1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 487 const APInt &DemandedBits, 488 const APInt &DemandedElts, 489 TargetLoweringOpt &TLO) const { 490 SDLoc DL(Op); 491 unsigned Opcode = Op.getOpcode(); 492 493 // Do target-specific constant optimization. 494 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 495 return TLO.New.getNode(); 496 497 // FIXME: ISD::SELECT, ISD::SELECT_CC 498 switch (Opcode) { 499 default: 500 break; 501 case ISD::XOR: 502 case ISD::AND: 503 case ISD::OR: { 504 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 505 if (!Op1C) 506 return false; 507 508 // If this is a 'not' op, don't touch it because that's a canonical form. 509 const APInt &C = Op1C->getAPIntValue(); 510 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 511 return false; 512 513 if (!C.isSubsetOf(DemandedBits)) { 514 EVT VT = Op.getValueType(); 515 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 516 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 517 return TLO.CombineTo(Op, NewOp); 518 } 519 520 break; 521 } 522 } 523 524 return false; 525 } 526 527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 528 const APInt &DemandedBits, 529 TargetLoweringOpt &TLO) const { 530 EVT VT = Op.getValueType(); 531 APInt DemandedElts = VT.isVector() 532 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 533 : APInt(1, 1); 534 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 535 } 536 537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 539 /// generalized for targets with other types of implicit widening casts. 540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 541 const APInt &Demanded, 542 TargetLoweringOpt &TLO) const { 543 assert(Op.getNumOperands() == 2 && 544 "ShrinkDemandedOp only supports binary operators!"); 545 assert(Op.getNode()->getNumValues() == 1 && 546 "ShrinkDemandedOp only supports nodes with one result!"); 547 548 SelectionDAG &DAG = TLO.DAG; 549 SDLoc dl(Op); 550 551 // Early return, as this function cannot handle vector types. 552 if (Op.getValueType().isVector()) 553 return false; 554 555 // Don't do this if the node has another user, which may require the 556 // full value. 557 if (!Op.getNode()->hasOneUse()) 558 return false; 559 560 // Search for the smallest integer type with free casts to and from 561 // Op's type. For expedience, just check power-of-2 integer types. 562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 563 unsigned DemandedSize = Demanded.getActiveBits(); 564 unsigned SmallVTBits = DemandedSize; 565 if (!isPowerOf2_32(SmallVTBits)) 566 SmallVTBits = NextPowerOf2(SmallVTBits); 567 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 568 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 569 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 570 TLI.isZExtFree(SmallVT, Op.getValueType())) { 571 // We found a type with free casts. 572 SDValue X = DAG.getNode( 573 Op.getOpcode(), dl, SmallVT, 574 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 575 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 576 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 577 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 578 return TLO.CombineTo(Op, Z); 579 } 580 } 581 return false; 582 } 583 584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 585 DAGCombinerInfo &DCI) const { 586 SelectionDAG &DAG = DCI.DAG; 587 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 588 !DCI.isBeforeLegalizeOps()); 589 KnownBits Known; 590 591 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 592 if (Simplified) { 593 DCI.AddToWorklist(Op.getNode()); 594 DCI.CommitTargetLoweringOpt(TLO); 595 } 596 return Simplified; 597 } 598 599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 600 KnownBits &Known, 601 TargetLoweringOpt &TLO, 602 unsigned Depth, 603 bool AssumeSingleUse) const { 604 EVT VT = Op.getValueType(); 605 606 // TODO: We can probably do more work on calculating the known bits and 607 // simplifying the operations for scalable vectors, but for now we just 608 // bail out. 609 if (VT.isScalableVector()) { 610 // Pretend we don't know anything for now. 611 Known = KnownBits(DemandedBits.getBitWidth()); 612 return false; 613 } 614 615 APInt DemandedElts = VT.isVector() 616 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 617 : APInt(1, 1); 618 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 619 AssumeSingleUse); 620 } 621 622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 623 // TODO: Under what circumstances can we create nodes? Constant folding? 624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 625 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 626 SelectionDAG &DAG, unsigned Depth) const { 627 // Limit search depth. 628 if (Depth >= SelectionDAG::MaxRecursionDepth) 629 return SDValue(); 630 631 // Ignore UNDEFs. 632 if (Op.isUndef()) 633 return SDValue(); 634 635 // Not demanding any bits/elts from Op. 636 if (DemandedBits == 0 || DemandedElts == 0) 637 return DAG.getUNDEF(Op.getValueType()); 638 639 unsigned NumElts = DemandedElts.getBitWidth(); 640 unsigned BitWidth = DemandedBits.getBitWidth(); 641 KnownBits LHSKnown, RHSKnown; 642 switch (Op.getOpcode()) { 643 case ISD::BITCAST: { 644 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 645 EVT SrcVT = Src.getValueType(); 646 EVT DstVT = Op.getValueType(); 647 if (SrcVT == DstVT) 648 return Src; 649 650 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 651 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 652 if (NumSrcEltBits == NumDstEltBits) 653 if (SDValue V = SimplifyMultipleUseDemandedBits( 654 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 655 return DAG.getBitcast(DstVT, V); 656 657 // TODO - bigendian once we have test coverage. 658 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 659 DAG.getDataLayout().isLittleEndian()) { 660 unsigned Scale = NumDstEltBits / NumSrcEltBits; 661 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 662 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 663 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 664 for (unsigned i = 0; i != Scale; ++i) { 665 unsigned Offset = i * NumSrcEltBits; 666 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 667 if (!Sub.isNullValue()) { 668 DemandedSrcBits |= Sub; 669 for (unsigned j = 0; j != NumElts; ++j) 670 if (DemandedElts[j]) 671 DemandedSrcElts.setBit((j * Scale) + i); 672 } 673 } 674 675 if (SDValue V = SimplifyMultipleUseDemandedBits( 676 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 677 return DAG.getBitcast(DstVT, V); 678 } 679 680 // TODO - bigendian once we have test coverage. 681 if ((NumSrcEltBits % NumDstEltBits) == 0 && 682 DAG.getDataLayout().isLittleEndian()) { 683 unsigned Scale = NumSrcEltBits / NumDstEltBits; 684 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 685 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 686 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 687 for (unsigned i = 0; i != NumElts; ++i) 688 if (DemandedElts[i]) { 689 unsigned Offset = (i % Scale) * NumDstEltBits; 690 DemandedSrcBits.insertBits(DemandedBits, Offset); 691 DemandedSrcElts.setBit(i / Scale); 692 } 693 694 if (SDValue V = SimplifyMultipleUseDemandedBits( 695 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 696 return DAG.getBitcast(DstVT, V); 697 } 698 699 break; 700 } 701 case ISD::AND: { 702 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 703 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 704 705 // If all of the demanded bits are known 1 on one side, return the other. 706 // These bits cannot contribute to the result of the 'and' in this 707 // context. 708 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 709 return Op.getOperand(0); 710 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 711 return Op.getOperand(1); 712 break; 713 } 714 case ISD::OR: { 715 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 716 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 717 718 // If all of the demanded bits are known zero on one side, return the 719 // other. These bits cannot contribute to the result of the 'or' in this 720 // context. 721 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 722 return Op.getOperand(0); 723 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 724 return Op.getOperand(1); 725 break; 726 } 727 case ISD::XOR: { 728 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 729 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 730 731 // If all of the demanded bits are known zero on one side, return the 732 // other. 733 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::SHL: { 740 // If we are only demanding sign bits then we can use the shift source 741 // directly. 742 if (const APInt *MaxSA = 743 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 744 SDValue Op0 = Op.getOperand(0); 745 unsigned ShAmt = MaxSA->getZExtValue(); 746 unsigned NumSignBits = 747 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 748 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 749 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 750 return Op0; 751 } 752 break; 753 } 754 case ISD::SETCC: { 755 SDValue Op0 = Op.getOperand(0); 756 SDValue Op1 = Op.getOperand(1); 757 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 758 // If (1) we only need the sign-bit, (2) the setcc operands are the same 759 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 760 // -1, we may be able to bypass the setcc. 761 if (DemandedBits.isSignMask() && 762 Op0.getScalarValueSizeInBits() == BitWidth && 763 getBooleanContents(Op0.getValueType()) == 764 BooleanContent::ZeroOrNegativeOneBooleanContent) { 765 // If we're testing X < 0, then this compare isn't needed - just use X! 766 // FIXME: We're limiting to integer types here, but this should also work 767 // if we don't care about FP signed-zero. The use of SETLT with FP means 768 // that we don't care about NaNs. 769 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 770 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 771 return Op0; 772 } 773 break; 774 } 775 case ISD::SIGN_EXTEND_INREG: { 776 // If none of the extended bits are demanded, eliminate the sextinreg. 777 SDValue Op0 = Op.getOperand(0); 778 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 779 unsigned ExBits = ExVT.getScalarSizeInBits(); 780 if (DemandedBits.getActiveBits() <= ExBits) 781 return Op0; 782 // If the input is already sign extended, just drop the extension. 783 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 784 if (NumSignBits >= (BitWidth - ExBits + 1)) 785 return Op0; 786 break; 787 } 788 case ISD::ANY_EXTEND_VECTOR_INREG: 789 case ISD::SIGN_EXTEND_VECTOR_INREG: 790 case ISD::ZERO_EXTEND_VECTOR_INREG: { 791 // If we only want the lowest element and none of extended bits, then we can 792 // return the bitcasted source vector. 793 SDValue Src = Op.getOperand(0); 794 EVT SrcVT = Src.getValueType(); 795 EVT DstVT = Op.getValueType(); 796 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 797 DAG.getDataLayout().isLittleEndian() && 798 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 799 return DAG.getBitcast(DstVT, Src); 800 } 801 break; 802 } 803 case ISD::INSERT_VECTOR_ELT: { 804 // If we don't demand the inserted element, return the base vector. 805 SDValue Vec = Op.getOperand(0); 806 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 807 EVT VecVT = Vec.getValueType(); 808 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 809 !DemandedElts[CIdx->getZExtValue()]) 810 return Vec; 811 break; 812 } 813 case ISD::INSERT_SUBVECTOR: { 814 // If we don't demand the inserted subvector, return the base vector. 815 SDValue Vec = Op.getOperand(0); 816 SDValue Sub = Op.getOperand(1); 817 uint64_t Idx = Op.getConstantOperandVal(2); 818 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 819 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 820 return Vec; 821 break; 822 } 823 case ISD::VECTOR_SHUFFLE: { 824 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 825 826 // If all the demanded elts are from one operand and are inline, 827 // then we can use the operand directly. 828 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 829 for (unsigned i = 0; i != NumElts; ++i) { 830 int M = ShuffleMask[i]; 831 if (M < 0 || !DemandedElts[i]) 832 continue; 833 AllUndef = false; 834 IdentityLHS &= (M == (int)i); 835 IdentityRHS &= ((M - NumElts) == i); 836 } 837 838 if (AllUndef) 839 return DAG.getUNDEF(Op.getValueType()); 840 if (IdentityLHS) 841 return Op.getOperand(0); 842 if (IdentityRHS) 843 return Op.getOperand(1); 844 break; 845 } 846 default: 847 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 848 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 849 Op, DemandedBits, DemandedElts, DAG, Depth)) 850 return V; 851 break; 852 } 853 return SDValue(); 854 } 855 856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 857 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 858 unsigned Depth) const { 859 EVT VT = Op.getValueType(); 860 APInt DemandedElts = VT.isVector() 861 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 862 : APInt(1, 1); 863 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 864 Depth); 865 } 866 867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 868 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 869 unsigned Depth) const { 870 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 872 Depth); 873 } 874 875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 876 /// result of Op are ever used downstream. If we can use this information to 877 /// simplify Op, create a new simplified DAG node and return true, returning the 878 /// original and new nodes in Old and New. Otherwise, analyze the expression and 879 /// return a mask of Known bits for the expression (used to simplify the 880 /// caller). The Known bits may only be accurate for those bits in the 881 /// OriginalDemandedBits and OriginalDemandedElts. 882 bool TargetLowering::SimplifyDemandedBits( 883 SDValue Op, const APInt &OriginalDemandedBits, 884 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 885 unsigned Depth, bool AssumeSingleUse) const { 886 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 887 assert(Op.getScalarValueSizeInBits() == BitWidth && 888 "Mask size mismatches value type size!"); 889 890 // Don't know anything. 891 Known = KnownBits(BitWidth); 892 893 // TODO: We can probably do more work on calculating the known bits and 894 // simplifying the operations for scalable vectors, but for now we just 895 // bail out. 896 if (Op.getValueType().isScalableVector()) 897 return false; 898 899 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 900 assert((!Op.getValueType().isVector() || 901 NumElts == Op.getValueType().getVectorNumElements()) && 902 "Unexpected vector size"); 903 904 APInt DemandedBits = OriginalDemandedBits; 905 APInt DemandedElts = OriginalDemandedElts; 906 SDLoc dl(Op); 907 auto &DL = TLO.DAG.getDataLayout(); 908 909 // Undef operand. 910 if (Op.isUndef()) 911 return false; 912 913 if (Op.getOpcode() == ISD::Constant) { 914 // We know all of the bits for a constant! 915 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 916 Known.Zero = ~Known.One; 917 return false; 918 } 919 920 // Other users may use these bits. 921 EVT VT = Op.getValueType(); 922 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 923 if (Depth != 0) { 924 // If not at the root, Just compute the Known bits to 925 // simplify things downstream. 926 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 927 return false; 928 } 929 // If this is the root being simplified, allow it to have multiple uses, 930 // just set the DemandedBits/Elts to all bits. 931 DemandedBits = APInt::getAllOnesValue(BitWidth); 932 DemandedElts = APInt::getAllOnesValue(NumElts); 933 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 934 // Not demanding any bits/elts from Op. 935 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 936 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 937 // Limit search depth. 938 return false; 939 } 940 941 KnownBits Known2; 942 switch (Op.getOpcode()) { 943 case ISD::TargetConstant: 944 llvm_unreachable("Can't simplify this node"); 945 case ISD::SCALAR_TO_VECTOR: { 946 if (!DemandedElts[0]) 947 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 948 949 KnownBits SrcKnown; 950 SDValue Src = Op.getOperand(0); 951 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 952 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 953 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 954 return true; 955 956 // Upper elements are undef, so only get the knownbits if we just demand 957 // the bottom element. 958 if (DemandedElts == 1) 959 Known = SrcKnown.anyextOrTrunc(BitWidth); 960 break; 961 } 962 case ISD::BUILD_VECTOR: 963 // Collect the known bits that are shared by every demanded element. 964 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 965 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 966 return false; // Don't fall through, will infinitely loop. 967 case ISD::LOAD: { 968 LoadSDNode *LD = cast<LoadSDNode>(Op); 969 if (getTargetConstantFromLoad(LD)) { 970 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 971 return false; // Don't fall through, will infinitely loop. 972 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 973 // If this is a ZEXTLoad and we are looking at the loaded value. 974 EVT MemVT = LD->getMemoryVT(); 975 unsigned MemBits = MemVT.getScalarSizeInBits(); 976 Known.Zero.setBitsFrom(MemBits); 977 return false; // Don't fall through, will infinitely loop. 978 } 979 break; 980 } 981 case ISD::INSERT_VECTOR_ELT: { 982 SDValue Vec = Op.getOperand(0); 983 SDValue Scl = Op.getOperand(1); 984 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 985 EVT VecVT = Vec.getValueType(); 986 987 // If index isn't constant, assume we need all vector elements AND the 988 // inserted element. 989 APInt DemandedVecElts(DemandedElts); 990 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 991 unsigned Idx = CIdx->getZExtValue(); 992 DemandedVecElts.clearBit(Idx); 993 994 // Inserted element is not required. 995 if (!DemandedElts[Idx]) 996 return TLO.CombineTo(Op, Vec); 997 } 998 999 KnownBits KnownScl; 1000 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1001 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1002 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1003 return true; 1004 1005 Known = KnownScl.anyextOrTrunc(BitWidth); 1006 1007 KnownBits KnownVec; 1008 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1009 Depth + 1)) 1010 return true; 1011 1012 if (!!DemandedVecElts) { 1013 Known.One &= KnownVec.One; 1014 Known.Zero &= KnownVec.Zero; 1015 } 1016 1017 return false; 1018 } 1019 case ISD::INSERT_SUBVECTOR: { 1020 // Demand any elements from the subvector and the remainder from the src its 1021 // inserted into. 1022 SDValue Src = Op.getOperand(0); 1023 SDValue Sub = Op.getOperand(1); 1024 uint64_t Idx = Op.getConstantOperandVal(2); 1025 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1026 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1027 APInt DemandedSrcElts = DemandedElts; 1028 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1029 1030 KnownBits KnownSub, KnownSrc; 1031 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1032 Depth + 1)) 1033 return true; 1034 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1035 Depth + 1)) 1036 return true; 1037 1038 Known.Zero.setAllBits(); 1039 Known.One.setAllBits(); 1040 if (!!DemandedSubElts) { 1041 Known.One &= KnownSub.One; 1042 Known.Zero &= KnownSub.Zero; 1043 } 1044 if (!!DemandedSrcElts) { 1045 Known.One &= KnownSrc.One; 1046 Known.Zero &= KnownSrc.Zero; 1047 } 1048 1049 // Attempt to avoid multi-use src if we don't need anything from it. 1050 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1051 !DemandedSrcElts.isAllOnesValue()) { 1052 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1053 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1054 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1055 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1056 if (NewSub || NewSrc) { 1057 NewSub = NewSub ? NewSub : Sub; 1058 NewSrc = NewSrc ? NewSrc : Src; 1059 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1060 Op.getOperand(2)); 1061 return TLO.CombineTo(Op, NewOp); 1062 } 1063 } 1064 break; 1065 } 1066 case ISD::EXTRACT_SUBVECTOR: { 1067 // Offset the demanded elts by the subvector index. 1068 SDValue Src = Op.getOperand(0); 1069 if (Src.getValueType().isScalableVector()) 1070 break; 1071 uint64_t Idx = Op.getConstantOperandVal(1); 1072 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1073 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1074 1075 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1076 Depth + 1)) 1077 return true; 1078 1079 // Attempt to avoid multi-use src if we don't need anything from it. 1080 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1081 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1082 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1083 if (DemandedSrc) { 1084 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1085 Op.getOperand(1)); 1086 return TLO.CombineTo(Op, NewOp); 1087 } 1088 } 1089 break; 1090 } 1091 case ISD::CONCAT_VECTORS: { 1092 Known.Zero.setAllBits(); 1093 Known.One.setAllBits(); 1094 EVT SubVT = Op.getOperand(0).getValueType(); 1095 unsigned NumSubVecs = Op.getNumOperands(); 1096 unsigned NumSubElts = SubVT.getVectorNumElements(); 1097 for (unsigned i = 0; i != NumSubVecs; ++i) { 1098 APInt DemandedSubElts = 1099 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1100 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1101 Known2, TLO, Depth + 1)) 1102 return true; 1103 // Known bits are shared by every demanded subvector element. 1104 if (!!DemandedSubElts) { 1105 Known.One &= Known2.One; 1106 Known.Zero &= Known2.Zero; 1107 } 1108 } 1109 break; 1110 } 1111 case ISD::VECTOR_SHUFFLE: { 1112 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1113 1114 // Collect demanded elements from shuffle operands.. 1115 APInt DemandedLHS(NumElts, 0); 1116 APInt DemandedRHS(NumElts, 0); 1117 for (unsigned i = 0; i != NumElts; ++i) { 1118 if (!DemandedElts[i]) 1119 continue; 1120 int M = ShuffleMask[i]; 1121 if (M < 0) { 1122 // For UNDEF elements, we don't know anything about the common state of 1123 // the shuffle result. 1124 DemandedLHS.clearAllBits(); 1125 DemandedRHS.clearAllBits(); 1126 break; 1127 } 1128 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1129 if (M < (int)NumElts) 1130 DemandedLHS.setBit(M); 1131 else 1132 DemandedRHS.setBit(M - NumElts); 1133 } 1134 1135 if (!!DemandedLHS || !!DemandedRHS) { 1136 SDValue Op0 = Op.getOperand(0); 1137 SDValue Op1 = Op.getOperand(1); 1138 1139 Known.Zero.setAllBits(); 1140 Known.One.setAllBits(); 1141 if (!!DemandedLHS) { 1142 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1143 Depth + 1)) 1144 return true; 1145 Known.One &= Known2.One; 1146 Known.Zero &= Known2.Zero; 1147 } 1148 if (!!DemandedRHS) { 1149 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1150 Depth + 1)) 1151 return true; 1152 Known.One &= Known2.One; 1153 Known.Zero &= Known2.Zero; 1154 } 1155 1156 // Attempt to avoid multi-use ops if we don't need anything from them. 1157 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1158 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1159 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1160 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1161 if (DemandedOp0 || DemandedOp1) { 1162 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1163 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1164 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1165 return TLO.CombineTo(Op, NewOp); 1166 } 1167 } 1168 break; 1169 } 1170 case ISD::AND: { 1171 SDValue Op0 = Op.getOperand(0); 1172 SDValue Op1 = Op.getOperand(1); 1173 1174 // If the RHS is a constant, check to see if the LHS would be zero without 1175 // using the bits from the RHS. Below, we use knowledge about the RHS to 1176 // simplify the LHS, here we're using information from the LHS to simplify 1177 // the RHS. 1178 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1179 // Do not increment Depth here; that can cause an infinite loop. 1180 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1181 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1182 if ((LHSKnown.Zero & DemandedBits) == 1183 (~RHSC->getAPIntValue() & DemandedBits)) 1184 return TLO.CombineTo(Op, Op0); 1185 1186 // If any of the set bits in the RHS are known zero on the LHS, shrink 1187 // the constant. 1188 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1189 DemandedElts, TLO)) 1190 return true; 1191 1192 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1193 // constant, but if this 'and' is only clearing bits that were just set by 1194 // the xor, then this 'and' can be eliminated by shrinking the mask of 1195 // the xor. For example, for a 32-bit X: 1196 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1197 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1198 LHSKnown.One == ~RHSC->getAPIntValue()) { 1199 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1200 return TLO.CombineTo(Op, Xor); 1201 } 1202 } 1203 1204 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1205 Depth + 1)) 1206 return true; 1207 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1208 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1209 Known2, TLO, Depth + 1)) 1210 return true; 1211 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1212 1213 // Attempt to avoid multi-use ops if we don't need anything from them. 1214 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1215 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1216 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1217 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1218 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1219 if (DemandedOp0 || DemandedOp1) { 1220 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1221 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1222 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1223 return TLO.CombineTo(Op, NewOp); 1224 } 1225 } 1226 1227 // If all of the demanded bits are known one on one side, return the other. 1228 // These bits cannot contribute to the result of the 'and'. 1229 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1230 return TLO.CombineTo(Op, Op0); 1231 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1232 return TLO.CombineTo(Op, Op1); 1233 // If all of the demanded bits in the inputs are known zeros, return zero. 1234 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1235 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1236 // If the RHS is a constant, see if we can simplify it. 1237 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1238 TLO)) 1239 return true; 1240 // If the operation can be done in a smaller type, do so. 1241 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1242 return true; 1243 1244 Known &= Known2; 1245 break; 1246 } 1247 case ISD::OR: { 1248 SDValue Op0 = Op.getOperand(0); 1249 SDValue Op1 = Op.getOperand(1); 1250 1251 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1252 Depth + 1)) 1253 return true; 1254 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1255 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1256 Known2, TLO, Depth + 1)) 1257 return true; 1258 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1259 1260 // Attempt to avoid multi-use ops if we don't need anything from them. 1261 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1262 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1263 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1264 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1265 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1266 if (DemandedOp0 || DemandedOp1) { 1267 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1268 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1269 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1270 return TLO.CombineTo(Op, NewOp); 1271 } 1272 } 1273 1274 // If all of the demanded bits are known zero on one side, return the other. 1275 // These bits cannot contribute to the result of the 'or'. 1276 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1277 return TLO.CombineTo(Op, Op0); 1278 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1279 return TLO.CombineTo(Op, Op1); 1280 // If the RHS is a constant, see if we can simplify it. 1281 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1282 return true; 1283 // If the operation can be done in a smaller type, do so. 1284 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1285 return true; 1286 1287 Known |= Known2; 1288 break; 1289 } 1290 case ISD::XOR: { 1291 SDValue Op0 = Op.getOperand(0); 1292 SDValue Op1 = Op.getOperand(1); 1293 1294 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1295 Depth + 1)) 1296 return true; 1297 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1298 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1299 Depth + 1)) 1300 return true; 1301 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1302 1303 // Attempt to avoid multi-use ops if we don't need anything from them. 1304 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1305 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1306 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1307 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1308 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1309 if (DemandedOp0 || DemandedOp1) { 1310 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1311 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1312 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1313 return TLO.CombineTo(Op, NewOp); 1314 } 1315 } 1316 1317 // If all of the demanded bits are known zero on one side, return the other. 1318 // These bits cannot contribute to the result of the 'xor'. 1319 if (DemandedBits.isSubsetOf(Known.Zero)) 1320 return TLO.CombineTo(Op, Op0); 1321 if (DemandedBits.isSubsetOf(Known2.Zero)) 1322 return TLO.CombineTo(Op, Op1); 1323 // If the operation can be done in a smaller type, do so. 1324 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1325 return true; 1326 1327 // If all of the unknown bits are known to be zero on one side or the other 1328 // turn this into an *inclusive* or. 1329 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1330 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1331 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1332 1333 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1334 if (C) { 1335 // If one side is a constant, and all of the set bits in the constant are 1336 // also known set on the other side, turn this into an AND, as we know 1337 // the bits will be cleared. 1338 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1339 // NB: it is okay if more bits are known than are requested 1340 if (C->getAPIntValue() == Known2.One) { 1341 SDValue ANDC = 1342 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1343 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1344 } 1345 1346 // If the RHS is a constant, see if we can change it. Don't alter a -1 1347 // constant because that's a 'not' op, and that is better for combining 1348 // and codegen. 1349 if (!C->isAllOnesValue() && 1350 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1351 // We're flipping all demanded bits. Flip the undemanded bits too. 1352 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1353 return TLO.CombineTo(Op, New); 1354 } 1355 } 1356 1357 // If we can't turn this into a 'not', try to shrink the constant. 1358 if (!C || !C->isAllOnesValue()) 1359 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1360 return true; 1361 1362 Known ^= Known2; 1363 break; 1364 } 1365 case ISD::SELECT: 1366 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1367 Depth + 1)) 1368 return true; 1369 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1370 Depth + 1)) 1371 return true; 1372 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1373 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1374 1375 // If the operands are constants, see if we can simplify them. 1376 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1377 return true; 1378 1379 // Only known if known in both the LHS and RHS. 1380 Known.One &= Known2.One; 1381 Known.Zero &= Known2.Zero; 1382 break; 1383 case ISD::SELECT_CC: 1384 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1385 Depth + 1)) 1386 return true; 1387 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1388 Depth + 1)) 1389 return true; 1390 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1391 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1392 1393 // If the operands are constants, see if we can simplify them. 1394 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1395 return true; 1396 1397 // Only known if known in both the LHS and RHS. 1398 Known.One &= Known2.One; 1399 Known.Zero &= Known2.Zero; 1400 break; 1401 case ISD::SETCC: { 1402 SDValue Op0 = Op.getOperand(0); 1403 SDValue Op1 = Op.getOperand(1); 1404 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1405 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1406 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1407 // -1, we may be able to bypass the setcc. 1408 if (DemandedBits.isSignMask() && 1409 Op0.getScalarValueSizeInBits() == BitWidth && 1410 getBooleanContents(Op0.getValueType()) == 1411 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1412 // If we're testing X < 0, then this compare isn't needed - just use X! 1413 // FIXME: We're limiting to integer types here, but this should also work 1414 // if we don't care about FP signed-zero. The use of SETLT with FP means 1415 // that we don't care about NaNs. 1416 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1417 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1418 return TLO.CombineTo(Op, Op0); 1419 1420 // TODO: Should we check for other forms of sign-bit comparisons? 1421 // Examples: X <= -1, X >= 0 1422 } 1423 if (getBooleanContents(Op0.getValueType()) == 1424 TargetLowering::ZeroOrOneBooleanContent && 1425 BitWidth > 1) 1426 Known.Zero.setBitsFrom(1); 1427 break; 1428 } 1429 case ISD::SHL: { 1430 SDValue Op0 = Op.getOperand(0); 1431 SDValue Op1 = Op.getOperand(1); 1432 EVT ShiftVT = Op1.getValueType(); 1433 1434 if (const APInt *SA = 1435 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1436 unsigned ShAmt = SA->getZExtValue(); 1437 if (ShAmt == 0) 1438 return TLO.CombineTo(Op, Op0); 1439 1440 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1441 // single shift. We can do this if the bottom bits (which are shifted 1442 // out) are never demanded. 1443 // TODO - support non-uniform vector amounts. 