1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135 }
136 
137 /// Generate a libcall taking the given operands as arguments and returning a
138 /// result of type RetVT.
139 std::pair<SDValue, SDValue>
140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141                             ArrayRef<SDValue> Ops,
142                             MakeLibCallOptions CallOptions,
143                             const SDLoc &dl,
144                             SDValue InChain) const {
145   if (!InChain)
146     InChain = DAG.getEntryNode();
147 
148   TargetLowering::ArgListTy Args;
149   Args.reserve(Ops.size());
150 
151   TargetLowering::ArgListEntry Entry;
152   for (unsigned i = 0; i < Ops.size(); ++i) {
153     SDValue NewOp = Ops[i];
154     Entry.Node = NewOp;
155     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157                                                  CallOptions.IsSExt);
158     Entry.IsZExt = !Entry.IsSExt;
159 
160     if (CallOptions.IsSoften &&
161         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162       Entry.IsSExt = Entry.IsZExt = false;
163     }
164     Args.push_back(Entry);
165   }
166 
167   if (LC == RTLIB::UNKNOWN_LIBCALL)
168     report_fatal_error("Unsupported library call operation!");
169   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170                                          getPointerTy(DAG.getDataLayout()));
171 
172   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173   TargetLowering::CallLoweringInfo CLI(DAG);
174   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175   bool zeroExtend = !signExtend;
176 
177   if (CallOptions.IsSoften &&
178       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179     signExtend = zeroExtend = false;
180   }
181 
182   CLI.setDebugLoc(dl)
183       .setChain(InChain)
184       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185       .setNoReturn(CallOptions.DoesNotReturn)
186       .setDiscardResult(!CallOptions.IsReturnValueUsed)
187       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188       .setSExtResult(signExtend)
189       .setZExtResult(zeroExtend);
190   return LowerCallTo(CLI);
191 }
192 
193 bool TargetLowering::findOptimalMemOpLowering(
194     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195     unsigned SrcAS, const AttributeList &FuncAttributes) const {
196   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200 
201   if (VT == MVT::Other) {
202     // Use the largest integer type whose alignment constraints are satisfied.
203     // We only need to check DstAlign here as SrcAlign is always greater or
204     // equal to DstAlign (or zero).
205     VT = MVT::i64;
206     if (Op.isFixedDstAlign())
207       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210     assert(VT.isInteger());
211 
212     // Find the largest legal integer type.
213     MVT LVT = MVT::i64;
214     while (!isTypeLegal(LVT))
215       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216     assert(LVT.isInteger());
217 
218     // If the type we've chosen is larger than the largest legal integer type
219     // then use that instead.
220     if (VT.bitsGT(LVT))
221       VT = LVT;
222   }
223 
224   unsigned NumMemOps = 0;
225   uint64_t Size = Op.size();
226   while (Size) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(
262               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263               MachineMemOperand::MONone, &Fast) &&
264           Fast)
265         VTSize = Size;
266       else {
267         VT = NewVT;
268         VTSize = NewVTSize;
269       }
270     }
271 
272     if (++NumMemOps > Limit)
273       return false;
274 
275     MemOps.push_back(VT);
276     Size -= VTSize;
277   }
278 
279   return true;
280 }
281 
282 /// Soften the operands of a comparison. This code is shared among BR_CC,
283 /// SELECT_CC, and SETCC handlers.
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS) const {
289   SDValue Chain;
290   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291                              OldRHS, Chain);
292 }
293 
294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295                                          SDValue &NewLHS, SDValue &NewRHS,
296                                          ISD::CondCode &CCCode,
297                                          const SDLoc &dl, const SDValue OldLHS,
298                                          const SDValue OldRHS,
299                                          SDValue &Chain,
300                                          bool IsSignaling) const {
301   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302   // not supporting it. We can update this code when libgcc provides such
303   // functions.
304 
305   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
306          && "Unsupported setcc type!");
307 
308   // Expand into one or more soft-fp libcall(s).
309   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310   bool ShouldInvertCC = false;
311   switch (CCCode) {
312   case ISD::SETEQ:
313   case ISD::SETOEQ:
314     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317     break;
318   case ISD::SETNE:
319   case ISD::SETUNE:
320     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321           (VT == MVT::f64) ? RTLIB::UNE_F64 :
322           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323     break;
324   case ISD::SETGE:
325   case ISD::SETOGE:
326     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327           (VT == MVT::f64) ? RTLIB::OGE_F64 :
328           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329     break;
330   case ISD::SETLT:
331   case ISD::SETOLT:
332     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333           (VT == MVT::f64) ? RTLIB::OLT_F64 :
334           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335     break;
336   case ISD::SETLE:
337   case ISD::SETOLE:
338     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339           (VT == MVT::f64) ? RTLIB::OLE_F64 :
340           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341     break;
342   case ISD::SETGT:
343   case ISD::SETOGT:
344     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345           (VT == MVT::f64) ? RTLIB::OGT_F64 :
346           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347     break;
348   case ISD::SETO:
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUO:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     break;
356   case ISD::SETONE:
357     // SETONE = O && UNE
358     ShouldInvertCC = true;
359     LLVM_FALLTHROUGH;
360   case ISD::SETUEQ:
361     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362           (VT == MVT::f64) ? RTLIB::UO_F64 :
363           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367     break;
368   default:
369     // Invert CC for unordered comparisons
370     ShouldInvertCC = true;
371     switch (CCCode) {
372     case ISD::SETULT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374             (VT == MVT::f64) ? RTLIB::OGE_F64 :
375             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376       break;
377     case ISD::SETULE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379             (VT == MVT::f64) ? RTLIB::OGT_F64 :
380             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381       break;
382     case ISD::SETUGT:
383       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384             (VT == MVT::f64) ? RTLIB::OLE_F64 :
385             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386       break;
387     case ISD::SETUGE:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389             (VT == MVT::f64) ? RTLIB::OLT_F64 :
390             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391       break;
392     default: llvm_unreachable("Do not know how to soften this setcc!");
393     }
394   }
395 
396   // Use the target specific return value for comparions lib calls.
