1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 KnownBits &Known, 610 TargetLoweringOpt &TLO, 611 unsigned Depth, 612 bool AssumeSingleUse) const { 613 EVT VT = Op.getValueType(); 614 615 // TODO: We can probably do more work on calculating the known bits and 616 // simplifying the operations for scalable vectors, but for now we just 617 // bail out. 618 if (VT.isScalableVector()) { 619 // Pretend we don't know anything for now. 620 Known = KnownBits(DemandedBits.getBitWidth()); 621 return false; 622 } 623 624 APInt DemandedElts = VT.isVector() 625 ? APInt::getAllOnes(VT.getVectorNumElements()) 626 : APInt(1, 1); 627 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 628 AssumeSingleUse); 629 } 630 631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 632 // TODO: Under what circumstances can we create nodes? Constant folding? 633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 635 SelectionDAG &DAG, unsigned Depth) const { 636 // Limit search depth. 637 if (Depth >= SelectionDAG::MaxRecursionDepth) 638 return SDValue(); 639 640 // Ignore UNDEFs. 641 if (Op.isUndef()) 642 return SDValue(); 643 644 // Not demanding any bits/elts from Op. 645 if (DemandedBits == 0 || DemandedElts == 0) 646 return DAG.getUNDEF(Op.getValueType()); 647 648 bool IsLE = DAG.getDataLayout().isLittleEndian(); 649 unsigned NumElts = DemandedElts.getBitWidth(); 650 unsigned BitWidth = DemandedBits.getBitWidth(); 651 KnownBits LHSKnown, RHSKnown; 652 switch (Op.getOpcode()) { 653 case ISD::BITCAST: { 654 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 655 EVT SrcVT = Src.getValueType(); 656 EVT DstVT = Op.getValueType(); 657 if (SrcVT == DstVT) 658 return Src; 659 660 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 661 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 662 if (NumSrcEltBits == NumDstEltBits) 663 if (SDValue V = SimplifyMultipleUseDemandedBits( 664 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 665 return DAG.getBitcast(DstVT, V); 666 667 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 674 unsigned BitOffset = EltOffset * NumSrcEltBits; 675 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 676 if (!Sub.isZero()) { 677 DemandedSrcBits |= Sub; 678 for (unsigned j = 0; j != NumElts; ++j) 679 if (DemandedElts[j]) 680 DemandedSrcElts.setBit((j * Scale) + i); 681 } 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 // TODO - bigendian once we have test coverage. 690 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (IsLE && DemandedElts == 1 && 805 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 SDValue Vec = Op.getOperand(0); 823 SDValue Sub = Op.getOperand(1); 824 uint64_t Idx = Op.getConstantOperandVal(2); 825 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 826 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 827 // If we don't demand the inserted subvector, return the base vector. 828 if (DemandedSubElts == 0) 829 return Vec; 830 // If this simply widens the lowest subvector, see if we can do it earlier. 831 if (Idx == 0 && Vec.isUndef()) { 832 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 833 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 834 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 835 Op.getOperand(0), NewSub, Op.getOperand(2)); 836 } 837 break; 838 } 839 case ISD::VECTOR_SHUFFLE: { 840 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 841 842 // If all the demanded elts are from one operand and are inline, 843 // then we can use the operand directly. 844 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 845 for (unsigned i = 0; i != NumElts; ++i) { 846 int M = ShuffleMask[i]; 847 if (M < 0 || !DemandedElts[i]) 848 continue; 849 AllUndef = false; 850 IdentityLHS &= (M == (int)i); 851 IdentityRHS &= ((M - NumElts) == i); 852 } 853 854 if (AllUndef) 855 return DAG.getUNDEF(Op.getValueType()); 856 if (IdentityLHS) 857 return Op.getOperand(0); 858 if (IdentityRHS) 859 return Op.getOperand(1); 860 break; 861 } 862 default: 863 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 864 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 865 Op, DemandedBits, DemandedElts, DAG, Depth)) 866 return V; 867 break; 868 } 869 return SDValue(); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 873 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 874 unsigned Depth) const { 875 EVT VT = Op.getValueType(); 876 APInt DemandedElts = VT.isVector() 877 ? APInt::getAllOnes(VT.getVectorNumElements()) 878 : APInt(1, 1); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 884 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 885 unsigned Depth) const { 886 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 887 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 888 Depth); 889 } 890 891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 892 /// result of Op are ever used downstream. If we can use this information to 893 /// simplify Op, create a new simplified DAG node and return true, returning the 894 /// original and new nodes in Old and New. Otherwise, analyze the expression and 895 /// return a mask of Known bits for the expression (used to simplify the 896 /// caller). The Known bits may only be accurate for those bits in the 897 /// OriginalDemandedBits and OriginalDemandedElts. 898 bool TargetLowering::SimplifyDemandedBits( 899 SDValue Op, const APInt &OriginalDemandedBits, 900 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 901 unsigned Depth, bool AssumeSingleUse) const { 902 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 903 assert(Op.getScalarValueSizeInBits() == BitWidth && 904 "Mask size mismatches value type size!"); 905 906 // Don't know anything. 907 Known = KnownBits(BitWidth); 908 909 // TODO: We can probably do more work on calculating the known bits and 910 // simplifying the operations for scalable vectors, but for now we just 911 // bail out. 912 if (Op.getValueType().isScalableVector()) 913 return false; 914 915 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 916 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 917 assert((!Op.getValueType().isVector() || 918 NumElts == Op.getValueType().getVectorNumElements()) && 919 "Unexpected vector size"); 920 921 APInt DemandedBits = OriginalDemandedBits; 922 APInt DemandedElts = OriginalDemandedElts; 923 SDLoc dl(Op); 924 auto &DL = TLO.DAG.getDataLayout(); 925 926 // Undef operand. 927 if (Op.isUndef()) 928 return false; 929 930 if (Op.getOpcode() == ISD::Constant) { 931 // We know all of the bits for a constant! 932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 933 return false; 934 } 935 936 if (Op.getOpcode() == ISD::ConstantFP) { 937 // We know all of the bits for a floating point constant! 938 Known = KnownBits::makeConstant( 939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 940 return false; 941 } 942 943 // Other users may use these bits. 944 EVT VT = Op.getValueType(); 945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 946 if (Depth != 0) { 947 // If not at the root, Just compute the Known bits to 948 // simplify things downstream. 949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 950 return false; 951 } 952 // If this is the root being simplified, allow it to have multiple uses, 953 // just set the DemandedBits/Elts to all bits. 954 DemandedBits = APInt::getAllOnes(BitWidth); 955 DemandedElts = APInt::getAllOnes(NumElts); 956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 957 // Not demanding any bits/elts from Op. 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 960 // Limit search depth. 961 return false; 962 } 963 964 KnownBits Known2; 965 switch (Op.getOpcode()) { 966 case ISD::TargetConstant: 967 llvm_unreachable("Can't simplify this node"); 968 case ISD::SCALAR_TO_VECTOR: { 969 if (!DemandedElts[0]) 970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 971 972 KnownBits SrcKnown; 973 SDValue Src = Op.getOperand(0); 974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 977 return true; 978 979 // Upper elements are undef, so only get the knownbits if we just demand 980 // the bottom element. 981 if (DemandedElts == 1) 982 Known = SrcKnown.anyextOrTrunc(BitWidth); 983 break; 984 } 985 case ISD::BUILD_VECTOR: 986 // Collect the known bits that are shared by every demanded element. 987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 989 return false; // Don't fall through, will infinitely loop. 990 case ISD::LOAD: { 991 auto *LD = cast<LoadSDNode>(Op); 992 if (getTargetConstantFromLoad(LD)) { 993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 994 return false; // Don't fall through, will infinitely loop. 995 } 996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 997 // If this is a ZEXTLoad and we are looking at the loaded value. 998 EVT MemVT = LD->getMemoryVT(); 999 unsigned MemBits = MemVT.getScalarSizeInBits(); 1000 Known.Zero.setBitsFrom(MemBits); 1001 return false; // Don't fall through, will infinitely loop. 1002 } 1003 break; 1004 } 1005 case ISD::INSERT_VECTOR_ELT: { 1006 SDValue Vec = Op.getOperand(0); 1007 SDValue Scl = Op.getOperand(1); 1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1009 EVT VecVT = Vec.getValueType(); 1010 1011 // If index isn't constant, assume we need all vector elements AND the 1012 // inserted element. 1013 APInt DemandedVecElts(DemandedElts); 1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1015 unsigned Idx = CIdx->getZExtValue(); 1016 DemandedVecElts.clearBit(Idx); 1017 1018 // Inserted element is not required. 1019 if (!DemandedElts[Idx]) 1020 return TLO.CombineTo(Op, Vec); 1021 } 1022 1023 KnownBits KnownScl; 1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1027 return true; 1028 1029 Known = KnownScl.anyextOrTrunc(BitWidth); 1030 1031 KnownBits KnownVec; 1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1033 Depth + 1)) 1034 return true; 1035 1036 if (!!DemandedVecElts) 1037 Known = KnownBits::commonBits(Known, KnownVec); 1038 1039 return false; 1040 } 1041 case ISD::INSERT_SUBVECTOR: { 1042 // Demand any elements from the subvector and the remainder from the src its 1043 // inserted into. 1044 SDValue Src = Op.getOperand(0); 1045 SDValue Sub = Op.getOperand(1); 1046 uint64_t Idx = Op.getConstantOperandVal(2); 1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1049 APInt DemandedSrcElts = DemandedElts; 1050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1051 1052 KnownBits KnownSub, KnownSrc; 1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1054 Depth + 1)) 1055 return true; 1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1057 Depth + 1)) 1058 return true; 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 if (!!DemandedSubElts) 1063 Known = KnownBits::commonBits(Known, KnownSub); 1064 if (!!DemandedSrcElts) 1065 Known = KnownBits::commonBits(Known, KnownSrc); 1066 1067 // Attempt to avoid multi-use src if we don't need anything from it. 1068 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1069 !DemandedSrcElts.isAllOnes()) { 1070 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1074 if (NewSub || NewSrc) { 1075 NewSub = NewSub ? NewSub : Sub; 1076 NewSrc = NewSrc ? NewSrc : Src; 1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1078 Op.getOperand(2)); 1079 return TLO.CombineTo(Op, NewOp); 1080 } 1081 } 1082 break; 1083 } 1084 case ISD::EXTRACT_SUBVECTOR: { 1085 // Offset the demanded elts by the subvector index. 1086 SDValue Src = Op.getOperand(0); 1087 if (Src.getValueType().isScalableVector()) 1088 break; 1089 uint64_t Idx = Op.getConstantOperandVal(1); 1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1092 1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 1097 // Attempt to avoid multi-use src if we don't need anything from it. 1098 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1101 if (DemandedSrc) { 1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1103 Op.getOperand(1)); 1104 return TLO.CombineTo(Op, NewOp); 1105 } 1106 } 1107 break; 1108 } 1109 case ISD::CONCAT_VECTORS: { 1110 Known.Zero.setAllBits(); 1111 Known.One.setAllBits(); 1112 EVT SubVT = Op.getOperand(0).getValueType(); 1113 unsigned NumSubVecs = Op.getNumOperands(); 1114 unsigned NumSubElts = SubVT.getVectorNumElements(); 1115 for (unsigned i = 0; i != NumSubVecs; ++i) { 1116 APInt DemandedSubElts = 1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1119 Known2, TLO, Depth + 1)) 1120 return true; 1121 // Known bits are shared by every demanded subvector element. 1122 if (!!DemandedSubElts) 1123 Known = KnownBits::commonBits(Known, Known2); 1124 } 1125 break; 1126 } 1127 case ISD::VECTOR_SHUFFLE: { 1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1129 1130 // Collect demanded elements from shuffle operands.. 1131 APInt DemandedLHS(NumElts, 0); 1132 APInt DemandedRHS(NumElts, 0); 1133 for (unsigned i = 0; i != NumElts; ++i) { 1134 if (!DemandedElts[i]) 1135 continue; 1136 int M = ShuffleMask[i]; 1137 if (M < 0) { 1138 // For UNDEF elements, we don't know anything about the common state of 1139 // the shuffle result. 1140 DemandedLHS.clearAllBits(); 1141 DemandedRHS.clearAllBits(); 1142 break; 1143 } 1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1145 if (M < (int)NumElts) 1146 DemandedLHS.setBit(M); 1147 else 1148 DemandedRHS.setBit(M - NumElts); 1149 } 1150 1151 if (!!DemandedLHS || !!DemandedRHS) { 1152 SDValue Op0 = Op.getOperand(0); 1153 SDValue Op1 = Op.getOperand(1); 1154 1155 Known.Zero.setAllBits(); 1156 Known.One.setAllBits(); 1157 if (!!DemandedLHS) { 1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1159 Depth + 1)) 1160 return true; 1161 Known = KnownBits::commonBits(Known, Known2); 1162 } 1163 if (!!DemandedRHS) { 1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1165 Depth + 1)) 1166 return true; 1167 Known = KnownBits::commonBits(Known, Known2); 1168 } 1169 1170 // Attempt to avoid multi-use ops if we don't need anything from them. 1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1175 if (DemandedOp0 || DemandedOp1) { 1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1179 return TLO.CombineTo(Op, NewOp); 1180 } 1181 } 1182 break; 1183 } 1184 case ISD::AND: { 1185 SDValue Op0 = Op.getOperand(0); 1186 SDValue Op1 = Op.getOperand(1); 1187 1188 // If the RHS is a constant, check to see if the LHS would be zero without 1189 // using the bits from the RHS. Below, we use knowledge about the RHS to 1190 // simplify the LHS, here we're using information from the LHS to simplify 1191 // the RHS. 1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1193 // Do not increment Depth here; that can cause an infinite loop. 1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1195 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1196 if ((LHSKnown.Zero & DemandedBits) == 1197 (~RHSC->getAPIntValue() & DemandedBits)) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 // If any of the set bits in the RHS are known zero on the LHS, shrink 1201 // the constant. 1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1203 DemandedElts, TLO)) 1204 return true; 1205 1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1207 // constant, but if this 'and' is only clearing bits that were just set by 1208 // the xor, then this 'and' can be eliminated by shrinking the mask of 1209 // the xor. For example, for a 32-bit X: 1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1212 LHSKnown.One == ~RHSC->getAPIntValue()) { 1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1214 return TLO.CombineTo(Op, Xor); 1215 } 1216 } 1217 1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1219 Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1223 Known2, TLO, Depth + 1)) 1224 return true; 1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1226 1227 // Attempt to avoid multi-use ops if we don't need anything from them. 1228 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1233 if (DemandedOp0 || DemandedOp1) { 1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1237 return TLO.CombineTo(Op, NewOp); 1238 } 1239 } 1240 1241 // If all of the demanded bits are known one on one side, return the other. 1242 // These bits cannot contribute to the result of the 'and'. 1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1244 return TLO.CombineTo(Op, Op0); 1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1246 return TLO.CombineTo(Op, Op1); 1247 // If all of the demanded bits in the inputs are known zeros, return zero. 1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1250 // If the RHS is a constant, see if we can simplify it. 1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1252 TLO)) 1253 return true; 1254 // If the operation can be done in a smaller type, do so. 1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1256 return true; 1257 1258 Known &= Known2; 1259 break; 1260 } 1261 case ISD::OR: { 1262 SDValue Op0 = Op.getOperand(0); 1263 SDValue Op1 = Op.getOperand(1); 1264 1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1270 Known2, TLO, Depth + 1)) 1271 return true; 1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1273 1274 // Attempt to avoid multi-use ops if we don't need anything from them. 1275 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1280 if (DemandedOp0 || DemandedOp1) { 1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1284 return TLO.CombineTo(Op, NewOp); 1285 } 1286 } 1287 1288 // If all of the demanded bits are known zero on one side, return the other. 1289 // These bits cannot contribute to the result of the 'or'. 1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1291 return TLO.CombineTo(Op, Op0); 1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1293 return TLO.CombineTo(Op, Op1); 1294 // If the RHS is a constant, see if we can simplify it. 1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1296 return true; 1297 // If the operation can be done in a smaller type, do so. 1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1299 return true; 1300 1301 Known |= Known2; 1302 break; 1303 } 1304 case ISD::XOR: { 1305 SDValue Op0 = Op.getOperand(0); 1306 SDValue Op1 = Op.getOperand(1); 1307 1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1313 Depth + 1)) 1314 return true; 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1323 if (DemandedOp0 || DemandedOp1) { 1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1327 return TLO.CombineTo(Op, NewOp); 1328 } 1329 } 1330 1331 // If all of the demanded bits are known zero on one side, return the other. 1332 // These bits cannot contribute to the result of the 'xor'. 1333 if (DemandedBits.isSubsetOf(Known.Zero)) 1334 return TLO.CombineTo(Op, Op0); 1335 if (DemandedBits.isSubsetOf(Known2.Zero)) 1336 return TLO.CombineTo(Op, Op1); 1337 // If the operation can be done in a smaller type, do so. 1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1339 return true; 1340 1341 // If all of the unknown bits are known to be zero on one side or the other 1342 // turn this into an *inclusive* or. 1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1346 1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1348 if (C) { 1349 // If one side is a constant, and all of the set bits in the constant are 1350 // also known set on the other side, turn this into an AND, as we know 1351 // the bits will be cleared. 1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1353 // NB: it is okay if more bits are known than are requested 1354 if (C->getAPIntValue() == Known2.One) { 1355 SDValue ANDC = 1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1358 } 1359 1360 // If the RHS is a constant, see if we can change it. Don't alter a -1 1361 // constant because that's a 'not' op, and that is better for combining 1362 // and codegen. 1363 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnes()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOne()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1729 1730 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1731 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1735 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1736 unsigned RevAmt = BitWidth - Amt; 1737 1738 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1739 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1740 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1741 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1742 Depth + 1)) 1743 return true; 1744 1745 // rot*(x, 0) --> x 1746 if (Amt == 0) 1747 return TLO.CombineTo(Op, Op0); 1748 1749 // See if we don't demand either half of the rotated bits. 1750 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1751 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1752 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1753 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1754 } 1755 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1756 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1757 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1758 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1759 } 1760 } 1761 1762 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1763 if (isPowerOf2_32(BitWidth)) { 1764 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1765 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1766 Depth + 1)) 1767 return true; 1768 } 1769 break; 1770 } 1771 case ISD::UMIN: { 1772 // Check if one arg is always less than (or equal) to the other arg. 1773 SDValue Op0 = Op.getOperand(0); 1774 SDValue Op1 = Op.getOperand(1); 1775 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1776 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1777 Known = KnownBits::umin(Known0, Known1); 1778 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1779 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1780 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1781 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1782 break; 1783 } 1784 case ISD::UMAX: { 1785 // Check if one arg is always greater than (or equal) to the other arg. 1786 SDValue Op0 = Op.getOperand(0); 1787 SDValue Op1 = Op.getOperand(1); 1788 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1789 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1790 Known = KnownBits::umax(Known0, Known1); 1791 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1792 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1793 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1794 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1795 break; 1796 } 1797 case ISD::BITREVERSE: { 1798 SDValue Src = Op.getOperand(0); 1799 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1800 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1801 Depth + 1)) 1802 return true; 1803 Known.One = Known2.One.reverseBits(); 1804 Known.Zero = Known2.Zero.reverseBits(); 1805 break; 1806 } 1807 case ISD::BSWAP: { 1808 SDValue Src = Op.getOperand(0); 1809 1810 // If the only bits demanded come from one byte of the bswap result, 1811 // just shift the input byte into position to eliminate the bswap. 1812 unsigned NLZ = DemandedBits.countLeadingZeros(); 1813 unsigned NTZ = DemandedBits.countTrailingZeros(); 1814 1815 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1816 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1817 // have 14 leading zeros, round to 8. 1818 NLZ = alignDown(NLZ, 8); 1819 NTZ = alignDown(NTZ, 8); 1820 // If we need exactly one byte, we can do this transformation. 1821 if (BitWidth - NLZ - NTZ == 8) { 1822 // Replace this with either a left or right shift to get the byte into 1823 // the right place. 1824 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1825 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1826 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1827 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1828 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1829 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1830 return TLO.CombineTo(Op, NewOp); 1831 } 1832 } 1833 1834 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1835 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1836 Depth + 1)) 1837 return true; 1838 Known.One = Known2.One.byteSwap(); 1839 Known.Zero = Known2.Zero.byteSwap(); 1840 break; 1841 } 1842 case ISD::CTPOP: { 1843 // If only 1 bit is demanded, replace with PARITY as long as we're before 1844 // op legalization. 1845 // FIXME: Limit to scalars for now. 1846 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1847 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1848 Op.getOperand(0))); 1849 1850 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1851 break; 1852 } 1853 case ISD::SIGN_EXTEND_INREG: { 1854 SDValue Op0 = Op.getOperand(0); 1855 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1856 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1857 1858 // If we only care about the highest bit, don't bother shifting right. 1859 if (DemandedBits.isSignMask()) { 1860 unsigned MinSignedBits = 1861 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 1862 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1863 // However if the input is already sign extended we expect the sign 1864 // extension to be dropped altogether later and do not simplify. 1865 if (!AlreadySignExtended) { 1866 // Compute the correct shift amount type, which must be getShiftAmountTy 1867 // for scalar types after legalization. 1868 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1869 getShiftAmountTy(VT, DL)); 1870 return TLO.CombineTo(Op, 1871 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1872 } 1873 } 1874 1875 // If none of the extended bits are demanded, eliminate the sextinreg. 1876 if (DemandedBits.getActiveBits() <= ExVTBits) 1877 return TLO.CombineTo(Op, Op0); 1878 1879 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1880 1881 // Since the sign extended bits are demanded, we know that the sign 1882 // bit is demanded. 1883 InputDemandedBits.setBit(ExVTBits - 1); 1884 1885 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1886 return true; 1887 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1888 1889 // If the sign bit of the input is known set or clear, then we know the 1890 // top bits of the result. 1891 1892 // If the input sign bit is known zero, convert this into a zero extension. 1893 if (Known.Zero[ExVTBits - 1]) 1894 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1895 1896 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1897 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1898 Known.One.setBitsFrom(ExVTBits); 1899 Known.Zero &= Mask; 1900 } else { // Input sign bit unknown 1901 Known.Zero &= Mask; 1902 Known.One &= Mask; 1903 } 1904 break; 1905 } 1906 case ISD::BUILD_PAIR: { 1907 EVT HalfVT = Op.getOperand(0).getValueType(); 1908 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1909 1910 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1911 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1912 1913 KnownBits KnownLo, KnownHi; 1914 1915 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1916 return true; 1917 1918 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1919 return true; 1920 1921 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1922 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1923 1924 Known.One = KnownLo.One.zext(BitWidth) | 1925 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1926 break; 1927 } 1928 case ISD::ZERO_EXTEND: 1929 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1930 SDValue Src = Op.getOperand(0); 1931 EVT SrcVT = Src.getValueType(); 1932 unsigned InBits = SrcVT.getScalarSizeInBits(); 1933 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1934 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1935 1936 // If none of the top bits are demanded, convert this into an any_extend. 1937 if (DemandedBits.getActiveBits() <= InBits) { 1938 // If we only need the non-extended bits of the bottom element 1939 // then we can just bitcast to the result. 1940 if (IsLE && IsVecInReg && DemandedElts == 1 && 1941 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1942 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1943 1944 unsigned Opc = 1945 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1946 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1947 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1948 } 1949 1950 APInt InDemandedBits = DemandedBits.trunc(InBits); 1951 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1952 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1953 Depth + 1)) 1954 return true; 1955 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1956 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1957 Known = Known.zext(BitWidth); 1958 1959 // Attempt to avoid multi-use ops if we don't need anything from them. 1960 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1961 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1962 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1963 break; 1964 } 1965 case ISD::SIGN_EXTEND: 1966 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1967 SDValue Src = Op.getOperand(0); 1968 EVT SrcVT = Src.getValueType(); 1969 unsigned InBits = SrcVT.getScalarSizeInBits(); 1970 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1971 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1972 1973 // If none of the top bits are demanded, convert this into an any_extend. 1974 if (DemandedBits.getActiveBits() <= InBits) { 1975 // If we only need the non-extended bits of the bottom element 1976 // then we can just bitcast to the result. 1977 if (IsLE && IsVecInReg && DemandedElts == 1 && 1978 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1979 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1980 1981 unsigned Opc = 1982 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1983 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1984 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1985 } 1986 1987 APInt InDemandedBits = DemandedBits.trunc(InBits); 1988 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1989 1990 // Since some of the sign extended bits are demanded, we know that the sign 1991 // bit is demanded. 1992 InDemandedBits.setBit(InBits - 1); 1993 1994 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1995 Depth + 1)) 1996 return true; 1997 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1998 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1999 2000 // If the sign bit is known one, the top bits match. 2001 Known = Known.sext(BitWidth); 2002 2003 // If the sign bit is known zero, convert this to a zero extend. 2004 if (Known.isNonNegative()) { 2005 unsigned Opc = 2006 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2007 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2008 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2009 } 2010 2011 // Attempt to avoid multi-use ops if we don't need anything from them. 2012 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2013 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2014 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2015 break; 2016 } 2017 case ISD::ANY_EXTEND: 2018 case ISD::ANY_EXTEND_VECTOR_INREG: { 2019 SDValue Src = Op.getOperand(0); 2020 EVT SrcVT = Src.getValueType(); 2021 unsigned InBits = SrcVT.getScalarSizeInBits(); 2022 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2023 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2024 2025 // If we only need the bottom element then we can just bitcast. 2026 // TODO: Handle ANY_EXTEND? 2027 if (IsLE && IsVecInReg && DemandedElts == 1 && 2028 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2029 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2030 2031 APInt InDemandedBits = DemandedBits.trunc(InBits); 2032 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2033 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2034 Depth + 1)) 2035 return true; 2036 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2037 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2038 Known = Known.anyext(BitWidth); 2039 2040 // Attempt to avoid multi-use ops if we don't need anything from them. 2041 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2042 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2043 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2044 break; 2045 } 2046 case ISD::TRUNCATE: { 2047 SDValue Src = Op.getOperand(0); 2048 2049 // Simplify the input, using demanded bit information, and compute the known 2050 // zero/one bits live out. 2051 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2052 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2053 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2054 Depth + 1)) 2055 return true; 2056 Known = Known.trunc(BitWidth); 2057 2058 // Attempt to avoid multi-use ops if we don't need anything from them. 2059 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2060 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2061 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2062 2063 // If the input is only used by this truncate, see if we can shrink it based 2064 // on the known demanded bits. 2065 if (Src.getNode()->hasOneUse()) { 2066 switch (Src.getOpcode()) { 2067 default: 2068 break; 2069 case ISD::SRL: 2070 // Shrink SRL by a constant if none of the high bits shifted in are 2071 // demanded. 2072 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2073 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2074 // undesirable. 2075 break; 2076 2077 const APInt *ShAmtC = 2078 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2079 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2080 break; 2081 uint64_t ShVal = ShAmtC->getZExtValue(); 2082 2083 APInt HighBits = 2084 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2085 HighBits.lshrInPlace(ShVal); 2086 HighBits = HighBits.trunc(BitWidth); 2087 2088 if (!(HighBits & DemandedBits)) { 2089 // None of the shifted in bits are needed. Add a truncate of the 2090 // shift input, then shift it. 2091 SDValue NewShAmt = TLO.DAG.getConstant( 2092 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2093 SDValue NewTrunc = 2094 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2095 return TLO.CombineTo( 2096 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2097 } 2098 break; 2099 } 2100 } 2101 2102 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2103 break; 2104 } 2105 case ISD::AssertZext: { 2106 // AssertZext demands all of the high bits, plus any of the low bits 2107 // demanded by its users. 2108 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2109 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2110 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2111 TLO, Depth + 1)) 2112 return true; 2113 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2114 2115 Known.Zero |= ~InMask; 2116 break; 2117 } 2118 case ISD::EXTRACT_VECTOR_ELT: { 2119 SDValue Src = Op.getOperand(0); 2120 SDValue Idx = Op.getOperand(1); 2121 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2122 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2123 2124 if (SrcEltCnt.isScalable()) 2125 return false; 2126 2127 // Demand the bits from every vector element without a constant index. 2128 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2129 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2130 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2131 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2132 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2133 2134 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2135 // anything about the extended bits. 2136 APInt DemandedSrcBits = DemandedBits; 2137 if (BitWidth > EltBitWidth) 2138 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2139 2140 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2141 Depth + 1)) 2142 return true; 2143 2144 // Attempt to avoid multi-use ops if we don't need anything from them. 2145 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2146 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2147 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2148 SDValue NewOp = 2149 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2150 return TLO.CombineTo(Op, NewOp); 2151 } 2152 } 2153 2154 Known = Known2; 2155 if (BitWidth > EltBitWidth) 2156 Known = Known.anyext(BitWidth); 2157 break; 2158 } 2159 case ISD::BITCAST: { 2160 SDValue Src = Op.getOperand(0); 2161 EVT SrcVT = Src.getValueType(); 2162 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2163 2164 // If this is an FP->Int bitcast and if the sign bit is the only 2165 // thing demanded, turn this into a FGETSIGN. 