1444 if (Op0.getOpcode() == ISD::SRL) { 1445 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1446 if (const APInt *SA2 = 1447 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1448 unsigned C1 = SA2->getZExtValue(); 1449 unsigned Opc = ISD::SHL; 1450 int Diff = ShAmt - C1; 1451 if (Diff < 0) { 1452 Diff = -Diff; 1453 Opc = ISD::SRL; 1454 } 1455 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1456 return TLO.CombineTo( 1457 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1458 } 1459 } 1460 } 1461 1462 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1463 // are not demanded. This will likely allow the anyext to be folded away. 1464 // TODO - support non-uniform vector amounts. 1465 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1466 SDValue InnerOp = Op0.getOperand(0); 1467 EVT InnerVT = InnerOp.getValueType(); 1468 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1469 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1470 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1471 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1472 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1473 ShTy = InnerVT; 1474 SDValue NarrowShl = 1475 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1476 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1477 return TLO.CombineTo( 1478 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1479 } 1480 1481 // Repeat the SHL optimization above in cases where an extension 1482 // intervenes: (shl (anyext (shr x, c1)), c2) to 1483 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1484 // aren't demanded (as above) and that the shifted upper c1 bits of 1485 // x aren't demanded. 1486 // TODO - support non-uniform vector amounts. 1487 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1488 InnerOp.hasOneUse()) { 1489 if (const APInt *SA2 = 1490 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1491 unsigned InnerShAmt = SA2->getZExtValue(); 1492 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1493 DemandedBits.getActiveBits() <= 1494 (InnerBits - InnerShAmt + ShAmt) && 1495 DemandedBits.countTrailingZeros() >= ShAmt) { 1496 SDValue NewSA = 1497 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1498 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1499 InnerOp.getOperand(0)); 1500 return TLO.CombineTo( 1501 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1502 } 1503 } 1504 } 1505 } 1506 1507 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1508 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1509 Depth + 1)) 1510 return true; 1511 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1512 Known.Zero <<= ShAmt; 1513 Known.One <<= ShAmt; 1514 // low bits known zero. 1515 Known.Zero.setLowBits(ShAmt); 1516 1517 // Try shrinking the operation as long as the shift amount will still be 1518 // in range. 1519 if ((ShAmt < DemandedBits.getActiveBits()) && 1520 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1521 return true; 1522 } 1523 1524 // If we are only demanding sign bits then we can use the shift source 1525 // directly. 1526 if (const APInt *MaxSA = 1527 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1528 unsigned ShAmt = MaxSA->getZExtValue(); 1529 unsigned NumSignBits = 1530 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1531 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1532 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1533 return TLO.CombineTo(Op, Op0); 1534 } 1535 break; 1536 } 1537 case ISD::SRL: { 1538 SDValue Op0 = Op.getOperand(0); 1539 SDValue Op1 = Op.getOperand(1); 1540 EVT ShiftVT = Op1.getValueType(); 1541 1542 if (const APInt *SA = 1543 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1549 // single shift. We can do this if the top bits (which are shifted out) 1550 // are never demanded. 1551 // TODO - support non-uniform vector amounts. 1552 if (Op0.getOpcode() == ISD::SHL) { 1553 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1554 if (const APInt *SA2 = 1555 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1556 unsigned C1 = SA2->getZExtValue(); 1557 unsigned Opc = ISD::SRL; 1558 int Diff = ShAmt - C1; 1559 if (Diff < 0) { 1560 Diff = -Diff; 1561 Opc = ISD::SHL; 1562 } 1563 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1564 return TLO.CombineTo( 1565 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1566 } 1567 } 1568 } 1569 1570 APInt InDemandedMask = (DemandedBits << ShAmt); 1571 1572 // If the shift is exact, then it does demand the low bits (and knows that 1573 // they are zero). 1574 if (Op->getFlags().hasExact()) 1575 InDemandedMask.setLowBits(ShAmt); 1576 1577 // Compute the new bits that are at the top now. 1578 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1579 Depth + 1)) 1580 return true; 1581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1582 Known.Zero.lshrInPlace(ShAmt); 1583 Known.One.lshrInPlace(ShAmt); 1584 // High bits known zero. 1585 Known.Zero.setHighBits(ShAmt); 1586 } 1587 break; 1588 } 1589 case ISD::SRA: { 1590 SDValue Op0 = Op.getOperand(0); 1591 SDValue Op1 = Op.getOperand(1); 1592 EVT ShiftVT = Op1.getValueType(); 1593 1594 // If we only want bits that already match the signbit then we don't need 1595 // to shift. 1596 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1597 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1598 NumHiDemandedBits) 1599 return TLO.CombineTo(Op, Op0); 1600 1601 // If this is an arithmetic shift right and only the low-bit is set, we can 1602 // always convert this into a logical shr, even if the shift amount is 1603 // variable. The low bit of the shift cannot be an input sign bit unless 1604 // the shift amount is >= the size of the datatype, which is undefined. 1605 if (DemandedBits.isOneValue()) 1606 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1607 1608 if (const APInt *SA = 1609 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1610 unsigned ShAmt = SA->getZExtValue(); 1611 if (ShAmt == 0) 1612 return TLO.CombineTo(Op, Op0); 1613 1614 APInt InDemandedMask = (DemandedBits << ShAmt); 1615 1616 // If the shift is exact, then it does demand the low bits (and knows that 1617 // they are zero). 1618 if (Op->getFlags().hasExact()) 1619 InDemandedMask.setLowBits(ShAmt); 1620 1621 // If any of the demanded bits are produced by the sign extension, we also 1622 // demand the input sign bit. 1623 if (DemandedBits.countLeadingZeros() < ShAmt) 1624 InDemandedMask.setSignBit(); 1625 1626 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1630 Known.Zero.lshrInPlace(ShAmt); 1631 Known.One.lshrInPlace(ShAmt); 1632 1633 // If the input sign bit is known to be zero, or if none of the top bits 1634 // are demanded, turn this into an unsigned shift right. 1635 if (Known.Zero[BitWidth - ShAmt - 1] || 1636 DemandedBits.countLeadingZeros() >= ShAmt) { 1637 SDNodeFlags Flags; 1638 Flags.setExact(Op->getFlags().hasExact()); 1639 return TLO.CombineTo( 1640 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1641 } 1642 1643 int Log2 = DemandedBits.exactLogBase2(); 1644 if (Log2 >= 0) { 1645 // The bit must come from the sign. 1646 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1647 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1648 } 1649 1650 if (Known.One[BitWidth - ShAmt - 1]) 1651 // New bits are known one. 1652 Known.One.setHighBits(ShAmt); 1653 1654 // Attempt to avoid multi-use ops if we don't need anything from them. 1655 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1656 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1657 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1658 if (DemandedOp0) { 1659 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1660 return TLO.CombineTo(Op, NewOp); 1661 } 1662 } 1663 } 1664 break; 1665 } 1666 case ISD::FSHL: 1667 case ISD::FSHR: { 1668 SDValue Op0 = Op.getOperand(0); 1669 SDValue Op1 = Op.getOperand(1); 1670 SDValue Op2 = Op.getOperand(2); 1671 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1672 1673 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1674 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1675 1676 // For fshl, 0-shift returns the 1st arg. 1677 // For fshr, 0-shift returns the 2nd arg. 1678 if (Amt == 0) { 1679 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1680 Known, TLO, Depth + 1)) 1681 return true; 1682 break; 1683 } 1684 1685 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1686 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1687 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1688 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1689 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1690 Depth + 1)) 1691 return true; 1692 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1693 Depth + 1)) 1694 return true; 1695 1696 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1697 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1698 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1699 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1700 Known.One |= Known2.One; 1701 Known.Zero |= Known2.Zero; 1702 } 1703 1704 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1705 if (isPowerOf2_32(BitWidth)) { 1706 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1707 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1708 Known2, TLO, Depth + 1)) 1709 return true; 1710 } 1711 break; 1712 } 1713 case ISD::ROTL: 1714 case ISD::ROTR: { 1715 SDValue Op0 = Op.getOperand(0); 1716 SDValue Op1 = Op.getOperand(1); 1717 1718 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1719 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1720 return TLO.CombineTo(Op, Op0); 1721 1722 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1723 if (isPowerOf2_32(BitWidth)) { 1724 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1725 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1726 Depth + 1)) 1727 return true; 1728 } 1729 break; 1730 } 1731 case ISD::BITREVERSE: { 1732 SDValue Src = Op.getOperand(0); 1733 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1734 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1735 Depth + 1)) 1736 return true; 1737 Known.One = Known2.One.reverseBits(); 1738 Known.Zero = Known2.Zero.reverseBits(); 1739 break; 1740 } 1741 case ISD::BSWAP: { 1742 SDValue Src = Op.getOperand(0); 1743 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1744 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1745 Depth + 1)) 1746 return true; 1747 Known.One = Known2.One.byteSwap(); 1748 Known.Zero = Known2.Zero.byteSwap(); 1749 break; 1750 } 1751 case ISD::CTPOP: { 1752 // If only 1 bit is demanded, replace with PARITY as long as we're before 1753 // op legalization. 1754 // FIXME: Limit to scalars for now. 1755 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1756 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1757 Op.getOperand(0))); 1758 1759 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1760 break; 1761 } 1762 case ISD::SIGN_EXTEND_INREG: { 1763 SDValue Op0 = Op.getOperand(0); 1764 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1765 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1766 1767 // If we only care about the highest bit, don't bother shifting right. 1768 if (DemandedBits.isSignMask()) { 1769 unsigned NumSignBits = 1770 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1771 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1772 // However if the input is already sign extended we expect the sign 1773 // extension to be dropped altogether later and do not simplify. 1774 if (!AlreadySignExtended) { 1775 // Compute the correct shift amount type, which must be getShiftAmountTy 1776 // for scalar types after legalization. 1777 EVT ShiftAmtTy = VT; 1778 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1779 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1780 1781 SDValue ShiftAmt = 1782 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1783 return TLO.CombineTo(Op, 1784 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1785 } 1786 } 1787 1788 // If none of the extended bits are demanded, eliminate the sextinreg. 1789 if (DemandedBits.getActiveBits() <= ExVTBits) 1790 return TLO.CombineTo(Op, Op0); 1791 1792 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1793 1794 // Since the sign extended bits are demanded, we know that the sign 1795 // bit is demanded. 1796 InputDemandedBits.setBit(ExVTBits - 1); 1797 1798 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1799 return true; 1800 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1801 1802 // If the sign bit of the input is known set or clear, then we know the 1803 // top bits of the result. 1804 1805 // If the input sign bit is known zero, convert this into a zero extension. 1806 if (Known.Zero[ExVTBits - 1]) 1807 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1808 1809 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1810 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1811 Known.One.setBitsFrom(ExVTBits); 1812 Known.Zero &= Mask; 1813 } else { // Input sign bit unknown 1814 Known.Zero &= Mask; 1815 Known.One &= Mask; 1816 } 1817 break; 1818 } 1819 case ISD::BUILD_PAIR: { 1820 EVT HalfVT = Op.getOperand(0).getValueType(); 1821 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1822 1823 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1824 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1825 1826 KnownBits KnownLo, KnownHi; 1827 1828 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1829 return true; 1830 1831 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1832 return true; 1833 1834 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1835 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1836 1837 Known.One = KnownLo.One.zext(BitWidth) | 1838 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1839 break; 1840 } 1841 case ISD::ZERO_EXTEND: 1842 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1843 SDValue Src = Op.getOperand(0); 1844 EVT SrcVT = Src.getValueType(); 1845 unsigned InBits = SrcVT.getScalarSizeInBits(); 1846 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1847 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1848 1849 // If none of the top bits are demanded, convert this into an any_extend. 1850 if (DemandedBits.getActiveBits() <= InBits) { 1851 // If we only need the non-extended bits of the bottom element 1852 // then we can just bitcast to the result. 1853 if (IsVecInReg && DemandedElts == 1 && 1854 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1855 TLO.DAG.getDataLayout().isLittleEndian()) 1856 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1857 1858 unsigned Opc = 1859 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1860 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1861 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1862 } 1863 1864 APInt InDemandedBits = DemandedBits.trunc(InBits); 1865 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1866 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1867 Depth + 1)) 1868 return true; 1869 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1870 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1871 Known = Known.zext(BitWidth); 1872 1873 // Attempt to avoid multi-use ops if we don't need anything from them. 1874 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1875 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1876 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1877 break; 1878 } 1879 case ISD::SIGN_EXTEND: 1880 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1881 SDValue Src = Op.getOperand(0); 1882 EVT SrcVT = Src.getValueType(); 1883 unsigned InBits = SrcVT.getScalarSizeInBits(); 1884 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1885 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1886 1887 // If none of the top bits are demanded, convert this into an any_extend. 1888 if (DemandedBits.getActiveBits() <= InBits) { 1889 // If we only need the non-extended bits of the bottom element 1890 // then we can just bitcast to the result. 1891 if (IsVecInReg && DemandedElts == 1 && 1892 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1893 TLO.DAG.getDataLayout().isLittleEndian()) 1894 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1895 1896 unsigned Opc = 1897 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1898 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1899 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1900 } 1901 1902 APInt InDemandedBits = DemandedBits.trunc(InBits); 1903 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1904 1905 // Since some of the sign extended bits are demanded, we know that the sign 1906 // bit is demanded. 1907 InDemandedBits.setBit(InBits - 1); 1908 1909 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1910 Depth + 1)) 1911 return true; 1912 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1913 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1914 1915 // If the sign bit is known one, the top bits match. 1916 Known = Known.sext(BitWidth); 1917 1918 // If the sign bit is known zero, convert this to a zero extend. 1919 if (Known.isNonNegative()) { 1920 unsigned Opc = 1921 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1922 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1923 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1924 } 1925 1926 // Attempt to avoid multi-use ops if we don't need anything from them. 1927 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1928 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1929 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1930 break; 1931 } 1932 case ISD::ANY_EXTEND: 1933 case ISD::ANY_EXTEND_VECTOR_INREG: { 1934 SDValue Src = Op.getOperand(0); 1935 EVT SrcVT = Src.getValueType(); 1936 unsigned InBits = SrcVT.getScalarSizeInBits(); 1937 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1938 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1939 1940 // If we only need the bottom element then we can just bitcast. 1941 // TODO: Handle ANY_EXTEND? 1942 if (IsVecInReg && DemandedElts == 1 && 1943 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1944 TLO.DAG.getDataLayout().isLittleEndian()) 1945 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1946 1947 APInt InDemandedBits = DemandedBits.trunc(InBits); 1948 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1949 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1950 Depth + 1)) 1951 return true; 1952 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1953 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1954 Known = Known.anyext(BitWidth); 1955 1956 // Attempt to avoid multi-use ops if we don't need anything from them. 1957 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1958 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1959 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1960 break; 1961 } 1962 case ISD::TRUNCATE: { 1963 SDValue Src = Op.getOperand(0); 1964 1965 // Simplify the input, using demanded bit information, and compute the known 1966 // zero/one bits live out. 1967 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1968 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1969 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1970 return true; 1971 Known = Known.trunc(BitWidth); 1972 1973 // Attempt to avoid multi-use ops if we don't need anything from them. 1974 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1975 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1976 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1977 1978 // If the input is only used by this truncate, see if we can shrink it based 1979 // on the known demanded bits. 1980 if (Src.getNode()->hasOneUse()) { 1981 switch (Src.getOpcode()) { 1982 default: 1983 break; 1984 case ISD::SRL: 1985 // Shrink SRL by a constant if none of the high bits shifted in are 1986 // demanded. 1987 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1988 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1989 // undesirable. 1990 break; 1991 1992 SDValue ShAmt = Src.getOperand(1); 1993 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1994 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1995 break; 1996 uint64_t ShVal = ShAmtC->getZExtValue(); 1997 1998 APInt HighBits = 1999 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2000 HighBits.lshrInPlace(ShVal); 2001 HighBits = HighBits.trunc(BitWidth); 2002 2003 if (!(HighBits & DemandedBits)) { 2004 // None of the shifted in bits are needed. Add a truncate of the 2005 // shift input, then shift it. 2006 if (TLO.LegalTypes()) 2007 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 2008 SDValue NewTrunc = 2009 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2010 return TLO.CombineTo( 2011 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 2012 } 2013 break; 2014 } 2015 } 2016 2017 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2018 break; 2019 } 2020 case ISD::AssertZext: { 2021 // AssertZext demands all of the high bits, plus any of the low bits 2022 // demanded by its users. 2023 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2024 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2025 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2026 TLO, Depth + 1)) 2027 return true; 2028 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2029 2030 Known.Zero |= ~InMask; 2031 break; 2032 } 2033 case ISD::EXTRACT_VECTOR_ELT: { 2034 SDValue Src = Op.getOperand(0); 2035 SDValue Idx = Op.getOperand(1); 2036 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2037 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2038 2039 if (SrcEltCnt.isScalable()) 2040 return false; 2041 2042 // Demand the bits from every vector element without a constant index. 2043 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2044 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2045 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2046 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2047 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2048 2049 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2050 // anything about the extended bits. 2051 APInt DemandedSrcBits = DemandedBits; 2052 if (BitWidth > EltBitWidth) 2053 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2054 2055 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2056 Depth + 1)) 2057 return true; 2058 2059 // Attempt to avoid multi-use ops if we don't need anything from them. 2060 if (!DemandedSrcBits.isAllOnesValue() || 2061 !DemandedSrcElts.isAllOnesValue()) { 2062 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2063 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2064 SDValue NewOp = 2065 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2066 return TLO.CombineTo(Op, NewOp); 2067 } 2068 } 2069 2070 Known = Known2; 2071 if (BitWidth > EltBitWidth) 2072 Known = Known.anyext(BitWidth); 2073 break; 2074 } 2075 case ISD::BITCAST: { 2076 SDValue Src = Op.getOperand(0); 2077 EVT SrcVT = Src.getValueType(); 2078 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2079 2080 // If this is an FP->Int bitcast and if the sign bit is the only 2081 // thing demanded, turn this into a FGETSIGN. 2082 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2083 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2084 SrcVT.isFloatingPoint()) { 2085 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2086 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2087 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2088 SrcVT != MVT::f128) { 2089 // Cannot eliminate/lower SHL for f128 yet. 2090 EVT Ty = OpVTLegal ? VT : MVT::i32; 2091 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2092 // place. We expect the SHL to be eliminated by other optimizations. 2093 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2094 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2095 if (!OpVTLegal && OpVTSizeInBits > 32) 2096 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2097 unsigned ShVal = Op.getValueSizeInBits() - 1; 2098 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2099 return TLO.CombineTo(Op, 2100 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2101 } 2102 } 2103 2104 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2105 // Demand the elt/bit if any of the original elts/bits are demanded. 2106 // TODO - bigendian once we have test coverage. 2107 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2108 TLO.DAG.getDataLayout().isLittleEndian()) { 2109 unsigned Scale = BitWidth / NumSrcEltBits; 2110 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2111 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2112 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2113 for (unsigned i = 0; i != Scale; ++i) { 2114 unsigned Offset = i * NumSrcEltBits; 2115 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2116 if (!Sub.isNullValue()) { 2117 DemandedSrcBits |= Sub; 2118 for (unsigned j = 0; j != NumElts; ++j) 2119 if (DemandedElts[j]) 2120 DemandedSrcElts.setBit((j * Scale) + i); 2121 } 2122 } 2123 2124 APInt KnownSrcUndef, KnownSrcZero; 2125 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2126 KnownSrcZero, TLO, Depth + 1)) 2127 return true; 2128 2129 KnownBits KnownSrcBits; 2130 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2131 KnownSrcBits, TLO, Depth + 1)) 2132 return true; 2133 } else if ((NumSrcEltBits % BitWidth) == 0 && 2134 TLO.DAG.getDataLayout().isLittleEndian()) { 2135 unsigned Scale = NumSrcEltBits / BitWidth; 2136 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2137 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2138 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2139 for (unsigned i = 0; i != NumElts; ++i) 2140 if (DemandedElts[i]) { 2141 unsigned Offset = (i % Scale) * BitWidth; 2142 DemandedSrcBits.insertBits(DemandedBits, Offset); 2143 DemandedSrcElts.setBit(i / Scale); 2144 } 2145 2146 if (SrcVT.isVector()) { 2147 APInt KnownSrcUndef, KnownSrcZero; 2148 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2149 KnownSrcZero, TLO, Depth + 1)) 2150 return true; 2151 } 2152 2153 KnownBits KnownSrcBits; 2154 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2155 KnownSrcBits, TLO, Depth + 1)) 2156 return true; 2157 } 2158 2159 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2160 // recursive call where Known may be useful to the caller. 2161 if (Depth > 0) { 2162 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2163 return false; 2164 } 2165 break; 2166 } 2167 case ISD::ADD: 2168 case ISD::MUL: 2169 case ISD::SUB: { 2170 // Add, Sub, and Mul don't demand any bits in positions beyond that 2171 // of the highest bit demanded of them. 2172 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2173 SDNodeFlags Flags = Op.getNode()->getFlags(); 2174 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2175 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2176 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2177 Depth + 1) || 2178 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2179 Depth + 1) || 2180 // See if the operation should be performed at a smaller bit width. 2181 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2182 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2183 // Disable the nsw and nuw flags. We can no longer guarantee that we 2184 // won't wrap after simplification. 2185 Flags.setNoSignedWrap(false); 2186 Flags.setNoUnsignedWrap(false); 2187 SDValue NewOp = 2188 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2189 return TLO.CombineTo(Op, NewOp); 2190 } 2191 return true; 2192 } 2193 2194 // Attempt to avoid multi-use ops if we don't need anything from them. 2195 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2196 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2197 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2198 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2199 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2200 if (DemandedOp0 || DemandedOp1) { 2201 Flags.setNoSignedWrap(false); 2202 Flags.setNoUnsignedWrap(false); 2203 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2204 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2205 SDValue NewOp = 2206 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2207 return TLO.CombineTo(Op, NewOp); 2208 } 2209 } 2210 2211 // If we have a constant operand, we may be able to turn it into -1 if we 2212 // do not demand the high bits. This can make the constant smaller to 2213 // encode, allow more general folding, or match specialized instruction 2214 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2215 // is probably not useful (and could be detrimental). 2216 ConstantSDNode *C = isConstOrConstSplat(Op1); 2217 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2218 if (C && !C->isAllOnesValue() && !C->isOne() && 2219 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2220 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2221 // Disable the nsw and nuw flags. We can no longer guarantee that we 2222 // won't wrap after simplification. 2223 Flags.setNoSignedWrap(false); 2224 Flags.setNoUnsignedWrap(false); 2225 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2226 return TLO.CombineTo(Op, NewOp); 2227 } 2228 2229 LLVM_FALLTHROUGH; 2230 } 2231 default: 2232 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2233 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2234 Known, TLO, Depth)) 2235 return true; 2236 break; 2237 } 2238 2239 // Just use computeKnownBits to compute output bits. 2240 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2241 break; 2242 } 2243 2244 // If we know the value of all of the demanded bits, return this as a 2245 // constant. 2246 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2247 // Avoid folding to a constant if any OpaqueConstant is involved. 2248 const SDNode *N = Op.getNode(); 2249 for (SDNodeIterator I = SDNodeIterator::begin(N), 2250 E = SDNodeIterator::end(N); 2251 I != E; ++I) { 2252 SDNode *Op = *I; 2253 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2254 if (C->isOpaque()) 2255 return false; 2256 } 2257 // TODO: Handle float bits as well. 2258 if (VT.isInteger()) 2259 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2260 } 2261 2262 return false; 2263 } 2264 2265 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2266 const APInt &DemandedElts, 2267 APInt &KnownUndef, 2268 APInt &KnownZero, 2269 DAGCombinerInfo &DCI) const { 2270 SelectionDAG &DAG = DCI.DAG; 2271 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2272 !DCI.isBeforeLegalizeOps()); 2273 2274 bool Simplified = 2275 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2276 if (Simplified) { 2277 DCI.AddToWorklist(Op.getNode()); 2278 DCI.CommitTargetLoweringOpt(TLO); 2279 } 2280 2281 return Simplified; 2282 } 2283 2284 /// Given a vector binary operation and known undefined elements for each input 2285 /// operand, compute whether each element of the output is undefined. 2286 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2287 const APInt &UndefOp0, 2288 const APInt &UndefOp1) { 2289 EVT VT = BO.getValueType(); 2290 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2291 "Vector binop only"); 2292 2293 EVT EltVT = VT.getVectorElementType(); 2294 unsigned NumElts = VT.getVectorNumElements(); 2295 assert(UndefOp0.getBitWidth() == NumElts && 2296 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2297 2298 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2299 const APInt &UndefVals) { 2300 if (UndefVals[Index]) 2301 return DAG.getUNDEF(EltVT); 2302 2303 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2304 // Try hard to make sure that the getNode() call is not creating temporary 2305 // nodes. Ignore opaque integers because they do not constant fold. 2306 SDValue Elt = BV->getOperand(Index); 2307 auto *C = dyn_cast<ConstantSDNode>(Elt); 2308 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2309 return Elt; 2310 } 2311 2312 return SDValue(); 2313 }; 2314 2315 APInt KnownUndef = APInt::getNullValue(NumElts); 2316 for (unsigned i = 0; i != NumElts; ++i) { 2317 // If both inputs for this element are either constant or undef and match 2318 // the element type, compute the constant/undef result for this element of 2319 // the vector. 2320 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2321 // not handle FP constants. The code within getNode() should be refactored 2322 // to avoid the danger of creating a bogus temporary node here. 2323 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2324 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2325 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2326 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2327 KnownUndef.setBit(i); 2328 } 2329 return KnownUndef; 2330 } 2331 2332 bool TargetLowering::SimplifyDemandedVectorElts( 2333 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2334 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2335 bool AssumeSingleUse) const { 2336 EVT VT = Op.getValueType(); 2337 unsigned Opcode = Op.getOpcode(); 2338 APInt DemandedElts = OriginalDemandedElts; 2339 unsigned NumElts = DemandedElts.getBitWidth(); 2340 assert(VT.isVector() && "Expected vector op"); 2341 2342 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2343 2344 // TODO: For now we assume we know nothing about scalable vectors. 2345 if (VT.isScalableVector()) 2346 return false; 2347 2348 assert(VT.getVectorNumElements() == NumElts && 2349 "Mask size mismatches value type element count!"); 2350 2351 // Undef operand. 2352 if (Op.isUndef()) { 2353 KnownUndef.setAllBits(); 2354 return false; 2355 } 2356 2357 // If Op has other users, assume that all elements are needed. 2358 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2359 DemandedElts.setAllBits(); 2360 2361 // Not demanding any elements from Op. 2362 if (DemandedElts == 0) { 2363 KnownUndef.setAllBits(); 2364 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2365 } 2366 2367 // Limit search depth. 2368 if (Depth >= SelectionDAG::MaxRecursionDepth) 2369 return false; 2370 2371 SDLoc DL(Op); 2372 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2373 2374 // Helper for demanding the specified elements and all the bits of both binary 2375 // operands. 2376 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2377 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2378 TLO.DAG, Depth + 1); 2379 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2380 TLO.DAG, Depth + 1); 2381 if (NewOp0 || NewOp1) { 2382 SDValue NewOp = TLO.DAG.getNode( 2383 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2384 return TLO.CombineTo(Op, NewOp); 2385 } 2386 return false; 2387 }; 2388 2389 switch (Opcode) { 2390 case ISD::SCALAR_TO_VECTOR: { 2391 if (!DemandedElts[0]) { 2392 KnownUndef.setAllBits(); 2393 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2394 } 2395 KnownUndef.setHighBits(NumElts - 1); 2396 break; 2397 } 2398 case ISD::BITCAST: { 2399 SDValue Src = Op.getOperand(0); 2400 EVT SrcVT = Src.getValueType(); 2401 2402 // We only handle vectors here. 2403 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2404 if (!SrcVT.isVector()) 2405 break; 2406 2407 // Fast handling of 'identity' bitcasts. 