397   EVT RetVT = getCmpLibcallReturnType();
398   SDValue Ops[2] = {NewLHS, NewRHS};
399   TargetLowering::MakeLibCallOptions CallOptions;
400   EVT OpsVT[2] = { OldLHS.getValueType(),
401                    OldRHS.getValueType() };
402   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404   NewLHS = Call.first;
405   NewRHS = DAG.getConstant(0, dl, RetVT);
406 
407   CCCode = getCmpLibcallCC(LC1);
408   if (ShouldInvertCC) {
409     assert(RetVT.isInteger());
410     CCCode = getSetCCInverse(CCCode, RetVT);
411   }
412 
413   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414     // Update Chain.
415     Chain = Call.second;
416   } else {
417     EVT SetCCVT =
418         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421     CCCode = getCmpLibcallCC(LC2);
422     if (ShouldInvertCC)
423       CCCode = getSetCCInverse(CCCode, RetVT);
424     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425     if (Chain)
426       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427                           Call2.second);
428     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429                          Tmp.getValueType(), Tmp, NewLHS);
430     NewRHS = SDValue();
431   }
432 }
433 
434 /// Return the entry encoding for a jump table in the current function. The
435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436 unsigned TargetLowering::getJumpTableEncoding() const {
437   // In non-pic modes, just use the address of a block.
438   if (!isPositionIndependent())
439     return MachineJumpTableInfo::EK_BlockAddress;
440 
441   // In PIC mode, if the target supports a GPRel32 directive, use it.
442   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444 
445   // Otherwise, use a label difference.
446   return MachineJumpTableInfo::EK_LabelDifference32;
447 }
448 
449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450                                                  SelectionDAG &DAG) const {
451   // If our PIC model is GP relative, use the global offset table as the base.
452   unsigned JTEncoding = getJumpTableEncoding();
453 
454   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457 
458   return Table;
459 }
460 
461 /// This returns the relocation base for the given PIC jumptable, the same as
462 /// getPICJumpTableRelocBase, but as an MCExpr.
463 const MCExpr *
464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465                                              unsigned JTI,MCContext &Ctx) const{
466   // The normal PIC reloc base is the label at the start of the jump table.
467   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468 }
469 
470 bool
471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472   const TargetMachine &TM = getTargetMachine();
473   const GlobalValue *GV = GA->getGlobal();
474 
475   // If the address is not even local to this DSO we will have to load it from
476   // a got and then add the offset.
477   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478     return false;
479 
480   // If the code is position independent we will have to add a base register.
481   if (isPositionIndependent())
482     return false;
483 
484   // Otherwise we can do it.
485   return true;
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //  Optimization Methods
490 //===----------------------------------------------------------------------===//
491 
492 /// If the specified instruction has a constant integer operand and there are
493 /// bits set in that constant that are not demanded, then clear those bits and
494 /// return true.
495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496                                             const APInt &DemandedBits,
497                                             const APInt &DemandedElts,
498                                             TargetLoweringOpt &TLO) const {
499   SDLoc DL(Op);
500   unsigned Opcode = Op.getOpcode();
501 
502   // Do target-specific constant optimization.
503   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504     return TLO.New.getNode();
505 
506   // FIXME: ISD::SELECT, ISD::SELECT_CC
507   switch (Opcode) {
508   default:
509     break;
510   case ISD::XOR:
511   case ISD::AND:
512   case ISD::OR: {
513     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514     if (!Op1C || Op1C->isOpaque())
515       return false;
516 
517     // If this is a 'not' op, don't touch it because that's a canonical form.
518     const APInt &C = Op1C->getAPIntValue();
519     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520       return false;
521 
522     if (!C.isSubsetOf(DemandedBits)) {
523       EVT VT = Op.getValueType();
524       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526       return TLO.CombineTo(Op, NewOp);
527     }
528 
529     break;
530   }
531   }
532 
533   return false;
534 }
535 
536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537                                             const APInt &DemandedBits,
538                                             TargetLoweringOpt &TLO) const {
539   EVT VT = Op.getValueType();
540   APInt DemandedElts = VT.isVector()
541                            ? APInt::getAllOnes(VT.getVectorNumElements())
542                            : APInt(1, 1);
543   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544 }
545 
546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548 /// generalized for targets with other types of implicit widening casts.
549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550                                       const APInt &Demanded,
551                                       TargetLoweringOpt &TLO) const {
552   assert(Op.getNumOperands() == 2 &&
553          "ShrinkDemandedOp only supports binary operators!");
554   assert(Op.getNode()->getNumValues() == 1 &&
555          "ShrinkDemandedOp only supports nodes with one result!");
556 
557   SelectionDAG &DAG = TLO.DAG;
558   SDLoc dl(Op);
559 
560   // Early return, as this function cannot handle vector types.