2166 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2167 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2168 SrcVT.isFloatingPoint()) { 2169 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2170 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2171 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2172 SrcVT != MVT::f128) { 2173 // Cannot eliminate/lower SHL for f128 yet. 2174 EVT Ty = OpVTLegal ? VT : MVT::i32; 2175 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2176 // place. We expect the SHL to be eliminated by other optimizations. 2177 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2178 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2179 if (!OpVTLegal && OpVTSizeInBits > 32) 2180 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2181 unsigned ShVal = Op.getValueSizeInBits() - 1; 2182 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2183 return TLO.CombineTo(Op, 2184 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2185 } 2186 } 2187 2188 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2189 // Demand the elt/bit if any of the original elts/bits are demanded. 2190 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2191 unsigned Scale = BitWidth / NumSrcEltBits; 2192 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2193 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2194 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2195 for (unsigned i = 0; i != Scale; ++i) { 2196 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2197 unsigned BitOffset = EltOffset * NumSrcEltBits; 2198 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2199 if (!Sub.isZero()) { 2200 DemandedSrcBits |= Sub; 2201 for (unsigned j = 0; j != NumElts; ++j) 2202 if (DemandedElts[j]) 2203 DemandedSrcElts.setBit((j * Scale) + i); 2204 } 2205 } 2206 2207 APInt KnownSrcUndef, KnownSrcZero; 2208 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2209 KnownSrcZero, TLO, Depth + 1)) 2210 return true; 2211 2212 KnownBits KnownSrcBits; 2213 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2214 KnownSrcBits, TLO, Depth + 1)) 2215 return true; 2216 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2217 // TODO - bigendian once we have test coverage. 2218 unsigned Scale = NumSrcEltBits / BitWidth; 2219 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2220 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2221 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2222 for (unsigned i = 0; i != NumElts; ++i) 2223 if (DemandedElts[i]) { 2224 unsigned Offset = (i % Scale) * BitWidth; 2225 DemandedSrcBits.insertBits(DemandedBits, Offset); 2226 DemandedSrcElts.setBit(i / Scale); 2227 } 2228 2229 if (SrcVT.isVector()) { 2230 APInt KnownSrcUndef, KnownSrcZero; 2231 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2232 KnownSrcZero, TLO, Depth + 1)) 2233 return true; 2234 } 2235 2236 KnownBits KnownSrcBits; 2237 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2238 KnownSrcBits, TLO, Depth + 1)) 2239 return true; 2240 } 2241 2242 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2243 // recursive call where Known may be useful to the caller. 2244 if (Depth > 0) { 2245 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2246 return false; 2247 } 2248 break; 2249 } 2250 case ISD::ADD: 2251 case ISD::MUL: 2252 case ISD::SUB: { 2253 // Add, Sub, and Mul don't demand any bits in positions beyond that 2254 // of the highest bit demanded of them. 2255 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2256 SDNodeFlags Flags = Op.getNode()->getFlags(); 2257 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2258 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2259 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2260 Depth + 1) || 2261 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2262 Depth + 1) || 2263 // See if the operation should be performed at a smaller bit width. 2264 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2265 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2266 // Disable the nsw and nuw flags. We can no longer guarantee that we 2267 // won't wrap after simplification. 2268 Flags.setNoSignedWrap(false); 2269 Flags.setNoUnsignedWrap(false); 2270 SDValue NewOp = 2271 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2272 return TLO.CombineTo(Op, NewOp); 2273 } 2274 return true; 2275 } 2276 2277 // Attempt to avoid multi-use ops if we don't need anything from them. 2278 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2279 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2280 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2281 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2282 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2283 if (DemandedOp0 || DemandedOp1) { 2284 Flags.setNoSignedWrap(false); 2285 Flags.setNoUnsignedWrap(false); 2286 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2287 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2288 SDValue NewOp = 2289 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2290 return TLO.CombineTo(Op, NewOp); 2291 } 2292 } 2293 2294 // If we have a constant operand, we may be able to turn it into -1 if we 2295 // do not demand the high bits. This can make the constant smaller to 2296 // encode, allow more general folding, or match specialized instruction 2297 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2298 // is probably not useful (and could be detrimental). 2299 ConstantSDNode *C = isConstOrConstSplat(Op1); 2300 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2301 if (C && !C->isAllOnes() && !C->isOne() && 2302 (C->getAPIntValue() | HighMask).isAllOnes()) { 2303 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2304 // Disable the nsw and nuw flags. We can no longer guarantee that we 2305 // won't wrap after simplification. 2306 Flags.setNoSignedWrap(false); 2307 Flags.setNoUnsignedWrap(false); 2308 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2309 return TLO.CombineTo(Op, NewOp); 2310 } 2311 2312 LLVM_FALLTHROUGH; 2313 } 2314 default: 2315 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2316 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2317 Known, TLO, Depth)) 2318 return true; 2319 break; 2320 } 2321 2322 // Just use computeKnownBits to compute output bits. 2323 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2324 break; 2325 } 2326 2327 // If we know the value of all of the demanded bits, return this as a 2328 // constant. 2329 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2330 // Avoid folding to a constant if any OpaqueConstant is involved. 2331 const SDNode *N = Op.getNode(); 2332 for (SDNode *Op : 2333 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2334 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2335 if (C->isOpaque()) 2336 return false; 2337 } 2338 if (VT.isInteger()) 2339 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2340 if (VT.isFloatingPoint()) 2341 return TLO.CombineTo( 2342 Op, 2343 TLO.DAG.getConstantFP( 2344 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2345 } 2346 2347 return false; 2348 } 2349 2350 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2351 const APInt &DemandedElts, 2352 APInt &KnownUndef, 2353 APInt &KnownZero, 2354 DAGCombinerInfo &DCI) const { 2355 SelectionDAG &DAG = DCI.DAG; 2356 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2357 !DCI.isBeforeLegalizeOps()); 2358 2359 bool Simplified = 2360 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2361 if (Simplified) { 2362 DCI.AddToWorklist(Op.getNode()); 2363 DCI.CommitTargetLoweringOpt(TLO); 2364 } 2365 2366 return Simplified; 2367 } 2368 2369 /// Given a vector binary operation and known undefined elements for each input 2370 /// operand, compute whether each element of the output is undefined. 2371 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2372 const APInt &UndefOp0, 2373 const APInt &UndefOp1) { 2374 EVT VT = BO.getValueType(); 2375 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2376 "Vector binop only"); 2377 2378 EVT EltVT = VT.getVectorElementType(); 2379 unsigned NumElts = VT.getVectorNumElements(); 2380 assert(UndefOp0.getBitWidth() == NumElts && 2381 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2382 2383 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2384 const APInt &UndefVals) { 2385 if (UndefVals[Index]) 2386 return DAG.getUNDEF(EltVT); 2387 2388 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2389 // Try hard to make sure that the getNode() call is not creating temporary 2390 // nodes. Ignore opaque integers because they do not constant fold. 2391 SDValue Elt = BV->getOperand(Index); 2392 auto *C = dyn_cast<ConstantSDNode>(Elt); 2393 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2394 return Elt; 2395 } 2396 2397 return SDValue(); 2398 }; 2399 2400 APInt KnownUndef = APInt::getZero(NumElts); 2401 for (unsigned i = 0; i != NumElts; ++i) { 2402 // If both inputs for this element are either constant or undef and match 2403 // the element type, compute the constant/undef result for this element of 2404 // the vector. 2405 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2406 // not handle FP constants. The code within getNode() should be refactored 2407 // to avoid the danger of creating a bogus temporary node here. 2408 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2409 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2410 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2411 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2412 KnownUndef.setBit(i); 2413 } 2414 return KnownUndef; 2415 } 2416 2417 bool TargetLowering::SimplifyDemandedVectorElts( 2418 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2419 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2420 bool AssumeSingleUse) const { 2421 EVT VT = Op.getValueType(); 2422 unsigned Opcode = Op.getOpcode(); 2423 APInt DemandedElts = OriginalDemandedElts; 2424 unsigned NumElts = DemandedElts.getBitWidth(); 2425 assert(VT.isVector() && "Expected vector op"); 2426 2427 KnownUndef = KnownZero = APInt::getZero(NumElts); 2428 2429 // TODO: For now we assume we know nothing about scalable vectors. 2430 if (VT.isScalableVector()) 2431 return false; 2432 2433 assert(VT.getVectorNumElements() == NumElts && 2434 "Mask size mismatches value type element count!"); 2435 2436 // Undef operand. 2437 if (Op.isUndef()) { 2438 KnownUndef.setAllBits(); 2439 return false; 2440 } 2441 2442 // If Op has other users, assume that all elements are needed. 2443 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2444 DemandedElts.setAllBits(); 2445 2446 // Not demanding any elements from Op. 2447 if (DemandedElts == 0) { 2448 KnownUndef.setAllBits(); 2449 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2450 } 2451 2452 // Limit search depth. 2453 if (Depth >= SelectionDAG::MaxRecursionDepth) 2454 return false; 2455 2456 SDLoc DL(Op); 2457 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2458 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2459 2460 // Helper for demanding the specified elements and all the bits of both binary 2461 // operands. 2462 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2463 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2464 TLO.DAG, Depth + 1); 2465 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2466 TLO.DAG, Depth + 1); 2467 if (NewOp0 || NewOp1) { 2468 SDValue NewOp = TLO.DAG.getNode( 2469 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2470 return TLO.CombineTo(Op, NewOp); 2471 } 2472 return false; 2473 }; 2474 2475 switch (Opcode) { 2476 case ISD::SCALAR_TO_VECTOR: { 2477 if (!DemandedElts[0]) { 2478 KnownUndef.setAllBits(); 2479 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2480 } 2481 SDValue ScalarSrc = Op.getOperand(0); 2482 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2483 SDValue Src = ScalarSrc.getOperand(0); 2484 SDValue Idx = ScalarSrc.getOperand(1); 2485 EVT SrcVT = Src.getValueType(); 2486 2487 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2488 2489 if (SrcEltCnt.isScalable()) 2490 return false; 2491 2492 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2493 if (isNullConstant(Idx)) { 2494 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2495 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2496 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2497 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2498 TLO, Depth + 1)) 2499 return true; 2500 } 2501 } 2502 KnownUndef.setHighBits(NumElts - 1); 2503 break; 2504 } 2505 case ISD::BITCAST: { 2506 SDValue Src = Op.getOperand(0); 2507 EVT SrcVT = Src.getValueType(); 2508 2509 // We only handle vectors here. 2510 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2511 if (!SrcVT.isVector()) 2512 break; 2513 2514 // Fast handling of 'identity' bitcasts. 2515 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2516 if (NumSrcElts == NumElts) 2517 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2518 KnownZero, TLO, Depth + 1); 2519 2520 APInt SrcDemandedElts, SrcZero, SrcUndef; 2521 2522 // Bitcast from 'large element' src vector to 'small element' vector, we 2523 // must demand a source element if any DemandedElt maps to it. 2524 if ((NumElts % NumSrcElts) == 0) { 2525 unsigned Scale = NumElts / NumSrcElts; 2526 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2527 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2528 TLO, Depth + 1)) 2529 return true; 2530 2531 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2532 // of the large element. 2533 // TODO - bigendian once we have test coverage. 2534 if (IsLE) { 2535 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2536 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2537 for (unsigned i = 0; i != NumElts; ++i) 2538 if (DemandedElts[i]) { 2539 unsigned Ofs = (i % Scale) * EltSizeInBits; 2540 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2541 } 2542 2543 KnownBits Known; 2544 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2545 TLO, Depth + 1)) 2546 return true; 2547 } 2548 2549 // If the src element is zero/undef then all the output elements will be - 2550 // only demanded elements are guaranteed to be correct. 2551 for (unsigned i = 0; i != NumSrcElts; ++i) { 2552 if (SrcDemandedElts[i]) { 2553 if (SrcZero[i]) 2554 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2555 if (SrcUndef[i]) 2556 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2557 } 2558 } 2559 } 2560 2561 // Bitcast from 'small element' src vector to 'large element' vector, we 2562 // demand all smaller source elements covered by the larger demanded element 2563 // of this vector. 2564 if ((NumSrcElts % NumElts) == 0) { 2565 unsigned Scale = NumSrcElts / NumElts; 2566 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2567 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2568 TLO, Depth + 1)) 2569 return true; 2570 2571 // If all the src elements covering an output element are zero/undef, then 2572 // the output element will be as well, assuming it was demanded. 2573 for (unsigned i = 0; i != NumElts; ++i) { 2574 if (DemandedElts[i]) { 2575 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2576 KnownZero.setBit(i); 2577 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2578 KnownUndef.setBit(i); 2579 } 2580 } 2581 } 2582 break; 2583 } 2584 case ISD::BUILD_VECTOR: { 2585 // Check all elements and simplify any unused elements with UNDEF. 2586 if (!DemandedElts.isAllOnes()) { 2587 // Don't simplify BROADCASTS. 2588 if (llvm::any_of(Op->op_values(), 2589 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2590 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2591 bool Updated = false; 2592 for (unsigned i = 0; i != NumElts; ++i) { 2593 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2594 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2595 KnownUndef.setBit(i); 2596 Updated = true; 2597 } 2598 } 2599 if (Updated) 2600 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2601 } 2602 } 2603 for (unsigned i = 0; i != NumElts; ++i) { 2604 SDValue SrcOp = Op.getOperand(i); 2605 if (SrcOp.isUndef()) { 2606 KnownUndef.setBit(i); 2607 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2608 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2609 KnownZero.setBit(i); 2610 } 2611 } 2612 break; 2613 } 2614 case ISD::CONCAT_VECTORS: { 2615 EVT SubVT = Op.getOperand(0).getValueType(); 2616 unsigned NumSubVecs = Op.getNumOperands(); 2617 unsigned NumSubElts = SubVT.getVectorNumElements(); 2618 for (unsigned i = 0; i != NumSubVecs; ++i) { 2619 SDValue SubOp = Op.getOperand(i); 2620 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2621 APInt SubUndef, SubZero; 2622 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2623 Depth + 1)) 2624 return true; 2625 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2626 KnownZero.insertBits(SubZero, i * NumSubElts); 2627 } 2628 break; 2629 } 2630 case ISD::INSERT_SUBVECTOR: { 2631 // Demand any elements from the subvector and the remainder from the src its 2632 // inserted into. 2633 SDValue Src = Op.getOperand(0); 2634 SDValue Sub = Op.getOperand(1); 2635 uint64_t Idx = Op.getConstantOperandVal(2); 2636 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2637 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2638 APInt DemandedSrcElts = DemandedElts; 2639 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2640 2641 APInt SubUndef, SubZero; 2642 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2643 Depth + 1)) 2644 return true; 2645 2646 // If none of the src operand elements are demanded, replace it with undef. 2647 if (!DemandedSrcElts && !Src.isUndef()) 2648 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2649 TLO.DAG.getUNDEF(VT), Sub, 2650 Op.getOperand(2))); 2651 2652 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2653 TLO, Depth + 1)) 2654 return true; 2655 KnownUndef.insertBits(SubUndef, Idx); 2656 KnownZero.insertBits(SubZero, Idx); 2657 2658 // Attempt to avoid multi-use ops if we don't need anything from them. 2659 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2660 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2661 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2662 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2663 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2664 if (NewSrc || NewSub) { 2665 NewSrc = NewSrc ? NewSrc : Src; 2666 NewSub = NewSub ? NewSub : Sub; 2667 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2668 NewSub, Op.getOperand(2)); 2669 return TLO.CombineTo(Op, NewOp); 2670 } 2671 } 2672 break; 2673 } 2674 case ISD::EXTRACT_SUBVECTOR: { 2675 // Offset the demanded elts by the subvector index. 2676 SDValue Src = Op.getOperand(0); 2677 if (Src.getValueType().isScalableVector()) 2678 break; 2679 uint64_t Idx = Op.getConstantOperandVal(1); 2680 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2681 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2682 2683 APInt SrcUndef, SrcZero; 2684 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2685 Depth + 1)) 2686 return true; 2687 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2688 KnownZero = SrcZero.extractBits(NumElts, Idx); 2689 2690 // Attempt to avoid multi-use ops if we don't need anything from them. 2691 if (!DemandedElts.isAllOnes()) { 2692 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2693 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2694 if (NewSrc) { 2695 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2696 Op.getOperand(1)); 2697 return TLO.CombineTo(Op, NewOp); 2698 } 2699 } 2700 break; 2701 } 2702 case ISD::INSERT_VECTOR_ELT: { 2703 SDValue Vec = Op.getOperand(0); 2704 SDValue Scl = Op.getOperand(1); 2705 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2706 2707 // For a legal, constant insertion index, if we don't need this insertion 2708 // then strip it, else remove it from the demanded elts. 2709 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2710 unsigned Idx = CIdx->getZExtValue(); 2711 if (!DemandedElts[Idx]) 2712 return TLO.CombineTo(Op, Vec); 2713 2714 APInt DemandedVecElts(DemandedElts); 2715 DemandedVecElts.clearBit(Idx); 2716 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2717 KnownZero, TLO, Depth + 1)) 2718 return true; 2719 2720 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2721 2722 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2723 break; 2724 } 2725 2726 APInt VecUndef, VecZero; 2727 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2728 Depth + 1)) 2729 return true; 2730 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2731 break; 2732 } 2733 case ISD::VSELECT: { 2734 // Try to transform the select condition based on the current demanded 2735 // elements. 2736 // TODO: If a condition element is undef, we can choose from one arm of the 2737 // select (and if one arm is undef, then we can propagate that to the 2738 // result). 2739 // TODO - add support for constant vselect masks (see IR version of this). 2740 APInt UnusedUndef, UnusedZero; 2741 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2742 UnusedZero, TLO, Depth + 1)) 2743 return true; 2744 2745 // See if we can simplify either vselect operand. 2746 APInt DemandedLHS(DemandedElts); 2747 APInt DemandedRHS(DemandedElts); 2748 APInt UndefLHS, ZeroLHS; 2749 APInt UndefRHS, ZeroRHS; 2750 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2751 ZeroLHS, TLO, Depth + 1)) 2752 return true; 2753 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2754 ZeroRHS, TLO, Depth + 1)) 2755 return true; 2756 2757 KnownUndef = UndefLHS & UndefRHS; 2758 KnownZero = ZeroLHS & ZeroRHS; 2759 break; 2760 } 2761 case ISD::VECTOR_SHUFFLE: { 2762 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2763 2764 // Collect demanded elements from shuffle operands.. 2765 APInt DemandedLHS(NumElts, 0); 2766 APInt DemandedRHS(NumElts, 0); 2767 for (unsigned i = 0; i != NumElts; ++i) { 2768 int M = ShuffleMask[i]; 2769 if (M < 0 || !DemandedElts[i]) 2770 continue; 2771 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2772 if (M < (int)NumElts) 2773 DemandedLHS.setBit(M); 2774 else 2775 DemandedRHS.setBit(M - NumElts); 2776 } 2777 2778 // See if we can simplify either shuffle operand. 2779 APInt UndefLHS, ZeroLHS; 2780 APInt UndefRHS, ZeroRHS; 2781 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2782 ZeroLHS, TLO, Depth + 1)) 2783 return true; 2784 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2785 ZeroRHS, TLO, Depth + 1)) 2786 return true; 2787 2788 // Simplify mask using undef elements from LHS/RHS. 2789 bool Updated = false; 2790 bool IdentityLHS = true, IdentityRHS = true; 2791 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2792 for (unsigned i = 0; i != NumElts; ++i) { 2793 int &M = NewMask[i]; 2794 if (M < 0) 2795 continue; 2796 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2797 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2798 Updated = true; 2799 M = -1; 2800 } 2801 IdentityLHS &= (M < 0) || (M == (int)i); 2802 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2803 } 2804 2805 // Update legal shuffle masks based on demanded elements if it won't reduce 2806 // to Identity which can cause premature removal of the shuffle mask. 2807 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2808 SDValue LegalShuffle = 2809 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2810 NewMask, TLO.DAG); 2811 if (LegalShuffle) 2812 return TLO.CombineTo(Op, LegalShuffle); 2813 } 2814 2815 // Propagate undef/zero elements from LHS/RHS. 2816 for (unsigned i = 0; i != NumElts; ++i) { 2817 int M = ShuffleMask[i]; 2818 if (M < 0) { 2819 KnownUndef.setBit(i); 2820 } else if (M < (int)NumElts) { 2821 if (UndefLHS[M]) 2822 KnownUndef.setBit(i); 2823 if (ZeroLHS[M]) 2824 KnownZero.setBit(i); 2825 } else { 2826 if (UndefRHS[M - NumElts]) 2827 KnownUndef.setBit(i); 2828 if (ZeroRHS[M - NumElts]) 2829 KnownZero.setBit(i); 2830 } 2831 } 2832 break; 2833 } 2834 case ISD::ANY_EXTEND_VECTOR_INREG: 2835 case ISD::SIGN_EXTEND_VECTOR_INREG: 2836 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2837 APInt SrcUndef, SrcZero; 2838 SDValue Src = Op.getOperand(0); 2839 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2840 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2841 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2842 Depth + 1)) 2843 return true; 2844 KnownZero = SrcZero.zextOrTrunc(NumElts); 2845 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2846 2847 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2848 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2849 DemandedSrcElts == 1) { 2850 // aext - if we just need the bottom element then we can bitcast. 2851 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2852 } 2853 2854 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2855 // zext(undef) upper bits are guaranteed to be zero. 2856 if (DemandedElts.isSubsetOf(KnownUndef)) 2857 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2858 KnownUndef.clearAllBits(); 2859 2860 // zext - if we just need the bottom element then we can mask: 2861 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2862 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 2863 Op->isOnlyUserOf(Src.getNode()) && 2864 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2865 SDLoc DL(Op); 2866 EVT SrcVT = Src.getValueType(); 2867 EVT SrcSVT = SrcVT.getScalarType(); 2868 SmallVector<SDValue> MaskElts; 2869 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2870 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2871 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2872 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2873 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2874 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2875 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2876 } 2877 } 2878 } 2879 break; 2880 } 2881 2882 // TODO: There are more binop opcodes that could be handled here - MIN, 2883 // MAX, saturated math, etc. 2884 case ISD::ADD: { 2885 SDValue Op0 = Op.getOperand(0); 2886 SDValue Op1 = Op.getOperand(1); 2887 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 2888 APInt UndefLHS, ZeroLHS; 2889 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2890 Depth + 1, /*AssumeSingleUse*/ true)) 2891 return true; 2892 } 2893 LLVM_FALLTHROUGH; 2894 } 2895 case ISD::OR: 2896 case ISD::XOR: 2897 case ISD::SUB: 2898 case ISD::FADD: 2899 case ISD::FSUB: 2900 case ISD::FMUL: 2901 case ISD::FDIV: 2902 case ISD::FREM: { 2903 SDValue Op0 = Op.getOperand(0); 2904 SDValue Op1 = Op.getOperand(1); 2905 2906 APInt UndefRHS, ZeroRHS; 2907 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2908 Depth + 1)) 2909 return true; 2910 APInt UndefLHS, ZeroLHS; 2911 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2912 Depth + 1)) 2913 return true; 2914 2915 KnownZero = ZeroLHS & ZeroRHS; 2916 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2917 2918 // Attempt to avoid multi-use ops if we don't need anything from them. 2919 // TODO - use KnownUndef to relax the demandedelts? 2920 if (!DemandedElts.isAllOnes()) 2921 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2922 return true; 2923 break; 2924 } 2925 case ISD::SHL: 2926 case ISD::SRL: 2927 case ISD::SRA: 2928 case ISD::ROTL: 2929 case ISD::ROTR: { 2930 SDValue Op0 = Op.getOperand(0); 2931 SDValue Op1 = Op.getOperand(1); 2932 2933 APInt UndefRHS, ZeroRHS; 2934 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2935 Depth + 1)) 2936 return true; 2937 APInt UndefLHS, ZeroLHS; 2938 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2939 Depth + 1)) 2940 return true; 2941 2942 KnownZero = ZeroLHS; 2943 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2944 2945 // Attempt to avoid multi-use ops if we don't need anything from them. 2946 // TODO - use KnownUndef to relax the demandedelts? 2947 if (!DemandedElts.isAllOnes()) 2948 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2949 return true; 2950 break; 2951 } 2952 case ISD::MUL: 2953 case ISD::AND: { 2954 SDValue Op0 = Op.getOperand(0); 2955 SDValue Op1 = Op.getOperand(1); 2956 2957 APInt SrcUndef, SrcZero; 2958 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2959 Depth + 1)) 2960 return true; 2961 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2962 TLO, Depth + 1)) 2963 return true; 2964 2965 // If either side has a zero element, then the result element is zero, even 2966 // if the other is an UNDEF. 2967 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2968 // and then handle 'and' nodes with the rest of the binop opcodes. 2969 KnownZero |= SrcZero; 2970 KnownUndef &= SrcUndef; 2971 KnownUndef &= ~KnownZero; 2972 2973 // Attempt to avoid multi-use ops if we don't need anything from them. 2974 // TODO - use KnownUndef to relax the demandedelts? 2975 if (!DemandedElts.isAllOnes()) 2976 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2977 return true; 2978 break; 2979 } 2980 case ISD::TRUNCATE: 2981 case ISD::SIGN_EXTEND: 2982 case ISD::ZERO_EXTEND: 2983 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2984 KnownZero, TLO, Depth + 1)) 2985 return true; 2986 2987 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2988 // zext(undef) upper bits are guaranteed to be zero. 2989 if (DemandedElts.isSubsetOf(KnownUndef)) 2990 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2991 KnownUndef.clearAllBits(); 2992 } 2993 break; 2994 default: { 2995 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2996 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2997 KnownZero, TLO, Depth)) 2998 return true; 2999 } else { 3000 KnownBits Known; 3001 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3002 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3003 TLO, Depth, AssumeSingleUse)) 3004 return true; 3005 } 3006 break; 3007 } 3008 } 3009 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3010 3011 // Constant fold all undef cases. 3012 // TODO: Handle zero cases as well. 3013 if (DemandedElts.isSubsetOf(KnownUndef)) 3014 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3015 3016 return false; 3017 } 3018 3019 /// Determine which of the bits specified in Mask are known to be either zero or 3020 /// one and return them in the Known. 3021 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3022 KnownBits &Known, 3023 const APInt &DemandedElts, 3024 const SelectionDAG &DAG, 3025 unsigned Depth) const { 3026 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3027 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3028 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3029 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3030 "Should use MaskedValueIsZero if you don't know whether Op" 3031 " is a target node!"); 3032 Known.resetAll(); 3033 } 3034 3035 void TargetLowering::computeKnownBitsForTargetInstr( 3036 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3037 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3038 unsigned Depth) const { 3039 Known.resetAll(); 3040 } 3041 3042 void TargetLowering::computeKnownBitsForFrameIndex( 3043 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3044 // The low bits are known zero if the pointer is aligned. 3045 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3046 } 3047 3048 Align TargetLowering::computeKnownAlignForTargetInstr( 3049 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3050 unsigned Depth) const { 3051 return Align(1); 3052 } 3053 3054 /// This method can be implemented by targets that want to expose additional 3055 /// information about sign bits to the DAG Combiner. 3056 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3057 const APInt &, 3058 const SelectionDAG &, 3059 unsigned Depth) const { 3060 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3061 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3062 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3063 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3064 "Should use ComputeNumSignBits if you don't know whether Op" 3065 " is a target node!"); 3066 return 1; 3067 } 3068 3069 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3070 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3071 const MachineRegisterInfo &MRI, unsigned Depth) const { 3072 return 1; 3073 } 3074 3075 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3076 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3077 TargetLoweringOpt &TLO, unsigned Depth) const { 3078 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3079 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3080 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3081 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3082 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3083 " is a target node!"); 3084 return false; 3085 } 3086 3087 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3088 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3089 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3090 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3091 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3092 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3093 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3094 "Should use SimplifyDemandedBits if you don't know whether Op" 3095 " is a target node!"); 3096 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3097 return false; 3098 } 3099 3100 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3101 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3102 SelectionDAG &DAG, unsigned Depth) const { 3103 assert( 3104 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3105 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3106 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3107 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3108 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3109 " is a target node!"); 3110 return SDValue(); 3111 } 3112 3113 SDValue 3114 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3115 SDValue N1, MutableArrayRef<int> Mask, 3116 SelectionDAG &DAG) const { 3117 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3118 if (!LegalMask) { 3119 std::swap(N0, N1); 3120 ShuffleVectorSDNode::commuteMask(Mask); 3121 LegalMask = isShuffleMaskLegal(Mask, VT); 3122 } 3123 3124 if (!LegalMask) 3125 return SDValue(); 3126 3127 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3128 } 3129 3130 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3131 return nullptr; 3132 } 3133 3134 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3135 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3136 bool PoisonOnly, unsigned Depth) const { 3137 assert( 3138 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3139 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3140 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3141 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3142 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3143 " is a target node!"); 3144 return false; 3145 } 3146 3147 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3148 const SelectionDAG &DAG, 3149 bool SNaN, 3150 unsigned Depth) const { 3151 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3152 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3153 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3154 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3155 "Should use isKnownNeverNaN if you don't know whether Op" 3156 " is a target node!"); 3157 return false; 3158 } 3159 3160 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3161 const APInt &DemandedElts, 3162 APInt &UndefElts, 3163 unsigned Depth) const { 3164 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3165 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3166 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3167 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3168 "Should use isSplatValue if you don't know whether Op" 3169 " is a target node!"); 3170 return false; 3171 } 3172 3173 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3174 // work with truncating build vectors and vectors with elements of less than 3175 // 8 bits. 3176 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3177 if (!N) 3178 return false; 3179 3180 APInt CVal; 3181 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3182 CVal = CN->getAPIntValue(); 3183 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3184 auto *CN = BV->getConstantSplatNode(); 3185 if (!CN) 3186 return false; 3187 3188 // If this is a truncating build vector, truncate the splat value. 3189 // Otherwise, we may fail to match the expected values below. 