2408 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2409 if (NumSrcElts == NumElts) 2410 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2411 KnownZero, TLO, Depth + 1); 2412 2413 APInt SrcZero, SrcUndef; 2414 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2415 2416 // Bitcast from 'large element' src vector to 'small element' vector, we 2417 // must demand a source element if any DemandedElt maps to it. 2418 if ((NumElts % NumSrcElts) == 0) { 2419 unsigned Scale = NumElts / NumSrcElts; 2420 for (unsigned i = 0; i != NumElts; ++i) 2421 if (DemandedElts[i]) 2422 SrcDemandedElts.setBit(i / Scale); 2423 2424 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2425 TLO, Depth + 1)) 2426 return true; 2427 2428 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2429 // of the large element. 2430 // TODO - bigendian once we have test coverage. 2431 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2432 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2433 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2434 for (unsigned i = 0; i != NumElts; ++i) 2435 if (DemandedElts[i]) { 2436 unsigned Ofs = (i % Scale) * EltSizeInBits; 2437 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2438 } 2439 2440 KnownBits Known; 2441 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2442 TLO, Depth + 1)) 2443 return true; 2444 } 2445 2446 // If the src element is zero/undef then all the output elements will be - 2447 // only demanded elements are guaranteed to be correct. 2448 for (unsigned i = 0; i != NumSrcElts; ++i) { 2449 if (SrcDemandedElts[i]) { 2450 if (SrcZero[i]) 2451 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2452 if (SrcUndef[i]) 2453 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2454 } 2455 } 2456 } 2457 2458 // Bitcast from 'small element' src vector to 'large element' vector, we 2459 // demand all smaller source elements covered by the larger demanded element 2460 // of this vector. 2461 if ((NumSrcElts % NumElts) == 0) { 2462 unsigned Scale = NumSrcElts / NumElts; 2463 for (unsigned i = 0; i != NumElts; ++i) 2464 if (DemandedElts[i]) 2465 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2466 2467 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2468 TLO, Depth + 1)) 2469 return true; 2470 2471 // If all the src elements covering an output element are zero/undef, then 2472 // the output element will be as well, assuming it was demanded. 2473 for (unsigned i = 0; i != NumElts; ++i) { 2474 if (DemandedElts[i]) { 2475 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2476 KnownZero.setBit(i); 2477 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2478 KnownUndef.setBit(i); 2479 } 2480 } 2481 } 2482 break; 2483 } 2484 case ISD::BUILD_VECTOR: { 2485 // Check all elements and simplify any unused elements with UNDEF. 2486 if (!DemandedElts.isAllOnesValue()) { 2487 // Don't simplify BROADCASTS. 2488 if (llvm::any_of(Op->op_values(), 2489 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2490 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2491 bool Updated = false; 2492 for (unsigned i = 0; i != NumElts; ++i) { 2493 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2494 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2495 KnownUndef.setBit(i); 2496 Updated = true; 2497 } 2498 } 2499 if (Updated) 2500 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2501 } 2502 } 2503 for (unsigned i = 0; i != NumElts; ++i) { 2504 SDValue SrcOp = Op.getOperand(i); 2505 if (SrcOp.isUndef()) { 2506 KnownUndef.setBit(i); 2507 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2508 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2509 KnownZero.setBit(i); 2510 } 2511 } 2512 break; 2513 } 2514 case ISD::CONCAT_VECTORS: { 2515 EVT SubVT = Op.getOperand(0).getValueType(); 2516 unsigned NumSubVecs = Op.getNumOperands(); 2517 unsigned NumSubElts = SubVT.getVectorNumElements(); 2518 for (unsigned i = 0; i != NumSubVecs; ++i) { 2519 SDValue SubOp = Op.getOperand(i); 2520 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2521 APInt SubUndef, SubZero; 2522 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2523 Depth + 1)) 2524 return true; 2525 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2526 KnownZero.insertBits(SubZero, i * NumSubElts); 2527 } 2528 break; 2529 } 2530 case ISD::INSERT_SUBVECTOR: { 2531 // Demand any elements from the subvector and the remainder from the src its 2532 // inserted into. 2533 SDValue Src = Op.getOperand(0); 2534 SDValue Sub = Op.getOperand(1); 2535 uint64_t Idx = Op.getConstantOperandVal(2); 2536 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2537 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2538 APInt DemandedSrcElts = DemandedElts; 2539 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2540 2541 APInt SubUndef, SubZero; 2542 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2543 Depth + 1)) 2544 return true; 2545 2546 // If none of the src operand elements are demanded, replace it with undef. 2547 if (!DemandedSrcElts && !Src.isUndef()) 2548 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2549 TLO.DAG.getUNDEF(VT), Sub, 2550 Op.getOperand(2))); 2551 2552 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2553 TLO, Depth + 1)) 2554 return true; 2555 KnownUndef.insertBits(SubUndef, Idx); 2556 KnownZero.insertBits(SubZero, Idx); 2557 2558 // Attempt to avoid multi-use ops if we don't need anything from them. 2559 if (!DemandedSrcElts.isAllOnesValue() || 2560 !DemandedSubElts.isAllOnesValue()) { 2561 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2562 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2563 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2564 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2565 if (NewSrc || NewSub) { 2566 NewSrc = NewSrc ? NewSrc : Src; 2567 NewSub = NewSub ? NewSub : Sub; 2568 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2569 NewSub, Op.getOperand(2)); 2570 return TLO.CombineTo(Op, NewOp); 2571 } 2572 } 2573 break; 2574 } 2575 case ISD::EXTRACT_SUBVECTOR: { 2576 // Offset the demanded elts by the subvector index. 2577 SDValue Src = Op.getOperand(0); 2578 if (Src.getValueType().isScalableVector()) 2579 break; 2580 uint64_t Idx = Op.getConstantOperandVal(1); 2581 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2582 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2583 2584 APInt SrcUndef, SrcZero; 2585 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2586 Depth + 1)) 2587 return true; 2588 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2589 KnownZero = SrcZero.extractBits(NumElts, Idx); 2590 2591 // Attempt to avoid multi-use ops if we don't need anything from them. 2592 if (!DemandedElts.isAllOnesValue()) { 2593 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2594 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2595 if (NewSrc) { 2596 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2597 Op.getOperand(1)); 2598 return TLO.CombineTo(Op, NewOp); 2599 } 2600 } 2601 break; 2602 } 2603 case ISD::INSERT_VECTOR_ELT: { 2604 SDValue Vec = Op.getOperand(0); 2605 SDValue Scl = Op.getOperand(1); 2606 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2607 2608 // For a legal, constant insertion index, if we don't need this insertion 2609 // then strip it, else remove it from the demanded elts. 2610 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2611 unsigned Idx = CIdx->getZExtValue(); 2612 if (!DemandedElts[Idx]) 2613 return TLO.CombineTo(Op, Vec); 2614 2615 APInt DemandedVecElts(DemandedElts); 2616 DemandedVecElts.clearBit(Idx); 2617 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2618 KnownZero, TLO, Depth + 1)) 2619 return true; 2620 2621 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2622 2623 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2624 break; 2625 } 2626 2627 APInt VecUndef, VecZero; 2628 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2629 Depth + 1)) 2630 return true; 2631 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2632 break; 2633 } 2634 case ISD::VSELECT: { 2635 // Try to transform the select condition based on the current demanded 2636 // elements. 2637 // TODO: If a condition element is undef, we can choose from one arm of the 2638 // select (and if one arm is undef, then we can propagate that to the 2639 // result). 2640 // TODO - add support for constant vselect masks (see IR version of this). 2641 APInt UnusedUndef, UnusedZero; 2642 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2643 UnusedZero, TLO, Depth + 1)) 2644 return true; 2645 2646 // See if we can simplify either vselect operand. 2647 APInt DemandedLHS(DemandedElts); 2648 APInt DemandedRHS(DemandedElts); 2649 APInt UndefLHS, ZeroLHS; 2650 APInt UndefRHS, ZeroRHS; 2651 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2652 ZeroLHS, TLO, Depth + 1)) 2653 return true; 2654 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2655 ZeroRHS, TLO, Depth + 1)) 2656 return true; 2657 2658 KnownUndef = UndefLHS & UndefRHS; 2659 KnownZero = ZeroLHS & ZeroRHS; 2660 break; 2661 } 2662 case ISD::VECTOR_SHUFFLE: { 2663 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2664 2665 // Collect demanded elements from shuffle operands.. 2666 APInt DemandedLHS(NumElts, 0); 2667 APInt DemandedRHS(NumElts, 0); 2668 for (unsigned i = 0; i != NumElts; ++i) { 2669 int M = ShuffleMask[i]; 2670 if (M < 0 || !DemandedElts[i]) 2671 continue; 2672 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2673 if (M < (int)NumElts) 2674 DemandedLHS.setBit(M); 2675 else 2676 DemandedRHS.setBit(M - NumElts); 2677 } 2678 2679 // See if we can simplify either shuffle operand. 2680 APInt UndefLHS, ZeroLHS; 2681 APInt UndefRHS, ZeroRHS; 2682 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2683 ZeroLHS, TLO, Depth + 1)) 2684 return true; 2685 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2686 ZeroRHS, TLO, Depth + 1)) 2687 return true; 2688 2689 // Simplify mask using undef elements from LHS/RHS. 2690 bool Updated = false; 2691 bool IdentityLHS = true, IdentityRHS = true; 2692 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2693 for (unsigned i = 0; i != NumElts; ++i) { 2694 int &M = NewMask[i]; 2695 if (M < 0) 2696 continue; 2697 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2698 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2699 Updated = true; 2700 M = -1; 2701 } 2702 IdentityLHS &= (M < 0) || (M == (int)i); 2703 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2704 } 2705 2706 // Update legal shuffle masks based on demanded elements if it won't reduce 2707 // to Identity which can cause premature removal of the shuffle mask. 2708 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2709 SDValue LegalShuffle = 2710 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2711 NewMask, TLO.DAG); 2712 if (LegalShuffle) 2713 return TLO.CombineTo(Op, LegalShuffle); 2714 } 2715 2716 // Propagate undef/zero elements from LHS/RHS. 2717 for (unsigned i = 0; i != NumElts; ++i) { 2718 int M = ShuffleMask[i]; 2719 if (M < 0) { 2720 KnownUndef.setBit(i); 2721 } else if (M < (int)NumElts) { 2722 if (UndefLHS[M]) 2723 KnownUndef.setBit(i); 2724 if (ZeroLHS[M]) 2725 KnownZero.setBit(i); 2726 } else { 2727 if (UndefRHS[M - NumElts]) 2728 KnownUndef.setBit(i); 2729 if (ZeroRHS[M - NumElts]) 2730 KnownZero.setBit(i); 2731 } 2732 } 2733 break; 2734 } 2735 case ISD::ANY_EXTEND_VECTOR_INREG: 2736 case ISD::SIGN_EXTEND_VECTOR_INREG: 2737 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2738 APInt SrcUndef, SrcZero; 2739 SDValue Src = Op.getOperand(0); 2740 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2741 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2742 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2743 Depth + 1)) 2744 return true; 2745 KnownZero = SrcZero.zextOrTrunc(NumElts); 2746 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2747 2748 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2749 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2750 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2751 // aext - if we just need the bottom element then we can bitcast. 2752 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2753 } 2754 2755 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2756 // zext(undef) upper bits are guaranteed to be zero. 2757 if (DemandedElts.isSubsetOf(KnownUndef)) 2758 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2759 KnownUndef.clearAllBits(); 2760 } 2761 break; 2762 } 2763 2764 // TODO: There are more binop opcodes that could be handled here - MIN, 2765 // MAX, saturated math, etc. 2766 case ISD::OR: 2767 case ISD::XOR: 2768 case ISD::ADD: 2769 case ISD::SUB: 2770 case ISD::FADD: 2771 case ISD::FSUB: 2772 case ISD::FMUL: 2773 case ISD::FDIV: 2774 case ISD::FREM: { 2775 SDValue Op0 = Op.getOperand(0); 2776 SDValue Op1 = Op.getOperand(1); 2777 2778 APInt UndefRHS, ZeroRHS; 2779 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2780 Depth + 1)) 2781 return true; 2782 APInt UndefLHS, ZeroLHS; 2783 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2784 Depth + 1)) 2785 return true; 2786 2787 KnownZero = ZeroLHS & ZeroRHS; 2788 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2789 2790 // Attempt to avoid multi-use ops if we don't need anything from them. 2791 // TODO - use KnownUndef to relax the demandedelts? 2792 if (!DemandedElts.isAllOnesValue()) 2793 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2794 return true; 2795 break; 2796 } 2797 case ISD::SHL: 2798 case ISD::SRL: 2799 case ISD::SRA: 2800 case ISD::ROTL: 2801 case ISD::ROTR: { 2802 SDValue Op0 = Op.getOperand(0); 2803 SDValue Op1 = Op.getOperand(1); 2804 2805 APInt UndefRHS, ZeroRHS; 2806 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2807 Depth + 1)) 2808 return true; 2809 APInt UndefLHS, ZeroLHS; 2810 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2811 Depth + 1)) 2812 return true; 2813 2814 KnownZero = ZeroLHS; 2815 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2816 2817 // Attempt to avoid multi-use ops if we don't need anything from them. 2818 // TODO - use KnownUndef to relax the demandedelts? 2819 if (!DemandedElts.isAllOnesValue()) 2820 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2821 return true; 2822 break; 2823 } 2824 case ISD::MUL: 2825 case ISD::AND: { 2826 SDValue Op0 = Op.getOperand(0); 2827 SDValue Op1 = Op.getOperand(1); 2828 2829 APInt SrcUndef, SrcZero; 2830 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2831 Depth + 1)) 2832 return true; 2833 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2834 TLO, Depth + 1)) 2835 return true; 2836 2837 // If either side has a zero element, then the result element is zero, even 2838 // if the other is an UNDEF. 2839 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2840 // and then handle 'and' nodes with the rest of the binop opcodes. 2841 KnownZero |= SrcZero; 2842 KnownUndef &= SrcUndef; 2843 KnownUndef &= ~KnownZero; 2844 2845 // Attempt to avoid multi-use ops if we don't need anything from them. 2846 // TODO - use KnownUndef to relax the demandedelts? 2847 if (!DemandedElts.isAllOnesValue()) 2848 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2849 return true; 2850 break; 2851 } 2852 case ISD::TRUNCATE: 2853 case ISD::SIGN_EXTEND: 2854 case ISD::ZERO_EXTEND: 2855 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2856 KnownZero, TLO, Depth + 1)) 2857 return true; 2858 2859 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2860 // zext(undef) upper bits are guaranteed to be zero. 2861 if (DemandedElts.isSubsetOf(KnownUndef)) 2862 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2863 KnownUndef.clearAllBits(); 2864 } 2865 break; 2866 default: { 2867 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2868 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2869 KnownZero, TLO, Depth)) 2870 return true; 2871 } else { 2872 KnownBits Known; 2873 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2874 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2875 TLO, Depth, AssumeSingleUse)) 2876 return true; 2877 } 2878 break; 2879 } 2880 } 2881 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2882 2883 // Constant fold all undef cases. 2884 // TODO: Handle zero cases as well. 2885 if (DemandedElts.isSubsetOf(KnownUndef)) 2886 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2887 2888 return false; 2889 } 2890 2891 /// Determine which of the bits specified in Mask are known to be either zero or 2892 /// one and return them in the Known. 2893 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2894 KnownBits &Known, 2895 const APInt &DemandedElts, 2896 const SelectionDAG &DAG, 2897 unsigned Depth) const { 2898 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2899 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2900 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2901 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2902 "Should use MaskedValueIsZero if you don't know whether Op" 2903 " is a target node!"); 2904 Known.resetAll(); 2905 } 2906 2907 void TargetLowering::computeKnownBitsForTargetInstr( 2908 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2909 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2910 unsigned Depth) const { 2911 Known.resetAll(); 2912 } 2913 2914 void TargetLowering::computeKnownBitsForFrameIndex( 2915 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2916 // The low bits are known zero if the pointer is aligned. 2917 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2918 } 2919 2920 Align TargetLowering::computeKnownAlignForTargetInstr( 2921 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2922 unsigned Depth) const { 2923 return Align(1); 2924 } 2925 2926 /// This method can be implemented by targets that want to expose additional 2927 /// information about sign bits to the DAG Combiner. 2928 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2929 const APInt &, 2930 const SelectionDAG &, 2931 unsigned Depth) const { 2932 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2933 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2934 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2935 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2936 "Should use ComputeNumSignBits if you don't know whether Op" 2937 " is a target node!"); 2938 return 1; 2939 } 2940 2941 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2942 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2943 const MachineRegisterInfo &MRI, unsigned Depth) const { 2944 return 1; 2945 } 2946 2947 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2948 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2949 TargetLoweringOpt &TLO, unsigned Depth) const { 2950 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2951 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2952 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2953 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2954 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2955 " is a target node!"); 2956 return false; 2957 } 2958 2959 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2960 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2961 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2962 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2963 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2964 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2965 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2966 "Should use SimplifyDemandedBits if you don't know whether Op" 2967 " is a target node!"); 2968 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2969 return false; 2970 } 2971 2972 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2973 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2974 SelectionDAG &DAG, unsigned Depth) const { 2975 assert( 2976 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2977 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2978 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2979 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2980 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2981 " is a target node!"); 2982 return SDValue(); 2983 } 2984 2985 SDValue 2986 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2987 SDValue N1, MutableArrayRef<int> Mask, 2988 SelectionDAG &DAG) const { 2989 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2990 if (!LegalMask) { 2991 std::swap(N0, N1); 2992 ShuffleVectorSDNode::commuteMask(Mask); 2993 LegalMask = isShuffleMaskLegal(Mask, VT); 2994 } 2995 2996 if (!LegalMask) 2997 return SDValue(); 2998 2999 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3000 } 3001 3002 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3003 return nullptr; 3004 } 3005 3006 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3007 const SelectionDAG &DAG, 3008 bool SNaN, 3009 unsigned Depth) const { 3010 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3011 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3012 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3013 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3014 "Should use isKnownNeverNaN if you don't know whether Op" 3015 " is a target node!"); 3016 return false; 3017 } 3018 3019 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3020 // work with truncating build vectors and vectors with elements of less than 3021 // 8 bits. 3022 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3023 if (!N) 3024 return false; 3025 3026 APInt CVal; 3027 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3028 CVal = CN->getAPIntValue(); 3029 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3030 auto *CN = BV->getConstantSplatNode(); 3031 if (!CN) 3032 return false; 3033 3034 // If this is a truncating build vector, truncate the splat value. 3035 // Otherwise, we may fail to match the expected values below. 3036 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3037 CVal = CN->getAPIntValue(); 3038 if (BVEltWidth < CVal.getBitWidth()) 3039 CVal = CVal.trunc(BVEltWidth); 3040 } else { 3041 return false; 3042 } 3043 3044 switch (getBooleanContents(N->getValueType(0))) { 3045 case UndefinedBooleanContent: 3046 return CVal[0]; 3047 case ZeroOrOneBooleanContent: 3048 return CVal.isOneValue(); 3049 case ZeroOrNegativeOneBooleanContent: 3050 return CVal.isAllOnesValue(); 3051 } 3052 3053 llvm_unreachable("Invalid boolean contents"); 3054 } 3055 3056 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3057 if (!N) 3058 return false; 3059 3060 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3061 if (!CN) { 3062 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3063 if (!BV) 3064 return false; 3065 3066 // Only interested in constant splats, we don't care about undef 3067 // elements in identifying boolean constants and getConstantSplatNode 3068 // returns NULL if all ops are undef; 3069 CN = BV->getConstantSplatNode(); 3070 if (!CN) 3071 return false; 3072 } 3073 3074 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3075 return !CN->getAPIntValue()[0]; 3076 3077 return CN->isNullValue(); 3078 } 3079 3080 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3081 bool SExt) const { 3082 if (VT == MVT::i1) 3083 return N->isOne(); 3084 3085 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3086 switch (Cnt) { 3087 case TargetLowering::ZeroOrOneBooleanContent: 3088 // An extended value of 1 is always true, unless its original type is i1, 3089 // in which case it will be sign extended to -1. 3090 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3091 case TargetLowering::UndefinedBooleanContent: 3092 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3093 return N->isAllOnesValue() && SExt; 3094 } 3095 llvm_unreachable("Unexpected enumeration."); 3096 } 3097 3098 /// This helper function of SimplifySetCC tries to optimize the comparison when 3099 /// either operand of the SetCC node is a bitwise-and instruction. 3100 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3101 ISD::CondCode Cond, const SDLoc &DL, 3102 DAGCombinerInfo &DCI) const { 3103 // Match these patterns in any of their permutations: 3104 // (X & Y) == Y 3105 // (X & Y) != Y 3106 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3107 std::swap(N0, N1); 3108 3109 EVT OpVT = N0.getValueType(); 3110 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3111 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3112 return SDValue(); 3113 3114 SDValue X, Y; 3115 if (N0.getOperand(0) == N1) { 3116 X = N0.getOperand(1); 3117 Y = N0.getOperand(0); 3118 } else if (N0.getOperand(1) == N1) { 3119 X = N0.getOperand(0); 3120 Y = N0.getOperand(1); 3121 } else { 3122 return SDValue(); 3123 } 3124 3125 SelectionDAG &DAG = DCI.DAG; 3126 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3127 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3128 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3129 // Note that where Y is variable and is known to have at most one bit set 3130 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3131 // equivalent when Y == 0. 3132 assert(OpVT.isInteger()); 3133 Cond = ISD::getSetCCInverse(Cond, OpVT); 3134 if (DCI.isBeforeLegalizeOps() || 3135 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3136 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3137 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3138 // If the target supports an 'and-not' or 'and-complement' logic operation, 3139 // try to use that to make a comparison operation more efficient. 3140 // But don't do this transform if the mask is a single bit because there are 3141 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3142 // 'rlwinm' on PPC). 3143 3144 // Bail out if the compare operand that we want to turn into a zero is 3145 // already a zero (otherwise, infinite loop). 3146 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3147 if (YConst && YConst->isNullValue()) 3148 return SDValue(); 3149 3150 // Transform this into: ~X & Y == 0. 3151 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3152 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3153 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3154 } 3155 3156 return SDValue(); 3157 } 3158 3159 /// There are multiple IR patterns that could be checking whether certain 3160 /// truncation of a signed number would be lossy or not. The pattern which is 3161 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3162 /// We are looking for the following pattern: (KeptBits is a constant) 3163 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3164 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3165 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3166 /// We will unfold it into the natural trunc+sext pattern: 3167 /// ((%x << C) a>> C) dstcond %x 3168 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3169 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3170 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3171 const SDLoc &DL) const { 3172 // We must be comparing with a constant. 3173 ConstantSDNode *C1; 3174 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3175 return SDValue(); 3176 3177 // N0 should be: add %x, (1 << (KeptBits-1)) 3178 if (N0->getOpcode() != ISD::ADD) 3179 return SDValue(); 3180 3181 // And we must be 'add'ing a constant. 3182 ConstantSDNode *C01; 3183 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3184 return SDValue(); 3185 3186 SDValue X = N0->getOperand(0); 3187 EVT XVT = X.getValueType(); 3188 3189 // Validate constants ... 3190 3191 APInt I1 = C1->getAPIntValue(); 3192 3193 ISD::CondCode NewCond; 3194 if (Cond == ISD::CondCode::SETULT) { 3195 NewCond = ISD::CondCode::SETEQ; 3196 } else if (Cond == ISD::CondCode::SETULE) { 3197 NewCond = ISD::CondCode::SETEQ; 3198 // But need to 'canonicalize' the constant. 3199 I1 += 1; 3200 } else if (Cond == ISD::CondCode::SETUGT) { 3201 NewCond = ISD::CondCode::SETNE; 3202 // But need to 'canonicalize' the constant. 3203 I1 += 1; 3204 } else if (Cond == ISD::CondCode::SETUGE) { 3205 NewCond = ISD::CondCode::SETNE; 3206 } else 3207 return SDValue(); 3208 3209 APInt I01 = C01->getAPIntValue(); 3210 3211 auto checkConstants = [&I1, &I01]() -> bool { 3212 // Both of them must be power-of-two, and the constant from setcc is bigger. 3213 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3214 }; 3215 3216 if (checkConstants()) { 3217 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3218 } else { 3219 // What if we invert constants? (and the target predicate) 3220 I1.negate(); 3221 I01.negate(); 3222 assert(XVT.isInteger()); 3223 NewCond = getSetCCInverse(NewCond, XVT); 3224 if (!checkConstants()) 3225 return SDValue(); 3226 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3227 } 3228 3229 // They are power-of-two, so which bit is set? 3230 const unsigned KeptBits = I1.logBase2(); 3231 const unsigned KeptBitsMinusOne = I01.logBase2(); 3232 3233 // Magic! 3234 if (KeptBits != (KeptBitsMinusOne + 1)) 3235 return SDValue(); 3236 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3237 3238 // We don't want to do this in every single case. 3239 SelectionDAG &DAG = DCI.DAG; 3240 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3241 XVT, KeptBits)) 3242 return SDValue(); 3243 3244 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3245 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3246 3247 // Unfold into: ((%x << C) a>> C) cond %x 3248 // Where 'cond' will be either 'eq' or 'ne'. 3249 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3250 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3251 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3252 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3253 3254 return T2; 3255 } 3256 3257 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3258 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3259 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3260 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3261 assert(isConstOrConstSplat(N1C) && 3262 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3263 "Should be a comparison with 0."); 3264 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3265 "Valid only for [in]equality comparisons."); 3266 3267 unsigned NewShiftOpcode; 3268 SDValue X, C, Y; 3269 3270 SelectionDAG &DAG = DCI.DAG; 3271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3272 3273 // Look for '(C l>>/<< Y)'. 3274 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3275 // The shift should be one-use. 3276 if (!V.hasOneUse()) 3277 return false; 3278 unsigned OldShiftOpcode = V.getOpcode(); 3279 switch (OldShiftOpcode) { 3280 case ISD::SHL: 3281 NewShiftOpcode = ISD::SRL; 3282 break; 3283 case ISD::SRL: 3284 NewShiftOpcode = ISD::SHL; 3285 break; 3286 default: 3287 return false; // must be a logical shift. 3288 } 3289 // We should be shifting a constant. 3290 // FIXME: best to use isConstantOrConstantVector(). 3291 C = V.getOperand(0); 3292 ConstantSDNode *CC = 3293 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3294 if (!CC) 3295 return false; 3296 Y = V.getOperand(1); 3297 3298 ConstantSDNode *XC = 3299 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3300 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3301 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3302 }; 3303 3304 // LHS of comparison should be an one-use 'and'. 3305 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3306 return SDValue(); 3307 3308 X = N0.getOperand(0); 3309 SDValue Mask = N0.getOperand(1); 3310 3311 // 'and' is commutative! 3312 if (!Match(Mask)) { 3313 std::swap(X, Mask); 3314 if (!Match(Mask)) 3315 return SDValue(); 3316 } 3317 3318 EVT VT = X.getValueType(); 3319 3320 // Produce: 3321 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3322 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3323 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3324 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3325 return T2; 3326 } 3327 3328 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3329 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3330 /// handle the commuted versions of these patterns. 3331 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3332 ISD::CondCode Cond, const SDLoc &DL, 3333 DAGCombinerInfo &DCI) const { 3334 unsigned BOpcode = N0.getOpcode(); 3335 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3336 "Unexpected binop"); 3337 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3338 3339 // (X + Y) == X --> Y == 0 3340 // (X - Y) == X --> Y == 0 3341 // (X ^ Y) == X --> Y == 0 3342 SelectionDAG &DAG = DCI.DAG; 3343 EVT OpVT = N0.getValueType(); 3344 SDValue X = N0.getOperand(0); 3345 SDValue Y = N0.getOperand(1); 3346 if (X == N1) 3347 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3348 3349 if (Y != N1) 3350 return SDValue(); 3351 3352 // (X + Y) == Y --> X == 0 3353 // (X ^ Y) == Y --> X == 0 3354 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3355 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3356 3357 // The shift would not be valid if the operands are boolean (i1). 3358 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3359 return SDValue(); 3360 3361 // (X - Y) == Y --> X == Y << 1 3362 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3363 !DCI.isBeforeLegalize()); 3364 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3365 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3366 if (!DCI.isCalledByLegalizer()) 3367 DCI.AddToWorklist(YShl1.getNode()); 3368 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3369 } 3370 3371 /// Try to simplify a setcc built with the specified operands and cc. If it is 3372 /// unable to simplify it, return a null SDValue. 3373 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3374 ISD::CondCode Cond, bool foldBooleans, 3375 DAGCombinerInfo &DCI, 3376 const SDLoc &dl) const { 3377 SelectionDAG &DAG = DCI.DAG; 3378 const DataLayout &Layout = DAG.getDataLayout(); 3379 EVT OpVT = N0.getValueType(); 3380 3381 // Constant fold or commute setcc. 3382 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3383 return Fold; 3384 3385 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3386 // TODO: Handle non-splat vector constants. All undef causes trouble. 3387 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3388 if (isConstOrConstSplat(N0) && 3389 (DCI.isBeforeLegalizeOps() || 3390 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3391 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3392 3393 // If we have a subtract with the same 2 non-constant operands as this setcc 3394 // -- but in reverse order -- then try to commute the operands of this setcc 3395 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3396 // instruction on some targets. 