561   if (Op.getValueType().isVector())
562     return false;
563 
564   // Don't do this if the node has another user, which may require the
565   // full value.
566   if (!Op.getNode()->hasOneUse())
567     return false;
568 
569   // Search for the smallest integer type with free casts to and from
570   // Op's type. For expedience, just check power-of-2 integer types.
571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572   unsigned DemandedSize = Demanded.getActiveBits();
573   unsigned SmallVTBits = DemandedSize;
574   if (!isPowerOf2_32(SmallVTBits))
575     SmallVTBits = NextPowerOf2(SmallVTBits);
576   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579         TLI.isZExtFree(SmallVT, Op.getValueType())) {
580       // We found a type with free casts.
581       SDValue X = DAG.getNode(
582           Op.getOpcode(), dl, SmallVT,
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
586       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587       return TLO.CombineTo(Op, Z);
588     }
589   }
590   return false;
591 }
592 
593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594                                           DAGCombinerInfo &DCI) const {
595   SelectionDAG &DAG = DCI.DAG;
596   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597                         !DCI.isBeforeLegalizeOps());
598   KnownBits Known;
599 
600   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601   if (Simplified) {
602     DCI.AddToWorklist(Op.getNode());
603     DCI.CommitTargetLoweringOpt(TLO);
604   }
605   return Simplified;
606 }
607 
608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609                                           KnownBits &Known,
610                                           TargetLoweringOpt &TLO,
611                                           unsigned Depth,
612                                           bool AssumeSingleUse) const {
613   EVT VT = Op.getValueType();
614 
615   // TODO: We can probably do more work on calculating the known bits and
616   // simplifying the operations for scalable vectors, but for now we just
617   // bail out.
618   if (VT.isScalableVector()) {
619     // Pretend we don't know anything for now.
620     Known = KnownBits(DemandedBits.getBitWidth());
621     return false;
622   }
623 
624   APInt DemandedElts = VT.isVector()
625                            ? APInt::getAllOnes(VT.getVectorNumElements())
626                            : APInt(1, 1);
627   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628                               AssumeSingleUse);
629 }
630 
631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632 // TODO: Under what circumstances can we create nodes? Constant folding?
633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635     SelectionDAG &DAG, unsigned Depth) const {
636   // Limit search depth.
637   if (Depth >= SelectionDAG::MaxRecursionDepth)
638     return SDValue();
639 
640   // Ignore UNDEFs.
641   if (Op.isUndef())
642     return SDValue();
643 
644   // Not demanding any bits/elts from Op.
645   if (DemandedBits == 0 || DemandedElts == 0)
646     return DAG.getUNDEF(Op.getValueType());
647 
648   bool IsLE = DAG.getDataLayout().isLittleEndian();
649   unsigned NumElts = DemandedElts.getBitWidth();
650   unsigned BitWidth = DemandedBits.getBitWidth();
651   KnownBits LHSKnown, RHSKnown;
652   switch (Op.getOpcode()) {
653   case ISD::BITCAST: {
654     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
655     EVT SrcVT = Src.getValueType();
656     EVT DstVT = Op.getValueType();
657     if (SrcVT == DstVT)
658       return Src;
659 
660     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
661     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
662     if (NumSrcEltBits == NumDstEltBits)
663       if (SDValue V = SimplifyMultipleUseDemandedBits(
664               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
665         return DAG.getBitcast(DstVT, V);
666 
667     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
674         unsigned BitOffset = EltOffset * NumSrcEltBits;
675         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
676         if (!Sub.isZero()) {
677           DemandedSrcBits |= Sub;
678           for (unsigned j = 0; j != NumElts; ++j)
679             if (DemandedElts[j])
680               DemandedSrcElts.setBit((j * Scale) + i);
681         }
682       }
683 
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687     }
688 
689     // TODO - bigendian once we have test coverage.
690     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (IsLE && DemandedElts == 1 &&
805         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnes(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnes(BitWidth);
955     DemandedElts = APInt::getAllOnes(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069         !DemandedSrcElts.isAllOnes()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnes())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOne())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1729 
1730     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1731     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1732       return TLO.CombineTo(Op, Op0);
1733 
1734     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1735       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1736       unsigned RevAmt = BitWidth - Amt;
1737 
1738       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1739       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1740       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1741       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1742                                Depth + 1))
1743         return true;
1744 
1745       // rot*(x, 0) --> x
1746       if (Amt == 0)
1747         return TLO.CombineTo(Op, Op0);
1748 
1749       // See if we don't demand either half of the rotated bits.
1750       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1751           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1752         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1753         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1754       }
1755       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1756           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1757         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1758         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1759       }
1760     }
1761 
1762     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1763     if (isPowerOf2_32(BitWidth)) {
1764       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1765       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1766                                Depth + 1))
1767         return true;
1768     }
1769     break;
1770   }
1771   case ISD::UMIN: {
1772     // Check if one arg is always less than (or equal) to the other arg.
1773     SDValue Op0 = Op.getOperand(0);
1774     SDValue Op1 = Op.getOperand(1);
1775     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1776     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1777     Known = KnownBits::umin(Known0, Known1);
1778     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1779       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1780     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1781       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1782     break;
1783   }
1784   case ISD::UMAX: {
1785     // Check if one arg is always greater than (or equal) to the other arg.
