 575 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 576 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 577 return TLO.CombineTo(Op, Z); 578 } 579 } 580 return false; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 DAGCombinerInfo &DCI) const { 585 SelectionDAG &DAG = DCI.DAG; 586 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 587 !DCI.isBeforeLegalizeOps()); 588 KnownBits Known; 589 590 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 591 if (Simplified) { 592 DCI.AddToWorklist(Op.getNode()); 593 DCI.CommitTargetLoweringOpt(TLO); 594 } 595 return Simplified; 596 } 597 598 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 599 KnownBits &Known, 600 TargetLoweringOpt &TLO, 601 unsigned Depth, 602 bool AssumeSingleUse) const { 603 EVT VT = Op.getValueType(); 604 605 // TODO: We can probably do more work on calculating the known bits and 606 // simplifying the operations for scalable vectors, but for now we just 607 // bail out. 608 if (VT.isScalableVector()) { 609 // Pretend we don't know anything for now. 610 Known = KnownBits(DemandedBits.getBitWidth()); 611 return false; 612 } 613 614 APInt DemandedElts = VT.isVector() 615 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 616 : APInt(1, 1); 617 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 618 AssumeSingleUse); 619 } 620 621 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 622 // TODO: Under what circumstances can we create nodes? Constant folding? 623 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 624 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 625 SelectionDAG &DAG, unsigned Depth) const { 626 // Limit search depth. 627 if (Depth >= SelectionDAG::MaxRecursionDepth) 628 return SDValue(); 629 630 // Ignore UNDEFs. 631 if (Op.isUndef()) 632 return SDValue(); 633 634 // Not demanding any bits/elts from Op. 635 if (DemandedBits == 0 || DemandedElts == 0) 636 return DAG.getUNDEF(Op.getValueType()); 637 638 unsigned NumElts = DemandedElts.getBitWidth(); 639 unsigned BitWidth = DemandedBits.getBitWidth(); 640 KnownBits LHSKnown, RHSKnown; 641 switch (Op.getOpcode()) { 642 case ISD::BITCAST: { 643 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 644 EVT SrcVT = Src.getValueType(); 645 EVT DstVT = Op.getValueType(); 646 if (SrcVT == DstVT) 647 return Src; 648 649 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 650 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 651 if (NumSrcEltBits == NumDstEltBits) 652 if (SDValue V = SimplifyMultipleUseDemandedBits( 653 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 654 return DAG.getBitcast(DstVT, V); 655 656 // TODO - bigendian once we have test coverage. 657 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 658 DAG.getDataLayout().isLittleEndian()) { 659 unsigned Scale = NumDstEltBits / NumSrcEltBits; 660 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 661 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 662 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 663 for (unsigned i = 0; i != Scale; ++i) { 664 unsigned Offset = i * NumSrcEltBits; 665 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 666 if (!Sub.isNullValue()) { 667 DemandedSrcBits |= Sub; 668 for (unsigned j = 0; j != NumElts; ++j) 669 if (DemandedElts[j]) 670 DemandedSrcElts.setBit((j * Scale) + i); 671 } 672 } 673 674 if (SDValue V = SimplifyMultipleUseDemandedBits( 675 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 676 return DAG.getBitcast(DstVT, V); 677 } 678 679 // TODO - bigendian once we have test coverage. 680 if ((NumSrcEltBits % NumDstEltBits) == 0 && 681 DAG.getDataLayout().isLittleEndian()) { 682 unsigned Scale = NumSrcEltBits / NumDstEltBits; 683 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 684 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 685 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 686 for (unsigned i = 0; i != NumElts; ++i) 687 if (DemandedElts[i]) { 688 unsigned Offset = (i % Scale) * NumDstEltBits; 689 DemandedSrcBits.insertBits(DemandedBits, Offset); 690 DemandedSrcElts.setBit(i / Scale); 691 } 692 693 if (SDValue V = SimplifyMultipleUseDemandedBits( 694 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 695 return DAG.getBitcast(DstVT, V); 696 } 697 698 break; 699 } 700 case ISD::AND: { 701 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 702 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 703 704 // If all of the demanded bits are known 1 on one side, return the other. 705 // These bits cannot contribute to the result of the 'and' in this 706 // context. 707 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 708 return Op.getOperand(0); 709 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 710 return Op.getOperand(1); 711 break; 712 } 713 case ISD::OR: { 714 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 715 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 716 717 // If all of the demanded bits are known zero on one side, return the 718 // other. These bits cannot contribute to the result of the 'or' in this 719 // context. 720 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 721 return Op.getOperand(0); 722 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 723 return Op.getOperand(1); 724 break; 725 } 726 case ISD::XOR: { 727 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 728 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 729 730 // If all of the demanded bits are known zero on one side, return the 731 // other. 732 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 733 return Op.getOperand(0); 734 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 735 return Op.getOperand(1); 736 break; 737 } 738 case ISD::SHL: { 739 // If we are only demanding sign bits then we can use the shift source 740 // directly. 741 if (const APInt *MaxSA = 742 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 743 SDValue Op0 = Op.getOperand(0); 744 unsigned ShAmt = MaxSA->getZExtValue(); 745 unsigned NumSignBits = 746 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 747 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 748 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 749 return Op0; 750 } 751 break; 752 } 753 case ISD::SETCC: { 754 SDValue Op0 = Op.getOperand(0); 755 SDValue Op1 = Op.getOperand(1); 756 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 757 // If (1) we only need the sign-bit, (2) the setcc operands are the same 758 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 759 // -1, we may be able to bypass the setcc. 760 if (DemandedBits.isSignMask() && 761 Op0.getScalarValueSizeInBits() == BitWidth && 762 getBooleanContents(Op0.getValueType()) == 763 BooleanContent::ZeroOrNegativeOneBooleanContent) { 764 // If we're testing X < 0, then this compare isn't needed - just use X! 765 // FIXME: We're limiting to integer types here, but this should also work 766 // if we don't care about FP signed-zero. The use of SETLT with FP means 767 // that we don't care about NaNs. 768 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 769 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 770 return Op0; 771 } 772 break; 773 } 774 case ISD::SIGN_EXTEND_INREG: { 775 // If none of the extended bits are demanded, eliminate the sextinreg. 776 SDValue Op0 = Op.getOperand(0); 777 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 778 unsigned ExBits = ExVT.getScalarSizeInBits(); 779 if (DemandedBits.getActiveBits() <= ExBits) 780 return Op0; 781 // If the input is already sign extended, just drop the extension. 782 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 783 if (NumSignBits >= (BitWidth - ExBits + 1)) 784 return Op0; 785 break; 786 } 787 case ISD::ANY_EXTEND_VECTOR_INREG: 788 case ISD::SIGN_EXTEND_VECTOR_INREG: 789 case ISD::ZERO_EXTEND_VECTOR_INREG: { 790 // If we only want the lowest element and none of extended bits, then we can 791 // return the bitcasted source vector. 792 SDValue Src = Op.getOperand(0); 793 EVT SrcVT = Src.getValueType(); 794 EVT DstVT = Op.getValueType(); 795 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 796 DAG.getDataLayout().isLittleEndian() && 797 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 798 return DAG.getBitcast(DstVT, Src); 799 } 800 break; 801 } 802 case ISD::INSERT_VECTOR_ELT: { 803 // If we don't demand the inserted element, return the base vector. 804 SDValue Vec = Op.getOperand(0); 805 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 806 EVT VecVT = Vec.getValueType(); 807 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 808 !DemandedElts[CIdx->getZExtValue()]) 809 return Vec; 810 break; 811 } 812 case ISD::INSERT_SUBVECTOR: { 813 // If we don't demand the inserted subvector, return the base vector. 814 SDValue Vec = Op.getOperand(0); 815 SDValue Sub = Op.getOperand(1); 816 uint64_t Idx = Op.getConstantOperandVal(2); 817 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 818 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 819 return Vec; 820 break; 821 } 822 case ISD::VECTOR_SHUFFLE: { 823 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 824 825 // If all the demanded elts are from one operand and are inline, 826 // then we can use the operand directly. 827 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 828 for (unsigned i = 0; i != NumElts; ++i) { 829 int M = ShuffleMask[i]; 830 if (M < 0 || !DemandedElts[i]) 831 continue; 832 AllUndef = false; 833 IdentityLHS &= (M == (int)i); 834 IdentityRHS &= ((M - NumElts) == i); 835 } 836 837 if (AllUndef) 838 return DAG.getUNDEF(Op.getValueType()); 839 if (IdentityLHS) 840 return Op.getOperand(0); 841 if (IdentityRHS) 842 return Op.getOperand(1); 843 break; 844 } 845 default: 846 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 847 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 848 Op, DemandedBits, DemandedElts, DAG, Depth)) 849 return V; 850 break; 851 } 852 return SDValue(); 853 } 854 855 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 856 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 857 unsigned Depth) const { 858 EVT VT = Op.getValueType(); 859 APInt DemandedElts = VT.isVector() 860 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 861 : APInt(1, 1); 862 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 863 Depth); 864 } 865 866 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 867 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 868 unsigned Depth) const { 869 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 870 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 871 Depth); 872 } 873 874 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 875 /// result of Op are ever used downstream. If we can use this information to 876 /// simplify Op, create a new simplified DAG node and return true, returning the 877 /// original and new nodes in Old and New. Otherwise, analyze the expression and 878 /// return a mask of Known bits for the expression (used to simplify the 879 /// caller). The Known bits may only be accurate for those bits in the 880 /// OriginalDemandedBits and OriginalDemandedElts. 881 bool TargetLowering::SimplifyDemandedBits( 882 SDValue Op, const APInt &OriginalDemandedBits, 883 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 884 unsigned Depth, bool AssumeSingleUse) const { 885 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 886 assert(Op.getScalarValueSizeInBits() == BitWidth && 887 "Mask size mismatches value type size!"); 888 889 // Don't know anything. 890 Known = KnownBits(BitWidth); 891 892 // TODO: We can probably do more work on calculating the known bits and 893 // simplifying the operations for scalable vectors, but for now we just 894 // bail out. 895 if (Op.getValueType().isScalableVector()) 896 return false; 897 898 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 899 assert((!Op.getValueType().isVector() || 900 NumElts == Op.getValueType().getVectorNumElements()) && 901 "Unexpected vector size"); 902 903 APInt DemandedBits = OriginalDemandedBits; 904 APInt DemandedElts = OriginalDemandedElts; 905 SDLoc dl(Op); 906 auto &DL = TLO.DAG.getDataLayout(); 907 908 // Undef operand. 909 if (Op.isUndef()) 910 return false; 911 912 if (Op.getOpcode() == ISD::Constant) { 913 // We know all of the bits for a constant! 914 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 915 return false; 916 } 917 918 if (Op.getOpcode() == ISD::ConstantFP) { 919 // We know all of the bits for a floating point constant! 920 Known = KnownBits::makeConstant( 921 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 922 return false; 923 } 924 925 // Other users may use these bits. 926 EVT VT = Op.getValueType(); 927 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 928 if (Depth != 0) { 929 // If not at the root, Just compute the Known bits to 930 // simplify things downstream. 931 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 932 return false; 933 } 934 // If this is the root being simplified, allow it to have multiple uses, 935 // just set the DemandedBits/Elts to all bits. 936 DemandedBits = APInt::getAllOnesValue(BitWidth); 937 DemandedElts = APInt::getAllOnesValue(NumElts); 938 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 939 // Not demanding any bits/elts from Op. 940 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 941 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 942 // Limit search depth. 943 return false; 944 } 945 946 KnownBits Known2; 947 switch (Op.getOpcode()) { 948 case ISD::TargetConstant: 949 llvm_unreachable("Can't simplify this node"); 950 case ISD::SCALAR_TO_VECTOR: { 951 if (!DemandedElts[0]) 952 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 953 954 KnownBits SrcKnown; 955 SDValue Src = Op.getOperand(0); 956 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 957 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 958 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 959 return true; 960 961 // Upper elements are undef, so only get the knownbits if we just demand 962 // the bottom element. 963 if (DemandedElts == 1) 964 Known = SrcKnown.anyextOrTrunc(BitWidth); 965 break; 966 } 967 case ISD::BUILD_VECTOR: 968 // Collect the known bits that are shared by every demanded element. 969 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 970 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 971 return false; // Don't fall through, will infinitely loop. 972 case ISD::LOAD: { 973 LoadSDNode *LD = cast<LoadSDNode>(Op); 974 if (getTargetConstantFromLoad(LD)) { 975 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 976 return false; // Don't fall through, will infinitely loop. 977 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 978 // If this is a ZEXTLoad and we are looking at the loaded value. 979 EVT MemVT = LD->getMemoryVT(); 980 unsigned MemBits = MemVT.getScalarSizeInBits(); 981 Known.Zero.setBitsFrom(MemBits); 982 return false; // Don't fall through, will infinitely loop. 983 } 984 break; 985 } 986 case ISD::INSERT_VECTOR_ELT: { 987 SDValue Vec = Op.getOperand(0); 988 SDValue Scl = Op.getOperand(1); 989 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 990 EVT VecVT = Vec.getValueType(); 991 992 // If index isn't constant, assume we need all vector elements AND the 993 // inserted element. 994 APInt DemandedVecElts(DemandedElts); 995 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 996 unsigned Idx = CIdx->getZExtValue(); 997 DemandedVecElts.clearBit(Idx); 998 999 // Inserted element is not required. 1000 if (!DemandedElts[Idx]) 1001 return TLO.CombineTo(Op, Vec); 1002 } 1003 1004 KnownBits KnownScl; 1005 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1006 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1007 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1008 return true; 1009 1010 Known = KnownScl.anyextOrTrunc(BitWidth); 1011 1012 KnownBits KnownVec; 1013 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1014 Depth + 1)) 1015 return true; 1016 1017 if (!!DemandedVecElts) 1018 Known = KnownBits::commonBits(Known, KnownVec); 1019 1020 return false; 1021 } 1022 case ISD::INSERT_SUBVECTOR: { 1023 // Demand any elements from the subvector and the remainder from the src its 1024 // inserted into. 1025 SDValue Src = Op.getOperand(0); 1026 SDValue Sub = Op.getOperand(1); 1027 uint64_t Idx = Op.getConstantOperandVal(2); 1028 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1029 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1030 APInt DemandedSrcElts = DemandedElts; 1031 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1032 1033 KnownBits KnownSub, KnownSrc; 1034 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1035 Depth + 1)) 1036 return true; 1037 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1038 Depth + 1)) 1039 return true; 1040 1041 Known.Zero.setAllBits(); 1042 Known.One.setAllBits(); 1043 if (!!DemandedSubElts) 1044 Known = KnownBits::commonBits(Known, KnownSub); 1045 if (!!DemandedSrcElts) 1046 Known = KnownBits::commonBits(Known, KnownSrc); 1047 1048 // Attempt to avoid multi-use src if we don't need anything from it. 1049 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1050 !DemandedSrcElts.isAllOnesValue()) { 1051 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1052 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1053 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1054 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1055 if (NewSub || NewSrc) { 1056 NewSub = NewSub ? NewSub : Sub; 1057 NewSrc = NewSrc ? NewSrc : Src; 1058 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1059 Op.getOperand(2)); 1060 return TLO.CombineTo(Op, NewOp); 1061 } 1062 } 1063 break; 1064 } 1065 case ISD::EXTRACT_SUBVECTOR: { 1066 // Offset the demanded elts by the subvector index. 1067 SDValue Src = Op.getOperand(0); 1068 if (Src.getValueType().isScalableVector()) 1069 break; 1070 uint64_t Idx = Op.getConstantOperandVal(1); 1071 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1072 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1073 1074 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1075 Depth + 1)) 1076 return true; 1077 1078 // Attempt to avoid multi-use src if we don't need anything from it. 1079 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1080 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1081 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1082 if (DemandedSrc) { 1083 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1084 Op.getOperand(1)); 1085 return TLO.CombineTo(Op, NewOp); 1086 } 1087 } 1088 break; 1089 } 1090 case ISD::CONCAT_VECTORS: { 1091 Known.Zero.setAllBits(); 1092 Known.One.setAllBits(); 1093 EVT SubVT = Op.getOperand(0).getValueType(); 1094 unsigned NumSubVecs = Op.getNumOperands(); 1095 unsigned NumSubElts = SubVT.getVectorNumElements(); 1096 for (unsigned i = 0; i != NumSubVecs; ++i) { 1097 APInt DemandedSubElts = 1098 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1099 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1100 Known2, TLO, Depth + 1)) 1101 return true; 1102 // Known bits are shared by every demanded subvector element. 1103 if (!!DemandedSubElts) 1104 Known = KnownBits::commonBits(Known, Known2); 1105 } 1106 break; 1107 } 1108 case ISD::VECTOR_SHUFFLE: { 1109 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1110 1111 // Collect demanded elements from shuffle operands.. 1112 APInt DemandedLHS(NumElts, 0); 1113 APInt DemandedRHS(NumElts, 0); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 if (!DemandedElts[i]) 1116 continue; 1117 int M = ShuffleMask[i]; 1118 if (M < 0) { 1119 // For UNDEF elements, we don't know anything about the common state of 1120 // the shuffle result. 1121 DemandedLHS.clearAllBits(); 1122 DemandedRHS.clearAllBits(); 1123 break; 1124 } 1125 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1126 if (M < (int)NumElts) 1127 DemandedLHS.setBit(M); 1128 else 1129 DemandedRHS.setBit(M - NumElts); 1130 } 1131 1132 if (!!DemandedLHS || !!DemandedRHS) { 1133 SDValue Op0 = Op.getOperand(0); 1134 SDValue Op1 = Op.getOperand(1); 1135 1136 Known.Zero.setAllBits(); 1137 Known.One.setAllBits(); 1138 if (!!DemandedLHS) { 1139 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1140 Depth + 1)) 1141 return true; 1142 Known = KnownBits::commonBits(Known, Known2); 1143 } 1144 if (!!DemandedRHS) { 1145 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1146 Depth + 1)) 1147 return true; 1148 Known = KnownBits::commonBits(Known, Known2); 1149 } 1150 1151 // Attempt to avoid multi-use ops if we don't need anything from them. 1152 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1153 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1154 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1155 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1156 if (DemandedOp0 || DemandedOp1) { 1157 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1158 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1159 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1160 return TLO.CombineTo(Op, NewOp); 1161 } 1162 } 1163 break; 1164 } 1165 case ISD::AND: { 1166 SDValue Op0 = Op.getOperand(0); 1167 SDValue Op1 = Op.getOperand(1); 1168 1169 // If the RHS is a constant, check to see if the LHS would be zero without 1170 // using the bits from the RHS. Below, we use knowledge about the RHS to 1171 // simplify the LHS, here we're using information from the LHS to simplify 1172 // the RHS. 1173 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1174 // Do not increment Depth here; that can cause an infinite loop. 1175 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1176 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1177 if ((LHSKnown.Zero & DemandedBits) == 1178 (~RHSC->getAPIntValue() & DemandedBits)) 1179 return TLO.CombineTo(Op, Op0); 1180 1181 // If any of the set bits in the RHS are known zero on the LHS, shrink 1182 // the constant. 1183 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1184 DemandedElts, TLO)) 1185 return true; 1186 1187 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1188 // constant, but if this 'and' is only clearing bits that were just set by 1189 // the xor, then this 'and' can be eliminated by shrinking the mask of 1190 // the xor. For example, for a 32-bit X: 1191 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1192 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1193 LHSKnown.One == ~RHSC->getAPIntValue()) { 1194 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1195 return TLO.CombineTo(Op, Xor); 1196 } 1197 } 1198 1199 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1200 Depth + 1)) 1201 return true; 1202 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1203 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1204 Known2, TLO, Depth + 1)) 1205 return true; 1206 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1207 1208 // Attempt to avoid multi-use ops if we don't need anything from them. 1209 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1210 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1211 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1212 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1213 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1214 if (DemandedOp0 || DemandedOp1) { 1215 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1216 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1217 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1218 return TLO.CombineTo(Op, NewOp); 1219 } 1220 } 1221 1222 // If all of the demanded bits are known one on one side, return the other. 1223 // These bits cannot contribute to the result of the 'and'. 1224 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1225 return TLO.CombineTo(Op, Op0); 1226 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1227 return TLO.CombineTo(Op, Op1); 1228 // If all of the demanded bits in the inputs are known zeros, return zero. 1229 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1230 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1231 // If the RHS is a constant, see if we can simplify it. 1232 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1233 TLO)) 1234 return true; 1235 // If the operation can be done in a smaller type, do so. 1236 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1237 return true; 1238 1239 Known &= Known2; 1240 break; 1241 } 1242 case ISD::OR: { 1243 SDValue Op0 = Op.getOperand(0); 1244 SDValue Op1 = Op.getOperand(1); 1245 1246 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1247 Depth + 1)) 1248 return true; 1249 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1250 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1251 Known2, TLO, Depth + 1)) 1252 return true; 1253 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1254 1255 // Attempt to avoid multi-use ops if we don't need anything from them. 1256 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1257 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1258 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1259 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1260 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1261 if (DemandedOp0 || DemandedOp1) { 1262 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1263 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1264 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1265 return TLO.CombineTo(Op, NewOp); 1266 } 1267 } 1268 1269 // If all of the demanded bits are known zero on one side, return the other. 1270 // These bits cannot contribute to the result of the 'or'. 1271 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1272 return TLO.CombineTo(Op, Op0); 1273 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1274 return TLO.CombineTo(Op, Op1); 1275 // If the RHS is a constant, see if we can simplify it. 1276 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1277 return true; 1278 // If the operation can be done in a smaller type, do so. 1279 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1280 return true; 1281 1282 Known |= Known2; 1283 break; 1284 } 1285 case ISD::XOR: { 1286 SDValue Op0 = Op.getOperand(0); 1287 SDValue Op1 = Op.getOperand(1); 1288 1289 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1290 Depth + 1)) 1291 return true; 1292 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1293 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1294 Depth + 1)) 1295 return true; 1296 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1297 1298 // Attempt to avoid multi-use ops if we don't need anything from them. 1299 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1300 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1301 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1302 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1303 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1304 if (DemandedOp0 || DemandedOp1) { 1305 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1306 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1307 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1308 return TLO.CombineTo(Op, NewOp); 1309 } 1310 } 1311 1312 // If all of the demanded bits are known zero on one side, return the other. 1313 // These bits cannot contribute to the result of the 'xor'. 1314 if (DemandedBits.isSubsetOf(Known.Zero)) 1315 return TLO.CombineTo(Op, Op0); 1316 if (DemandedBits.isSubsetOf(Known2.Zero)) 1317 return TLO.CombineTo(Op, Op1); 1318 // If the operation can be done in a smaller type, do so. 1319 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1320 return true; 1321 1322 // If all of the unknown bits are known to be zero on one side or the other 1323 // turn this into an *inclusive* or. 1324 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1325 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1326 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1327 1328 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1329 if (C) { 1330 // If one side is a constant, and all of the set bits in the constant are 1331 // also known set on the other side, turn this into an AND, as we know 1332 // the bits will be cleared. 1333 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1334 // NB: it is okay if more bits are known than are requested 1335 if (C->getAPIntValue() == Known2.One) { 1336 SDValue ANDC = 1337 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1338 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1339 } 1340 1341 // If the RHS is a constant, see if we can change it. Don't alter a -1 1342 // constant because that's a 'not' op, and that is better for combining 1343 // and codegen. 1344 if (!C->isAllOnesValue() && 1345 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1346 // We're flipping all demanded bits. Flip the undemanded bits too. 1347 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1348 return TLO.CombineTo(Op, New); 1349 } 1350 } 1351 1352 // If we can't turn this into a 'not', try to shrink the constant. 1353 if (!C || !C->isAllOnesValue()) 1354 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1355 return true; 1356 1357 Known ^= Known2; 1358 break; 1359 } 1360 case ISD::SELECT: 1361 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1362 Depth + 1)) 1363 return true; 1364 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1365 Depth + 1)) 1366 return true; 1367 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1368 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1369 1370 // If the operands are constants, see if we can simplify them. 1371 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1372 return true; 1373 1374 // Only known if known in both the LHS and RHS. 1375 Known = KnownBits::commonBits(Known, Known2); 1376 break; 1377 case ISD::SELECT_CC: 1378 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1379 Depth + 1)) 1380 return true; 1381 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1382 Depth + 1)) 1383 return true; 1384 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1385 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1386 1387 // If the operands are constants, see if we can simplify them. 1388 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1389 return true; 1390 1391 // Only known if known in both the LHS and RHS. 1392 Known = KnownBits::commonBits(Known, Known2); 1393 break; 1394 case ISD::SETCC: { 1395 SDValue Op0 = Op.getOperand(0); 1396 SDValue Op1 = Op.getOperand(1); 1397 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1398 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1399 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1400 // -1, we may be able to bypass the setcc. 1401 if (DemandedBits.isSignMask() && 1402 Op0.getScalarValueSizeInBits() == BitWidth && 1403 getBooleanContents(Op0.getValueType()) == 1404 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1405 // If we're testing X < 0, then this compare isn't needed - just use X! 1406 // FIXME: We're limiting to integer types here, but this should also work 1407 // if we don't care about FP signed-zero. The use of SETLT with FP means 1408 // that we don't care about NaNs. 1409 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1410 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1411 return TLO.CombineTo(Op, Op0); 1412 1413 // TODO: Should we check for other forms of sign-bit comparisons? 1414 // Examples: X <= -1, X >= 0 1415 } 1416 if (getBooleanContents(Op0.getValueType()) == 1417 TargetLowering::ZeroOrOneBooleanContent && 1418 BitWidth > 1) 1419 Known.Zero.setBitsFrom(1); 1420 break; 1421 } 1422 case ISD::SHL: { 1423 SDValue Op0 = Op.getOperand(0); 1424 SDValue Op1 = Op.getOperand(1); 1425 EVT ShiftVT = Op1.getValueType(); 1426 1427 if (const APInt *SA = 1428 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1429 unsigned ShAmt = SA->getZExtValue(); 1430 if (ShAmt == 0) 1431 return TLO.CombineTo(Op, Op0); 1432 1433 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1434 // single shift. We can do this if the bottom bits (which are shifted 1435 // out) are never demanded. 1436 // TODO - support non-uniform vector amounts. 1437 if (Op0.getOpcode() == ISD::SRL) { 1438 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1439 if (const APInt *SA2 = 1440 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1441 unsigned C1 = SA2->getZExtValue(); 1442 unsigned Opc = ISD::SHL; 1443 int Diff = ShAmt - C1; 1444 if (Diff < 0) { 1445 Diff = -Diff; 1446 Opc = ISD::SRL; 1447 } 1448 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1449 return TLO.CombineTo( 1450 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1451 } 1452 } 1453 } 1454 1455 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1456 // are not demanded. This will likely allow the anyext to be folded away. 1457 // TODO - support non-uniform vector amounts. 1458 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1459 SDValue InnerOp = Op0.getOperand(0); 1460 EVT InnerVT = InnerOp.getValueType(); 1461 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1462 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1463 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1464 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1465 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1466 ShTy = InnerVT; 1467 SDValue NarrowShl = 1468 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1469 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1470 return TLO.CombineTo( 1471 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1472 } 1473 1474 // Repeat the SHL optimization above in cases where an extension 1475 // intervenes: (shl (anyext (shr x, c1)), c2) to 1476 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1477 // aren't demanded (as above) and that the shifted upper c1 bits of 1478 // x aren't demanded. 1479 // TODO - support non-uniform vector amounts. 1480 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1481 InnerOp.hasOneUse()) { 1482 if (const APInt *SA2 = 1483 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1484 unsigned InnerShAmt = SA2->getZExtValue(); 1485 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1486 DemandedBits.getActiveBits() <= 1487 (InnerBits - InnerShAmt + ShAmt) && 1488 DemandedBits.countTrailingZeros() >= ShAmt) { 1489 SDValue NewSA = 1490 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1491 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1492 InnerOp.getOperand(0)); 1493 return TLO.CombineTo( 1494 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1495 } 1496 } 1497 } 1498 } 1499 1500 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1501 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1502 Depth + 1)) 1503 return true; 1504 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1505 Known.Zero <<= ShAmt; 1506 Known.One <<= ShAmt; 1507 // low bits known zero. 1508 Known.Zero.setLowBits(ShAmt); 1509 1510 // Try shrinking the operation as long as the shift amount will still be 1511 // in range. 1512 if ((ShAmt < DemandedBits.getActiveBits()) && 1513 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1514 return true; 1515 } 1516 1517 // If we are only demanding sign bits then we can use the shift source 1518 // directly. 1519 if (const APInt *MaxSA = 1520 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1521 unsigned ShAmt = MaxSA->getZExtValue(); 1522 unsigned NumSignBits = 1523 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1524 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1525 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1526 return TLO.CombineTo(Op, Op0); 1527 } 1528 break; 1529 } 1530 case ISD::SRL: { 1531 SDValue Op0 = Op.getOperand(0); 1532 SDValue Op1 = Op.getOperand(1); 1533 EVT ShiftVT = Op1.getValueType(); 1534 1535 if (const APInt *SA = 1536 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1537 unsigned ShAmt = SA->getZExtValue(); 1538 if (ShAmt == 0) 1539 return TLO.CombineTo(Op, Op0); 1540 1541 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1542 // single shift. We can do this if the top bits (which are shifted out) 1543 // are never demanded. 1544 // TODO - support non-uniform vector amounts. 1545 if (Op0.getOpcode() == ISD::SHL) { 1546 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1547 if (const APInt *SA2 = 1548 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1549 unsigned C1 = SA2->getZExtValue(); 1550 unsigned Opc = ISD::SRL; 1551 int Diff = ShAmt - C1; 1552 if (Diff < 0) { 1553 Diff = -Diff; 1554 Opc = ISD::SHL; 1555 } 1556 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1557 return TLO.CombineTo( 1558 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1559 } 1560 } 1561 } 1562 1563 APInt InDemandedMask = (DemandedBits << ShAmt); 1564 1565 // If the shift is exact, then it does demand the low bits (and knows that 1566 // they are zero). 1567 if (Op->getFlags().hasExact()) 1568 InDemandedMask.setLowBits(ShAmt); 1569 1570 // Compute the new bits that are at the top now. 1571 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1572 Depth + 1)) 1573 return true; 1574 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1575 Known.Zero.lshrInPlace(ShAmt); 1576 Known.One.lshrInPlace(ShAmt); 1577 // High bits known zero. 1578 Known.Zero.setHighBits(ShAmt); 1579 } 1580 break; 1581 } 1582 case ISD::SRA: { 1583 SDValue Op0 = Op.getOperand(0); 1584 SDValue Op1 = Op.getOperand(1); 1585 EVT ShiftVT = Op1.getValueType(); 1586 1587 // If we only want bits that already match the signbit then we don't need 1588 // to shift. 1589 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1590 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1591 NumHiDemandedBits) 1592 return TLO.CombineTo(Op, Op0); 1593 1594 // If this is an arithmetic shift right and only the low-bit is set, we can 1595 // always convert this into a logical shr, even if the shift amount is 1596 // variable. The low bit of the shift cannot be an input sign bit unless 1597 // the shift amount is >= the size of the datatype, which is undefined. 1598 if (DemandedBits.isOneValue()) 1599 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1600 1601 if (const APInt *SA = 1602 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1603 unsigned ShAmt = SA->getZExtValue(); 1604 if (ShAmt == 0) 1605 return TLO.CombineTo(Op, Op0); 1606 1607 APInt InDemandedMask = (DemandedBits << ShAmt); 1608 1609 // If the shift is exact, then it does demand the low bits (and knows that 1610 // they are zero). 