3190 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3191 CVal = CN->getAPIntValue(); 3192 if (BVEltWidth < CVal.getBitWidth()) 3193 CVal = CVal.trunc(BVEltWidth); 3194 } else { 3195 return false; 3196 } 3197 3198 switch (getBooleanContents(N->getValueType(0))) { 3199 case UndefinedBooleanContent: 3200 return CVal[0]; 3201 case ZeroOrOneBooleanContent: 3202 return CVal.isOne(); 3203 case ZeroOrNegativeOneBooleanContent: 3204 return CVal.isAllOnes(); 3205 } 3206 3207 llvm_unreachable("Invalid boolean contents"); 3208 } 3209 3210 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3211 if (!N) 3212 return false; 3213 3214 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3215 if (!CN) { 3216 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3217 if (!BV) 3218 return false; 3219 3220 // Only interested in constant splats, we don't care about undef 3221 // elements in identifying boolean constants and getConstantSplatNode 3222 // returns NULL if all ops are undef; 3223 CN = BV->getConstantSplatNode(); 3224 if (!CN) 3225 return false; 3226 } 3227 3228 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3229 return !CN->getAPIntValue()[0]; 3230 3231 return CN->isZero(); 3232 } 3233 3234 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3235 bool SExt) const { 3236 if (VT == MVT::i1) 3237 return N->isOne(); 3238 3239 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3240 switch (Cnt) { 3241 case TargetLowering::ZeroOrOneBooleanContent: 3242 // An extended value of 1 is always true, unless its original type is i1, 3243 // in which case it will be sign extended to -1. 3244 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3245 case TargetLowering::UndefinedBooleanContent: 3246 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3247 return N->isAllOnes() && SExt; 3248 } 3249 llvm_unreachable("Unexpected enumeration."); 3250 } 3251 3252 /// This helper function of SimplifySetCC tries to optimize the comparison when 3253 /// either operand of the SetCC node is a bitwise-and instruction. 3254 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3255 ISD::CondCode Cond, const SDLoc &DL, 3256 DAGCombinerInfo &DCI) const { 3257 // Match these patterns in any of their permutations: 3258 // (X & Y) == Y 3259 // (X & Y) != Y 3260 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3261 std::swap(N0, N1); 3262 3263 EVT OpVT = N0.getValueType(); 3264 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3265 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3266 return SDValue(); 3267 3268 SDValue X, Y; 3269 if (N0.getOperand(0) == N1) { 3270 X = N0.getOperand(1); 3271 Y = N0.getOperand(0); 3272 } else if (N0.getOperand(1) == N1) { 3273 X = N0.getOperand(0); 3274 Y = N0.getOperand(1); 3275 } else { 3276 return SDValue(); 3277 } 3278 3279 SelectionDAG &DAG = DCI.DAG; 3280 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3281 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3282 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3283 // Note that where Y is variable and is known to have at most one bit set 3284 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3285 // equivalent when Y == 0. 3286 assert(OpVT.isInteger()); 3287 Cond = ISD::getSetCCInverse(Cond, OpVT); 3288 if (DCI.isBeforeLegalizeOps() || 3289 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3290 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3291 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3292 // If the target supports an 'and-not' or 'and-complement' logic operation, 3293 // try to use that to make a comparison operation more efficient. 3294 // But don't do this transform if the mask is a single bit because there are 3295 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3296 // 'rlwinm' on PPC). 3297 3298 // Bail out if the compare operand that we want to turn into a zero is 3299 // already a zero (otherwise, infinite loop). 3300 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3301 if (YConst && YConst->isZero()) 3302 return SDValue(); 3303 3304 // Transform this into: ~X & Y == 0. 3305 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3306 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3307 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3308 } 3309 3310 return SDValue(); 3311 } 3312 3313 /// There are multiple IR patterns that could be checking whether certain 3314 /// truncation of a signed number would be lossy or not. The pattern which is 3315 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3316 /// We are looking for the following pattern: (KeptBits is a constant) 3317 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3318 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3319 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3320 /// We will unfold it into the natural trunc+sext pattern: 3321 /// ((%x << C) a>> C) dstcond %x 3322 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3323 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3324 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3325 const SDLoc &DL) const { 3326 // We must be comparing with a constant. 3327 ConstantSDNode *C1; 3328 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3329 return SDValue(); 3330 3331 // N0 should be: add %x, (1 << (KeptBits-1)) 3332 if (N0->getOpcode() != ISD::ADD) 3333 return SDValue(); 3334 3335 // And we must be 'add'ing a constant. 3336 ConstantSDNode *C01; 3337 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3338 return SDValue(); 3339 3340 SDValue X = N0->getOperand(0); 3341 EVT XVT = X.getValueType(); 3342 3343 // Validate constants ... 3344 3345 APInt I1 = C1->getAPIntValue(); 3346 3347 ISD::CondCode NewCond; 3348 if (Cond == ISD::CondCode::SETULT) { 3349 NewCond = ISD::CondCode::SETEQ; 3350 } else if (Cond == ISD::CondCode::SETULE) { 3351 NewCond = ISD::CondCode::SETEQ; 3352 // But need to 'canonicalize' the constant. 3353 I1 += 1; 3354 } else if (Cond == ISD::CondCode::SETUGT) { 3355 NewCond = ISD::CondCode::SETNE; 3356 // But need to 'canonicalize' the constant. 3357 I1 += 1; 3358 } else if (Cond == ISD::CondCode::SETUGE) { 3359 NewCond = ISD::CondCode::SETNE; 3360 } else 3361 return SDValue(); 3362 3363 APInt I01 = C01->getAPIntValue(); 3364 3365 auto checkConstants = [&I1, &I01]() -> bool { 3366 // Both of them must be power-of-two, and the constant from setcc is bigger. 3367 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3368 }; 3369 3370 if (checkConstants()) { 3371 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3372 } else { 3373 // What if we invert constants? (and the target predicate) 3374 I1.negate(); 3375 I01.negate(); 3376 assert(XVT.isInteger()); 3377 NewCond = getSetCCInverse(NewCond, XVT); 3378 if (!checkConstants()) 3379 return SDValue(); 3380 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3381 } 3382 3383 // They are power-of-two, so which bit is set? 3384 const unsigned KeptBits = I1.logBase2(); 3385 const unsigned KeptBitsMinusOne = I01.logBase2(); 3386 3387 // Magic! 3388 if (KeptBits != (KeptBitsMinusOne + 1)) 3389 return SDValue(); 3390 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3391 3392 // We don't want to do this in every single case. 3393 SelectionDAG &DAG = DCI.DAG; 3394 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3395 XVT, KeptBits)) 3396 return SDValue(); 3397 3398 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3399 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3400 3401 // Unfold into: ((%x << C) a>> C) cond %x 3402 // Where 'cond' will be either 'eq' or 'ne'. 3403 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3404 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3405 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3406 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3407 3408 return T2; 3409 } 3410 3411 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3412 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3413 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3414 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3415 assert(isConstOrConstSplat(N1C) && 3416 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3417 "Should be a comparison with 0."); 3418 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3419 "Valid only for [in]equality comparisons."); 3420 3421 unsigned NewShiftOpcode; 3422 SDValue X, C, Y; 3423 3424 SelectionDAG &DAG = DCI.DAG; 3425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3426 3427 // Look for '(C l>>/<< Y)'. 3428 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3429 // The shift should be one-use. 3430 if (!V.hasOneUse()) 3431 return false; 3432 unsigned OldShiftOpcode = V.getOpcode(); 3433 switch (OldShiftOpcode) { 3434 case ISD::SHL: 3435 NewShiftOpcode = ISD::SRL; 3436 break; 3437 case ISD::SRL: 3438 NewShiftOpcode = ISD::SHL; 3439 break; 3440 default: 3441 return false; // must be a logical shift. 3442 } 3443 // We should be shifting a constant. 3444 // FIXME: best to use isConstantOrConstantVector(). 3445 C = V.getOperand(0); 3446 ConstantSDNode *CC = 3447 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3448 if (!CC) 3449 return false; 3450 Y = V.getOperand(1); 3451 3452 ConstantSDNode *XC = 3453 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3454 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3455 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3456 }; 3457 3458 // LHS of comparison should be an one-use 'and'. 3459 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3460 return SDValue(); 3461 3462 X = N0.getOperand(0); 3463 SDValue Mask = N0.getOperand(1); 3464 3465 // 'and' is commutative! 3466 if (!Match(Mask)) { 3467 std::swap(X, Mask); 3468 if (!Match(Mask)) 3469 return SDValue(); 3470 } 3471 3472 EVT VT = X.getValueType(); 3473 3474 // Produce: 3475 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3476 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3477 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3478 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3479 return T2; 3480 } 3481 3482 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3483 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3484 /// handle the commuted versions of these patterns. 3485 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3486 ISD::CondCode Cond, const SDLoc &DL, 3487 DAGCombinerInfo &DCI) const { 3488 unsigned BOpcode = N0.getOpcode(); 3489 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3490 "Unexpected binop"); 3491 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3492 3493 // (X + Y) == X --> Y == 0 3494 // (X - Y) == X --> Y == 0 3495 // (X ^ Y) == X --> Y == 0 3496 SelectionDAG &DAG = DCI.DAG; 3497 EVT OpVT = N0.getValueType(); 3498 SDValue X = N0.getOperand(0); 3499 SDValue Y = N0.getOperand(1); 3500 if (X == N1) 3501 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3502 3503 if (Y != N1) 3504 return SDValue(); 3505 3506 // (X + Y) == Y --> X == 0 3507 // (X ^ Y) == Y --> X == 0 3508 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3509 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3510 3511 // The shift would not be valid if the operands are boolean (i1). 3512 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3513 return SDValue(); 3514 3515 // (X - Y) == Y --> X == Y << 1 3516 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3517 !DCI.isBeforeLegalize()); 3518 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3519 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3520 if (!DCI.isCalledByLegalizer()) 3521 DCI.AddToWorklist(YShl1.getNode()); 3522 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3523 } 3524 3525 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3526 SDValue N0, const APInt &C1, 3527 ISD::CondCode Cond, const SDLoc &dl, 3528 SelectionDAG &DAG) { 3529 // Look through truncs that don't change the value of a ctpop. 3530 // FIXME: Add vector support? Need to be careful with setcc result type below. 3531 SDValue CTPOP = N0; 3532 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3533 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3534 CTPOP = N0.getOperand(0); 3535 3536 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3537 return SDValue(); 3538 3539 EVT CTVT = CTPOP.getValueType(); 3540 SDValue CTOp = CTPOP.getOperand(0); 3541 3542 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3543 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3544 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3545 return SDValue(); 3546 3547 // (ctpop x) u< 2 -> (x & x-1) == 0 3548 // (ctpop x) u> 1 -> (x & x-1) != 0 3549 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3550 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3551 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3552 return SDValue(); 3553 if (C1 == 0 && (Cond == ISD::SETULT)) 3554 return SDValue(); // This is handled elsewhere. 3555 3556 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3557 3558 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3559 SDValue Result = CTOp; 3560 for (unsigned i = 0; i < Passes; i++) { 3561 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3562 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3563 } 3564 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3565 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3566 } 3567 3568 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3569 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3570 // For scalars, keep CTPOP if it is legal or custom. 3571 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3572 return SDValue(); 3573 // This is based on X86's custom lowering for CTPOP which produces more 3574 // instructions than the expansion here. 3575 3576 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3577 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3578 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3579 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3580 assert(CTVT.isInteger()); 3581 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3582 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3583 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3584 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3585 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3586 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3587 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3588 } 3589 3590 return SDValue(); 3591 } 3592 3593 /// Try to simplify a setcc built with the specified operands and cc. If it is 3594 /// unable to simplify it, return a null SDValue. 3595 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3596 ISD::CondCode Cond, bool foldBooleans, 3597 DAGCombinerInfo &DCI, 3598 const SDLoc &dl) const { 3599 SelectionDAG &DAG = DCI.DAG; 3600 const DataLayout &Layout = DAG.getDataLayout(); 3601 EVT OpVT = N0.getValueType(); 3602 3603 // Constant fold or commute setcc. 3604 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3605 return Fold; 3606 3607 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3608 // TODO: Handle non-splat vector constants. All undef causes trouble. 3609 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3610 // infinite loop here when we encounter one. 3611 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3612 if (isConstOrConstSplat(N0) && 3613 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3614 (DCI.isBeforeLegalizeOps() || 3615 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3616 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3617 3618 // If we have a subtract with the same 2 non-constant operands as this setcc 3619 // -- but in reverse order -- then try to commute the operands of this setcc 3620 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3621 // instruction on some targets. 3622 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3623 (DCI.isBeforeLegalizeOps() || 3624 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3625 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3626 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3627 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3628 3629 if (auto *N1C = isConstOrConstSplat(N1)) { 3630 const APInt &C1 = N1C->getAPIntValue(); 3631 3632 // Optimize some CTPOP cases. 3633 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3634 return V; 3635 3636 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3637 // equality comparison, then we're just comparing whether X itself is 3638 // zero. 3639 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3640 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3641 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3642 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3643 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3644 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3645 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3646 // (srl (ctlz x), 5) == 0 -> X != 0 3647 // (srl (ctlz x), 5) != 1 -> X != 0 3648 Cond = ISD::SETNE; 3649 } else { 3650 // (srl (ctlz x), 5) != 0 -> X == 0 3651 // (srl (ctlz x), 5) == 1 -> X == 0 3652 Cond = ISD::SETEQ; 3653 } 3654 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3655 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3656 Cond); 3657 } 3658 } 3659 } 3660 } 3661 3662 // FIXME: Support vectors. 3663 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3664 const APInt &C1 = N1C->getAPIntValue(); 3665 3666 // (zext x) == C --> x == (trunc C) 3667 // (sext x) == C --> x == (trunc C) 3668 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3669 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3670 unsigned MinBits = N0.getValueSizeInBits(); 3671 SDValue PreExt; 3672 bool Signed = false; 3673 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3674 // ZExt 3675 MinBits = N0->getOperand(0).getValueSizeInBits(); 3676 PreExt = N0->getOperand(0); 3677 } else if (N0->getOpcode() == ISD::AND) { 3678 // DAGCombine turns costly ZExts into ANDs 3679 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3680 if ((C->getAPIntValue()+1).isPowerOf2()) { 3681 MinBits = C->getAPIntValue().countTrailingOnes(); 3682 PreExt = N0->getOperand(0); 3683 } 3684 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3685 // SExt 3686 MinBits = N0->getOperand(0).getValueSizeInBits(); 3687 PreExt = N0->getOperand(0); 3688 Signed = true; 3689 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3690 // ZEXTLOAD / SEXTLOAD 3691 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3692 MinBits = LN0->getMemoryVT().getSizeInBits(); 3693 PreExt = N0; 3694 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3695 Signed = true; 3696 MinBits = LN0->getMemoryVT().getSizeInBits(); 3697 PreExt = N0; 3698 } 3699 } 3700 3701 // Figure out how many bits we need to preserve this constant. 3702 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3703 3704 // Make sure we're not losing bits from the constant. 3705 if (MinBits > 0 && 3706 MinBits < C1.getBitWidth() && 3707 MinBits >= ReqdBits) { 3708 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3709 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3710 // Will get folded away. 3711 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3712 if (MinBits == 1 && C1 == 1) 3713 // Invert the condition. 3714 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3715 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3716 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3717 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3718 } 3719 3720 // If truncating the setcc operands is not desirable, we can still 3721 // simplify the expression in some cases: 3722 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3723 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3724 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3725 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3726 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3727 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3728 SDValue TopSetCC = N0->getOperand(0); 3729 unsigned N0Opc = N0->getOpcode(); 3730 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3731 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3732 TopSetCC.getOpcode() == ISD::SETCC && 3733 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3734 (isConstFalseVal(N1C) || 3735 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3736 3737 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3738 (!N1C->isZero() && Cond == ISD::SETNE); 3739 3740 if (!Inverse) 3741 return TopSetCC; 3742 3743 ISD::CondCode InvCond = ISD::getSetCCInverse( 3744 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3745 TopSetCC.getOperand(0).getValueType()); 3746 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3747 TopSetCC.getOperand(1), 3748 InvCond); 3749 } 3750 } 3751 } 3752 3753 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3754 // equality or unsigned, and all 1 bits of the const are in the same 3755 // partial word, see if we can shorten the load. 3756 if (DCI.isBeforeLegalize() && 3757 !ISD::isSignedIntSetCC(Cond) && 3758 N0.getOpcode() == ISD::AND && C1 == 0 && 3759 N0.getNode()->hasOneUse() && 3760 isa<LoadSDNode>(N0.getOperand(0)) && 3761 N0.getOperand(0).getNode()->hasOneUse() && 3762 isa<ConstantSDNode>(N0.getOperand(1))) { 3763 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3764 APInt bestMask; 3765 unsigned bestWidth = 0, bestOffset = 0; 3766 if (Lod->isSimple() && Lod->isUnindexed()) { 3767 unsigned origWidth = N0.getValueSizeInBits(); 3768 unsigned maskWidth = origWidth; 3769 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3770 // 8 bits, but have to be careful... 3771 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3772 origWidth = Lod->getMemoryVT().getSizeInBits(); 3773 const APInt &Mask = N0.getConstantOperandAPInt(1); 3774 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3775 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3776 for (unsigned offset=0; offset<origWidth/width; offset++) { 3777 if (Mask.isSubsetOf(newMask)) { 3778 if (Layout.isLittleEndian()) 3779 bestOffset = (uint64_t)offset * (width/8); 3780 else 3781 bestOffset = (origWidth/width - offset - 1) * (width/8); 3782 bestMask = Mask.lshr(offset * (width/8) * 8); 3783 bestWidth = width; 3784 break; 3785 } 3786 newMask <<= width; 3787 } 3788 } 3789 } 3790 if (bestWidth) { 3791 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3792 if (newVT.isRound() && 3793 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3794 SDValue Ptr = Lod->getBasePtr(); 3795 if (bestOffset != 0) 3796 Ptr = 3797 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3798 SDValue NewLoad = 3799 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3800 Lod->getPointerInfo().getWithOffset(bestOffset), 3801 Lod->getOriginalAlign()); 3802 return DAG.getSetCC(dl, VT, 3803 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3804 DAG.getConstant(bestMask.trunc(bestWidth), 3805 dl, newVT)), 3806 DAG.getConstant(0LL, dl, newVT), Cond); 3807 } 3808 } 3809 } 3810 3811 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3812 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3813 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3814 3815 // If the comparison constant has bits in the upper part, the 3816 // zero-extended value could never match. 3817 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3818 C1.getBitWidth() - InSize))) { 3819 switch (Cond) { 3820 case ISD::SETUGT: 3821 case ISD::SETUGE: 3822 case ISD::SETEQ: 3823 return DAG.getConstant(0, dl, VT); 3824 case ISD::SETULT: 3825 case ISD::SETULE: 3826 case ISD::SETNE: 3827 return DAG.getConstant(1, dl, VT); 3828 case ISD::SETGT: 3829 case ISD::SETGE: 3830 // True if the sign bit of C1 is set. 3831 return DAG.getConstant(C1.isNegative(), dl, VT); 3832 case ISD::SETLT: 3833 case ISD::SETLE: 3834 // True if the sign bit of C1 isn't set. 3835 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3836 default: 3837 break; 3838 } 3839 } 3840 3841 // Otherwise, we can perform the comparison with the low bits. 3842 switch (Cond) { 3843 case ISD::SETEQ: 3844 case ISD::SETNE: 3845 case ISD::SETUGT: 3846 case ISD::SETUGE: 3847 case ISD::SETULT: 3848 case ISD::SETULE: { 3849 EVT newVT = N0.getOperand(0).getValueType(); 3850 if (DCI.isBeforeLegalizeOps() || 3851 (isOperationLegal(ISD::SETCC, newVT) && 3852 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3853 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3854 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3855 3856 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3857 NewConst, Cond); 3858 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3859 } 3860 break; 3861 } 3862 default: 3863 break; // todo, be more careful with signed comparisons 3864 } 3865 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3866 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3867 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3868 OpVT)) { 3869 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3870 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3871 EVT ExtDstTy = N0.getValueType(); 3872 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3873 3874 // If the constant doesn't fit into the number of bits for the source of 3875 // the sign extension, it is impossible for both sides to be equal. 3876 if (C1.getMinSignedBits() > ExtSrcTyBits) 3877 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3878 3879 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3880 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3881 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3882 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3883 DAG.getConstant(Imm, dl, ExtDstTy)); 3884 if (!DCI.isCalledByLegalizer()) 3885 DCI.AddToWorklist(ZextOp.getNode()); 3886 // Otherwise, make this a use of a zext. 3887 return DAG.getSetCC(dl, VT, ZextOp, 3888 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3889 } else if ((N1C->isZero() || N1C->isOne()) && 3890 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3891 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3892 if (N0.getOpcode() == ISD::SETCC && 3893 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3894 (N0.getValueType() == MVT::i1 || 3895 getBooleanContents(N0.getOperand(0).getValueType()) == 3896 ZeroOrOneBooleanContent)) { 3897 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3898 if (TrueWhenTrue) 3899 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3900 // Invert the condition. 3901 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3902 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3903 if (DCI.isBeforeLegalizeOps() || 3904 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3905 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3906 } 3907 3908 if ((N0.getOpcode() == ISD::XOR || 3909 (N0.getOpcode() == ISD::AND && 3910 N0.getOperand(0).getOpcode() == ISD::XOR && 3911 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3912 isOneConstant(N0.getOperand(1))) { 3913 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3914 // can only do this if the top bits are known zero. 3915 unsigned BitWidth = N0.getValueSizeInBits(); 3916 if (DAG.MaskedValueIsZero(N0, 3917 APInt::getHighBitsSet(BitWidth, 3918 BitWidth-1))) { 3919 // Okay, get the un-inverted input value. 3920 SDValue Val; 3921 if (N0.getOpcode() == ISD::XOR) { 3922 Val = N0.getOperand(0); 3923 } else { 3924 assert(N0.getOpcode() == ISD::AND && 3925 N0.getOperand(0).getOpcode() == ISD::XOR); 3926 // ((X^1)&1)^1 -> X & 1 3927 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3928 N0.getOperand(0).getOperand(0), 3929 N0.getOperand(1)); 3930 } 3931 3932 return DAG.getSetCC(dl, VT, Val, N1, 3933 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3934 } 3935 } else if (N1C->isOne()) { 3936 SDValue Op0 = N0; 3937 if (Op0.getOpcode() == ISD::TRUNCATE) 3938 Op0 = Op0.getOperand(0); 3939 3940 if ((Op0.getOpcode() == ISD::XOR) && 3941 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3942 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3943 SDValue XorLHS = Op0.getOperand(0); 3944 SDValue XorRHS = Op0.getOperand(1); 3945 // Ensure that the input setccs return an i1 type or 0/1 value. 3946 if (Op0.getValueType() == MVT::i1 || 3947 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3948 ZeroOrOneBooleanContent && 3949 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3950 ZeroOrOneBooleanContent)) { 3951 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3952 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3953 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3954 } 3955 } 3956 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3957 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3958 if (Op0.getValueType().bitsGT(VT)) 3959 Op0 = DAG.getNode(ISD::AND, dl, VT, 3960 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3961 DAG.getConstant(1, dl, VT)); 3962 else if (Op0.getValueType().bitsLT(VT)) 3963 Op0 = DAG.getNode(ISD::AND, dl, VT, 3964 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3965 DAG.getConstant(1, dl, VT)); 3966 3967 return DAG.getSetCC(dl, VT, Op0, 3968 DAG.getConstant(0, dl, Op0.getValueType()), 3969 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3970 } 3971 if (Op0.getOpcode() == ISD::AssertZext && 3972 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3973 return DAG.getSetCC(dl, VT, Op0, 3974 DAG.getConstant(0, dl, Op0.getValueType()), 3975 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3976 } 3977 } 3978 3979 // Given: 3980 // icmp eq/ne (urem %x, %y), 0 3981 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3982 // icmp eq/ne %x, 0 3983 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 3984 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3985 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3986 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3987 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3988 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3989 } 3990 3991 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3992 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3993 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3994 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3995 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 3996 N1C && N1C->isAllOnes()) { 3997 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3998 DAG.getConstant(0, dl, OpVT), 3999 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4000 } 4001 4002 if (SDValue V = 4003 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4004 return V; 4005 } 4006 4007 // These simplifications apply to splat vectors as well. 4008 // TODO: Handle more splat vector cases. 4009 if (auto *N1C = isConstOrConstSplat(N1)) { 4010 const APInt &C1 = N1C->getAPIntValue(); 4011 4012 APInt MinVal, MaxVal; 4013 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4014 if (ISD::isSignedIntSetCC(Cond)) { 4015 MinVal = APInt::getSignedMinValue(OperandBitSize); 4016 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4017 } else { 4018 MinVal = APInt::getMinValue(OperandBitSize); 4019 MaxVal = APInt::getMaxValue(OperandBitSize); 4020 } 4021 4022 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4023 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4024 // X >= MIN --> true 4025 if (C1 == MinVal) 4026 return DAG.getBoolConstant(true, dl, VT, OpVT); 4027 4028 if (!VT.isVector()) { // TODO: Support this for vectors. 4029 // X >= C0 --> X > (C0 - 1) 4030 APInt C = C1 - 1; 4031 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4032 if ((DCI.isBeforeLegalizeOps() || 4033 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4034 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4035 isLegalICmpImmediate(C.getSExtValue())))) { 4036 return DAG.getSetCC(dl, VT, N0, 4037 DAG.getConstant(C, dl, N1.getValueType()), 4038 NewCC); 4039 } 4040 } 4041 } 4042 4043 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4044 // X <= MAX --> true 4045 if (C1 == MaxVal) 4046 return DAG.getBoolConstant(true, dl, VT, OpVT); 4047 4048 // X <= C0 --> X < (C0 + 1) 4049 if (!VT.isVector()) { // TODO: Support this for vectors. 4050 APInt C = C1 + 1; 4051 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4052 if ((DCI.isBeforeLegalizeOps() || 4053 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4054 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4055 isLegalICmpImmediate(C.getSExtValue())))) { 4056 return DAG.getSetCC(dl, VT, N0, 4057 DAG.getConstant(C, dl, N1.getValueType()), 4058 NewCC); 4059 } 4060 } 4061 } 4062 4063 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4064 if (C1 == MinVal) 4065 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4066 4067 // TODO: Support this for vectors after legalize ops. 4068 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4069 // Canonicalize setlt X, Max --> setne X, Max 4070 if (C1 == MaxVal) 4071 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4072 4073 // If we have setult X, 1, turn it into seteq X, 0 4074 if (C1 == MinVal+1) 4075 return DAG.getSetCC(dl, VT, N0, 4076 DAG.getConstant(MinVal, dl, N0.getValueType()), 4077 ISD::SETEQ); 4078 } 4079 } 4080 4081 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4082 if (C1 == MaxVal) 4083 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4084 4085 // TODO: Support this for vectors after legalize ops. 4086 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4087 // Canonicalize setgt X, Min --> setne X, Min 4088 if (C1 == MinVal) 4089 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4090 4091 // If we have setugt X, Max-1, turn it into seteq X, Max 4092 if (C1 == MaxVal-1) 4093 return DAG.getSetCC(dl, VT, N0, 4094 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4095 ISD::SETEQ); 4096 } 4097 } 4098 4099 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4100 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4101 if (C1.isZero()) 4102 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4103 VT, N0, N1, Cond, DCI, dl)) 4104 return CC; 4105 4106 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4107 // For example, when high 32-bits of i64 X are known clear: 4108 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4109 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4110 bool CmpZero = N1C->getAPIntValue().isZero(); 4111 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4112 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4113 // Match or(lo,shl(hi,bw/2)) pattern. 4114 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4115 unsigned EltBits = V.getScalarValueSizeInBits(); 4116 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4117 return false; 4118 SDValue LHS = V.getOperand(0); 4119 SDValue RHS = V.getOperand(1); 4120 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4121 // Unshifted element must have zero upperbits. 4122 if (RHS.getOpcode() == ISD::SHL && 4123 isa<ConstantSDNode>(RHS.getOperand(1)) && 4124 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4125 DAG.MaskedValueIsZero(LHS, HiBits)) { 4126 Lo = LHS; 4127 Hi = RHS.getOperand(0); 4128 return true; 4129 } 4130 if (LHS.getOpcode() == ISD::SHL && 4131 isa<ConstantSDNode>(LHS.getOperand(1)) && 4132 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4133 DAG.MaskedValueIsZero(RHS, HiBits)) { 4134 Lo = RHS; 4135 Hi = LHS.getOperand(0); 4136 return true; 4137 } 4138 return false; 4139 }; 4140 4141 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4142 unsigned EltBits = N0.getScalarValueSizeInBits(); 4143 unsigned HalfBits = EltBits / 2; 4144 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4145 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4146 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4147 SDValue NewN0 = 4148 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4149 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4150 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4151 }; 4152 4153 SDValue Lo, Hi; 4154 if (IsConcat(N0, Lo, Hi)) 4155 return MergeConcat(Lo, Hi); 4156 4157 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4158 SDValue Lo0, Lo1, Hi0, Hi1; 4159 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4160 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4161 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4162 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4163 } 4164 } 4165 } 4166 } 4167 4168 // If we have "setcc X, C0", check to see if we can shrink the immediate 4169 // by changing cc. 4170 // TODO: Support this for vectors after legalize ops. 4171 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4172 // SETUGT X, SINTMAX -> SETLT X, 0 4173 // SETUGE X, SINTMIN -> SETLT X, 0 4174 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4175 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4176 return DAG.getSetCC(dl, VT, N0, 4177 DAG.getConstant(0, dl, N1.getValueType()), 4178 ISD::SETLT); 4179 4180 // SETULT X, SINTMIN -> SETGT X, -1 4181 // SETULE X, SINTMAX -> SETGT X, -1 4182 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4183 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4184 return DAG.getSetCC(dl, VT, N0, 4185 DAG.getAllOnesConstant(dl, N1.getValueType()), 4186 ISD::SETGT); 4187 } 4188 } 4189 4190 // Back to non-vector simplifications. 