1786     SDValue Op0 = Op.getOperand(0);
1787     SDValue Op1 = Op.getOperand(1);
1788     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1789     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1790     Known = KnownBits::umax(Known0, Known1);
1791     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1792       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1793     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1794       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1795     break;
1796   }
1797   case ISD::BITREVERSE: {
1798     SDValue Src = Op.getOperand(0);
1799     APInt DemandedSrcBits = DemandedBits.reverseBits();
1800     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1801                              Depth + 1))
1802       return true;
1803     Known.One = Known2.One.reverseBits();
1804     Known.Zero = Known2.Zero.reverseBits();
1805     break;
1806   }
1807   case ISD::BSWAP: {
1808     SDValue Src = Op.getOperand(0);
1809 
1810     // If the only bits demanded come from one byte of the bswap result,
1811     // just shift the input byte into position to eliminate the bswap.
1812     unsigned NLZ = DemandedBits.countLeadingZeros();
1813     unsigned NTZ = DemandedBits.countTrailingZeros();
1814 
1815     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1816     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1817     // have 14 leading zeros, round to 8.
1818     NLZ = alignDown(NLZ, 8);
1819     NTZ = alignDown(NTZ, 8);
1820     // If we need exactly one byte, we can do this transformation.
1821     if (BitWidth - NLZ - NTZ == 8) {
1822       // Replace this with either a left or right shift to get the byte into
1823       // the right place.
1824       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1825       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1826         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1827         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1828         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1829         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1830         return TLO.CombineTo(Op, NewOp);
1831       }
1832     }
1833 
1834     APInt DemandedSrcBits = DemandedBits.byteSwap();
1835     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1836                              Depth + 1))
1837       return true;
1838     Known.One = Known2.One.byteSwap();
1839     Known.Zero = Known2.Zero.byteSwap();
1840     break;
1841   }
1842   case ISD::CTPOP: {
1843     // If only 1 bit is demanded, replace with PARITY as long as we're before
1844     // op legalization.
1845     // FIXME: Limit to scalars for now.
1846     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1847       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1848                                                Op.getOperand(0)));
1849 
1850     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1851     break;
1852   }
1853   case ISD::SIGN_EXTEND_INREG: {
1854     SDValue Op0 = Op.getOperand(0);
1855     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1856     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1857 
1858     // If we only care about the highest bit, don't bother shifting right.
1859     if (DemandedBits.isSignMask()) {
1860       unsigned MinSignedBits =
1861           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
1862       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1863       // However if the input is already sign extended we expect the sign
1864       // extension to be dropped altogether later and do not simplify.
1865       if (!AlreadySignExtended) {
1866         // Compute the correct shift amount type, which must be getShiftAmountTy
1867         // for scalar types after legalization.
1868         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
1869                                                getShiftAmountTy(VT, DL));
1870         return TLO.CombineTo(Op,
1871                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1872       }
1873     }
1874 
1875     // If none of the extended bits are demanded, eliminate the sextinreg.
1876     if (DemandedBits.getActiveBits() <= ExVTBits)
1877       return TLO.CombineTo(Op, Op0);
1878 
1879     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1880 
1881     // Since the sign extended bits are demanded, we know that the sign
1882     // bit is demanded.
1883     InputDemandedBits.setBit(ExVTBits - 1);
1884 
1885     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1886       return true;
1887     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1888 
1889     // If the sign bit of the input is known set or clear, then we know the
1890     // top bits of the result.
1891 
1892     // If the input sign bit is known zero, convert this into a zero extension.
1893     if (Known.Zero[ExVTBits - 1])
1894       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1895 
1896     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1897     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1898       Known.One.setBitsFrom(ExVTBits);
1899       Known.Zero &= Mask;
1900     } else { // Input sign bit unknown
1901       Known.Zero &= Mask;
1902       Known.One &= Mask;
1903     }
1904     break;
1905   }
1906   case ISD::BUILD_PAIR: {
1907     EVT HalfVT = Op.getOperand(0).getValueType();
1908     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1909 
1910     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1911     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1912 
1913     KnownBits KnownLo, KnownHi;
1914 
1915     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1916       return true;
1917 
1918     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1919       return true;
1920 
1921     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1922                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1923 
1924     Known.One = KnownLo.One.zext(BitWidth) |
1925                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1926     break;
1927   }
1928   case ISD::ZERO_EXTEND:
1929   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1930     SDValue Src = Op.getOperand(0);
1931     EVT SrcVT = Src.getValueType();
1932     unsigned InBits = SrcVT.getScalarSizeInBits();
1933     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1934     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1935 
1936     // If none of the top bits are demanded, convert this into an any_extend.
1937     if (DemandedBits.getActiveBits() <= InBits) {
1938       // If we only need the non-extended bits of the bottom element
1939       // then we can just bitcast to the result.
1940       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1941           VT.getSizeInBits() == SrcVT.getSizeInBits())
1942         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1943 
1944       unsigned Opc =
1945           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1946       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1947         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1948     }
1949 
1950     APInt InDemandedBits = DemandedBits.trunc(InBits);
1951     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1952     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1953                              Depth + 1))
1954       return true;
1955     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1956     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1957     Known = Known.zext(BitWidth);
1958 
1959     // Attempt to avoid multi-use ops if we don't need anything from them.