1611 if (Op->getFlags().hasExact()) 1612 InDemandedMask.setLowBits(ShAmt); 1613 1614 // If any of the demanded bits are produced by the sign extension, we also 1615 // demand the input sign bit. 1616 if (DemandedBits.countLeadingZeros() < ShAmt) 1617 InDemandedMask.setSignBit(); 1618 1619 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1620 Depth + 1)) 1621 return true; 1622 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1623 Known.Zero.lshrInPlace(ShAmt); 1624 Known.One.lshrInPlace(ShAmt); 1625 1626 // If the input sign bit is known to be zero, or if none of the top bits 1627 // are demanded, turn this into an unsigned shift right. 1628 if (Known.Zero[BitWidth - ShAmt - 1] || 1629 DemandedBits.countLeadingZeros() >= ShAmt) { 1630 SDNodeFlags Flags; 1631 Flags.setExact(Op->getFlags().hasExact()); 1632 return TLO.CombineTo( 1633 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1634 } 1635 1636 int Log2 = DemandedBits.exactLogBase2(); 1637 if (Log2 >= 0) { 1638 // The bit must come from the sign. 1639 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1640 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1641 } 1642 1643 if (Known.One[BitWidth - ShAmt - 1]) 1644 // New bits are known one. 1645 Known.One.setHighBits(ShAmt); 1646 1647 // Attempt to avoid multi-use ops if we don't need anything from them. 1648 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1649 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1650 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1651 if (DemandedOp0) { 1652 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1653 return TLO.CombineTo(Op, NewOp); 1654 } 1655 } 1656 } 1657 break; 1658 } 1659 case ISD::FSHL: 1660 case ISD::FSHR: { 1661 SDValue Op0 = Op.getOperand(0); 1662 SDValue Op1 = Op.getOperand(1); 1663 SDValue Op2 = Op.getOperand(2); 1664 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1665 1666 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1667 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1668 1669 // For fshl, 0-shift returns the 1st arg. 1670 // For fshr, 0-shift returns the 2nd arg. 1671 if (Amt == 0) { 1672 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1673 Known, TLO, Depth + 1)) 1674 return true; 1675 break; 1676 } 1677 1678 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1679 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1680 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1681 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1682 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1683 Depth + 1)) 1684 return true; 1685 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1686 Depth + 1)) 1687 return true; 1688 1689 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1690 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1691 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1692 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1693 Known.One |= Known2.One; 1694 Known.Zero |= Known2.Zero; 1695 } 1696 1697 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1698 if (isPowerOf2_32(BitWidth)) { 1699 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1700 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1701 Known2, TLO, Depth + 1)) 1702 return true; 1703 } 1704 break; 1705 } 1706 case ISD::ROTL: 1707 case ISD::ROTR: { 1708 SDValue Op0 = Op.getOperand(0); 1709 SDValue Op1 = Op.getOperand(1); 1710 1711 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1712 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1713 return TLO.CombineTo(Op, Op0); 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1719 Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::UMIN: { 1725 // Check if one arg is always less than (or equal) to the other arg. 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1729 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1730 Known = KnownBits::umin(Known0, Known1); 1731 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1732 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1733 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1734 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1735 break; 1736 } 1737 case ISD::UMAX: { 1738 // Check if one arg is always greater than (or equal) to the other arg. 1739 SDValue Op0 = Op.getOperand(0); 1740 SDValue Op1 = Op.getOperand(1); 1741 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1742 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1743 Known = KnownBits::umax(Known0, Known1); 1744 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1745 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1746 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1747 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1748 break; 1749 } 1750 case ISD::BITREVERSE: { 1751 SDValue Src = Op.getOperand(0); 1752 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1753 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1754 Depth + 1)) 1755 return true; 1756 Known.One = Known2.One.reverseBits(); 1757 Known.Zero = Known2.Zero.reverseBits(); 1758 break; 1759 } 1760 case ISD::BSWAP: { 1761 SDValue Src = Op.getOperand(0); 1762 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1763 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1764 Depth + 1)) 1765 return true; 1766 Known.One = Known2.One.byteSwap(); 1767 Known.Zero = Known2.Zero.byteSwap(); 1768 break; 1769 } 1770 case ISD::CTPOP: { 1771 // If only 1 bit is demanded, replace with PARITY as long as we're before 1772 // op legalization. 1773 // FIXME: Limit to scalars for now. 1774 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1775 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1776 Op.getOperand(0))); 1777 1778 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1779 break; 1780 } 1781 case ISD::SIGN_EXTEND_INREG: { 1782 SDValue Op0 = Op.getOperand(0); 1783 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1784 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1785 1786 // If we only care about the highest bit, don't bother shifting right. 1787 if (DemandedBits.isSignMask()) { 1788 unsigned NumSignBits = 1789 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1790 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1791 // However if the input is already sign extended we expect the sign 1792 // extension to be dropped altogether later and do not simplify. 1793 if (!AlreadySignExtended) { 1794 // Compute the correct shift amount type, which must be getShiftAmountTy 1795 // for scalar types after legalization. 1796 EVT ShiftAmtTy = VT; 1797 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1798 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1799 1800 SDValue ShiftAmt = 1801 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1802 return TLO.CombineTo(Op, 1803 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1804 } 1805 } 1806 1807 // If none of the extended bits are demanded, eliminate the sextinreg. 1808 if (DemandedBits.getActiveBits() <= ExVTBits) 1809 return TLO.CombineTo(Op, Op0); 1810 1811 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1812 1813 // Since the sign extended bits are demanded, we know that the sign 1814 // bit is demanded. 1815 InputDemandedBits.setBit(ExVTBits - 1); 1816 1817 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1818 return true; 1819 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1820 1821 // If the sign bit of the input is known set or clear, then we know the 1822 // top bits of the result. 1823 1824 // If the input sign bit is known zero, convert this into a zero extension. 1825 if (Known.Zero[ExVTBits - 1]) 1826 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1827 1828 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1829 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1830 Known.One.setBitsFrom(ExVTBits); 1831 Known.Zero &= Mask; 1832 } else { // Input sign bit unknown 1833 Known.Zero &= Mask; 1834 Known.One &= Mask; 1835 } 1836 break; 1837 } 1838 case ISD::BUILD_PAIR: { 1839 EVT HalfVT = Op.getOperand(0).getValueType(); 1840 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1841 1842 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1843 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1844 1845 KnownBits KnownLo, KnownHi; 1846 1847 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1848 return true; 1849 1850 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1851 return true; 1852 1853 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1854 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1855 1856 Known.One = KnownLo.One.zext(BitWidth) | 1857 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1858 break; 1859 } 1860 case ISD::ZERO_EXTEND: 1861 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1862 SDValue Src = Op.getOperand(0); 1863 EVT SrcVT = Src.getValueType(); 1864 unsigned InBits = SrcVT.getScalarSizeInBits(); 1865 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1866 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1867 1868 // If none of the top bits are demanded, convert this into an any_extend. 1869 if (DemandedBits.getActiveBits() <= InBits) { 1870 // If we only need the non-extended bits of the bottom element 1871 // then we can just bitcast to the result. 1872 if (IsVecInReg && DemandedElts == 1 && 1873 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1874 TLO.DAG.getDataLayout().isLittleEndian()) 1875 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1876 1877 unsigned Opc = 1878 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1879 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1880 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1881 } 1882 1883 APInt InDemandedBits = DemandedBits.trunc(InBits); 1884 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1885 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1886 Depth + 1)) 1887 return true; 1888 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1889 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1890 Known = Known.zext(BitWidth); 1891 1892 // Attempt to avoid multi-use ops if we don't need anything from them. 1893 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1894 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1895 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1896 break; 1897 } 1898 case ISD::SIGN_EXTEND: 1899 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1900 SDValue Src = Op.getOperand(0); 1901 EVT SrcVT = Src.getValueType(); 1902 unsigned InBits = SrcVT.getScalarSizeInBits(); 1903 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1904 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1905 1906 // If none of the top bits are demanded, convert this into an any_extend. 1907 if (DemandedBits.getActiveBits() <= InBits) { 1908 // If we only need the non-extended bits of the bottom element 1909 // then we can just bitcast to the result. 1910 if (IsVecInReg && DemandedElts == 1 && 1911 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1912 TLO.DAG.getDataLayout().isLittleEndian()) 1913 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1914 1915 unsigned Opc = 1916 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1917 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1918 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1919 } 1920 1921 APInt InDemandedBits = DemandedBits.trunc(InBits); 1922 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1923 1924 // Since some of the sign extended bits are demanded, we know that the sign 1925 // bit is demanded. 1926 InDemandedBits.setBit(InBits - 1); 1927 1928 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1929 Depth + 1)) 1930 return true; 1931 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1932 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1933 1934 // If the sign bit is known one, the top bits match. 1935 Known = Known.sext(BitWidth); 1936 1937 // If the sign bit is known zero, convert this to a zero extend. 1938 if (Known.isNonNegative()) { 1939 unsigned Opc = 1940 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1941 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1942 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1943 } 1944 1945 // Attempt to avoid multi-use ops if we don't need anything from them. 1946 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1947 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1948 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1949 break; 1950 } 1951 case ISD::ANY_EXTEND: 1952 case ISD::ANY_EXTEND_VECTOR_INREG: { 1953 SDValue Src = Op.getOperand(0); 1954 EVT SrcVT = Src.getValueType(); 1955 unsigned InBits = SrcVT.getScalarSizeInBits(); 1956 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1957 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1958 1959 // If we only need the bottom element then we can just bitcast. 1960 // TODO: Handle ANY_EXTEND? 1961 if (IsVecInReg && DemandedElts == 1 && 1962 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1963 TLO.DAG.getDataLayout().isLittleEndian()) 1964 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1965 1966 APInt InDemandedBits = DemandedBits.trunc(InBits); 1967 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1968 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1969 Depth + 1)) 1970 return true; 1971 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1972 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1973 Known = Known.anyext(BitWidth); 1974 1975 // Attempt to avoid multi-use ops if we don't need anything from them. 1976 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1977 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1978 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1979 break; 1980 } 1981 case ISD::TRUNCATE: { 1982 SDValue Src = Op.getOperand(0); 1983 1984 // Simplify the input, using demanded bit information, and compute the known 1985 // zero/one bits live out. 1986 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1987 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1988 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 1989 Depth + 1)) 1990 return true; 1991 Known = Known.trunc(BitWidth); 1992 1993 // Attempt to avoid multi-use ops if we don't need anything from them. 1994 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1995 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1996 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1997 1998 // If the input is only used by this truncate, see if we can shrink it based 1999 // on the known demanded bits. 2000 if (Src.getNode()->hasOneUse()) { 2001 switch (Src.getOpcode()) { 2002 default: 2003 break; 2004 case ISD::SRL: 2005 // Shrink SRL by a constant if none of the high bits shifted in are 2006 // demanded. 2007 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2008 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2009 // undesirable. 2010 break; 2011 2012 const APInt *ShAmtC = 2013 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2014 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2015 break; 2016 uint64_t ShVal = ShAmtC->getZExtValue(); 2017 2018 APInt HighBits = 2019 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2020 HighBits.lshrInPlace(ShVal); 2021 HighBits = HighBits.trunc(BitWidth); 2022 2023 if (!(HighBits & DemandedBits)) { 2024 // None of the shifted in bits are needed. Add a truncate of the 2025 // shift input, then shift it. 2026 SDValue NewShAmt = TLO.DAG.getConstant( 2027 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2028 SDValue NewTrunc = 2029 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2030 return TLO.CombineTo( 2031 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2032 } 2033 break; 2034 } 2035 } 2036 2037 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2038 break; 2039 } 2040 case ISD::AssertZext: { 2041 // AssertZext demands all of the high bits, plus any of the low bits 2042 // demanded by its users. 2043 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2044 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2045 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2046 TLO, Depth + 1)) 2047 return true; 2048 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2049 2050 Known.Zero |= ~InMask; 2051 break; 2052 } 2053 case ISD::EXTRACT_VECTOR_ELT: { 2054 SDValue Src = Op.getOperand(0); 2055 SDValue Idx = Op.getOperand(1); 2056 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2057 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2058 2059 if (SrcEltCnt.isScalable()) 2060 return false; 2061 2062 // Demand the bits from every vector element without a constant index. 2063 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2064 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2065 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2066 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2067 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2068 2069 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2070 // anything about the extended bits. 2071 APInt DemandedSrcBits = DemandedBits; 2072 if (BitWidth > EltBitWidth) 2073 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2074 2075 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2076 Depth + 1)) 2077 return true; 2078 2079 // Attempt to avoid multi-use ops if we don't need anything from them. 2080 if (!DemandedSrcBits.isAllOnesValue() || 2081 !DemandedSrcElts.isAllOnesValue()) { 2082 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2083 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2084 SDValue NewOp = 2085 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2086 return TLO.CombineTo(Op, NewOp); 2087 } 2088 } 2089 2090 Known = Known2; 2091 if (BitWidth > EltBitWidth) 2092 Known = Known.anyext(BitWidth); 2093 break; 2094 } 2095 case ISD::BITCAST: { 2096 SDValue Src = Op.getOperand(0); 2097 EVT SrcVT = Src.getValueType(); 2098 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2099 2100 // If this is an FP->Int bitcast and if the sign bit is the only 2101 // thing demanded, turn this into a FGETSIGN. 2102 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2103 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2104 SrcVT.isFloatingPoint()) { 2105 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2106 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2107 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2108 SrcVT != MVT::f128) { 2109 // Cannot eliminate/lower SHL for f128 yet. 2110 EVT Ty = OpVTLegal ? VT : MVT::i32; 2111 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2112 // place. We expect the SHL to be eliminated by other optimizations. 2113 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2114 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2115 if (!OpVTLegal && OpVTSizeInBits > 32) 2116 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2117 unsigned ShVal = Op.getValueSizeInBits() - 1; 2118 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2119 return TLO.CombineTo(Op, 2120 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2121 } 2122 } 2123 2124 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2125 // Demand the elt/bit if any of the original elts/bits are demanded. 2126 // TODO - bigendian once we have test coverage. 2127 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2128 TLO.DAG.getDataLayout().isLittleEndian()) { 2129 unsigned Scale = BitWidth / NumSrcEltBits; 2130 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2131 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2132 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2133 for (unsigned i = 0; i != Scale; ++i) { 2134 unsigned Offset = i * NumSrcEltBits; 2135 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2136 if (!Sub.isNullValue()) { 2137 DemandedSrcBits |= Sub; 2138 for (unsigned j = 0; j != NumElts; ++j) 2139 if (DemandedElts[j]) 2140 DemandedSrcElts.setBit((j * Scale) + i); 2141 } 2142 } 2143 2144 APInt KnownSrcUndef, KnownSrcZero; 2145 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2146 KnownSrcZero, TLO, Depth + 1)) 2147 return true; 2148 2149 KnownBits KnownSrcBits; 2150 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2151 KnownSrcBits, TLO, Depth + 1)) 2152 return true; 2153 } else if ((NumSrcEltBits % BitWidth) == 0 && 2154 TLO.DAG.getDataLayout().isLittleEndian()) { 2155 unsigned Scale = NumSrcEltBits / BitWidth; 2156 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2157 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2158 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2159 for (unsigned i = 0; i != NumElts; ++i) 2160 if (DemandedElts[i]) { 2161 unsigned Offset = (i % Scale) * BitWidth; 2162 DemandedSrcBits.insertBits(DemandedBits, Offset); 2163 DemandedSrcElts.setBit(i / Scale); 2164 } 2165 2166 if (SrcVT.isVector()) { 2167 APInt KnownSrcUndef, KnownSrcZero; 2168 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2169 KnownSrcZero, TLO, Depth + 1)) 2170 return true; 2171 } 2172 2173 KnownBits KnownSrcBits; 2174 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2175 KnownSrcBits, TLO, Depth + 1)) 2176 return true; 2177 } 2178 2179 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2180 // recursive call where Known may be useful to the caller. 2181 if (Depth > 0) { 2182 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2183 return false; 2184 } 2185 break; 2186 } 2187 case ISD::ADD: 2188 case ISD::MUL: 2189 case ISD::SUB: { 2190 // Add, Sub, and Mul don't demand any bits in positions beyond that 2191 // of the highest bit demanded of them. 2192 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2193 SDNodeFlags Flags = Op.getNode()->getFlags(); 2194 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2195 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2196 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2197 Depth + 1) || 2198 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2199 Depth + 1) || 2200 // See if the operation should be performed at a smaller bit width. 2201 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2202 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2203 // Disable the nsw and nuw flags. We can no longer guarantee that we 2204 // won't wrap after simplification. 2205 Flags.setNoSignedWrap(false); 2206 Flags.setNoUnsignedWrap(false); 2207 SDValue NewOp = 2208 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2209 return TLO.CombineTo(Op, NewOp); 2210 } 2211 return true; 2212 } 2213 2214 // Attempt to avoid multi-use ops if we don't need anything from them. 2215 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2216 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2217 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2218 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2219 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2220 if (DemandedOp0 || DemandedOp1) { 2221 Flags.setNoSignedWrap(false); 2222 Flags.setNoUnsignedWrap(false); 2223 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2224 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2225 SDValue NewOp = 2226 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2227 return TLO.CombineTo(Op, NewOp); 2228 } 2229 } 2230 2231 // If we have a constant operand, we may be able to turn it into -1 if we 2232 // do not demand the high bits. This can make the constant smaller to 2233 // encode, allow more general folding, or match specialized instruction 2234 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2235 // is probably not useful (and could be detrimental). 2236 ConstantSDNode *C = isConstOrConstSplat(Op1); 2237 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2238 if (C && !C->isAllOnesValue() && !C->isOne() && 2239 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2240 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2241 // Disable the nsw and nuw flags. We can no longer guarantee that we 2242 // won't wrap after simplification. 2243 Flags.setNoSignedWrap(false); 2244 Flags.setNoUnsignedWrap(false); 2245 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2246 return TLO.CombineTo(Op, NewOp); 2247 } 2248 2249 LLVM_FALLTHROUGH; 2250 } 2251 default: 2252 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2253 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2254 Known, TLO, Depth)) 2255 return true; 2256 break; 2257 } 2258 2259 // Just use computeKnownBits to compute output bits. 2260 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2261 break; 2262 } 2263 2264 // If we know the value of all of the demanded bits, return this as a 2265 // constant. 2266 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2267 // Avoid folding to a constant if any OpaqueConstant is involved. 2268 const SDNode *N = Op.getNode(); 2269 for (SDNode *Op : 2270 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2271 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2272 if (C->isOpaque()) 2273 return false; 2274 } 2275 if (VT.isInteger()) 2276 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2277 if (VT.isFloatingPoint()) 2278 return TLO.CombineTo( 2279 Op, 2280 TLO.DAG.getConstantFP( 2281 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2282 } 2283 2284 return false; 2285 } 2286 2287 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2288 const APInt &DemandedElts, 2289 APInt &KnownUndef, 2290 APInt &KnownZero, 2291 DAGCombinerInfo &DCI) const { 2292 SelectionDAG &DAG = DCI.DAG; 2293 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2294 !DCI.isBeforeLegalizeOps()); 2295 2296 bool Simplified = 2297 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2298 if (Simplified) { 2299 DCI.AddToWorklist(Op.getNode()); 2300 DCI.CommitTargetLoweringOpt(TLO); 2301 } 2302 2303 return Simplified; 2304 } 2305 2306 /// Given a vector binary operation and known undefined elements for each input 2307 /// operand, compute whether each element of the output is undefined. 2308 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2309 const APInt &UndefOp0, 2310 const APInt &UndefOp1) { 2311 EVT VT = BO.getValueType(); 2312 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2313 "Vector binop only"); 2314 2315 EVT EltVT = VT.getVectorElementType(); 2316 unsigned NumElts = VT.getVectorNumElements(); 2317 assert(UndefOp0.getBitWidth() == NumElts && 2318 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2319 2320 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2321 const APInt &UndefVals) { 2322 if (UndefVals[Index]) 2323 return DAG.getUNDEF(EltVT); 2324 2325 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2326 // Try hard to make sure that the getNode() call is not creating temporary 2327 // nodes. Ignore opaque integers because they do not constant fold. 2328 SDValue Elt = BV->getOperand(Index); 2329 auto *C = dyn_cast<ConstantSDNode>(Elt); 2330 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2331 return Elt; 2332 } 2333 2334 return SDValue(); 2335 }; 2336 2337 APInt KnownUndef = APInt::getNullValue(NumElts); 2338 for (unsigned i = 0; i != NumElts; ++i) { 2339 // If both inputs for this element are either constant or undef and match 2340 // the element type, compute the constant/undef result for this element of 2341 // the vector. 2342 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2343 // not handle FP constants. The code within getNode() should be refactored 2344 // to avoid the danger of creating a bogus temporary node here. 2345 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2346 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2347 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2348 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2349 KnownUndef.setBit(i); 2350 } 2351 return KnownUndef; 2352 } 2353 2354 bool TargetLowering::SimplifyDemandedVectorElts( 2355 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2356 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2357 bool AssumeSingleUse) const { 2358 EVT VT = Op.getValueType(); 2359 unsigned Opcode = Op.getOpcode(); 2360 APInt DemandedElts = OriginalDemandedElts; 2361 unsigned NumElts = DemandedElts.getBitWidth(); 2362 assert(VT.isVector() && "Expected vector op"); 2363 2364 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2365 2366 // TODO: For now we assume we know nothing about scalable vectors. 2367 if (VT.isScalableVector()) 2368 return false; 2369 2370 assert(VT.getVectorNumElements() == NumElts && 2371 "Mask size mismatches value type element count!"); 2372 2373 // Undef operand. 2374 if (Op.isUndef()) { 2375 KnownUndef.setAllBits(); 2376 return false; 2377 } 2378 2379 // If Op has other users, assume that all elements are needed. 2380 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2381 DemandedElts.setAllBits(); 2382 2383 // Not demanding any elements from Op. 2384 if (DemandedElts == 0) { 2385 KnownUndef.setAllBits(); 2386 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2387 } 2388 2389 // Limit search depth. 2390 if (Depth >= SelectionDAG::MaxRecursionDepth) 2391 return false; 2392 2393 SDLoc DL(Op); 2394 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2395 2396 // Helper for demanding the specified elements and all the bits of both binary 2397 // operands. 2398 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2399 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2400 TLO.DAG, Depth + 1); 2401 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2402 TLO.DAG, Depth + 1); 2403 if (NewOp0 || NewOp1) { 2404 SDValue NewOp = TLO.DAG.getNode( 2405 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2406 return TLO.CombineTo(Op, NewOp); 2407 } 2408 return false; 2409 }; 2410 2411 switch (Opcode) { 2412 case ISD::SCALAR_TO_VECTOR: { 2413 if (!DemandedElts[0]) { 2414 KnownUndef.setAllBits(); 2415 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2416 } 2417 KnownUndef.setHighBits(NumElts - 1); 2418 break; 2419 } 2420 case ISD::BITCAST: { 2421 SDValue Src = Op.getOperand(0); 2422 EVT SrcVT = Src.getValueType(); 2423 2424 // We only handle vectors here. 2425 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2426 if (!SrcVT.isVector()) 2427 break; 2428 2429 // Fast handling of 'identity' bitcasts. 2430 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2431 if (NumSrcElts == NumElts) 2432 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2433 KnownZero, TLO, Depth + 1); 2434 2435 APInt SrcZero, SrcUndef; 2436 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2437 2438 // Bitcast from 'large element' src vector to 'small element' vector, we 2439 // must demand a source element if any DemandedElt maps to it. 2440 if ((NumElts % NumSrcElts) == 0) { 2441 unsigned Scale = NumElts / NumSrcElts; 2442 for (unsigned i = 0; i != NumElts; ++i) 2443 if (DemandedElts[i]) 2444 SrcDemandedElts.setBit(i / Scale); 2445 2446 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2447 TLO, Depth + 1)) 2448 return true; 2449 2450 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2451 // of the large element. 2452 // TODO - bigendian once we have test coverage. 2453 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2454 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2455 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2456 for (unsigned i = 0; i != NumElts; ++i) 2457 if (DemandedElts[i]) { 2458 unsigned Ofs = (i % Scale) * EltSizeInBits; 2459 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2460 } 2461 2462 KnownBits Known; 2463 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2464 TLO, Depth + 1)) 2465 return true; 2466 } 2467 2468 // If the src element is zero/undef then all the output elements will be - 2469 // only demanded elements are guaranteed to be correct. 2470 for (unsigned i = 0; i != NumSrcElts; ++i) { 2471 if (SrcDemandedElts[i]) { 2472 if (SrcZero[i]) 2473 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2474 if (SrcUndef[i]) 2475 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2476 } 2477 } 2478 } 2479 2480 // Bitcast from 'small element' src vector to 'large element' vector, we 2481 // demand all smaller source elements covered by the larger demanded element 2482 // of this vector. 2483 if ((NumSrcElts % NumElts) == 0) { 2484 unsigned Scale = NumSrcElts / NumElts; 2485 for (unsigned i = 0; i != NumElts; ++i) 2486 if (DemandedElts[i]) 2487 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2488 2489 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2490 TLO, Depth + 1)) 2491 return true; 2492 2493 // If all the src elements covering an output element are zero/undef, then 2494 // the output element will be as well, assuming it was demanded. 2495 for (unsigned i = 0; i != NumElts; ++i) { 2496 if (DemandedElts[i]) { 2497 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2498 KnownZero.setBit(i); 2499 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2500 KnownUndef.setBit(i); 2501 } 2502 } 2503 } 2504 break; 2505 } 2506 case ISD::BUILD_VECTOR: { 2507 // Check all elements and simplify any unused elements with UNDEF. 2508 if (!DemandedElts.isAllOnesValue()) { 2509 // Don't simplify BROADCASTS. 2510 if (llvm::any_of(Op->op_values(), 2511 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2512 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2513 bool Updated = false; 2514 for (unsigned i = 0; i != NumElts; ++i) { 2515 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2516 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2517 KnownUndef.setBit(i); 2518 Updated = true; 2519 } 2520 } 2521 if (Updated) 2522 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2523 } 2524 } 2525 for (unsigned i = 0; i != NumElts; ++i) { 2526 SDValue SrcOp = Op.getOperand(i); 2527 if (SrcOp.isUndef()) { 2528 KnownUndef.setBit(i); 2529 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2530 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2531 KnownZero.setBit(i); 2532 } 2533 } 2534 break; 2535 } 2536 case ISD::CONCAT_VECTORS: { 2537 EVT SubVT = Op.getOperand(0).getValueType(); 2538 unsigned NumSubVecs = Op.getNumOperands(); 2539 unsigned NumSubElts = SubVT.getVectorNumElements(); 2540 for (unsigned i = 0; i != NumSubVecs; ++i) { 2541 SDValue SubOp = Op.getOperand(i); 2542 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2543 APInt SubUndef, SubZero; 2544 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2545 Depth + 1)) 2546 return true; 2547 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2548 KnownZero.insertBits(SubZero, i * NumSubElts); 2549 } 2550 break; 2551 } 2552 case ISD::INSERT_SUBVECTOR: { 2553 // Demand any elements from the subvector and the remainder from the src its 2554 // inserted into. 2555 SDValue Src = Op.getOperand(0); 2556 SDValue Sub = Op.getOperand(1); 2557 uint64_t Idx = Op.getConstantOperandVal(2); 2558 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2559 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2560 APInt DemandedSrcElts = DemandedElts; 2561 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2562 2563 APInt SubUndef, SubZero; 2564 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2565 Depth + 1)) 2566 return true; 2567 2568 // If none of the src operand elements are demanded, replace it with undef. 2569 if (!DemandedSrcElts && !Src.isUndef()) 2570 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2571 TLO.DAG.getUNDEF(VT), Sub, 2572 Op.getOperand(2))); 2573 2574 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2575 TLO, Depth + 1)) 2576 return true; 2577 KnownUndef.insertBits(SubUndef, Idx); 2578 KnownZero.insertBits(SubZero, Idx); 2579 2580 // Attempt to avoid multi-use ops if we don't need anything from them. 2581 if (!DemandedSrcElts.isAllOnesValue() || 2582 !DemandedSubElts.isAllOnesValue()) { 2583 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2584 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2585 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2586 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2587 if (NewSrc || NewSub) { 2588 NewSrc = NewSrc ? NewSrc : Src; 2589 NewSub = NewSub ? NewSub : Sub; 2590 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2591 NewSub, Op.getOperand(2)); 2592 return TLO.CombineTo(Op, NewOp); 2593 } 2594 } 2595 break; 2596 } 2597 case ISD::EXTRACT_SUBVECTOR: { 2598 // Offset the demanded elts by the subvector index. 2599 SDValue Src = Op.getOperand(0); 2600 if (Src.getValueType().isScalableVector()) 2601 break; 2602 uint64_t Idx = Op.getConstantOperandVal(1); 2603 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2604 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2605 2606 APInt SrcUndef, SrcZero; 2607 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2608 Depth + 1)) 2609 return true; 2610 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2611 KnownZero = SrcZero.extractBits(NumElts, Idx); 2612 2613 // Attempt to avoid multi-use ops if we don't need anything from them. 2614 if (!DemandedElts.isAllOnesValue()) { 2615 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2616 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2617 if (NewSrc) { 2618 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2619 Op.getOperand(1)); 2620 return TLO.CombineTo(Op, NewOp); 2621 } 2622 } 2623 break; 2624 } 2625 case ISD::INSERT_VECTOR_ELT: { 2626 SDValue Vec = Op.getOperand(0); 2627 SDValue Scl = Op.getOperand(1); 2628 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2629 2630 // For a legal, constant insertion index, if we don't need this insertion 2631 // then strip it, else remove it from the demanded elts. 2632 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2633 unsigned Idx = CIdx->getZExtValue(); 2634 if (!DemandedElts[Idx]) 2635 return TLO.CombineTo(Op, Vec); 2636 2637 APInt DemandedVecElts(DemandedElts); 2638 DemandedVecElts.clearBit(Idx); 2639 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2640 KnownZero, TLO, Depth + 1)) 2641 return true; 2642 2643 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2644 2645 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2646 break; 2647 } 2648 2649 APInt VecUndef, VecZero; 2650 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2651 Depth + 1)) 2652 return true; 2653 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2654 break; 2655 } 2656 case ISD::VSELECT: { 2657 // Try to transform the select condition based on the current demanded 2658 // elements. 2659 // TODO: If a condition element is undef, we can choose from one arm of the 2660 // select (and if one arm is undef, then we can propagate that to the 2661 // result). 