3397 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3398 (DCI.isBeforeLegalizeOps() || 3399 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3400 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3401 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3402 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3403 3404 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3405 const APInt &C1 = N1C->getAPIntValue(); 3406 3407 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3408 // equality comparison, then we're just comparing whether X itself is 3409 // zero. 3410 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3411 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3412 N0.getOperand(1).getOpcode() == ISD::Constant) { 3413 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3414 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3415 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3416 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3417 // (srl (ctlz x), 5) == 0 -> X != 0 3418 // (srl (ctlz x), 5) != 1 -> X != 0 3419 Cond = ISD::SETNE; 3420 } else { 3421 // (srl (ctlz x), 5) != 0 -> X == 0 3422 // (srl (ctlz x), 5) == 1 -> X == 0 3423 Cond = ISD::SETEQ; 3424 } 3425 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3426 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3427 Zero, Cond); 3428 } 3429 } 3430 3431 SDValue CTPOP = N0; 3432 // Look through truncs that don't change the value of a ctpop. 3433 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3434 CTPOP = N0.getOperand(0); 3435 3436 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3437 (N0 == CTPOP || 3438 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3439 EVT CTVT = CTPOP.getValueType(); 3440 SDValue CTOp = CTPOP.getOperand(0); 3441 3442 // (ctpop x) u< 2 -> (x & x-1) == 0 3443 // (ctpop x) u> 1 -> (x & x-1) != 0 3444 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3445 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3446 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3447 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3448 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3449 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3450 } 3451 3452 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3453 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3454 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3455 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3456 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3457 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3458 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3459 assert(CTVT.isInteger()); 3460 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3461 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3462 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3463 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3464 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3465 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3466 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3467 } 3468 } 3469 3470 // (zext x) == C --> x == (trunc C) 3471 // (sext x) == C --> x == (trunc C) 3472 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3473 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3474 unsigned MinBits = N0.getValueSizeInBits(); 3475 SDValue PreExt; 3476 bool Signed = false; 3477 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3478 // ZExt 3479 MinBits = N0->getOperand(0).getValueSizeInBits(); 3480 PreExt = N0->getOperand(0); 3481 } else if (N0->getOpcode() == ISD::AND) { 3482 // DAGCombine turns costly ZExts into ANDs 3483 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3484 if ((C->getAPIntValue()+1).isPowerOf2()) { 3485 MinBits = C->getAPIntValue().countTrailingOnes(); 3486 PreExt = N0->getOperand(0); 3487 } 3488 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3489 // SExt 3490 MinBits = N0->getOperand(0).getValueSizeInBits(); 3491 PreExt = N0->getOperand(0); 3492 Signed = true; 3493 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3494 // ZEXTLOAD / SEXTLOAD 3495 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3496 MinBits = LN0->getMemoryVT().getSizeInBits(); 3497 PreExt = N0; 3498 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3499 Signed = true; 3500 MinBits = LN0->getMemoryVT().getSizeInBits(); 3501 PreExt = N0; 3502 } 3503 } 3504 3505 // Figure out how many bits we need to preserve this constant. 3506 unsigned ReqdBits = Signed ? 3507 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3508 C1.getActiveBits(); 3509 3510 // Make sure we're not losing bits from the constant. 3511 if (MinBits > 0 && 3512 MinBits < C1.getBitWidth() && 3513 MinBits >= ReqdBits) { 3514 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3515 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3516 // Will get folded away. 3517 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3518 if (MinBits == 1 && C1 == 1) 3519 // Invert the condition. 3520 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3521 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3522 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3523 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3524 } 3525 3526 // If truncating the setcc operands is not desirable, we can still 3527 // simplify the expression in some cases: 3528 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3529 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3530 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3531 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3532 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3533 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3534 SDValue TopSetCC = N0->getOperand(0); 3535 unsigned N0Opc = N0->getOpcode(); 3536 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3537 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3538 TopSetCC.getOpcode() == ISD::SETCC && 3539 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3540 (isConstFalseVal(N1C) || 3541 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3542 3543 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3544 (!N1C->isNullValue() && Cond == ISD::SETNE); 3545 3546 if (!Inverse) 3547 return TopSetCC; 3548 3549 ISD::CondCode InvCond = ISD::getSetCCInverse( 3550 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3551 TopSetCC.getOperand(0).getValueType()); 3552 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3553 TopSetCC.getOperand(1), 3554 InvCond); 3555 } 3556 } 3557 } 3558 3559 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3560 // equality or unsigned, and all 1 bits of the const are in the same 3561 // partial word, see if we can shorten the load. 3562 if (DCI.isBeforeLegalize() && 3563 !ISD::isSignedIntSetCC(Cond) && 3564 N0.getOpcode() == ISD::AND && C1 == 0 && 3565 N0.getNode()->hasOneUse() && 3566 isa<LoadSDNode>(N0.getOperand(0)) && 3567 N0.getOperand(0).getNode()->hasOneUse() && 3568 isa<ConstantSDNode>(N0.getOperand(1))) { 3569 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3570 APInt bestMask; 3571 unsigned bestWidth = 0, bestOffset = 0; 3572 if (Lod->isSimple() && Lod->isUnindexed()) { 3573 unsigned origWidth = N0.getValueSizeInBits(); 3574 unsigned maskWidth = origWidth; 3575 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3576 // 8 bits, but have to be careful... 3577 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3578 origWidth = Lod->getMemoryVT().getSizeInBits(); 3579 const APInt &Mask = N0.getConstantOperandAPInt(1); 3580 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3581 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3582 for (unsigned offset=0; offset<origWidth/width; offset++) { 3583 if (Mask.isSubsetOf(newMask)) { 3584 if (Layout.isLittleEndian()) 3585 bestOffset = (uint64_t)offset * (width/8); 3586 else 3587 bestOffset = (origWidth/width - offset - 1) * (width/8); 3588 bestMask = Mask.lshr(offset * (width/8) * 8); 3589 bestWidth = width; 3590 break; 3591 } 3592 newMask <<= width; 3593 } 3594 } 3595 } 3596 if (bestWidth) { 3597 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3598 if (newVT.isRound() && 3599 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3600 SDValue Ptr = Lod->getBasePtr(); 3601 if (bestOffset != 0) 3602 Ptr = 3603 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3604 SDValue NewLoad = 3605 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3606 Lod->getPointerInfo().getWithOffset(bestOffset), 3607 Lod->getOriginalAlign()); 3608 return DAG.getSetCC(dl, VT, 3609 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3610 DAG.getConstant(bestMask.trunc(bestWidth), 3611 dl, newVT)), 3612 DAG.getConstant(0LL, dl, newVT), Cond); 3613 } 3614 } 3615 } 3616 3617 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3618 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3619 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3620 3621 // If the comparison constant has bits in the upper part, the 3622 // zero-extended value could never match. 3623 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3624 C1.getBitWidth() - InSize))) { 3625 switch (Cond) { 3626 case ISD::SETUGT: 3627 case ISD::SETUGE: 3628 case ISD::SETEQ: 3629 return DAG.getConstant(0, dl, VT); 3630 case ISD::SETULT: 3631 case ISD::SETULE: 3632 case ISD::SETNE: 3633 return DAG.getConstant(1, dl, VT); 3634 case ISD::SETGT: 3635 case ISD::SETGE: 3636 // True if the sign bit of C1 is set. 3637 return DAG.getConstant(C1.isNegative(), dl, VT); 3638 case ISD::SETLT: 3639 case ISD::SETLE: 3640 // True if the sign bit of C1 isn't set. 3641 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3642 default: 3643 break; 3644 } 3645 } 3646 3647 // Otherwise, we can perform the comparison with the low bits. 3648 switch (Cond) { 3649 case ISD::SETEQ: 3650 case ISD::SETNE: 3651 case ISD::SETUGT: 3652 case ISD::SETUGE: 3653 case ISD::SETULT: 3654 case ISD::SETULE: { 3655 EVT newVT = N0.getOperand(0).getValueType(); 3656 if (DCI.isBeforeLegalizeOps() || 3657 (isOperationLegal(ISD::SETCC, newVT) && 3658 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3659 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3660 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3661 3662 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3663 NewConst, Cond); 3664 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3665 } 3666 break; 3667 } 3668 default: 3669 break; // todo, be more careful with signed comparisons 3670 } 3671 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3672 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3673 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3674 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3675 EVT ExtDstTy = N0.getValueType(); 3676 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3677 3678 // If the constant doesn't fit into the number of bits for the source of 3679 // the sign extension, it is impossible for both sides to be equal. 3680 if (C1.getMinSignedBits() > ExtSrcTyBits) 3681 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3682 3683 SDValue ZextOp; 3684 EVT Op0Ty = N0.getOperand(0).getValueType(); 3685 if (Op0Ty == ExtSrcTy) { 3686 ZextOp = N0.getOperand(0); 3687 } else { 3688 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3689 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3690 DAG.getConstant(Imm, dl, Op0Ty)); 3691 } 3692 if (!DCI.isCalledByLegalizer()) 3693 DCI.AddToWorklist(ZextOp.getNode()); 3694 // Otherwise, make this a use of a zext. 3695 return DAG.getSetCC(dl, VT, ZextOp, 3696 DAG.getConstant(C1 & APInt::getLowBitsSet( 3697 ExtDstTyBits, 3698 ExtSrcTyBits), 3699 dl, ExtDstTy), 3700 Cond); 3701 } else if ((N1C->isNullValue() || N1C->isOne()) && 3702 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3703 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3704 if (N0.getOpcode() == ISD::SETCC && 3705 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3706 (N0.getValueType() == MVT::i1 || 3707 getBooleanContents(N0.getOperand(0).getValueType()) == 3708 ZeroOrOneBooleanContent)) { 3709 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3710 if (TrueWhenTrue) 3711 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3712 // Invert the condition. 3713 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3714 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3715 if (DCI.isBeforeLegalizeOps() || 3716 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3717 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3718 } 3719 3720 if ((N0.getOpcode() == ISD::XOR || 3721 (N0.getOpcode() == ISD::AND && 3722 N0.getOperand(0).getOpcode() == ISD::XOR && 3723 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3724 isa<ConstantSDNode>(N0.getOperand(1)) && 3725 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3726 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3727 // can only do this if the top bits are known zero. 3728 unsigned BitWidth = N0.getValueSizeInBits(); 3729 if (DAG.MaskedValueIsZero(N0, 3730 APInt::getHighBitsSet(BitWidth, 3731 BitWidth-1))) { 3732 // Okay, get the un-inverted input value. 3733 SDValue Val; 3734 if (N0.getOpcode() == ISD::XOR) { 3735 Val = N0.getOperand(0); 3736 } else { 3737 assert(N0.getOpcode() == ISD::AND && 3738 N0.getOperand(0).getOpcode() == ISD::XOR); 3739 // ((X^1)&1)^1 -> X & 1 3740 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3741 N0.getOperand(0).getOperand(0), 3742 N0.getOperand(1)); 3743 } 3744 3745 return DAG.getSetCC(dl, VT, Val, N1, 3746 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3747 } 3748 } else if (N1C->isOne()) { 3749 SDValue Op0 = N0; 3750 if (Op0.getOpcode() == ISD::TRUNCATE) 3751 Op0 = Op0.getOperand(0); 3752 3753 if ((Op0.getOpcode() == ISD::XOR) && 3754 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3755 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3756 SDValue XorLHS = Op0.getOperand(0); 3757 SDValue XorRHS = Op0.getOperand(1); 3758 // Ensure that the input setccs return an i1 type or 0/1 value. 3759 if (Op0.getValueType() == MVT::i1 || 3760 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3761 ZeroOrOneBooleanContent && 3762 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3763 ZeroOrOneBooleanContent)) { 3764 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3765 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3766 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3767 } 3768 } 3769 if (Op0.getOpcode() == ISD::AND && 3770 isa<ConstantSDNode>(Op0.getOperand(1)) && 3771 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3772 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3773 if (Op0.getValueType().bitsGT(VT)) 3774 Op0 = DAG.getNode(ISD::AND, dl, VT, 3775 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3776 DAG.getConstant(1, dl, VT)); 3777 else if (Op0.getValueType().bitsLT(VT)) 3778 Op0 = DAG.getNode(ISD::AND, dl, VT, 3779 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3780 DAG.getConstant(1, dl, VT)); 3781 3782 return DAG.getSetCC(dl, VT, Op0, 3783 DAG.getConstant(0, dl, Op0.getValueType()), 3784 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3785 } 3786 if (Op0.getOpcode() == ISD::AssertZext && 3787 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3788 return DAG.getSetCC(dl, VT, Op0, 3789 DAG.getConstant(0, dl, Op0.getValueType()), 3790 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3791 } 3792 } 3793 3794 // Given: 3795 // icmp eq/ne (urem %x, %y), 0 3796 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3797 // icmp eq/ne %x, 0 3798 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3799 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3800 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3801 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3802 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3803 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3804 } 3805 3806 if (SDValue V = 3807 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3808 return V; 3809 } 3810 3811 // These simplifications apply to splat vectors as well. 3812 // TODO: Handle more splat vector cases. 3813 if (auto *N1C = isConstOrConstSplat(N1)) { 3814 const APInt &C1 = N1C->getAPIntValue(); 3815 3816 APInt MinVal, MaxVal; 3817 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3818 if (ISD::isSignedIntSetCC(Cond)) { 3819 MinVal = APInt::getSignedMinValue(OperandBitSize); 3820 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3821 } else { 3822 MinVal = APInt::getMinValue(OperandBitSize); 3823 MaxVal = APInt::getMaxValue(OperandBitSize); 3824 } 3825 3826 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3827 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3828 // X >= MIN --> true 3829 if (C1 == MinVal) 3830 return DAG.getBoolConstant(true, dl, VT, OpVT); 3831 3832 if (!VT.isVector()) { // TODO: Support this for vectors. 3833 // X >= C0 --> X > (C0 - 1) 3834 APInt C = C1 - 1; 3835 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3836 if ((DCI.isBeforeLegalizeOps() || 3837 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3838 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3839 isLegalICmpImmediate(C.getSExtValue())))) { 3840 return DAG.getSetCC(dl, VT, N0, 3841 DAG.getConstant(C, dl, N1.getValueType()), 3842 NewCC); 3843 } 3844 } 3845 } 3846 3847 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3848 // X <= MAX --> true 3849 if (C1 == MaxVal) 3850 return DAG.getBoolConstant(true, dl, VT, OpVT); 3851 3852 // X <= C0 --> X < (C0 + 1) 3853 if (!VT.isVector()) { // TODO: Support this for vectors. 3854 APInt C = C1 + 1; 3855 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3856 if ((DCI.isBeforeLegalizeOps() || 3857 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3858 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3859 isLegalICmpImmediate(C.getSExtValue())))) { 3860 return DAG.getSetCC(dl, VT, N0, 3861 DAG.getConstant(C, dl, N1.getValueType()), 3862 NewCC); 3863 } 3864 } 3865 } 3866 3867 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3868 if (C1 == MinVal) 3869 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3870 3871 // TODO: Support this for vectors after legalize ops. 3872 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3873 // Canonicalize setlt X, Max --> setne X, Max 3874 if (C1 == MaxVal) 3875 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3876 3877 // If we have setult X, 1, turn it into seteq X, 0 3878 if (C1 == MinVal+1) 3879 return DAG.getSetCC(dl, VT, N0, 3880 DAG.getConstant(MinVal, dl, N0.getValueType()), 3881 ISD::SETEQ); 3882 } 3883 } 3884 3885 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3886 if (C1 == MaxVal) 3887 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3888 3889 // TODO: Support this for vectors after legalize ops. 3890 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3891 // Canonicalize setgt X, Min --> setne X, Min 3892 if (C1 == MinVal) 3893 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3894 3895 // If we have setugt X, Max-1, turn it into seteq X, Max 3896 if (C1 == MaxVal-1) 3897 return DAG.getSetCC(dl, VT, N0, 3898 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3899 ISD::SETEQ); 3900 } 3901 } 3902 3903 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3904 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3905 if (C1.isNullValue()) 3906 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3907 VT, N0, N1, Cond, DCI, dl)) 3908 return CC; 3909 } 3910 3911 // If we have "setcc X, C0", check to see if we can shrink the immediate 3912 // by changing cc. 3913 // TODO: Support this for vectors after legalize ops. 3914 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3915 // SETUGT X, SINTMAX -> SETLT X, 0 3916 // SETUGE X, SINTMIN -> SETLT X, 0 3917 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 3918 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 3919 return DAG.getSetCC(dl, VT, N0, 3920 DAG.getConstant(0, dl, N1.getValueType()), 3921 ISD::SETLT); 3922 3923 // SETULT X, SINTMIN -> SETGT X, -1 3924 // SETULE X, SINTMAX -> SETGT X, -1 3925 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 3926 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 3927 return DAG.getSetCC(dl, VT, N0, 3928 DAG.getAllOnesConstant(dl, N1.getValueType()), 3929 ISD::SETGT); 3930 } 3931 } 3932 3933 // Back to non-vector simplifications. 3934 // TODO: Can we do these for vector splats? 3935 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3937 const APInt &C1 = N1C->getAPIntValue(); 3938 EVT ShValTy = N0.getValueType(); 3939 3940 // Fold bit comparisons when we can. 3941 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3942 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3943 N0.getOpcode() == ISD::AND) { 3944 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3945 EVT ShiftTy = 3946 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3947 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3948 // Perform the xform if the AND RHS is a single bit. 3949 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3950 if (AndRHS->getAPIntValue().isPowerOf2() && 3951 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3952 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3953 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3954 DAG.getConstant(ShCt, dl, ShiftTy))); 3955 } 3956 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3957 // (X & 8) == 8 --> (X & 8) >> 3 3958 // Perform the xform if C1 is a single bit. 3959 unsigned ShCt = C1.logBase2(); 3960 if (C1.isPowerOf2() && 3961 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3962 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3963 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3964 DAG.getConstant(ShCt, dl, ShiftTy))); 3965 } 3966 } 3967 } 3968 } 3969 3970 if (C1.getMinSignedBits() <= 64 && 3971 !isLegalICmpImmediate(C1.getSExtValue())) { 3972 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3973 // (X & -256) == 256 -> (X >> 8) == 1 3974 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3975 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3976 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3977 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3978 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3979 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3980 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3981 SDValue Shift = 3982 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3983 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3984 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3985 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3986 } 3987 } 3988 } 3989 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3990 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3991 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3992 // X < 0x100000000 -> (X >> 32) < 1 3993 // X >= 0x100000000 -> (X >> 32) >= 1 3994 // X <= 0x0ffffffff -> (X >> 32) < 1 3995 // X > 0x0ffffffff -> (X >> 32) >= 1 3996 unsigned ShiftBits; 3997 APInt NewC = C1; 3998 ISD::CondCode NewCond = Cond; 3999 if (AdjOne) { 4000 ShiftBits = C1.countTrailingOnes(); 4001 NewC = NewC + 1; 4002 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4003 } else { 4004 ShiftBits = C1.countTrailingZeros(); 4005 } 4006 NewC.lshrInPlace(ShiftBits); 4007 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4008 isLegalICmpImmediate(NewC.getSExtValue()) && 4009 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4010 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4011 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4012 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4013 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4014 } 4015 } 4016 } 4017 } 4018 4019 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4020 auto *CFP = cast<ConstantFPSDNode>(N1); 4021 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4022 4023 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4024 // constant if knowing that the operand is non-nan is enough. We prefer to 4025 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4026 // materialize 0.0. 4027 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4028 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4029 4030 // setcc (fneg x), C -> setcc swap(pred) x, -C 4031 if (N0.getOpcode() == ISD::FNEG) { 4032 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4033 if (DCI.isBeforeLegalizeOps() || 4034 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4035 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4036 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4037 } 4038 } 4039 4040 // If the condition is not legal, see if we can find an equivalent one 4041 // which is legal. 4042 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4043 // If the comparison was an awkward floating-point == or != and one of 4044 // the comparison operands is infinity or negative infinity, convert the 4045 // condition to a less-awkward <= or >=. 4046 if (CFP->getValueAPF().isInfinity()) { 4047 bool IsNegInf = CFP->getValueAPF().isNegative(); 4048 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4049 switch (Cond) { 4050 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4051 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4052 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4053 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4054 default: break; 4055 } 4056 if (NewCond != ISD::SETCC_INVALID && 4057 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4058 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4059 } 4060 } 4061 } 4062 4063 if (N0 == N1) { 4064 // The sext(setcc()) => setcc() optimization relies on the appropriate 4065 // constant being emitted. 4066 assert(!N0.getValueType().isInteger() && 4067 "Integer types should be handled by FoldSetCC"); 4068 4069 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4070 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4071 if (UOF == 2) // FP operators that are undefined on NaNs. 4072 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4073 if (UOF == unsigned(EqTrue)) 4074 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4075 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4076 // if it is not already. 4077 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4078 if (NewCond != Cond && 4079 (DCI.isBeforeLegalizeOps() || 4080 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4081 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4082 } 4083 4084 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4085 N0.getValueType().isInteger()) { 4086 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4087 N0.getOpcode() == ISD::XOR) { 4088 // Simplify (X+Y) == (X+Z) --> Y == Z 4089 if (N0.getOpcode() == N1.getOpcode()) { 4090 if (N0.getOperand(0) == N1.getOperand(0)) 4091 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4092 if (N0.getOperand(1) == N1.getOperand(1)) 4093 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4094 if (isCommutativeBinOp(N0.getOpcode())) { 4095 // If X op Y == Y op X, try other combinations. 4096 if (N0.getOperand(0) == N1.getOperand(1)) 4097 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4098 Cond); 4099 if (N0.getOperand(1) == N1.getOperand(0)) 4100 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4101 Cond); 4102 } 4103 } 4104 4105 // If RHS is a legal immediate value for a compare instruction, we need 4106 // to be careful about increasing register pressure needlessly. 4107 bool LegalRHSImm = false; 4108 4109 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4110 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4111 // Turn (X+C1) == C2 --> X == C2-C1 4112 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4113 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4114 DAG.getConstant(RHSC->getAPIntValue()- 4115 LHSR->getAPIntValue(), 4116 dl, N0.getValueType()), Cond); 4117 } 4118 4119 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4120 if (N0.getOpcode() == ISD::XOR) 4121 // If we know that all of the inverted bits are zero, don't bother 4122 // performing the inversion. 4123 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4124 return 4125 DAG.getSetCC(dl, VT, N0.getOperand(0), 4126 DAG.getConstant(LHSR->getAPIntValue() ^ 4127 RHSC->getAPIntValue(), 4128 dl, N0.getValueType()), 4129 Cond); 4130 } 4131 4132 // Turn (C1-X) == C2 --> X == C1-C2 4133 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4134 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4135 return 4136 DAG.getSetCC(dl, VT, N0.getOperand(1), 4137 DAG.getConstant(SUBC->getAPIntValue() - 4138 RHSC->getAPIntValue(), 4139 dl, N0.getValueType()), 4140 Cond); 4141 } 4142 } 4143 4144 // Could RHSC fold directly into a compare? 4145 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4146 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4147 } 4148 4149 // (X+Y) == X --> Y == 0 and similar folds. 4150 // Don't do this if X is an immediate that can fold into a cmp 4151 // instruction and X+Y has other uses. It could be an induction variable 4152 // chain, and the transform would increase register pressure. 4153 if (!LegalRHSImm || N0.hasOneUse()) 4154 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4155 return V; 4156 } 4157 4158 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4159 N1.getOpcode() == ISD::XOR) 4160 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4161 return V; 4162 4163 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4164 return V; 4165 } 4166 4167 // Fold remainder of division by a constant. 4168 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4169 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4170 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4171 4172 // When division is cheap or optimizing for minimum size, 4173 // fall through to DIVREM creation by skipping this fold. 4174 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4175 if (N0.getOpcode() == ISD::UREM) { 4176 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4177 return Folded; 4178 } else if (N0.getOpcode() == ISD::SREM) { 4179 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4180 return Folded; 4181 } 4182 } 4183 } 4184 4185 // Fold away ALL boolean setcc's. 4186 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4187 SDValue Temp; 4188 switch (Cond) { 4189 default: llvm_unreachable("Unknown integer setcc!"); 4190 case ISD::SETEQ: // X == Y -> ~(X^Y) 4191 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4192 N0 = DAG.getNOT(dl, Temp, OpVT); 4193 if (!DCI.isCalledByLegalizer()) 4194 DCI.AddToWorklist(Temp.getNode()); 4195 break; 4196 case ISD::SETNE: // X != Y --> (X^Y) 4197 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4198 break; 4199 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4200 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4201 Temp = DAG.getNOT(dl, N0, OpVT); 4202 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4203 if (!DCI.isCalledByLegalizer()) 4204 DCI.AddToWorklist(Temp.getNode()); 4205 break; 4206 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4207 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4208 Temp = DAG.getNOT(dl, N1, OpVT); 4209 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4210 if (!DCI.isCalledByLegalizer()) 4211 DCI.AddToWorklist(Temp.getNode()); 4212 break; 4213 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4214 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4215 Temp = DAG.getNOT(dl, N0, OpVT); 4216 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4217 if (!DCI.isCalledByLegalizer()) 4218 DCI.AddToWorklist(Temp.getNode()); 4219 break; 4220 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4221 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4222 Temp = DAG.getNOT(dl, N1, OpVT); 4223 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4224 break; 4225 } 4226 if (VT.getScalarType() != MVT::i1) { 4227 if (!DCI.isCalledByLegalizer()) 4228 DCI.AddToWorklist(N0.getNode()); 4229 // FIXME: If running after legalize, we probably can't do this. 4230 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4231 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4232 } 4233 return N0; 4234 } 4235 4236 // Could not fold it. 4237 return SDValue(); 4238 } 4239 4240 /// Returns true (and the GlobalValue and the offset) if the node is a 4241 /// GlobalAddress + offset. 4242 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4243 int64_t &Offset) const { 4244 4245 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4246 4247 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4248 GA = GASD->getGlobal(); 4249 Offset += GASD->getOffset(); 4250 return true; 4251 } 4252 4253 if (N->getOpcode() == ISD::ADD) { 4254 SDValue N1 = N->getOperand(0); 4255 SDValue N2 = N->getOperand(1); 4256 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4257 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4258 Offset += V->getSExtValue(); 4259 return true; 4260 } 4261 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4262 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4263 Offset += V->getSExtValue(); 4264 return true; 4265 } 4266 } 4267 } 4268 4269 return false; 4270 } 4271 4272 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4273 DAGCombinerInfo &DCI) const { 4274 // Default implementation: no optimization. 4275 return SDValue(); 4276 } 4277 4278 //===----------------------------------------------------------------------===// 4279 // Inline Assembler Implementation Methods 4280 //===----------------------------------------------------------------------===// 4281 4282 TargetLowering::ConstraintType 4283 TargetLowering::getConstraintType(StringRef Constraint) const { 4284 unsigned S = Constraint.size(); 4285 4286 if (S == 1) { 4287 switch (Constraint[0]) { 4288 default: break; 4289 case 'r': 4290 return C_RegisterClass; 4291 case 'm': // memory 4292 case 'o': // offsetable 4293 case 'V': // not offsetable 4294 return C_Memory; 4295 case 'n': // Simple Integer 4296 case 'E': // Floating Point Constant 4297 case 'F': // Floating Point Constant 4298 return C_Immediate; 4299 case 'i': // Simple Integer or Relocatable Constant 4300 case 's': // Relocatable Constant 4301 case 'p': // Address. 4302 case 'X': // Allow ANY value. 4303 case 'I': // Target registers. 4304 case 'J': 4305 case 'K': 4306 case 'L': 4307 case 'M': 4308 case 'N': 4309 case 'O': 4310 case 'P': 4311 case '<': 4312 case '>': 4313 return C_Other; 4314 } 4315 } 4316 4317 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4318 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4319 return C_Memory; 4320 return C_Register; 4321 } 4322 return C_Unknown; 4323 } 4324 4325 /// Try to replace an X constraint, which matches anything, with another that 4326 /// has more specific requirements based on the type of the corresponding 4327 /// operand. 