1960     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1961             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1962       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1963     break;
1964   }
1965   case ISD::SIGN_EXTEND:
1966   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1967     SDValue Src = Op.getOperand(0);
1968     EVT SrcVT = Src.getValueType();
1969     unsigned InBits = SrcVT.getScalarSizeInBits();
1970     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1971     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1972 
1973     // If none of the top bits are demanded, convert this into an any_extend.
1974     if (DemandedBits.getActiveBits() <= InBits) {
1975       // If we only need the non-extended bits of the bottom element
1976       // then we can just bitcast to the result.
1977       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1978           VT.getSizeInBits() == SrcVT.getSizeInBits())
1979         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1980 
1981       unsigned Opc =
1982           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1983       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1984         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1985     }
1986 
1987     APInt InDemandedBits = DemandedBits.trunc(InBits);
1988     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1989 
1990     // Since some of the sign extended bits are demanded, we know that the sign
1991     // bit is demanded.
1992     InDemandedBits.setBit(InBits - 1);
1993 
1994     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1995                              Depth + 1))
1996       return true;
1997     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1998     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1999 
2000     // If the sign bit is known one, the top bits match.
2001     Known = Known.sext(BitWidth);
2002 
2003     // If the sign bit is known zero, convert this to a zero extend.
2004     if (Known.isNonNegative()) {
2005       unsigned Opc =
2006           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2007       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2008         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2009     }
2010 
2011     // Attempt to avoid multi-use ops if we don't need anything from them.
2012     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2013             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2014       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2015     break;
2016   }
2017   case ISD::ANY_EXTEND:
2018   case ISD::ANY_EXTEND_VECTOR_INREG: {
2019     SDValue Src = Op.getOperand(0);
2020     EVT SrcVT = Src.getValueType();
2021     unsigned InBits = SrcVT.getScalarSizeInBits();
2022     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2023     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2024 
2025     // If we only need the bottom element then we can just bitcast.
2026     // TODO: Handle ANY_EXTEND?
2027     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2028         VT.getSizeInBits() == SrcVT.getSizeInBits())
2029       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2030 
2031     APInt InDemandedBits = DemandedBits.trunc(InBits);
2032     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2033     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2034                              Depth + 1))
2035       return true;
2036     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2037     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2038     Known = Known.anyext(BitWidth);
2039 
2040     // Attempt to avoid multi-use ops if we don't need anything from them.
2041     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2042             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2043       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2044     break;
2045   }
2046   case ISD::TRUNCATE: {
2047     SDValue Src = Op.getOperand(0);
2048 
2049     // Simplify the input, using demanded bit information, and compute the known
2050     // zero/one bits live out.
2051     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2052     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2053     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2054                              Depth + 1))
2055       return true;
2056     Known = Known.trunc(BitWidth);
2057 
2058     // Attempt to avoid multi-use ops if we don't need anything from them.
2059     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2060             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2061       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2062 
2063     // If the input is only used by this truncate, see if we can shrink it based
2064     // on the known demanded bits.
2065     if (Src.getNode()->hasOneUse()) {
2066       switch (Src.getOpcode()) {
2067       default:
2068         break;
2069       case ISD::SRL:
2070         // Shrink SRL by a constant if none of the high bits shifted in are
2071         // demanded.
2072         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2073           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2074           // undesirable.
2075           break;
2076 
2077         const APInt *ShAmtC =
2078             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2079         if (!ShAmtC || ShAmtC->uge(BitWidth))
2080           break;
2081         uint64_t ShVal = ShAmtC->getZExtValue();
2082 
2083         APInt HighBits =
2084             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2085         HighBits.lshrInPlace(ShVal);
2086         HighBits = HighBits.trunc(BitWidth);
2087 
2088         if (!(HighBits & DemandedBits)) {
2089           // None of the shifted in bits are needed.  Add a truncate of the
2090           // shift input, then shift it.
2091           SDValue NewShAmt = TLO.DAG.getConstant(
2092               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2093           SDValue NewTrunc =
2094               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2095           return TLO.CombineTo(
2096               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2097         }
2098         break;
2099       }
2100     }
2101 
2102     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2103     break;
2104   }
2105   case ISD::AssertZext: {
2106     // AssertZext demands all of the high bits, plus any of the low bits
2107     // demanded by its users.
2108     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2109     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2110     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2111                              TLO, Depth + 1))
2112       return true;
2113     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2114 
2115     Known.Zero |= ~InMask;
2116     break;
2117   }
2118   case ISD::EXTRACT_VECTOR_ELT: {
2119     SDValue Src = Op.getOperand(0);
2120     SDValue Idx = Op.getOperand(1);
2121     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2122     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2123 
2124     if (SrcEltCnt.isScalable())
2125       return false;
2126 
2127     // Demand the bits from every vector element without a constant index.
2128     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2129     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2130     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2131       if (CIdx->getAPIntValue().ult(NumSrcElts))
2132         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2133 
2134     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2135     // anything about the extended bits.
2136     APInt DemandedSrcBits = DemandedBits;
2137     if (BitWidth > EltBitWidth)
2138       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2139 
2140     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2141                              Depth + 1))
2142       return true;
2143 
2144     // Attempt to avoid multi-use ops if we don't need anything from them.
2145     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2146       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2147               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2148         SDValue NewOp =
2149             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2150         return TLO.CombineTo(Op, NewOp);
2151       }
2152     }
2153 
2154     Known = Known2;
2155     if (BitWidth > EltBitWidth)
2156       Known = Known.anyext(BitWidth);
2157     break;
2158   }
2159   case ISD::BITCAST: {
2160     SDValue Src = Op.getOperand(0);
2161     EVT SrcVT = Src.getValueType();
2162     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2163 
2164     // If this is an FP->Int bitcast and if the sign bit is the only
2165     // thing demanded, turn this into a FGETSIGN.