2662 // TODO - add support for constant vselect masks (see IR version of this). 2663 APInt UnusedUndef, UnusedZero; 2664 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2665 UnusedZero, TLO, Depth + 1)) 2666 return true; 2667 2668 // See if we can simplify either vselect operand. 2669 APInt DemandedLHS(DemandedElts); 2670 APInt DemandedRHS(DemandedElts); 2671 APInt UndefLHS, ZeroLHS; 2672 APInt UndefRHS, ZeroRHS; 2673 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2674 ZeroLHS, TLO, Depth + 1)) 2675 return true; 2676 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2677 ZeroRHS, TLO, Depth + 1)) 2678 return true; 2679 2680 KnownUndef = UndefLHS & UndefRHS; 2681 KnownZero = ZeroLHS & ZeroRHS; 2682 break; 2683 } 2684 case ISD::VECTOR_SHUFFLE: { 2685 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2686 2687 // Collect demanded elements from shuffle operands.. 2688 APInt DemandedLHS(NumElts, 0); 2689 APInt DemandedRHS(NumElts, 0); 2690 for (unsigned i = 0; i != NumElts; ++i) { 2691 int M = ShuffleMask[i]; 2692 if (M < 0 || !DemandedElts[i]) 2693 continue; 2694 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2695 if (M < (int)NumElts) 2696 DemandedLHS.setBit(M); 2697 else 2698 DemandedRHS.setBit(M - NumElts); 2699 } 2700 2701 // See if we can simplify either shuffle operand. 2702 APInt UndefLHS, ZeroLHS; 2703 APInt UndefRHS, ZeroRHS; 2704 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2705 ZeroLHS, TLO, Depth + 1)) 2706 return true; 2707 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2708 ZeroRHS, TLO, Depth + 1)) 2709 return true; 2710 2711 // Simplify mask using undef elements from LHS/RHS. 2712 bool Updated = false; 2713 bool IdentityLHS = true, IdentityRHS = true; 2714 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2715 for (unsigned i = 0; i != NumElts; ++i) { 2716 int &M = NewMask[i]; 2717 if (M < 0) 2718 continue; 2719 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2720 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2721 Updated = true; 2722 M = -1; 2723 } 2724 IdentityLHS &= (M < 0) || (M == (int)i); 2725 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2726 } 2727 2728 // Update legal shuffle masks based on demanded elements if it won't reduce 2729 // to Identity which can cause premature removal of the shuffle mask. 2730 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2731 SDValue LegalShuffle = 2732 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2733 NewMask, TLO.DAG); 2734 if (LegalShuffle) 2735 return TLO.CombineTo(Op, LegalShuffle); 2736 } 2737 2738 // Propagate undef/zero elements from LHS/RHS. 2739 for (unsigned i = 0; i != NumElts; ++i) { 2740 int M = ShuffleMask[i]; 2741 if (M < 0) { 2742 KnownUndef.setBit(i); 2743 } else if (M < (int)NumElts) { 2744 if (UndefLHS[M]) 2745 KnownUndef.setBit(i); 2746 if (ZeroLHS[M]) 2747 KnownZero.setBit(i); 2748 } else { 2749 if (UndefRHS[M - NumElts]) 2750 KnownUndef.setBit(i); 2751 if (ZeroRHS[M - NumElts]) 2752 KnownZero.setBit(i); 2753 } 2754 } 2755 break; 2756 } 2757 case ISD::ANY_EXTEND_VECTOR_INREG: 2758 case ISD::SIGN_EXTEND_VECTOR_INREG: 2759 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2760 APInt SrcUndef, SrcZero; 2761 SDValue Src = Op.getOperand(0); 2762 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2763 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2764 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2765 Depth + 1)) 2766 return true; 2767 KnownZero = SrcZero.zextOrTrunc(NumElts); 2768 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2769 2770 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2771 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2772 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2773 // aext - if we just need the bottom element then we can bitcast. 2774 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2775 } 2776 2777 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2778 // zext(undef) upper bits are guaranteed to be zero. 2779 if (DemandedElts.isSubsetOf(KnownUndef)) 2780 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2781 KnownUndef.clearAllBits(); 2782 } 2783 break; 2784 } 2785 2786 // TODO: There are more binop opcodes that could be handled here - MIN, 2787 // MAX, saturated math, etc. 2788 case ISD::OR: 2789 case ISD::XOR: 2790 case ISD::ADD: 2791 case ISD::SUB: 2792 case ISD::FADD: 2793 case ISD::FSUB: 2794 case ISD::FMUL: 2795 case ISD::FDIV: 2796 case ISD::FREM: { 2797 SDValue Op0 = Op.getOperand(0); 2798 SDValue Op1 = Op.getOperand(1); 2799 2800 APInt UndefRHS, ZeroRHS; 2801 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2802 Depth + 1)) 2803 return true; 2804 APInt UndefLHS, ZeroLHS; 2805 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2806 Depth + 1)) 2807 return true; 2808 2809 KnownZero = ZeroLHS & ZeroRHS; 2810 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2811 2812 // Attempt to avoid multi-use ops if we don't need anything from them. 2813 // TODO - use KnownUndef to relax the demandedelts? 2814 if (!DemandedElts.isAllOnesValue()) 2815 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2816 return true; 2817 break; 2818 } 2819 case ISD::SHL: 2820 case ISD::SRL: 2821 case ISD::SRA: 2822 case ISD::ROTL: 2823 case ISD::ROTR: { 2824 SDValue Op0 = Op.getOperand(0); 2825 SDValue Op1 = Op.getOperand(1); 2826 2827 APInt UndefRHS, ZeroRHS; 2828 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2829 Depth + 1)) 2830 return true; 2831 APInt UndefLHS, ZeroLHS; 2832 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2833 Depth + 1)) 2834 return true; 2835 2836 KnownZero = ZeroLHS; 2837 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2838 2839 // Attempt to avoid multi-use ops if we don't need anything from them. 2840 // TODO - use KnownUndef to relax the demandedelts? 2841 if (!DemandedElts.isAllOnesValue()) 2842 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2843 return true; 2844 break; 2845 } 2846 case ISD::MUL: 2847 case ISD::AND: { 2848 SDValue Op0 = Op.getOperand(0); 2849 SDValue Op1 = Op.getOperand(1); 2850 2851 APInt SrcUndef, SrcZero; 2852 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2853 Depth + 1)) 2854 return true; 2855 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2856 TLO, Depth + 1)) 2857 return true; 2858 2859 // If either side has a zero element, then the result element is zero, even 2860 // if the other is an UNDEF. 2861 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2862 // and then handle 'and' nodes with the rest of the binop opcodes. 2863 KnownZero |= SrcZero; 2864 KnownUndef &= SrcUndef; 2865 KnownUndef &= ~KnownZero; 2866 2867 // Attempt to avoid multi-use ops if we don't need anything from them. 2868 // TODO - use KnownUndef to relax the demandedelts? 2869 if (!DemandedElts.isAllOnesValue()) 2870 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2871 return true; 2872 break; 2873 } 2874 case ISD::TRUNCATE: 2875 case ISD::SIGN_EXTEND: 2876 case ISD::ZERO_EXTEND: 2877 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2878 KnownZero, TLO, Depth + 1)) 2879 return true; 2880 2881 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2882 // zext(undef) upper bits are guaranteed to be zero. 2883 if (DemandedElts.isSubsetOf(KnownUndef)) 2884 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2885 KnownUndef.clearAllBits(); 2886 } 2887 break; 2888 default: { 2889 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2890 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2891 KnownZero, TLO, Depth)) 2892 return true; 2893 } else { 2894 KnownBits Known; 2895 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2896 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2897 TLO, Depth, AssumeSingleUse)) 2898 return true; 2899 } 2900 break; 2901 } 2902 } 2903 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2904 2905 // Constant fold all undef cases. 2906 // TODO: Handle zero cases as well. 2907 if (DemandedElts.isSubsetOf(KnownUndef)) 2908 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2909 2910 return false; 2911 } 2912 2913 /// Determine which of the bits specified in Mask are known to be either zero or 2914 /// one and return them in the Known. 2915 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2916 KnownBits &Known, 2917 const APInt &DemandedElts, 2918 const SelectionDAG &DAG, 2919 unsigned Depth) const { 2920 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2921 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2922 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2923 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2924 "Should use MaskedValueIsZero if you don't know whether Op" 2925 " is a target node!"); 2926 Known.resetAll(); 2927 } 2928 2929 void TargetLowering::computeKnownBitsForTargetInstr( 2930 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2931 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2932 unsigned Depth) const { 2933 Known.resetAll(); 2934 } 2935 2936 void TargetLowering::computeKnownBitsForFrameIndex( 2937 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2938 // The low bits are known zero if the pointer is aligned. 2939 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2940 } 2941 2942 Align TargetLowering::computeKnownAlignForTargetInstr( 2943 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2944 unsigned Depth) const { 2945 return Align(1); 2946 } 2947 2948 /// This method can be implemented by targets that want to expose additional 2949 /// information about sign bits to the DAG Combiner. 2950 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2951 const APInt &, 2952 const SelectionDAG &, 2953 unsigned Depth) const { 2954 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2955 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2956 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2957 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2958 "Should use ComputeNumSignBits if you don't know whether Op" 2959 " is a target node!"); 2960 return 1; 2961 } 2962 2963 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2964 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2965 const MachineRegisterInfo &MRI, unsigned Depth) const { 2966 return 1; 2967 } 2968 2969 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2970 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2971 TargetLoweringOpt &TLO, unsigned Depth) const { 2972 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2973 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2974 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2975 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2976 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2977 " is a target node!"); 2978 return false; 2979 } 2980 2981 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2982 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2983 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2984 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2985 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2986 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2987 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2988 "Should use SimplifyDemandedBits if you don't know whether Op" 2989 " is a target node!"); 2990 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2991 return false; 2992 } 2993 2994 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2995 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2996 SelectionDAG &DAG, unsigned Depth) const { 2997 assert( 2998 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2999 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3000 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3001 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3002 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3003 " is a target node!"); 3004 return SDValue(); 3005 } 3006 3007 SDValue 3008 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3009 SDValue N1, MutableArrayRef<int> Mask, 3010 SelectionDAG &DAG) const { 3011 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3012 if (!LegalMask) { 3013 std::swap(N0, N1); 3014 ShuffleVectorSDNode::commuteMask(Mask); 3015 LegalMask = isShuffleMaskLegal(Mask, VT); 3016 } 3017 3018 if (!LegalMask) 3019 return SDValue(); 3020 3021 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3022 } 3023 3024 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3025 return nullptr; 3026 } 3027 3028 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3029 const SelectionDAG &DAG, 3030 bool SNaN, 3031 unsigned Depth) const { 3032 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3033 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3034 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3035 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3036 "Should use isKnownNeverNaN if you don't know whether Op" 3037 " is a target node!"); 3038 return false; 3039 } 3040 3041 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3042 // work with truncating build vectors and vectors with elements of less than 3043 // 8 bits. 3044 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3045 if (!N) 3046 return false; 3047 3048 APInt CVal; 3049 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3050 CVal = CN->getAPIntValue(); 3051 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3052 auto *CN = BV->getConstantSplatNode(); 3053 if (!CN) 3054 return false; 3055 3056 // If this is a truncating build vector, truncate the splat value. 3057 // Otherwise, we may fail to match the expected values below. 3058 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3059 CVal = CN->getAPIntValue(); 3060 if (BVEltWidth < CVal.getBitWidth()) 3061 CVal = CVal.trunc(BVEltWidth); 3062 } else { 3063 return false; 3064 } 3065 3066 switch (getBooleanContents(N->getValueType(0))) { 3067 case UndefinedBooleanContent: 3068 return CVal[0]; 3069 case ZeroOrOneBooleanContent: 3070 return CVal.isOneValue(); 3071 case ZeroOrNegativeOneBooleanContent: 3072 return CVal.isAllOnesValue(); 3073 } 3074 3075 llvm_unreachable("Invalid boolean contents"); 3076 } 3077 3078 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3079 if (!N) 3080 return false; 3081 3082 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3083 if (!CN) { 3084 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3085 if (!BV) 3086 return false; 3087 3088 // Only interested in constant splats, we don't care about undef 3089 // elements in identifying boolean constants and getConstantSplatNode 3090 // returns NULL if all ops are undef; 3091 CN = BV->getConstantSplatNode(); 3092 if (!CN) 3093 return false; 3094 } 3095 3096 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3097 return !CN->getAPIntValue()[0]; 3098 3099 return CN->isNullValue(); 3100 } 3101 3102 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3103 bool SExt) const { 3104 if (VT == MVT::i1) 3105 return N->isOne(); 3106 3107 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3108 switch (Cnt) { 3109 case TargetLowering::ZeroOrOneBooleanContent: 3110 // An extended value of 1 is always true, unless its original type is i1, 3111 // in which case it will be sign extended to -1. 3112 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3113 case TargetLowering::UndefinedBooleanContent: 3114 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3115 return N->isAllOnesValue() && SExt; 3116 } 3117 llvm_unreachable("Unexpected enumeration."); 3118 } 3119 3120 /// This helper function of SimplifySetCC tries to optimize the comparison when 3121 /// either operand of the SetCC node is a bitwise-and instruction. 3122 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3123 ISD::CondCode Cond, const SDLoc &DL, 3124 DAGCombinerInfo &DCI) const { 3125 // Match these patterns in any of their permutations: 3126 // (X & Y) == Y 3127 // (X & Y) != Y 3128 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3129 std::swap(N0, N1); 3130 3131 EVT OpVT = N0.getValueType(); 3132 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3133 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3134 return SDValue(); 3135 3136 SDValue X, Y; 3137 if (N0.getOperand(0) == N1) { 3138 X = N0.getOperand(1); 3139 Y = N0.getOperand(0); 3140 } else if (N0.getOperand(1) == N1) { 3141 X = N0.getOperand(0); 3142 Y = N0.getOperand(1); 3143 } else { 3144 return SDValue(); 3145 } 3146 3147 SelectionDAG &DAG = DCI.DAG; 3148 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3149 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3150 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3151 // Note that where Y is variable and is known to have at most one bit set 3152 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3153 // equivalent when Y == 0. 3154 assert(OpVT.isInteger()); 3155 Cond = ISD::getSetCCInverse(Cond, OpVT); 3156 if (DCI.isBeforeLegalizeOps() || 3157 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3158 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3159 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3160 // If the target supports an 'and-not' or 'and-complement' logic operation, 3161 // try to use that to make a comparison operation more efficient. 3162 // But don't do this transform if the mask is a single bit because there are 3163 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3164 // 'rlwinm' on PPC). 3165 3166 // Bail out if the compare operand that we want to turn into a zero is 3167 // already a zero (otherwise, infinite loop). 3168 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3169 if (YConst && YConst->isNullValue()) 3170 return SDValue(); 3171 3172 // Transform this into: ~X & Y == 0. 3173 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3174 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3175 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3176 } 3177 3178 return SDValue(); 3179 } 3180 3181 /// There are multiple IR patterns that could be checking whether certain 3182 /// truncation of a signed number would be lossy or not. The pattern which is 3183 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3184 /// We are looking for the following pattern: (KeptBits is a constant) 3185 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3186 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3187 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3188 /// We will unfold it into the natural trunc+sext pattern: 3189 /// ((%x << C) a>> C) dstcond %x 3190 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3191 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3192 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3193 const SDLoc &DL) const { 3194 // We must be comparing with a constant. 3195 ConstantSDNode *C1; 3196 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3197 return SDValue(); 3198 3199 // N0 should be: add %x, (1 << (KeptBits-1)) 3200 if (N0->getOpcode() != ISD::ADD) 3201 return SDValue(); 3202 3203 // And we must be 'add'ing a constant. 3204 ConstantSDNode *C01; 3205 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3206 return SDValue(); 3207 3208 SDValue X = N0->getOperand(0); 3209 EVT XVT = X.getValueType(); 3210 3211 // Validate constants ... 3212 3213 APInt I1 = C1->getAPIntValue(); 3214 3215 ISD::CondCode NewCond; 3216 if (Cond == ISD::CondCode::SETULT) { 3217 NewCond = ISD::CondCode::SETEQ; 3218 } else if (Cond == ISD::CondCode::SETULE) { 3219 NewCond = ISD::CondCode::SETEQ; 3220 // But need to 'canonicalize' the constant. 3221 I1 += 1; 3222 } else if (Cond == ISD::CondCode::SETUGT) { 3223 NewCond = ISD::CondCode::SETNE; 3224 // But need to 'canonicalize' the constant. 3225 I1 += 1; 3226 } else if (Cond == ISD::CondCode::SETUGE) { 3227 NewCond = ISD::CondCode::SETNE; 3228 } else 3229 return SDValue(); 3230 3231 APInt I01 = C01->getAPIntValue(); 3232 3233 auto checkConstants = [&I1, &I01]() -> bool { 3234 // Both of them must be power-of-two, and the constant from setcc is bigger. 3235 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3236 }; 3237 3238 if (checkConstants()) { 3239 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3240 } else { 3241 // What if we invert constants? (and the target predicate) 3242 I1.negate(); 3243 I01.negate(); 3244 assert(XVT.isInteger()); 3245 NewCond = getSetCCInverse(NewCond, XVT); 3246 if (!checkConstants()) 3247 return SDValue(); 3248 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3249 } 3250 3251 // They are power-of-two, so which bit is set? 3252 const unsigned KeptBits = I1.logBase2(); 3253 const unsigned KeptBitsMinusOne = I01.logBase2(); 3254 3255 // Magic! 3256 if (KeptBits != (KeptBitsMinusOne + 1)) 3257 return SDValue(); 3258 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3259 3260 // We don't want to do this in every single case. 3261 SelectionDAG &DAG = DCI.DAG; 3262 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3263 XVT, KeptBits)) 3264 return SDValue(); 3265 3266 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3267 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3268 3269 // Unfold into: ((%x << C) a>> C) cond %x 3270 // Where 'cond' will be either 'eq' or 'ne'. 3271 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3272 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3273 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3274 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3275 3276 return T2; 3277 } 3278 3279 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3280 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3281 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3282 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3283 assert(isConstOrConstSplat(N1C) && 3284 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3285 "Should be a comparison with 0."); 3286 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3287 "Valid only for [in]equality comparisons."); 3288 3289 unsigned NewShiftOpcode; 3290 SDValue X, C, Y; 3291 3292 SelectionDAG &DAG = DCI.DAG; 3293 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3294 3295 // Look for '(C l>>/<< Y)'. 3296 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3297 // The shift should be one-use. 3298 if (!V.hasOneUse()) 3299 return false; 3300 unsigned OldShiftOpcode = V.getOpcode(); 3301 switch (OldShiftOpcode) { 3302 case ISD::SHL: 3303 NewShiftOpcode = ISD::SRL; 3304 break; 3305 case ISD::SRL: 3306 NewShiftOpcode = ISD::SHL; 3307 break; 3308 default: 3309 return false; // must be a logical shift. 3310 } 3311 // We should be shifting a constant. 3312 // FIXME: best to use isConstantOrConstantVector(). 3313 C = V.getOperand(0); 3314 ConstantSDNode *CC = 3315 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3316 if (!CC) 3317 return false; 3318 Y = V.getOperand(1); 3319 3320 ConstantSDNode *XC = 3321 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3322 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3323 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3324 }; 3325 3326 // LHS of comparison should be an one-use 'and'. 3327 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3328 return SDValue(); 3329 3330 X = N0.getOperand(0); 3331 SDValue Mask = N0.getOperand(1); 3332 3333 // 'and' is commutative! 3334 if (!Match(Mask)) { 3335 std::swap(X, Mask); 3336 if (!Match(Mask)) 3337 return SDValue(); 3338 } 3339 3340 EVT VT = X.getValueType(); 3341 3342 // Produce: 3343 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3344 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3345 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3346 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3347 return T2; 3348 } 3349 3350 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3351 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3352 /// handle the commuted versions of these patterns. 3353 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3354 ISD::CondCode Cond, const SDLoc &DL, 3355 DAGCombinerInfo &DCI) const { 3356 unsigned BOpcode = N0.getOpcode(); 3357 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3358 "Unexpected binop"); 3359 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3360 3361 // (X + Y) == X --> Y == 0 3362 // (X - Y) == X --> Y == 0 3363 // (X ^ Y) == X --> Y == 0 3364 SelectionDAG &DAG = DCI.DAG; 3365 EVT OpVT = N0.getValueType(); 3366 SDValue X = N0.getOperand(0); 3367 SDValue Y = N0.getOperand(1); 3368 if (X == N1) 3369 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3370 3371 if (Y != N1) 3372 return SDValue(); 3373 3374 // (X + Y) == Y --> X == 0 3375 // (X ^ Y) == Y --> X == 0 3376 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3377 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3378 3379 // The shift would not be valid if the operands are boolean (i1). 3380 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3381 return SDValue(); 3382 3383 // (X - Y) == Y --> X == Y << 1 3384 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3385 !DCI.isBeforeLegalize()); 3386 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3387 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3388 if (!DCI.isCalledByLegalizer()) 3389 DCI.AddToWorklist(YShl1.getNode()); 3390 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3391 } 3392 3393 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3394 SDValue N0, const APInt &C1, 3395 ISD::CondCode Cond, const SDLoc &dl, 3396 SelectionDAG &DAG) { 3397 // Look through truncs that don't change the value of a ctpop. 3398 // FIXME: Add vector support? Need to be careful with setcc result type below. 3399 SDValue CTPOP = N0; 3400 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3401 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3402 CTPOP = N0.getOperand(0); 3403 3404 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3405 return SDValue(); 3406 3407 EVT CTVT = CTPOP.getValueType(); 3408 SDValue CTOp = CTPOP.getOperand(0); 3409 3410 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3411 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3412 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3413 return SDValue(); 3414 3415 // (ctpop x) u< 2 -> (x & x-1) == 0 3416 // (ctpop x) u> 1 -> (x & x-1) != 0 3417 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3418 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3419 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3420 return SDValue(); 3421 if (C1 == 0 && (Cond == ISD::SETULT)) 3422 return SDValue(); // This is handled elsewhere. 3423 3424 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3425 3426 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3427 SDValue Result = CTOp; 3428 for (unsigned i = 0; i < Passes; i++) { 3429 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3430 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3431 } 3432 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3433 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3434 } 3435 3436 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3437 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3438 // For scalars, keep CTPOP if it is legal or custom. 3439 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3440 return SDValue(); 3441 // This is based on X86's custom lowering for CTPOP which produces more 3442 // instructions than the expansion here. 3443 3444 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3445 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3446 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3447 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3448 assert(CTVT.isInteger()); 3449 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3450 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3451 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3452 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3453 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3454 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3455 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3456 } 3457 3458 return SDValue(); 3459 } 3460 3461 /// Try to simplify a setcc built with the specified operands and cc. If it is 3462 /// unable to simplify it, return a null SDValue. 3463 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3464 ISD::CondCode Cond, bool foldBooleans, 3465 DAGCombinerInfo &DCI, 3466 const SDLoc &dl) const { 3467 SelectionDAG &DAG = DCI.DAG; 3468 const DataLayout &Layout = DAG.getDataLayout(); 3469 EVT OpVT = N0.getValueType(); 3470 3471 // Constant fold or commute setcc. 3472 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3473 return Fold; 3474 3475 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3476 // TODO: Handle non-splat vector constants. All undef causes trouble. 3477 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3478 // infinite loop here when we encounter one. 3479 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3480 if (isConstOrConstSplat(N0) && 3481 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3482 (DCI.isBeforeLegalizeOps() || 3483 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3484 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3485 3486 // If we have a subtract with the same 2 non-constant operands as this setcc 3487 // -- but in reverse order -- then try to commute the operands of this setcc 3488 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3489 // instruction on some targets. 3490 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3491 (DCI.isBeforeLegalizeOps() || 3492 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3493 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3494 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3495 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3496 3497 if (auto *N1C = isConstOrConstSplat(N1)) { 3498 const APInt &C1 = N1C->getAPIntValue(); 3499 3500 // Optimize some CTPOP cases. 3501 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3502 return V; 3503 3504 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3505 // equality comparison, then we're just comparing whether X itself is 3506 // zero. 3507 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3508 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3509 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3510 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3511 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3512 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3513 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3514 // (srl (ctlz x), 5) == 0 -> X != 0 3515 // (srl (ctlz x), 5) != 1 -> X != 0 3516 Cond = ISD::SETNE; 3517 } else { 3518 // (srl (ctlz x), 5) != 0 -> X == 0 3519 // (srl (ctlz x), 5) == 1 -> X == 0 3520 Cond = ISD::SETEQ; 3521 } 3522 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3523 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3524 Cond); 3525 } 3526 } 3527 } 3528 } 3529 3530 // FIXME: Support vectors. 3531 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3532 const APInt &C1 = N1C->getAPIntValue(); 3533 3534 // (zext x) == C --> x == (trunc C) 3535 // (sext x) == C --> x == (trunc C) 3536 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3537 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3538 unsigned MinBits = N0.getValueSizeInBits(); 3539 SDValue PreExt; 3540 bool Signed = false; 3541 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3542 // ZExt 3543 MinBits = N0->getOperand(0).getValueSizeInBits(); 3544 PreExt = N0->getOperand(0); 3545 } else if (N0->getOpcode() == ISD::AND) { 3546 // DAGCombine turns costly ZExts into ANDs 3547 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3548 if ((C->getAPIntValue()+1).isPowerOf2()) { 3549 MinBits = C->getAPIntValue().countTrailingOnes(); 3550 PreExt = N0->getOperand(0); 3551 } 3552 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3553 // SExt 3554 MinBits = N0->getOperand(0).getValueSizeInBits(); 3555 PreExt = N0->getOperand(0); 3556 Signed = true; 3557 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3558 // ZEXTLOAD / SEXTLOAD 3559 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3560 MinBits = LN0->getMemoryVT().getSizeInBits(); 3561 PreExt = N0; 3562 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3563 Signed = true; 3564 MinBits = LN0->getMemoryVT().getSizeInBits(); 3565 PreExt = N0; 3566 } 3567 } 3568 3569 // Figure out how many bits we need to preserve this constant. 3570 unsigned ReqdBits = Signed ? 3571 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3572 C1.getActiveBits(); 3573 3574 // Make sure we're not losing bits from the constant. 3575 if (MinBits > 0 && 3576 MinBits < C1.getBitWidth() && 3577 MinBits >= ReqdBits) { 3578 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3579 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3580 // Will get folded away. 3581 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3582 if (MinBits == 1 && C1 == 1) 3583 // Invert the condition. 3584 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3585 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3586 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3587 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3588 } 3589 3590 // If truncating the setcc operands is not desirable, we can still 3591 // simplify the expression in some cases: 3592 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3593 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3594 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3595 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3596 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3597 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3598 SDValue TopSetCC = N0->getOperand(0); 3599 unsigned N0Opc = N0->getOpcode(); 3600 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3601 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3602 TopSetCC.getOpcode() == ISD::SETCC && 3603 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3604 (isConstFalseVal(N1C) || 3605 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3606 3607 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3608 (!N1C->isNullValue() && Cond == ISD::SETNE); 3609 3610 if (!Inverse) 3611 return TopSetCC; 3612 3613 ISD::CondCode InvCond = ISD::getSetCCInverse( 3614 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3615 TopSetCC.getOperand(0).getValueType()); 3616 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3617 TopSetCC.getOperand(1), 3618 InvCond); 3619 } 3620 } 3621 } 3622 3623 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3624 // equality or unsigned, and all 1 bits of the const are in the same 3625 // partial word, see if we can shorten the load. 3626 if (DCI.isBeforeLegalize() && 3627 !ISD::isSignedIntSetCC(Cond) && 3628 N0.getOpcode() == ISD::AND && C1 == 0 && 3629 N0.getNode()->hasOneUse() && 3630 isa<LoadSDNode>(N0.getOperand(0)) && 3631 N0.getOperand(0).getNode()->hasOneUse() && 3632 isa<ConstantSDNode>(N0.getOperand(1))) { 3633 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3634 APInt bestMask; 3635 unsigned bestWidth = 0, bestOffset = 0; 3636 if (Lod->isSimple() && Lod->isUnindexed()) { 3637 unsigned origWidth = N0.getValueSizeInBits(); 3638 unsigned maskWidth = origWidth; 3639 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3640 // 8 bits, but have to be careful... 3641 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3642 origWidth = Lod->getMemoryVT().getSizeInBits(); 3643 const APInt &Mask = N0.getConstantOperandAPInt(1); 3644 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3645 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3646 for (unsigned offset=0; offset<origWidth/width; offset++) { 3647 if (Mask.isSubsetOf(newMask)) { 3648 if (Layout.isLittleEndian()) 3649 bestOffset = (uint64_t)offset * (width/8); 3650 else 3651 bestOffset = (origWidth/width - offset - 1) * (width/8); 3652 bestMask = Mask.lshr(offset * (width/8) * 8); 3653 bestWidth = width; 3654 break; 3655 } 3656 newMask <<= width; 3657 } 3658 } 3659 } 3660 if (bestWidth) { 3661 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3662 if (newVT.isRound() && 3663 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3664 SDValue Ptr = Lod->getBasePtr(); 3665 if (bestOffset != 0) 3666 Ptr = 3667 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3668 SDValue NewLoad = 3669 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3670 Lod->getPointerInfo().getWithOffset(bestOffset), 3671 Lod->getOriginalAlign()); 3672 return DAG.getSetCC(dl, VT, 3673 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3674 DAG.getConstant(bestMask.trunc(bestWidth), 3675 dl, newVT)), 3676 DAG.getConstant(0LL, dl, newVT), Cond); 3677 } 3678 } 3679 } 3680 3681 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3682 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3683 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3684 3685 // If the comparison constant has bits in the upper part, the 3686 // zero-extended value could never match. 3687 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3688 C1.getBitWidth() - InSize))) { 3689 switch (Cond) { 3690 case ISD::SETUGT: 3691 case ISD::SETUGE: 3692 case ISD::SETEQ: 3693 return DAG.getConstant(0, dl, VT); 3694 case ISD::SETULT: 3695 case ISD::SETULE: 3696 case ISD::SETNE: 3697 return DAG.getConstant(1, dl, VT); 3698 case ISD::SETGT: 3699 case ISD::SETGE: 3700 // True if the sign bit of C1 is set. 3701 return DAG.getConstant(C1.isNegative(), dl, VT); 3702 case ISD::SETLT: 3703 case ISD::SETLE: 3704 // True if the sign bit of C1 isn't set. 3705 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3706 default: 3707 break; 3708 } 3709 } 3710 3711 // Otherwise, we can perform the comparison with the low bits. 3712 switch (Cond) { 3713 case ISD::SETEQ: 3714 case ISD::SETNE: 3715 case ISD::SETUGT: 3716 case ISD::SETUGE: 3717 case ISD::SETULT: 3718 case ISD::SETULE: { 3719 EVT newVT = N0.getOperand(0).getValueType(); 3720 if (DCI.isBeforeLegalizeOps() || 3721 (isOperationLegal(ISD::SETCC, newVT) && 3722 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3723 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3724 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3725 3726 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3727 NewConst, Cond); 3728 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3729 } 3730 break; 3731 } 3732 default: 3733 break; // todo, be more careful with signed comparisons 3734 } 3735 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3736 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3737 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3738 OpVT)) { 3739 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3740 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3741 EVT ExtDstTy = N0.getValueType(); 3742 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3743 3744 // If the constant doesn't fit into the number of bits for the source of 3745 // the sign extension, it is impossible for both sides to be equal. 