4328 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4329 if (ConstraintVT.isInteger()) 4330 return "r"; 4331 if (ConstraintVT.isFloatingPoint()) 4332 return "f"; // works for many targets 4333 return nullptr; 4334 } 4335 4336 SDValue TargetLowering::LowerAsmOutputForConstraint( 4337 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4338 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4339 return SDValue(); 4340 } 4341 4342 /// Lower the specified operand into the Ops vector. 4343 /// If it is invalid, don't add anything to Ops. 4344 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4345 std::string &Constraint, 4346 std::vector<SDValue> &Ops, 4347 SelectionDAG &DAG) const { 4348 4349 if (Constraint.length() > 1) return; 4350 4351 char ConstraintLetter = Constraint[0]; 4352 switch (ConstraintLetter) { 4353 default: break; 4354 case 'X': // Allows any operand; labels (basic block) use this. 4355 if (Op.getOpcode() == ISD::BasicBlock || 4356 Op.getOpcode() == ISD::TargetBlockAddress) { 4357 Ops.push_back(Op); 4358 return; 4359 } 4360 LLVM_FALLTHROUGH; 4361 case 'i': // Simple Integer or Relocatable Constant 4362 case 'n': // Simple Integer 4363 case 's': { // Relocatable Constant 4364 4365 GlobalAddressSDNode *GA; 4366 ConstantSDNode *C; 4367 BlockAddressSDNode *BA; 4368 uint64_t Offset = 0; 4369 4370 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4371 // etc., since getelementpointer is variadic. We can't use 4372 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4373 // while in this case the GA may be furthest from the root node which is 4374 // likely an ISD::ADD. 4375 while (1) { 4376 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4377 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4378 GA->getValueType(0), 4379 Offset + GA->getOffset())); 4380 return; 4381 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4382 ConstraintLetter != 's') { 4383 // gcc prints these as sign extended. Sign extend value to 64 bits 4384 // now; without this it would get ZExt'd later in 4385 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4386 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4387 BooleanContent BCont = getBooleanContents(MVT::i64); 4388 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4389 : ISD::SIGN_EXTEND; 4390 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4391 : C->getSExtValue(); 4392 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4393 SDLoc(C), MVT::i64)); 4394 return; 4395 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4396 ConstraintLetter != 'n') { 4397 Ops.push_back(DAG.getTargetBlockAddress( 4398 BA->getBlockAddress(), BA->getValueType(0), 4399 Offset + BA->getOffset(), BA->getTargetFlags())); 4400 return; 4401 } else { 4402 const unsigned OpCode = Op.getOpcode(); 4403 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4404 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4405 Op = Op.getOperand(1); 4406 // Subtraction is not commutative. 4407 else if (OpCode == ISD::ADD && 4408 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4409 Op = Op.getOperand(0); 4410 else 4411 return; 4412 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4413 continue; 4414 } 4415 } 4416 return; 4417 } 4418 break; 4419 } 4420 } 4421 } 4422 4423 std::pair<unsigned, const TargetRegisterClass *> 4424 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4425 StringRef Constraint, 4426 MVT VT) const { 4427 if (Constraint.empty() || Constraint[0] != '{') 4428 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4429 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4430 4431 // Remove the braces from around the name. 4432 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4433 4434 std::pair<unsigned, const TargetRegisterClass *> R = 4435 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4436 4437 // Figure out which register class contains this reg. 4438 for (const TargetRegisterClass *RC : RI->regclasses()) { 4439 // If none of the value types for this register class are valid, we 4440 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4441 if (!isLegalRC(*RI, *RC)) 4442 continue; 4443 4444 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4445 I != E; ++I) { 4446 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4447 std::pair<unsigned, const TargetRegisterClass *> S = 4448 std::make_pair(*I, RC); 4449 4450 // If this register class has the requested value type, return it, 4451 // otherwise keep searching and return the first class found 4452 // if no other is found which explicitly has the requested type. 4453 if (RI->isTypeLegalForClass(*RC, VT)) 4454 return S; 4455 if (!R.second) 4456 R = S; 4457 } 4458 } 4459 } 4460 4461 return R; 4462 } 4463 4464 //===----------------------------------------------------------------------===// 4465 // Constraint Selection. 4466 4467 /// Return true of this is an input operand that is a matching constraint like 4468 /// "4". 4469 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4470 assert(!ConstraintCode.empty() && "No known constraint!"); 4471 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4472 } 4473 4474 /// If this is an input matching constraint, this method returns the output 4475 /// operand it matches. 4476 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4477 assert(!ConstraintCode.empty() && "No known constraint!"); 4478 return atoi(ConstraintCode.c_str()); 4479 } 4480 4481 /// Split up the constraint string from the inline assembly value into the 4482 /// specific constraints and their prefixes, and also tie in the associated 4483 /// operand values. 4484 /// If this returns an empty vector, and if the constraint string itself 4485 /// isn't empty, there was an error parsing. 4486 TargetLowering::AsmOperandInfoVector 4487 TargetLowering::ParseConstraints(const DataLayout &DL, 4488 const TargetRegisterInfo *TRI, 4489 const CallBase &Call) const { 4490 /// Information about all of the constraints. 4491 AsmOperandInfoVector ConstraintOperands; 4492 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4493 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4494 4495 // Do a prepass over the constraints, canonicalizing them, and building up the 4496 // ConstraintOperands list. 4497 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4498 unsigned ResNo = 0; // ResNo - The result number of the next output. 4499 4500 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4501 ConstraintOperands.emplace_back(std::move(CI)); 4502 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4503 4504 // Update multiple alternative constraint count. 4505 if (OpInfo.multipleAlternatives.size() > maCount) 4506 maCount = OpInfo.multipleAlternatives.size(); 4507 4508 OpInfo.ConstraintVT = MVT::Other; 4509 4510 // Compute the value type for each operand. 4511 switch (OpInfo.Type) { 4512 case InlineAsm::isOutput: 4513 // Indirect outputs just consume an argument. 4514 if (OpInfo.isIndirect) { 4515 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4516 break; 4517 } 4518 4519 // The return value of the call is this value. As such, there is no 4520 // corresponding argument. 4521 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4522 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4523 OpInfo.ConstraintVT = 4524 getSimpleValueType(DL, STy->getElementType(ResNo)); 4525 } else { 4526 assert(ResNo == 0 && "Asm only has one result!"); 4527 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4528 } 4529 ++ResNo; 4530 break; 4531 case InlineAsm::isInput: 4532 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4533 break; 4534 case InlineAsm::isClobber: 4535 // Nothing to do. 4536 break; 4537 } 4538 4539 if (OpInfo.CallOperandVal) { 4540 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4541 if (OpInfo.isIndirect) { 4542 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4543 if (!PtrTy) 4544 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4545 OpTy = PtrTy->getElementType(); 4546 } 4547 4548 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4549 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4550 if (STy->getNumElements() == 1) 4551 OpTy = STy->getElementType(0); 4552 4553 // If OpTy is not a single value, it may be a struct/union that we 4554 // can tile with integers. 4555 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4556 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4557 switch (BitSize) { 4558 default: break; 4559 case 1: 4560 case 8: 4561 case 16: 4562 case 32: 4563 case 64: 4564 case 128: 4565 OpInfo.ConstraintVT = 4566 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4567 break; 4568 } 4569 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4570 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4571 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4572 } else { 4573 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4574 } 4575 } 4576 } 4577 4578 // If we have multiple alternative constraints, select the best alternative. 4579 if (!ConstraintOperands.empty()) { 4580 if (maCount) { 4581 unsigned bestMAIndex = 0; 4582 int bestWeight = -1; 4583 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4584 int weight = -1; 4585 unsigned maIndex; 4586 // Compute the sums of the weights for each alternative, keeping track 4587 // of the best (highest weight) one so far. 4588 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4589 int weightSum = 0; 4590 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4591 cIndex != eIndex; ++cIndex) { 4592 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4593 if (OpInfo.Type == InlineAsm::isClobber) 4594 continue; 4595 4596 // If this is an output operand with a matching input operand, 4597 // look up the matching input. If their types mismatch, e.g. one 4598 // is an integer, the other is floating point, or their sizes are 4599 // different, flag it as an maCantMatch. 4600 if (OpInfo.hasMatchingInput()) { 4601 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4602 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4603 if ((OpInfo.ConstraintVT.isInteger() != 4604 Input.ConstraintVT.isInteger()) || 4605 (OpInfo.ConstraintVT.getSizeInBits() != 4606 Input.ConstraintVT.getSizeInBits())) { 4607 weightSum = -1; // Can't match. 4608 break; 4609 } 4610 } 4611 } 4612 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4613 if (weight == -1) { 4614 weightSum = -1; 4615 break; 4616 } 4617 weightSum += weight; 4618 } 4619 // Update best. 4620 if (weightSum > bestWeight) { 4621 bestWeight = weightSum; 4622 bestMAIndex = maIndex; 4623 } 4624 } 4625 4626 // Now select chosen alternative in each constraint. 4627 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4628 cIndex != eIndex; ++cIndex) { 4629 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4630 if (cInfo.Type == InlineAsm::isClobber) 4631 continue; 4632 cInfo.selectAlternative(bestMAIndex); 4633 } 4634 } 4635 } 4636 4637 // Check and hook up tied operands, choose constraint code to use. 4638 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4639 cIndex != eIndex; ++cIndex) { 4640 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4641 4642 // If this is an output operand with a matching input operand, look up the 4643 // matching input. If their types mismatch, e.g. one is an integer, the 4644 // other is floating point, or their sizes are different, flag it as an 4645 // error. 4646 if (OpInfo.hasMatchingInput()) { 4647 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4648 4649 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4650 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4651 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4652 OpInfo.ConstraintVT); 4653 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4654 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4655 Input.ConstraintVT); 4656 if ((OpInfo.ConstraintVT.isInteger() != 4657 Input.ConstraintVT.isInteger()) || 4658 (MatchRC.second != InputRC.second)) { 4659 report_fatal_error("Unsupported asm: input constraint" 4660 " with a matching output constraint of" 4661 " incompatible type!"); 4662 } 4663 } 4664 } 4665 } 4666 4667 return ConstraintOperands; 4668 } 4669 4670 /// Return an integer indicating how general CT is. 4671 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4672 switch (CT) { 4673 case TargetLowering::C_Immediate: 4674 case TargetLowering::C_Other: 4675 case TargetLowering::C_Unknown: 4676 return 0; 4677 case TargetLowering::C_Register: 4678 return 1; 4679 case TargetLowering::C_RegisterClass: 4680 return 2; 4681 case TargetLowering::C_Memory: 4682 return 3; 4683 } 4684 llvm_unreachable("Invalid constraint type"); 4685 } 4686 4687 /// Examine constraint type and operand type and determine a weight value. 4688 /// This object must already have been set up with the operand type 4689 /// and the current alternative constraint selected. 4690 TargetLowering::ConstraintWeight 4691 TargetLowering::getMultipleConstraintMatchWeight( 4692 AsmOperandInfo &info, int maIndex) const { 4693 InlineAsm::ConstraintCodeVector *rCodes; 4694 if (maIndex >= (int)info.multipleAlternatives.size()) 4695 rCodes = &info.Codes; 4696 else 4697 rCodes = &info.multipleAlternatives[maIndex].Codes; 4698 ConstraintWeight BestWeight = CW_Invalid; 4699 4700 // Loop over the options, keeping track of the most general one. 4701 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4702 ConstraintWeight weight = 4703 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4704 if (weight > BestWeight) 4705 BestWeight = weight; 4706 } 4707 4708 return BestWeight; 4709 } 4710 4711 /// Examine constraint type and operand type and determine a weight value. 4712 /// This object must already have been set up with the operand type 4713 /// and the current alternative constraint selected. 4714 TargetLowering::ConstraintWeight 4715 TargetLowering::getSingleConstraintMatchWeight( 4716 AsmOperandInfo &info, const char *constraint) const { 4717 ConstraintWeight weight = CW_Invalid; 4718 Value *CallOperandVal = info.CallOperandVal; 4719 // If we don't have a value, we can't do a match, 4720 // but allow it at the lowest weight. 4721 if (!CallOperandVal) 4722 return CW_Default; 4723 // Look at the constraint type. 4724 switch (*constraint) { 4725 case 'i': // immediate integer. 4726 case 'n': // immediate integer with a known value. 4727 if (isa<ConstantInt>(CallOperandVal)) 4728 weight = CW_Constant; 4729 break; 4730 case 's': // non-explicit intregal immediate. 4731 if (isa<GlobalValue>(CallOperandVal)) 4732 weight = CW_Constant; 4733 break; 4734 case 'E': // immediate float if host format. 4735 case 'F': // immediate float. 4736 if (isa<ConstantFP>(CallOperandVal)) 4737 weight = CW_Constant; 4738 break; 4739 case '<': // memory operand with autodecrement. 4740 case '>': // memory operand with autoincrement. 4741 case 'm': // memory operand. 4742 case 'o': // offsettable memory operand 4743 case 'V': // non-offsettable memory operand 4744 weight = CW_Memory; 4745 break; 4746 case 'r': // general register. 4747 case 'g': // general register, memory operand or immediate integer. 4748 // note: Clang converts "g" to "imr". 4749 if (CallOperandVal->getType()->isIntegerTy()) 4750 weight = CW_Register; 4751 break; 4752 case 'X': // any operand. 4753 default: 4754 weight = CW_Default; 4755 break; 4756 } 4757 return weight; 4758 } 4759 4760 /// If there are multiple different constraints that we could pick for this 4761 /// operand (e.g. "imr") try to pick the 'best' one. 4762 /// This is somewhat tricky: constraints fall into four classes: 4763 /// Other -> immediates and magic values 4764 /// Register -> one specific register 4765 /// RegisterClass -> a group of regs 4766 /// Memory -> memory 4767 /// Ideally, we would pick the most specific constraint possible: if we have 4768 /// something that fits into a register, we would pick it. The problem here 4769 /// is that if we have something that could either be in a register or in 4770 /// memory that use of the register could cause selection of *other* 4771 /// operands to fail: they might only succeed if we pick memory. Because of 4772 /// this the heuristic we use is: 4773 /// 4774 /// 1) If there is an 'other' constraint, and if the operand is valid for 4775 /// that constraint, use it. This makes us take advantage of 'i' 4776 /// constraints when available. 4777 /// 2) Otherwise, pick the most general constraint present. This prefers 4778 /// 'm' over 'r', for example. 4779 /// 4780 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4781 const TargetLowering &TLI, 4782 SDValue Op, SelectionDAG *DAG) { 4783 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4784 unsigned BestIdx = 0; 4785 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4786 int BestGenerality = -1; 4787 4788 // Loop over the options, keeping track of the most general one. 4789 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4790 TargetLowering::ConstraintType CType = 4791 TLI.getConstraintType(OpInfo.Codes[i]); 4792 4793 // Indirect 'other' or 'immediate' constraints are not allowed. 4794 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4795 CType == TargetLowering::C_Register || 4796 CType == TargetLowering::C_RegisterClass)) 4797 continue; 4798 4799 // If this is an 'other' or 'immediate' constraint, see if the operand is 4800 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4801 // the operand is an integer in the range [0..31] we want to use I (saving a 4802 // load of a register), otherwise we must use 'r'. 4803 if ((CType == TargetLowering::C_Other || 4804 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4805 assert(OpInfo.Codes[i].size() == 1 && 4806 "Unhandled multi-letter 'other' constraint"); 4807 std::vector<SDValue> ResultOps; 4808 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4809 ResultOps, *DAG); 4810 if (!ResultOps.empty()) { 4811 BestType = CType; 4812 BestIdx = i; 4813 break; 4814 } 4815 } 4816 4817 // Things with matching constraints can only be registers, per gcc 4818 // documentation. This mainly affects "g" constraints. 4819 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4820 continue; 4821 4822 // This constraint letter is more general than the previous one, use it. 4823 int Generality = getConstraintGenerality(CType); 4824 if (Generality > BestGenerality) { 4825 BestType = CType; 4826 BestIdx = i; 4827 BestGenerality = Generality; 4828 } 4829 } 4830 4831 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4832 OpInfo.ConstraintType = BestType; 4833 } 4834 4835 /// Determines the constraint code and constraint type to use for the specific 4836 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4837 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4838 SDValue Op, 4839 SelectionDAG *DAG) const { 4840 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4841 4842 // Single-letter constraints ('r') are very common. 4843 if (OpInfo.Codes.size() == 1) { 4844 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4845 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4846 } else { 4847 ChooseConstraint(OpInfo, *this, Op, DAG); 4848 } 4849 4850 // 'X' matches anything. 4851 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4852 // Labels and constants are handled elsewhere ('X' is the only thing 4853 // that matches labels). For Functions, the type here is the type of 4854 // the result, which is not what we want to look at; leave them alone. 4855 Value *v = OpInfo.CallOperandVal; 4856 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4857 OpInfo.CallOperandVal = v; 4858 return; 4859 } 4860 4861 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4862 return; 4863 4864 // Otherwise, try to resolve it to something we know about by looking at 4865 // the actual operand type. 4866 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4867 OpInfo.ConstraintCode = Repl; 4868 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4869 } 4870 } 4871 } 4872 4873 /// Given an exact SDIV by a constant, create a multiplication 4874 /// with the multiplicative inverse of the constant. 4875 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4876 const SDLoc &dl, SelectionDAG &DAG, 4877 SmallVectorImpl<SDNode *> &Created) { 4878 SDValue Op0 = N->getOperand(0); 4879 SDValue Op1 = N->getOperand(1); 4880 EVT VT = N->getValueType(0); 4881 EVT SVT = VT.getScalarType(); 4882 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4883 EVT ShSVT = ShVT.getScalarType(); 4884 4885 bool UseSRA = false; 4886 SmallVector<SDValue, 16> Shifts, Factors; 4887 4888 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4889 if (C->isNullValue()) 4890 return false; 4891 APInt Divisor = C->getAPIntValue(); 4892 unsigned Shift = Divisor.countTrailingZeros(); 4893 if (Shift) { 4894 Divisor.ashrInPlace(Shift); 4895 UseSRA = true; 4896 } 4897 // Calculate the multiplicative inverse, using Newton's method. 4898 APInt t; 4899 APInt Factor = Divisor; 4900 while ((t = Divisor * Factor) != 1) 4901 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4902 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4903 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4904 return true; 4905 }; 4906 4907 // Collect all magic values from the build vector. 4908 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4909 return SDValue(); 4910 4911 SDValue Shift, Factor; 4912 if (VT.isVector()) { 4913 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4914 Factor = DAG.getBuildVector(VT, dl, Factors); 4915 } else { 4916 Shift = Shifts[0]; 4917 Factor = Factors[0]; 4918 } 4919 4920 SDValue Res = Op0; 4921 4922 // Shift the value upfront if it is even, so the LSB is one. 4923 if (UseSRA) { 4924 // TODO: For UDIV use SRL instead of SRA. 4925 SDNodeFlags Flags; 4926 Flags.setExact(true); 4927 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4928 Created.push_back(Res.getNode()); 4929 } 4930 4931 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4932 } 4933 4934 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4935 SelectionDAG &DAG, 4936 SmallVectorImpl<SDNode *> &Created) const { 4937 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4939 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4940 return SDValue(N, 0); // Lower SDIV as SDIV 4941 return SDValue(); 4942 } 4943 4944 /// Given an ISD::SDIV node expressing a divide by constant, 4945 /// return a DAG expression to select that will generate the same value by 4946 /// multiplying by a magic number. 4947 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4948 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4949 bool IsAfterLegalization, 4950 SmallVectorImpl<SDNode *> &Created) const { 4951 SDLoc dl(N); 4952 EVT VT = N->getValueType(0); 4953 EVT SVT = VT.getScalarType(); 4954 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4955 EVT ShSVT = ShVT.getScalarType(); 4956 unsigned EltBits = VT.getScalarSizeInBits(); 4957 4958 // Check to see if we can do this. 4959 // FIXME: We should be more aggressive here. 4960 if (!isTypeLegal(VT)) 4961 return SDValue(); 4962 4963 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4964 if (N->getFlags().hasExact()) 4965 return BuildExactSDIV(*this, N, dl, DAG, Created); 4966 4967 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4968 4969 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4970 if (C->isNullValue()) 4971 return false; 4972 4973 const APInt &Divisor = C->getAPIntValue(); 4974 APInt::ms magics = Divisor.magic(); 4975 int NumeratorFactor = 0; 4976 int ShiftMask = -1; 4977 4978 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4979 // If d is +1/-1, we just multiply the numerator by +1/-1. 4980 NumeratorFactor = Divisor.getSExtValue(); 4981 magics.m = 0; 4982 magics.s = 0; 4983 ShiftMask = 0; 4984 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4985 // If d > 0 and m < 0, add the numerator. 4986 NumeratorFactor = 1; 4987 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4988 // If d < 0 and m > 0, subtract the numerator. 4989 NumeratorFactor = -1; 4990 } 4991 4992 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4993 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4994 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4995 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4996 return true; 4997 }; 4998 4999 SDValue N0 = N->getOperand(0); 5000 SDValue N1 = N->getOperand(1); 5001 5002 // Collect the shifts / magic values from each element. 5003 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5004 return SDValue(); 5005 5006 SDValue MagicFactor, Factor, Shift, ShiftMask; 5007 if (VT.isVector()) { 5008 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5009 Factor = DAG.getBuildVector(VT, dl, Factors); 5010 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5011 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5012 } else { 5013 MagicFactor = MagicFactors[0]; 5014 Factor = Factors[0]; 5015 Shift = Shifts[0]; 5016 ShiftMask = ShiftMasks[0]; 5017 } 5018 5019 // Multiply the numerator (operand 0) by the magic value. 5020 // FIXME: We should support doing a MUL in a wider type. 5021 SDValue Q; 5022 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 5023 : isOperationLegalOrCustom(ISD::MULHS, VT)) 5024 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 5025 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 5026 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 5027 SDValue LoHi = 5028 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 5029 Q = SDValue(LoHi.getNode(), 1); 5030 } else 5031 return SDValue(); // No mulhs or equivalent. 5032 Created.push_back(Q.getNode()); 5033 5034 // (Optionally) Add/subtract the numerator using Factor. 5035 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5036 Created.push_back(Factor.getNode()); 5037 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5038 Created.push_back(Q.getNode()); 5039 5040 // Shift right algebraic by shift value. 5041 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5042 Created.push_back(Q.getNode()); 5043 5044 // Extract the sign bit, mask it and add it to the quotient. 5045 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5046 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5047 Created.push_back(T.getNode()); 5048 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5049 Created.push_back(T.getNode()); 5050 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5051 } 5052 5053 /// Given an ISD::UDIV node expressing a divide by constant, 5054 /// return a DAG expression to select that will generate the same value by 5055 /// multiplying by a magic number. 5056 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5057 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5058 bool IsAfterLegalization, 5059 SmallVectorImpl<SDNode *> &Created) const { 5060 SDLoc dl(N); 5061 EVT VT = N->getValueType(0); 5062 EVT SVT = VT.getScalarType(); 5063 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5064 EVT ShSVT = ShVT.getScalarType(); 5065 unsigned EltBits = VT.getScalarSizeInBits(); 5066 5067 // Check to see if we can do this. 5068 // FIXME: We should be more aggressive here. 5069 if (!isTypeLegal(VT)) 5070 return SDValue(); 5071 5072 bool UseNPQ = false; 5073 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5074 5075 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5076 if (C->isNullValue()) 5077 return false; 5078 // FIXME: We should use a narrower constant when the upper 5079 // bits are known to be zero. 5080 APInt Divisor = C->getAPIntValue(); 5081 APInt::mu magics = Divisor.magicu(); 5082 unsigned PreShift = 0, PostShift = 0; 5083 5084 // If the divisor is even, we can avoid using the expensive fixup by 5085 // shifting the divided value upfront. 5086 if (magics.a != 0 && !Divisor[0]) { 5087 PreShift = Divisor.countTrailingZeros(); 5088 // Get magic number for the shifted divisor. 5089 magics = Divisor.lshr(PreShift).magicu(PreShift); 5090 assert(magics.a == 0 && "Should use cheap fixup now"); 5091 } 5092 5093 APInt Magic = magics.m; 5094 5095 unsigned SelNPQ; 5096 if (magics.a == 0 || Divisor.isOneValue()) { 5097 assert(magics.s < Divisor.getBitWidth() && 5098 "We shouldn't generate an undefined shift!"); 5099 PostShift = magics.s; 5100 SelNPQ = false; 5101 } else { 5102 PostShift = magics.s - 1; 5103 SelNPQ = true; 5104 } 5105 5106 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5107 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5108 NPQFactors.push_back( 5109 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5110 : APInt::getNullValue(EltBits), 5111 dl, SVT)); 5112 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5113 UseNPQ |= SelNPQ; 5114 return true; 5115 }; 5116 5117 SDValue N0 = N->getOperand(0); 5118 SDValue N1 = N->getOperand(1); 5119 5120 // Collect the shifts/magic values from each element. 5121 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5122 return SDValue(); 5123 5124 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5125 if (VT.isVector()) { 5126 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5127 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5128 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5129 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5130 } else { 5131 PreShift = PreShifts[0]; 5132 MagicFactor = MagicFactors[0]; 5133 PostShift = PostShifts[0]; 5134 } 5135 5136 SDValue Q = N0; 5137 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5138 Created.push_back(Q.getNode()); 5139 5140 // FIXME: We should support doing a MUL in a wider type. 5141 auto GetMULHU = [&](SDValue X, SDValue Y) { 5142 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5143 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5144 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5145 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5146 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5147 SDValue LoHi = 5148 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5149 return SDValue(LoHi.getNode(), 1); 5150 } 5151 return SDValue(); // No mulhu or equivalent 5152 }; 5153 5154 // Multiply the numerator (operand 0) by the magic value. 5155 Q = GetMULHU(Q, MagicFactor); 5156 if (!Q) 5157 return SDValue(); 5158 5159 Created.push_back(Q.getNode()); 5160 5161 if (UseNPQ) { 5162 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5163 Created.push_back(NPQ.getNode()); 5164 5165 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5166 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5167 if (VT.isVector()) 5168 NPQ = GetMULHU(NPQ, NPQFactor); 5169 else 5170 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5171 5172 Created.push_back(NPQ.getNode()); 5173 5174 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5175 Created.push_back(Q.getNode()); 5176 } 5177 5178 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5179 Created.push_back(Q.getNode()); 5180 5181 SDValue One = DAG.getConstant(1, dl, VT); 5182 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5183 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5184 } 5185 5186 /// If all values in Values that *don't* match the predicate are same 'splat' 5187 /// value, then replace all values with that splat value. 5188 /// Else, if AlternativeReplacement was provided, then replace all values that 5189 /// do match predicate with AlternativeReplacement value. 5190 static void 5191 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5192 std::function<bool(SDValue)> Predicate, 5193 SDValue AlternativeReplacement = SDValue()) { 5194 SDValue Replacement; 5195 // Is there a value for which the Predicate does *NOT* match? What is it? 5196 auto SplatValue = llvm::find_if_not(Values, Predicate); 5197 if (SplatValue != Values.end()) { 5198 // Does Values consist only of SplatValue's and values matching Predicate? 5199 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5200 return Value == *SplatValue || Predicate(Value); 5201 })) // Then we shall replace values matching predicate with SplatValue. 5202 Replacement = *SplatValue; 5203 } 5204 if (!Replacement) { 5205 // Oops, we did not find the "baseline" splat value. 5206 if (!AlternativeReplacement) 5207 return; // Nothing to do. 5208 // Let's replace with provided value then. 5209 Replacement = AlternativeReplacement; 5210 } 5211 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5212 } 5213 5214 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5215 /// where the divisor is constant and the comparison target is zero, 5216 /// return a DAG expression that will generate the same comparison result 5217 /// using only multiplications, additions and shifts/rotations. 5218 /// Ref: "Hacker's Delight" 10-17. 5219 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5220 SDValue CompTargetNode, 5221 ISD::CondCode Cond, 5222 DAGCombinerInfo &DCI, 5223 const SDLoc &DL) const { 5224 SmallVector<SDNode *, 5> Built; 5225 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5226 DCI, DL, Built)) { 5227 for (SDNode *N : Built) 5228 DCI.AddToWorklist(N); 5229 return Folded; 5230 } 5231 5232 return SDValue(); 5233 } 5234 5235 SDValue 5236 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5237 SDValue CompTargetNode, ISD::CondCode Cond, 5238 DAGCombinerInfo &DCI, const SDLoc &DL, 5239 SmallVectorImpl<SDNode *> &Created) const { 5240 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5241 // - D must be constant, with D = D0 * 2^K where D0 is odd 5242 // - P is the multiplicative inverse of D0 modulo 2^W 5243 // - Q = floor(((2^W) - 1) / D) 5244 // where W is the width of the common type of N and D. 5245 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5246 "Only applicable for (in)equality comparisons."); 5247 5248 SelectionDAG &DAG = DCI.DAG; 5249 5250 EVT VT = REMNode.getValueType(); 5251 EVT SVT = VT.getScalarType(); 5252 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5253 EVT ShSVT = ShVT.getScalarType(); 5254 5255 // If MUL is unavailable, we cannot proceed in any case. 5256 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5257 return SDValue(); 5258 5259 bool ComparingWithAllZeros = true; 5260 bool AllComparisonsWithNonZerosAreTautological = true; 5261 bool HadTautologicalLanes = false; 5262 bool AllLanesAreTautological = true; 5263 bool HadEvenDivisor = false; 5264 bool AllDivisorsArePowerOfTwo = true; 5265 bool HadTautologicalInvertedLanes = false; 5266 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5267 5268 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5269 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5270 if (CDiv->isNullValue()) 5271 return false; 5272 5273 const APInt &D = CDiv->getAPIntValue(); 5274 const APInt &Cmp = CCmp->getAPIntValue(); 5275 5276 ComparingWithAllZeros &= Cmp.isNullValue(); 5277 5278 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5279 // if C2 is not less than C1, the comparison is always false. 