2166     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2167         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2168         SrcVT.isFloatingPoint()) {
2169       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2170       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2171       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2172           SrcVT != MVT::f128) {
2173         // Cannot eliminate/lower SHL for f128 yet.
2174         EVT Ty = OpVTLegal ? VT : MVT::i32;
2175         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2176         // place.  We expect the SHL to be eliminated by other optimizations.
2177         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2178         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2179         if (!OpVTLegal && OpVTSizeInBits > 32)
2180           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2181         unsigned ShVal = Op.getValueSizeInBits() - 1;
2182         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2183         return TLO.CombineTo(Op,
2184                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2185       }
2186     }
2187 
2188     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2189     // Demand the elt/bit if any of the original elts/bits are demanded.
2190     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2191       unsigned Scale = BitWidth / NumSrcEltBits;
2192       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2193       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2194       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2195       for (unsigned i = 0; i != Scale; ++i) {
2196         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2197         unsigned BitOffset = EltOffset * NumSrcEltBits;
2198         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2199         if (!Sub.isZero()) {
2200           DemandedSrcBits |= Sub;
2201           for (unsigned j = 0; j != NumElts; ++j)
2202             if (DemandedElts[j])
2203               DemandedSrcElts.setBit((j * Scale) + i);
2204         }
2205       }
2206 
2207       APInt KnownSrcUndef, KnownSrcZero;
2208       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2209                                      KnownSrcZero, TLO, Depth + 1))
2210         return true;
2211 
2212       KnownBits KnownSrcBits;
2213       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2214                                KnownSrcBits, TLO, Depth + 1))
2215         return true;
2216     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2217       // TODO - bigendian once we have test coverage.
2218       unsigned Scale = NumSrcEltBits / BitWidth;
2219       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2220       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2221       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2222       for (unsigned i = 0; i != NumElts; ++i)
2223         if (DemandedElts[i]) {
2224           unsigned Offset = (i % Scale) * BitWidth;
2225           DemandedSrcBits.insertBits(DemandedBits, Offset);
2226           DemandedSrcElts.setBit(i / Scale);
2227         }
2228 
2229       if (SrcVT.isVector()) {
2230         APInt KnownSrcUndef, KnownSrcZero;
2231         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2232                                        KnownSrcZero, TLO, Depth + 1))
2233           return true;
2234       }
2235 
2236       KnownBits KnownSrcBits;
2237       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2238                                KnownSrcBits, TLO, Depth + 1))
2239         return true;
2240     }
2241 
2242     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2243     // recursive call where Known may be useful to the caller.
2244     if (Depth > 0) {
2245       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2246       return false;
2247     }
2248     break;
2249   }
2250   case ISD::ADD:
2251   case ISD::MUL:
2252   case ISD::SUB: {
2253     // Add, Sub, and Mul don't demand any bits in positions beyond that
2254     // of the highest bit demanded of them.
2255     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2256     SDNodeFlags Flags = Op.getNode()->getFlags();
2257     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2258     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2259     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2260                              Depth + 1) ||
2261         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2262                              Depth + 1) ||
2263         // See if the operation should be performed at a smaller bit width.
2264         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2265       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2266         // Disable the nsw and nuw flags. We can no longer guarantee that we
2267         // won't wrap after simplification.
2268         Flags.setNoSignedWrap(false);
2269         Flags.setNoUnsignedWrap(false);
2270         SDValue NewOp =
2271             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2272         return TLO.CombineTo(Op, NewOp);
2273       }
2274       return true;
2275     }
2276 
2277     // Attempt to avoid multi-use ops if we don't need anything from them.
2278     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2279       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2280           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2281       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2282           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2283       if (DemandedOp0 || DemandedOp1) {
2284         Flags.setNoSignedWrap(false);
2285         Flags.setNoUnsignedWrap(false);
2286         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2287         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2288         SDValue NewOp =
2289             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2290         return TLO.CombineTo(Op, NewOp);
2291       }
2292     }
2293 
2294     // If we have a constant operand, we may be able to turn it into -1 if we
2295     // do not demand the high bits. This can make the constant smaller to
2296     // encode, allow more general folding, or match specialized instruction
2297     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2298     // is probably not useful (and could be detrimental).
2299     ConstantSDNode *C = isConstOrConstSplat(Op1);
2300     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2301     if (C && !C->isAllOnes() && !C->isOne() &&
2302         (C->getAPIntValue() | HighMask).isAllOnes()) {
2303       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2304       // Disable the nsw and nuw flags. We can no longer guarantee that we
2305       // won't wrap after simplification.
2306       Flags.setNoSignedWrap(false);
2307       Flags.setNoUnsignedWrap(false);
2308       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2309       return TLO.CombineTo(Op, NewOp);
2310     }
2311 
2312     LLVM_FALLTHROUGH;
2313   }
2314   default:
2315     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2316       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2317                                             Known, TLO, Depth))
2318         return true;
2319       break;
2320     }
2321 
2322     // Just use computeKnownBits to compute output bits.
2323     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2324     break;
2325   }
2326 
2327   // If we know the value of all of the demanded bits, return this as a
2328   // constant.