3746 if (C1.getMinSignedBits() > ExtSrcTyBits) 3747 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3748 3749 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3750 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3751 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3752 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3753 DAG.getConstant(Imm, dl, ExtDstTy)); 3754 if (!DCI.isCalledByLegalizer()) 3755 DCI.AddToWorklist(ZextOp.getNode()); 3756 // Otherwise, make this a use of a zext. 3757 return DAG.getSetCC(dl, VT, ZextOp, 3758 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3759 } else if ((N1C->isNullValue() || N1C->isOne()) && 3760 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3761 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3762 if (N0.getOpcode() == ISD::SETCC && 3763 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3764 (N0.getValueType() == MVT::i1 || 3765 getBooleanContents(N0.getOperand(0).getValueType()) == 3766 ZeroOrOneBooleanContent)) { 3767 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3768 if (TrueWhenTrue) 3769 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3770 // Invert the condition. 3771 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3772 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3773 if (DCI.isBeforeLegalizeOps() || 3774 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3775 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3776 } 3777 3778 if ((N0.getOpcode() == ISD::XOR || 3779 (N0.getOpcode() == ISD::AND && 3780 N0.getOperand(0).getOpcode() == ISD::XOR && 3781 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3782 isOneConstant(N0.getOperand(1))) { 3783 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3784 // can only do this if the top bits are known zero. 3785 unsigned BitWidth = N0.getValueSizeInBits(); 3786 if (DAG.MaskedValueIsZero(N0, 3787 APInt::getHighBitsSet(BitWidth, 3788 BitWidth-1))) { 3789 // Okay, get the un-inverted input value. 3790 SDValue Val; 3791 if (N0.getOpcode() == ISD::XOR) { 3792 Val = N0.getOperand(0); 3793 } else { 3794 assert(N0.getOpcode() == ISD::AND && 3795 N0.getOperand(0).getOpcode() == ISD::XOR); 3796 // ((X^1)&1)^1 -> X & 1 3797 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3798 N0.getOperand(0).getOperand(0), 3799 N0.getOperand(1)); 3800 } 3801 3802 return DAG.getSetCC(dl, VT, Val, N1, 3803 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3804 } 3805 } else if (N1C->isOne()) { 3806 SDValue Op0 = N0; 3807 if (Op0.getOpcode() == ISD::TRUNCATE) 3808 Op0 = Op0.getOperand(0); 3809 3810 if ((Op0.getOpcode() == ISD::XOR) && 3811 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3812 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3813 SDValue XorLHS = Op0.getOperand(0); 3814 SDValue XorRHS = Op0.getOperand(1); 3815 // Ensure that the input setccs return an i1 type or 0/1 value. 3816 if (Op0.getValueType() == MVT::i1 || 3817 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3818 ZeroOrOneBooleanContent && 3819 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3820 ZeroOrOneBooleanContent)) { 3821 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3822 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3823 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3824 } 3825 } 3826 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3827 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3828 if (Op0.getValueType().bitsGT(VT)) 3829 Op0 = DAG.getNode(ISD::AND, dl, VT, 3830 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3831 DAG.getConstant(1, dl, VT)); 3832 else if (Op0.getValueType().bitsLT(VT)) 3833 Op0 = DAG.getNode(ISD::AND, dl, VT, 3834 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3835 DAG.getConstant(1, dl, VT)); 3836 3837 return DAG.getSetCC(dl, VT, Op0, 3838 DAG.getConstant(0, dl, Op0.getValueType()), 3839 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3840 } 3841 if (Op0.getOpcode() == ISD::AssertZext && 3842 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3843 return DAG.getSetCC(dl, VT, Op0, 3844 DAG.getConstant(0, dl, Op0.getValueType()), 3845 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3846 } 3847 } 3848 3849 // Given: 3850 // icmp eq/ne (urem %x, %y), 0 3851 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3852 // icmp eq/ne %x, 0 3853 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3854 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3855 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3856 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3857 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3858 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3859 } 3860 3861 if (SDValue V = 3862 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3863 return V; 3864 } 3865 3866 // These simplifications apply to splat vectors as well. 3867 // TODO: Handle more splat vector cases. 3868 if (auto *N1C = isConstOrConstSplat(N1)) { 3869 const APInt &C1 = N1C->getAPIntValue(); 3870 3871 APInt MinVal, MaxVal; 3872 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3873 if (ISD::isSignedIntSetCC(Cond)) { 3874 MinVal = APInt::getSignedMinValue(OperandBitSize); 3875 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3876 } else { 3877 MinVal = APInt::getMinValue(OperandBitSize); 3878 MaxVal = APInt::getMaxValue(OperandBitSize); 3879 } 3880 3881 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3882 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3883 // X >= MIN --> true 3884 if (C1 == MinVal) 3885 return DAG.getBoolConstant(true, dl, VT, OpVT); 3886 3887 if (!VT.isVector()) { // TODO: Support this for vectors. 3888 // X >= C0 --> X > (C0 - 1) 3889 APInt C = C1 - 1; 3890 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3891 if ((DCI.isBeforeLegalizeOps() || 3892 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3893 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3894 isLegalICmpImmediate(C.getSExtValue())))) { 3895 return DAG.getSetCC(dl, VT, N0, 3896 DAG.getConstant(C, dl, N1.getValueType()), 3897 NewCC); 3898 } 3899 } 3900 } 3901 3902 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3903 // X <= MAX --> true 3904 if (C1 == MaxVal) 3905 return DAG.getBoolConstant(true, dl, VT, OpVT); 3906 3907 // X <= C0 --> X < (C0 + 1) 3908 if (!VT.isVector()) { // TODO: Support this for vectors. 3909 APInt C = C1 + 1; 3910 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3911 if ((DCI.isBeforeLegalizeOps() || 3912 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3913 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3914 isLegalICmpImmediate(C.getSExtValue())))) { 3915 return DAG.getSetCC(dl, VT, N0, 3916 DAG.getConstant(C, dl, N1.getValueType()), 3917 NewCC); 3918 } 3919 } 3920 } 3921 3922 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3923 if (C1 == MinVal) 3924 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3925 3926 // TODO: Support this for vectors after legalize ops. 3927 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3928 // Canonicalize setlt X, Max --> setne X, Max 3929 if (C1 == MaxVal) 3930 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3931 3932 // If we have setult X, 1, turn it into seteq X, 0 3933 if (C1 == MinVal+1) 3934 return DAG.getSetCC(dl, VT, N0, 3935 DAG.getConstant(MinVal, dl, N0.getValueType()), 3936 ISD::SETEQ); 3937 } 3938 } 3939 3940 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3941 if (C1 == MaxVal) 3942 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3943 3944 // TODO: Support this for vectors after legalize ops. 3945 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3946 // Canonicalize setgt X, Min --> setne X, Min 3947 if (C1 == MinVal) 3948 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3949 3950 // If we have setugt X, Max-1, turn it into seteq X, Max 3951 if (C1 == MaxVal-1) 3952 return DAG.getSetCC(dl, VT, N0, 3953 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3954 ISD::SETEQ); 3955 } 3956 } 3957 3958 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3959 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3960 if (C1.isNullValue()) 3961 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3962 VT, N0, N1, Cond, DCI, dl)) 3963 return CC; 3964 3965 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 3966 // For example, when high 32-bits of i64 X are known clear: 3967 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 3968 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 3969 bool CmpZero = N1C->getAPIntValue().isNullValue(); 3970 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 3971 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 3972 // Match or(lo,shl(hi,bw/2)) pattern. 3973 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 3974 unsigned EltBits = V.getScalarValueSizeInBits(); 3975 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 3976 return false; 3977 SDValue LHS = V.getOperand(0); 3978 SDValue RHS = V.getOperand(1); 3979 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 3980 // Unshifted element must have zero upperbits. 3981 if (RHS.getOpcode() == ISD::SHL && 3982 isa<ConstantSDNode>(RHS.getOperand(1)) && 3983 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 3984 DAG.MaskedValueIsZero(LHS, HiBits)) { 3985 Lo = LHS; 3986 Hi = RHS.getOperand(0); 3987 return true; 3988 } 3989 if (LHS.getOpcode() == ISD::SHL && 3990 isa<ConstantSDNode>(LHS.getOperand(1)) && 3991 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 3992 DAG.MaskedValueIsZero(RHS, HiBits)) { 3993 Lo = RHS; 3994 Hi = LHS.getOperand(0); 3995 return true; 3996 } 3997 return false; 3998 }; 3999 4000 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4001 unsigned EltBits = N0.getScalarValueSizeInBits(); 4002 unsigned HalfBits = EltBits / 2; 4003 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4004 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4005 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4006 SDValue NewN0 = 4007 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4008 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4009 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4010 }; 4011 4012 SDValue Lo, Hi; 4013 if (IsConcat(N0, Lo, Hi)) 4014 return MergeConcat(Lo, Hi); 4015 4016 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4017 SDValue Lo0, Lo1, Hi0, Hi1; 4018 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4019 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4020 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4021 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4022 } 4023 } 4024 } 4025 } 4026 4027 // If we have "setcc X, C0", check to see if we can shrink the immediate 4028 // by changing cc. 4029 // TODO: Support this for vectors after legalize ops. 4030 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4031 // SETUGT X, SINTMAX -> SETLT X, 0 4032 // SETUGE X, SINTMIN -> SETLT X, 0 4033 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4034 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4035 return DAG.getSetCC(dl, VT, N0, 4036 DAG.getConstant(0, dl, N1.getValueType()), 4037 ISD::SETLT); 4038 4039 // SETULT X, SINTMIN -> SETGT X, -1 4040 // SETULE X, SINTMAX -> SETGT X, -1 4041 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4042 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4043 return DAG.getSetCC(dl, VT, N0, 4044 DAG.getAllOnesConstant(dl, N1.getValueType()), 4045 ISD::SETGT); 4046 } 4047 } 4048 4049 // Back to non-vector simplifications. 4050 // TODO: Can we do these for vector splats? 4051 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4053 const APInt &C1 = N1C->getAPIntValue(); 4054 EVT ShValTy = N0.getValueType(); 4055 4056 // Fold bit comparisons when we can. This will result in an 4057 // incorrect value when boolean false is negative one, unless 4058 // the bitsize is 1 in which case the false value is the same 4059 // in practice regardless of the representation. 4060 if ((VT.getSizeInBits() == 1 || 4061 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4062 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4063 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4064 N0.getOpcode() == ISD::AND) { 4065 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4066 EVT ShiftTy = 4067 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4068 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4069 // Perform the xform if the AND RHS is a single bit. 4070 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4071 if (AndRHS->getAPIntValue().isPowerOf2() && 4072 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4073 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4074 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4075 DAG.getConstant(ShCt, dl, ShiftTy))); 4076 } 4077 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4078 // (X & 8) == 8 --> (X & 8) >> 3 4079 // Perform the xform if C1 is a single bit. 4080 unsigned ShCt = C1.logBase2(); 4081 if (C1.isPowerOf2() && 4082 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4083 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4084 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4085 DAG.getConstant(ShCt, dl, ShiftTy))); 4086 } 4087 } 4088 } 4089 } 4090 4091 if (C1.getMinSignedBits() <= 64 && 4092 !isLegalICmpImmediate(C1.getSExtValue())) { 4093 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4094 // (X & -256) == 256 -> (X >> 8) == 1 4095 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4096 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4097 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4098 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4099 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4100 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4101 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4102 SDValue Shift = 4103 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4104 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4105 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4106 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4107 } 4108 } 4109 } 4110 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4111 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4112 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4113 // X < 0x100000000 -> (X >> 32) < 1 4114 // X >= 0x100000000 -> (X >> 32) >= 1 4115 // X <= 0x0ffffffff -> (X >> 32) < 1 4116 // X > 0x0ffffffff -> (X >> 32) >= 1 4117 unsigned ShiftBits; 4118 APInt NewC = C1; 4119 ISD::CondCode NewCond = Cond; 4120 if (AdjOne) { 4121 ShiftBits = C1.countTrailingOnes(); 4122 NewC = NewC + 1; 4123 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4124 } else { 4125 ShiftBits = C1.countTrailingZeros(); 4126 } 4127 NewC.lshrInPlace(ShiftBits); 4128 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4129 isLegalICmpImmediate(NewC.getSExtValue()) && 4130 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4131 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4132 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4133 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4134 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4135 } 4136 } 4137 } 4138 } 4139 4140 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4141 auto *CFP = cast<ConstantFPSDNode>(N1); 4142 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4143 4144 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4145 // constant if knowing that the operand is non-nan is enough. We prefer to 4146 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4147 // materialize 0.0. 4148 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4149 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4150 4151 // setcc (fneg x), C -> setcc swap(pred) x, -C 4152 if (N0.getOpcode() == ISD::FNEG) { 4153 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4154 if (DCI.isBeforeLegalizeOps() || 4155 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4156 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4157 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4158 } 4159 } 4160 4161 // If the condition is not legal, see if we can find an equivalent one 4162 // which is legal. 4163 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4164 // If the comparison was an awkward floating-point == or != and one of 4165 // the comparison operands is infinity or negative infinity, convert the 4166 // condition to a less-awkward <= or >=. 4167 if (CFP->getValueAPF().isInfinity()) { 4168 bool IsNegInf = CFP->getValueAPF().isNegative(); 4169 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4170 switch (Cond) { 4171 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4172 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4173 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4174 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4175 default: break; 4176 } 4177 if (NewCond != ISD::SETCC_INVALID && 4178 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4179 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4180 } 4181 } 4182 } 4183 4184 if (N0 == N1) { 4185 // The sext(setcc()) => setcc() optimization relies on the appropriate 4186 // constant being emitted. 4187 assert(!N0.getValueType().isInteger() && 4188 "Integer types should be handled by FoldSetCC"); 4189 4190 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4191 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4192 if (UOF == 2) // FP operators that are undefined on NaNs. 4193 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4194 if (UOF == unsigned(EqTrue)) 4195 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4196 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4197 // if it is not already. 4198 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4199 if (NewCond != Cond && 4200 (DCI.isBeforeLegalizeOps() || 4201 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4202 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4203 } 4204 4205 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4206 N0.getValueType().isInteger()) { 4207 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4208 N0.getOpcode() == ISD::XOR) { 4209 // Simplify (X+Y) == (X+Z) --> Y == Z 4210 if (N0.getOpcode() == N1.getOpcode()) { 4211 if (N0.getOperand(0) == N1.getOperand(0)) 4212 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4213 if (N0.getOperand(1) == N1.getOperand(1)) 4214 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4215 if (isCommutativeBinOp(N0.getOpcode())) { 4216 // If X op Y == Y op X, try other combinations. 4217 if (N0.getOperand(0) == N1.getOperand(1)) 4218 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4219 Cond); 4220 if (N0.getOperand(1) == N1.getOperand(0)) 4221 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4222 Cond); 4223 } 4224 } 4225 4226 // If RHS is a legal immediate value for a compare instruction, we need 4227 // to be careful about increasing register pressure needlessly. 4228 bool LegalRHSImm = false; 4229 4230 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4231 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4232 // Turn (X+C1) == C2 --> X == C2-C1 4233 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4234 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4235 DAG.getConstant(RHSC->getAPIntValue()- 4236 LHSR->getAPIntValue(), 4237 dl, N0.getValueType()), Cond); 4238 } 4239 4240 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4241 if (N0.getOpcode() == ISD::XOR) 4242 // If we know that all of the inverted bits are zero, don't bother 4243 // performing the inversion. 4244 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4245 return 4246 DAG.getSetCC(dl, VT, N0.getOperand(0), 4247 DAG.getConstant(LHSR->getAPIntValue() ^ 4248 RHSC->getAPIntValue(), 4249 dl, N0.getValueType()), 4250 Cond); 4251 } 4252 4253 // Turn (C1-X) == C2 --> X == C1-C2 4254 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4255 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4256 return 4257 DAG.getSetCC(dl, VT, N0.getOperand(1), 4258 DAG.getConstant(SUBC->getAPIntValue() - 4259 RHSC->getAPIntValue(), 4260 dl, N0.getValueType()), 4261 Cond); 4262 } 4263 } 4264 4265 // Could RHSC fold directly into a compare? 4266 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4267 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4268 } 4269 4270 // (X+Y) == X --> Y == 0 and similar folds. 4271 // Don't do this if X is an immediate that can fold into a cmp 4272 // instruction and X+Y has other uses. It could be an induction variable 4273 // chain, and the transform would increase register pressure. 4274 if (!LegalRHSImm || N0.hasOneUse()) 4275 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4276 return V; 4277 } 4278 4279 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4280 N1.getOpcode() == ISD::XOR) 4281 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4282 return V; 4283 4284 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4285 return V; 4286 } 4287 4288 // Fold remainder of division by a constant. 4289 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4290 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4291 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4292 4293 // When division is cheap or optimizing for minimum size, 4294 // fall through to DIVREM creation by skipping this fold. 4295 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4296 if (N0.getOpcode() == ISD::UREM) { 4297 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4298 return Folded; 4299 } else if (N0.getOpcode() == ISD::SREM) { 4300 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4301 return Folded; 4302 } 4303 } 4304 } 4305 4306 // Fold away ALL boolean setcc's. 4307 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4308 SDValue Temp; 4309 switch (Cond) { 4310 default: llvm_unreachable("Unknown integer setcc!"); 4311 case ISD::SETEQ: // X == Y -> ~(X^Y) 4312 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4313 N0 = DAG.getNOT(dl, Temp, OpVT); 4314 if (!DCI.isCalledByLegalizer()) 4315 DCI.AddToWorklist(Temp.getNode()); 4316 break; 4317 case ISD::SETNE: // X != Y --> (X^Y) 4318 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4319 break; 4320 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4321 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4322 Temp = DAG.getNOT(dl, N0, OpVT); 4323 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4324 if (!DCI.isCalledByLegalizer()) 4325 DCI.AddToWorklist(Temp.getNode()); 4326 break; 4327 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4328 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4329 Temp = DAG.getNOT(dl, N1, OpVT); 4330 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4331 if (!DCI.isCalledByLegalizer()) 4332 DCI.AddToWorklist(Temp.getNode()); 4333 break; 4334 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4335 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4336 Temp = DAG.getNOT(dl, N0, OpVT); 4337 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4338 if (!DCI.isCalledByLegalizer()) 4339 DCI.AddToWorklist(Temp.getNode()); 4340 break; 4341 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4342 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4343 Temp = DAG.getNOT(dl, N1, OpVT); 4344 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4345 break; 4346 } 4347 if (VT.getScalarType() != MVT::i1) { 4348 if (!DCI.isCalledByLegalizer()) 4349 DCI.AddToWorklist(N0.getNode()); 4350 // FIXME: If running after legalize, we probably can't do this. 4351 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4352 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4353 } 4354 return N0; 4355 } 4356 4357 // Could not fold it. 4358 return SDValue(); 4359 } 4360 4361 /// Returns true (and the GlobalValue and the offset) if the node is a 4362 /// GlobalAddress + offset. 4363 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4364 int64_t &Offset) const { 4365 4366 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4367 4368 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4369 GA = GASD->getGlobal(); 4370 Offset += GASD->getOffset(); 4371 return true; 4372 } 4373 4374 if (N->getOpcode() == ISD::ADD) { 4375 SDValue N1 = N->getOperand(0); 4376 SDValue N2 = N->getOperand(1); 4377 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4378 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4379 Offset += V->getSExtValue(); 4380 return true; 4381 } 4382 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4383 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4384 Offset += V->getSExtValue(); 4385 return true; 4386 } 4387 } 4388 } 4389 4390 return false; 4391 } 4392 4393 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4394 DAGCombinerInfo &DCI) const { 4395 // Default implementation: no optimization. 4396 return SDValue(); 4397 } 4398 4399 //===----------------------------------------------------------------------===// 4400 // Inline Assembler Implementation Methods 4401 //===----------------------------------------------------------------------===// 4402 4403 TargetLowering::ConstraintType 4404 TargetLowering::getConstraintType(StringRef Constraint) const { 4405 unsigned S = Constraint.size(); 4406 4407 if (S == 1) { 4408 switch (Constraint[0]) { 4409 default: break; 4410 case 'r': 4411 return C_RegisterClass; 4412 case 'm': // memory 4413 case 'o': // offsetable 4414 case 'V': // not offsetable 4415 return C_Memory; 4416 case 'n': // Simple Integer 4417 case 'E': // Floating Point Constant 4418 case 'F': // Floating Point Constant 4419 return C_Immediate; 4420 case 'i': // Simple Integer or Relocatable Constant 4421 case 's': // Relocatable Constant 4422 case 'p': // Address. 4423 case 'X': // Allow ANY value. 4424 case 'I': // Target registers. 4425 case 'J': 4426 case 'K': 4427 case 'L': 4428 case 'M': 4429 case 'N': 4430 case 'O': 4431 case 'P': 4432 case '<': 4433 case '>': 4434 return C_Other; 4435 } 4436 } 4437 4438 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4439 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4440 return C_Memory; 4441 return C_Register; 4442 } 4443 return C_Unknown; 4444 } 4445 4446 /// Try to replace an X constraint, which matches anything, with another that 4447 /// has more specific requirements based on the type of the corresponding 4448 /// operand. 4449 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4450 if (ConstraintVT.isInteger()) 4451 return "r"; 4452 if (ConstraintVT.isFloatingPoint()) 4453 return "f"; // works for many targets 4454 return nullptr; 4455 } 4456 4457 SDValue TargetLowering::LowerAsmOutputForConstraint( 4458 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4459 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4460 return SDValue(); 4461 } 4462 4463 /// Lower the specified operand into the Ops vector. 4464 /// If it is invalid, don't add anything to Ops. 4465 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4466 std::string &Constraint, 4467 std::vector<SDValue> &Ops, 4468 SelectionDAG &DAG) const { 4469 4470 if (Constraint.length() > 1) return; 4471 4472 char ConstraintLetter = Constraint[0]; 4473 switch (ConstraintLetter) { 4474 default: break; 4475 case 'X': // Allows any operand; labels (basic block) use this. 4476 if (Op.getOpcode() == ISD::BasicBlock || 4477 Op.getOpcode() == ISD::TargetBlockAddress) { 4478 Ops.push_back(Op); 4479 return; 4480 } 4481 LLVM_FALLTHROUGH; 4482 case 'i': // Simple Integer or Relocatable Constant 4483 case 'n': // Simple Integer 4484 case 's': { // Relocatable Constant 4485 4486 GlobalAddressSDNode *GA; 4487 ConstantSDNode *C; 4488 BlockAddressSDNode *BA; 4489 uint64_t Offset = 0; 4490 4491 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4492 // etc., since getelementpointer is variadic. We can't use 4493 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4494 // while in this case the GA may be furthest from the root node which is 4495 // likely an ISD::ADD. 4496 while (1) { 4497 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4498 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4499 GA->getValueType(0), 4500 Offset + GA->getOffset())); 4501 return; 4502 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4503 ConstraintLetter != 's') { 4504 // gcc prints these as sign extended. Sign extend value to 64 bits 4505 // now; without this it would get ZExt'd later in 4506 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4507 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4508 BooleanContent BCont = getBooleanContents(MVT::i64); 4509 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4510 : ISD::SIGN_EXTEND; 4511 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4512 : C->getSExtValue(); 4513 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4514 SDLoc(C), MVT::i64)); 4515 return; 4516 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4517 ConstraintLetter != 'n') { 4518 Ops.push_back(DAG.getTargetBlockAddress( 4519 BA->getBlockAddress(), BA->getValueType(0), 4520 Offset + BA->getOffset(), BA->getTargetFlags())); 4521 return; 4522 } else { 4523 const unsigned OpCode = Op.getOpcode(); 4524 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4525 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4526 Op = Op.getOperand(1); 4527 // Subtraction is not commutative. 4528 else if (OpCode == ISD::ADD && 4529 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4530 Op = Op.getOperand(0); 4531 else 4532 return; 4533 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4534 continue; 4535 } 4536 } 4537 return; 4538 } 4539 break; 4540 } 4541 } 4542 } 4543 4544 std::pair<unsigned, const TargetRegisterClass *> 4545 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4546 StringRef Constraint, 4547 MVT VT) const { 4548 if (Constraint.empty() || Constraint[0] != '{') 4549 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4550 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4551 4552 // Remove the braces from around the name. 4553 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4554 4555 std::pair<unsigned, const TargetRegisterClass *> R = 4556 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4557 4558 // Figure out which register class contains this reg. 4559 for (const TargetRegisterClass *RC : RI->regclasses()) { 4560 // If none of the value types for this register class are valid, we 4561 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4562 if (!isLegalRC(*RI, *RC)) 4563 continue; 4564 4565 for (const MCPhysReg &PR : *RC) { 4566 if (RegName.equals_lower(RI->getRegAsmName(PR))) { 4567 std::pair<unsigned, const TargetRegisterClass *> S = 4568 std::make_pair(PR, RC); 4569 4570 // If this register class has the requested value type, return it, 4571 // otherwise keep searching and return the first class found 4572 // if no other is found which explicitly has the requested type. 4573 if (RI->isTypeLegalForClass(*RC, VT)) 4574 return S; 4575 if (!R.second) 4576 R = S; 4577 } 4578 } 4579 } 4580 4581 return R; 4582 } 4583 4584 //===----------------------------------------------------------------------===// 4585 // Constraint Selection. 4586 4587 /// Return true of this is an input operand that is a matching constraint like 4588 /// "4". 4589 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4590 assert(!ConstraintCode.empty() && "No known constraint!"); 4591 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4592 } 4593 4594 /// If this is an input matching constraint, this method returns the output 4595 /// operand it matches. 4596 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4597 assert(!ConstraintCode.empty() && "No known constraint!"); 4598 return atoi(ConstraintCode.c_str()); 4599 } 4600 4601 /// Split up the constraint string from the inline assembly value into the 4602 /// specific constraints and their prefixes, and also tie in the associated 4603 /// operand values. 4604 /// If this returns an empty vector, and if the constraint string itself 4605 /// isn't empty, there was an error parsing. 4606 TargetLowering::AsmOperandInfoVector 4607 TargetLowering::ParseConstraints(const DataLayout &DL, 4608 const TargetRegisterInfo *TRI, 4609 const CallBase &Call) const { 4610 /// Information about all of the constraints. 4611 AsmOperandInfoVector ConstraintOperands; 4612 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4613 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4614 4615 // Do a prepass over the constraints, canonicalizing them, and building up the 4616 // ConstraintOperands list. 4617 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4618 unsigned ResNo = 0; // ResNo - The result number of the next output. 4619 4620 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4621 ConstraintOperands.emplace_back(std::move(CI)); 4622 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4623 4624 // Update multiple alternative constraint count. 4625 if (OpInfo.multipleAlternatives.size() > maCount) 4626 maCount = OpInfo.multipleAlternatives.size(); 4627 4628 OpInfo.ConstraintVT = MVT::Other; 4629 4630 // Compute the value type for each operand. 4631 switch (OpInfo.Type) { 4632 case InlineAsm::isOutput: 4633 // Indirect outputs just consume an argument. 4634 if (OpInfo.isIndirect) { 4635 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4636 break; 4637 } 4638 4639 // The return value of the call is this value. As such, there is no 4640 // corresponding argument. 4641 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4642 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4643 OpInfo.ConstraintVT = 4644 getSimpleValueType(DL, STy->getElementType(ResNo)); 4645 } else { 4646 assert(ResNo == 0 && "Asm only has one result!"); 4647 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4648 } 4649 ++ResNo; 4650 break; 4651 case InlineAsm::isInput: 4652 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4653 break; 4654 case InlineAsm::isClobber: 4655 // Nothing to do. 4656 break; 4657 } 4658 4659 if (OpInfo.CallOperandVal) { 4660 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4661 if (OpInfo.isIndirect) { 4662 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4663 if (!PtrTy) 4664 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4665 OpTy = PtrTy->getElementType(); 4666 } 4667 4668 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4669 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4670 if (STy->getNumElements() == 1) 4671 OpTy = STy->getElementType(0); 4672 4673 // If OpTy is not a single value, it may be a struct/union that we 4674 // can tile with integers. 4675 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4676 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4677 switch (BitSize) { 4678 default: break; 4679 case 1: 4680 case 8: 4681 case 16: 4682 case 32: 4683 case 64: 4684 case 128: 4685 OpInfo.ConstraintVT = 4686 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4687 break; 4688 } 4689 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4690 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4691 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4692 } else { 4693 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4694 } 4695 } 4696 } 4697 4698 // If we have multiple alternative constraints, select the best alternative. 4699 if (!ConstraintOperands.empty()) { 4700 if (maCount) { 4701 unsigned bestMAIndex = 0; 4702 int bestWeight = -1; 4703 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4704 int weight = -1; 4705 unsigned maIndex; 4706 // Compute the sums of the weights for each alternative, keeping track 4707 // of the best (highest weight) one so far. 4708 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4709 int weightSum = 0; 4710 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4711 cIndex != eIndex; ++cIndex) { 4712 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4713 if (OpInfo.Type == InlineAsm::isClobber) 4714 continue; 4715 4716 // If this is an output operand with a matching input operand, 4717 // look up the matching input. If their types mismatch, e.g. one 4718 // is an integer, the other is floating point, or their sizes are 4719 // different, flag it as an maCantMatch. 4720 if (OpInfo.hasMatchingInput()) { 4721 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4722 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4723 if ((OpInfo.ConstraintVT.isInteger() != 4724 Input.ConstraintVT.isInteger()) || 4725 (OpInfo.ConstraintVT.getSizeInBits() != 4726 Input.ConstraintVT.getSizeInBits())) { 4727 weightSum = -1; // Can't match. 4728 break; 4729 } 4730 } 4731 } 4732 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4733 if (weight == -1) { 4734 weightSum = -1; 4735 break; 4736 } 4737 weightSum += weight; 4738 } 4739 // Update best. 4740 if (weightSum > bestWeight) { 4741 bestWeight = weightSum; 4742 bestMAIndex = maIndex; 4743 } 4744 } 4745 4746 // Now select chosen alternative in each constraint. 4747 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4748 cIndex != eIndex; ++cIndex) { 4749 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4750 if (cInfo.Type == InlineAsm::isClobber) 4751 continue; 4752 cInfo.selectAlternative(bestMAIndex); 4753 } 4754 } 4755 } 4756 4757 // Check and hook up tied operands, choose constraint code to use. 4758 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4759 cIndex != eIndex; ++cIndex) { 4760 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4761 4762 // If this is an output operand with a matching input operand, look up the 4763 // matching input. If their types mismatch, e.g. one is an integer, the 4764 // other is floating point, or their sizes are different, flag it as an 4765 // error. 