5280 // But we will only be able to produce the comparison that will give the 5281 // opposive tautological answer. So this lane would need to be fixed up. 5282 bool TautologicalInvertedLane = D.ule(Cmp); 5283 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5284 5285 // If all lanes are tautological (either all divisors are ones, or divisor 5286 // is not greater than the constant we are comparing with), 5287 // we will prefer to avoid the fold. 5288 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5289 HadTautologicalLanes |= TautologicalLane; 5290 AllLanesAreTautological &= TautologicalLane; 5291 5292 // If we are comparing with non-zero, we need'll need to subtract said 5293 // comparison value from the LHS. But there is no point in doing that if 5294 // every lane where we are comparing with non-zero is tautological.. 5295 if (!Cmp.isNullValue()) 5296 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5297 5298 // Decompose D into D0 * 2^K 5299 unsigned K = D.countTrailingZeros(); 5300 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5301 APInt D0 = D.lshr(K); 5302 5303 // D is even if it has trailing zeros. 5304 HadEvenDivisor |= (K != 0); 5305 // D is a power-of-two if D0 is one. 5306 // If all divisors are power-of-two, we will prefer to avoid the fold. 5307 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5308 5309 // P = inv(D0, 2^W) 5310 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5311 unsigned W = D.getBitWidth(); 5312 APInt P = D0.zext(W + 1) 5313 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5314 .trunc(W); 5315 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5316 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5317 5318 // Q = floor((2^W - 1) u/ D) 5319 // R = ((2^W - 1) u% D) 5320 APInt Q, R; 5321 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5322 5323 // If we are comparing with zero, then that comparison constant is okay, 5324 // else it may need to be one less than that. 5325 if (Cmp.ugt(R)) 5326 Q -= 1; 5327 5328 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5329 "We are expecting that K is always less than all-ones for ShSVT"); 5330 5331 // If the lane is tautological the result can be constant-folded. 5332 if (TautologicalLane) { 5333 // Set P and K amount to a bogus values so we can try to splat them. 5334 P = 0; 5335 K = -1; 5336 // And ensure that comparison constant is tautological, 5337 // it will always compare true/false. 5338 Q = -1; 5339 } 5340 5341 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5342 KAmts.push_back( 5343 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5344 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5345 return true; 5346 }; 5347 5348 SDValue N = REMNode.getOperand(0); 5349 SDValue D = REMNode.getOperand(1); 5350 5351 // Collect the values from each element. 5352 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5353 return SDValue(); 5354 5355 // If all lanes are tautological, the result can be constant-folded. 5356 if (AllLanesAreTautological) 5357 return SDValue(); 5358 5359 // If this is a urem by a powers-of-two, avoid the fold since it can be 5360 // best implemented as a bit test. 5361 if (AllDivisorsArePowerOfTwo) 5362 return SDValue(); 5363 5364 SDValue PVal, KVal, QVal; 5365 if (VT.isVector()) { 5366 if (HadTautologicalLanes) { 5367 // Try to turn PAmts into a splat, since we don't care about the values 5368 // that are currently '0'. If we can't, just keep '0'`s. 5369 turnVectorIntoSplatVector(PAmts, isNullConstant); 5370 // Try to turn KAmts into a splat, since we don't care about the values 5371 // that are currently '-1'. If we can't, change them to '0'`s. 5372 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5373 DAG.getConstant(0, DL, ShSVT)); 5374 } 5375 5376 PVal = DAG.getBuildVector(VT, DL, PAmts); 5377 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5378 QVal = DAG.getBuildVector(VT, DL, QAmts); 5379 } else { 5380 PVal = PAmts[0]; 5381 KVal = KAmts[0]; 5382 QVal = QAmts[0]; 5383 } 5384 5385 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5386 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5387 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5388 assert(CompTargetNode.getValueType() == N.getValueType() && 5389 "Expecting that the types on LHS and RHS of comparisons match."); 5390 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5391 } 5392 5393 // (mul N, P) 5394 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5395 Created.push_back(Op0.getNode()); 5396 5397 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5398 // divisors as a performance improvement, since rotating by 0 is a no-op. 5399 if (HadEvenDivisor) { 5400 // We need ROTR to do this. 5401 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5402 return SDValue(); 5403 SDNodeFlags Flags; 5404 Flags.setExact(true); 5405 // UREM: (rotr (mul N, P), K) 5406 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5407 Created.push_back(Op0.getNode()); 5408 } 5409 5410 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5411 SDValue NewCC = 5412 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5413 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5414 if (!HadTautologicalInvertedLanes) 5415 return NewCC; 5416 5417 // If any lanes previously compared always-false, the NewCC will give 5418 // always-true result for them, so we need to fixup those lanes. 5419 // Or the other way around for inequality predicate. 5420 assert(VT.isVector() && "Can/should only get here for vectors."); 5421 Created.push_back(NewCC.getNode()); 5422 5423 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5424 // if C2 is not less than C1, the comparison is always false. 5425 // But we have produced the comparison that will give the 5426 // opposive tautological answer. So these lanes would need to be fixed up. 5427 SDValue TautologicalInvertedChannels = 5428 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5429 Created.push_back(TautologicalInvertedChannels.getNode()); 5430 5431 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5432 // If we have a vector select, let's replace the comparison results in the 5433 // affected lanes with the correct tautological result. 5434 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5435 DL, SETCCVT, SETCCVT); 5436 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5437 Replacement, NewCC); 5438 } 5439 5440 // Else, we can just invert the comparison result in the appropriate lanes. 5441 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5442 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5443 TautologicalInvertedChannels); 5444 5445 return SDValue(); // Don't know how to lower. 5446 } 5447 5448 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5449 /// where the divisor is constant and the comparison target is zero, 5450 /// return a DAG expression that will generate the same comparison result 5451 /// using only multiplications, additions and shifts/rotations. 5452 /// Ref: "Hacker's Delight" 10-17. 5453 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5454 SDValue CompTargetNode, 5455 ISD::CondCode Cond, 5456 DAGCombinerInfo &DCI, 5457 const SDLoc &DL) const { 5458 SmallVector<SDNode *, 7> Built; 5459 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5460 DCI, DL, Built)) { 5461 assert(Built.size() <= 7 && "Max size prediction failed."); 5462 for (SDNode *N : Built) 5463 DCI.AddToWorklist(N); 5464 return Folded; 5465 } 5466 5467 return SDValue(); 5468 } 5469 5470 SDValue 5471 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5472 SDValue CompTargetNode, ISD::CondCode Cond, 5473 DAGCombinerInfo &DCI, const SDLoc &DL, 5474 SmallVectorImpl<SDNode *> &Created) const { 5475 // Fold: 5476 // (seteq/ne (srem N, D), 0) 5477 // To: 5478 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5479 // 5480 // - D must be constant, with D = D0 * 2^K where D0 is odd 5481 // - P is the multiplicative inverse of D0 modulo 2^W 5482 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5483 // - Q = floor((2 * A) / (2^K)) 5484 // where W is the width of the common type of N and D. 5485 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5486 "Only applicable for (in)equality comparisons."); 5487 5488 SelectionDAG &DAG = DCI.DAG; 5489 5490 EVT VT = REMNode.getValueType(); 5491 EVT SVT = VT.getScalarType(); 5492 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5493 EVT ShSVT = ShVT.getScalarType(); 5494 5495 // If MUL is unavailable, we cannot proceed in any case. 5496 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5497 return SDValue(); 5498 5499 // TODO: Could support comparing with non-zero too. 5500 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5501 if (!CompTarget || !CompTarget->isNullValue()) 5502 return SDValue(); 5503 5504 bool HadIntMinDivisor = false; 5505 bool HadOneDivisor = false; 5506 bool AllDivisorsAreOnes = true; 5507 bool HadEvenDivisor = false; 5508 bool NeedToApplyOffset = false; 5509 bool AllDivisorsArePowerOfTwo = true; 5510 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5511 5512 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5513 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5514 if (C->isNullValue()) 5515 return false; 5516 5517 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5518 5519 // WARNING: this fold is only valid for positive divisors! 5520 APInt D = C->getAPIntValue(); 5521 if (D.isNegative()) 5522 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5523 5524 HadIntMinDivisor |= D.isMinSignedValue(); 5525 5526 // If all divisors are ones, we will prefer to avoid the fold. 5527 HadOneDivisor |= D.isOneValue(); 5528 AllDivisorsAreOnes &= D.isOneValue(); 5529 5530 // Decompose D into D0 * 2^K 5531 unsigned K = D.countTrailingZeros(); 5532 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5533 APInt D0 = D.lshr(K); 5534 5535 if (!D.isMinSignedValue()) { 5536 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5537 // we don't care about this lane in this fold, we'll special-handle it. 5538 HadEvenDivisor |= (K != 0); 5539 } 5540 5541 // D is a power-of-two if D0 is one. This includes INT_MIN. 5542 // If all divisors are power-of-two, we will prefer to avoid the fold. 5543 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5544 5545 // P = inv(D0, 2^W) 5546 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5547 unsigned W = D.getBitWidth(); 5548 APInt P = D0.zext(W + 1) 5549 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5550 .trunc(W); 5551 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5552 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5553 5554 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5555 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5556 A.clearLowBits(K); 5557 5558 if (!D.isMinSignedValue()) { 5559 // If divisor INT_MIN, then we don't care about this lane in this fold, 5560 // we'll special-handle it. 5561 NeedToApplyOffset |= A != 0; 5562 } 5563 5564 // Q = floor((2 * A) / (2^K)) 5565 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5566 5567 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5568 "We are expecting that A is always less than all-ones for SVT"); 5569 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5570 "We are expecting that K is always less than all-ones for ShSVT"); 5571 5572 // If the divisor is 1 the result can be constant-folded. Likewise, we 5573 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5574 if (D.isOneValue()) { 5575 // Set P, A and K to a bogus values so we can try to splat them. 5576 P = 0; 5577 A = -1; 5578 K = -1; 5579 5580 // x ?% 1 == 0 <--> true <--> x u<= -1 5581 Q = -1; 5582 } 5583 5584 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5585 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5586 KAmts.push_back( 5587 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5588 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5589 return true; 5590 }; 5591 5592 SDValue N = REMNode.getOperand(0); 5593 SDValue D = REMNode.getOperand(1); 5594 5595 // Collect the values from each element. 5596 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5597 return SDValue(); 5598 5599 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5600 if (AllDivisorsAreOnes) 5601 return SDValue(); 5602 5603 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5604 // since it can be best implemented as a bit test. 5605 if (AllDivisorsArePowerOfTwo) 5606 return SDValue(); 5607 5608 SDValue PVal, AVal, KVal, QVal; 5609 if (VT.isVector()) { 5610 if (HadOneDivisor) { 5611 // Try to turn PAmts into a splat, since we don't care about the values 5612 // that are currently '0'. If we can't, just keep '0'`s. 5613 turnVectorIntoSplatVector(PAmts, isNullConstant); 5614 // Try to turn AAmts into a splat, since we don't care about the 5615 // values that are currently '-1'. If we can't, change them to '0'`s. 5616 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5617 DAG.getConstant(0, DL, SVT)); 5618 // Try to turn KAmts into a splat, since we don't care about the values 5619 // that are currently '-1'. If we can't, change them to '0'`s. 5620 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5621 DAG.getConstant(0, DL, ShSVT)); 5622 } 5623 5624 PVal = DAG.getBuildVector(VT, DL, PAmts); 5625 AVal = DAG.getBuildVector(VT, DL, AAmts); 5626 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5627 QVal = DAG.getBuildVector(VT, DL, QAmts); 5628 } else { 5629 PVal = PAmts[0]; 5630 AVal = AAmts[0]; 5631 KVal = KAmts[0]; 5632 QVal = QAmts[0]; 5633 } 5634 5635 // (mul N, P) 5636 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5637 Created.push_back(Op0.getNode()); 5638 5639 if (NeedToApplyOffset) { 5640 // We need ADD to do this. 5641 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5642 return SDValue(); 5643 5644 // (add (mul N, P), A) 5645 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5646 Created.push_back(Op0.getNode()); 5647 } 5648 5649 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5650 // divisors as a performance improvement, since rotating by 0 is a no-op. 5651 if (HadEvenDivisor) { 5652 // We need ROTR to do this. 5653 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5654 return SDValue(); 5655 SDNodeFlags Flags; 5656 Flags.setExact(true); 5657 // SREM: (rotr (add (mul N, P), A), K) 5658 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5659 Created.push_back(Op0.getNode()); 5660 } 5661 5662 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5663 SDValue Fold = 5664 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5665 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5666 5667 // If we didn't have lanes with INT_MIN divisor, then we're done. 5668 if (!HadIntMinDivisor) 5669 return Fold; 5670 5671 // That fold is only valid for positive divisors. Which effectively means, 5672 // it is invalid for INT_MIN divisors. So if we have such a lane, 5673 // we must fix-up results for said lanes. 5674 assert(VT.isVector() && "Can/should only get here for vectors."); 5675 5676 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5677 !isOperationLegalOrCustom(ISD::AND, VT) || 5678 !isOperationLegalOrCustom(Cond, VT) || 5679 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5680 return SDValue(); 5681 5682 Created.push_back(Fold.getNode()); 5683 5684 SDValue IntMin = DAG.getConstant( 5685 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5686 SDValue IntMax = DAG.getConstant( 5687 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5688 SDValue Zero = 5689 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5690 5691 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5692 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5693 Created.push_back(DivisorIsIntMin.getNode()); 5694 5695 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5696 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5697 Created.push_back(Masked.getNode()); 5698 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5699 Created.push_back(MaskedIsZero.getNode()); 5700 5701 // To produce final result we need to blend 2 vectors: 'SetCC' and 5702 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5703 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5704 // constant-folded, select can get lowered to a shuffle with constant mask. 5705 SDValue Blended = 5706 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5707 5708 return Blended; 5709 } 5710 5711 bool TargetLowering:: 5712 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5713 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5714 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5715 "be a constant integer"); 5716 return true; 5717 } 5718 5719 return false; 5720 } 5721 5722 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5723 bool LegalOps, bool OptForSize, 5724 NegatibleCost &Cost, 5725 unsigned Depth) const { 5726 // fneg is removable even if it has multiple uses. 5727 if (Op.getOpcode() == ISD::FNEG) { 5728 Cost = NegatibleCost::Cheaper; 5729 return Op.getOperand(0); 5730 } 5731 5732 // Don't recurse exponentially. 5733 if (Depth > SelectionDAG::MaxRecursionDepth) 5734 return SDValue(); 5735 5736 // Pre-increment recursion depth for use in recursive calls. 5737 ++Depth; 5738 const SDNodeFlags Flags = Op->getFlags(); 5739 const TargetOptions &Options = DAG.getTarget().Options; 5740 EVT VT = Op.getValueType(); 5741 unsigned Opcode = Op.getOpcode(); 5742 5743 // Don't allow anything with multiple uses unless we know it is free. 5744 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5745 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5746 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5747 if (!IsFreeExtend) 5748 return SDValue(); 5749 } 5750 5751 auto RemoveDeadNode = [&](SDValue N) { 5752 if (N && N.getNode()->use_empty()) 5753 DAG.RemoveDeadNode(N.getNode()); 5754 }; 5755 5756 SDLoc DL(Op); 5757 5758 switch (Opcode) { 5759 case ISD::ConstantFP: { 5760 // Don't invert constant FP values after legalization unless the target says 5761 // the negated constant is legal. 5762 bool IsOpLegal = 5763 isOperationLegal(ISD::ConstantFP, VT) || 5764 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5765 OptForSize); 5766 5767 if (LegalOps && !IsOpLegal) 5768 break; 5769 5770 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5771 V.changeSign(); 5772 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5773 5774 // If we already have the use of the negated floating constant, it is free 5775 // to negate it even it has multiple uses. 5776 if (!Op.hasOneUse() && CFP.use_empty()) { 5777 RemoveDeadNode(CFP); 5778 break; 5779 } 5780 Cost = NegatibleCost::Neutral; 5781 return CFP; 5782 } 5783 case ISD::BUILD_VECTOR: { 5784 // Only permit BUILD_VECTOR of constants. 5785 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5786 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5787 })) 5788 break; 5789 5790 bool IsOpLegal = 5791 (isOperationLegal(ISD::ConstantFP, VT) && 5792 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5793 llvm::all_of(Op->op_values(), [&](SDValue N) { 5794 return N.isUndef() || 5795 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5796 OptForSize); 5797 }); 5798 5799 if (LegalOps && !IsOpLegal) 5800 break; 5801 5802 SmallVector<SDValue, 4> Ops; 5803 for (SDValue C : Op->op_values()) { 5804 if (C.isUndef()) { 5805 Ops.push_back(C); 5806 continue; 5807 } 5808 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5809 V.changeSign(); 5810 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5811 } 5812 Cost = NegatibleCost::Neutral; 5813 return DAG.getBuildVector(VT, DL, Ops); 5814 } 5815 case ISD::FADD: { 5816 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5817 break; 5818 5819 // After operation legalization, it might not be legal to create new FSUBs. 5820 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5821 break; 5822 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5823 5824 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5825 NegatibleCost CostX = NegatibleCost::Expensive; 5826 SDValue NegX = 5827 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5828 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5829 NegatibleCost CostY = NegatibleCost::Expensive; 5830 SDValue NegY = 5831 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5832 5833 // Negate the X if its cost is less or equal than Y. 5834 if (NegX && (CostX <= CostY)) { 5835 Cost = CostX; 5836 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5837 if (NegY != N) 5838 RemoveDeadNode(NegY); 5839 return N; 5840 } 5841 5842 // Negate the Y if it is not expensive. 5843 if (NegY) { 5844 Cost = CostY; 5845 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5846 if (NegX != N) 5847 RemoveDeadNode(NegX); 5848 return N; 5849 } 5850 break; 5851 } 5852 case ISD::FSUB: { 5853 // We can't turn -(A-B) into B-A when we honor signed zeros. 5854 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5855 break; 5856 5857 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5858 // fold (fneg (fsub 0, Y)) -> Y 5859 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5860 if (C->isZero()) { 5861 Cost = NegatibleCost::Cheaper; 5862 return Y; 5863 } 5864 5865 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5866 Cost = NegatibleCost::Neutral; 5867 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5868 } 5869 case ISD::FMUL: 5870 case ISD::FDIV: { 5871 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5872 5873 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5874 NegatibleCost CostX = NegatibleCost::Expensive; 5875 SDValue NegX = 5876 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5877 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5878 NegatibleCost CostY = NegatibleCost::Expensive; 5879 SDValue NegY = 5880 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5881 5882 // Negate the X if its cost is less or equal than Y. 5883 if (NegX && (CostX <= CostY)) { 5884 Cost = CostX; 5885 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 5886 if (NegY != N) 5887 RemoveDeadNode(NegY); 5888 return N; 5889 } 5890 5891 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5892 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5893 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5894 break; 5895 5896 // Negate the Y if it is not expensive. 5897 if (NegY) { 5898 Cost = CostY; 5899 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 5900 if (NegX != N) 5901 RemoveDeadNode(NegX); 5902 return N; 5903 } 5904 break; 5905 } 5906 case ISD::FMA: 5907 case ISD::FMAD: { 5908 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5909 break; 5910 5911 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5912 NegatibleCost CostZ = NegatibleCost::Expensive; 5913 SDValue NegZ = 5914 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 5915 // Give up if fail to negate the Z. 5916 if (!NegZ) 5917 break; 5918 5919 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5920 NegatibleCost CostX = NegatibleCost::Expensive; 5921 SDValue NegX = 5922 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5923 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5924 NegatibleCost CostY = NegatibleCost::Expensive; 5925 SDValue NegY = 5926 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5927 5928 // Negate the X if its cost is less or equal than Y. 5929 if (NegX && (CostX <= CostY)) { 5930 Cost = std::min(CostX, CostZ); 5931 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5932 if (NegY != N) 5933 RemoveDeadNode(NegY); 5934 return N; 5935 } 5936 5937 // Negate the Y if it is not expensive. 5938 if (NegY) { 5939 Cost = std::min(CostY, CostZ); 5940 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5941 if (NegX != N) 5942 RemoveDeadNode(NegX); 5943 return N; 5944 } 5945 break; 5946 } 5947 5948 case ISD::FP_EXTEND: 5949 case ISD::FSIN: 5950 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5951 OptForSize, Cost, Depth)) 5952 return DAG.getNode(Opcode, DL, VT, NegV); 5953 break; 5954 case ISD::FP_ROUND: 5955 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5956 OptForSize, Cost, Depth)) 5957 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 5958 break; 5959 } 5960 5961 return SDValue(); 5962 } 5963 5964 //===----------------------------------------------------------------------===// 5965 // Legalization Utilities 5966 //===----------------------------------------------------------------------===// 5967 5968 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 5969 SDValue LHS, SDValue RHS, 5970 SmallVectorImpl<SDValue> &Result, 5971 EVT HiLoVT, SelectionDAG &DAG, 5972 MulExpansionKind Kind, SDValue LL, 5973 SDValue LH, SDValue RL, SDValue RH) const { 5974 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5975 Opcode == ISD::SMUL_LOHI); 5976 5977 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5978 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5979 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5980 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5981 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5982 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5983 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5984 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5985 5986 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5987 return false; 5988 5989 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5990 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5991 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5992 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5993 5994 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5995 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5996 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5997 5998 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5999 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6000 bool Signed) -> bool { 6001 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6002 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6003 Hi = SDValue(Lo.getNode(), 1); 6004 return true; 6005 } 6006 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6007 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6008 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6009 return true; 6010 } 6011 return false; 6012 }; 6013 6014 SDValue Lo, Hi; 6015 6016 if (!LL.getNode() && !RL.getNode() && 6017 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6018 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6019 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6020 } 6021 6022 if (!LL.getNode()) 6023 return false; 6024 6025 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6026 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6027 DAG.MaskedValueIsZero(RHS, HighMask)) { 6028 // The inputs are both zero-extended. 6029 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6030 Result.push_back(Lo); 6031 Result.push_back(Hi); 6032 if (Opcode != ISD::MUL) { 6033 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6034 Result.push_back(Zero); 6035 Result.push_back(Zero); 6036 } 6037 return true; 6038 } 6039 } 6040 6041 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 6042 RHSSB > InnerBitSize) { 6043 // The input values are both sign-extended. 6044 // TODO non-MUL case? 6045 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6046 Result.push_back(Lo); 6047 Result.push_back(Hi); 6048 return true; 6049 } 6050 } 6051 6052 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6053 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6054 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6055 // FIXME getShiftAmountTy does not always return a sensible result when VT 6056 // is an illegal type, and so the type may be too small to fit the shift 6057 // amount. Override it with i32. The shift will have to be legalized. 6058 ShiftAmountTy = MVT::i32; 6059 } 6060 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6061 6062 if (!LH.getNode() && !RH.getNode() && 6063 isOperationLegalOrCustom(ISD::SRL, VT) && 6064 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6065 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6066 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6067 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6068 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6069 } 6070 6071 if (!LH.getNode()) 6072 return false; 6073 6074 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6075 return false; 6076 6077 Result.push_back(Lo); 6078 6079 if (Opcode == ISD::MUL) { 6080 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6081 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6082 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6083 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6084 Result.push_back(Hi); 6085 return true; 6086 } 6087 6088 // Compute the full width result. 6089 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6090 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6091 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6092 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6093 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6094 }; 6095 6096 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6097 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6098 return false; 6099 6100 // This is effectively the add part of a multiply-add of half-sized operands, 6101 // so it cannot overflow. 6102 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6103 6104 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6105 return false; 6106 6107 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6108 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6109 6110 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6111 isOperationLegalOrCustom(ISD::ADDE, VT)); 6112 if (UseGlue) 6113 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6114 Merge(Lo, Hi)); 6115 else 6116 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6117 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6118 6119 SDValue Carry = Next.getValue(1); 6120 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6121 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6122 6123 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6124 return false; 6125 6126 if (UseGlue) 6127 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6128 Carry); 6129 else 6130 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6131 Zero, Carry); 6132 6133 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6134 6135 if (Opcode == ISD::SMUL_LOHI) { 6136 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6137 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6138 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6139 6140 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6141 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6142 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6143 } 6144 6145 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6146 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6147 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6148 return true; 6149 } 6150 6151 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6152 SelectionDAG &DAG, MulExpansionKind Kind, 6153 SDValue LL, SDValue LH, SDValue RL, 6154 SDValue RH) const { 6155 SmallVector<SDValue, 2> Result; 6156 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6157 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6158 DAG, Kind, LL, LH, RL, RH); 6159 if (Ok) { 6160 assert(Result.size() == 2); 6161 Lo = Result[0]; 6162 Hi = Result[1]; 6163 } 6164 return Ok; 6165 } 6166 6167 // Check that (every element of) Z is undef or not an exact multiple of BW. 6168 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6169 return ISD::matchUnaryPredicate( 6170 Z, 6171 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6172 true); 6173 } 6174 6175 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6176 SelectionDAG &DAG) const { 6177 EVT VT = Node->getValueType(0); 6178 6179 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6180 !isOperationLegalOrCustom(ISD::SRL, VT) || 6181 !isOperationLegalOrCustom(ISD::SUB, VT) || 6182 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6183 return false; 6184 6185 SDValue X = Node->getOperand(0); 6186 SDValue Y = Node->getOperand(1); 6187 SDValue Z = Node->getOperand(2); 6188 6189 unsigned BW = VT.getScalarSizeInBits(); 6190 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6191 SDLoc DL(SDValue(Node, 0)); 6192 6193 EVT ShVT = Z.getValueType(); 6194 6195 // If a funnel shift in the other direction is more supported, use it. 6196 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6197 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6198 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6199 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6200 // fshl X, Y, Z -> fshr X, Y, -Z 6201 // fshr X, Y, Z -> fshl X, Y, -Z 6202 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6203 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6204 } else { 6205 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6206 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6207 SDValue One = DAG.getConstant(1, DL, ShVT); 6208 if (IsFSHL) { 6209 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6210 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6211 } else { 6212 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6213 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6214 } 6215 Z = DAG.getNOT(DL, Z, ShVT); 6216 } 6217 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6218 return true; 6219 } 6220 6221 SDValue ShX, ShY; 6222 SDValue ShAmt, InvShAmt; 6223 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6224 // fshl: X << C | Y >> (BW - C) 6225 // fshr: X << (BW - C) | Y >> C 6226 // where C = Z % BW is not zero 6227 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6228 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6229 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6230 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6231 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6232 } else { 6233 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6234 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6235 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6236 if (isPowerOf2_32(BW)) { 6237 // Z % BW -> Z & (BW - 1) 6238 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6239 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6240 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6241 } else { 6242 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6243 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6244 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6245 } 6246 6247 SDValue One = DAG.getConstant(1, DL, ShVT); 6248 if (IsFSHL) { 6249 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6250 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6251 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6252 } else { 6253 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6254 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6255 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6256 } 6257 } 6258 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6259 return true; 6260 } 6261 6262 // TODO: Merge with expandFunnelShift. 