4191 // TODO: Can we do these for vector splats? 4192 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4194 const APInt &C1 = N1C->getAPIntValue(); 4195 EVT ShValTy = N0.getValueType(); 4196 4197 // Fold bit comparisons when we can. This will result in an 4198 // incorrect value when boolean false is negative one, unless 4199 // the bitsize is 1 in which case the false value is the same 4200 // in practice regardless of the representation. 4201 if ((VT.getSizeInBits() == 1 || 4202 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4203 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4204 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4205 N0.getOpcode() == ISD::AND) { 4206 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4207 EVT ShiftTy = 4208 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4209 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4210 // Perform the xform if the AND RHS is a single bit. 4211 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4212 if (AndRHS->getAPIntValue().isPowerOf2() && 4213 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4214 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4215 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4216 DAG.getConstant(ShCt, dl, ShiftTy))); 4217 } 4218 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4219 // (X & 8) == 8 --> (X & 8) >> 3 4220 // Perform the xform if C1 is a single bit. 4221 unsigned ShCt = C1.logBase2(); 4222 if (C1.isPowerOf2() && 4223 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4224 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4225 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4226 DAG.getConstant(ShCt, dl, ShiftTy))); 4227 } 4228 } 4229 } 4230 } 4231 4232 if (C1.getMinSignedBits() <= 64 && 4233 !isLegalICmpImmediate(C1.getSExtValue())) { 4234 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4235 // (X & -256) == 256 -> (X >> 8) == 1 4236 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4237 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4238 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4239 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4240 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4241 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4242 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4243 SDValue Shift = 4244 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4245 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4246 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4247 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4248 } 4249 } 4250 } 4251 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4252 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4253 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4254 // X < 0x100000000 -> (X >> 32) < 1 4255 // X >= 0x100000000 -> (X >> 32) >= 1 4256 // X <= 0x0ffffffff -> (X >> 32) < 1 4257 // X > 0x0ffffffff -> (X >> 32) >= 1 4258 unsigned ShiftBits; 4259 APInt NewC = C1; 4260 ISD::CondCode NewCond = Cond; 4261 if (AdjOne) { 4262 ShiftBits = C1.countTrailingOnes(); 4263 NewC = NewC + 1; 4264 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4265 } else { 4266 ShiftBits = C1.countTrailingZeros(); 4267 } 4268 NewC.lshrInPlace(ShiftBits); 4269 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4270 isLegalICmpImmediate(NewC.getSExtValue()) && 4271 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4272 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4273 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4274 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4275 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4276 } 4277 } 4278 } 4279 } 4280 4281 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4282 auto *CFP = cast<ConstantFPSDNode>(N1); 4283 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4284 4285 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4286 // constant if knowing that the operand is non-nan is enough. We prefer to 4287 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4288 // materialize 0.0. 4289 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4290 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4291 4292 // setcc (fneg x), C -> setcc swap(pred) x, -C 4293 if (N0.getOpcode() == ISD::FNEG) { 4294 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4295 if (DCI.isBeforeLegalizeOps() || 4296 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4297 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4298 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4299 } 4300 } 4301 4302 // If the condition is not legal, see if we can find an equivalent one 4303 // which is legal. 4304 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4305 // If the comparison was an awkward floating-point == or != and one of 4306 // the comparison operands is infinity or negative infinity, convert the 4307 // condition to a less-awkward <= or >=. 4308 if (CFP->getValueAPF().isInfinity()) { 4309 bool IsNegInf = CFP->getValueAPF().isNegative(); 4310 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4311 switch (Cond) { 4312 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4313 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4314 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4315 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4316 default: break; 4317 } 4318 if (NewCond != ISD::SETCC_INVALID && 4319 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4320 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4321 } 4322 } 4323 } 4324 4325 if (N0 == N1) { 4326 // The sext(setcc()) => setcc() optimization relies on the appropriate 4327 // constant being emitted. 4328 assert(!N0.getValueType().isInteger() && 4329 "Integer types should be handled by FoldSetCC"); 4330 4331 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4332 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4333 if (UOF == 2) // FP operators that are undefined on NaNs. 4334 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4335 if (UOF == unsigned(EqTrue)) 4336 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4337 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4338 // if it is not already. 4339 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4340 if (NewCond != Cond && 4341 (DCI.isBeforeLegalizeOps() || 4342 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4343 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4344 } 4345 4346 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4347 N0.getValueType().isInteger()) { 4348 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4349 N0.getOpcode() == ISD::XOR) { 4350 // Simplify (X+Y) == (X+Z) --> Y == Z 4351 if (N0.getOpcode() == N1.getOpcode()) { 4352 if (N0.getOperand(0) == N1.getOperand(0)) 4353 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4354 if (N0.getOperand(1) == N1.getOperand(1)) 4355 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4356 if (isCommutativeBinOp(N0.getOpcode())) { 4357 // If X op Y == Y op X, try other combinations. 4358 if (N0.getOperand(0) == N1.getOperand(1)) 4359 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4360 Cond); 4361 if (N0.getOperand(1) == N1.getOperand(0)) 4362 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4363 Cond); 4364 } 4365 } 4366 4367 // If RHS is a legal immediate value for a compare instruction, we need 4368 // to be careful about increasing register pressure needlessly. 4369 bool LegalRHSImm = false; 4370 4371 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4372 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4373 // Turn (X+C1) == C2 --> X == C2-C1 4374 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4375 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4376 DAG.getConstant(RHSC->getAPIntValue()- 4377 LHSR->getAPIntValue(), 4378 dl, N0.getValueType()), Cond); 4379 } 4380 4381 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4382 if (N0.getOpcode() == ISD::XOR) 4383 // If we know that all of the inverted bits are zero, don't bother 4384 // performing the inversion. 4385 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4386 return 4387 DAG.getSetCC(dl, VT, N0.getOperand(0), 4388 DAG.getConstant(LHSR->getAPIntValue() ^ 4389 RHSC->getAPIntValue(), 4390 dl, N0.getValueType()), 4391 Cond); 4392 } 4393 4394 // Turn (C1-X) == C2 --> X == C1-C2 4395 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4396 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4397 return 4398 DAG.getSetCC(dl, VT, N0.getOperand(1), 4399 DAG.getConstant(SUBC->getAPIntValue() - 4400 RHSC->getAPIntValue(), 4401 dl, N0.getValueType()), 4402 Cond); 4403 } 4404 } 4405 4406 // Could RHSC fold directly into a compare? 4407 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4408 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4409 } 4410 4411 // (X+Y) == X --> Y == 0 and similar folds. 4412 // Don't do this if X is an immediate that can fold into a cmp 4413 // instruction and X+Y has other uses. It could be an induction variable 4414 // chain, and the transform would increase register pressure. 4415 if (!LegalRHSImm || N0.hasOneUse()) 4416 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4417 return V; 4418 } 4419 4420 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4421 N1.getOpcode() == ISD::XOR) 4422 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4423 return V; 4424 4425 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4426 return V; 4427 } 4428 4429 // Fold remainder of division by a constant. 4430 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4431 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4432 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4433 4434 // When division is cheap or optimizing for minimum size, 4435 // fall through to DIVREM creation by skipping this fold. 4436 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4437 if (N0.getOpcode() == ISD::UREM) { 4438 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4439 return Folded; 4440 } else if (N0.getOpcode() == ISD::SREM) { 4441 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4442 return Folded; 4443 } 4444 } 4445 } 4446 4447 // Fold away ALL boolean setcc's. 4448 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4449 SDValue Temp; 4450 switch (Cond) { 4451 default: llvm_unreachable("Unknown integer setcc!"); 4452 case ISD::SETEQ: // X == Y -> ~(X^Y) 4453 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4454 N0 = DAG.getNOT(dl, Temp, OpVT); 4455 if (!DCI.isCalledByLegalizer()) 4456 DCI.AddToWorklist(Temp.getNode()); 4457 break; 4458 case ISD::SETNE: // X != Y --> (X^Y) 4459 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4460 break; 4461 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4462 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4463 Temp = DAG.getNOT(dl, N0, OpVT); 4464 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4465 if (!DCI.isCalledByLegalizer()) 4466 DCI.AddToWorklist(Temp.getNode()); 4467 break; 4468 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4469 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4470 Temp = DAG.getNOT(dl, N1, OpVT); 4471 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4472 if (!DCI.isCalledByLegalizer()) 4473 DCI.AddToWorklist(Temp.getNode()); 4474 break; 4475 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4476 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4477 Temp = DAG.getNOT(dl, N0, OpVT); 4478 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4479 if (!DCI.isCalledByLegalizer()) 4480 DCI.AddToWorklist(Temp.getNode()); 4481 break; 4482 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4483 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4484 Temp = DAG.getNOT(dl, N1, OpVT); 4485 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4486 break; 4487 } 4488 if (VT.getScalarType() != MVT::i1) { 4489 if (!DCI.isCalledByLegalizer()) 4490 DCI.AddToWorklist(N0.getNode()); 4491 // FIXME: If running after legalize, we probably can't do this. 4492 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4493 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4494 } 4495 return N0; 4496 } 4497 4498 // Could not fold it. 4499 return SDValue(); 4500 } 4501 4502 /// Returns true (and the GlobalValue and the offset) if the node is a 4503 /// GlobalAddress + offset. 4504 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4505 int64_t &Offset) const { 4506 4507 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4508 4509 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4510 GA = GASD->getGlobal(); 4511 Offset += GASD->getOffset(); 4512 return true; 4513 } 4514 4515 if (N->getOpcode() == ISD::ADD) { 4516 SDValue N1 = N->getOperand(0); 4517 SDValue N2 = N->getOperand(1); 4518 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4519 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4520 Offset += V->getSExtValue(); 4521 return true; 4522 } 4523 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4524 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4525 Offset += V->getSExtValue(); 4526 return true; 4527 } 4528 } 4529 } 4530 4531 return false; 4532 } 4533 4534 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4535 DAGCombinerInfo &DCI) const { 4536 // Default implementation: no optimization. 4537 return SDValue(); 4538 } 4539 4540 //===----------------------------------------------------------------------===// 4541 // Inline Assembler Implementation Methods 4542 //===----------------------------------------------------------------------===// 4543 4544 TargetLowering::ConstraintType 4545 TargetLowering::getConstraintType(StringRef Constraint) const { 4546 unsigned S = Constraint.size(); 4547 4548 if (S == 1) { 4549 switch (Constraint[0]) { 4550 default: break; 4551 case 'r': 4552 return C_RegisterClass; 4553 case 'm': // memory 4554 case 'o': // offsetable 4555 case 'V': // not offsetable 4556 return C_Memory; 4557 case 'n': // Simple Integer 4558 case 'E': // Floating Point Constant 4559 case 'F': // Floating Point Constant 4560 return C_Immediate; 4561 case 'i': // Simple Integer or Relocatable Constant 4562 case 's': // Relocatable Constant 4563 case 'p': // Address. 4564 case 'X': // Allow ANY value. 4565 case 'I': // Target registers. 4566 case 'J': 4567 case 'K': 4568 case 'L': 4569 case 'M': 4570 case 'N': 4571 case 'O': 4572 case 'P': 4573 case '<': 4574 case '>': 4575 return C_Other; 4576 } 4577 } 4578 4579 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4580 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4581 return C_Memory; 4582 return C_Register; 4583 } 4584 return C_Unknown; 4585 } 4586 4587 /// Try to replace an X constraint, which matches anything, with another that 4588 /// has more specific requirements based on the type of the corresponding 4589 /// operand. 4590 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4591 if (ConstraintVT.isInteger()) 4592 return "r"; 4593 if (ConstraintVT.isFloatingPoint()) 4594 return "f"; // works for many targets 4595 return nullptr; 4596 } 4597 4598 SDValue TargetLowering::LowerAsmOutputForConstraint( 4599 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4600 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4601 return SDValue(); 4602 } 4603 4604 /// Lower the specified operand into the Ops vector. 4605 /// If it is invalid, don't add anything to Ops. 4606 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4607 std::string &Constraint, 4608 std::vector<SDValue> &Ops, 4609 SelectionDAG &DAG) const { 4610 4611 if (Constraint.length() > 1) return; 4612 4613 char ConstraintLetter = Constraint[0]; 4614 switch (ConstraintLetter) { 4615 default: break; 4616 case 'X': // Allows any operand 4617 case 'i': // Simple Integer or Relocatable Constant 4618 case 'n': // Simple Integer 4619 case 's': { // Relocatable Constant 4620 4621 ConstantSDNode *C; 4622 uint64_t Offset = 0; 4623 4624 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4625 // etc., since getelementpointer is variadic. We can't use 4626 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4627 // while in this case the GA may be furthest from the root node which is 4628 // likely an ISD::ADD. 4629 while (true) { 4630 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4631 // gcc prints these as sign extended. Sign extend value to 64 bits 4632 // now; without this it would get ZExt'd later in 4633 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4634 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4635 BooleanContent BCont = getBooleanContents(MVT::i64); 4636 ISD::NodeType ExtOpc = 4637 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4638 int64_t ExtVal = 4639 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4640 Ops.push_back( 4641 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4642 return; 4643 } 4644 if (ConstraintLetter != 'n') { 4645 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4646 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4647 GA->getValueType(0), 4648 Offset + GA->getOffset())); 4649 return; 4650 } 4651 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4652 Ops.push_back(DAG.getTargetBlockAddress( 4653 BA->getBlockAddress(), BA->getValueType(0), 4654 Offset + BA->getOffset(), BA->getTargetFlags())); 4655 return; 4656 } 4657 if (isa<BasicBlockSDNode>(Op)) { 4658 Ops.push_back(Op); 4659 return; 4660 } 4661 } 4662 const unsigned OpCode = Op.getOpcode(); 4663 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4664 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4665 Op = Op.getOperand(1); 4666 // Subtraction is not commutative. 4667 else if (OpCode == ISD::ADD && 4668 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4669 Op = Op.getOperand(0); 4670 else 4671 return; 4672 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4673 continue; 4674 } 4675 return; 4676 } 4677 break; 4678 } 4679 } 4680 } 4681 4682 std::pair<unsigned, const TargetRegisterClass *> 4683 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4684 StringRef Constraint, 4685 MVT VT) const { 4686 if (Constraint.empty() || Constraint[0] != '{') 4687 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4688 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4689 4690 // Remove the braces from around the name. 4691 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4692 4693 std::pair<unsigned, const TargetRegisterClass *> R = 4694 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4695 4696 // Figure out which register class contains this reg. 4697 for (const TargetRegisterClass *RC : RI->regclasses()) { 4698 // If none of the value types for this register class are valid, we 4699 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4700 if (!isLegalRC(*RI, *RC)) 4701 continue; 4702 4703 for (const MCPhysReg &PR : *RC) { 4704 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4705 std::pair<unsigned, const TargetRegisterClass *> S = 4706 std::make_pair(PR, RC); 4707 4708 // If this register class has the requested value type, return it, 4709 // otherwise keep searching and return the first class found 4710 // if no other is found which explicitly has the requested type. 4711 if (RI->isTypeLegalForClass(*RC, VT)) 4712 return S; 4713 if (!R.second) 4714 R = S; 4715 } 4716 } 4717 } 4718 4719 return R; 4720 } 4721 4722 //===----------------------------------------------------------------------===// 4723 // Constraint Selection. 4724 4725 /// Return true of this is an input operand that is a matching constraint like 4726 /// "4". 4727 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4728 assert(!ConstraintCode.empty() && "No known constraint!"); 4729 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4730 } 4731 4732 /// If this is an input matching constraint, this method returns the output 4733 /// operand it matches. 4734 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4735 assert(!ConstraintCode.empty() && "No known constraint!"); 4736 return atoi(ConstraintCode.c_str()); 4737 } 4738 4739 /// Split up the constraint string from the inline assembly value into the 4740 /// specific constraints and their prefixes, and also tie in the associated 4741 /// operand values. 4742 /// If this returns an empty vector, and if the constraint string itself 4743 /// isn't empty, there was an error parsing. 4744 TargetLowering::AsmOperandInfoVector 4745 TargetLowering::ParseConstraints(const DataLayout &DL, 4746 const TargetRegisterInfo *TRI, 4747 const CallBase &Call) const { 4748 /// Information about all of the constraints. 4749 AsmOperandInfoVector ConstraintOperands; 4750 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4751 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4752 4753 // Do a prepass over the constraints, canonicalizing them, and building up the 4754 // ConstraintOperands list. 4755 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4756 unsigned ResNo = 0; // ResNo - The result number of the next output. 4757 4758 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4759 ConstraintOperands.emplace_back(std::move(CI)); 4760 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4761 4762 // Update multiple alternative constraint count. 4763 if (OpInfo.multipleAlternatives.size() > maCount) 4764 maCount = OpInfo.multipleAlternatives.size(); 4765 4766 OpInfo.ConstraintVT = MVT::Other; 4767 4768 // Compute the value type for each operand. 4769 switch (OpInfo.Type) { 4770 case InlineAsm::isOutput: 4771 // Indirect outputs just consume an argument. 4772 if (OpInfo.isIndirect) { 4773 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4774 break; 4775 } 4776 4777 // The return value of the call is this value. As such, there is no 4778 // corresponding argument. 4779 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4780 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4781 OpInfo.ConstraintVT = 4782 getSimpleValueType(DL, STy->getElementType(ResNo)); 4783 } else { 4784 assert(ResNo == 0 && "Asm only has one result!"); 4785 OpInfo.ConstraintVT = 4786 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4787 } 4788 ++ResNo; 4789 break; 4790 case InlineAsm::isInput: 4791 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4792 break; 4793 case InlineAsm::isClobber: 4794 // Nothing to do. 4795 break; 4796 } 4797 4798 if (OpInfo.CallOperandVal) { 4799 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4800 if (OpInfo.isIndirect) { 4801 OpTy = Call.getAttributes().getParamElementType(ArgNo); 4802 assert(OpTy && "Indirect opernad must have elementtype attribute"); 4803 } 4804 4805 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4806 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4807 if (STy->getNumElements() == 1) 4808 OpTy = STy->getElementType(0); 4809 4810 // If OpTy is not a single value, it may be a struct/union that we 4811 // can tile with integers. 4812 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4813 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4814 switch (BitSize) { 4815 default: break; 4816 case 1: 4817 case 8: 4818 case 16: 4819 case 32: 4820 case 64: 4821 case 128: 4822 OpInfo.ConstraintVT = 4823 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4824 break; 4825 } 4826 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4827 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4828 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4829 } else { 4830 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4831 } 4832 4833 ArgNo++; 4834 } 4835 } 4836 4837 // If we have multiple alternative constraints, select the best alternative. 4838 if (!ConstraintOperands.empty()) { 4839 if (maCount) { 4840 unsigned bestMAIndex = 0; 4841 int bestWeight = -1; 4842 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4843 int weight = -1; 4844 unsigned maIndex; 4845 // Compute the sums of the weights for each alternative, keeping track 4846 // of the best (highest weight) one so far. 4847 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4848 int weightSum = 0; 4849 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4850 cIndex != eIndex; ++cIndex) { 4851 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4852 if (OpInfo.Type == InlineAsm::isClobber) 4853 continue; 4854 4855 // If this is an output operand with a matching input operand, 4856 // look up the matching input. If their types mismatch, e.g. one 4857 // is an integer, the other is floating point, or their sizes are 4858 // different, flag it as an maCantMatch. 4859 if (OpInfo.hasMatchingInput()) { 4860 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4861 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4862 if ((OpInfo.ConstraintVT.isInteger() != 4863 Input.ConstraintVT.isInteger()) || 4864 (OpInfo.ConstraintVT.getSizeInBits() != 4865 Input.ConstraintVT.getSizeInBits())) { 4866 weightSum = -1; // Can't match. 4867 break; 4868 } 4869 } 4870 } 4871 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4872 if (weight == -1) { 4873 weightSum = -1; 4874 break; 4875 } 4876 weightSum += weight; 4877 } 4878 // Update best. 4879 if (weightSum > bestWeight) { 4880 bestWeight = weightSum; 4881 bestMAIndex = maIndex; 4882 } 4883 } 4884 4885 // Now select chosen alternative in each constraint. 4886 for (AsmOperandInfo &cInfo : ConstraintOperands) 4887 if (cInfo.Type != InlineAsm::isClobber) 4888 cInfo.selectAlternative(bestMAIndex); 4889 } 4890 } 4891 4892 // Check and hook up tied operands, choose constraint code to use. 4893 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4894 cIndex != eIndex; ++cIndex) { 4895 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4896 4897 // If this is an output operand with a matching input operand, look up the 4898 // matching input. If their types mismatch, e.g. one is an integer, the 4899 // other is floating point, or their sizes are different, flag it as an 4900 // error. 4901 if (OpInfo.hasMatchingInput()) { 4902 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4903 4904 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4905 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4906 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4907 OpInfo.ConstraintVT); 4908 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4909 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4910 Input.ConstraintVT); 4911 if ((OpInfo.ConstraintVT.isInteger() != 4912 Input.ConstraintVT.isInteger()) || 4913 (MatchRC.second != InputRC.second)) { 4914 report_fatal_error("Unsupported asm: input constraint" 4915 " with a matching output constraint of" 4916 " incompatible type!"); 4917 } 4918 } 4919 } 4920 } 4921 4922 return ConstraintOperands; 4923 } 4924 4925 /// Return an integer indicating how general CT is. 4926 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4927 switch (CT) { 4928 case TargetLowering::C_Immediate: 4929 case TargetLowering::C_Other: 4930 case TargetLowering::C_Unknown: 4931 return 0; 4932 case TargetLowering::C_Register: 4933 return 1; 4934 case TargetLowering::C_RegisterClass: 4935 return 2; 4936 case TargetLowering::C_Memory: 4937 return 3; 4938 } 4939 llvm_unreachable("Invalid constraint type"); 4940 } 4941 4942 /// Examine constraint type and operand type and determine a weight value. 4943 /// This object must already have been set up with the operand type 4944 /// and the current alternative constraint selected. 4945 TargetLowering::ConstraintWeight 4946 TargetLowering::getMultipleConstraintMatchWeight( 4947 AsmOperandInfo &info, int maIndex) const { 4948 InlineAsm::ConstraintCodeVector *rCodes; 4949 if (maIndex >= (int)info.multipleAlternatives.size()) 4950 rCodes = &info.Codes; 4951 else 4952 rCodes = &info.multipleAlternatives[maIndex].Codes; 4953 ConstraintWeight BestWeight = CW_Invalid; 4954 4955 // Loop over the options, keeping track of the most general one. 4956 for (const std::string &rCode : *rCodes) { 4957 ConstraintWeight weight = 4958 getSingleConstraintMatchWeight(info, rCode.c_str()); 4959 if (weight > BestWeight) 4960 BestWeight = weight; 4961 } 4962 4963 return BestWeight; 4964 } 4965 4966 /// Examine constraint type and operand type and determine a weight value. 4967 /// This object must already have been set up with the operand type 4968 /// and the current alternative constraint selected. 4969 TargetLowering::ConstraintWeight 4970 TargetLowering::getSingleConstraintMatchWeight( 4971 AsmOperandInfo &info, const char *constraint) const { 4972 ConstraintWeight weight = CW_Invalid; 4973 Value *CallOperandVal = info.CallOperandVal; 4974 // If we don't have a value, we can't do a match, 4975 // but allow it at the lowest weight. 4976 if (!CallOperandVal) 4977 return CW_Default; 4978 // Look at the constraint type. 4979 switch (*constraint) { 4980 case 'i': // immediate integer. 4981 case 'n': // immediate integer with a known value. 4982 if (isa<ConstantInt>(CallOperandVal)) 4983 weight = CW_Constant; 4984 break; 4985 case 's': // non-explicit intregal immediate. 4986 if (isa<GlobalValue>(CallOperandVal)) 4987 weight = CW_Constant; 4988 break; 4989 case 'E': // immediate float if host format. 4990 case 'F': // immediate float. 4991 if (isa<ConstantFP>(CallOperandVal)) 4992 weight = CW_Constant; 4993 break; 4994 case '<': // memory operand with autodecrement. 4995 case '>': // memory operand with autoincrement. 4996 case 'm': // memory operand. 4997 case 'o': // offsettable memory operand 4998 case 'V': // non-offsettable memory operand 4999 weight = CW_Memory; 5000 break; 5001 case 'r': // general register. 5002 case 'g': // general register, memory operand or immediate integer. 5003 // note: Clang converts "g" to "imr". 5004 if (CallOperandVal->getType()->isIntegerTy()) 5005 weight = CW_Register; 5006 break; 5007 case 'X': // any operand. 5008 default: 5009 weight = CW_Default; 5010 break; 5011 } 5012 return weight; 5013 } 5014 5015 /// If there are multiple different constraints that we could pick for this 5016 /// operand (e.g. "imr") try to pick the 'best' one. 5017 /// This is somewhat tricky: constraints fall into four classes: 5018 /// Other -> immediates and magic values 5019 /// Register -> one specific register 5020 /// RegisterClass -> a group of regs 5021 /// Memory -> memory 5022 /// Ideally, we would pick the most specific constraint possible: if we have 5023 /// something that fits into a register, we would pick it. The problem here 5024 /// is that if we have something that could either be in a register or in 5025 /// memory that use of the register could cause selection of *other* 5026 /// operands to fail: they might only succeed if we pick memory. Because of 5027 /// this the heuristic we use is: 5028 /// 5029 /// 1) If there is an 'other' constraint, and if the operand is valid for 5030 /// that constraint, use it. This makes us take advantage of 'i' 5031 /// constraints when available. 5032 /// 2) Otherwise, pick the most general constraint present. This prefers 5033 /// 'm' over 'r', for example. 5034 /// 5035 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5036 const TargetLowering &TLI, 5037 SDValue Op, SelectionDAG *DAG) { 5038 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5039 unsigned BestIdx = 0; 5040 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5041 int BestGenerality = -1; 5042 5043 // Loop over the options, keeping track of the most general one. 5044 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5045 TargetLowering::ConstraintType CType = 5046 TLI.getConstraintType(OpInfo.Codes[i]); 5047 5048 // Indirect 'other' or 'immediate' constraints are not allowed. 5049 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5050 CType == TargetLowering::C_Register || 5051 CType == TargetLowering::C_RegisterClass)) 5052 continue; 5053 5054 // If this is an 'other' or 'immediate' constraint, see if the operand is 5055 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5056 // the operand is an integer in the range [0..31] we want to use I (saving a 5057 // load of a register), otherwise we must use 'r'. 5058 if ((CType == TargetLowering::C_Other || 5059 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5060 assert(OpInfo.Codes[i].size() == 1 && 5061 "Unhandled multi-letter 'other' constraint"); 5062 std::vector<SDValue> ResultOps; 5063 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5064 ResultOps, *DAG); 5065 if (!ResultOps.empty()) { 5066 BestType = CType; 5067 BestIdx = i; 5068 break; 5069 } 5070 } 5071 5072 // Things with matching constraints can only be registers, per gcc 5073 // documentation. This mainly affects "g" constraints. 5074 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5075 continue; 5076 5077 // This constraint letter is more general than the previous one, use it. 5078 int Generality = getConstraintGenerality(CType); 5079 if (Generality > BestGenerality) { 5080 BestType = CType; 5081 BestIdx = i; 5082 BestGenerality = Generality; 5083 } 5084 } 5085 5086 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5087 OpInfo.ConstraintType = BestType; 5088 } 5089 5090 /// Determines the constraint code and constraint type to use for the specific 5091 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5092 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5093 SDValue Op, 5094 SelectionDAG *DAG) const { 5095 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5096 5097 // Single-letter constraints ('r') are very common. 5098 if (OpInfo.Codes.size() == 1) { 5099 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5100 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5101 } else { 5102 ChooseConstraint(OpInfo, *this, Op, DAG); 5103 } 5104 5105 // 'X' matches anything. 5106 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5107 // Constants are handled elsewhere. For Functions, the type here is the 5108 // type of the result, which is not what we want to look at; leave them 5109 // alone. 5110 Value *v = OpInfo.CallOperandVal; 5111 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5112 return; 5113 } 5114 5115 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5116 OpInfo.ConstraintCode = "i"; 5117 return; 5118 } 5119 5120 // Otherwise, try to resolve it to something we know about by looking at 5121 // the actual operand type. 5122 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5123 OpInfo.ConstraintCode = Repl; 5124 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5125 } 5126 } 5127 } 5128 5129 /// Given an exact SDIV by a constant, create a multiplication 5130 /// with the multiplicative inverse of the constant. 5131 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5132 const SDLoc &dl, SelectionDAG &DAG, 5133 SmallVectorImpl<SDNode *> &Created) { 5134 SDValue Op0 = N->getOperand(0); 5135 SDValue Op1 = N->getOperand(1); 5136 EVT VT = N->getValueType(0); 5137 EVT SVT = VT.getScalarType(); 5138 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5139 EVT ShSVT = ShVT.getScalarType(); 5140 5141 bool UseSRA = false; 5142 SmallVector<SDValue, 16> Shifts, Factors; 5143 5144 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5145 if (C->isZero()) 5146 return false; 5147 APInt Divisor = C->getAPIntValue(); 5148 unsigned Shift = Divisor.countTrailingZeros(); 5149 if (Shift) { 5150 Divisor.ashrInPlace(Shift); 5151 UseSRA = true; 5152 } 5153 // Calculate the multiplicative inverse, using Newton's method. 5154 APInt t; 5155 APInt Factor = Divisor; 5156 while ((t = Divisor * Factor) != 1) 5157 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5158 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5159 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5160 return true; 5161 }; 5162 5163 // Collect all magic values from the build vector. 5164 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5165 return SDValue(); 5166 5167 SDValue Shift, Factor; 5168 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5169 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5170 Factor = DAG.getBuildVector(VT, dl, Factors); 5171 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5172 assert(Shifts.size() == 1 && Factors.size() == 1 && 5173 "Expected matchUnaryPredicate to return one element for scalable " 5174 "vectors"); 5175 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5176 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5177 } else { 5178 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5179 Shift = Shifts[0]; 5180 Factor = Factors[0]; 5181 } 5182 5183 SDValue Res = Op0; 5184 5185 // Shift the value upfront if it is even, so the LSB is one. 5186 if (UseSRA) { 5187 // TODO: For UDIV use SRL instead of SRA. 5188 SDNodeFlags Flags; 5189 Flags.setExact(true); 5190 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5191 Created.push_back(Res.getNode()); 5192 } 5193 5194 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5195 } 5196 5197 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5198 SelectionDAG &DAG, 5199 SmallVectorImpl<SDNode *> &Created) const { 5200 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5202 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5203 return SDValue(N, 0); // Lower SDIV as SDIV 5204 return SDValue(); 5205 } 5206 5207 /// Given an ISD::SDIV node expressing a divide by constant, 5208 /// return a DAG expression to select that will generate the same value by 5209 /// multiplying by a magic number. 