4766 if (OpInfo.hasMatchingInput()) { 4767 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4768 4769 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4770 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4771 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4772 OpInfo.ConstraintVT); 4773 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4774 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4775 Input.ConstraintVT); 4776 if ((OpInfo.ConstraintVT.isInteger() != 4777 Input.ConstraintVT.isInteger()) || 4778 (MatchRC.second != InputRC.second)) { 4779 report_fatal_error("Unsupported asm: input constraint" 4780 " with a matching output constraint of" 4781 " incompatible type!"); 4782 } 4783 } 4784 } 4785 } 4786 4787 return ConstraintOperands; 4788 } 4789 4790 /// Return an integer indicating how general CT is. 4791 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4792 switch (CT) { 4793 case TargetLowering::C_Immediate: 4794 case TargetLowering::C_Other: 4795 case TargetLowering::C_Unknown: 4796 return 0; 4797 case TargetLowering::C_Register: 4798 return 1; 4799 case TargetLowering::C_RegisterClass: 4800 return 2; 4801 case TargetLowering::C_Memory: 4802 return 3; 4803 } 4804 llvm_unreachable("Invalid constraint type"); 4805 } 4806 4807 /// Examine constraint type and operand type and determine a weight value. 4808 /// This object must already have been set up with the operand type 4809 /// and the current alternative constraint selected. 4810 TargetLowering::ConstraintWeight 4811 TargetLowering::getMultipleConstraintMatchWeight( 4812 AsmOperandInfo &info, int maIndex) const { 4813 InlineAsm::ConstraintCodeVector *rCodes; 4814 if (maIndex >= (int)info.multipleAlternatives.size()) 4815 rCodes = &info.Codes; 4816 else 4817 rCodes = &info.multipleAlternatives[maIndex].Codes; 4818 ConstraintWeight BestWeight = CW_Invalid; 4819 4820 // Loop over the options, keeping track of the most general one. 4821 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4822 ConstraintWeight weight = 4823 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4824 if (weight > BestWeight) 4825 BestWeight = weight; 4826 } 4827 4828 return BestWeight; 4829 } 4830 4831 /// Examine constraint type and operand type and determine a weight value. 4832 /// This object must already have been set up with the operand type 4833 /// and the current alternative constraint selected. 4834 TargetLowering::ConstraintWeight 4835 TargetLowering::getSingleConstraintMatchWeight( 4836 AsmOperandInfo &info, const char *constraint) const { 4837 ConstraintWeight weight = CW_Invalid; 4838 Value *CallOperandVal = info.CallOperandVal; 4839 // If we don't have a value, we can't do a match, 4840 // but allow it at the lowest weight. 4841 if (!CallOperandVal) 4842 return CW_Default; 4843 // Look at the constraint type. 4844 switch (*constraint) { 4845 case 'i': // immediate integer. 4846 case 'n': // immediate integer with a known value. 4847 if (isa<ConstantInt>(CallOperandVal)) 4848 weight = CW_Constant; 4849 break; 4850 case 's': // non-explicit intregal immediate. 4851 if (isa<GlobalValue>(CallOperandVal)) 4852 weight = CW_Constant; 4853 break; 4854 case 'E': // immediate float if host format. 4855 case 'F': // immediate float. 4856 if (isa<ConstantFP>(CallOperandVal)) 4857 weight = CW_Constant; 4858 break; 4859 case '<': // memory operand with autodecrement. 4860 case '>': // memory operand with autoincrement. 4861 case 'm': // memory operand. 4862 case 'o': // offsettable memory operand 4863 case 'V': // non-offsettable memory operand 4864 weight = CW_Memory; 4865 break; 4866 case 'r': // general register. 4867 case 'g': // general register, memory operand or immediate integer. 4868 // note: Clang converts "g" to "imr". 4869 if (CallOperandVal->getType()->isIntegerTy()) 4870 weight = CW_Register; 4871 break; 4872 case 'X': // any operand. 4873 default: 4874 weight = CW_Default; 4875 break; 4876 } 4877 return weight; 4878 } 4879 4880 /// If there are multiple different constraints that we could pick for this 4881 /// operand (e.g. "imr") try to pick the 'best' one. 4882 /// This is somewhat tricky: constraints fall into four classes: 4883 /// Other -> immediates and magic values 4884 /// Register -> one specific register 4885 /// RegisterClass -> a group of regs 4886 /// Memory -> memory 4887 /// Ideally, we would pick the most specific constraint possible: if we have 4888 /// something that fits into a register, we would pick it. The problem here 4889 /// is that if we have something that could either be in a register or in 4890 /// memory that use of the register could cause selection of *other* 4891 /// operands to fail: they might only succeed if we pick memory. Because of 4892 /// this the heuristic we use is: 4893 /// 4894 /// 1) If there is an 'other' constraint, and if the operand is valid for 4895 /// that constraint, use it. This makes us take advantage of 'i' 4896 /// constraints when available. 4897 /// 2) Otherwise, pick the most general constraint present. This prefers 4898 /// 'm' over 'r', for example. 4899 /// 4900 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4901 const TargetLowering &TLI, 4902 SDValue Op, SelectionDAG *DAG) { 4903 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4904 unsigned BestIdx = 0; 4905 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4906 int BestGenerality = -1; 4907 4908 // Loop over the options, keeping track of the most general one. 4909 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4910 TargetLowering::ConstraintType CType = 4911 TLI.getConstraintType(OpInfo.Codes[i]); 4912 4913 // Indirect 'other' or 'immediate' constraints are not allowed. 4914 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4915 CType == TargetLowering::C_Register || 4916 CType == TargetLowering::C_RegisterClass)) 4917 continue; 4918 4919 // If this is an 'other' or 'immediate' constraint, see if the operand is 4920 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4921 // the operand is an integer in the range [0..31] we want to use I (saving a 4922 // load of a register), otherwise we must use 'r'. 4923 if ((CType == TargetLowering::C_Other || 4924 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4925 assert(OpInfo.Codes[i].size() == 1 && 4926 "Unhandled multi-letter 'other' constraint"); 4927 std::vector<SDValue> ResultOps; 4928 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4929 ResultOps, *DAG); 4930 if (!ResultOps.empty()) { 4931 BestType = CType; 4932 BestIdx = i; 4933 break; 4934 } 4935 } 4936 4937 // Things with matching constraints can only be registers, per gcc 4938 // documentation. This mainly affects "g" constraints. 4939 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4940 continue; 4941 4942 // This constraint letter is more general than the previous one, use it. 4943 int Generality = getConstraintGenerality(CType); 4944 if (Generality > BestGenerality) { 4945 BestType = CType; 4946 BestIdx = i; 4947 BestGenerality = Generality; 4948 } 4949 } 4950 4951 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4952 OpInfo.ConstraintType = BestType; 4953 } 4954 4955 /// Determines the constraint code and constraint type to use for the specific 4956 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4957 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4958 SDValue Op, 4959 SelectionDAG *DAG) const { 4960 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4961 4962 // Single-letter constraints ('r') are very common. 4963 if (OpInfo.Codes.size() == 1) { 4964 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4965 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4966 } else { 4967 ChooseConstraint(OpInfo, *this, Op, DAG); 4968 } 4969 4970 // 'X' matches anything. 4971 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4972 // Labels and constants are handled elsewhere ('X' is the only thing 4973 // that matches labels). For Functions, the type here is the type of 4974 // the result, which is not what we want to look at; leave them alone. 4975 Value *v = OpInfo.CallOperandVal; 4976 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4977 OpInfo.CallOperandVal = v; 4978 return; 4979 } 4980 4981 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4982 return; 4983 4984 // Otherwise, try to resolve it to something we know about by looking at 4985 // the actual operand type. 4986 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4987 OpInfo.ConstraintCode = Repl; 4988 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4989 } 4990 } 4991 } 4992 4993 /// Given an exact SDIV by a constant, create a multiplication 4994 /// with the multiplicative inverse of the constant. 4995 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4996 const SDLoc &dl, SelectionDAG &DAG, 4997 SmallVectorImpl<SDNode *> &Created) { 4998 SDValue Op0 = N->getOperand(0); 4999 SDValue Op1 = N->getOperand(1); 5000 EVT VT = N->getValueType(0); 5001 EVT SVT = VT.getScalarType(); 5002 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5003 EVT ShSVT = ShVT.getScalarType(); 5004 5005 bool UseSRA = false; 5006 SmallVector<SDValue, 16> Shifts, Factors; 5007 5008 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5009 if (C->isNullValue()) 5010 return false; 5011 APInt Divisor = C->getAPIntValue(); 5012 unsigned Shift = Divisor.countTrailingZeros(); 5013 if (Shift) { 5014 Divisor.ashrInPlace(Shift); 5015 UseSRA = true; 5016 } 5017 // Calculate the multiplicative inverse, using Newton's method. 5018 APInt t; 5019 APInt Factor = Divisor; 5020 while ((t = Divisor * Factor) != 1) 5021 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5022 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5023 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5024 return true; 5025 }; 5026 5027 // Collect all magic values from the build vector. 5028 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5029 return SDValue(); 5030 5031 SDValue Shift, Factor; 5032 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5033 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5034 Factor = DAG.getBuildVector(VT, dl, Factors); 5035 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5036 assert(Shifts.size() == 1 && Factors.size() == 1 && 5037 "Expected matchUnaryPredicate to return one element for scalable " 5038 "vectors"); 5039 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5040 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5041 } else { 5042 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5043 Shift = Shifts[0]; 5044 Factor = Factors[0]; 5045 } 5046 5047 SDValue Res = Op0; 5048 5049 // Shift the value upfront if it is even, so the LSB is one. 5050 if (UseSRA) { 5051 // TODO: For UDIV use SRL instead of SRA. 5052 SDNodeFlags Flags; 5053 Flags.setExact(true); 5054 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5055 Created.push_back(Res.getNode()); 5056 } 5057 5058 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5059 } 5060 5061 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5062 SelectionDAG &DAG, 5063 SmallVectorImpl<SDNode *> &Created) const { 5064 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5066 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5067 return SDValue(N, 0); // Lower SDIV as SDIV 5068 return SDValue(); 5069 } 5070 5071 /// Given an ISD::SDIV node expressing a divide by constant, 5072 /// return a DAG expression to select that will generate the same value by 5073 /// multiplying by a magic number. 5074 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5075 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5076 bool IsAfterLegalization, 5077 SmallVectorImpl<SDNode *> &Created) const { 5078 SDLoc dl(N); 5079 EVT VT = N->getValueType(0); 5080 EVT SVT = VT.getScalarType(); 5081 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5082 EVT ShSVT = ShVT.getScalarType(); 5083 unsigned EltBits = VT.getScalarSizeInBits(); 5084 EVT MulVT; 5085 5086 // Check to see if we can do this. 5087 // FIXME: We should be more aggressive here. 5088 if (!isTypeLegal(VT)) { 5089 // Limit this to simple scalars for now. 5090 if (VT.isVector() || !VT.isSimple()) 5091 return SDValue(); 5092 5093 // If this type will be promoted to a large enough type with a legal 5094 // multiply operation, we can go ahead and do this transform. 5095 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5096 return SDValue(); 5097 5098 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5099 if (MulVT.getSizeInBits() < (2 * EltBits) || 5100 !isOperationLegal(ISD::MUL, MulVT)) 5101 return SDValue(); 5102 } 5103 5104 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5105 if (N->getFlags().hasExact()) 5106 return BuildExactSDIV(*this, N, dl, DAG, Created); 5107 5108 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5109 5110 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5111 if (C->isNullValue()) 5112 return false; 5113 5114 const APInt &Divisor = C->getAPIntValue(); 5115 APInt::ms magics = Divisor.magic(); 5116 int NumeratorFactor = 0; 5117 int ShiftMask = -1; 5118 5119 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5120 // If d is +1/-1, we just multiply the numerator by +1/-1. 5121 NumeratorFactor = Divisor.getSExtValue(); 5122 magics.m = 0; 5123 magics.s = 0; 5124 ShiftMask = 0; 5125 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5126 // If d > 0 and m < 0, add the numerator. 5127 NumeratorFactor = 1; 5128 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5129 // If d < 0 and m > 0, subtract the numerator. 5130 NumeratorFactor = -1; 5131 } 5132 5133 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5134 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5135 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5136 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5137 return true; 5138 }; 5139 5140 SDValue N0 = N->getOperand(0); 5141 SDValue N1 = N->getOperand(1); 5142 5143 // Collect the shifts / magic values from each element. 5144 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5145 return SDValue(); 5146 5147 SDValue MagicFactor, Factor, Shift, ShiftMask; 5148 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5149 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5150 Factor = DAG.getBuildVector(VT, dl, Factors); 5151 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5152 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5153 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5154 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5155 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5156 "Expected matchUnaryPredicate to return one element for scalable " 5157 "vectors"); 5158 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5159 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5160 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5161 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5162 } else { 5163 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5164 MagicFactor = MagicFactors[0]; 5165 Factor = Factors[0]; 5166 Shift = Shifts[0]; 5167 ShiftMask = ShiftMasks[0]; 5168 } 5169 5170 // Multiply the numerator (operand 0) by the magic value. 5171 // FIXME: We should support doing a MUL in a wider type. 5172 auto GetMULHS = [&](SDValue X, SDValue Y) { 5173 // If the type isn't legal, use a wider mul of the the type calculated 5174 // earlier. 5175 if (!isTypeLegal(VT)) { 5176 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5177 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5178 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5179 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5180 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5181 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5182 } 5183 5184 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5185 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5186 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5187 SDValue LoHi = 5188 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5189 return SDValue(LoHi.getNode(), 1); 5190 } 5191 return SDValue(); 5192 }; 5193 5194 SDValue Q = GetMULHS(N0, MagicFactor); 5195 if (!Q) 5196 return SDValue(); 5197 5198 Created.push_back(Q.getNode()); 5199 5200 // (Optionally) Add/subtract the numerator using Factor. 5201 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5202 Created.push_back(Factor.getNode()); 5203 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5204 Created.push_back(Q.getNode()); 5205 5206 // Shift right algebraic by shift value. 5207 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5208 Created.push_back(Q.getNode()); 5209 5210 // Extract the sign bit, mask it and add it to the quotient. 5211 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5212 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5213 Created.push_back(T.getNode()); 5214 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5215 Created.push_back(T.getNode()); 5216 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5217 } 5218 5219 /// Given an ISD::UDIV node expressing a divide by constant, 5220 /// return a DAG expression to select that will generate the same value by 5221 /// multiplying by a magic number. 5222 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5223 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5224 bool IsAfterLegalization, 5225 SmallVectorImpl<SDNode *> &Created) const { 5226 SDLoc dl(N); 5227 EVT VT = N->getValueType(0); 5228 EVT SVT = VT.getScalarType(); 5229 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5230 EVT ShSVT = ShVT.getScalarType(); 5231 unsigned EltBits = VT.getScalarSizeInBits(); 5232 EVT MulVT; 5233 5234 // Check to see if we can do this. 5235 // FIXME: We should be more aggressive here. 5236 if (!isTypeLegal(VT)) { 5237 // Limit this to simple scalars for now. 5238 if (VT.isVector() || !VT.isSimple()) 5239 return SDValue(); 5240 5241 // If this type will be promoted to a large enough type with a legal 5242 // multiply operation, we can go ahead and do this transform. 5243 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5244 return SDValue(); 5245 5246 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5247 if (MulVT.getSizeInBits() < (2 * EltBits) || 5248 !isOperationLegal(ISD::MUL, MulVT)) 5249 return SDValue(); 5250 } 5251 5252 bool UseNPQ = false; 5253 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5254 5255 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5256 if (C->isNullValue()) 5257 return false; 5258 // FIXME: We should use a narrower constant when the upper 5259 // bits are known to be zero. 5260 const APInt& Divisor = C->getAPIntValue(); 5261 APInt::mu magics = Divisor.magicu(); 5262 unsigned PreShift = 0, PostShift = 0; 5263 5264 // If the divisor is even, we can avoid using the expensive fixup by 5265 // shifting the divided value upfront. 5266 if (magics.a != 0 && !Divisor[0]) { 5267 PreShift = Divisor.countTrailingZeros(); 5268 // Get magic number for the shifted divisor. 5269 magics = Divisor.lshr(PreShift).magicu(PreShift); 5270 assert(magics.a == 0 && "Should use cheap fixup now"); 5271 } 5272 5273 APInt Magic = magics.m; 5274 5275 unsigned SelNPQ; 5276 if (magics.a == 0 || Divisor.isOneValue()) { 5277 assert(magics.s < Divisor.getBitWidth() && 5278 "We shouldn't generate an undefined shift!"); 5279 PostShift = magics.s; 5280 SelNPQ = false; 5281 } else { 5282 PostShift = magics.s - 1; 5283 SelNPQ = true; 5284 } 5285 5286 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5287 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5288 NPQFactors.push_back( 5289 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5290 : APInt::getNullValue(EltBits), 5291 dl, SVT)); 5292 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5293 UseNPQ |= SelNPQ; 5294 return true; 5295 }; 5296 5297 SDValue N0 = N->getOperand(0); 5298 SDValue N1 = N->getOperand(1); 5299 5300 // Collect the shifts/magic values from each element. 5301 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5302 return SDValue(); 5303 5304 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5305 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5306 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5307 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5308 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5309 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5310 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5311 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5312 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5313 "Expected matchUnaryPredicate to return one for scalable vectors"); 5314 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5315 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5316 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5317 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5318 } else { 5319 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5320 PreShift = PreShifts[0]; 5321 MagicFactor = MagicFactors[0]; 5322 PostShift = PostShifts[0]; 5323 } 5324 5325 SDValue Q = N0; 5326 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5327 Created.push_back(Q.getNode()); 5328 5329 // FIXME: We should support doing a MUL in a wider type. 5330 auto GetMULHU = [&](SDValue X, SDValue Y) { 5331 // If the type isn't legal, use a wider mul of the the type calculated 5332 // earlier. 5333 if (!isTypeLegal(VT)) { 5334 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5335 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5336 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5337 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5338 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5339 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5340 } 5341 5342 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5343 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5344 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5345 SDValue LoHi = 5346 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5347 return SDValue(LoHi.getNode(), 1); 5348 } 5349 return SDValue(); // No mulhu or equivalent 5350 }; 5351 5352 // Multiply the numerator (operand 0) by the magic value. 5353 Q = GetMULHU(Q, MagicFactor); 5354 if (!Q) 5355 return SDValue(); 5356 5357 Created.push_back(Q.getNode()); 5358 5359 if (UseNPQ) { 5360 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5361 Created.push_back(NPQ.getNode()); 5362 5363 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5364 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5365 if (VT.isVector()) 5366 NPQ = GetMULHU(NPQ, NPQFactor); 5367 else 5368 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5369 5370 Created.push_back(NPQ.getNode()); 5371 5372 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5373 Created.push_back(Q.getNode()); 5374 } 5375 5376 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5377 Created.push_back(Q.getNode()); 5378 5379 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5380 5381 SDValue One = DAG.getConstant(1, dl, VT); 5382 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5383 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5384 } 5385 5386 /// If all values in Values that *don't* match the predicate are same 'splat' 5387 /// value, then replace all values with that splat value. 5388 /// Else, if AlternativeReplacement was provided, then replace all values that 5389 /// do match predicate with AlternativeReplacement value. 5390 static void 5391 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5392 std::function<bool(SDValue)> Predicate, 5393 SDValue AlternativeReplacement = SDValue()) { 5394 SDValue Replacement; 5395 // Is there a value for which the Predicate does *NOT* match? What is it? 5396 auto SplatValue = llvm::find_if_not(Values, Predicate); 5397 if (SplatValue != Values.end()) { 5398 // Does Values consist only of SplatValue's and values matching Predicate? 5399 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5400 return Value == *SplatValue || Predicate(Value); 5401 })) // Then we shall replace values matching predicate with SplatValue. 5402 Replacement = *SplatValue; 5403 } 5404 if (!Replacement) { 5405 // Oops, we did not find the "baseline" splat value. 5406 if (!AlternativeReplacement) 5407 return; // Nothing to do. 5408 // Let's replace with provided value then. 5409 Replacement = AlternativeReplacement; 5410 } 5411 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5412 } 5413 5414 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5415 /// where the divisor is constant and the comparison target is zero, 5416 /// return a DAG expression that will generate the same comparison result 5417 /// using only multiplications, additions and shifts/rotations. 5418 /// Ref: "Hacker's Delight" 10-17. 5419 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5420 SDValue CompTargetNode, 5421 ISD::CondCode Cond, 5422 DAGCombinerInfo &DCI, 5423 const SDLoc &DL) const { 5424 SmallVector<SDNode *, 5> Built; 5425 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5426 DCI, DL, Built)) { 5427 for (SDNode *N : Built) 5428 DCI.AddToWorklist(N); 5429 return Folded; 5430 } 5431 5432 return SDValue(); 5433 } 5434 5435 SDValue 5436 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5437 SDValue CompTargetNode, ISD::CondCode Cond, 5438 DAGCombinerInfo &DCI, const SDLoc &DL, 5439 SmallVectorImpl<SDNode *> &Created) const { 5440 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5441 // - D must be constant, with D = D0 * 2^K where D0 is odd 5442 // - P is the multiplicative inverse of D0 modulo 2^W 5443 // - Q = floor(((2^W) - 1) / D) 5444 // where W is the width of the common type of N and D. 5445 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5446 "Only applicable for (in)equality comparisons."); 5447 5448 SelectionDAG &DAG = DCI.DAG; 5449 5450 EVT VT = REMNode.getValueType(); 5451 EVT SVT = VT.getScalarType(); 5452 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5453 EVT ShSVT = ShVT.getScalarType(); 5454 5455 // If MUL is unavailable, we cannot proceed in any case. 5456 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5457 return SDValue(); 5458 5459 bool ComparingWithAllZeros = true; 5460 bool AllComparisonsWithNonZerosAreTautological = true; 5461 bool HadTautologicalLanes = false; 5462 bool AllLanesAreTautological = true; 5463 bool HadEvenDivisor = false; 5464 bool AllDivisorsArePowerOfTwo = true; 5465 bool HadTautologicalInvertedLanes = false; 5466 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5467 5468 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5469 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5470 if (CDiv->isNullValue()) 5471 return false; 5472 5473 const APInt &D = CDiv->getAPIntValue(); 5474 const APInt &Cmp = CCmp->getAPIntValue(); 5475 5476 ComparingWithAllZeros &= Cmp.isNullValue(); 5477 5478 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5479 // if C2 is not less than C1, the comparison is always false. 5480 // But we will only be able to produce the comparison that will give the 5481 // opposive tautological answer. So this lane would need to be fixed up. 5482 bool TautologicalInvertedLane = D.ule(Cmp); 5483 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5484 5485 // If all lanes are tautological (either all divisors are ones, or divisor 5486 // is not greater than the constant we are comparing with), 5487 // we will prefer to avoid the fold. 5488 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5489 HadTautologicalLanes |= TautologicalLane; 5490 AllLanesAreTautological &= TautologicalLane; 5491 5492 // If we are comparing with non-zero, we need'll need to subtract said 5493 // comparison value from the LHS. But there is no point in doing that if 5494 // every lane where we are comparing with non-zero is tautological.. 5495 if (!Cmp.isNullValue()) 5496 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5497 5498 // Decompose D into D0 * 2^K 5499 unsigned K = D.countTrailingZeros(); 5500 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5501 APInt D0 = D.lshr(K); 5502 5503 // D is even if it has trailing zeros. 5504 HadEvenDivisor |= (K != 0); 5505 // D is a power-of-two if D0 is one. 5506 // If all divisors are power-of-two, we will prefer to avoid the fold. 5507 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5508 5509 // P = inv(D0, 2^W) 5510 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5511 unsigned W = D.getBitWidth(); 5512 APInt P = D0.zext(W + 1) 5513 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5514 .trunc(W); 5515 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5516 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5517 5518 // Q = floor((2^W - 1) u/ D) 5519 // R = ((2^W - 1) u% D) 5520 APInt Q, R; 5521 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5522 5523 // If we are comparing with zero, then that comparison constant is okay, 5524 // else it may need to be one less than that. 5525 if (Cmp.ugt(R)) 5526 Q -= 1; 5527 5528 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5529 "We are expecting that K is always less than all-ones for ShSVT"); 5530 5531 // If the lane is tautological the result can be constant-folded. 5532 if (TautologicalLane) { 5533 // Set P and K amount to a bogus values so we can try to splat them. 5534 P = 0; 5535 K = -1; 5536 // And ensure that comparison constant is tautological, 5537 // it will always compare true/false. 5538 Q = -1; 5539 } 5540 5541 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5542 KAmts.push_back( 5543 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5544 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5545 return true; 5546 }; 5547 5548 SDValue N = REMNode.getOperand(0); 5549 SDValue D = REMNode.getOperand(1); 5550 5551 // Collect the values from each element. 5552 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5553 return SDValue(); 5554 5555 // If all lanes are tautological, the result can be constant-folded. 5556 if (AllLanesAreTautological) 5557 return SDValue(); 5558 5559 // If this is a urem by a powers-of-two, avoid the fold since it can be 5560 // best implemented as a bit test. 5561 if (AllDivisorsArePowerOfTwo) 5562 return SDValue(); 5563 5564 SDValue PVal, KVal, QVal; 5565 if (VT.isVector()) { 5566 if (HadTautologicalLanes) { 5567 // Try to turn PAmts into a splat, since we don't care about the values 5568 // that are currently '0'. If we can't, just keep '0'`s. 5569 turnVectorIntoSplatVector(PAmts, isNullConstant); 5570 // Try to turn KAmts into a splat, since we don't care about the values 5571 // that are currently '-1'. If we can't, change them to '0'`s. 5572 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5573 DAG.getConstant(0, DL, ShSVT)); 5574 } 5575 5576 PVal = DAG.getBuildVector(VT, DL, PAmts); 5577 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5578 QVal = DAG.getBuildVector(VT, DL, QAmts); 5579 } else { 5580 PVal = PAmts[0]; 5581 KVal = KAmts[0]; 5582 QVal = QAmts[0]; 5583 } 5584 5585 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5586 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5587 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5588 assert(CompTargetNode.getValueType() == N.getValueType() && 5589 "Expecting that the types on LHS and RHS of comparisons match."); 5590 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5591 } 5592 5593 // (mul N, P) 5594 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5595 Created.push_back(Op0.getNode()); 5596 5597 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5598 // divisors as a performance improvement, since rotating by 0 is a no-op. 5599 if (HadEvenDivisor) { 5600 // We need ROTR to do this. 5601 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5602 return SDValue(); 5603 SDNodeFlags Flags; 5604 Flags.setExact(true); 5605 // UREM: (rotr (mul N, P), K) 5606 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5607 Created.push_back(Op0.getNode()); 5608 } 5609 5610 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5611 SDValue NewCC = 5612 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5613 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5614 if (!HadTautologicalInvertedLanes) 5615 return NewCC; 5616 5617 // If any lanes previously compared always-false, the NewCC will give 5618 // always-true result for them, so we need to fixup those lanes. 5619 // Or the other way around for inequality predicate. 5620 assert(VT.isVector() && "Can/should only get here for vectors."); 5621 Created.push_back(NewCC.getNode()); 5622 5623 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5624 // if C2 is not less than C1, the comparison is always false. 5625 // But we have produced the comparison that will give the 5626 // opposive tautological answer. So these lanes would need to be fixed up. 5627 SDValue TautologicalInvertedChannels = 5628 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5629 Created.push_back(TautologicalInvertedChannels.getNode()); 5630 5631 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5632 // If we have a vector select, let's replace the comparison results in the 5633 // affected lanes with the correct tautological result. 5634 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5635 DL, SETCCVT, SETCCVT); 5636 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5637 Replacement, NewCC); 5638 } 5639 5640 // Else, we can just invert the comparison result in the appropriate lanes. 5641 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5642 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5643 TautologicalInvertedChannels); 5644 5645 return SDValue(); // Don't know how to lower. 5646 } 5647 5648 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5649 /// where the divisor is constant and the comparison target is zero, 5650 /// return a DAG expression that will generate the same comparison result 5651 /// using only multiplications, additions and shifts/rotations. 5652 /// Ref: "Hacker's Delight" 10-17. 5653 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5654 SDValue CompTargetNode, 5655 ISD::CondCode Cond, 5656 DAGCombinerInfo &DCI, 5657 const SDLoc &DL) const { 5658 SmallVector<SDNode *, 7> Built; 5659 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5660 DCI, DL, Built)) { 5661 assert(Built.size() <= 7 && "Max size prediction failed."); 5662 for (SDNode *N : Built) 5663 DCI.AddToWorklist(N); 5664 return Folded; 5665 } 5666 5667 return SDValue(); 5668 } 5669 5670 SDValue 5671 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5672 SDValue CompTargetNode, ISD::CondCode Cond, 5673 DAGCombinerInfo &DCI, const SDLoc &DL, 5674 SmallVectorImpl<SDNode *> &Created) const { 5675 // Fold: 5676 // (seteq/ne (srem N, D), 0) 5677 // To: 5678 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5679 // 5680 // - D must be constant, with D = D0 * 2^K where D0 is odd 5681 // - P is the multiplicative inverse of D0 modulo 2^W 5682 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5683 // - Q = floor((2 * A) / (2^K)) 5684 // where W is the width of the common type of N and D. 5685 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5686 "Only applicable for (in)equality comparisons."); 5687 5688 SelectionDAG &DAG = DCI.DAG; 5689 5690 EVT VT = REMNode.getValueType(); 5691 EVT SVT = VT.getScalarType(); 5692 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5693 EVT ShSVT = ShVT.getScalarType(); 5694 5695 // If MUL is unavailable, we cannot proceed in any case. 5696 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5697 return SDValue(); 5698 5699 // TODO: Could support comparing with non-zero too. 5700 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5701 if (!CompTarget || !CompTarget->isNullValue()) 5702 return SDValue(); 5703 5704 bool HadIntMinDivisor = false; 5705 bool HadOneDivisor = false; 5706 bool AllDivisorsAreOnes = true; 5707 bool HadEvenDivisor = false; 5708 bool NeedToApplyOffset = false; 5709 bool AllDivisorsArePowerOfTwo = true; 5710 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5711 5712 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5713 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5714 if (C->isNullValue()) 5715 return false; 5716 5717 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5718 5719 // WARNING: this fold is only valid for positive divisors! 5720 APInt D = C->getAPIntValue(); 5721 if (D.isNegative()) 5722 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5723 5724 HadIntMinDivisor |= D.isMinSignedValue(); 5725 5726 // If all divisors are ones, we will prefer to avoid the fold. 5727 HadOneDivisor |= D.isOneValue(); 5728 AllDivisorsAreOnes &= D.isOneValue(); 5729 5730 // Decompose D into D0 * 2^K 5731 unsigned K = D.countTrailingZeros(); 5732 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5733 APInt D0 = D.lshr(K); 5734 5735 if (!D.isMinSignedValue()) { 5736 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5737 // we don't care about this lane in this fold, we'll special-handle it. 5738 HadEvenDivisor |= (K != 0); 5739 } 5740 5741 // D is a power-of-two if D0 is one. This includes INT_MIN. 5742 // If all divisors are power-of-two, we will prefer to avoid the fold. 5743 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5744 5745 // P = inv(D0, 2^W) 5746 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5747 unsigned W = D.getBitWidth(); 5748 APInt P = D0.zext(W + 1) 5749 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5750 .trunc(W); 5751 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5752 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5753 5754 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5755 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5756 A.clearLowBits(K); 5757 5758 if (!D.isMinSignedValue()) { 5759 // If divisor INT_MIN, then we don't care about this lane in this fold, 5760 // we'll special-handle it. 5761 NeedToApplyOffset |= A != 0; 5762 } 5763 5764 // Q = floor((2 * A) / (2^K)) 5765 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5766 5767 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5768 "We are expecting that A is always less than all-ones for SVT"); 5769 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5770 "We are expecting that K is always less than all-ones for ShSVT"); 5771 5772 // If the divisor is 1 the result can be constant-folded. Likewise, we 5773 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5774 if (D.isOneValue()) { 5775 // Set P, A and K to a bogus values so we can try to splat them. 5776 P = 0; 5777 A = -1; 5778 K = -1; 5779 5780 // x ?% 1 == 0 <--> true <--> x u<= -1 5781 Q = -1; 5782 } 5783 5784 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5785 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5786 KAmts.push_back( 5787 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5788 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5789 return true; 5790 }; 5791 5792 SDValue N = REMNode.getOperand(0); 5793 SDValue D = REMNode.getOperand(1); 5794 5795 // Collect the values from each element. 