6263 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6264 SelectionDAG &DAG) const { 6265 EVT VT = Node->getValueType(0); 6266 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6267 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6268 SDValue Op0 = Node->getOperand(0); 6269 SDValue Op1 = Node->getOperand(1); 6270 SDLoc DL(SDValue(Node, 0)); 6271 6272 EVT ShVT = Op1.getValueType(); 6273 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6274 6275 // If a rotate in the other direction is supported, use it. 6276 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6277 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6278 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6279 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6280 return true; 6281 } 6282 6283 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6284 !isOperationLegalOrCustom(ISD::SRL, VT) || 6285 !isOperationLegalOrCustom(ISD::SUB, VT) || 6286 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6287 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6288 return false; 6289 6290 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6291 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6292 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6293 SDValue ShVal; 6294 SDValue HsVal; 6295 if (isPowerOf2_32(EltSizeInBits)) { 6296 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6297 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6298 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6299 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6300 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6301 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6302 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6303 } else { 6304 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6305 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6306 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6307 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6308 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6309 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6310 SDValue One = DAG.getConstant(1, DL, ShVT); 6311 HsVal = 6312 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6313 } 6314 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6315 return true; 6316 } 6317 6318 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6319 SelectionDAG &DAG) const { 6320 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6321 SDValue Src = Node->getOperand(OpNo); 6322 EVT SrcVT = Src.getValueType(); 6323 EVT DstVT = Node->getValueType(0); 6324 SDLoc dl(SDValue(Node, 0)); 6325 6326 // FIXME: Only f32 to i64 conversions are supported. 6327 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6328 return false; 6329 6330 if (Node->isStrictFPOpcode()) 6331 // When a NaN is converted to an integer a trap is allowed. We can't 6332 // use this expansion here because it would eliminate that trap. Other 6333 // traps are also allowed and cannot be eliminated. See 6334 // IEEE 754-2008 sec 5.8. 6335 return false; 6336 6337 // Expand f32 -> i64 conversion 6338 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6339 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6340 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6341 EVT IntVT = SrcVT.changeTypeToInteger(); 6342 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6343 6344 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6345 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6346 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6347 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6348 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6349 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6350 6351 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6352 6353 SDValue ExponentBits = DAG.getNode( 6354 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6355 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6356 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6357 6358 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6359 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6360 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6361 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6362 6363 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6364 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6365 DAG.getConstant(0x00800000, dl, IntVT)); 6366 6367 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6368 6369 R = DAG.getSelectCC( 6370 dl, Exponent, ExponentLoBit, 6371 DAG.getNode(ISD::SHL, dl, DstVT, R, 6372 DAG.getZExtOrTrunc( 6373 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6374 dl, IntShVT)), 6375 DAG.getNode(ISD::SRL, dl, DstVT, R, 6376 DAG.getZExtOrTrunc( 6377 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6378 dl, IntShVT)), 6379 ISD::SETGT); 6380 6381 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6382 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6383 6384 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6385 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6386 return true; 6387 } 6388 6389 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6390 SDValue &Chain, 6391 SelectionDAG &DAG) const { 6392 SDLoc dl(SDValue(Node, 0)); 6393 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6394 SDValue Src = Node->getOperand(OpNo); 6395 6396 EVT SrcVT = Src.getValueType(); 6397 EVT DstVT = Node->getValueType(0); 6398 EVT SetCCVT = 6399 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6400 EVT DstSetCCVT = 6401 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6402 6403 // Only expand vector types if we have the appropriate vector bit operations. 6404 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6405 ISD::FP_TO_SINT; 6406 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6407 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6408 return false; 6409 6410 // If the maximum float value is smaller then the signed integer range, 6411 // the destination signmask can't be represented by the float, so we can 6412 // just use FP_TO_SINT directly. 6413 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6414 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6415 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6416 if (APFloat::opOverflow & 6417 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6418 if (Node->isStrictFPOpcode()) { 6419 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6420 { Node->getOperand(0), Src }); 6421 Chain = Result.getValue(1); 6422 } else 6423 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6424 return true; 6425 } 6426 6427 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6428 SDValue Sel; 6429 6430 if (Node->isStrictFPOpcode()) { 6431 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, SDNodeFlags(), 6432 Node->getOperand(0), /*IsSignaling*/ true); 6433 Chain = Sel.getValue(1); 6434 } else { 6435 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6436 } 6437 6438 bool Strict = Node->isStrictFPOpcode() || 6439 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6440 6441 if (Strict) { 6442 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6443 // signmask then offset (the result of which should be fully representable). 6444 // Sel = Src < 0x8000000000000000 6445 // FltOfs = select Sel, 0, 0x8000000000000000 6446 // IntOfs = select Sel, 0, 0x8000000000000000 6447 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6448 6449 // TODO: Should any fast-math-flags be set for the FSUB? 6450 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6451 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6452 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6453 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6454 DAG.getConstant(0, dl, DstVT), 6455 DAG.getConstant(SignMask, dl, DstVT)); 6456 SDValue SInt; 6457 if (Node->isStrictFPOpcode()) { 6458 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6459 { Chain, Src, FltOfs }); 6460 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6461 { Val.getValue(1), Val }); 6462 Chain = SInt.getValue(1); 6463 } else { 6464 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6465 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6466 } 6467 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6468 } else { 6469 // Expand based on maximum range of FP_TO_SINT: 6470 // True = fp_to_sint(Src) 6471 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6472 // Result = select (Src < 0x8000000000000000), True, False 6473 6474 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6475 // TODO: Should any fast-math-flags be set for the FSUB? 6476 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6477 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6478 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6479 DAG.getConstant(SignMask, dl, DstVT)); 6480 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6481 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6482 } 6483 return true; 6484 } 6485 6486 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6487 SDValue &Chain, 6488 SelectionDAG &DAG) const { 6489 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6490 SDValue Src = Node->getOperand(OpNo); 6491 EVT SrcVT = Src.getValueType(); 6492 EVT DstVT = Node->getValueType(0); 6493 6494 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6495 return false; 6496 6497 // Only expand vector types if we have the appropriate vector bit operations. 6498 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6499 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6500 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6501 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6502 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6503 return false; 6504 6505 SDLoc dl(SDValue(Node, 0)); 6506 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6507 6508 // Implementation of unsigned i64 to f64 following the algorithm in 6509 // __floatundidf in compiler_rt. This implementation has the advantage 6510 // of performing rounding correctly, both in the default rounding mode 6511 // and in all alternate rounding modes. 6512 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6513 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6514 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6515 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6516 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6517 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6518 6519 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6520 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6521 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6522 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6523 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6524 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6525 if (Node->isStrictFPOpcode()) { 6526 SDValue HiSub = 6527 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6528 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6529 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6530 {HiSub.getValue(1), LoFlt, HiSub}); 6531 Chain = Result.getValue(1); 6532 } else { 6533 SDValue HiSub = 6534 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6535 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6536 } 6537 return true; 6538 } 6539 6540 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6541 SelectionDAG &DAG) const { 6542 SDLoc dl(Node); 6543 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6544 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6545 EVT VT = Node->getValueType(0); 6546 if (isOperationLegalOrCustom(NewOp, VT)) { 6547 SDValue Quiet0 = Node->getOperand(0); 6548 SDValue Quiet1 = Node->getOperand(1); 6549 6550 if (!Node->getFlags().hasNoNaNs()) { 6551 // Insert canonicalizes if it's possible we need to quiet to get correct 6552 // sNaN behavior. 6553 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6554 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6555 Node->getFlags()); 6556 } 6557 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6558 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6559 Node->getFlags()); 6560 } 6561 } 6562 6563 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6564 } 6565 6566 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6567 // instead if there are no NaNs. 6568 if (Node->getFlags().hasNoNaNs()) { 6569 unsigned IEEE2018Op = 6570 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6571 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6572 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6573 Node->getOperand(1), Node->getFlags()); 6574 } 6575 } 6576 6577 // If none of the above worked, but there are no NaNs, then expand to 6578 // a compare/select sequence. This is required for correctness since 6579 // InstCombine might have canonicalized a fcmp+select sequence to a 6580 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6581 // expansion to libcall, we might introduce a link-time dependency 6582 // on libm into a file that originally did not have one. 6583 if (Node->getFlags().hasNoNaNs()) { 6584 ISD::CondCode Pred = 6585 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6586 SDValue Op1 = Node->getOperand(0); 6587 SDValue Op2 = Node->getOperand(1); 6588 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6589 // Copy FMF flags, but always set the no-signed-zeros flag 6590 // as this is implied by the FMINNUM/FMAXNUM semantics. 6591 SDNodeFlags Flags = Node->getFlags(); 6592 Flags.setNoSignedZeros(true); 6593 SelCC->setFlags(Flags); 6594 return SelCC; 6595 } 6596 6597 return SDValue(); 6598 } 6599 6600 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6601 SelectionDAG &DAG) const { 6602 SDLoc dl(Node); 6603 EVT VT = Node->getValueType(0); 6604 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6605 SDValue Op = Node->getOperand(0); 6606 unsigned Len = VT.getScalarSizeInBits(); 6607 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6608 6609 // TODO: Add support for irregular type lengths. 6610 if (!(Len <= 128 && Len % 8 == 0)) 6611 return false; 6612 6613 // Only expand vector types if we have the appropriate vector bit operations. 6614 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6615 !isOperationLegalOrCustom(ISD::SUB, VT) || 6616 !isOperationLegalOrCustom(ISD::SRL, VT) || 6617 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6618 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6619 return false; 6620 6621 // This is the "best" algorithm from 6622 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6623 SDValue Mask55 = 6624 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6625 SDValue Mask33 = 6626 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6627 SDValue Mask0F = 6628 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6629 SDValue Mask01 = 6630 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6631 6632 // v = v - ((v >> 1) & 0x55555555...) 6633 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6634 DAG.getNode(ISD::AND, dl, VT, 6635 DAG.getNode(ISD::SRL, dl, VT, Op, 6636 DAG.getConstant(1, dl, ShVT)), 6637 Mask55)); 6638 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6639 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6640 DAG.getNode(ISD::AND, dl, VT, 6641 DAG.getNode(ISD::SRL, dl, VT, Op, 6642 DAG.getConstant(2, dl, ShVT)), 6643 Mask33)); 6644 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6645 Op = DAG.getNode(ISD::AND, dl, VT, 6646 DAG.getNode(ISD::ADD, dl, VT, Op, 6647 DAG.getNode(ISD::SRL, dl, VT, Op, 6648 DAG.getConstant(4, dl, ShVT))), 6649 Mask0F); 6650 // v = (v * 0x01010101...) >> (Len - 8) 6651 if (Len > 8) 6652 Op = 6653 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6654 DAG.getConstant(Len - 8, dl, ShVT)); 6655 6656 Result = Op; 6657 return true; 6658 } 6659 6660 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6661 SelectionDAG &DAG) const { 6662 SDLoc dl(Node); 6663 EVT VT = Node->getValueType(0); 6664 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6665 SDValue Op = Node->getOperand(0); 6666 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6667 6668 // If the non-ZERO_UNDEF version is supported we can use that instead. 6669 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6670 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6671 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6672 return true; 6673 } 6674 6675 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6676 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6677 EVT SetCCVT = 6678 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6679 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6680 SDValue Zero = DAG.getConstant(0, dl, VT); 6681 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6682 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6683 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6684 return true; 6685 } 6686 6687 // Only expand vector types if we have the appropriate vector bit operations. 6688 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6689 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6690 !isOperationLegalOrCustom(ISD::SRL, VT) || 6691 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6692 return false; 6693 6694 // for now, we do this: 6695 // x = x | (x >> 1); 6696 // x = x | (x >> 2); 6697 // ... 6698 // x = x | (x >>16); 6699 // x = x | (x >>32); // for 64-bit input 6700 // return popcount(~x); 6701 // 6702 // Ref: "Hacker's Delight" by Henry Warren 6703 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6704 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6705 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6706 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6707 } 6708 Op = DAG.getNOT(dl, Op, VT); 6709 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6710 return true; 6711 } 6712 6713 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6714 SelectionDAG &DAG) const { 6715 SDLoc dl(Node); 6716 EVT VT = Node->getValueType(0); 6717 SDValue Op = Node->getOperand(0); 6718 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6719 6720 // If the non-ZERO_UNDEF version is supported we can use that instead. 6721 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6722 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6723 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6724 return true; 6725 } 6726 6727 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6728 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6729 EVT SetCCVT = 6730 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6731 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6732 SDValue Zero = DAG.getConstant(0, dl, VT); 6733 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6734 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6735 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6736 return true; 6737 } 6738 6739 // Only expand vector types if we have the appropriate vector bit operations. 6740 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6741 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6742 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6743 !isOperationLegalOrCustom(ISD::SUB, VT) || 6744 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6745 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6746 return false; 6747 6748 // for now, we use: { return popcount(~x & (x - 1)); } 6749 // unless the target has ctlz but not ctpop, in which case we use: 6750 // { return 32 - nlz(~x & (x-1)); } 6751 // Ref: "Hacker's Delight" by Henry Warren 6752 SDValue Tmp = DAG.getNode( 6753 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6754 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6755 6756 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6757 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6758 Result = 6759 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6760 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6761 return true; 6762 } 6763 6764 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6765 return true; 6766 } 6767 6768 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6769 SelectionDAG &DAG) const { 6770 SDLoc dl(N); 6771 EVT VT = N->getValueType(0); 6772 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6773 SDValue Op = N->getOperand(0); 6774 6775 // Only expand vector types if we have the appropriate vector operations. 6776 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6777 !isOperationLegalOrCustom(ISD::ADD, VT) || 6778 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6779 return false; 6780 6781 SDValue Shift = 6782 DAG.getNode(ISD::SRA, dl, VT, Op, 6783 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6784 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6785 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6786 return true; 6787 } 6788 6789 std::pair<SDValue, SDValue> 6790 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6791 SelectionDAG &DAG) const { 6792 SDLoc SL(LD); 6793 SDValue Chain = LD->getChain(); 6794 SDValue BasePTR = LD->getBasePtr(); 6795 EVT SrcVT = LD->getMemoryVT(); 6796 EVT DstVT = LD->getValueType(0); 6797 ISD::LoadExtType ExtType = LD->getExtensionType(); 6798 6799 if (SrcVT.isScalableVector()) 6800 report_fatal_error("Cannot scalarize scalable vector loads"); 6801 6802 unsigned NumElem = SrcVT.getVectorNumElements(); 6803 6804 EVT SrcEltVT = SrcVT.getScalarType(); 6805 EVT DstEltVT = DstVT.getScalarType(); 6806 6807 // A vector must always be stored in memory as-is, i.e. without any padding 6808 // between the elements, since various code depend on it, e.g. in the 6809 // handling of a bitcast of a vector type to int, which may be done with a 6810 // vector store followed by an integer load. A vector that does not have 6811 // elements that are byte-sized must therefore be stored as an integer 6812 // built out of the extracted vector elements. 6813 if (!SrcEltVT.isByteSized()) { 6814 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6815 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6816 6817 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6818 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6819 6820 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6821 SDValue SrcEltBitMask = DAG.getConstant( 6822 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6823 6824 // Load the whole vector and avoid masking off the top bits as it makes 6825 // the codegen worse. 6826 SDValue Load = 6827 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6828 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 6829 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6830 6831 SmallVector<SDValue, 8> Vals; 6832 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6833 unsigned ShiftIntoIdx = 6834 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6835 SDValue ShiftAmount = 6836 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6837 LoadVT, SL, /*LegalTypes=*/false); 6838 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6839 SDValue Elt = 6840 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6841 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6842 6843 if (ExtType != ISD::NON_EXTLOAD) { 6844 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6845 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6846 } 6847 6848 Vals.push_back(Scalar); 6849 } 6850 6851 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6852 return std::make_pair(Value, Load.getValue(1)); 6853 } 6854 6855 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6856 assert(SrcEltVT.isByteSized()); 6857 6858 SmallVector<SDValue, 8> Vals; 6859 SmallVector<SDValue, 8> LoadChains; 6860 6861 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6862 SDValue ScalarLoad = 6863 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6864 LD->getPointerInfo().getWithOffset(Idx * Stride), 6865 SrcEltVT, LD->getOriginalAlign(), 6866 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6867 6868 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 6869 6870 Vals.push_back(ScalarLoad.getValue(0)); 6871 LoadChains.push_back(ScalarLoad.getValue(1)); 6872 } 6873 6874 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6875 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6876 6877 return std::make_pair(Value, NewChain); 6878 } 6879 6880 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6881 SelectionDAG &DAG) const { 6882 SDLoc SL(ST); 6883 6884 SDValue Chain = ST->getChain(); 6885 SDValue BasePtr = ST->getBasePtr(); 6886 SDValue Value = ST->getValue(); 6887 EVT StVT = ST->getMemoryVT(); 6888 6889 if (StVT.isScalableVector()) 6890 report_fatal_error("Cannot scalarize scalable vector stores"); 6891 6892 // The type of the data we want to save 6893 EVT RegVT = Value.getValueType(); 6894 EVT RegSclVT = RegVT.getScalarType(); 6895 6896 // The type of data as saved in memory. 6897 EVT MemSclVT = StVT.getScalarType(); 6898 6899 unsigned NumElem = StVT.getVectorNumElements(); 6900 6901 // A vector must always be stored in memory as-is, i.e. without any padding 6902 // between the elements, since various code depend on it, e.g. in the 6903 // handling of a bitcast of a vector type to int, which may be done with a 6904 // vector store followed by an integer load. A vector that does not have 6905 // elements that are byte-sized must therefore be stored as an integer 6906 // built out of the extracted vector elements. 6907 if (!MemSclVT.isByteSized()) { 6908 unsigned NumBits = StVT.getSizeInBits(); 6909 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6910 6911 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6912 6913 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6914 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6915 DAG.getVectorIdxConstant(Idx, SL)); 6916 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6917 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6918 unsigned ShiftIntoIdx = 6919 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6920 SDValue ShiftAmount = 6921 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6922 SDValue ShiftedElt = 6923 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6924 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6925 } 6926 6927 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6928 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 6929 ST->getAAInfo()); 6930 } 6931 6932 // Store Stride in bytes 6933 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6934 assert(Stride && "Zero stride!"); 6935 // Extract each of the elements from the original vector and save them into 6936 // memory individually. 6937 SmallVector<SDValue, 8> Stores; 6938 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6939 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6940 DAG.getVectorIdxConstant(Idx, SL)); 6941 6942 SDValue Ptr = 6943 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 6944 6945 // This scalar TruncStore may be illegal, but we legalize it later. 6946 SDValue Store = DAG.getTruncStore( 6947 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6948 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 6949 ST->getAAInfo()); 6950 6951 Stores.push_back(Store); 6952 } 6953 6954 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6955 } 6956 6957 std::pair<SDValue, SDValue> 6958 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6959 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6960 "unaligned indexed loads not implemented!"); 6961 SDValue Chain = LD->getChain(); 6962 SDValue Ptr = LD->getBasePtr(); 6963 EVT VT = LD->getValueType(0); 6964 EVT LoadedVT = LD->getMemoryVT(); 6965 SDLoc dl(LD); 6966 auto &MF = DAG.getMachineFunction(); 6967 6968 if (VT.isFloatingPoint() || VT.isVector()) { 6969 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6970 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6971 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6972 LoadedVT.isVector()) { 6973 // Scalarize the load and let the individual components be handled. 6974 return scalarizeVectorLoad(LD, DAG); 6975 } 6976 6977 // Expand to a (misaligned) integer load of the same size, 6978 // then bitconvert to floating point or vector. 6979 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6980 LD->getMemOperand()); 6981 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6982 if (LoadedVT != VT) 6983 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6984 ISD::ANY_EXTEND, dl, VT, Result); 6985 6986 return std::make_pair(Result, newLoad.getValue(1)); 6987 } 6988 6989 // Copy the value to a (aligned) stack slot using (unaligned) integer 6990 // loads and stores, then do a (aligned) load from the stack slot. 6991 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6992 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6993 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6994 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6995 6996 // Make sure the stack slot is also aligned for the register type. 6997 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6998 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6999 SmallVector<SDValue, 8> Stores; 7000 SDValue StackPtr = StackBase; 7001 unsigned Offset = 0; 7002 7003 EVT PtrVT = Ptr.getValueType(); 7004 EVT StackPtrVT = StackPtr.getValueType(); 7005 7006 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7007 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7008 7009 // Do all but one copies using the full register width. 7010 for (unsigned i = 1; i < NumRegs; i++) { 7011 // Load one integer register's worth from the original location. 7012 SDValue Load = DAG.getLoad( 7013 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7014 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7015 LD->getAAInfo()); 7016 // Follow the load with a store to the stack slot. Remember the store. 7017 Stores.push_back(DAG.getStore( 7018 Load.getValue(1), dl, Load, StackPtr, 7019 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7020 // Increment the pointers. 7021 Offset += RegBytes; 7022 7023 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7024 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7025 } 7026 7027 // The last copy may be partial. Do an extending load. 7028 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7029 8 * (LoadedBytes - Offset)); 7030 SDValue Load = 7031 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7032 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7033 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7034 LD->getAAInfo()); 7035 // Follow the load with a store to the stack slot. Remember the store. 7036 // On big-endian machines this requires a truncating store to ensure 7037 // that the bits end up in the right place. 7038 Stores.push_back(DAG.getTruncStore( 7039 Load.getValue(1), dl, Load, StackPtr, 7040 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7041 7042 // The order of the stores doesn't matter - say it with a TokenFactor. 7043 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7044 7045 // Finally, perform the original load only redirected to the stack slot. 7046 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7047 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7048 LoadedVT); 7049 7050 // Callers expect a MERGE_VALUES node. 7051 return std::make_pair(Load, TF); 7052 } 7053 7054 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7055 "Unaligned load of unsupported type."); 7056 7057 // Compute the new VT that is half the size of the old one. This is an 7058 // integer MVT. 7059 unsigned NumBits = LoadedVT.getSizeInBits(); 7060 EVT NewLoadedVT; 7061 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7062 NumBits >>= 1; 7063 7064 Align Alignment = LD->getOriginalAlign(); 7065 unsigned IncrementSize = NumBits / 8; 7066 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7067 7068 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7069 if (HiExtType == ISD::NON_EXTLOAD) 7070 HiExtType = ISD::ZEXTLOAD; 7071 7072 // Load the value in two parts 7073 SDValue Lo, Hi; 7074 if (DAG.getDataLayout().isLittleEndian()) { 7075 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7076 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7077 LD->getAAInfo()); 7078 7079 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7080 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7081 LD->getPointerInfo().getWithOffset(IncrementSize), 7082 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7083 LD->getAAInfo()); 7084 } else { 7085 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7086 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7087 LD->getAAInfo()); 7088 7089 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7090 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7091 LD->getPointerInfo().getWithOffset(IncrementSize), 7092 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7093 LD->getAAInfo()); 7094 } 7095 7096 // aggregate the two parts 7097 SDValue ShiftAmount = 7098 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7099 DAG.getDataLayout())); 7100 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7101 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7102 7103 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7104 Hi.getValue(1)); 7105 7106 return std::make_pair(Result, TF); 7107 } 7108 7109 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7110 SelectionDAG &DAG) const { 7111 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7112 "unaligned indexed stores not implemented!"); 7113 SDValue Chain = ST->getChain(); 7114 SDValue Ptr = ST->getBasePtr(); 7115 SDValue Val = ST->getValue(); 7116 EVT VT = Val.getValueType(); 7117 Align Alignment = ST->getOriginalAlign(); 7118 auto &MF = DAG.getMachineFunction(); 7119 EVT StoreMemVT = ST->getMemoryVT(); 7120 7121 SDLoc dl(ST); 7122 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7123 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7124 if (isTypeLegal(intVT)) { 7125 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7126 StoreMemVT.isVector()) { 7127 // Scalarize the store and let the individual components be handled. 7128 SDValue Result = scalarizeVectorStore(ST, DAG); 7129 return Result; 7130 } 7131 // Expand to a bitconvert of the value to the integer type of the 7132 // same size, then a (misaligned) int store. 7133 // FIXME: Does not handle truncating floating point stores! 7134 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7135 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7136 Alignment, ST->getMemOperand()->getFlags()); 7137 return Result; 7138 } 7139 // Do a (aligned) store to a stack slot, then copy from the stack slot 7140 // to the final destination using (unaligned) integer loads and stores. 