5210 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5211 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5212 bool IsAfterLegalization, 5213 SmallVectorImpl<SDNode *> &Created) const { 5214 SDLoc dl(N); 5215 EVT VT = N->getValueType(0); 5216 EVT SVT = VT.getScalarType(); 5217 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5218 EVT ShSVT = ShVT.getScalarType(); 5219 unsigned EltBits = VT.getScalarSizeInBits(); 5220 EVT MulVT; 5221 5222 // Check to see if we can do this. 5223 // FIXME: We should be more aggressive here. 5224 if (!isTypeLegal(VT)) { 5225 // Limit this to simple scalars for now. 5226 if (VT.isVector() || !VT.isSimple()) 5227 return SDValue(); 5228 5229 // If this type will be promoted to a large enough type with a legal 5230 // multiply operation, we can go ahead and do this transform. 5231 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5232 return SDValue(); 5233 5234 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5235 if (MulVT.getSizeInBits() < (2 * EltBits) || 5236 !isOperationLegal(ISD::MUL, MulVT)) 5237 return SDValue(); 5238 } 5239 5240 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5241 if (N->getFlags().hasExact()) 5242 return BuildExactSDIV(*this, N, dl, DAG, Created); 5243 5244 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5245 5246 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5247 if (C->isZero()) 5248 return false; 5249 5250 const APInt &Divisor = C->getAPIntValue(); 5251 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5252 int NumeratorFactor = 0; 5253 int ShiftMask = -1; 5254 5255 if (Divisor.isOne() || Divisor.isAllOnes()) { 5256 // If d is +1/-1, we just multiply the numerator by +1/-1. 5257 NumeratorFactor = Divisor.getSExtValue(); 5258 magics.Magic = 0; 5259 magics.ShiftAmount = 0; 5260 ShiftMask = 0; 5261 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5262 // If d > 0 and m < 0, add the numerator. 5263 NumeratorFactor = 1; 5264 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5265 // If d < 0 and m > 0, subtract the numerator. 5266 NumeratorFactor = -1; 5267 } 5268 5269 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5270 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5271 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5272 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5273 return true; 5274 }; 5275 5276 SDValue N0 = N->getOperand(0); 5277 SDValue N1 = N->getOperand(1); 5278 5279 // Collect the shifts / magic values from each element. 5280 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5281 return SDValue(); 5282 5283 SDValue MagicFactor, Factor, Shift, ShiftMask; 5284 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5285 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5286 Factor = DAG.getBuildVector(VT, dl, Factors); 5287 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5288 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5289 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5290 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5291 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5292 "Expected matchUnaryPredicate to return one element for scalable " 5293 "vectors"); 5294 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5295 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5296 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5297 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5298 } else { 5299 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5300 MagicFactor = MagicFactors[0]; 5301 Factor = Factors[0]; 5302 Shift = Shifts[0]; 5303 ShiftMask = ShiftMasks[0]; 5304 } 5305 5306 // Multiply the numerator (operand 0) by the magic value. 5307 // FIXME: We should support doing a MUL in a wider type. 5308 auto GetMULHS = [&](SDValue X, SDValue Y) { 5309 // If the type isn't legal, use a wider mul of the the type calculated 5310 // earlier. 5311 if (!isTypeLegal(VT)) { 5312 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5313 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5314 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5315 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5316 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5317 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5318 } 5319 5320 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5321 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5322 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5323 SDValue LoHi = 5324 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5325 return SDValue(LoHi.getNode(), 1); 5326 } 5327 return SDValue(); 5328 }; 5329 5330 SDValue Q = GetMULHS(N0, MagicFactor); 5331 if (!Q) 5332 return SDValue(); 5333 5334 Created.push_back(Q.getNode()); 5335 5336 // (Optionally) Add/subtract the numerator using Factor. 5337 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5338 Created.push_back(Factor.getNode()); 5339 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5340 Created.push_back(Q.getNode()); 5341 5342 // Shift right algebraic by shift value. 5343 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5344 Created.push_back(Q.getNode()); 5345 5346 // Extract the sign bit, mask it and add it to the quotient. 5347 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5348 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5349 Created.push_back(T.getNode()); 5350 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5351 Created.push_back(T.getNode()); 5352 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5353 } 5354 5355 /// Given an ISD::UDIV node expressing a divide by constant, 5356 /// return a DAG expression to select that will generate the same value by 5357 /// multiplying by a magic number. 5358 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5359 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5360 bool IsAfterLegalization, 5361 SmallVectorImpl<SDNode *> &Created) const { 5362 SDLoc dl(N); 5363 EVT VT = N->getValueType(0); 5364 EVT SVT = VT.getScalarType(); 5365 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5366 EVT ShSVT = ShVT.getScalarType(); 5367 unsigned EltBits = VT.getScalarSizeInBits(); 5368 EVT MulVT; 5369 5370 // Check to see if we can do this. 5371 // FIXME: We should be more aggressive here. 5372 if (!isTypeLegal(VT)) { 5373 // Limit this to simple scalars for now. 5374 if (VT.isVector() || !VT.isSimple()) 5375 return SDValue(); 5376 5377 // If this type will be promoted to a large enough type with a legal 5378 // multiply operation, we can go ahead and do this transform. 5379 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5380 return SDValue(); 5381 5382 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5383 if (MulVT.getSizeInBits() < (2 * EltBits) || 5384 !isOperationLegal(ISD::MUL, MulVT)) 5385 return SDValue(); 5386 } 5387 5388 bool UseNPQ = false; 5389 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5390 5391 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5392 if (C->isZero()) 5393 return false; 5394 // FIXME: We should use a narrower constant when the upper 5395 // bits are known to be zero. 5396 const APInt& Divisor = C->getAPIntValue(); 5397 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5398 unsigned PreShift = 0, PostShift = 0; 5399 5400 // If the divisor is even, we can avoid using the expensive fixup by 5401 // shifting the divided value upfront. 5402 if (magics.IsAdd != 0 && !Divisor[0]) { 5403 PreShift = Divisor.countTrailingZeros(); 5404 // Get magic number for the shifted divisor. 5405 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5406 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5407 } 5408 5409 APInt Magic = magics.Magic; 5410 5411 unsigned SelNPQ; 5412 if (magics.IsAdd == 0 || Divisor.isOne()) { 5413 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5414 "We shouldn't generate an undefined shift!"); 5415 PostShift = magics.ShiftAmount; 5416 SelNPQ = false; 5417 } else { 5418 PostShift = magics.ShiftAmount - 1; 5419 SelNPQ = true; 5420 } 5421 5422 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5423 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5424 NPQFactors.push_back( 5425 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5426 : APInt::getZero(EltBits), 5427 dl, SVT)); 5428 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5429 UseNPQ |= SelNPQ; 5430 return true; 5431 }; 5432 5433 SDValue N0 = N->getOperand(0); 5434 SDValue N1 = N->getOperand(1); 5435 5436 // Collect the shifts/magic values from each element. 5437 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5438 return SDValue(); 5439 5440 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5441 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5442 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5443 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5444 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5445 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5446 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5447 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5448 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5449 "Expected matchUnaryPredicate to return one for scalable vectors"); 5450 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5451 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5452 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5453 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5454 } else { 5455 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5456 PreShift = PreShifts[0]; 5457 MagicFactor = MagicFactors[0]; 5458 PostShift = PostShifts[0]; 5459 } 5460 5461 SDValue Q = N0; 5462 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5463 Created.push_back(Q.getNode()); 5464 5465 // FIXME: We should support doing a MUL in a wider type. 5466 auto GetMULHU = [&](SDValue X, SDValue Y) { 5467 // If the type isn't legal, use a wider mul of the the type calculated 5468 // earlier. 5469 if (!isTypeLegal(VT)) { 5470 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5471 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5472 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5473 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5474 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5475 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5476 } 5477 5478 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5479 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5480 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5481 SDValue LoHi = 5482 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5483 return SDValue(LoHi.getNode(), 1); 5484 } 5485 return SDValue(); // No mulhu or equivalent 5486 }; 5487 5488 // Multiply the numerator (operand 0) by the magic value. 5489 Q = GetMULHU(Q, MagicFactor); 5490 if (!Q) 5491 return SDValue(); 5492 5493 Created.push_back(Q.getNode()); 5494 5495 if (UseNPQ) { 5496 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5497 Created.push_back(NPQ.getNode()); 5498 5499 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5500 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5501 if (VT.isVector()) 5502 NPQ = GetMULHU(NPQ, NPQFactor); 5503 else 5504 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5505 5506 Created.push_back(NPQ.getNode()); 5507 5508 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5509 Created.push_back(Q.getNode()); 5510 } 5511 5512 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5513 Created.push_back(Q.getNode()); 5514 5515 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5516 5517 SDValue One = DAG.getConstant(1, dl, VT); 5518 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5519 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5520 } 5521 5522 /// If all values in Values that *don't* match the predicate are same 'splat' 5523 /// value, then replace all values with that splat value. 5524 /// Else, if AlternativeReplacement was provided, then replace all values that 5525 /// do match predicate with AlternativeReplacement value. 5526 static void 5527 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5528 std::function<bool(SDValue)> Predicate, 5529 SDValue AlternativeReplacement = SDValue()) { 5530 SDValue Replacement; 5531 // Is there a value for which the Predicate does *NOT* match? What is it? 5532 auto SplatValue = llvm::find_if_not(Values, Predicate); 5533 if (SplatValue != Values.end()) { 5534 // Does Values consist only of SplatValue's and values matching Predicate? 5535 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5536 return Value == *SplatValue || Predicate(Value); 5537 })) // Then we shall replace values matching predicate with SplatValue. 5538 Replacement = *SplatValue; 5539 } 5540 if (!Replacement) { 5541 // Oops, we did not find the "baseline" splat value. 5542 if (!AlternativeReplacement) 5543 return; // Nothing to do. 5544 // Let's replace with provided value then. 5545 Replacement = AlternativeReplacement; 5546 } 5547 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5548 } 5549 5550 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5551 /// where the divisor is constant and the comparison target is zero, 5552 /// return a DAG expression that will generate the same comparison result 5553 /// using only multiplications, additions and shifts/rotations. 5554 /// Ref: "Hacker's Delight" 10-17. 5555 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5556 SDValue CompTargetNode, 5557 ISD::CondCode Cond, 5558 DAGCombinerInfo &DCI, 5559 const SDLoc &DL) const { 5560 SmallVector<SDNode *, 5> Built; 5561 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5562 DCI, DL, Built)) { 5563 for (SDNode *N : Built) 5564 DCI.AddToWorklist(N); 5565 return Folded; 5566 } 5567 5568 return SDValue(); 5569 } 5570 5571 SDValue 5572 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5573 SDValue CompTargetNode, ISD::CondCode Cond, 5574 DAGCombinerInfo &DCI, const SDLoc &DL, 5575 SmallVectorImpl<SDNode *> &Created) const { 5576 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5577 // - D must be constant, with D = D0 * 2^K where D0 is odd 5578 // - P is the multiplicative inverse of D0 modulo 2^W 5579 // - Q = floor(((2^W) - 1) / D) 5580 // where W is the width of the common type of N and D. 5581 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5582 "Only applicable for (in)equality comparisons."); 5583 5584 SelectionDAG &DAG = DCI.DAG; 5585 5586 EVT VT = REMNode.getValueType(); 5587 EVT SVT = VT.getScalarType(); 5588 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5589 EVT ShSVT = ShVT.getScalarType(); 5590 5591 // If MUL is unavailable, we cannot proceed in any case. 5592 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5593 return SDValue(); 5594 5595 bool ComparingWithAllZeros = true; 5596 bool AllComparisonsWithNonZerosAreTautological = true; 5597 bool HadTautologicalLanes = false; 5598 bool AllLanesAreTautological = true; 5599 bool HadEvenDivisor = false; 5600 bool AllDivisorsArePowerOfTwo = true; 5601 bool HadTautologicalInvertedLanes = false; 5602 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5603 5604 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5605 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5606 if (CDiv->isZero()) 5607 return false; 5608 5609 const APInt &D = CDiv->getAPIntValue(); 5610 const APInt &Cmp = CCmp->getAPIntValue(); 5611 5612 ComparingWithAllZeros &= Cmp.isZero(); 5613 5614 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5615 // if C2 is not less than C1, the comparison is always false. 5616 // But we will only be able to produce the comparison that will give the 5617 // opposive tautological answer. So this lane would need to be fixed up. 5618 bool TautologicalInvertedLane = D.ule(Cmp); 5619 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5620 5621 // If all lanes are tautological (either all divisors are ones, or divisor 5622 // is not greater than the constant we are comparing with), 5623 // we will prefer to avoid the fold. 5624 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5625 HadTautologicalLanes |= TautologicalLane; 5626 AllLanesAreTautological &= TautologicalLane; 5627 5628 // If we are comparing with non-zero, we need'll need to subtract said 5629 // comparison value from the LHS. But there is no point in doing that if 5630 // every lane where we are comparing with non-zero is tautological.. 5631 if (!Cmp.isZero()) 5632 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5633 5634 // Decompose D into D0 * 2^K 5635 unsigned K = D.countTrailingZeros(); 5636 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5637 APInt D0 = D.lshr(K); 5638 5639 // D is even if it has trailing zeros. 5640 HadEvenDivisor |= (K != 0); 5641 // D is a power-of-two if D0 is one. 5642 // If all divisors are power-of-two, we will prefer to avoid the fold. 5643 AllDivisorsArePowerOfTwo &= D0.isOne(); 5644 5645 // P = inv(D0, 2^W) 5646 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5647 unsigned W = D.getBitWidth(); 5648 APInt P = D0.zext(W + 1) 5649 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5650 .trunc(W); 5651 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5652 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5653 5654 // Q = floor((2^W - 1) u/ D) 5655 // R = ((2^W - 1) u% D) 5656 APInt Q, R; 5657 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5658 5659 // If we are comparing with zero, then that comparison constant is okay, 5660 // else it may need to be one less than that. 5661 if (Cmp.ugt(R)) 5662 Q -= 1; 5663 5664 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5665 "We are expecting that K is always less than all-ones for ShSVT"); 5666 5667 // If the lane is tautological the result can be constant-folded. 5668 if (TautologicalLane) { 5669 // Set P and K amount to a bogus values so we can try to splat them. 5670 P = 0; 5671 K = -1; 5672 // And ensure that comparison constant is tautological, 5673 // it will always compare true/false. 5674 Q = -1; 5675 } 5676 5677 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5678 KAmts.push_back( 5679 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5680 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5681 return true; 5682 }; 5683 5684 SDValue N = REMNode.getOperand(0); 5685 SDValue D = REMNode.getOperand(1); 5686 5687 // Collect the values from each element. 5688 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5689 return SDValue(); 5690 5691 // If all lanes are tautological, the result can be constant-folded. 5692 if (AllLanesAreTautological) 5693 return SDValue(); 5694 5695 // If this is a urem by a powers-of-two, avoid the fold since it can be 5696 // best implemented as a bit test. 5697 if (AllDivisorsArePowerOfTwo) 5698 return SDValue(); 5699 5700 SDValue PVal, KVal, QVal; 5701 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5702 if (HadTautologicalLanes) { 5703 // Try to turn PAmts into a splat, since we don't care about the values 5704 // that are currently '0'. If we can't, just keep '0'`s. 5705 turnVectorIntoSplatVector(PAmts, isNullConstant); 5706 // Try to turn KAmts into a splat, since we don't care about the values 5707 // that are currently '-1'. If we can't, change them to '0'`s. 5708 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5709 DAG.getConstant(0, DL, ShSVT)); 5710 } 5711 5712 PVal = DAG.getBuildVector(VT, DL, PAmts); 5713 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5714 QVal = DAG.getBuildVector(VT, DL, QAmts); 5715 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5716 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5717 "Expected matchBinaryPredicate to return one element for " 5718 "SPLAT_VECTORs"); 5719 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5720 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5721 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5722 } else { 5723 PVal = PAmts[0]; 5724 KVal = KAmts[0]; 5725 QVal = QAmts[0]; 5726 } 5727 5728 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5729 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5730 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5731 assert(CompTargetNode.getValueType() == N.getValueType() && 5732 "Expecting that the types on LHS and RHS of comparisons match."); 5733 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5734 } 5735 5736 // (mul N, P) 5737 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5738 Created.push_back(Op0.getNode()); 5739 5740 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5741 // divisors as a performance improvement, since rotating by 0 is a no-op. 5742 if (HadEvenDivisor) { 5743 // We need ROTR to do this. 5744 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5745 return SDValue(); 5746 // UREM: (rotr (mul N, P), K) 5747 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5748 Created.push_back(Op0.getNode()); 5749 } 5750 5751 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5752 SDValue NewCC = 5753 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5754 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5755 if (!HadTautologicalInvertedLanes) 5756 return NewCC; 5757 5758 // If any lanes previously compared always-false, the NewCC will give 5759 // always-true result for them, so we need to fixup those lanes. 5760 // Or the other way around for inequality predicate. 5761 assert(VT.isVector() && "Can/should only get here for vectors."); 5762 Created.push_back(NewCC.getNode()); 5763 5764 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5765 // if C2 is not less than C1, the comparison is always false. 5766 // But we have produced the comparison that will give the 5767 // opposive tautological answer. So these lanes would need to be fixed up. 5768 SDValue TautologicalInvertedChannels = 5769 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5770 Created.push_back(TautologicalInvertedChannels.getNode()); 5771 5772 // NOTE: we avoid letting illegal types through even if we're before legalize 5773 // ops – legalization has a hard time producing good code for this. 5774 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5775 // If we have a vector select, let's replace the comparison results in the 5776 // affected lanes with the correct tautological result. 5777 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5778 DL, SETCCVT, SETCCVT); 5779 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5780 Replacement, NewCC); 5781 } 5782 5783 // Else, we can just invert the comparison result in the appropriate lanes. 5784 // 5785 // NOTE: see the note above VSELECT above. 5786 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5787 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5788 TautologicalInvertedChannels); 5789 5790 return SDValue(); // Don't know how to lower. 5791 } 5792 5793 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5794 /// where the divisor is constant and the comparison target is zero, 5795 /// return a DAG expression that will generate the same comparison result 5796 /// using only multiplications, additions and shifts/rotations. 5797 /// Ref: "Hacker's Delight" 10-17. 5798 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5799 SDValue CompTargetNode, 5800 ISD::CondCode Cond, 5801 DAGCombinerInfo &DCI, 5802 const SDLoc &DL) const { 5803 SmallVector<SDNode *, 7> Built; 5804 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5805 DCI, DL, Built)) { 5806 assert(Built.size() <= 7 && "Max size prediction failed."); 5807 for (SDNode *N : Built) 5808 DCI.AddToWorklist(N); 5809 return Folded; 5810 } 5811 5812 return SDValue(); 5813 } 5814 5815 SDValue 5816 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5817 SDValue CompTargetNode, ISD::CondCode Cond, 5818 DAGCombinerInfo &DCI, const SDLoc &DL, 5819 SmallVectorImpl<SDNode *> &Created) const { 5820 // Fold: 5821 // (seteq/ne (srem N, D), 0) 5822 // To: 5823 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5824 // 5825 // - D must be constant, with D = D0 * 2^K where D0 is odd 5826 // - P is the multiplicative inverse of D0 modulo 2^W 5827 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5828 // - Q = floor((2 * A) / (2^K)) 5829 // where W is the width of the common type of N and D. 5830 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5831 "Only applicable for (in)equality comparisons."); 5832 5833 SelectionDAG &DAG = DCI.DAG; 5834 5835 EVT VT = REMNode.getValueType(); 5836 EVT SVT = VT.getScalarType(); 5837 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5838 EVT ShSVT = ShVT.getScalarType(); 5839 5840 // If we are after ops legalization, and MUL is unavailable, we can not 5841 // proceed. 5842 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5843 return SDValue(); 5844 5845 // TODO: Could support comparing with non-zero too. 5846 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5847 if (!CompTarget || !CompTarget->isZero()) 5848 return SDValue(); 5849 5850 bool HadIntMinDivisor = false; 5851 bool HadOneDivisor = false; 5852 bool AllDivisorsAreOnes = true; 5853 bool HadEvenDivisor = false; 5854 bool NeedToApplyOffset = false; 5855 bool AllDivisorsArePowerOfTwo = true; 5856 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5857 5858 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5859 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5860 if (C->isZero()) 5861 return false; 5862 5863 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5864 5865 // WARNING: this fold is only valid for positive divisors! 5866 APInt D = C->getAPIntValue(); 5867 if (D.isNegative()) 5868 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5869 5870 HadIntMinDivisor |= D.isMinSignedValue(); 5871 5872 // If all divisors are ones, we will prefer to avoid the fold. 5873 HadOneDivisor |= D.isOne(); 5874 AllDivisorsAreOnes &= D.isOne(); 5875 5876 // Decompose D into D0 * 2^K 5877 unsigned K = D.countTrailingZeros(); 5878 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5879 APInt D0 = D.lshr(K); 5880 5881 if (!D.isMinSignedValue()) { 5882 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5883 // we don't care about this lane in this fold, we'll special-handle it. 5884 HadEvenDivisor |= (K != 0); 5885 } 5886 5887 // D is a power-of-two if D0 is one. This includes INT_MIN. 5888 // If all divisors are power-of-two, we will prefer to avoid the fold. 5889 AllDivisorsArePowerOfTwo &= D0.isOne(); 5890 5891 // P = inv(D0, 2^W) 5892 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5893 unsigned W = D.getBitWidth(); 5894 APInt P = D0.zext(W + 1) 5895 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5896 .trunc(W); 5897 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5898 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5899 5900 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5901 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5902 A.clearLowBits(K); 5903 5904 if (!D.isMinSignedValue()) { 5905 // If divisor INT_MIN, then we don't care about this lane in this fold, 5906 // we'll special-handle it. 5907 NeedToApplyOffset |= A != 0; 5908 } 5909 5910 // Q = floor((2 * A) / (2^K)) 5911 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5912 5913 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5914 "We are expecting that A is always less than all-ones for SVT"); 5915 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5916 "We are expecting that K is always less than all-ones for ShSVT"); 5917 5918 // If the divisor is 1 the result can be constant-folded. Likewise, we 5919 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5920 if (D.isOne()) { 5921 // Set P, A and K to a bogus values so we can try to splat them. 5922 P = 0; 5923 A = -1; 5924 K = -1; 5925 5926 // x ?% 1 == 0 <--> true <--> x u<= -1 5927 Q = -1; 5928 } 5929 5930 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5931 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5932 KAmts.push_back( 5933 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5934 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5935 return true; 5936 }; 5937 5938 SDValue N = REMNode.getOperand(0); 5939 SDValue D = REMNode.getOperand(1); 5940 5941 // Collect the values from each element. 5942 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5943 return SDValue(); 5944 5945 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5946 if (AllDivisorsAreOnes) 5947 return SDValue(); 5948 5949 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5950 // since it can be best implemented as a bit test. 5951 if (AllDivisorsArePowerOfTwo) 5952 return SDValue(); 5953 5954 SDValue PVal, AVal, KVal, QVal; 5955 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5956 if (HadOneDivisor) { 5957 // Try to turn PAmts into a splat, since we don't care about the values 5958 // that are currently '0'. If we can't, just keep '0'`s. 5959 turnVectorIntoSplatVector(PAmts, isNullConstant); 5960 // Try to turn AAmts into a splat, since we don't care about the 5961 // values that are currently '-1'. If we can't, change them to '0'`s. 5962 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5963 DAG.getConstant(0, DL, SVT)); 5964 // Try to turn KAmts into a splat, since we don't care about the values 5965 // that are currently '-1'. If we can't, change them to '0'`s. 5966 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5967 DAG.getConstant(0, DL, ShSVT)); 5968 } 5969 5970 PVal = DAG.getBuildVector(VT, DL, PAmts); 5971 AVal = DAG.getBuildVector(VT, DL, AAmts); 5972 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5973 QVal = DAG.getBuildVector(VT, DL, QAmts); 5974 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5975 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5976 QAmts.size() == 1 && 5977 "Expected matchUnaryPredicate to return one element for scalable " 5978 "vectors"); 5979 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5980 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5981 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5982 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5983 } else { 5984 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5985 PVal = PAmts[0]; 5986 AVal = AAmts[0]; 5987 KVal = KAmts[0]; 5988 QVal = QAmts[0]; 5989 } 5990 5991 // (mul N, P) 5992 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5993 Created.push_back(Op0.getNode()); 5994 5995 if (NeedToApplyOffset) { 5996 // We need ADD to do this. 5997 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5998 return SDValue(); 5999 6000 // (add (mul N, P), A) 6001 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6002 Created.push_back(Op0.getNode()); 6003 } 6004 6005 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6006 // divisors as a performance improvement, since rotating by 0 is a no-op. 6007 if (HadEvenDivisor) { 6008 // We need ROTR to do this. 6009 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6010 return SDValue(); 6011 // SREM: (rotr (add (mul N, P), A), K) 6012 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6013 Created.push_back(Op0.getNode()); 6014 } 6015 6016 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6017 SDValue Fold = 6018 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6019 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6020 6021 // If we didn't have lanes with INT_MIN divisor, then we're done. 6022 if (!HadIntMinDivisor) 6023 return Fold; 6024 6025 // That fold is only valid for positive divisors. Which effectively means, 6026 // it is invalid for INT_MIN divisors. So if we have such a lane, 6027 // we must fix-up results for said lanes. 6028 assert(VT.isVector() && "Can/should only get here for vectors."); 6029 6030 // NOTE: we avoid letting illegal types through even if we're before legalize 6031 // ops – legalization has a hard time producing good code for the code that 6032 // follows. 6033 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6034 !isOperationLegalOrCustom(ISD::AND, VT) || 6035 !isOperationLegalOrCustom(Cond, VT) || 6036 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6037 return SDValue(); 6038 6039 Created.push_back(Fold.getNode()); 6040 6041 SDValue IntMin = DAG.getConstant( 6042 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6043 SDValue IntMax = DAG.getConstant( 6044 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6045 SDValue Zero = 6046 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6047 6048 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6049 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6050 Created.push_back(DivisorIsIntMin.getNode()); 6051 6052 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6053 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6054 Created.push_back(Masked.getNode()); 6055 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6056 Created.push_back(MaskedIsZero.getNode()); 6057 6058 // To produce final result we need to blend 2 vectors: 'SetCC' and 6059 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6060 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6061 // constant-folded, select can get lowered to a shuffle with constant mask. 6062 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6063 MaskedIsZero, Fold); 6064 6065 return Blended; 6066 } 6067 6068 bool TargetLowering:: 6069 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6070 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6071 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6072 "be a constant integer"); 6073 return true; 6074 } 6075 6076 return false; 6077 } 6078 6079 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6080 const DenormalMode &Mode) const { 6081 SDLoc DL(Op); 6082 EVT VT = Op.getValueType(); 6083 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6084 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6085 // Testing it with denormal inputs to avoid wrong estimate. 6086 if (Mode.Input == DenormalMode::IEEE) { 6087 // This is specifically a check for the handling of denormal inputs, 6088 // not the result. 6089 6090 // Test = fabs(X) < SmallestNormal 6091 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6092 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6093 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6094 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6095 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6096 } 6097 // Test = X == 0.0 6098 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6099 } 6100 6101 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6102 bool LegalOps, bool OptForSize, 6103 NegatibleCost &Cost, 6104 unsigned Depth) const { 6105 // fneg is removable even if it has multiple uses. 6106 if (Op.getOpcode() == ISD::FNEG) { 6107 Cost = NegatibleCost::Cheaper; 6108 return Op.getOperand(0); 6109 } 6110 6111 // Don't recurse exponentially. 6112 if (Depth > SelectionDAG::MaxRecursionDepth) 6113 return SDValue(); 6114 6115 // Pre-increment recursion depth for use in recursive calls. 6116 ++Depth; 6117 const SDNodeFlags Flags = Op->getFlags(); 6118 const TargetOptions &Options = DAG.getTarget().Options; 6119 EVT VT = Op.getValueType(); 6120 unsigned Opcode = Op.getOpcode(); 6121 6122 // Don't allow anything with multiple uses unless we know it is free. 6123 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6124 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6125 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6126 if (!IsFreeExtend) 6127 return SDValue(); 6128 } 6129 6130 auto RemoveDeadNode = [&](SDValue N) { 6131 if (N && N.getNode()->use_empty()) 6132 DAG.RemoveDeadNode(N.getNode()); 6133 }; 6134 6135 SDLoc DL(Op); 6136 6137 // Because getNegatedExpression can delete nodes we need a handle to keep 6138 // temporary nodes alive in case the recursion manages to create an identical 6139 // node. 6140 std::list<HandleSDNode> Handles; 6141 6142 switch (Opcode) { 6143 case ISD::ConstantFP: { 6144 // Don't invert constant FP values after legalization unless the target says 6145 // the negated constant is legal. 