5796 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5797 return SDValue(); 5798 5799 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5800 if (AllDivisorsAreOnes) 5801 return SDValue(); 5802 5803 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5804 // since it can be best implemented as a bit test. 5805 if (AllDivisorsArePowerOfTwo) 5806 return SDValue(); 5807 5808 SDValue PVal, AVal, KVal, QVal; 5809 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5810 if (HadOneDivisor) { 5811 // Try to turn PAmts into a splat, since we don't care about the values 5812 // that are currently '0'. If we can't, just keep '0'`s. 5813 turnVectorIntoSplatVector(PAmts, isNullConstant); 5814 // Try to turn AAmts into a splat, since we don't care about the 5815 // values that are currently '-1'. If we can't, change them to '0'`s. 5816 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5817 DAG.getConstant(0, DL, SVT)); 5818 // Try to turn KAmts into a splat, since we don't care about the values 5819 // that are currently '-1'. If we can't, change them to '0'`s. 5820 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5821 DAG.getConstant(0, DL, ShSVT)); 5822 } 5823 5824 PVal = DAG.getBuildVector(VT, DL, PAmts); 5825 AVal = DAG.getBuildVector(VT, DL, AAmts); 5826 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5827 QVal = DAG.getBuildVector(VT, DL, QAmts); 5828 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5829 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5830 QAmts.size() == 1 && 5831 "Expected matchUnaryPredicate to return one element for scalable " 5832 "vectors"); 5833 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5834 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5835 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5836 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5837 } else { 5838 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5839 PVal = PAmts[0]; 5840 AVal = AAmts[0]; 5841 KVal = KAmts[0]; 5842 QVal = QAmts[0]; 5843 } 5844 5845 // (mul N, P) 5846 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5847 Created.push_back(Op0.getNode()); 5848 5849 if (NeedToApplyOffset) { 5850 // We need ADD to do this. 5851 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5852 return SDValue(); 5853 5854 // (add (mul N, P), A) 5855 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5856 Created.push_back(Op0.getNode()); 5857 } 5858 5859 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5860 // divisors as a performance improvement, since rotating by 0 is a no-op. 5861 if (HadEvenDivisor) { 5862 // We need ROTR to do this. 5863 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5864 return SDValue(); 5865 SDNodeFlags Flags; 5866 Flags.setExact(true); 5867 // SREM: (rotr (add (mul N, P), A), K) 5868 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5869 Created.push_back(Op0.getNode()); 5870 } 5871 5872 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5873 SDValue Fold = 5874 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5875 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5876 5877 // If we didn't have lanes with INT_MIN divisor, then we're done. 5878 if (!HadIntMinDivisor) 5879 return Fold; 5880 5881 // That fold is only valid for positive divisors. Which effectively means, 5882 // it is invalid for INT_MIN divisors. So if we have such a lane, 5883 // we must fix-up results for said lanes. 5884 assert(VT.isVector() && "Can/should only get here for vectors."); 5885 5886 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5887 !isOperationLegalOrCustom(ISD::AND, VT) || 5888 !isOperationLegalOrCustom(Cond, VT) || 5889 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5890 return SDValue(); 5891 5892 Created.push_back(Fold.getNode()); 5893 5894 SDValue IntMin = DAG.getConstant( 5895 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5896 SDValue IntMax = DAG.getConstant( 5897 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5898 SDValue Zero = 5899 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5900 5901 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5902 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5903 Created.push_back(DivisorIsIntMin.getNode()); 5904 5905 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5906 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5907 Created.push_back(Masked.getNode()); 5908 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5909 Created.push_back(MaskedIsZero.getNode()); 5910 5911 // To produce final result we need to blend 2 vectors: 'SetCC' and 5912 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5913 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5914 // constant-folded, select can get lowered to a shuffle with constant mask. 5915 SDValue Blended = 5916 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5917 5918 return Blended; 5919 } 5920 5921 bool TargetLowering:: 5922 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5923 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5924 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5925 "be a constant integer"); 5926 return true; 5927 } 5928 5929 return false; 5930 } 5931 5932 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 5933 const DenormalMode &Mode) const { 5934 SDLoc DL(Op); 5935 EVT VT = Op.getValueType(); 5936 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5937 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 5938 // Testing it with denormal inputs to avoid wrong estimate. 5939 if (Mode.Input == DenormalMode::IEEE) { 5940 // This is specifically a check for the handling of denormal inputs, 5941 // not the result. 5942 5943 // Test = fabs(X) < SmallestNormal 5944 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 5945 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 5946 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 5947 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 5948 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 5949 } 5950 // Test = X == 0.0 5951 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 5952 } 5953 5954 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5955 bool LegalOps, bool OptForSize, 5956 NegatibleCost &Cost, 5957 unsigned Depth) const { 5958 // fneg is removable even if it has multiple uses. 5959 if (Op.getOpcode() == ISD::FNEG) { 5960 Cost = NegatibleCost::Cheaper; 5961 return Op.getOperand(0); 5962 } 5963 5964 // Don't recurse exponentially. 5965 if (Depth > SelectionDAG::MaxRecursionDepth) 5966 return SDValue(); 5967 5968 // Pre-increment recursion depth for use in recursive calls. 5969 ++Depth; 5970 const SDNodeFlags Flags = Op->getFlags(); 5971 const TargetOptions &Options = DAG.getTarget().Options; 5972 EVT VT = Op.getValueType(); 5973 unsigned Opcode = Op.getOpcode(); 5974 5975 // Don't allow anything with multiple uses unless we know it is free. 5976 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5977 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5978 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5979 if (!IsFreeExtend) 5980 return SDValue(); 5981 } 5982 5983 auto RemoveDeadNode = [&](SDValue N) { 5984 if (N && N.getNode()->use_empty()) 5985 DAG.RemoveDeadNode(N.getNode()); 5986 }; 5987 5988 SDLoc DL(Op); 5989 5990 // Because getNegatedExpression can delete nodes we need a handle to keep 5991 // temporary nodes alive in case the recursion manages to create an identical 5992 // node. 5993 std::list<HandleSDNode> Handles; 5994 5995 switch (Opcode) { 5996 case ISD::ConstantFP: { 5997 // Don't invert constant FP values after legalization unless the target says 5998 // the negated constant is legal. 5999 bool IsOpLegal = 6000 isOperationLegal(ISD::ConstantFP, VT) || 6001 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6002 OptForSize); 6003 6004 if (LegalOps && !IsOpLegal) 6005 break; 6006 6007 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6008 V.changeSign(); 6009 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6010 6011 // If we already have the use of the negated floating constant, it is free 6012 // to negate it even it has multiple uses. 6013 if (!Op.hasOneUse() && CFP.use_empty()) 6014 break; 6015 Cost = NegatibleCost::Neutral; 6016 return CFP; 6017 } 6018 case ISD::BUILD_VECTOR: { 6019 // Only permit BUILD_VECTOR of constants. 6020 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6021 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6022 })) 6023 break; 6024 6025 bool IsOpLegal = 6026 (isOperationLegal(ISD::ConstantFP, VT) && 6027 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6028 llvm::all_of(Op->op_values(), [&](SDValue N) { 6029 return N.isUndef() || 6030 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6031 OptForSize); 6032 }); 6033 6034 if (LegalOps && !IsOpLegal) 6035 break; 6036 6037 SmallVector<SDValue, 4> Ops; 6038 for (SDValue C : Op->op_values()) { 6039 if (C.isUndef()) { 6040 Ops.push_back(C); 6041 continue; 6042 } 6043 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6044 V.changeSign(); 6045 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6046 } 6047 Cost = NegatibleCost::Neutral; 6048 return DAG.getBuildVector(VT, DL, Ops); 6049 } 6050 case ISD::FADD: { 6051 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6052 break; 6053 6054 // After operation legalization, it might not be legal to create new FSUBs. 6055 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6056 break; 6057 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6058 6059 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6060 NegatibleCost CostX = NegatibleCost::Expensive; 6061 SDValue NegX = 6062 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6063 // Prevent this node from being deleted by the next call. 6064 if (NegX) 6065 Handles.emplace_back(NegX); 6066 6067 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6068 NegatibleCost CostY = NegatibleCost::Expensive; 6069 SDValue NegY = 6070 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6071 6072 // We're done with the handles. 6073 Handles.clear(); 6074 6075 // Negate the X if its cost is less or equal than Y. 6076 if (NegX && (CostX <= CostY)) { 6077 Cost = CostX; 6078 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6079 if (NegY != N) 6080 RemoveDeadNode(NegY); 6081 return N; 6082 } 6083 6084 // Negate the Y if it is not expensive. 6085 if (NegY) { 6086 Cost = CostY; 6087 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6088 if (NegX != N) 6089 RemoveDeadNode(NegX); 6090 return N; 6091 } 6092 break; 6093 } 6094 case ISD::FSUB: { 6095 // We can't turn -(A-B) into B-A when we honor signed zeros. 6096 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6097 break; 6098 6099 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6100 // fold (fneg (fsub 0, Y)) -> Y 6101 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6102 if (C->isZero()) { 6103 Cost = NegatibleCost::Cheaper; 6104 return Y; 6105 } 6106 6107 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6108 Cost = NegatibleCost::Neutral; 6109 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6110 } 6111 case ISD::FMUL: 6112 case ISD::FDIV: { 6113 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6114 6115 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6116 NegatibleCost CostX = NegatibleCost::Expensive; 6117 SDValue NegX = 6118 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6119 // Prevent this node from being deleted by the next call. 6120 if (NegX) 6121 Handles.emplace_back(NegX); 6122 6123 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6124 NegatibleCost CostY = NegatibleCost::Expensive; 6125 SDValue NegY = 6126 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6127 6128 // We're done with the handles. 6129 Handles.clear(); 6130 6131 // Negate the X if its cost is less or equal than Y. 6132 if (NegX && (CostX <= CostY)) { 6133 Cost = CostX; 6134 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6135 if (NegY != N) 6136 RemoveDeadNode(NegY); 6137 return N; 6138 } 6139 6140 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6141 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6142 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6143 break; 6144 6145 // Negate the Y if it is not expensive. 6146 if (NegY) { 6147 Cost = CostY; 6148 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6149 if (NegX != N) 6150 RemoveDeadNode(NegX); 6151 return N; 6152 } 6153 break; 6154 } 6155 case ISD::FMA: 6156 case ISD::FMAD: { 6157 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6158 break; 6159 6160 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6161 NegatibleCost CostZ = NegatibleCost::Expensive; 6162 SDValue NegZ = 6163 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6164 // Give up if fail to negate the Z. 6165 if (!NegZ) 6166 break; 6167 6168 // Prevent this node from being deleted by the next two calls. 6169 Handles.emplace_back(NegZ); 6170 6171 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6172 NegatibleCost CostX = NegatibleCost::Expensive; 6173 SDValue NegX = 6174 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6175 // Prevent this node from being deleted by the next call. 6176 if (NegX) 6177 Handles.emplace_back(NegX); 6178 6179 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6180 NegatibleCost CostY = NegatibleCost::Expensive; 6181 SDValue NegY = 6182 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6183 6184 // We're done with the handles. 6185 Handles.clear(); 6186 6187 // Negate the X if its cost is less or equal than Y. 6188 if (NegX && (CostX <= CostY)) { 6189 Cost = std::min(CostX, CostZ); 6190 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6191 if (NegY != N) 6192 RemoveDeadNode(NegY); 6193 return N; 6194 } 6195 6196 // Negate the Y if it is not expensive. 6197 if (NegY) { 6198 Cost = std::min(CostY, CostZ); 6199 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6200 if (NegX != N) 6201 RemoveDeadNode(NegX); 6202 return N; 6203 } 6204 break; 6205 } 6206 6207 case ISD::FP_EXTEND: 6208 case ISD::FSIN: 6209 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6210 OptForSize, Cost, Depth)) 6211 return DAG.getNode(Opcode, DL, VT, NegV); 6212 break; 6213 case ISD::FP_ROUND: 6214 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6215 OptForSize, Cost, Depth)) 6216 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6217 break; 6218 } 6219 6220 return SDValue(); 6221 } 6222 6223 //===----------------------------------------------------------------------===// 6224 // Legalization Utilities 6225 //===----------------------------------------------------------------------===// 6226 6227 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6228 SDValue LHS, SDValue RHS, 6229 SmallVectorImpl<SDValue> &Result, 6230 EVT HiLoVT, SelectionDAG &DAG, 6231 MulExpansionKind Kind, SDValue LL, 6232 SDValue LH, SDValue RL, SDValue RH) const { 6233 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6234 Opcode == ISD::SMUL_LOHI); 6235 6236 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6237 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6238 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6239 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6240 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6241 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6242 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6243 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6244 6245 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6246 return false; 6247 6248 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6249 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6250 6251 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6252 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6253 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6254 6255 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6256 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6257 bool Signed) -> bool { 6258 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6259 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6260 Hi = SDValue(Lo.getNode(), 1); 6261 return true; 6262 } 6263 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6264 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6265 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6266 return true; 6267 } 6268 return false; 6269 }; 6270 6271 SDValue Lo, Hi; 6272 6273 if (!LL.getNode() && !RL.getNode() && 6274 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6275 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6276 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6277 } 6278 6279 if (!LL.getNode()) 6280 return false; 6281 6282 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6283 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6284 DAG.MaskedValueIsZero(RHS, HighMask)) { 6285 // The inputs are both zero-extended. 6286 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6287 Result.push_back(Lo); 6288 Result.push_back(Hi); 6289 if (Opcode != ISD::MUL) { 6290 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6291 Result.push_back(Zero); 6292 Result.push_back(Zero); 6293 } 6294 return true; 6295 } 6296 } 6297 6298 if (!VT.isVector() && Opcode == ISD::MUL && 6299 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6300 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6301 // The input values are both sign-extended. 6302 // TODO non-MUL case? 6303 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6304 Result.push_back(Lo); 6305 Result.push_back(Hi); 6306 return true; 6307 } 6308 } 6309 6310 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6311 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6312 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6313 // FIXME getShiftAmountTy does not always return a sensible result when VT 6314 // is an illegal type, and so the type may be too small to fit the shift 6315 // amount. Override it with i32. The shift will have to be legalized. 6316 ShiftAmountTy = MVT::i32; 6317 } 6318 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6319 6320 if (!LH.getNode() && !RH.getNode() && 6321 isOperationLegalOrCustom(ISD::SRL, VT) && 6322 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6323 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6324 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6325 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6326 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6327 } 6328 6329 if (!LH.getNode()) 6330 return false; 6331 6332 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6333 return false; 6334 6335 Result.push_back(Lo); 6336 6337 if (Opcode == ISD::MUL) { 6338 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6339 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6340 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6341 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6342 Result.push_back(Hi); 6343 return true; 6344 } 6345 6346 // Compute the full width result. 6347 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6348 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6349 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6350 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6351 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6352 }; 6353 6354 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6355 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6356 return false; 6357 6358 // This is effectively the add part of a multiply-add of half-sized operands, 6359 // so it cannot overflow. 6360 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6361 6362 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6363 return false; 6364 6365 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6366 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6367 6368 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6369 isOperationLegalOrCustom(ISD::ADDE, VT)); 6370 if (UseGlue) 6371 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6372 Merge(Lo, Hi)); 6373 else 6374 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6375 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6376 6377 SDValue Carry = Next.getValue(1); 6378 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6379 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6380 6381 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6382 return false; 6383 6384 if (UseGlue) 6385 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6386 Carry); 6387 else 6388 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6389 Zero, Carry); 6390 6391 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6392 6393 if (Opcode == ISD::SMUL_LOHI) { 6394 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6395 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6396 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6397 6398 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6399 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6400 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6401 } 6402 6403 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6404 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6405 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6406 return true; 6407 } 6408 6409 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6410 SelectionDAG &DAG, MulExpansionKind Kind, 6411 SDValue LL, SDValue LH, SDValue RL, 6412 SDValue RH) const { 6413 SmallVector<SDValue, 2> Result; 6414 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6415 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6416 DAG, Kind, LL, LH, RL, RH); 6417 if (Ok) { 6418 assert(Result.size() == 2); 6419 Lo = Result[0]; 6420 Hi = Result[1]; 6421 } 6422 return Ok; 6423 } 6424 6425 // Check that (every element of) Z is undef or not an exact multiple of BW. 6426 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6427 return ISD::matchUnaryPredicate( 6428 Z, 6429 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6430 true); 6431 } 6432 6433 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6434 SelectionDAG &DAG) const { 6435 EVT VT = Node->getValueType(0); 6436 6437 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6438 !isOperationLegalOrCustom(ISD::SRL, VT) || 6439 !isOperationLegalOrCustom(ISD::SUB, VT) || 6440 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6441 return false; 6442 6443 SDValue X = Node->getOperand(0); 6444 SDValue Y = Node->getOperand(1); 6445 SDValue Z = Node->getOperand(2); 6446 6447 unsigned BW = VT.getScalarSizeInBits(); 6448 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6449 SDLoc DL(SDValue(Node, 0)); 6450 6451 EVT ShVT = Z.getValueType(); 6452 6453 // If a funnel shift in the other direction is more supported, use it. 6454 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6455 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6456 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6457 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6458 // fshl X, Y, Z -> fshr X, Y, -Z 6459 // fshr X, Y, Z -> fshl X, Y, -Z 6460 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6461 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6462 } else { 6463 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6464 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6465 SDValue One = DAG.getConstant(1, DL, ShVT); 6466 if (IsFSHL) { 6467 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6468 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6469 } else { 6470 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6471 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6472 } 6473 Z = DAG.getNOT(DL, Z, ShVT); 6474 } 6475 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6476 return true; 6477 } 6478 6479 SDValue ShX, ShY; 6480 SDValue ShAmt, InvShAmt; 6481 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6482 // fshl: X << C | Y >> (BW - C) 6483 // fshr: X << (BW - C) | Y >> C 6484 // where C = Z % BW is not zero 6485 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6486 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6487 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6488 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6489 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6490 } else { 6491 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6492 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6493 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6494 if (isPowerOf2_32(BW)) { 6495 // Z % BW -> Z & (BW - 1) 6496 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6497 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6498 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6499 } else { 6500 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6501 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6502 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6503 } 6504 6505 SDValue One = DAG.getConstant(1, DL, ShVT); 6506 if (IsFSHL) { 6507 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6508 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6509 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6510 } else { 6511 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6512 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6513 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6514 } 6515 } 6516 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6517 return true; 6518 } 6519 6520 // TODO: Merge with expandFunnelShift. 6521 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6522 SDValue &Result, SelectionDAG &DAG) const { 6523 EVT VT = Node->getValueType(0); 6524 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6525 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6526 SDValue Op0 = Node->getOperand(0); 6527 SDValue Op1 = Node->getOperand(1); 6528 SDLoc DL(SDValue(Node, 0)); 6529 6530 EVT ShVT = Op1.getValueType(); 6531 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6532 6533 // If a rotate in the other direction is supported, use it. 6534 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6535 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6536 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6537 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6538 return true; 6539 } 6540 6541 if (!AllowVectorOps && VT.isVector() && 6542 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6543 !isOperationLegalOrCustom(ISD::SRL, VT) || 6544 !isOperationLegalOrCustom(ISD::SUB, VT) || 6545 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6546 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6547 return false; 6548 6549 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6550 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6551 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6552 SDValue ShVal; 6553 SDValue HsVal; 6554 if (isPowerOf2_32(EltSizeInBits)) { 6555 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6556 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6557 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6558 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6559 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6560 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6561 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6562 } else { 6563 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6564 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6565 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6566 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6567 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6568 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6569 SDValue One = DAG.getConstant(1, DL, ShVT); 6570 HsVal = 6571 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6572 } 6573 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6574 return true; 6575 } 6576 6577 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6578 SelectionDAG &DAG) const { 6579 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6580 SDValue Src = Node->getOperand(OpNo); 6581 EVT SrcVT = Src.getValueType(); 6582 EVT DstVT = Node->getValueType(0); 6583 SDLoc dl(SDValue(Node, 0)); 6584 6585 // FIXME: Only f32 to i64 conversions are supported. 6586 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6587 return false; 6588 6589 if (Node->isStrictFPOpcode()) 6590 // When a NaN is converted to an integer a trap is allowed. We can't 6591 // use this expansion here because it would eliminate that trap. Other 6592 // traps are also allowed and cannot be eliminated. See 6593 // IEEE 754-2008 sec 5.8. 6594 return false; 6595 6596 // Expand f32 -> i64 conversion 6597 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6598 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6599 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6600 EVT IntVT = SrcVT.changeTypeToInteger(); 6601 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6602 6603 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6604 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6605 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6606 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6607 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6608 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6609 6610 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6611 6612 SDValue ExponentBits = DAG.getNode( 6613 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6614 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6615 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6616 6617 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6618 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6619 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6620 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6621 6622 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6623 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6624 DAG.getConstant(0x00800000, dl, IntVT)); 6625 6626 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6627 6628 R = DAG.getSelectCC( 6629 dl, Exponent, ExponentLoBit, 6630 DAG.getNode(ISD::SHL, dl, DstVT, R, 6631 DAG.getZExtOrTrunc( 6632 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6633 dl, IntShVT)), 6634 DAG.getNode(ISD::SRL, dl, DstVT, R, 6635 DAG.getZExtOrTrunc( 6636 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6637 dl, IntShVT)), 6638 ISD::SETGT); 6639 6640 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6641 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6642 6643 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6644 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6645 return true; 6646 } 6647 6648 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6649 SDValue &Chain, 6650 SelectionDAG &DAG) const { 6651 SDLoc dl(SDValue(Node, 0)); 6652 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6653 SDValue Src = Node->getOperand(OpNo); 6654 6655 EVT SrcVT = Src.getValueType(); 6656 EVT DstVT = Node->getValueType(0); 6657 EVT SetCCVT = 6658 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6659 EVT DstSetCCVT = 6660 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6661 6662 // Only expand vector types if we have the appropriate vector bit operations. 6663 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6664 ISD::FP_TO_SINT; 6665 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6666 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6667 return false; 6668 6669 // If the maximum float value is smaller then the signed integer range, 6670 // the destination signmask can't be represented by the float, so we can 6671 // just use FP_TO_SINT directly. 6672 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6673 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6674 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6675 if (APFloat::opOverflow & 6676 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6677 if (Node->isStrictFPOpcode()) { 6678 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6679 { Node->getOperand(0), Src }); 6680 Chain = Result.getValue(1); 6681 } else 6682 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6683 return true; 6684 } 6685 6686 // Don't expand it if there isn't cheap fsub instruction. 6687 if (!isOperationLegalOrCustom( 6688 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6689 return false; 6690 6691 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6692 SDValue Sel; 6693 6694 if (Node->isStrictFPOpcode()) { 6695 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6696 Node->getOperand(0), /*IsSignaling*/ true); 6697 Chain = Sel.getValue(1); 6698 } else { 6699 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6700 } 6701 6702 bool Strict = Node->isStrictFPOpcode() || 6703 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6704 6705 if (Strict) { 6706 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6707 // signmask then offset (the result of which should be fully representable). 6708 // Sel = Src < 0x8000000000000000 6709 // FltOfs = select Sel, 0, 0x8000000000000000 6710 // IntOfs = select Sel, 0, 0x8000000000000000 6711 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6712 6713 // TODO: Should any fast-math-flags be set for the FSUB? 6714 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6715 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6716 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6717 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6718 DAG.getConstant(0, dl, DstVT), 6719 DAG.getConstant(SignMask, dl, DstVT)); 6720 SDValue SInt; 6721 if (Node->isStrictFPOpcode()) { 6722 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6723 { Chain, Src, FltOfs }); 6724 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6725 { Val.getValue(1), Val }); 6726 Chain = SInt.getValue(1); 6727 } else { 6728 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6729 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6730 } 6731 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6732 } else { 6733 // Expand based on maximum range of FP_TO_SINT: 6734 // True = fp_to_sint(Src) 6735 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6736 // Result = select (Src < 0x8000000000000000), True, False 6737 6738 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6739 // TODO: Should any fast-math-flags be set for the FSUB? 6740 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6741 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6742 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6743 DAG.getConstant(SignMask, dl, DstVT)); 6744 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6745 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6746 } 6747 return true; 6748 } 6749 6750 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6751 SDValue &Chain, 6752 SelectionDAG &DAG) const { 6753 // This transform is not correct for converting 0 when rounding mode is set 6754 // to round toward negative infinity which will produce -0.0. So disable under 6755 // strictfp. 6756 if (Node->isStrictFPOpcode()) 6757 return false; 6758 6759 SDValue Src = Node->getOperand(0); 6760 EVT SrcVT = Src.getValueType(); 6761 EVT DstVT = Node->getValueType(0); 6762 6763 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6764 return false; 6765 6766 // Only expand vector types if we have the appropriate vector bit operations. 6767 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6768 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6769 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6770 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6771 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6772 return false; 6773 6774 SDLoc dl(SDValue(Node, 0)); 6775 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6776 6777 // Implementation of unsigned i64 to f64 following the algorithm in 6778 // __floatundidf in compiler_rt. This implementation performs rounding 6779 // correctly in all rounding modes with the exception of converting 0 6780 // when rounding toward negative infinity. In that case the fsub will produce 6781 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6782 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6783 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6784 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6785 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6786 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6787 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6788 6789 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6790 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6791 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6792 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6793 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6794 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6795 SDValue HiSub = 6796 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6797 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6798 return true; 6799 } 6800 6801 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6802 SelectionDAG &DAG) const { 6803 SDLoc dl(Node); 6804 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6805 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6806 EVT VT = Node->getValueType(0); 6807 6808 if (VT.isScalableVector()) 6809 report_fatal_error( 6810 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6811 6812 if (isOperationLegalOrCustom(NewOp, VT)) { 6813 SDValue Quiet0 = Node->getOperand(0); 6814 SDValue Quiet1 = Node->getOperand(1); 6815 6816 if (!Node->getFlags().hasNoNaNs()) { 6817 // Insert canonicalizes if it's possible we need to quiet to get correct 6818 // sNaN behavior. 