2329   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2330     // Avoid folding to a constant if any OpaqueConstant is involved.
2331     const SDNode *N = Op.getNode();
2332     for (SDNode *Op :
2333          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2334       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2335         if (C->isOpaque())
2336           return false;
2337     }
2338     if (VT.isInteger())
2339       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2340     if (VT.isFloatingPoint())
2341       return TLO.CombineTo(
2342           Op,
2343           TLO.DAG.getConstantFP(
2344               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2345   }
2346 
2347   return false;
2348 }
2349 
2350 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2351                                                 const APInt &DemandedElts,
2352                                                 APInt &KnownUndef,
2353                                                 APInt &KnownZero,
2354                                                 DAGCombinerInfo &DCI) const {
2355   SelectionDAG &DAG = DCI.DAG;
2356   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2357                         !DCI.isBeforeLegalizeOps());
2358 
2359   bool Simplified =
2360       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2361   if (Simplified) {
2362     DCI.AddToWorklist(Op.getNode());
2363     DCI.CommitTargetLoweringOpt(TLO);
2364   }
2365 
2366   return Simplified;
2367 }
2368 
2369 /// Given a vector binary operation and known undefined elements for each input
2370 /// operand, compute whether each element of the output is undefined.
2371 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2372                                          const APInt &UndefOp0,
2373                                          const APInt &UndefOp1) {
2374   EVT VT = BO.getValueType();
2375   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2376          "Vector binop only");
2377 
2378   EVT EltVT = VT.getVectorElementType();
2379   unsigned NumElts = VT.getVectorNumElements();
2380   assert(UndefOp0.getBitWidth() == NumElts &&
2381          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2382 
2383   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2384                                    const APInt &UndefVals) {
2385     if (UndefVals[Index])
2386       return DAG.getUNDEF(EltVT);
2387 
2388     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2389       // Try hard to make sure that the getNode() call is not creating temporary
2390       // nodes. Ignore opaque integers because they do not constant fold.
2391       SDValue Elt = BV->getOperand(Index);
2392       auto *C = dyn_cast<ConstantSDNode>(Elt);
2393       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2394         return Elt;
2395     }
2396 
2397     return SDValue();
2398   };
2399 
2400   APInt KnownUndef = APInt::getZero(NumElts);
2401   for (unsigned i = 0; i != NumElts; ++i) {
2402     // If both inputs for this element are either constant or undef and match
2403     // the element type, compute the constant/undef result for this element of
2404     // the vector.
2405     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2406     // not handle FP constants. The code within getNode() should be refactored
2407     // to avoid the danger of creating a bogus temporary node here.
2408     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2409     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2410     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2411       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2412         KnownUndef.setBit(i);
2413   }
2414   return KnownUndef;
2415 }
2416 
2417 bool TargetLowering::SimplifyDemandedVectorElts(
2418     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2419     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2420     bool AssumeSingleUse) const {
2421   EVT VT = Op.getValueType();
2422   unsigned Opcode = Op.getOpcode();
2423   APInt DemandedElts = OriginalDemandedElts;
2424   unsigned NumElts = DemandedElts.getBitWidth();
2425   assert(VT.isVector() && "Expected vector op");
2426 
2427   KnownUndef = KnownZero = APInt::getZero(NumElts);
2428 
2429   // TODO: For now we assume we know nothing about scalable vectors.
2430   if (VT.isScalableVector())
2431     return false;
2432 
2433   assert(VT.getVectorNumElements() == NumElts &&
2434          "Mask size mismatches value type element count!");
2435 
2436   // Undef operand.
2437   if (Op.isUndef()) {
2438     KnownUndef.setAllBits();
2439     return false;
2440   }
2441 
2442   // If Op has other users, assume that all elements are needed.
2443   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2444     DemandedElts.setAllBits();
2445 
2446   // Not demanding any elements from Op.
2447   if (DemandedElts == 0) {
2448     KnownUndef.setAllBits();
2449     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2450   }
2451 
2452   // Limit search depth.
2453   if (Depth >= SelectionDAG::MaxRecursionDepth)
2454     return false;
2455 
2456   SDLoc DL(Op);
2457   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2458   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2459 
2460   // Helper for demanding the specified elements and all the bits of both binary
2461   // operands.
2462   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2463     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2464                                                            TLO.DAG, Depth + 1);
2465     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2466                                                            TLO.DAG, Depth + 1);
2467     if (NewOp0 || NewOp1) {
2468       SDValue NewOp = TLO.DAG.getNode(
2469           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2470       return TLO.CombineTo(Op, NewOp);
2471     }
2472     return false;
2473   };
2474 
2475   switch (Opcode) {
2476   case ISD::SCALAR_TO_VECTOR: {
2477     if (!DemandedElts[0]) {
2478       KnownUndef.setAllBits();
2479       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2480     }
2481     SDValue ScalarSrc = Op.getOperand(0);
2482     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2483       SDValue Src = ScalarSrc.getOperand(0);
2484       SDValue Idx = ScalarSrc.getOperand(1);
2485       EVT SrcVT = Src.getValueType();
2486 
2487       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2488 
2489       if (SrcEltCnt.isScalable())
2490         return false;
2491 
2492       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2493       if (isNullConstant(Idx)) {
2494         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2495         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2496         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2497         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2498                                        TLO, Depth + 1))
2499           return true;
2500       }
2501     }
2502     KnownUndef.setHighBits(NumElts - 1);
2503     break;
2504   }
2505   case ISD::BITCAST: {
2506     SDValue Src = Op.getOperand(0);
2507     EVT SrcVT = Src.getValueType();
2508 
2509     // We only handle vectors here.