6146 bool IsOpLegal = 6147 isOperationLegal(ISD::ConstantFP, VT) || 6148 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6149 OptForSize); 6150 6151 if (LegalOps && !IsOpLegal) 6152 break; 6153 6154 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6155 V.changeSign(); 6156 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6157 6158 // If we already have the use of the negated floating constant, it is free 6159 // to negate it even it has multiple uses. 6160 if (!Op.hasOneUse() && CFP.use_empty()) 6161 break; 6162 Cost = NegatibleCost::Neutral; 6163 return CFP; 6164 } 6165 case ISD::BUILD_VECTOR: { 6166 // Only permit BUILD_VECTOR of constants. 6167 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6168 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6169 })) 6170 break; 6171 6172 bool IsOpLegal = 6173 (isOperationLegal(ISD::ConstantFP, VT) && 6174 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6175 llvm::all_of(Op->op_values(), [&](SDValue N) { 6176 return N.isUndef() || 6177 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6178 OptForSize); 6179 }); 6180 6181 if (LegalOps && !IsOpLegal) 6182 break; 6183 6184 SmallVector<SDValue, 4> Ops; 6185 for (SDValue C : Op->op_values()) { 6186 if (C.isUndef()) { 6187 Ops.push_back(C); 6188 continue; 6189 } 6190 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6191 V.changeSign(); 6192 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6193 } 6194 Cost = NegatibleCost::Neutral; 6195 return DAG.getBuildVector(VT, DL, Ops); 6196 } 6197 case ISD::FADD: { 6198 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6199 break; 6200 6201 // After operation legalization, it might not be legal to create new FSUBs. 6202 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6203 break; 6204 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6205 6206 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6207 NegatibleCost CostX = NegatibleCost::Expensive; 6208 SDValue NegX = 6209 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6210 // Prevent this node from being deleted by the next call. 6211 if (NegX) 6212 Handles.emplace_back(NegX); 6213 6214 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6215 NegatibleCost CostY = NegatibleCost::Expensive; 6216 SDValue NegY = 6217 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6218 6219 // We're done with the handles. 6220 Handles.clear(); 6221 6222 // Negate the X if its cost is less or equal than Y. 6223 if (NegX && (CostX <= CostY)) { 6224 Cost = CostX; 6225 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6226 if (NegY != N) 6227 RemoveDeadNode(NegY); 6228 return N; 6229 } 6230 6231 // Negate the Y if it is not expensive. 6232 if (NegY) { 6233 Cost = CostY; 6234 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6235 if (NegX != N) 6236 RemoveDeadNode(NegX); 6237 return N; 6238 } 6239 break; 6240 } 6241 case ISD::FSUB: { 6242 // We can't turn -(A-B) into B-A when we honor signed zeros. 6243 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6244 break; 6245 6246 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6247 // fold (fneg (fsub 0, Y)) -> Y 6248 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6249 if (C->isZero()) { 6250 Cost = NegatibleCost::Cheaper; 6251 return Y; 6252 } 6253 6254 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6255 Cost = NegatibleCost::Neutral; 6256 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6257 } 6258 case ISD::FMUL: 6259 case ISD::FDIV: { 6260 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6261 6262 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6263 NegatibleCost CostX = NegatibleCost::Expensive; 6264 SDValue NegX = 6265 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6266 // Prevent this node from being deleted by the next call. 6267 if (NegX) 6268 Handles.emplace_back(NegX); 6269 6270 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6271 NegatibleCost CostY = NegatibleCost::Expensive; 6272 SDValue NegY = 6273 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6274 6275 // We're done with the handles. 6276 Handles.clear(); 6277 6278 // Negate the X if its cost is less or equal than Y. 6279 if (NegX && (CostX <= CostY)) { 6280 Cost = CostX; 6281 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6282 if (NegY != N) 6283 RemoveDeadNode(NegY); 6284 return N; 6285 } 6286 6287 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6288 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6289 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6290 break; 6291 6292 // Negate the Y if it is not expensive. 6293 if (NegY) { 6294 Cost = CostY; 6295 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6296 if (NegX != N) 6297 RemoveDeadNode(NegX); 6298 return N; 6299 } 6300 break; 6301 } 6302 case ISD::FMA: 6303 case ISD::FMAD: { 6304 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6305 break; 6306 6307 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6308 NegatibleCost CostZ = NegatibleCost::Expensive; 6309 SDValue NegZ = 6310 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6311 // Give up if fail to negate the Z. 6312 if (!NegZ) 6313 break; 6314 6315 // Prevent this node from being deleted by the next two calls. 6316 Handles.emplace_back(NegZ); 6317 6318 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6319 NegatibleCost CostX = NegatibleCost::Expensive; 6320 SDValue NegX = 6321 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6322 // Prevent this node from being deleted by the next call. 6323 if (NegX) 6324 Handles.emplace_back(NegX); 6325 6326 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6327 NegatibleCost CostY = NegatibleCost::Expensive; 6328 SDValue NegY = 6329 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6330 6331 // We're done with the handles. 6332 Handles.clear(); 6333 6334 // Negate the X if its cost is less or equal than Y. 6335 if (NegX && (CostX <= CostY)) { 6336 Cost = std::min(CostX, CostZ); 6337 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6338 if (NegY != N) 6339 RemoveDeadNode(NegY); 6340 return N; 6341 } 6342 6343 // Negate the Y if it is not expensive. 6344 if (NegY) { 6345 Cost = std::min(CostY, CostZ); 6346 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6347 if (NegX != N) 6348 RemoveDeadNode(NegX); 6349 return N; 6350 } 6351 break; 6352 } 6353 6354 case ISD::FP_EXTEND: 6355 case ISD::FSIN: 6356 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6357 OptForSize, Cost, Depth)) 6358 return DAG.getNode(Opcode, DL, VT, NegV); 6359 break; 6360 case ISD::FP_ROUND: 6361 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6362 OptForSize, Cost, Depth)) 6363 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6364 break; 6365 } 6366 6367 return SDValue(); 6368 } 6369 6370 //===----------------------------------------------------------------------===// 6371 // Legalization Utilities 6372 //===----------------------------------------------------------------------===// 6373 6374 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6375 SDValue LHS, SDValue RHS, 6376 SmallVectorImpl<SDValue> &Result, 6377 EVT HiLoVT, SelectionDAG &DAG, 6378 MulExpansionKind Kind, SDValue LL, 6379 SDValue LH, SDValue RL, SDValue RH) const { 6380 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6381 Opcode == ISD::SMUL_LOHI); 6382 6383 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6384 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6385 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6386 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6387 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6388 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6389 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6390 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6391 6392 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6393 return false; 6394 6395 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6396 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6397 6398 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6399 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6400 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6401 6402 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6403 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6404 bool Signed) -> bool { 6405 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6406 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6407 Hi = SDValue(Lo.getNode(), 1); 6408 return true; 6409 } 6410 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6411 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6412 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6413 return true; 6414 } 6415 return false; 6416 }; 6417 6418 SDValue Lo, Hi; 6419 6420 if (!LL.getNode() && !RL.getNode() && 6421 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6422 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6423 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6424 } 6425 6426 if (!LL.getNode()) 6427 return false; 6428 6429 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6430 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6431 DAG.MaskedValueIsZero(RHS, HighMask)) { 6432 // The inputs are both zero-extended. 6433 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6434 Result.push_back(Lo); 6435 Result.push_back(Hi); 6436 if (Opcode != ISD::MUL) { 6437 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6438 Result.push_back(Zero); 6439 Result.push_back(Zero); 6440 } 6441 return true; 6442 } 6443 } 6444 6445 if (!VT.isVector() && Opcode == ISD::MUL && 6446 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6447 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6448 // The input values are both sign-extended. 6449 // TODO non-MUL case? 6450 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6451 Result.push_back(Lo); 6452 Result.push_back(Hi); 6453 return true; 6454 } 6455 } 6456 6457 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6458 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6459 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6460 6461 if (!LH.getNode() && !RH.getNode() && 6462 isOperationLegalOrCustom(ISD::SRL, VT) && 6463 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6464 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6465 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6466 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6467 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6468 } 6469 6470 if (!LH.getNode()) 6471 return false; 6472 6473 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6474 return false; 6475 6476 Result.push_back(Lo); 6477 6478 if (Opcode == ISD::MUL) { 6479 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6480 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6481 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6482 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6483 Result.push_back(Hi); 6484 return true; 6485 } 6486 6487 // Compute the full width result. 6488 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6489 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6490 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6491 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6492 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6493 }; 6494 6495 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6496 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6497 return false; 6498 6499 // This is effectively the add part of a multiply-add of half-sized operands, 6500 // so it cannot overflow. 6501 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6502 6503 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6504 return false; 6505 6506 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6507 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6508 6509 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6510 isOperationLegalOrCustom(ISD::ADDE, VT)); 6511 if (UseGlue) 6512 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6513 Merge(Lo, Hi)); 6514 else 6515 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6516 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6517 6518 SDValue Carry = Next.getValue(1); 6519 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6520 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6521 6522 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6523 return false; 6524 6525 if (UseGlue) 6526 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6527 Carry); 6528 else 6529 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6530 Zero, Carry); 6531 6532 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6533 6534 if (Opcode == ISD::SMUL_LOHI) { 6535 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6536 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6537 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6538 6539 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6540 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6541 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6542 } 6543 6544 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6545 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6546 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6547 return true; 6548 } 6549 6550 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6551 SelectionDAG &DAG, MulExpansionKind Kind, 6552 SDValue LL, SDValue LH, SDValue RL, 6553 SDValue RH) const { 6554 SmallVector<SDValue, 2> Result; 6555 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6556 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6557 DAG, Kind, LL, LH, RL, RH); 6558 if (Ok) { 6559 assert(Result.size() == 2); 6560 Lo = Result[0]; 6561 Hi = Result[1]; 6562 } 6563 return Ok; 6564 } 6565 6566 // Check that (every element of) Z is undef or not an exact multiple of BW. 6567 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6568 return ISD::matchUnaryPredicate( 6569 Z, 6570 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6571 true); 6572 } 6573 6574 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6575 SelectionDAG &DAG) const { 6576 EVT VT = Node->getValueType(0); 6577 6578 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6579 !isOperationLegalOrCustom(ISD::SRL, VT) || 6580 !isOperationLegalOrCustom(ISD::SUB, VT) || 6581 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6582 return SDValue(); 6583 6584 SDValue X = Node->getOperand(0); 6585 SDValue Y = Node->getOperand(1); 6586 SDValue Z = Node->getOperand(2); 6587 6588 unsigned BW = VT.getScalarSizeInBits(); 6589 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6590 SDLoc DL(SDValue(Node, 0)); 6591 6592 EVT ShVT = Z.getValueType(); 6593 6594 // If a funnel shift in the other direction is more supported, use it. 6595 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6596 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6597 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6598 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6599 // fshl X, Y, Z -> fshr X, Y, -Z 6600 // fshr X, Y, Z -> fshl X, Y, -Z 6601 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6602 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6603 } else { 6604 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6605 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6606 SDValue One = DAG.getConstant(1, DL, ShVT); 6607 if (IsFSHL) { 6608 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6609 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6610 } else { 6611 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6612 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6613 } 6614 Z = DAG.getNOT(DL, Z, ShVT); 6615 } 6616 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6617 } 6618 6619 SDValue ShX, ShY; 6620 SDValue ShAmt, InvShAmt; 6621 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6622 // fshl: X << C | Y >> (BW - C) 6623 // fshr: X << (BW - C) | Y >> C 6624 // where C = Z % BW is not zero 6625 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6626 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6627 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6628 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6629 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6630 } else { 6631 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6632 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6633 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6634 if (isPowerOf2_32(BW)) { 6635 // Z % BW -> Z & (BW - 1) 6636 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6637 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6638 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6639 } else { 6640 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6641 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6642 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6643 } 6644 6645 SDValue One = DAG.getConstant(1, DL, ShVT); 6646 if (IsFSHL) { 6647 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6648 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6649 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6650 } else { 6651 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6652 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6653 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6654 } 6655 } 6656 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6657 } 6658 6659 // TODO: Merge with expandFunnelShift. 6660 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6661 SelectionDAG &DAG) const { 6662 EVT VT = Node->getValueType(0); 6663 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6664 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6665 SDValue Op0 = Node->getOperand(0); 6666 SDValue Op1 = Node->getOperand(1); 6667 SDLoc DL(SDValue(Node, 0)); 6668 6669 EVT ShVT = Op1.getValueType(); 6670 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6671 6672 // If a rotate in the other direction is more supported, use it. 6673 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6674 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6675 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6676 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6677 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6678 } 6679 6680 if (!AllowVectorOps && VT.isVector() && 6681 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6682 !isOperationLegalOrCustom(ISD::SRL, VT) || 6683 !isOperationLegalOrCustom(ISD::SUB, VT) || 6684 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6685 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6686 return SDValue(); 6687 6688 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6689 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6690 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6691 SDValue ShVal; 6692 SDValue HsVal; 6693 if (isPowerOf2_32(EltSizeInBits)) { 6694 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6695 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6696 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6697 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6698 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6699 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6700 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6701 } else { 6702 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6703 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6704 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6705 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6706 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6707 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6708 SDValue One = DAG.getConstant(1, DL, ShVT); 6709 HsVal = 6710 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6711 } 6712 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6713 } 6714 6715 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6716 SelectionDAG &DAG) const { 6717 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6718 EVT VT = Node->getValueType(0); 6719 unsigned VTBits = VT.getScalarSizeInBits(); 6720 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6721 6722 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6723 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6724 SDValue ShOpLo = Node->getOperand(0); 6725 SDValue ShOpHi = Node->getOperand(1); 6726 SDValue ShAmt = Node->getOperand(2); 6727 EVT ShAmtVT = ShAmt.getValueType(); 6728 EVT ShAmtCCVT = 6729 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6730 SDLoc dl(Node); 6731 6732 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6733 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6734 // away during isel. 6735 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6736 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6737 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6738 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6739 : DAG.getConstant(0, dl, VT); 6740 6741 SDValue Tmp2, Tmp3; 6742 if (IsSHL) { 6743 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6744 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6745 } else { 6746 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6747 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6748 } 6749 6750 // If the shift amount is larger or equal than the width of a part we don't 6751 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6752 // values for large shift amounts. 6753 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6754 DAG.getConstant(VTBits, dl, ShAmtVT)); 6755 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6756 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6757 6758 if (IsSHL) { 6759 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6760 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6761 } else { 6762 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6763 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6764 } 6765 } 6766 6767 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6768 SelectionDAG &DAG) const { 6769 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6770 SDValue Src = Node->getOperand(OpNo); 6771 EVT SrcVT = Src.getValueType(); 6772 EVT DstVT = Node->getValueType(0); 6773 SDLoc dl(SDValue(Node, 0)); 6774 6775 // FIXME: Only f32 to i64 conversions are supported. 6776 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6777 return false; 6778 6779 if (Node->isStrictFPOpcode()) 6780 // When a NaN is converted to an integer a trap is allowed. We can't 6781 // use this expansion here because it would eliminate that trap. Other 6782 // traps are also allowed and cannot be eliminated. See 6783 // IEEE 754-2008 sec 5.8. 6784 return false; 6785 6786 // Expand f32 -> i64 conversion 6787 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6788 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6789 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6790 EVT IntVT = SrcVT.changeTypeToInteger(); 6791 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6792 6793 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6794 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6795 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6796 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6797 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6798 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6799 6800 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6801 6802 SDValue ExponentBits = DAG.getNode( 6803 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6804 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6805 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6806 6807 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6808 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6809 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6810 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6811 6812 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6813 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6814 DAG.getConstant(0x00800000, dl, IntVT)); 6815 6816 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6817 6818 R = DAG.getSelectCC( 6819 dl, Exponent, ExponentLoBit, 6820 DAG.getNode(ISD::SHL, dl, DstVT, R, 6821 DAG.getZExtOrTrunc( 6822 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6823 dl, IntShVT)), 6824 DAG.getNode(ISD::SRL, dl, DstVT, R, 6825 DAG.getZExtOrTrunc( 6826 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6827 dl, IntShVT)), 6828 ISD::SETGT); 6829 6830 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6831 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6832 6833 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6834 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6835 return true; 6836 } 6837 6838 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6839 SDValue &Chain, 6840 SelectionDAG &DAG) const { 6841 SDLoc dl(SDValue(Node, 0)); 6842 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6843 SDValue Src = Node->getOperand(OpNo); 6844 6845 EVT SrcVT = Src.getValueType(); 6846 EVT DstVT = Node->getValueType(0); 6847 EVT SetCCVT = 6848 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6849 EVT DstSetCCVT = 6850 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6851 6852 // Only expand vector types if we have the appropriate vector bit operations. 6853 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6854 ISD::FP_TO_SINT; 6855 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6856 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6857 return false; 6858 6859 // If the maximum float value is smaller then the signed integer range, 6860 // the destination signmask can't be represented by the float, so we can 6861 // just use FP_TO_SINT directly. 6862 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6863 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6864 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6865 if (APFloat::opOverflow & 6866 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6867 if (Node->isStrictFPOpcode()) { 6868 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6869 { Node->getOperand(0), Src }); 6870 Chain = Result.getValue(1); 6871 } else 6872 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6873 return true; 6874 } 6875 6876 // Don't expand it if there isn't cheap fsub instruction. 6877 if (!isOperationLegalOrCustom( 6878 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6879 return false; 6880 6881 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6882 SDValue Sel; 6883 6884 if (Node->isStrictFPOpcode()) { 6885 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6886 Node->getOperand(0), /*IsSignaling*/ true); 6887 Chain = Sel.getValue(1); 6888 } else { 6889 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6890 } 6891 6892 bool Strict = Node->isStrictFPOpcode() || 6893 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6894 6895 if (Strict) { 6896 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6897 // signmask then offset (the result of which should be fully representable). 6898 // Sel = Src < 0x8000000000000000 6899 // FltOfs = select Sel, 0, 0x8000000000000000 6900 // IntOfs = select Sel, 0, 0x8000000000000000 6901 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6902 6903 // TODO: Should any fast-math-flags be set for the FSUB? 6904 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6905 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6906 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6907 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6908 DAG.getConstant(0, dl, DstVT), 6909 DAG.getConstant(SignMask, dl, DstVT)); 6910 SDValue SInt; 6911 if (Node->isStrictFPOpcode()) { 6912 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6913 { Chain, Src, FltOfs }); 6914 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6915 { Val.getValue(1), Val }); 6916 Chain = SInt.getValue(1); 6917 } else { 6918 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6919 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6920 } 6921 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6922 } else { 6923 // Expand based on maximum range of FP_TO_SINT: 6924 // True = fp_to_sint(Src) 6925 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6926 // Result = select (Src < 0x8000000000000000), True, False 6927 6928 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6929 // TODO: Should any fast-math-flags be set for the FSUB? 6930 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6931 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6932 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6933 DAG.getConstant(SignMask, dl, DstVT)); 6934 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6935 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6936 } 6937 return true; 6938 } 6939 6940 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6941 SDValue &Chain, 6942 SelectionDAG &DAG) const { 6943 // This transform is not correct for converting 0 when rounding mode is set 6944 // to round toward negative infinity which will produce -0.0. So disable under 6945 // strictfp. 6946 if (Node->isStrictFPOpcode()) 6947 return false; 6948 6949 SDValue Src = Node->getOperand(0); 6950 EVT SrcVT = Src.getValueType(); 6951 EVT DstVT = Node->getValueType(0); 6952 6953 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6954 return false; 6955 6956 // Only expand vector types if we have the appropriate vector bit operations. 6957 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6958 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6959 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6960 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6961 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6962 return false; 6963 6964 SDLoc dl(SDValue(Node, 0)); 6965 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6966 6967 // Implementation of unsigned i64 to f64 following the algorithm in 6968 // __floatundidf in compiler_rt. This implementation performs rounding 6969 // correctly in all rounding modes with the exception of converting 0 6970 // when rounding toward negative infinity. In that case the fsub will produce 6971 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6972 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6973 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6974 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6975 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6976 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6977 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6978 6979 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6980 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6981 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6982 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6983 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6984 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6985 SDValue HiSub = 6986 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6987 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6988 return true; 6989 } 6990 6991 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6992 SelectionDAG &DAG) const { 6993 SDLoc dl(Node); 6994 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6995 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6996 EVT VT = Node->getValueType(0); 6997 6998 if (VT.isScalableVector()) 6999 report_fatal_error( 7000 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7001 7002 if (isOperationLegalOrCustom(NewOp, VT)) { 7003 SDValue Quiet0 = Node->getOperand(0); 7004 SDValue Quiet1 = Node->getOperand(1); 7005 7006 if (!Node->getFlags().hasNoNaNs()) { 7007 // Insert canonicalizes if it's possible we need to quiet to get correct 7008 // sNaN behavior. 7009 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7010 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7011 Node->getFlags()); 7012 } 7013 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7014 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7015 Node->getFlags()); 7016 } 7017 } 7018 7019 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7020 } 7021 7022 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7023 // instead if there are no NaNs. 7024 if (Node->getFlags().hasNoNaNs()) { 7025 unsigned IEEE2018Op = 7026 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7027 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7028 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7029 Node->getOperand(1), Node->getFlags()); 7030 } 7031 } 7032 7033 // If none of the above worked, but there are no NaNs, then expand to 7034 // a compare/select sequence. This is required for correctness since 7035 // InstCombine might have canonicalized a fcmp+select sequence to a 7036 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7037 // expansion to libcall, we might introduce a link-time dependency 7038 // on libm into a file that originally did not have one. 7039 if (Node->getFlags().hasNoNaNs()) { 7040 ISD::CondCode Pred = 7041 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7042 SDValue Op1 = Node->getOperand(0); 7043 SDValue Op2 = Node->getOperand(1); 7044 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7045 // Copy FMF flags, but always set the no-signed-zeros flag 7046 // as this is implied by the FMINNUM/FMAXNUM semantics. 7047 SDNodeFlags Flags = Node->getFlags(); 7048 Flags.setNoSignedZeros(true); 7049 SelCC->setFlags(Flags); 7050 return SelCC; 7051 } 7052 7053 return SDValue(); 7054 } 7055 7056 // Only expand vector types if we have the appropriate vector bit operations. 7057 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7058 assert(VT.isVector() && "Expected vector type"); 7059 unsigned Len = VT.getScalarSizeInBits(); 7060 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7061 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7062 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7063 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7064 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7065 } 7066 7067 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7068 SDLoc dl(Node); 7069 EVT VT = Node->getValueType(0); 7070 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7071 SDValue Op = Node->getOperand(0); 7072 unsigned Len = VT.getScalarSizeInBits(); 7073 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7074 7075 // TODO: Add support for irregular type lengths. 7076 if (!(Len <= 128 && Len % 8 == 0)) 7077 return SDValue(); 7078 7079 // Only expand vector types if we have the appropriate vector bit operations. 7080 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7081 return SDValue(); 7082 7083 // This is the "best" algorithm from 7084 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7085 SDValue Mask55 = 7086 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7087 SDValue Mask33 = 7088 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7089 SDValue Mask0F = 7090 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7091 SDValue Mask01 = 7092 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7093 7094 // v = v - ((v >> 1) & 0x55555555...) 7095 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7096 DAG.getNode(ISD::AND, dl, VT, 7097 DAG.getNode(ISD::SRL, dl, VT, Op, 7098 DAG.getConstant(1, dl, ShVT)), 7099 Mask55)); 7100 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7101 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7102 DAG.getNode(ISD::AND, dl, VT, 7103 DAG.getNode(ISD::SRL, dl, VT, Op, 7104 DAG.getConstant(2, dl, ShVT)), 7105 Mask33)); 7106 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7107 Op = DAG.getNode(ISD::AND, dl, VT, 7108 DAG.getNode(ISD::ADD, dl, VT, Op, 7109 DAG.getNode(ISD::SRL, dl, VT, Op, 7110 DAG.getConstant(4, dl, ShVT))), 7111 Mask0F); 7112 // v = (v * 0x01010101...) >> (Len - 8) 7113 if (Len > 8) 7114 Op = 7115 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7116 DAG.getConstant(Len - 8, dl, ShVT)); 7117 7118 return Op; 7119 } 7120 7121 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7122 SDLoc dl(Node); 7123 EVT VT = Node->getValueType(0); 7124 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7125 SDValue Op = Node->getOperand(0); 7126 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7127 7128 // If the non-ZERO_UNDEF version is supported we can use that instead. 7129 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7130 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7131 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7132 7133 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7134 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7135 EVT SetCCVT = 7136 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7137 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7138 SDValue Zero = DAG.getConstant(0, dl, VT); 7139 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7140 return DAG.getSelect(dl, VT, SrcIsZero, 7141 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7142 } 7143 7144 // Only expand vector types if we have the appropriate vector bit operations. 