6819 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6820 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6821 Node->getFlags()); 6822 } 6823 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6824 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6825 Node->getFlags()); 6826 } 6827 } 6828 6829 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6830 } 6831 6832 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6833 // instead if there are no NaNs. 6834 if (Node->getFlags().hasNoNaNs()) { 6835 unsigned IEEE2018Op = 6836 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6837 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6838 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6839 Node->getOperand(1), Node->getFlags()); 6840 } 6841 } 6842 6843 // If none of the above worked, but there are no NaNs, then expand to 6844 // a compare/select sequence. This is required for correctness since 6845 // InstCombine might have canonicalized a fcmp+select sequence to a 6846 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6847 // expansion to libcall, we might introduce a link-time dependency 6848 // on libm into a file that originally did not have one. 6849 if (Node->getFlags().hasNoNaNs()) { 6850 ISD::CondCode Pred = 6851 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6852 SDValue Op1 = Node->getOperand(0); 6853 SDValue Op2 = Node->getOperand(1); 6854 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6855 // Copy FMF flags, but always set the no-signed-zeros flag 6856 // as this is implied by the FMINNUM/FMAXNUM semantics. 6857 SDNodeFlags Flags = Node->getFlags(); 6858 Flags.setNoSignedZeros(true); 6859 SelCC->setFlags(Flags); 6860 return SelCC; 6861 } 6862 6863 return SDValue(); 6864 } 6865 6866 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6867 SelectionDAG &DAG) const { 6868 SDLoc dl(Node); 6869 EVT VT = Node->getValueType(0); 6870 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6871 SDValue Op = Node->getOperand(0); 6872 unsigned Len = VT.getScalarSizeInBits(); 6873 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6874 6875 // TODO: Add support for irregular type lengths. 6876 if (!(Len <= 128 && Len % 8 == 0)) 6877 return false; 6878 6879 // Only expand vector types if we have the appropriate vector bit operations. 6880 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6881 !isOperationLegalOrCustom(ISD::SUB, VT) || 6882 !isOperationLegalOrCustom(ISD::SRL, VT) || 6883 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6884 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6885 return false; 6886 6887 // This is the "best" algorithm from 6888 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6889 SDValue Mask55 = 6890 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6891 SDValue Mask33 = 6892 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6893 SDValue Mask0F = 6894 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6895 SDValue Mask01 = 6896 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6897 6898 // v = v - ((v >> 1) & 0x55555555...) 6899 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6900 DAG.getNode(ISD::AND, dl, VT, 6901 DAG.getNode(ISD::SRL, dl, VT, Op, 6902 DAG.getConstant(1, dl, ShVT)), 6903 Mask55)); 6904 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6905 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6906 DAG.getNode(ISD::AND, dl, VT, 6907 DAG.getNode(ISD::SRL, dl, VT, Op, 6908 DAG.getConstant(2, dl, ShVT)), 6909 Mask33)); 6910 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6911 Op = DAG.getNode(ISD::AND, dl, VT, 6912 DAG.getNode(ISD::ADD, dl, VT, Op, 6913 DAG.getNode(ISD::SRL, dl, VT, Op, 6914 DAG.getConstant(4, dl, ShVT))), 6915 Mask0F); 6916 // v = (v * 0x01010101...) >> (Len - 8) 6917 if (Len > 8) 6918 Op = 6919 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6920 DAG.getConstant(Len - 8, dl, ShVT)); 6921 6922 Result = Op; 6923 return true; 6924 } 6925 6926 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6927 SelectionDAG &DAG) const { 6928 SDLoc dl(Node); 6929 EVT VT = Node->getValueType(0); 6930 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6931 SDValue Op = Node->getOperand(0); 6932 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6933 6934 // If the non-ZERO_UNDEF version is supported we can use that instead. 6935 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6936 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6937 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6938 return true; 6939 } 6940 6941 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6942 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6943 EVT SetCCVT = 6944 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6945 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6946 SDValue Zero = DAG.getConstant(0, dl, VT); 6947 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6948 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6949 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6950 return true; 6951 } 6952 6953 // Only expand vector types if we have the appropriate vector bit operations. 6954 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6955 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6956 !isOperationLegalOrCustom(ISD::SRL, VT) || 6957 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6958 return false; 6959 6960 // for now, we do this: 6961 // x = x | (x >> 1); 6962 // x = x | (x >> 2); 6963 // ... 6964 // x = x | (x >>16); 6965 // x = x | (x >>32); // for 64-bit input 6966 // return popcount(~x); 6967 // 6968 // Ref: "Hacker's Delight" by Henry Warren 6969 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6970 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6971 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6972 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6973 } 6974 Op = DAG.getNOT(dl, Op, VT); 6975 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6976 return true; 6977 } 6978 6979 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6980 SelectionDAG &DAG) const { 6981 SDLoc dl(Node); 6982 EVT VT = Node->getValueType(0); 6983 SDValue Op = Node->getOperand(0); 6984 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6985 6986 // If the non-ZERO_UNDEF version is supported we can use that instead. 6987 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6988 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6989 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6990 return true; 6991 } 6992 6993 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6994 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6995 EVT SetCCVT = 6996 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6997 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6998 SDValue Zero = DAG.getConstant(0, dl, VT); 6999 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7000 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7001 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7002 return true; 7003 } 7004 7005 // Only expand vector types if we have the appropriate vector bit operations. 7006 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7007 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7008 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7009 !isOperationLegalOrCustom(ISD::SUB, VT) || 7010 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7011 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7012 return false; 7013 7014 // for now, we use: { return popcount(~x & (x - 1)); } 7015 // unless the target has ctlz but not ctpop, in which case we use: 7016 // { return 32 - nlz(~x & (x-1)); } 7017 // Ref: "Hacker's Delight" by Henry Warren 7018 SDValue Tmp = DAG.getNode( 7019 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7020 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7021 7022 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7023 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7024 Result = 7025 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7026 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7027 return true; 7028 } 7029 7030 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7031 return true; 7032 } 7033 7034 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7035 SelectionDAG &DAG, bool IsNegative) const { 7036 SDLoc dl(N); 7037 EVT VT = N->getValueType(0); 7038 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7039 SDValue Op = N->getOperand(0); 7040 7041 // abs(x) -> smax(x,sub(0,x)) 7042 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7043 isOperationLegal(ISD::SMAX, VT)) { 7044 SDValue Zero = DAG.getConstant(0, dl, VT); 7045 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7046 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7047 return true; 7048 } 7049 7050 // abs(x) -> umin(x,sub(0,x)) 7051 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7052 isOperationLegal(ISD::UMIN, VT)) { 7053 SDValue Zero = DAG.getConstant(0, dl, VT); 7054 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7055 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7056 return true; 7057 } 7058 7059 // 0 - abs(x) -> smin(x, sub(0,x)) 7060 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7061 isOperationLegal(ISD::SMIN, VT)) { 7062 SDValue Zero = DAG.getConstant(0, dl, VT); 7063 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7064 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7065 return true; 7066 } 7067 7068 // Only expand vector types if we have the appropriate vector operations. 7069 if (VT.isVector() && 7070 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7071 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7072 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7073 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7074 return false; 7075 7076 SDValue Shift = 7077 DAG.getNode(ISD::SRA, dl, VT, Op, 7078 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7079 if (!IsNegative) { 7080 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7081 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7082 } else { 7083 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7084 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7085 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7086 } 7087 return true; 7088 } 7089 7090 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7091 SDLoc dl(N); 7092 EVT VT = N->getValueType(0); 7093 SDValue Op = N->getOperand(0); 7094 7095 if (!VT.isSimple()) 7096 return SDValue(); 7097 7098 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7099 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7100 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7101 default: 7102 return SDValue(); 7103 case MVT::i16: 7104 // Use a rotate by 8. This can be further expanded if necessary. 7105 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7106 case MVT::i32: 7107 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7108 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7109 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7110 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7111 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7112 DAG.getConstant(0xFF0000, dl, VT)); 7113 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7114 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7115 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7116 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7117 case MVT::i64: 7118 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7119 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7120 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7121 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7122 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7123 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7124 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7125 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7126 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7127 DAG.getConstant(255ULL<<48, dl, VT)); 7128 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7129 DAG.getConstant(255ULL<<40, dl, VT)); 7130 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7131 DAG.getConstant(255ULL<<32, dl, VT)); 7132 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7133 DAG.getConstant(255ULL<<24, dl, VT)); 7134 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7135 DAG.getConstant(255ULL<<16, dl, VT)); 7136 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7137 DAG.getConstant(255ULL<<8 , dl, VT)); 7138 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7139 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7140 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7141 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7142 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7143 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7144 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7145 } 7146 } 7147 7148 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7149 SDLoc dl(N); 7150 EVT VT = N->getValueType(0); 7151 SDValue Op = N->getOperand(0); 7152 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7153 unsigned Sz = VT.getScalarSizeInBits(); 7154 7155 SDValue Tmp, Tmp2, Tmp3; 7156 7157 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7158 // and finally the i1 pairs. 7159 // TODO: We can easily support i4/i2 legal types if any target ever does. 7160 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7161 // Create the masks - repeating the pattern every byte. 7162 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 7163 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 7164 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 7165 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7166 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7167 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7168 7169 // BSWAP if the type is wider than a single byte. 7170 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7171 7172 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 7173 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 7174 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 7175 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 7176 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7177 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7178 7179 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 7180 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 7181 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 7182 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 7183 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7184 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7185 7186 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 7187 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 7188 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 7189 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 7190 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7191 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7192 return Tmp; 7193 } 7194 7195 Tmp = DAG.getConstant(0, dl, VT); 7196 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7197 if (I < J) 7198 Tmp2 = 7199 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7200 else 7201 Tmp2 = 7202 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7203 7204 APInt Shift(Sz, 1); 7205 Shift <<= J; 7206 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7207 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7208 } 7209 7210 return Tmp; 7211 } 7212 7213 std::pair<SDValue, SDValue> 7214 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7215 SelectionDAG &DAG) const { 7216 SDLoc SL(LD); 7217 SDValue Chain = LD->getChain(); 7218 SDValue BasePTR = LD->getBasePtr(); 7219 EVT SrcVT = LD->getMemoryVT(); 7220 EVT DstVT = LD->getValueType(0); 7221 ISD::LoadExtType ExtType = LD->getExtensionType(); 7222 7223 if (SrcVT.isScalableVector()) 7224 report_fatal_error("Cannot scalarize scalable vector loads"); 7225 7226 unsigned NumElem = SrcVT.getVectorNumElements(); 7227 7228 EVT SrcEltVT = SrcVT.getScalarType(); 7229 EVT DstEltVT = DstVT.getScalarType(); 7230 7231 // A vector must always be stored in memory as-is, i.e. without any padding 7232 // between the elements, since various code depend on it, e.g. in the 7233 // handling of a bitcast of a vector type to int, which may be done with a 7234 // vector store followed by an integer load. A vector that does not have 7235 // elements that are byte-sized must therefore be stored as an integer 7236 // built out of the extracted vector elements. 7237 if (!SrcEltVT.isByteSized()) { 7238 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7239 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7240 7241 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7242 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7243 7244 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7245 SDValue SrcEltBitMask = DAG.getConstant( 7246 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7247 7248 // Load the whole vector and avoid masking off the top bits as it makes 7249 // the codegen worse. 7250 SDValue Load = 7251 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7252 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7253 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7254 7255 SmallVector<SDValue, 8> Vals; 7256 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7257 unsigned ShiftIntoIdx = 7258 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7259 SDValue ShiftAmount = 7260 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7261 LoadVT, SL, /*LegalTypes=*/false); 7262 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7263 SDValue Elt = 7264 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7265 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7266 7267 if (ExtType != ISD::NON_EXTLOAD) { 7268 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7269 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7270 } 7271 7272 Vals.push_back(Scalar); 7273 } 7274 7275 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7276 return std::make_pair(Value, Load.getValue(1)); 7277 } 7278 7279 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7280 assert(SrcEltVT.isByteSized()); 7281 7282 SmallVector<SDValue, 8> Vals; 7283 SmallVector<SDValue, 8> LoadChains; 7284 7285 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7286 SDValue ScalarLoad = 7287 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7288 LD->getPointerInfo().getWithOffset(Idx * Stride), 7289 SrcEltVT, LD->getOriginalAlign(), 7290 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7291 7292 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7293 7294 Vals.push_back(ScalarLoad.getValue(0)); 7295 LoadChains.push_back(ScalarLoad.getValue(1)); 7296 } 7297 7298 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7299 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7300 7301 return std::make_pair(Value, NewChain); 7302 } 7303 7304 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7305 SelectionDAG &DAG) const { 7306 SDLoc SL(ST); 7307 7308 SDValue Chain = ST->getChain(); 7309 SDValue BasePtr = ST->getBasePtr(); 7310 SDValue Value = ST->getValue(); 7311 EVT StVT = ST->getMemoryVT(); 7312 7313 if (StVT.isScalableVector()) 7314 report_fatal_error("Cannot scalarize scalable vector stores"); 7315 7316 // The type of the data we want to save 7317 EVT RegVT = Value.getValueType(); 7318 EVT RegSclVT = RegVT.getScalarType(); 7319 7320 // The type of data as saved in memory. 7321 EVT MemSclVT = StVT.getScalarType(); 7322 7323 unsigned NumElem = StVT.getVectorNumElements(); 7324 7325 // A vector must always be stored in memory as-is, i.e. without any padding 7326 // between the elements, since various code depend on it, e.g. in the 7327 // handling of a bitcast of a vector type to int, which may be done with a 7328 // vector store followed by an integer load. A vector that does not have 7329 // elements that are byte-sized must therefore be stored as an integer 7330 // built out of the extracted vector elements. 7331 if (!MemSclVT.isByteSized()) { 7332 unsigned NumBits = StVT.getSizeInBits(); 7333 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7334 7335 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7336 7337 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7338 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7339 DAG.getVectorIdxConstant(Idx, SL)); 7340 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7341 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7342 unsigned ShiftIntoIdx = 7343 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7344 SDValue ShiftAmount = 7345 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7346 SDValue ShiftedElt = 7347 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7348 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7349 } 7350 7351 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7352 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7353 ST->getAAInfo()); 7354 } 7355 7356 // Store Stride in bytes 7357 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7358 assert(Stride && "Zero stride!"); 7359 // Extract each of the elements from the original vector and save them into 7360 // memory individually. 7361 SmallVector<SDValue, 8> Stores; 7362 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7363 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7364 DAG.getVectorIdxConstant(Idx, SL)); 7365 7366 SDValue Ptr = 7367 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7368 7369 // This scalar TruncStore may be illegal, but we legalize it later. 7370 SDValue Store = DAG.getTruncStore( 7371 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7372 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7373 ST->getAAInfo()); 7374 7375 Stores.push_back(Store); 7376 } 7377 7378 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7379 } 7380 7381 std::pair<SDValue, SDValue> 7382 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7383 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7384 "unaligned indexed loads not implemented!"); 7385 SDValue Chain = LD->getChain(); 7386 SDValue Ptr = LD->getBasePtr(); 7387 EVT VT = LD->getValueType(0); 7388 EVT LoadedVT = LD->getMemoryVT(); 7389 SDLoc dl(LD); 7390 auto &MF = DAG.getMachineFunction(); 7391 7392 if (VT.isFloatingPoint() || VT.isVector()) { 7393 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7394 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7395 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7396 LoadedVT.isVector()) { 7397 // Scalarize the load and let the individual components be handled. 7398 return scalarizeVectorLoad(LD, DAG); 7399 } 7400 7401 // Expand to a (misaligned) integer load of the same size, 7402 // then bitconvert to floating point or vector. 7403 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7404 LD->getMemOperand()); 7405 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7406 if (LoadedVT != VT) 7407 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7408 ISD::ANY_EXTEND, dl, VT, Result); 7409 7410 return std::make_pair(Result, newLoad.getValue(1)); 7411 } 7412 7413 // Copy the value to a (aligned) stack slot using (unaligned) integer 7414 // loads and stores, then do a (aligned) load from the stack slot. 7415 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7416 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7417 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7418 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7419 7420 // Make sure the stack slot is also aligned for the register type. 7421 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7422 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7423 SmallVector<SDValue, 8> Stores; 7424 SDValue StackPtr = StackBase; 7425 unsigned Offset = 0; 7426 7427 EVT PtrVT = Ptr.getValueType(); 7428 EVT StackPtrVT = StackPtr.getValueType(); 7429 7430 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7431 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7432 7433 // Do all but one copies using the full register width. 7434 for (unsigned i = 1; i < NumRegs; i++) { 7435 // Load one integer register's worth from the original location. 7436 SDValue Load = DAG.getLoad( 7437 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7438 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7439 LD->getAAInfo()); 7440 // Follow the load with a store to the stack slot. Remember the store. 7441 Stores.push_back(DAG.getStore( 7442 Load.getValue(1), dl, Load, StackPtr, 7443 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7444 // Increment the pointers. 7445 Offset += RegBytes; 7446 7447 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7448 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7449 } 7450 7451 // The last copy may be partial. Do an extending load. 7452 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7453 8 * (LoadedBytes - Offset)); 7454 SDValue Load = 7455 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7456 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7457 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7458 LD->getAAInfo()); 7459 // Follow the load with a store to the stack slot. Remember the store. 7460 // On big-endian machines this requires a truncating store to ensure 7461 // that the bits end up in the right place. 7462 Stores.push_back(DAG.getTruncStore( 7463 Load.getValue(1), dl, Load, StackPtr, 7464 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7465 7466 // The order of the stores doesn't matter - say it with a TokenFactor. 7467 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7468 7469 // Finally, perform the original load only redirected to the stack slot. 7470 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7471 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7472 LoadedVT); 7473 7474 // Callers expect a MERGE_VALUES node. 7475 return std::make_pair(Load, TF); 7476 } 7477 7478 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7479 "Unaligned load of unsupported type."); 7480 7481 // Compute the new VT that is half the size of the old one. This is an 7482 // integer MVT. 7483 unsigned NumBits = LoadedVT.getSizeInBits(); 7484 EVT NewLoadedVT; 7485 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7486 NumBits >>= 1; 7487 7488 Align Alignment = LD->getOriginalAlign(); 7489 unsigned IncrementSize = NumBits / 8; 7490 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7491 7492 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7493 if (HiExtType == ISD::NON_EXTLOAD) 7494 HiExtType = ISD::ZEXTLOAD; 7495 7496 // Load the value in two parts 7497 SDValue Lo, Hi; 7498 if (DAG.getDataLayout().isLittleEndian()) { 7499 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7500 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7501 LD->getAAInfo()); 7502 7503 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7504 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7505 LD->getPointerInfo().getWithOffset(IncrementSize), 7506 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7507 LD->getAAInfo()); 7508 } else { 7509 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7510 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7511 LD->getAAInfo()); 7512 7513 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7514 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7515 LD->getPointerInfo().getWithOffset(IncrementSize), 7516 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7517 LD->getAAInfo()); 7518 } 7519 7520 // aggregate the two parts 7521 SDValue ShiftAmount = 7522 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7523 DAG.getDataLayout())); 7524 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7525 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7526 7527 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7528 Hi.getValue(1)); 7529 7530 return std::make_pair(Result, TF); 7531 } 7532 7533 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7534 SelectionDAG &DAG) const { 7535 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7536 "unaligned indexed stores not implemented!"); 7537 SDValue Chain = ST->getChain(); 7538 SDValue Ptr = ST->getBasePtr(); 7539 SDValue Val = ST->getValue(); 7540 EVT VT = Val.getValueType(); 7541 Align Alignment = ST->getOriginalAlign(); 7542 auto &MF = DAG.getMachineFunction(); 7543 EVT StoreMemVT = ST->getMemoryVT(); 7544 7545 SDLoc dl(ST); 7546 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7547 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7548 if (isTypeLegal(intVT)) { 7549 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7550 StoreMemVT.isVector()) { 7551 // Scalarize the store and let the individual components be handled. 7552 SDValue Result = scalarizeVectorStore(ST, DAG); 7553 return Result; 7554 } 7555 // Expand to a bitconvert of the value to the integer type of the 7556 // same size, then a (misaligned) int store. 7557 // FIXME: Does not handle truncating floating point stores! 7558 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7559 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7560 Alignment, ST->getMemOperand()->getFlags()); 7561 return Result; 7562 } 7563 // Do a (aligned) store to a stack slot, then copy from the stack slot 7564 // to the final destination using (unaligned) integer loads and stores. 7565 MVT RegVT = getRegisterType( 7566 *DAG.getContext(), 7567 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7568 EVT PtrVT = Ptr.getValueType(); 7569 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7570 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7571 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7572 7573 // Make sure the stack slot is also aligned for the register type. 7574 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7575 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7576 7577 // Perform the original store, only redirected to the stack slot. 7578 SDValue Store = DAG.getTruncStore( 7579 Chain, dl, Val, StackPtr, 7580 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7581 7582 EVT StackPtrVT = StackPtr.getValueType(); 7583 7584 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7585 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7586 SmallVector<SDValue, 8> Stores; 7587 unsigned Offset = 0; 7588 7589 // Do all but one copies using the full register width. 7590 for (unsigned i = 1; i < NumRegs; i++) { 7591 // Load one integer register's worth from the stack slot. 7592 SDValue Load = DAG.getLoad( 7593 RegVT, dl, Store, StackPtr, 7594 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7595 // Store it to the final location. Remember the store. 7596 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7597 ST->getPointerInfo().getWithOffset(Offset), 7598 ST->getOriginalAlign(), 7599 ST->getMemOperand()->getFlags())); 7600 // Increment the pointers. 7601 Offset += RegBytes; 7602 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7603 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7604 } 7605 7606 // The last store may be partial. Do a truncating store. On big-endian 7607 // machines this requires an extending load from the stack slot to ensure 7608 // that the bits are in the right place. 7609 EVT LoadMemVT = 7610 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7611 7612 // Load from the stack slot. 7613 SDValue Load = DAG.getExtLoad( 7614 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7615 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7616 7617 Stores.push_back( 7618 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7619 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7620 ST->getOriginalAlign(), 7621 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7622 // The order of the stores doesn't matter - say it with a TokenFactor. 7623 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7624 return Result; 7625 } 7626 7627 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7628 "Unaligned store of unknown type."); 7629 // Get the half-size VT 7630 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7631 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7632 unsigned IncrementSize = NumBits / 8; 7633 7634 // Divide the stored value in two parts. 7635 SDValue ShiftAmount = DAG.getConstant( 7636 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7637 SDValue Lo = Val; 7638 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7639 7640 // Store the two parts 7641 SDValue Store1, Store2; 7642 Store1 = DAG.getTruncStore(Chain, dl, 7643 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7644 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7645 ST->getMemOperand()->getFlags()); 7646 7647 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7648 Store2 = DAG.getTruncStore( 7649 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7650 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7651 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7652 7653 SDValue Result = 7654 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7655 return Result; 7656 } 7657 7658 SDValue 7659 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7660 const SDLoc &DL, EVT DataVT, 7661 SelectionDAG &DAG, 7662 bool IsCompressedMemory) const { 7663 SDValue Increment; 7664 EVT AddrVT = Addr.getValueType(); 7665 EVT MaskVT = Mask.getValueType(); 7666 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7667 "Incompatible types of Data and Mask"); 7668 if (IsCompressedMemory) { 7669 if (DataVT.isScalableVector()) 7670 report_fatal_error( 7671 "Cannot currently handle compressed memory with scalable vectors"); 7672 // Incrementing the pointer according to number of '1's in the mask. 7673 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7674 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7675 if (MaskIntVT.getSizeInBits() < 32) { 7676 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7677 MaskIntVT = MVT::i32; 7678 } 7679 7680 // Count '1's with POPCNT. 7681 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7682 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7683 // Scale is an element size in bytes. 7684 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7685 AddrVT); 7686 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7687 } else if (DataVT.isScalableVector()) { 7688 Increment = DAG.getVScale(DL, AddrVT, 7689 APInt(AddrVT.getFixedSizeInBits(), 7690 DataVT.getStoreSize().getKnownMinSize())); 7691 } else 7692 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7693 7694 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7695 } 7696 7697 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7698 SDValue Idx, 7699 EVT VecVT, 7700 const SDLoc &dl) { 7701 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7702 return Idx; 7703 7704 EVT IdxVT = Idx.getValueType(); 7705 unsigned NElts = VecVT.getVectorMinNumElements(); 7706 if (VecVT.isScalableVector()) { 7707 SDValue VS = DAG.getVScale(dl, IdxVT, 7708 APInt(IdxVT.getFixedSizeInBits(), 7709 NElts)); 7710 SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS, 7711 DAG.getConstant(1, dl, IdxVT)); 7712 7713 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7714 } else { 7715 if (isPowerOf2_32(NElts)) { 7716 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7717 Log2_32(NElts)); 7718 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7719 DAG.getConstant(Imm, dl, IdxVT)); 7720 } 7721 } 7722 7723 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7724 DAG.getConstant(NElts - 1, dl, IdxVT)); 7725 } 7726 7727 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7728 SDValue VecPtr, EVT VecVT, 7729 SDValue Index) const { 7730 SDLoc dl(Index); 7731 // Make sure the index type is big enough to compute in. 7732 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7733 7734 EVT EltVT = VecVT.getVectorElementType(); 7735 7736 // Calculate the element offset and add it to the pointer. 7737 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7738 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7739 "Converting bits to bytes lost precision"); 7740 7741 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7742 7743 EVT IdxVT = Index.getValueType(); 7744 7745 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7746 DAG.getConstant(EltSize, dl, IdxVT)); 7747 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7748 } 7749 7750 //===----------------------------------------------------------------------===// 7751 // Implementation of Emulated TLS Model 7752 //===----------------------------------------------------------------------===// 7753 7754 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7755 SelectionDAG &DAG) const { 7756 // Access to address of TLS varialbe xyz is lowered to a function call: 7757 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7758 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7759 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7760 SDLoc dl(GA); 7761 7762 ArgListTy Args; 7763 ArgListEntry Entry; 7764 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7765 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7766 StringRef EmuTlsVarName(NameString); 7767 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7768 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7769 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7770 Entry.Ty = VoidPtrType; 7771 Args.push_back(Entry); 7772 7773 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7774 7775 TargetLowering::CallLoweringInfo CLI(DAG); 7776 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7777 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7778 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7779 7780 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7781 // At last for X86 targets, maybe good for other targets too? 7782 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7783 MFI.setAdjustsStack(true); // Is this only for X86 target? 7784 MFI.setHasCalls(true); 7785 7786 assert((GA->getOffset() == 0) && 7787 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7788 return CallResult.first; 7789 } 7790 7791 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7792 SelectionDAG &DAG) const { 7793 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7794 if (!isCtlzFast()) 7795 return SDValue(); 7796 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7797 SDLoc dl(Op); 7798 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7799 if (C->isNullValue() && CC == ISD::SETEQ) { 7800 EVT VT = Op.getOperand(0).getValueType(); 7801 SDValue Zext = Op.getOperand(0); 7802 if (VT.bitsLT(MVT::i32)) { 7803 VT = MVT::i32; 7804 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7805 } 7806 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7807 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7808 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7809 DAG.getConstant(Log2b, dl, MVT::i32)); 7810 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7811 } 7812 } 7813 return SDValue(); 7814 } 7815 7816 // Convert redundant addressing modes (e.g. scaling is redundant 7817 // when accessing bytes). 