7141 MVT RegVT = getRegisterType( 7142 *DAG.getContext(), 7143 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7144 EVT PtrVT = Ptr.getValueType(); 7145 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7146 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7147 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7148 7149 // Make sure the stack slot is also aligned for the register type. 7150 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7151 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7152 7153 // Perform the original store, only redirected to the stack slot. 7154 SDValue Store = DAG.getTruncStore( 7155 Chain, dl, Val, StackPtr, 7156 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7157 7158 EVT StackPtrVT = StackPtr.getValueType(); 7159 7160 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7161 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7162 SmallVector<SDValue, 8> Stores; 7163 unsigned Offset = 0; 7164 7165 // Do all but one copies using the full register width. 7166 for (unsigned i = 1; i < NumRegs; i++) { 7167 // Load one integer register's worth from the stack slot. 7168 SDValue Load = DAG.getLoad( 7169 RegVT, dl, Store, StackPtr, 7170 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7171 // Store it to the final location. Remember the store. 7172 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7173 ST->getPointerInfo().getWithOffset(Offset), 7174 ST->getOriginalAlign(), 7175 ST->getMemOperand()->getFlags())); 7176 // Increment the pointers. 7177 Offset += RegBytes; 7178 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7179 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7180 } 7181 7182 // The last store may be partial. Do a truncating store. On big-endian 7183 // machines this requires an extending load from the stack slot to ensure 7184 // that the bits are in the right place. 7185 EVT LoadMemVT = 7186 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7187 7188 // Load from the stack slot. 7189 SDValue Load = DAG.getExtLoad( 7190 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7191 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7192 7193 Stores.push_back( 7194 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7195 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7196 ST->getOriginalAlign(), 7197 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7198 // The order of the stores doesn't matter - say it with a TokenFactor. 7199 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7200 return Result; 7201 } 7202 7203 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7204 "Unaligned store of unknown type."); 7205 // Get the half-size VT 7206 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7207 unsigned NumBits = NewStoredVT.getSizeInBits().getFixedSize(); 7208 unsigned IncrementSize = NumBits / 8; 7209 7210 // Divide the stored value in two parts. 7211 SDValue ShiftAmount = DAG.getConstant( 7212 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7213 SDValue Lo = Val; 7214 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7215 7216 // Store the two parts 7217 SDValue Store1, Store2; 7218 Store1 = DAG.getTruncStore(Chain, dl, 7219 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7220 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7221 ST->getMemOperand()->getFlags()); 7222 7223 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7224 Store2 = DAG.getTruncStore( 7225 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7226 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7227 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7228 7229 SDValue Result = 7230 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7231 return Result; 7232 } 7233 7234 SDValue 7235 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7236 const SDLoc &DL, EVT DataVT, 7237 SelectionDAG &DAG, 7238 bool IsCompressedMemory) const { 7239 SDValue Increment; 7240 EVT AddrVT = Addr.getValueType(); 7241 EVT MaskVT = Mask.getValueType(); 7242 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7243 "Incompatible types of Data and Mask"); 7244 if (IsCompressedMemory) { 7245 if (DataVT.isScalableVector()) 7246 report_fatal_error( 7247 "Cannot currently handle compressed memory with scalable vectors"); 7248 // Incrementing the pointer according to number of '1's in the mask. 7249 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7250 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7251 if (MaskIntVT.getSizeInBits() < 32) { 7252 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7253 MaskIntVT = MVT::i32; 7254 } 7255 7256 // Count '1's with POPCNT. 7257 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7258 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7259 // Scale is an element size in bytes. 7260 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7261 AddrVT); 7262 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7263 } else if (DataVT.isScalableVector()) { 7264 Increment = DAG.getVScale(DL, AddrVT, 7265 APInt(AddrVT.getSizeInBits().getFixedSize(), 7266 DataVT.getStoreSize().getKnownMinSize())); 7267 } else 7268 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7269 7270 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7271 } 7272 7273 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7274 SDValue Idx, 7275 EVT VecVT, 7276 const SDLoc &dl) { 7277 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7278 return Idx; 7279 7280 EVT IdxVT = Idx.getValueType(); 7281 unsigned NElts = VecVT.getVectorMinNumElements(); 7282 if (VecVT.isScalableVector()) { 7283 SDValue VS = DAG.getVScale(dl, IdxVT, 7284 APInt(IdxVT.getSizeInBits().getFixedSize(), 7285 NElts)); 7286 SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS, 7287 DAG.getConstant(1, dl, IdxVT)); 7288 7289 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7290 } else { 7291 if (isPowerOf2_32(NElts)) { 7292 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7293 Log2_32(NElts)); 7294 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7295 DAG.getConstant(Imm, dl, IdxVT)); 7296 } 7297 } 7298 7299 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7300 DAG.getConstant(NElts - 1, dl, IdxVT)); 7301 } 7302 7303 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7304 SDValue VecPtr, EVT VecVT, 7305 SDValue Index) const { 7306 SDLoc dl(Index); 7307 // Make sure the index type is big enough to compute in. 7308 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7309 7310 EVT EltVT = VecVT.getVectorElementType(); 7311 7312 // Calculate the element offset and add it to the pointer. 7313 unsigned EltSize = EltVT.getSizeInBits().getFixedSize() / 8; // FIXME: should be ABI size. 7314 assert(EltSize * 8 == EltVT.getSizeInBits().getFixedSize() && 7315 "Converting bits to bytes lost precision"); 7316 7317 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7318 7319 EVT IdxVT = Index.getValueType(); 7320 7321 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7322 DAG.getConstant(EltSize, dl, IdxVT)); 7323 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7324 } 7325 7326 //===----------------------------------------------------------------------===// 7327 // Implementation of Emulated TLS Model 7328 //===----------------------------------------------------------------------===// 7329 7330 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7331 SelectionDAG &DAG) const { 7332 // Access to address of TLS varialbe xyz is lowered to a function call: 7333 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7334 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7335 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7336 SDLoc dl(GA); 7337 7338 ArgListTy Args; 7339 ArgListEntry Entry; 7340 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7341 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7342 StringRef EmuTlsVarName(NameString); 7343 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7344 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7345 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7346 Entry.Ty = VoidPtrType; 7347 Args.push_back(Entry); 7348 7349 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7350 7351 TargetLowering::CallLoweringInfo CLI(DAG); 7352 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7353 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7354 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7355 7356 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7357 // At last for X86 targets, maybe good for other targets too? 7358 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7359 MFI.setAdjustsStack(true); // Is this only for X86 target? 7360 MFI.setHasCalls(true); 7361 7362 assert((GA->getOffset() == 0) && 7363 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7364 return CallResult.first; 7365 } 7366 7367 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7368 SelectionDAG &DAG) const { 7369 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7370 if (!isCtlzFast()) 7371 return SDValue(); 7372 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7373 SDLoc dl(Op); 7374 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7375 if (C->isNullValue() && CC == ISD::SETEQ) { 7376 EVT VT = Op.getOperand(0).getValueType(); 7377 SDValue Zext = Op.getOperand(0); 7378 if (VT.bitsLT(MVT::i32)) { 7379 VT = MVT::i32; 7380 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7381 } 7382 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7383 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7384 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7385 DAG.getConstant(Log2b, dl, MVT::i32)); 7386 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7387 } 7388 } 7389 return SDValue(); 7390 } 7391 7392 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7393 unsigned Opcode = Node->getOpcode(); 7394 SDValue LHS = Node->getOperand(0); 7395 SDValue RHS = Node->getOperand(1); 7396 EVT VT = LHS.getValueType(); 7397 SDLoc dl(Node); 7398 7399 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7400 assert(VT.isInteger() && "Expected operands to be integers"); 7401 7402 // usub.sat(a, b) -> umax(a, b) - b 7403 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7404 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7405 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7406 } 7407 7408 // uadd.sat(a, b) -> umin(a, ~b) + b 7409 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7410 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7411 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7412 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7413 } 7414 7415 unsigned OverflowOp; 7416 switch (Opcode) { 7417 case ISD::SADDSAT: 7418 OverflowOp = ISD::SADDO; 7419 break; 7420 case ISD::UADDSAT: 7421 OverflowOp = ISD::UADDO; 7422 break; 7423 case ISD::SSUBSAT: 7424 OverflowOp = ISD::SSUBO; 7425 break; 7426 case ISD::USUBSAT: 7427 OverflowOp = ISD::USUBO; 7428 break; 7429 default: 7430 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7431 "addition or subtraction node."); 7432 } 7433 7434 // FIXME: Should really try to split the vector in case it's legal on a 7435 // subvector. 7436 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7437 return DAG.UnrollVectorOp(Node); 7438 7439 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7440 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7441 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7442 LHS, RHS); 7443 SDValue SumDiff = Result.getValue(0); 7444 SDValue Overflow = Result.getValue(1); 7445 SDValue Zero = DAG.getConstant(0, dl, VT); 7446 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7447 7448 if (Opcode == ISD::UADDSAT) { 7449 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7450 // (LHS + RHS) | OverflowMask 7451 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7452 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7453 } 7454 // Overflow ? 0xffff.... : (LHS + RHS) 7455 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7456 } else if (Opcode == ISD::USUBSAT) { 7457 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7458 // (LHS - RHS) & ~OverflowMask 7459 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7460 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7461 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7462 } 7463 // Overflow ? 0 : (LHS - RHS) 7464 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7465 } else { 7466 // SatMax -> Overflow && SumDiff < 0 7467 // SatMin -> Overflow && SumDiff >= 0 7468 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7469 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7470 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7471 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7472 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7473 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7474 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7475 } 7476 } 7477 7478 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 7479 unsigned Opcode = Node->getOpcode(); 7480 bool IsSigned = Opcode == ISD::SSHLSAT; 7481 SDValue LHS = Node->getOperand(0); 7482 SDValue RHS = Node->getOperand(1); 7483 EVT VT = LHS.getValueType(); 7484 SDLoc dl(Node); 7485 7486 assert((Node->getOpcode() == ISD::SSHLSAT || 7487 Node->getOpcode() == ISD::USHLSAT) && 7488 "Expected a SHLSAT opcode"); 7489 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7490 assert(VT.isInteger() && "Expected operands to be integers"); 7491 7492 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 7493 7494 unsigned BW = VT.getScalarSizeInBits(); 7495 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 7496 SDValue Orig = 7497 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 7498 7499 SDValue SatVal; 7500 if (IsSigned) { 7501 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 7502 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 7503 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 7504 SatMin, SatMax, ISD::SETLT); 7505 } else { 7506 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 7507 } 7508 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 7509 7510 return Result; 7511 } 7512 7513 SDValue 7514 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7515 assert((Node->getOpcode() == ISD::SMULFIX || 7516 Node->getOpcode() == ISD::UMULFIX || 7517 Node->getOpcode() == ISD::SMULFIXSAT || 7518 Node->getOpcode() == ISD::UMULFIXSAT) && 7519 "Expected a fixed point multiplication opcode"); 7520 7521 SDLoc dl(Node); 7522 SDValue LHS = Node->getOperand(0); 7523 SDValue RHS = Node->getOperand(1); 7524 EVT VT = LHS.getValueType(); 7525 unsigned Scale = Node->getConstantOperandVal(2); 7526 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7527 Node->getOpcode() == ISD::UMULFIXSAT); 7528 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7529 Node->getOpcode() == ISD::SMULFIXSAT); 7530 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7531 unsigned VTSize = VT.getScalarSizeInBits(); 7532 7533 if (!Scale) { 7534 // [us]mul.fix(a, b, 0) -> mul(a, b) 7535 if (!Saturating) { 7536 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7537 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7538 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7539 SDValue Result = 7540 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7541 SDValue Product = Result.getValue(0); 7542 SDValue Overflow = Result.getValue(1); 7543 SDValue Zero = DAG.getConstant(0, dl, VT); 7544 7545 APInt MinVal = APInt::getSignedMinValue(VTSize); 7546 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7547 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7548 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7549 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7550 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7551 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7552 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7553 SDValue Result = 7554 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7555 SDValue Product = Result.getValue(0); 7556 SDValue Overflow = Result.getValue(1); 7557 7558 APInt MaxVal = APInt::getMaxValue(VTSize); 7559 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7560 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7561 } 7562 } 7563 7564 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7565 "Expected scale to be less than the number of bits if signed or at " 7566 "most the number of bits if unsigned."); 7567 assert(LHS.getValueType() == RHS.getValueType() && 7568 "Expected both operands to be the same type"); 7569 7570 // Get the upper and lower bits of the result. 7571 SDValue Lo, Hi; 7572 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7573 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7574 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7575 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7576 Lo = Result.getValue(0); 7577 Hi = Result.getValue(1); 7578 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7579 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7580 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7581 } else if (VT.isVector()) { 7582 return SDValue(); 7583 } else { 7584 report_fatal_error("Unable to expand fixed point multiplication."); 7585 } 7586 7587 if (Scale == VTSize) 7588 // Result is just the top half since we'd be shifting by the width of the 7589 // operand. Overflow impossible so this works for both UMULFIX and 7590 // UMULFIXSAT. 7591 return Hi; 7592 7593 // The result will need to be shifted right by the scale since both operands 7594 // are scaled. The result is given to us in 2 halves, so we only want part of 7595 // both in the result. 7596 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7597 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7598 DAG.getConstant(Scale, dl, ShiftTy)); 7599 if (!Saturating) 7600 return Result; 7601 7602 if (!Signed) { 7603 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7604 // widened multiplication) aren't all zeroes. 7605 7606 // Saturate to max if ((Hi >> Scale) != 0), 7607 // which is the same as if (Hi > ((1 << Scale) - 1)) 7608 APInt MaxVal = APInt::getMaxValue(VTSize); 7609 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7610 dl, VT); 7611 Result = DAG.getSelectCC(dl, Hi, LowMask, 7612 DAG.getConstant(MaxVal, dl, VT), Result, 7613 ISD::SETUGT); 7614 7615 return Result; 7616 } 7617 7618 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7619 // widened multiplication) aren't all ones or all zeroes. 7620 7621 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7622 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7623 7624 if (Scale == 0) { 7625 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7626 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7627 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7628 // Saturated to SatMin if wide product is negative, and SatMax if wide 7629 // product is positive ... 7630 SDValue Zero = DAG.getConstant(0, dl, VT); 7631 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7632 ISD::SETLT); 7633 // ... but only if we overflowed. 7634 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7635 } 7636 7637 // We handled Scale==0 above so all the bits to examine is in Hi. 7638 7639 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7640 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7641 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7642 dl, VT); 7643 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7644 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7645 // which is the same as if (HI < (-1 << (Scale - 1)) 7646 SDValue HighMask = 7647 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7648 dl, VT); 7649 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7650 return Result; 7651 } 7652 7653 SDValue 7654 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7655 SDValue LHS, SDValue RHS, 7656 unsigned Scale, SelectionDAG &DAG) const { 7657 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7658 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7659 "Expected a fixed point division opcode"); 7660 7661 EVT VT = LHS.getValueType(); 7662 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7663 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7664 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7665 7666 // If there is enough room in the type to upscale the LHS or downscale the 7667 // RHS before the division, we can perform it in this type without having to 7668 // resize. For signed operations, the LHS headroom is the number of 7669 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7670 // The headroom for the RHS is the number of trailing zeroes. 7671 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7672 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7673 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7674 7675 // For signed saturating operations, we need to be able to detect true integer 7676 // division overflow; that is, when you have MIN / -EPS. However, this 7677 // is undefined behavior and if we emit divisions that could take such 7678 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7679 // example). 7680 // Avoid this by requiring an extra bit so that we never get this case. 7681 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7682 // signed saturating division, we need to emit a whopping 32-bit division. 7683 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7684 return SDValue(); 7685 7686 unsigned LHSShift = std::min(LHSLead, Scale); 7687 unsigned RHSShift = Scale - LHSShift; 7688 7689 // At this point, we know that if we shift the LHS up by LHSShift and the 7690 // RHS down by RHSShift, we can emit a regular division with a final scaling 7691 // factor of Scale. 7692 7693 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7694 if (LHSShift) 7695 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7696 DAG.getConstant(LHSShift, dl, ShiftTy)); 7697 if (RHSShift) 7698 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7699 DAG.getConstant(RHSShift, dl, ShiftTy)); 7700 7701 SDValue Quot; 7702 if (Signed) { 7703 // For signed operations, if the resulting quotient is negative and the 7704 // remainder is nonzero, subtract 1 from the quotient to round towards 7705 // negative infinity. 7706 SDValue Rem; 7707 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7708 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7709 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7710 if (isTypeLegal(VT) && 7711 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7712 Quot = DAG.getNode(ISD::SDIVREM, dl, 7713 DAG.getVTList(VT, VT), 7714 LHS, RHS); 7715 Rem = Quot.getValue(1); 7716 Quot = Quot.getValue(0); 7717 } else { 7718 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7719 LHS, RHS); 7720 Rem = DAG.getNode(ISD::SREM, dl, VT, 7721 LHS, RHS); 7722 } 7723 SDValue Zero = DAG.getConstant(0, dl, VT); 7724 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7725 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7726 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7727 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7728 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7729 DAG.getConstant(1, dl, VT)); 7730 Quot = DAG.getSelect(dl, VT, 7731 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7732 Sub1, Quot); 7733 } else 7734 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7735 LHS, RHS); 7736 7737 return Quot; 7738 } 7739 7740 void TargetLowering::expandUADDSUBO( 7741 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7742 SDLoc dl(Node); 7743 SDValue LHS = Node->getOperand(0); 7744 SDValue RHS = Node->getOperand(1); 7745 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7746 7747 // If ADD/SUBCARRY is legal, use that instead. 7748 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7749 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7750 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7751 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7752 { LHS, RHS, CarryIn }); 7753 Result = SDValue(NodeCarry.getNode(), 0); 7754 Overflow = SDValue(NodeCarry.getNode(), 1); 7755 return; 7756 } 7757 7758 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7759 LHS.getValueType(), LHS, RHS); 7760 7761 EVT ResultType = Node->getValueType(1); 7762 EVT SetCCType = getSetCCResultType( 7763 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7764 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7765 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7766 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7767 } 7768 7769 void TargetLowering::expandSADDSUBO( 7770 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7771 SDLoc dl(Node); 7772 SDValue LHS = Node->getOperand(0); 7773 SDValue RHS = Node->getOperand(1); 7774 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7775 7776 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7777 LHS.getValueType(), LHS, RHS); 7778 7779 EVT ResultType = Node->getValueType(1); 7780 EVT OType = getSetCCResultType( 7781 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7782 7783 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7784 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7785 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7786 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7787 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7788 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7789 return; 7790 } 7791 7792 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7793 7794 // For an addition, the result should be less than one of the operands (LHS) 7795 // if and only if the other operand (RHS) is negative, otherwise there will 7796 // be overflow. 7797 // For a subtraction, the result should be less than one of the operands 7798 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7799 // otherwise there will be overflow. 7800 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7801 SDValue ConditionRHS = 7802 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7803 7804 Overflow = DAG.getBoolExtOrTrunc( 7805 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7806 ResultType, ResultType); 7807 } 7808 7809 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7810 SDValue &Overflow, SelectionDAG &DAG) const { 7811 SDLoc dl(Node); 7812 EVT VT = Node->getValueType(0); 7813 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7814 SDValue LHS = Node->getOperand(0); 7815 SDValue RHS = Node->getOperand(1); 7816 bool isSigned = Node->getOpcode() == ISD::SMULO; 7817 7818 // For power-of-two multiplications we can use a simpler shift expansion. 7819 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7820 const APInt &C = RHSC->getAPIntValue(); 7821 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7822 if (C.isPowerOf2()) { 7823 // smulo(x, signed_min) is same as umulo(x, signed_min). 7824 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7825 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7826 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7827 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7828 Overflow = DAG.getSetCC(dl, SetCCVT, 7829 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7830 dl, VT, Result, ShiftAmt), 7831 LHS, ISD::SETNE); 7832 return true; 7833 } 7834 } 7835 7836 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7837 if (VT.isVector()) 7838 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7839 VT.getVectorNumElements()); 7840 7841 SDValue BottomHalf; 7842 SDValue TopHalf; 7843 static const unsigned Ops[2][3] = 7844 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7845 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7846 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7847 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7848 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7849 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7850 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7851 RHS); 7852 TopHalf = BottomHalf.getValue(1); 7853 } else if (isTypeLegal(WideVT)) { 7854 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7855 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7856 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7857 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7858 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7859 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7860 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7861 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7862 } else { 7863 if (VT.isVector()) 7864 return false; 7865 7866 // We can fall back to a libcall with an illegal type for the MUL if we 7867 // have a libcall big enough. 7868 // Also, we can fall back to a division in some cases, but that's a big 7869 // performance hit in the general case. 7870 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7871 if (WideVT == MVT::i16) 7872 LC = RTLIB::MUL_I16; 7873 else if (WideVT == MVT::i32) 7874 LC = RTLIB::MUL_I32; 7875 else if (WideVT == MVT::i64) 7876 LC = RTLIB::MUL_I64; 7877 else if (WideVT == MVT::i128) 7878 LC = RTLIB::MUL_I128; 7879 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7880 7881 SDValue HiLHS; 7882 SDValue HiRHS; 7883 if (isSigned) { 7884 // The high part is obtained by SRA'ing all but one of the bits of low 7885 // part. 7886 unsigned LoSize = VT.getSizeInBits(); 7887 HiLHS = 7888 DAG.getNode(ISD::SRA, dl, VT, LHS, 7889 DAG.getConstant(LoSize - 1, dl, 7890 getPointerTy(DAG.getDataLayout()))); 7891 HiRHS = 7892 DAG.getNode(ISD::SRA, dl, VT, RHS, 7893 DAG.getConstant(LoSize - 1, dl, 7894 getPointerTy(DAG.getDataLayout()))); 7895 } else { 7896 HiLHS = DAG.getConstant(0, dl, VT); 7897 HiRHS = DAG.getConstant(0, dl, VT); 7898 } 7899 7900 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7901 // pre-lowered to the correct types. This all depends upon WideVT not 7902 // being a legal type for the architecture and thus has to be split to 7903 // two arguments. 7904 SDValue Ret; 7905 TargetLowering::MakeLibCallOptions CallOptions; 7906 CallOptions.setSExt(isSigned); 7907 CallOptions.setIsPostTypeLegalization(true); 7908 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7909 // Halves of WideVT are packed into registers in different order 7910 // depending on platform endianness. This is usually handled by 7911 // the C calling convention, but we can't defer to it in 7912 // the legalizer. 7913 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7914 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7915 } else { 7916 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7917 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7918 } 7919 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7920 "Ret value is a collection of constituent nodes holding result."); 7921 if (DAG.getDataLayout().isLittleEndian()) { 7922 // Same as above. 7923 BottomHalf = Ret.getOperand(0); 7924 TopHalf = Ret.getOperand(1); 7925 } else { 7926 BottomHalf = Ret.getOperand(1); 7927 TopHalf = Ret.getOperand(0); 7928 } 7929 } 7930 7931 Result = BottomHalf; 7932 if (isSigned) { 7933 SDValue ShiftAmt = DAG.getConstant( 7934 VT.getScalarSizeInBits() - 1, dl, 7935 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7936 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7937 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7938 } else { 7939 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7940 DAG.getConstant(0, dl, VT), ISD::SETNE); 7941 } 7942 7943 // Truncate the result if SetCC returns a larger type than needed. 7944 EVT RType = Node->getValueType(1); 7945 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7946 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7947 7948 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7949 "Unexpected result type for S/UMULO legalization"); 7950 return true; 7951 } 7952 7953 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7954 SDLoc dl(Node); 7955 unsigned BaseOpcode = 0; 7956 switch (Node->getOpcode()) { 7957 default: llvm_unreachable("Expected VECREDUCE opcode"); 7958 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7959 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7960 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7961 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7962 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7963 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7964 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7965 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7966 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7967 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7968 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7969 case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break; 7970 case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break; 7971 } 7972 7973 SDValue Op = Node->getOperand(0); 7974 EVT VT = Op.getValueType(); 7975 7976 // Try to use a shuffle reduction for power of two vectors. 7977 if (VT.isPow2VectorType()) { 7978 while (VT.getVectorNumElements() > 1) { 7979 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7980 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7981 break; 7982 7983 SDValue Lo, Hi; 7984 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7985 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7986 VT = HalfVT; 7987 } 7988 } 7989 7990 EVT EltVT = VT.getVectorElementType(); 7991 unsigned NumElts = VT.getVectorNumElements(); 7992 7993 SmallVector<SDValue, 8> Ops; 7994 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7995 7996 SDValue Res = Ops[0]; 7997 for (unsigned i = 1; i < NumElts; i++) 7998 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7999 8000 // Result type may be wider than element type. 8001 if (EltVT != Node->getValueType(0)) 8002 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8003 return Res; 8004 } 8005 8006 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8007 SelectionDAG &DAG) const { 8008 EVT VT = Node->getValueType(0); 8009 SDLoc dl(Node); 8010 bool isSigned = Node->getOpcode() == ISD::SREM; 8011 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8012 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8013 SDValue Dividend = Node->getOperand(0); 8014 SDValue Divisor = Node->getOperand(1); 8015 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8016 SDVTList VTs = DAG.getVTList(VT, VT); 8017 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8018 return true; 8019 } else if (isOperationLegalOrCustom(DivOpc, VT)) { 8020 // X % Y -> X-X/Y*Y 8021 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8022 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8023 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8024 return true; 8025 } 8026 return false; 8027 } 8028