7145 // This includes the operations needed to expand CTPOP if it isn't supported. 7146 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7147 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7148 !canExpandVectorCTPOP(*this, VT)) || 7149 !isOperationLegalOrCustom(ISD::SRL, VT) || 7150 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7151 return SDValue(); 7152 7153 // for now, we do this: 7154 // x = x | (x >> 1); 7155 // x = x | (x >> 2); 7156 // ... 7157 // x = x | (x >>16); 7158 // x = x | (x >>32); // for 64-bit input 7159 // return popcount(~x); 7160 // 7161 // Ref: "Hacker's Delight" by Henry Warren 7162 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7163 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7164 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7165 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7166 } 7167 Op = DAG.getNOT(dl, Op, VT); 7168 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7169 } 7170 7171 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7172 SDLoc dl(Node); 7173 EVT VT = Node->getValueType(0); 7174 SDValue Op = Node->getOperand(0); 7175 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7176 7177 // If the non-ZERO_UNDEF version is supported we can use that instead. 7178 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7179 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7180 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7181 7182 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7183 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7184 EVT SetCCVT = 7185 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7186 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7187 SDValue Zero = DAG.getConstant(0, dl, VT); 7188 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7189 return DAG.getSelect(dl, VT, SrcIsZero, 7190 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7191 } 7192 7193 // Only expand vector types if we have the appropriate vector bit operations. 7194 // This includes the operations needed to expand CTPOP if it isn't supported. 7195 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7196 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7197 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7198 !canExpandVectorCTPOP(*this, VT)) || 7199 !isOperationLegalOrCustom(ISD::SUB, VT) || 7200 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7201 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7202 return SDValue(); 7203 7204 // for now, we use: { return popcount(~x & (x - 1)); } 7205 // unless the target has ctlz but not ctpop, in which case we use: 7206 // { return 32 - nlz(~x & (x-1)); } 7207 // Ref: "Hacker's Delight" by Henry Warren 7208 SDValue Tmp = DAG.getNode( 7209 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7210 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7211 7212 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7213 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7214 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7215 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7216 } 7217 7218 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7219 } 7220 7221 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7222 bool IsNegative) const { 7223 SDLoc dl(N); 7224 EVT VT = N->getValueType(0); 7225 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7226 SDValue Op = N->getOperand(0); 7227 7228 // abs(x) -> smax(x,sub(0,x)) 7229 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7230 isOperationLegal(ISD::SMAX, VT)) { 7231 SDValue Zero = DAG.getConstant(0, dl, VT); 7232 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7233 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7234 } 7235 7236 // abs(x) -> umin(x,sub(0,x)) 7237 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7238 isOperationLegal(ISD::UMIN, VT)) { 7239 SDValue Zero = DAG.getConstant(0, dl, VT); 7240 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7241 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7242 } 7243 7244 // 0 - abs(x) -> smin(x, sub(0,x)) 7245 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7246 isOperationLegal(ISD::SMIN, VT)) { 7247 SDValue Zero = DAG.getConstant(0, dl, VT); 7248 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7249 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7250 } 7251 7252 // Only expand vector types if we have the appropriate vector operations. 7253 if (VT.isVector() && 7254 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7255 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7256 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7257 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7258 return SDValue(); 7259 7260 SDValue Shift = 7261 DAG.getNode(ISD::SRA, dl, VT, Op, 7262 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7263 if (!IsNegative) { 7264 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7265 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7266 } 7267 7268 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7269 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7270 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7271 } 7272 7273 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7274 SDLoc dl(N); 7275 EVT VT = N->getValueType(0); 7276 SDValue Op = N->getOperand(0); 7277 7278 if (!VT.isSimple()) 7279 return SDValue(); 7280 7281 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7282 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7283 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7284 default: 7285 return SDValue(); 7286 case MVT::i16: 7287 // Use a rotate by 8. This can be further expanded if necessary. 7288 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7289 case MVT::i32: 7290 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7291 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7292 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7293 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7294 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7295 DAG.getConstant(0xFF0000, dl, VT)); 7296 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7297 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7298 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7299 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7300 case MVT::i64: 7301 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7302 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7303 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7304 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7305 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7306 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7307 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7308 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7309 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7310 DAG.getConstant(255ULL<<48, dl, VT)); 7311 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7312 DAG.getConstant(255ULL<<40, dl, VT)); 7313 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7314 DAG.getConstant(255ULL<<32, dl, VT)); 7315 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7316 DAG.getConstant(255ULL<<24, dl, VT)); 7317 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7318 DAG.getConstant(255ULL<<16, dl, VT)); 7319 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7320 DAG.getConstant(255ULL<<8 , dl, VT)); 7321 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7322 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7323 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7324 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7325 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7326 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7327 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7328 } 7329 } 7330 7331 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7332 SDLoc dl(N); 7333 EVT VT = N->getValueType(0); 7334 SDValue Op = N->getOperand(0); 7335 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7336 unsigned Sz = VT.getScalarSizeInBits(); 7337 7338 SDValue Tmp, Tmp2, Tmp3; 7339 7340 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7341 // and finally the i1 pairs. 7342 // TODO: We can easily support i4/i2 legal types if any target ever does. 7343 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7344 // Create the masks - repeating the pattern every byte. 7345 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7346 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7347 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7348 7349 // BSWAP if the type is wider than a single byte. 7350 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7351 7352 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7353 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7354 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7355 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7356 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7357 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7358 7359 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7360 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7361 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7362 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7363 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7364 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7365 7366 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7367 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7368 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7369 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7370 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7371 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7372 return Tmp; 7373 } 7374 7375 Tmp = DAG.getConstant(0, dl, VT); 7376 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7377 if (I < J) 7378 Tmp2 = 7379 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7380 else 7381 Tmp2 = 7382 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7383 7384 APInt Shift(Sz, 1); 7385 Shift <<= J; 7386 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7387 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7388 } 7389 7390 return Tmp; 7391 } 7392 7393 std::pair<SDValue, SDValue> 7394 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7395 SelectionDAG &DAG) const { 7396 SDLoc SL(LD); 7397 SDValue Chain = LD->getChain(); 7398 SDValue BasePTR = LD->getBasePtr(); 7399 EVT SrcVT = LD->getMemoryVT(); 7400 EVT DstVT = LD->getValueType(0); 7401 ISD::LoadExtType ExtType = LD->getExtensionType(); 7402 7403 if (SrcVT.isScalableVector()) 7404 report_fatal_error("Cannot scalarize scalable vector loads"); 7405 7406 unsigned NumElem = SrcVT.getVectorNumElements(); 7407 7408 EVT SrcEltVT = SrcVT.getScalarType(); 7409 EVT DstEltVT = DstVT.getScalarType(); 7410 7411 // A vector must always be stored in memory as-is, i.e. without any padding 7412 // between the elements, since various code depend on it, e.g. in the 7413 // handling of a bitcast of a vector type to int, which may be done with a 7414 // vector store followed by an integer load. A vector that does not have 7415 // elements that are byte-sized must therefore be stored as an integer 7416 // built out of the extracted vector elements. 7417 if (!SrcEltVT.isByteSized()) { 7418 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7419 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7420 7421 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7422 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7423 7424 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7425 SDValue SrcEltBitMask = DAG.getConstant( 7426 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7427 7428 // Load the whole vector and avoid masking off the top bits as it makes 7429 // the codegen worse. 7430 SDValue Load = 7431 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7432 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7433 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7434 7435 SmallVector<SDValue, 8> Vals; 7436 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7437 unsigned ShiftIntoIdx = 7438 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7439 SDValue ShiftAmount = 7440 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7441 LoadVT, SL, /*LegalTypes=*/false); 7442 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7443 SDValue Elt = 7444 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7445 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7446 7447 if (ExtType != ISD::NON_EXTLOAD) { 7448 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7449 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7450 } 7451 7452 Vals.push_back(Scalar); 7453 } 7454 7455 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7456 return std::make_pair(Value, Load.getValue(1)); 7457 } 7458 7459 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7460 assert(SrcEltVT.isByteSized()); 7461 7462 SmallVector<SDValue, 8> Vals; 7463 SmallVector<SDValue, 8> LoadChains; 7464 7465 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7466 SDValue ScalarLoad = 7467 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7468 LD->getPointerInfo().getWithOffset(Idx * Stride), 7469 SrcEltVT, LD->getOriginalAlign(), 7470 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7471 7472 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7473 7474 Vals.push_back(ScalarLoad.getValue(0)); 7475 LoadChains.push_back(ScalarLoad.getValue(1)); 7476 } 7477 7478 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7479 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7480 7481 return std::make_pair(Value, NewChain); 7482 } 7483 7484 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7485 SelectionDAG &DAG) const { 7486 SDLoc SL(ST); 7487 7488 SDValue Chain = ST->getChain(); 7489 SDValue BasePtr = ST->getBasePtr(); 7490 SDValue Value = ST->getValue(); 7491 EVT StVT = ST->getMemoryVT(); 7492 7493 if (StVT.isScalableVector()) 7494 report_fatal_error("Cannot scalarize scalable vector stores"); 7495 7496 // The type of the data we want to save 7497 EVT RegVT = Value.getValueType(); 7498 EVT RegSclVT = RegVT.getScalarType(); 7499 7500 // The type of data as saved in memory. 7501 EVT MemSclVT = StVT.getScalarType(); 7502 7503 unsigned NumElem = StVT.getVectorNumElements(); 7504 7505 // A vector must always be stored in memory as-is, i.e. without any padding 7506 // between the elements, since various code depend on it, e.g. in the 7507 // handling of a bitcast of a vector type to int, which may be done with a 7508 // vector store followed by an integer load. A vector that does not have 7509 // elements that are byte-sized must therefore be stored as an integer 7510 // built out of the extracted vector elements. 7511 if (!MemSclVT.isByteSized()) { 7512 unsigned NumBits = StVT.getSizeInBits(); 7513 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7514 7515 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7516 7517 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7518 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7519 DAG.getVectorIdxConstant(Idx, SL)); 7520 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7521 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7522 unsigned ShiftIntoIdx = 7523 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7524 SDValue ShiftAmount = 7525 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7526 SDValue ShiftedElt = 7527 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7528 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7529 } 7530 7531 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7532 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7533 ST->getAAInfo()); 7534 } 7535 7536 // Store Stride in bytes 7537 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7538 assert(Stride && "Zero stride!"); 7539 // Extract each of the elements from the original vector and save them into 7540 // memory individually. 7541 SmallVector<SDValue, 8> Stores; 7542 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7543 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7544 DAG.getVectorIdxConstant(Idx, SL)); 7545 7546 SDValue Ptr = 7547 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7548 7549 // This scalar TruncStore may be illegal, but we legalize it later. 7550 SDValue Store = DAG.getTruncStore( 7551 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7552 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7553 ST->getAAInfo()); 7554 7555 Stores.push_back(Store); 7556 } 7557 7558 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7559 } 7560 7561 std::pair<SDValue, SDValue> 7562 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7563 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7564 "unaligned indexed loads not implemented!"); 7565 SDValue Chain = LD->getChain(); 7566 SDValue Ptr = LD->getBasePtr(); 7567 EVT VT = LD->getValueType(0); 7568 EVT LoadedVT = LD->getMemoryVT(); 7569 SDLoc dl(LD); 7570 auto &MF = DAG.getMachineFunction(); 7571 7572 if (VT.isFloatingPoint() || VT.isVector()) { 7573 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7574 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7575 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7576 LoadedVT.isVector()) { 7577 // Scalarize the load and let the individual components be handled. 7578 return scalarizeVectorLoad(LD, DAG); 7579 } 7580 7581 // Expand to a (misaligned) integer load of the same size, 7582 // then bitconvert to floating point or vector. 7583 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7584 LD->getMemOperand()); 7585 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7586 if (LoadedVT != VT) 7587 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7588 ISD::ANY_EXTEND, dl, VT, Result); 7589 7590 return std::make_pair(Result, newLoad.getValue(1)); 7591 } 7592 7593 // Copy the value to a (aligned) stack slot using (unaligned) integer 7594 // loads and stores, then do a (aligned) load from the stack slot. 7595 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7596 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7597 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7598 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7599 7600 // Make sure the stack slot is also aligned for the register type. 7601 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7602 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7603 SmallVector<SDValue, 8> Stores; 7604 SDValue StackPtr = StackBase; 7605 unsigned Offset = 0; 7606 7607 EVT PtrVT = Ptr.getValueType(); 7608 EVT StackPtrVT = StackPtr.getValueType(); 7609 7610 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7611 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7612 7613 // Do all but one copies using the full register width. 7614 for (unsigned i = 1; i < NumRegs; i++) { 7615 // Load one integer register's worth from the original location. 7616 SDValue Load = DAG.getLoad( 7617 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7618 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7619 LD->getAAInfo()); 7620 // Follow the load with a store to the stack slot. Remember the store. 7621 Stores.push_back(DAG.getStore( 7622 Load.getValue(1), dl, Load, StackPtr, 7623 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7624 // Increment the pointers. 7625 Offset += RegBytes; 7626 7627 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7628 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7629 } 7630 7631 // The last copy may be partial. Do an extending load. 7632 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7633 8 * (LoadedBytes - Offset)); 7634 SDValue Load = 7635 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7636 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7637 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7638 LD->getAAInfo()); 7639 // Follow the load with a store to the stack slot. Remember the store. 7640 // On big-endian machines this requires a truncating store to ensure 7641 // that the bits end up in the right place. 7642 Stores.push_back(DAG.getTruncStore( 7643 Load.getValue(1), dl, Load, StackPtr, 7644 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7645 7646 // The order of the stores doesn't matter - say it with a TokenFactor. 7647 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7648 7649 // Finally, perform the original load only redirected to the stack slot. 7650 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7651 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7652 LoadedVT); 7653 7654 // Callers expect a MERGE_VALUES node. 7655 return std::make_pair(Load, TF); 7656 } 7657 7658 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7659 "Unaligned load of unsupported type."); 7660 7661 // Compute the new VT that is half the size of the old one. This is an 7662 // integer MVT. 7663 unsigned NumBits = LoadedVT.getSizeInBits(); 7664 EVT NewLoadedVT; 7665 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7666 NumBits >>= 1; 7667 7668 Align Alignment = LD->getOriginalAlign(); 7669 unsigned IncrementSize = NumBits / 8; 7670 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7671 7672 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7673 if (HiExtType == ISD::NON_EXTLOAD) 7674 HiExtType = ISD::ZEXTLOAD; 7675 7676 // Load the value in two parts 7677 SDValue Lo, Hi; 7678 if (DAG.getDataLayout().isLittleEndian()) { 7679 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7680 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7681 LD->getAAInfo()); 7682 7683 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7684 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7685 LD->getPointerInfo().getWithOffset(IncrementSize), 7686 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7687 LD->getAAInfo()); 7688 } else { 7689 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7690 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7691 LD->getAAInfo()); 7692 7693 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7694 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7695 LD->getPointerInfo().getWithOffset(IncrementSize), 7696 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7697 LD->getAAInfo()); 7698 } 7699 7700 // aggregate the two parts 7701 SDValue ShiftAmount = 7702 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7703 DAG.getDataLayout())); 7704 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7705 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7706 7707 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7708 Hi.getValue(1)); 7709 7710 return std::make_pair(Result, TF); 7711 } 7712 7713 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7714 SelectionDAG &DAG) const { 7715 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7716 "unaligned indexed stores not implemented!"); 7717 SDValue Chain = ST->getChain(); 7718 SDValue Ptr = ST->getBasePtr(); 7719 SDValue Val = ST->getValue(); 7720 EVT VT = Val.getValueType(); 7721 Align Alignment = ST->getOriginalAlign(); 7722 auto &MF = DAG.getMachineFunction(); 7723 EVT StoreMemVT = ST->getMemoryVT(); 7724 7725 SDLoc dl(ST); 7726 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7727 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7728 if (isTypeLegal(intVT)) { 7729 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7730 StoreMemVT.isVector()) { 7731 // Scalarize the store and let the individual components be handled. 7732 SDValue Result = scalarizeVectorStore(ST, DAG); 7733 return Result; 7734 } 7735 // Expand to a bitconvert of the value to the integer type of the 7736 // same size, then a (misaligned) int store. 7737 // FIXME: Does not handle truncating floating point stores! 7738 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7739 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7740 Alignment, ST->getMemOperand()->getFlags()); 7741 return Result; 7742 } 7743 // Do a (aligned) store to a stack slot, then copy from the stack slot 7744 // to the final destination using (unaligned) integer loads and stores. 7745 MVT RegVT = getRegisterType( 7746 *DAG.getContext(), 7747 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7748 EVT PtrVT = Ptr.getValueType(); 7749 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7750 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7751 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7752 7753 // Make sure the stack slot is also aligned for the register type. 7754 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7755 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7756 7757 // Perform the original store, only redirected to the stack slot. 7758 SDValue Store = DAG.getTruncStore( 7759 Chain, dl, Val, StackPtr, 7760 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7761 7762 EVT StackPtrVT = StackPtr.getValueType(); 7763 7764 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7765 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7766 SmallVector<SDValue, 8> Stores; 7767 unsigned Offset = 0; 7768 7769 // Do all but one copies using the full register width. 7770 for (unsigned i = 1; i < NumRegs; i++) { 7771 // Load one integer register's worth from the stack slot. 7772 SDValue Load = DAG.getLoad( 7773 RegVT, dl, Store, StackPtr, 7774 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7775 // Store it to the final location. Remember the store. 7776 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7777 ST->getPointerInfo().getWithOffset(Offset), 7778 ST->getOriginalAlign(), 7779 ST->getMemOperand()->getFlags())); 7780 // Increment the pointers. 7781 Offset += RegBytes; 7782 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7783 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7784 } 7785 7786 // The last store may be partial. Do a truncating store. On big-endian 7787 // machines this requires an extending load from the stack slot to ensure 7788 // that the bits are in the right place. 7789 EVT LoadMemVT = 7790 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7791 7792 // Load from the stack slot. 7793 SDValue Load = DAG.getExtLoad( 7794 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7795 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7796 7797 Stores.push_back( 7798 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7799 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7800 ST->getOriginalAlign(), 7801 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7802 // The order of the stores doesn't matter - say it with a TokenFactor. 7803 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7804 return Result; 7805 } 7806 7807 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7808 "Unaligned store of unknown type."); 7809 // Get the half-size VT 7810 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7811 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7812 unsigned IncrementSize = NumBits / 8; 7813 7814 // Divide the stored value in two parts. 7815 SDValue ShiftAmount = DAG.getConstant( 7816 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7817 SDValue Lo = Val; 7818 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7819 7820 // Store the two parts 7821 SDValue Store1, Store2; 7822 Store1 = DAG.getTruncStore(Chain, dl, 7823 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7824 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7825 ST->getMemOperand()->getFlags()); 7826 7827 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7828 Store2 = DAG.getTruncStore( 7829 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7830 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7831 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7832 7833 SDValue Result = 7834 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7835 return Result; 7836 } 7837 7838 SDValue 7839 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7840 const SDLoc &DL, EVT DataVT, 7841 SelectionDAG &DAG, 7842 bool IsCompressedMemory) const { 7843 SDValue Increment; 7844 EVT AddrVT = Addr.getValueType(); 7845 EVT MaskVT = Mask.getValueType(); 7846 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7847 "Incompatible types of Data and Mask"); 7848 if (IsCompressedMemory) { 7849 if (DataVT.isScalableVector()) 7850 report_fatal_error( 7851 "Cannot currently handle compressed memory with scalable vectors"); 7852 // Incrementing the pointer according to number of '1's in the mask. 7853 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7854 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7855 if (MaskIntVT.getSizeInBits() < 32) { 7856 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7857 MaskIntVT = MVT::i32; 7858 } 7859 7860 // Count '1's with POPCNT. 7861 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7862 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7863 // Scale is an element size in bytes. 7864 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7865 AddrVT); 7866 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7867 } else if (DataVT.isScalableVector()) { 7868 Increment = DAG.getVScale(DL, AddrVT, 7869 APInt(AddrVT.getFixedSizeInBits(), 7870 DataVT.getStoreSize().getKnownMinSize())); 7871 } else 7872 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7873 7874 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7875 } 7876 7877 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7878 EVT VecVT, const SDLoc &dl, 7879 ElementCount SubEC) { 7880 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7881 "Cannot index a scalable vector within a fixed-width vector"); 7882 7883 unsigned NElts = VecVT.getVectorMinNumElements(); 7884 unsigned NumSubElts = SubEC.getKnownMinValue(); 7885 EVT IdxVT = Idx.getValueType(); 7886 7887 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7888 // If this is a constant index and we know the value plus the number of the 7889 // elements in the subvector minus one is less than the minimum number of 7890 // elements then it's safe to return Idx. 7891 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7892 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7893 return Idx; 7894 SDValue VS = 7895 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7896 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7897 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7898 DAG.getConstant(NumSubElts, dl, IdxVT)); 7899 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7900 } 7901 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7902 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7903 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7904 DAG.getConstant(Imm, dl, IdxVT)); 7905 } 7906 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7907 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7908 DAG.getConstant(MaxIndex, dl, IdxVT)); 7909 } 7910 7911 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7912 SDValue VecPtr, EVT VecVT, 7913 SDValue Index) const { 7914 return getVectorSubVecPointer( 7915 DAG, VecPtr, VecVT, 7916 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7917 Index); 7918 } 7919 7920 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7921 SDValue VecPtr, EVT VecVT, 7922 EVT SubVecVT, 7923 SDValue Index) const { 7924 SDLoc dl(Index); 7925 // Make sure the index type is big enough to compute in. 7926 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7927 7928 EVT EltVT = VecVT.getVectorElementType(); 7929 7930 // Calculate the element offset and add it to the pointer. 7931 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7932 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7933 "Converting bits to bytes lost precision"); 7934 assert(SubVecVT.getVectorElementType() == EltVT && 7935 "Sub-vector must be a vector with matching element type"); 7936 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7937 SubVecVT.getVectorElementCount()); 7938 7939 EVT IdxVT = Index.getValueType(); 7940 if (SubVecVT.isScalableVector()) 7941 Index = 7942 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7943 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7944 7945 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7946 DAG.getConstant(EltSize, dl, IdxVT)); 7947 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7948 } 7949 7950 //===----------------------------------------------------------------------===// 7951 // Implementation of Emulated TLS Model 7952 //===----------------------------------------------------------------------===// 7953 7954 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7955 SelectionDAG &DAG) const { 7956 // Access to address of TLS varialbe xyz is lowered to a function call: 7957 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7958 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7959 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7960 SDLoc dl(GA); 7961 7962 ArgListTy Args; 7963 ArgListEntry Entry; 7964 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7965 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7966 StringRef EmuTlsVarName(NameString); 7967 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7968 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7969 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7970 Entry.Ty = VoidPtrType; 7971 Args.push_back(Entry); 7972 7973 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7974 7975 TargetLowering::CallLoweringInfo CLI(DAG); 7976 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7977 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7978 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7979 7980 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7981 // At last for X86 targets, maybe good for other targets too? 7982 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7983 MFI.setAdjustsStack(true); // Is this only for X86 target? 7984 MFI.setHasCalls(true); 7985 7986 assert((GA->getOffset() == 0) && 7987 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7988 return CallResult.first; 7989 } 7990 7991 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7992 SelectionDAG &DAG) const { 7993 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7994 if (!isCtlzFast()) 7995 return SDValue(); 7996 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7997 SDLoc dl(Op); 7998 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7999 if (C->isZero() && CC == ISD::SETEQ) { 8000 EVT VT = Op.getOperand(0).getValueType(); 8001 SDValue Zext = Op.getOperand(0); 8002 if (VT.bitsLT(MVT::i32)) { 8003 VT = MVT::i32; 8004 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8005 } 8006 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8007 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8008 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8009 DAG.getConstant(Log2b, dl, MVT::i32)); 8010 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8011 } 8012 } 8013 return SDValue(); 8014 } 8015 8016 // Convert redundant addressing modes (e.g. scaling is redundant 8017 // when accessing bytes). 8018 ISD::MemIndexType 8019 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8020 SDValue Offsets) const { 8021 bool IsScaledIndex = 8022 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8023 bool IsSignedIndex = 8024 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8025 8026 // Scaling is unimportant for bytes, canonicalize to unscaled. 8027 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8028 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8029 8030 return IndexType; 8031 } 8032 8033 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8034 SDValue Op0 = Node->getOperand(0); 8035 SDValue Op1 = Node->getOperand(1); 8036 EVT VT = Op0.getValueType(); 8037 unsigned Opcode = Node->getOpcode(); 8038 SDLoc DL(Node); 8039 8040 // umin(x,y) -> sub(x,usubsat(x,y)) 8041 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8042 isOperationLegal(ISD::USUBSAT, VT)) { 8043 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8044 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8045 } 8046 8047 // umax(x,y) -> add(x,usubsat(y,x)) 8048 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8049 isOperationLegal(ISD::USUBSAT, VT)) { 8050 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8051 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8052 } 8053 8054 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8055 ISD::CondCode CC; 8056 switch (Opcode) { 8057 default: llvm_unreachable("How did we get here?"); 8058 case ISD::SMAX: CC = ISD::SETGT; break; 8059 case ISD::SMIN: CC = ISD::SETLT; break; 8060 case ISD::UMAX: CC = ISD::SETUGT; break; 8061 case ISD::UMIN: CC = ISD::SETULT; break; 8062 } 8063 8064 // FIXME: Should really try to split the vector in case it's legal on a 8065 // subvector. 