7818 ISD::MemIndexType 7819 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7820 SDValue Offsets) const { 7821 bool IsScaledIndex = 7822 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7823 bool IsSignedIndex = 7824 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7825 7826 // Scaling is unimportant for bytes, canonicalize to unscaled. 7827 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7828 IsScaledIndex = false; 7829 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7830 } 7831 7832 return IndexType; 7833 } 7834 7835 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7836 SDValue Op0 = Node->getOperand(0); 7837 SDValue Op1 = Node->getOperand(1); 7838 EVT VT = Op0.getValueType(); 7839 unsigned Opcode = Node->getOpcode(); 7840 SDLoc DL(Node); 7841 7842 // umin(x,y) -> sub(x,usubsat(x,y)) 7843 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7844 isOperationLegal(ISD::USUBSAT, VT)) { 7845 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7846 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7847 } 7848 7849 // umax(x,y) -> add(x,usubsat(y,x)) 7850 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7851 isOperationLegal(ISD::USUBSAT, VT)) { 7852 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7853 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7854 } 7855 7856 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7857 ISD::CondCode CC; 7858 switch (Opcode) { 7859 default: llvm_unreachable("How did we get here?"); 7860 case ISD::SMAX: CC = ISD::SETGT; break; 7861 case ISD::SMIN: CC = ISD::SETLT; break; 7862 case ISD::UMAX: CC = ISD::SETUGT; break; 7863 case ISD::UMIN: CC = ISD::SETULT; break; 7864 } 7865 7866 // FIXME: Should really try to split the vector in case it's legal on a 7867 // subvector. 7868 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7869 return DAG.UnrollVectorOp(Node); 7870 7871 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7872 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7873 } 7874 7875 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7876 unsigned Opcode = Node->getOpcode(); 7877 SDValue LHS = Node->getOperand(0); 7878 SDValue RHS = Node->getOperand(1); 7879 EVT VT = LHS.getValueType(); 7880 SDLoc dl(Node); 7881 7882 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7883 assert(VT.isInteger() && "Expected operands to be integers"); 7884 7885 // usub.sat(a, b) -> umax(a, b) - b 7886 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 7887 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7888 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7889 } 7890 7891 // uadd.sat(a, b) -> umin(a, ~b) + b 7892 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 7893 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7894 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7895 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7896 } 7897 7898 unsigned OverflowOp; 7899 switch (Opcode) { 7900 case ISD::SADDSAT: 7901 OverflowOp = ISD::SADDO; 7902 break; 7903 case ISD::UADDSAT: 7904 OverflowOp = ISD::UADDO; 7905 break; 7906 case ISD::SSUBSAT: 7907 OverflowOp = ISD::SSUBO; 7908 break; 7909 case ISD::USUBSAT: 7910 OverflowOp = ISD::USUBO; 7911 break; 7912 default: 7913 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7914 "addition or subtraction node."); 7915 } 7916 7917 // FIXME: Should really try to split the vector in case it's legal on a 7918 // subvector. 7919 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7920 return DAG.UnrollVectorOp(Node); 7921 7922 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7923 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7924 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7925 SDValue SumDiff = Result.getValue(0); 7926 SDValue Overflow = Result.getValue(1); 7927 SDValue Zero = DAG.getConstant(0, dl, VT); 7928 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7929 7930 if (Opcode == ISD::UADDSAT) { 7931 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7932 // (LHS + RHS) | OverflowMask 7933 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7934 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7935 } 7936 // Overflow ? 0xffff.... : (LHS + RHS) 7937 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7938 } 7939 7940 if (Opcode == ISD::USUBSAT) { 7941 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7942 // (LHS - RHS) & ~OverflowMask 7943 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7944 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7945 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7946 } 7947 // Overflow ? 0 : (LHS - RHS) 7948 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7949 } 7950 7951 // SatMax -> Overflow && SumDiff < 0 7952 // SatMin -> Overflow && SumDiff >= 0 7953 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7954 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7955 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7956 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7957 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7958 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7959 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7960 } 7961 7962 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 7963 unsigned Opcode = Node->getOpcode(); 7964 bool IsSigned = Opcode == ISD::SSHLSAT; 7965 SDValue LHS = Node->getOperand(0); 7966 SDValue RHS = Node->getOperand(1); 7967 EVT VT = LHS.getValueType(); 7968 SDLoc dl(Node); 7969 7970 assert((Node->getOpcode() == ISD::SSHLSAT || 7971 Node->getOpcode() == ISD::USHLSAT) && 7972 "Expected a SHLSAT opcode"); 7973 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7974 assert(VT.isInteger() && "Expected operands to be integers"); 7975 7976 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 7977 7978 unsigned BW = VT.getScalarSizeInBits(); 7979 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 7980 SDValue Orig = 7981 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 7982 7983 SDValue SatVal; 7984 if (IsSigned) { 7985 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 7986 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 7987 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 7988 SatMin, SatMax, ISD::SETLT); 7989 } else { 7990 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 7991 } 7992 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 7993 7994 return Result; 7995 } 7996 7997 SDValue 7998 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7999 assert((Node->getOpcode() == ISD::SMULFIX || 8000 Node->getOpcode() == ISD::UMULFIX || 8001 Node->getOpcode() == ISD::SMULFIXSAT || 8002 Node->getOpcode() == ISD::UMULFIXSAT) && 8003 "Expected a fixed point multiplication opcode"); 8004 8005 SDLoc dl(Node); 8006 SDValue LHS = Node->getOperand(0); 8007 SDValue RHS = Node->getOperand(1); 8008 EVT VT = LHS.getValueType(); 8009 unsigned Scale = Node->getConstantOperandVal(2); 8010 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8011 Node->getOpcode() == ISD::UMULFIXSAT); 8012 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8013 Node->getOpcode() == ISD::SMULFIXSAT); 8014 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8015 unsigned VTSize = VT.getScalarSizeInBits(); 8016 8017 if (!Scale) { 8018 // [us]mul.fix(a, b, 0) -> mul(a, b) 8019 if (!Saturating) { 8020 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8021 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8022 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8023 SDValue Result = 8024 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8025 SDValue Product = Result.getValue(0); 8026 SDValue Overflow = Result.getValue(1); 8027 SDValue Zero = DAG.getConstant(0, dl, VT); 8028 8029 APInt MinVal = APInt::getSignedMinValue(VTSize); 8030 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8031 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8032 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8033 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 8034 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 8035 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8036 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8037 SDValue Result = 8038 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8039 SDValue Product = Result.getValue(0); 8040 SDValue Overflow = Result.getValue(1); 8041 8042 APInt MaxVal = APInt::getMaxValue(VTSize); 8043 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8044 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8045 } 8046 } 8047 8048 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8049 "Expected scale to be less than the number of bits if signed or at " 8050 "most the number of bits if unsigned."); 8051 assert(LHS.getValueType() == RHS.getValueType() && 8052 "Expected both operands to be the same type"); 8053 8054 // Get the upper and lower bits of the result. 8055 SDValue Lo, Hi; 8056 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8057 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8058 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8059 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8060 Lo = Result.getValue(0); 8061 Hi = Result.getValue(1); 8062 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8063 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8064 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8065 } else if (VT.isVector()) { 8066 return SDValue(); 8067 } else { 8068 report_fatal_error("Unable to expand fixed point multiplication."); 8069 } 8070 8071 if (Scale == VTSize) 8072 // Result is just the top half since we'd be shifting by the width of the 8073 // operand. Overflow impossible so this works for both UMULFIX and 8074 // UMULFIXSAT. 8075 return Hi; 8076 8077 // The result will need to be shifted right by the scale since both operands 8078 // are scaled. The result is given to us in 2 halves, so we only want part of 8079 // both in the result. 8080 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8081 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8082 DAG.getConstant(Scale, dl, ShiftTy)); 8083 if (!Saturating) 8084 return Result; 8085 8086 if (!Signed) { 8087 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8088 // widened multiplication) aren't all zeroes. 8089 8090 // Saturate to max if ((Hi >> Scale) != 0), 8091 // which is the same as if (Hi > ((1 << Scale) - 1)) 8092 APInt MaxVal = APInt::getMaxValue(VTSize); 8093 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8094 dl, VT); 8095 Result = DAG.getSelectCC(dl, Hi, LowMask, 8096 DAG.getConstant(MaxVal, dl, VT), Result, 8097 ISD::SETUGT); 8098 8099 return Result; 8100 } 8101 8102 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8103 // widened multiplication) aren't all ones or all zeroes. 8104 8105 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8106 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8107 8108 if (Scale == 0) { 8109 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8110 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8111 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8112 // Saturated to SatMin if wide product is negative, and SatMax if wide 8113 // product is positive ... 8114 SDValue Zero = DAG.getConstant(0, dl, VT); 8115 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8116 ISD::SETLT); 8117 // ... but only if we overflowed. 8118 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8119 } 8120 8121 // We handled Scale==0 above so all the bits to examine is in Hi. 8122 8123 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8124 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8125 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8126 dl, VT); 8127 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8128 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8129 // which is the same as if (HI < (-1 << (Scale - 1)) 8130 SDValue HighMask = 8131 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8132 dl, VT); 8133 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8134 return Result; 8135 } 8136 8137 SDValue 8138 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8139 SDValue LHS, SDValue RHS, 8140 unsigned Scale, SelectionDAG &DAG) const { 8141 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8142 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8143 "Expected a fixed point division opcode"); 8144 8145 EVT VT = LHS.getValueType(); 8146 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8147 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8148 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8149 8150 // If there is enough room in the type to upscale the LHS or downscale the 8151 // RHS before the division, we can perform it in this type without having to 8152 // resize. For signed operations, the LHS headroom is the number of 8153 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8154 // The headroom for the RHS is the number of trailing zeroes. 8155 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8156 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8157 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8158 8159 // For signed saturating operations, we need to be able to detect true integer 8160 // division overflow; that is, when you have MIN / -EPS. However, this 8161 // is undefined behavior and if we emit divisions that could take such 8162 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8163 // example). 8164 // Avoid this by requiring an extra bit so that we never get this case. 8165 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8166 // signed saturating division, we need to emit a whopping 32-bit division. 8167 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8168 return SDValue(); 8169 8170 unsigned LHSShift = std::min(LHSLead, Scale); 8171 unsigned RHSShift = Scale - LHSShift; 8172 8173 // At this point, we know that if we shift the LHS up by LHSShift and the 8174 // RHS down by RHSShift, we can emit a regular division with a final scaling 8175 // factor of Scale. 8176 8177 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8178 if (LHSShift) 8179 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8180 DAG.getConstant(LHSShift, dl, ShiftTy)); 8181 if (RHSShift) 8182 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8183 DAG.getConstant(RHSShift, dl, ShiftTy)); 8184 8185 SDValue Quot; 8186 if (Signed) { 8187 // For signed operations, if the resulting quotient is negative and the 8188 // remainder is nonzero, subtract 1 from the quotient to round towards 8189 // negative infinity. 8190 SDValue Rem; 8191 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8192 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8193 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8194 if (isTypeLegal(VT) && 8195 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8196 Quot = DAG.getNode(ISD::SDIVREM, dl, 8197 DAG.getVTList(VT, VT), 8198 LHS, RHS); 8199 Rem = Quot.getValue(1); 8200 Quot = Quot.getValue(0); 8201 } else { 8202 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8203 LHS, RHS); 8204 Rem = DAG.getNode(ISD::SREM, dl, VT, 8205 LHS, RHS); 8206 } 8207 SDValue Zero = DAG.getConstant(0, dl, VT); 8208 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8209 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8210 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8211 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8212 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8213 DAG.getConstant(1, dl, VT)); 8214 Quot = DAG.getSelect(dl, VT, 8215 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8216 Sub1, Quot); 8217 } else 8218 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8219 LHS, RHS); 8220 8221 return Quot; 8222 } 8223 8224 void TargetLowering::expandUADDSUBO( 8225 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8226 SDLoc dl(Node); 8227 SDValue LHS = Node->getOperand(0); 8228 SDValue RHS = Node->getOperand(1); 8229 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8230 8231 // If ADD/SUBCARRY is legal, use that instead. 8232 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8233 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8234 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8235 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8236 { LHS, RHS, CarryIn }); 8237 Result = SDValue(NodeCarry.getNode(), 0); 8238 Overflow = SDValue(NodeCarry.getNode(), 1); 8239 return; 8240 } 8241 8242 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8243 LHS.getValueType(), LHS, RHS); 8244 8245 EVT ResultType = Node->getValueType(1); 8246 EVT SetCCType = getSetCCResultType( 8247 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8248 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8249 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8250 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8251 } 8252 8253 void TargetLowering::expandSADDSUBO( 8254 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8255 SDLoc dl(Node); 8256 SDValue LHS = Node->getOperand(0); 8257 SDValue RHS = Node->getOperand(1); 8258 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8259 8260 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8261 LHS.getValueType(), LHS, RHS); 8262 8263 EVT ResultType = Node->getValueType(1); 8264 EVT OType = getSetCCResultType( 8265 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8266 8267 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8268 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8269 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8270 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8271 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8272 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8273 return; 8274 } 8275 8276 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8277 8278 // For an addition, the result should be less than one of the operands (LHS) 8279 // if and only if the other operand (RHS) is negative, otherwise there will 8280 // be overflow. 8281 // For a subtraction, the result should be less than one of the operands 8282 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8283 // otherwise there will be overflow. 8284 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8285 SDValue ConditionRHS = 8286 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8287 8288 Overflow = DAG.getBoolExtOrTrunc( 8289 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8290 ResultType, ResultType); 8291 } 8292 8293 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8294 SDValue &Overflow, SelectionDAG &DAG) const { 8295 SDLoc dl(Node); 8296 EVT VT = Node->getValueType(0); 8297 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8298 SDValue LHS = Node->getOperand(0); 8299 SDValue RHS = Node->getOperand(1); 8300 bool isSigned = Node->getOpcode() == ISD::SMULO; 8301 8302 // For power-of-two multiplications we can use a simpler shift expansion. 8303 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8304 const APInt &C = RHSC->getAPIntValue(); 8305 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8306 if (C.isPowerOf2()) { 8307 // smulo(x, signed_min) is same as umulo(x, signed_min). 8308 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8309 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8310 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8311 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8312 Overflow = DAG.getSetCC(dl, SetCCVT, 8313 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8314 dl, VT, Result, ShiftAmt), 8315 LHS, ISD::SETNE); 8316 return true; 8317 } 8318 } 8319 8320 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8321 if (VT.isVector()) 8322 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8323 VT.getVectorNumElements()); 8324 8325 SDValue BottomHalf; 8326 SDValue TopHalf; 8327 static const unsigned Ops[2][3] = 8328 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8329 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8330 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8331 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8332 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8333 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8334 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8335 RHS); 8336 TopHalf = BottomHalf.getValue(1); 8337 } else if (isTypeLegal(WideVT)) { 8338 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8339 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8340 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8341 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8342 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8343 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8344 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8345 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8346 } else { 8347 if (VT.isVector()) 8348 return false; 8349 8350 // We can fall back to a libcall with an illegal type for the MUL if we 8351 // have a libcall big enough. 8352 // Also, we can fall back to a division in some cases, but that's a big 8353 // performance hit in the general case. 8354 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8355 if (WideVT == MVT::i16) 8356 LC = RTLIB::MUL_I16; 8357 else if (WideVT == MVT::i32) 8358 LC = RTLIB::MUL_I32; 8359 else if (WideVT == MVT::i64) 8360 LC = RTLIB::MUL_I64; 8361 else if (WideVT == MVT::i128) 8362 LC = RTLIB::MUL_I128; 8363 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8364 8365 SDValue HiLHS; 8366 SDValue HiRHS; 8367 if (isSigned) { 8368 // The high part is obtained by SRA'ing all but one of the bits of low 8369 // part. 8370 unsigned LoSize = VT.getFixedSizeInBits(); 8371 HiLHS = 8372 DAG.getNode(ISD::SRA, dl, VT, LHS, 8373 DAG.getConstant(LoSize - 1, dl, 8374 getPointerTy(DAG.getDataLayout()))); 8375 HiRHS = 8376 DAG.getNode(ISD::SRA, dl, VT, RHS, 8377 DAG.getConstant(LoSize - 1, dl, 8378 getPointerTy(DAG.getDataLayout()))); 8379 } else { 8380 HiLHS = DAG.getConstant(0, dl, VT); 8381 HiRHS = DAG.getConstant(0, dl, VT); 8382 } 8383 8384 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8385 // pre-lowered to the correct types. This all depends upon WideVT not 8386 // being a legal type for the architecture and thus has to be split to 8387 // two arguments. 8388 SDValue Ret; 8389 TargetLowering::MakeLibCallOptions CallOptions; 8390 CallOptions.setSExt(isSigned); 8391 CallOptions.setIsPostTypeLegalization(true); 8392 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8393 // Halves of WideVT are packed into registers in different order 8394 // depending on platform endianness. This is usually handled by 8395 // the C calling convention, but we can't defer to it in 8396 // the legalizer. 8397 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8398 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8399 } else { 8400 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8401 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8402 } 8403 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8404 "Ret value is a collection of constituent nodes holding result."); 8405 if (DAG.getDataLayout().isLittleEndian()) { 8406 // Same as above. 8407 BottomHalf = Ret.getOperand(0); 8408 TopHalf = Ret.getOperand(1); 8409 } else { 8410 BottomHalf = Ret.getOperand(1); 8411 TopHalf = Ret.getOperand(0); 8412 } 8413 } 8414 8415 Result = BottomHalf; 8416 if (isSigned) { 8417 SDValue ShiftAmt = DAG.getConstant( 8418 VT.getScalarSizeInBits() - 1, dl, 8419 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8420 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8421 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8422 } else { 8423 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8424 DAG.getConstant(0, dl, VT), ISD::SETNE); 8425 } 8426 8427 // Truncate the result if SetCC returns a larger type than needed. 8428 EVT RType = Node->getValueType(1); 8429 if (RType.bitsLT(Overflow.getValueType())) 8430 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8431 8432 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8433 "Unexpected result type for S/UMULO legalization"); 8434 return true; 8435 } 8436 8437 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8438 SDLoc dl(Node); 8439 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8440 SDValue Op = Node->getOperand(0); 8441 EVT VT = Op.getValueType(); 8442 8443 if (VT.isScalableVector()) 8444 report_fatal_error( 8445 "Expanding reductions for scalable vectors is undefined."); 8446 8447 // Try to use a shuffle reduction for power of two vectors. 8448 if (VT.isPow2VectorType()) { 8449 while (VT.getVectorNumElements() > 1) { 8450 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8451 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8452 break; 8453 8454 SDValue Lo, Hi; 8455 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8456 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8457 VT = HalfVT; 8458 } 8459 } 8460 8461 EVT EltVT = VT.getVectorElementType(); 8462 unsigned NumElts = VT.getVectorNumElements(); 8463 8464 SmallVector<SDValue, 8> Ops; 8465 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8466 8467 SDValue Res = Ops[0]; 8468 for (unsigned i = 1; i < NumElts; i++) 8469 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8470 8471 // Result type may be wider than element type. 8472 if (EltVT != Node->getValueType(0)) 8473 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8474 return Res; 8475 } 8476 8477 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8478 SDLoc dl(Node); 8479 SDValue AccOp = Node->getOperand(0); 8480 SDValue VecOp = Node->getOperand(1); 8481 SDNodeFlags Flags = Node->getFlags(); 8482 8483 EVT VT = VecOp.getValueType(); 8484 EVT EltVT = VT.getVectorElementType(); 8485 8486 if (VT.isScalableVector()) 8487 report_fatal_error( 8488 "Expanding reductions for scalable vectors is undefined."); 8489 8490 unsigned NumElts = VT.getVectorNumElements(); 8491 8492 SmallVector<SDValue, 8> Ops; 8493 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8494 8495 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8496 8497 SDValue Res = AccOp; 8498 for (unsigned i = 0; i < NumElts; i++) 8499 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8500 8501 return Res; 8502 } 8503 8504 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8505 SelectionDAG &DAG) const { 8506 EVT VT = Node->getValueType(0); 8507 SDLoc dl(Node); 8508 bool isSigned = Node->getOpcode() == ISD::SREM; 8509 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8510 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8511 SDValue Dividend = Node->getOperand(0); 8512 SDValue Divisor = Node->getOperand(1); 8513 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8514 SDVTList VTs = DAG.getVTList(VT, VT); 8515 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8516 return true; 8517 } else if (isOperationLegalOrCustom(DivOpc, VT)) { 8518 // X % Y -> X-X/Y*Y 8519 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8520 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8521 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8522 return true; 8523 } 8524 return false; 8525 } 8526 8527 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8528 SelectionDAG &DAG) const { 8529 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8530 SDLoc dl(SDValue(Node, 0)); 8531 SDValue Src = Node->getOperand(0); 8532 8533 // DstVT is the result type, while SatVT is the size to which we saturate 8534 EVT SrcVT = Src.getValueType(); 8535 EVT DstVT = Node->getValueType(0); 8536 8537 unsigned SatWidth = Node->getConstantOperandVal(1); 8538 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8539 assert(SatWidth <= DstWidth && 8540 "Expected saturation width smaller than result width"); 8541 8542 // Determine minimum and maximum integer values and their corresponding 8543 // floating-point values. 8544 APInt MinInt, MaxInt; 8545 if (IsSigned) { 8546 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8547 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8548 } else { 8549 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8550 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8551 } 8552 8553 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8554 // libcall emission cannot handle this. Large result types will fail. 8555 if (SrcVT == MVT::f16) { 8556 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8557 SrcVT = Src.getValueType(); 8558 } 8559 8560 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8561 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8562 8563 APFloat::opStatus MinStatus = 8564 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8565 APFloat::opStatus MaxStatus = 8566 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8567 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8568 !(MaxStatus & APFloat::opStatus::opInexact); 8569 8570 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8571 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8572 8573 // If the integer bounds are exactly representable as floats and min/max are 8574 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8575 // of comparisons and selects. 8576 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8577 isOperationLegal(ISD::FMAXNUM, SrcVT); 8578 if (AreExactFloatBounds && MinMaxLegal) { 8579 SDValue Clamped = Src; 8580 8581 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8582 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8583 // Clamp by MaxFloat from above. NaN cannot occur. 8584 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8585 // Convert clamped value to integer. 8586 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8587 dl, DstVT, Clamped); 8588 8589 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8590 // which will cast to zero. 8591 if (!IsSigned) 8592 return FpToInt; 8593 8594 // Otherwise, select 0 if Src is NaN. 8595 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8596 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8597 ISD::CondCode::SETUO); 8598 } 8599 8600 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8601 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8602 8603 // Result of direct conversion. The assumption here is that the operation is 8604 // non-trapping and it's fine to apply it to an out-of-range value if we 8605 // select it away later. 8606 SDValue FpToInt = 8607 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8608 8609 SDValue Select = FpToInt; 8610 8611 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8612 // MinInt if Src is NaN. 8613 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8614 ISD::CondCode::SETULT); 8615 // If Src OGT MaxFloat, select MaxInt. 8616 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8617 ISD::CondCode::SETOGT); 8618 8619 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8620 // is already zero. 8621 if (!IsSigned) 8622 return Select; 8623 8624 // Otherwise, select 0 if Src is NaN. 8625 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8626 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8627 } 8628 8629 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8630 SelectionDAG &DAG) const { 8631 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8632 assert(Node->getValueType(0).isScalableVector() && 8633 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8634 8635 EVT VT = Node->getValueType(0); 8636 SDValue V1 = Node->getOperand(0); 8637 SDValue V2 = Node->getOperand(1); 8638 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8639 SDLoc DL(Node); 8640 8641 // Expand through memory thusly: 8642 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8643 // Store V1, Ptr 8644 // Store V2, Ptr + sizeof(V1) 8645 // If (Imm < 0) 8646 // TrailingElts = -Imm 8647 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8648 // else 8649 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8650 // Res = Load Ptr 8651 8652 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8653 8654 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8655 VT.getVectorElementCount() * 2); 8656 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8657 EVT PtrVT = StackPtr.getValueType(); 8658 auto &MF = DAG.getMachineFunction(); 8659 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8660 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8661 8662 // Store the lo part of CONCAT_VECTORS(V1, V2) 8663 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8664 // Store the hi part of CONCAT_VECTORS(V1, V2) 8665 SDValue OffsetToV2 = DAG.getVScale( 8666 DL, PtrVT, 8667 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8668 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8669 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8670 8671 if (Imm >= 0) { 8672 // Load back the required element. getVectorElementPointer takes care of 8673 // clamping the index if it's out-of-bounds. 8674 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8675 // Load the spliced result 8676 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8677 MachinePointerInfo::getUnknownStack(MF)); 8678 } 8679 8680 uint64_t TrailingElts = -Imm; 8681 8682 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8683 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8684 SDValue TrailingBytes = 8685 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8686 8687 if (TrailingElts > VT.getVectorMinNumElements()) { 8688 SDValue VLBytes = DAG.getVScale( 8689 DL, PtrVT, 8690 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8691 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8692 } 8693 8694 // Calculate the start address of the spliced result. 8695 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8696 8697 // Load the spliced result 8698 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8699 MachinePointerInfo::getUnknownStack(MF)); 8700 } 8701 8702 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8703 SDValue &LHS, SDValue &RHS, 8704 SDValue &CC, bool &NeedInvert, 8705 const SDLoc &dl, SDValue &Chain, 8706 bool IsSignaling) const { 8707 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8708 MVT OpVT = LHS.getSimpleValueType(); 8709 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8710 NeedInvert = false; 8711 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8712 default: 8713 llvm_unreachable("Unknown condition code action!"); 8714 case TargetLowering::Legal: 8715 // Nothing to do. 8716 break; 8717 case TargetLowering::Expand: { 8718 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8719 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8720 std::swap(LHS, RHS); 8721 CC = DAG.getCondCode(InvCC); 8722 return true; 8723 } 8724 // Swapping operands didn't work. Try inverting the condition. 8725 bool NeedSwap = false; 8726 InvCC = getSetCCInverse(CCCode, OpVT); 8727 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8728 // If inverting the condition is not enough, try swapping operands 8729 // on top of it. 8730 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8731 NeedSwap = true; 8732 } 8733 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8734 CC = DAG.getCondCode(InvCC); 8735 NeedInvert = true; 8736 if (NeedSwap) 8737 std::swap(LHS, RHS); 8738 return true; 8739 } 8740 8741 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8742 unsigned Opc = 0; 8743 switch (CCCode) { 8744 default: 8745 llvm_unreachable("Don't know how to expand this condition!"); 8746 case ISD::SETUO: 8747 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8748 CC1 = ISD::SETUNE; 8749 CC2 = ISD::SETUNE; 8750 Opc = ISD::OR; 8751 break; 8752 } 8753 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8754 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8755 NeedInvert = true; 8756 LLVM_FALLTHROUGH; 8757 case ISD::SETO: 8758 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8759 "If SETO is expanded, SETOEQ must be legal!"); 8760 CC1 = ISD::SETOEQ; 8761 CC2 = ISD::SETOEQ; 8762 Opc = ISD::AND; 8763 break; 8764 case ISD::SETONE: 8765 case ISD::SETUEQ: 8766 // If the SETUO or SETO CC isn't legal, we might be able to use 8767 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8768 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8769 // the operands. 8770 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8771 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8772 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8773 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8774 CC1 = ISD::SETOGT; 8775 CC2 = ISD::SETOLT; 8776 Opc = ISD::OR; 8777 NeedInvert = ((unsigned)CCCode & 0x8U); 8778 break; 8779 } 8780 LLVM_FALLTHROUGH; 8781 case ISD::SETOEQ: 8782 case ISD::SETOGT: 8783 case ISD::SETOGE: 8784 case ISD::SETOLT: 8785 case ISD::SETOLE: 8786 case ISD::SETUNE: 8787 case ISD::SETUGT: 8788 case ISD::SETUGE: 8789 case ISD::SETULT: 8790 case ISD::SETULE: 8791 // If we are floating point, assign and break, otherwise fall through. 8792 if (!OpVT.isInteger()) { 8793 // We can use the 4th bit to tell if we are the unordered 8794 // or ordered version of the opcode. 8795 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8796 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8797 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8798 break; 8799 } 8800 // Fallthrough if we are unsigned integer. 8801 LLVM_FALLTHROUGH; 8802 case ISD::SETLE: 8803 case ISD::SETGT: 8804 case ISD::SETGE: 8805 case ISD::SETLT: 8806 case ISD::SETNE: 8807 case ISD::SETEQ: 8808 // If all combinations of inverting the condition and swapping operands 8809 // didn't work then we have no means to expand the condition. 8810 llvm_unreachable("Don't know how to expand this condition!"); 8811 } 8812 8813 SDValue SetCC1, SetCC2; 8814 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8815 // If we aren't the ordered or unorder operation, 8816 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8817 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8818 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8819 } else { 8820 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8821 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8822 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8823 } 8824 if (Chain) 8825 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8826 SetCC2.getValue(1)); 8827 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8828 RHS = SDValue(); 8829 CC = SDValue(); 8830 return true; 8831 } 8832 } 8833 return false; 8834 } 8835