8066 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8067 return DAG.UnrollVectorOp(Node); 8068 8069 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8070 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8071 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8072 } 8073 8074 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8075 unsigned Opcode = Node->getOpcode(); 8076 SDValue LHS = Node->getOperand(0); 8077 SDValue RHS = Node->getOperand(1); 8078 EVT VT = LHS.getValueType(); 8079 SDLoc dl(Node); 8080 8081 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8082 assert(VT.isInteger() && "Expected operands to be integers"); 8083 8084 // usub.sat(a, b) -> umax(a, b) - b 8085 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8086 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8087 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8088 } 8089 8090 // uadd.sat(a, b) -> umin(a, ~b) + b 8091 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8092 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8093 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8094 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8095 } 8096 8097 unsigned OverflowOp; 8098 switch (Opcode) { 8099 case ISD::SADDSAT: 8100 OverflowOp = ISD::SADDO; 8101 break; 8102 case ISD::UADDSAT: 8103 OverflowOp = ISD::UADDO; 8104 break; 8105 case ISD::SSUBSAT: 8106 OverflowOp = ISD::SSUBO; 8107 break; 8108 case ISD::USUBSAT: 8109 OverflowOp = ISD::USUBO; 8110 break; 8111 default: 8112 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8113 "addition or subtraction node."); 8114 } 8115 8116 // FIXME: Should really try to split the vector in case it's legal on a 8117 // subvector. 8118 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8119 return DAG.UnrollVectorOp(Node); 8120 8121 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8122 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8123 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8124 SDValue SumDiff = Result.getValue(0); 8125 SDValue Overflow = Result.getValue(1); 8126 SDValue Zero = DAG.getConstant(0, dl, VT); 8127 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8128 8129 if (Opcode == ISD::UADDSAT) { 8130 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8131 // (LHS + RHS) | OverflowMask 8132 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8133 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8134 } 8135 // Overflow ? 0xffff.... : (LHS + RHS) 8136 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8137 } 8138 8139 if (Opcode == ISD::USUBSAT) { 8140 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8141 // (LHS - RHS) & ~OverflowMask 8142 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8143 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8144 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8145 } 8146 // Overflow ? 0 : (LHS - RHS) 8147 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8148 } 8149 8150 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8151 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8152 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8153 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8154 DAG.getConstant(BitWidth - 1, dl, VT)); 8155 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8156 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8157 } 8158 8159 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8160 unsigned Opcode = Node->getOpcode(); 8161 bool IsSigned = Opcode == ISD::SSHLSAT; 8162 SDValue LHS = Node->getOperand(0); 8163 SDValue RHS = Node->getOperand(1); 8164 EVT VT = LHS.getValueType(); 8165 SDLoc dl(Node); 8166 8167 assert((Node->getOpcode() == ISD::SSHLSAT || 8168 Node->getOpcode() == ISD::USHLSAT) && 8169 "Expected a SHLSAT opcode"); 8170 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8171 assert(VT.isInteger() && "Expected operands to be integers"); 8172 8173 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8174 8175 unsigned BW = VT.getScalarSizeInBits(); 8176 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8177 SDValue Orig = 8178 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8179 8180 SDValue SatVal; 8181 if (IsSigned) { 8182 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8183 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8184 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8185 SatMin, SatMax, ISD::SETLT); 8186 } else { 8187 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8188 } 8189 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8190 8191 return Result; 8192 } 8193 8194 SDValue 8195 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8196 assert((Node->getOpcode() == ISD::SMULFIX || 8197 Node->getOpcode() == ISD::UMULFIX || 8198 Node->getOpcode() == ISD::SMULFIXSAT || 8199 Node->getOpcode() == ISD::UMULFIXSAT) && 8200 "Expected a fixed point multiplication opcode"); 8201 8202 SDLoc dl(Node); 8203 SDValue LHS = Node->getOperand(0); 8204 SDValue RHS = Node->getOperand(1); 8205 EVT VT = LHS.getValueType(); 8206 unsigned Scale = Node->getConstantOperandVal(2); 8207 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8208 Node->getOpcode() == ISD::UMULFIXSAT); 8209 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8210 Node->getOpcode() == ISD::SMULFIXSAT); 8211 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8212 unsigned VTSize = VT.getScalarSizeInBits(); 8213 8214 if (!Scale) { 8215 // [us]mul.fix(a, b, 0) -> mul(a, b) 8216 if (!Saturating) { 8217 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8218 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8219 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8220 SDValue Result = 8221 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8222 SDValue Product = Result.getValue(0); 8223 SDValue Overflow = Result.getValue(1); 8224 SDValue Zero = DAG.getConstant(0, dl, VT); 8225 8226 APInt MinVal = APInt::getSignedMinValue(VTSize); 8227 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8228 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8229 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8230 // Xor the inputs, if resulting sign bit is 0 the product will be 8231 // positive, else negative. 8232 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8233 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8234 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8235 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8236 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8237 SDValue Result = 8238 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8239 SDValue Product = Result.getValue(0); 8240 SDValue Overflow = Result.getValue(1); 8241 8242 APInt MaxVal = APInt::getMaxValue(VTSize); 8243 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8244 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8245 } 8246 } 8247 8248 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8249 "Expected scale to be less than the number of bits if signed or at " 8250 "most the number of bits if unsigned."); 8251 assert(LHS.getValueType() == RHS.getValueType() && 8252 "Expected both operands to be the same type"); 8253 8254 // Get the upper and lower bits of the result. 8255 SDValue Lo, Hi; 8256 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8257 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8258 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8259 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8260 Lo = Result.getValue(0); 8261 Hi = Result.getValue(1); 8262 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8263 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8264 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8265 } else if (VT.isVector()) { 8266 return SDValue(); 8267 } else { 8268 report_fatal_error("Unable to expand fixed point multiplication."); 8269 } 8270 8271 if (Scale == VTSize) 8272 // Result is just the top half since we'd be shifting by the width of the 8273 // operand. Overflow impossible so this works for both UMULFIX and 8274 // UMULFIXSAT. 8275 return Hi; 8276 8277 // The result will need to be shifted right by the scale since both operands 8278 // are scaled. The result is given to us in 2 halves, so we only want part of 8279 // both in the result. 8280 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8281 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8282 DAG.getConstant(Scale, dl, ShiftTy)); 8283 if (!Saturating) 8284 return Result; 8285 8286 if (!Signed) { 8287 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8288 // widened multiplication) aren't all zeroes. 8289 8290 // Saturate to max if ((Hi >> Scale) != 0), 8291 // which is the same as if (Hi > ((1 << Scale) - 1)) 8292 APInt MaxVal = APInt::getMaxValue(VTSize); 8293 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8294 dl, VT); 8295 Result = DAG.getSelectCC(dl, Hi, LowMask, 8296 DAG.getConstant(MaxVal, dl, VT), Result, 8297 ISD::SETUGT); 8298 8299 return Result; 8300 } 8301 8302 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8303 // widened multiplication) aren't all ones or all zeroes. 8304 8305 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8306 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8307 8308 if (Scale == 0) { 8309 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8310 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8311 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8312 // Saturated to SatMin if wide product is negative, and SatMax if wide 8313 // product is positive ... 8314 SDValue Zero = DAG.getConstant(0, dl, VT); 8315 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8316 ISD::SETLT); 8317 // ... but only if we overflowed. 8318 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8319 } 8320 8321 // We handled Scale==0 above so all the bits to examine is in Hi. 8322 8323 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8324 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8325 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8326 dl, VT); 8327 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8328 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8329 // which is the same as if (HI < (-1 << (Scale - 1)) 8330 SDValue HighMask = 8331 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8332 dl, VT); 8333 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8334 return Result; 8335 } 8336 8337 SDValue 8338 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8339 SDValue LHS, SDValue RHS, 8340 unsigned Scale, SelectionDAG &DAG) const { 8341 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8342 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8343 "Expected a fixed point division opcode"); 8344 8345 EVT VT = LHS.getValueType(); 8346 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8347 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8348 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8349 8350 // If there is enough room in the type to upscale the LHS or downscale the 8351 // RHS before the division, we can perform it in this type without having to 8352 // resize. For signed operations, the LHS headroom is the number of 8353 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8354 // The headroom for the RHS is the number of trailing zeroes. 8355 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8356 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8357 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8358 8359 // For signed saturating operations, we need to be able to detect true integer 8360 // division overflow; that is, when you have MIN / -EPS. However, this 8361 // is undefined behavior and if we emit divisions that could take such 8362 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8363 // example). 8364 // Avoid this by requiring an extra bit so that we never get this case. 8365 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8366 // signed saturating division, we need to emit a whopping 32-bit division. 8367 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8368 return SDValue(); 8369 8370 unsigned LHSShift = std::min(LHSLead, Scale); 8371 unsigned RHSShift = Scale - LHSShift; 8372 8373 // At this point, we know that if we shift the LHS up by LHSShift and the 8374 // RHS down by RHSShift, we can emit a regular division with a final scaling 8375 // factor of Scale. 8376 8377 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8378 if (LHSShift) 8379 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8380 DAG.getConstant(LHSShift, dl, ShiftTy)); 8381 if (RHSShift) 8382 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8383 DAG.getConstant(RHSShift, dl, ShiftTy)); 8384 8385 SDValue Quot; 8386 if (Signed) { 8387 // For signed operations, if the resulting quotient is negative and the 8388 // remainder is nonzero, subtract 1 from the quotient to round towards 8389 // negative infinity. 8390 SDValue Rem; 8391 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8392 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8393 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8394 if (isTypeLegal(VT) && 8395 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8396 Quot = DAG.getNode(ISD::SDIVREM, dl, 8397 DAG.getVTList(VT, VT), 8398 LHS, RHS); 8399 Rem = Quot.getValue(1); 8400 Quot = Quot.getValue(0); 8401 } else { 8402 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8403 LHS, RHS); 8404 Rem = DAG.getNode(ISD::SREM, dl, VT, 8405 LHS, RHS); 8406 } 8407 SDValue Zero = DAG.getConstant(0, dl, VT); 8408 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8409 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8410 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8411 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8412 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8413 DAG.getConstant(1, dl, VT)); 8414 Quot = DAG.getSelect(dl, VT, 8415 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8416 Sub1, Quot); 8417 } else 8418 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8419 LHS, RHS); 8420 8421 return Quot; 8422 } 8423 8424 void TargetLowering::expandUADDSUBO( 8425 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8426 SDLoc dl(Node); 8427 SDValue LHS = Node->getOperand(0); 8428 SDValue RHS = Node->getOperand(1); 8429 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8430 8431 // If ADD/SUBCARRY is legal, use that instead. 8432 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8433 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8434 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8435 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8436 { LHS, RHS, CarryIn }); 8437 Result = SDValue(NodeCarry.getNode(), 0); 8438 Overflow = SDValue(NodeCarry.getNode(), 1); 8439 return; 8440 } 8441 8442 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8443 LHS.getValueType(), LHS, RHS); 8444 8445 EVT ResultType = Node->getValueType(1); 8446 EVT SetCCType = getSetCCResultType( 8447 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8448 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8449 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8450 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8451 } 8452 8453 void TargetLowering::expandSADDSUBO( 8454 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8455 SDLoc dl(Node); 8456 SDValue LHS = Node->getOperand(0); 8457 SDValue RHS = Node->getOperand(1); 8458 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8459 8460 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8461 LHS.getValueType(), LHS, RHS); 8462 8463 EVT ResultType = Node->getValueType(1); 8464 EVT OType = getSetCCResultType( 8465 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8466 8467 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8468 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8469 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8470 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8471 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8472 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8473 return; 8474 } 8475 8476 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8477 8478 // For an addition, the result should be less than one of the operands (LHS) 8479 // if and only if the other operand (RHS) is negative, otherwise there will 8480 // be overflow. 8481 // For a subtraction, the result should be less than one of the operands 8482 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8483 // otherwise there will be overflow. 8484 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8485 SDValue ConditionRHS = 8486 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8487 8488 Overflow = DAG.getBoolExtOrTrunc( 8489 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8490 ResultType, ResultType); 8491 } 8492 8493 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8494 SDValue &Overflow, SelectionDAG &DAG) const { 8495 SDLoc dl(Node); 8496 EVT VT = Node->getValueType(0); 8497 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8498 SDValue LHS = Node->getOperand(0); 8499 SDValue RHS = Node->getOperand(1); 8500 bool isSigned = Node->getOpcode() == ISD::SMULO; 8501 8502 // For power-of-two multiplications we can use a simpler shift expansion. 8503 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8504 const APInt &C = RHSC->getAPIntValue(); 8505 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8506 if (C.isPowerOf2()) { 8507 // smulo(x, signed_min) is same as umulo(x, signed_min). 8508 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8509 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8510 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8511 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8512 Overflow = DAG.getSetCC(dl, SetCCVT, 8513 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8514 dl, VT, Result, ShiftAmt), 8515 LHS, ISD::SETNE); 8516 return true; 8517 } 8518 } 8519 8520 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8521 if (VT.isVector()) 8522 WideVT = 8523 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8524 8525 SDValue BottomHalf; 8526 SDValue TopHalf; 8527 static const unsigned Ops[2][3] = 8528 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8529 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8530 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8531 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8532 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8533 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8534 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8535 RHS); 8536 TopHalf = BottomHalf.getValue(1); 8537 } else if (isTypeLegal(WideVT)) { 8538 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8539 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8540 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8541 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8542 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8543 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8544 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8545 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8546 } else { 8547 if (VT.isVector()) 8548 return false; 8549 8550 // We can fall back to a libcall with an illegal type for the MUL if we 8551 // have a libcall big enough. 8552 // Also, we can fall back to a division in some cases, but that's a big 8553 // performance hit in the general case. 8554 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8555 if (WideVT == MVT::i16) 8556 LC = RTLIB::MUL_I16; 8557 else if (WideVT == MVT::i32) 8558 LC = RTLIB::MUL_I32; 8559 else if (WideVT == MVT::i64) 8560 LC = RTLIB::MUL_I64; 8561 else if (WideVT == MVT::i128) 8562 LC = RTLIB::MUL_I128; 8563 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8564 8565 SDValue HiLHS; 8566 SDValue HiRHS; 8567 if (isSigned) { 8568 // The high part is obtained by SRA'ing all but one of the bits of low 8569 // part. 8570 unsigned LoSize = VT.getFixedSizeInBits(); 8571 HiLHS = 8572 DAG.getNode(ISD::SRA, dl, VT, LHS, 8573 DAG.getConstant(LoSize - 1, dl, 8574 getPointerTy(DAG.getDataLayout()))); 8575 HiRHS = 8576 DAG.getNode(ISD::SRA, dl, VT, RHS, 8577 DAG.getConstant(LoSize - 1, dl, 8578 getPointerTy(DAG.getDataLayout()))); 8579 } else { 8580 HiLHS = DAG.getConstant(0, dl, VT); 8581 HiRHS = DAG.getConstant(0, dl, VT); 8582 } 8583 8584 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8585 // pre-lowered to the correct types. This all depends upon WideVT not 8586 // being a legal type for the architecture and thus has to be split to 8587 // two arguments. 8588 SDValue Ret; 8589 TargetLowering::MakeLibCallOptions CallOptions; 8590 CallOptions.setSExt(isSigned); 8591 CallOptions.setIsPostTypeLegalization(true); 8592 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8593 // Halves of WideVT are packed into registers in different order 8594 // depending on platform endianness. This is usually handled by 8595 // the C calling convention, but we can't defer to it in 8596 // the legalizer. 8597 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8598 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8599 } else { 8600 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8601 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8602 } 8603 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8604 "Ret value is a collection of constituent nodes holding result."); 8605 if (DAG.getDataLayout().isLittleEndian()) { 8606 // Same as above. 8607 BottomHalf = Ret.getOperand(0); 8608 TopHalf = Ret.getOperand(1); 8609 } else { 8610 BottomHalf = Ret.getOperand(1); 8611 TopHalf = Ret.getOperand(0); 8612 } 8613 } 8614 8615 Result = BottomHalf; 8616 if (isSigned) { 8617 SDValue ShiftAmt = DAG.getConstant( 8618 VT.getScalarSizeInBits() - 1, dl, 8619 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8620 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8621 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8622 } else { 8623 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8624 DAG.getConstant(0, dl, VT), ISD::SETNE); 8625 } 8626 8627 // Truncate the result if SetCC returns a larger type than needed. 8628 EVT RType = Node->getValueType(1); 8629 if (RType.bitsLT(Overflow.getValueType())) 8630 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8631 8632 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8633 "Unexpected result type for S/UMULO legalization"); 8634 return true; 8635 } 8636 8637 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8638 SDLoc dl(Node); 8639 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8640 SDValue Op = Node->getOperand(0); 8641 EVT VT = Op.getValueType(); 8642 8643 if (VT.isScalableVector()) 8644 report_fatal_error( 8645 "Expanding reductions for scalable vectors is undefined."); 8646 8647 // Try to use a shuffle reduction for power of two vectors. 8648 if (VT.isPow2VectorType()) { 8649 while (VT.getVectorNumElements() > 1) { 8650 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8651 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8652 break; 8653 8654 SDValue Lo, Hi; 8655 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8656 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8657 VT = HalfVT; 8658 } 8659 } 8660 8661 EVT EltVT = VT.getVectorElementType(); 8662 unsigned NumElts = VT.getVectorNumElements(); 8663 8664 SmallVector<SDValue, 8> Ops; 8665 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8666 8667 SDValue Res = Ops[0]; 8668 for (unsigned i = 1; i < NumElts; i++) 8669 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8670 8671 // Result type may be wider than element type. 8672 if (EltVT != Node->getValueType(0)) 8673 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8674 return Res; 8675 } 8676 8677 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8678 SDLoc dl(Node); 8679 SDValue AccOp = Node->getOperand(0); 8680 SDValue VecOp = Node->getOperand(1); 8681 SDNodeFlags Flags = Node->getFlags(); 8682 8683 EVT VT = VecOp.getValueType(); 8684 EVT EltVT = VT.getVectorElementType(); 8685 8686 if (VT.isScalableVector()) 8687 report_fatal_error( 8688 "Expanding reductions for scalable vectors is undefined."); 8689 8690 unsigned NumElts = VT.getVectorNumElements(); 8691 8692 SmallVector<SDValue, 8> Ops; 8693 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8694 8695 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8696 8697 SDValue Res = AccOp; 8698 for (unsigned i = 0; i < NumElts; i++) 8699 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8700 8701 return Res; 8702 } 8703 8704 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8705 SelectionDAG &DAG) const { 8706 EVT VT = Node->getValueType(0); 8707 SDLoc dl(Node); 8708 bool isSigned = Node->getOpcode() == ISD::SREM; 8709 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8710 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8711 SDValue Dividend = Node->getOperand(0); 8712 SDValue Divisor = Node->getOperand(1); 8713 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8714 SDVTList VTs = DAG.getVTList(VT, VT); 8715 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8716 return true; 8717 } 8718 if (isOperationLegalOrCustom(DivOpc, VT)) { 8719 // X % Y -> X-X/Y*Y 8720 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8721 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8722 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8723 return true; 8724 } 8725 return false; 8726 } 8727 8728 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8729 SelectionDAG &DAG) const { 8730 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8731 SDLoc dl(SDValue(Node, 0)); 8732 SDValue Src = Node->getOperand(0); 8733 8734 // DstVT is the result type, while SatVT is the size to which we saturate 8735 EVT SrcVT = Src.getValueType(); 8736 EVT DstVT = Node->getValueType(0); 8737 8738 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8739 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8740 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8741 assert(SatWidth <= DstWidth && 8742 "Expected saturation width smaller than result width"); 8743 8744 // Determine minimum and maximum integer values and their corresponding 8745 // floating-point values. 8746 APInt MinInt, MaxInt; 8747 if (IsSigned) { 8748 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8749 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8750 } else { 8751 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8752 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8753 } 8754 8755 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8756 // libcall emission cannot handle this. Large result types will fail. 8757 if (SrcVT == MVT::f16) { 8758 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8759 SrcVT = Src.getValueType(); 8760 } 8761 8762 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8763 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8764 8765 APFloat::opStatus MinStatus = 8766 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8767 APFloat::opStatus MaxStatus = 8768 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8769 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8770 !(MaxStatus & APFloat::opStatus::opInexact); 8771 8772 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8773 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8774 8775 // If the integer bounds are exactly representable as floats and min/max are 8776 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8777 // of comparisons and selects. 8778 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8779 isOperationLegal(ISD::FMAXNUM, SrcVT); 8780 if (AreExactFloatBounds && MinMaxLegal) { 8781 SDValue Clamped = Src; 8782 8783 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8784 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8785 // Clamp by MaxFloat from above. NaN cannot occur. 8786 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8787 // Convert clamped value to integer. 8788 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8789 dl, DstVT, Clamped); 8790 8791 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8792 // which will cast to zero. 8793 if (!IsSigned) 8794 return FpToInt; 8795 8796 // Otherwise, select 0 if Src is NaN. 8797 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8798 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8799 ISD::CondCode::SETUO); 8800 } 8801 8802 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8803 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8804 8805 // Result of direct conversion. The assumption here is that the operation is 8806 // non-trapping and it's fine to apply it to an out-of-range value if we 8807 // select it away later. 8808 SDValue FpToInt = 8809 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8810 8811 SDValue Select = FpToInt; 8812 8813 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8814 // MinInt if Src is NaN. 8815 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8816 ISD::CondCode::SETULT); 8817 // If Src OGT MaxFloat, select MaxInt. 8818 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8819 ISD::CondCode::SETOGT); 8820 8821 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8822 // is already zero. 8823 if (!IsSigned) 8824 return Select; 8825 8826 // Otherwise, select 0 if Src is NaN. 8827 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8828 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8829 } 8830 8831 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8832 SelectionDAG &DAG) const { 8833 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8834 assert(Node->getValueType(0).isScalableVector() && 8835 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8836 8837 EVT VT = Node->getValueType(0); 8838 SDValue V1 = Node->getOperand(0); 8839 SDValue V2 = Node->getOperand(1); 8840 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8841 SDLoc DL(Node); 8842 8843 // Expand through memory thusly: 8844 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8845 // Store V1, Ptr 8846 // Store V2, Ptr + sizeof(V1) 8847 // If (Imm < 0) 8848 // TrailingElts = -Imm 8849 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8850 // else 8851 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8852 // Res = Load Ptr 8853 8854 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8855 8856 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8857 VT.getVectorElementCount() * 2); 8858 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8859 EVT PtrVT = StackPtr.getValueType(); 8860 auto &MF = DAG.getMachineFunction(); 8861 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8862 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8863 8864 // Store the lo part of CONCAT_VECTORS(V1, V2) 8865 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8866 // Store the hi part of CONCAT_VECTORS(V1, V2) 8867 SDValue OffsetToV2 = DAG.getVScale( 8868 DL, PtrVT, 8869 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8870 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8871 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8872 8873 if (Imm >= 0) { 8874 // Load back the required element. getVectorElementPointer takes care of 8875 // clamping the index if it's out-of-bounds. 8876 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8877 // Load the spliced result 8878 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8879 MachinePointerInfo::getUnknownStack(MF)); 8880 } 8881 8882 uint64_t TrailingElts = -Imm; 8883 8884 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8885 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8886 SDValue TrailingBytes = 8887 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8888 8889 if (TrailingElts > VT.getVectorMinNumElements()) { 8890 SDValue VLBytes = DAG.getVScale( 8891 DL, PtrVT, 8892 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8893 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8894 } 8895 8896 // Calculate the start address of the spliced result. 8897 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8898 8899 // Load the spliced result 8900 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8901 MachinePointerInfo::getUnknownStack(MF)); 8902 } 8903 8904 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8905 SDValue &LHS, SDValue &RHS, 8906 SDValue &CC, bool &NeedInvert, 8907 const SDLoc &dl, SDValue &Chain, 8908 bool IsSignaling) const { 8909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8910 MVT OpVT = LHS.getSimpleValueType(); 8911 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8912 NeedInvert = false; 8913 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8914 default: 8915 llvm_unreachable("Unknown condition code action!"); 8916 case TargetLowering::Legal: 8917 // Nothing to do. 8918 break; 8919 case TargetLowering::Expand: { 8920 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8921 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8922 std::swap(LHS, RHS); 8923 CC = DAG.getCondCode(InvCC); 8924 return true; 8925 } 8926 // Swapping operands didn't work. Try inverting the condition. 8927 bool NeedSwap = false; 8928 InvCC = getSetCCInverse(CCCode, OpVT); 8929 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8930 // If inverting the condition is not enough, try swapping operands 8931 // on top of it. 8932 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8933 NeedSwap = true; 8934 } 8935 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8936 CC = DAG.getCondCode(InvCC); 8937 NeedInvert = true; 8938 if (NeedSwap) 8939 std::swap(LHS, RHS); 8940 return true; 8941 } 8942 8943 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8944 unsigned Opc = 0; 8945 switch (CCCode) { 8946 default: 8947 llvm_unreachable("Don't know how to expand this condition!"); 8948 case ISD::SETUO: 8949 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8950 CC1 = ISD::SETUNE; 8951 CC2 = ISD::SETUNE; 8952 Opc = ISD::OR; 8953 break; 8954 } 8955 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8956 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8957 NeedInvert = true; 8958 LLVM_FALLTHROUGH; 8959 case ISD::SETO: 8960 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8961 "If SETO is expanded, SETOEQ must be legal!"); 8962 CC1 = ISD::SETOEQ; 8963 CC2 = ISD::SETOEQ; 8964 Opc = ISD::AND; 8965 break; 8966 case ISD::SETONE: 8967 case ISD::SETUEQ: 8968 // If the SETUO or SETO CC isn't legal, we might be able to use 8969 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8970 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8971 // the operands. 8972 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8973 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8974 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8975 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8976 CC1 = ISD::SETOGT; 8977 CC2 = ISD::SETOLT; 8978 Opc = ISD::OR; 8979 NeedInvert = ((unsigned)CCCode & 0x8U); 8980 break; 8981 } 8982 LLVM_FALLTHROUGH; 8983 case ISD::SETOEQ: 8984 case ISD::SETOGT: 8985 case ISD::SETOGE: 8986 case ISD::SETOLT: 8987 case ISD::SETOLE: 8988 case ISD::SETUNE: 8989 case ISD::SETUGT: 8990 case ISD::SETUGE: 8991 case ISD::SETULT: 8992 case ISD::SETULE: 8993 // If we are floating point, assign and break, otherwise fall through. 8994 if (!OpVT.isInteger()) { 8995 // We can use the 4th bit to tell if we are the unordered 8996 // or ordered version of the opcode. 8997 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8998 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8999 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9000 break; 9001 } 9002 // Fallthrough if we are unsigned integer. 9003 LLVM_FALLTHROUGH; 9004 case ISD::SETLE: 9005 case ISD::SETGT: 9006 case ISD::SETGE: 9007 case ISD::SETLT: 9008 case ISD::SETNE: 9009 case ISD::SETEQ: 9010 // If all combinations of inverting the condition and swapping operands 9011 // didn't work then we have no means to expand the condition. 9012 llvm_unreachable("Don't know how to expand this condition!"); 9013 } 9014 9015 SDValue SetCC1, SetCC2; 9016 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9017 // If we aren't the ordered or unorder operation, 9018 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9019 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9020 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9021 } else { 9022 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9023 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9024 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9025 } 9026 if (Chain) 9027 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9028 SetCC2.getValue(1)); 9029 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9030 RHS = SDValue(); 9031 CC = SDValue(); 9032 return true; 9033 } 9034 } 9035 return false; 9036 } 9037