2510     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2511     if (!SrcVT.isVector())
2512       break;
2513 
2514     // Fast handling of 'identity' bitcasts.
2515     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2516     if (NumSrcElts == NumElts)
2517       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2518                                         KnownZero, TLO, Depth + 1);
2519 
2520     APInt SrcDemandedElts, SrcZero, SrcUndef;
2521 
2522     // Bitcast from 'large element' src vector to 'small element' vector, we
2523     // must demand a source element if any DemandedElt maps to it.
2524     if ((NumElts % NumSrcElts) == 0) {
2525       unsigned Scale = NumElts / NumSrcElts;
2526       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2527       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2528                                      TLO, Depth + 1))
2529         return true;
2530 
2531       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2532       // of the large element.
2533       // TODO - bigendian once we have test coverage.
2534       if (IsLE) {
2535         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2536         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2537         for (unsigned i = 0; i != NumElts; ++i)
2538           if (DemandedElts[i]) {
2539             unsigned Ofs = (i % Scale) * EltSizeInBits;
2540             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2541           }
2542 
2543         KnownBits Known;
2544         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2545                                  TLO, Depth + 1))
2546           return true;
2547       }
2548 
2549       // If the src element is zero/undef then all the output elements will be -
2550       // only demanded elements are guaranteed to be correct.
2551       for (unsigned i = 0; i != NumSrcElts; ++i) {
2552         if (SrcDemandedElts[i]) {
2553           if (SrcZero[i])
2554             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2555           if (SrcUndef[i])
2556             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2557         }
2558       }
2559     }
2560 
2561     // Bitcast from 'small element' src vector to 'large element' vector, we
2562     // demand all smaller source elements covered by the larger demanded element
2563     // of this vector.
2564     if ((NumSrcElts % NumElts) == 0) {
2565       unsigned Scale = NumSrcElts / NumElts;
2566       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2567       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2568                                      TLO, Depth + 1))
2569         return true;
2570 
2571       // If all the src elements covering an output element are zero/undef, then
2572       // the output element will be as well, assuming it was demanded.
2573       for (unsigned i = 0; i != NumElts; ++i) {
2574         if (DemandedElts[i]) {
2575           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2576             KnownZero.setBit(i);
2577           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2578             KnownUndef.setBit(i);
2579         }
2580       }
2581     }
2582     break;
2583   }
2584   case ISD::BUILD_VECTOR: {
2585     // Check all elements and simplify any unused elements with UNDEF.
2586     if (!DemandedElts.isAllOnes()) {
2587       // Don't simplify BROADCASTS.
2588       if (llvm::any_of(Op->op_values(),
2589                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2590         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2591         bool Updated = false;
2592         for (unsigned i = 0; i != NumElts; ++i) {
2593           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2594             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2595             KnownUndef.setBit(i);
2596             Updated = true;
2597           }
2598         }
2599         if (Updated)
2600           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2601       }
2602     }
2603     for (unsigned i = 0; i != NumElts; ++i) {
2604       SDValue SrcOp = Op.getOperand(i);
2605       if (SrcOp.isUndef()) {
2606         KnownUndef.setBit(i);
2607       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2608                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2609         KnownZero.setBit(i);
2610       }
2611     }
2612     break;
2613   }
2614   case ISD::CONCAT_VECTORS: {
2615     EVT SubVT = Op.getOperand(0).getValueType();
2616     unsigned NumSubVecs = Op.getNumOperands();
2617     unsigned NumSubElts = SubVT.getVectorNumElements();
2618     for (unsigned i = 0; i != NumSubVecs; ++i) {
2619       SDValue SubOp = Op.getOperand(i);
2620       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2621       APInt SubUndef, SubZero;
2622       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2623                                      Depth + 1))
2624         return true;
2625       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2626       KnownZero.insertBits(SubZero, i * NumSubElts);
2627     }
2628     break;
2629   }
2630   case ISD::INSERT_SUBVECTOR: {
2631     // Demand any elements from the subvector and the remainder from the src its
2632     // inserted into.
2633     SDValue Src = Op.getOperand(0);
2634     SDValue Sub = Op.getOperand(1);
2635     uint64_t Idx = Op.getConstantOperandVal(2);
2636     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2637     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2638     APInt DemandedSrcElts = DemandedElts;
2639     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2640 
2641     APInt SubUndef, SubZero;
2642     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2643                                    Depth + 1))
2644       return true;
2645 
2646     // If none of the src operand elements are demanded, replace it with undef.
2647     if (!DemandedSrcElts && !Src.isUndef())
2648       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2649                                                TLO.DAG.getUNDEF(VT), Sub,
2650                                                Op.getOperand(2)));
2651 
2652     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2653                                    TLO, Depth + 1))
2654       return true;
2655     KnownUndef.insertBits(SubUndef, Idx);
2656     KnownZero.insertBits(SubZero, Idx);
2657 
2658     // Attempt to avoid multi-use ops if we don't need anything from them.
2659     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2660       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2661           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2662       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2663           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2664       if (NewSrc || NewSub) {
2665         NewSrc = NewSrc ? NewSrc : Src;
2666         NewSub = NewSub ? NewSub : Sub;
2667         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2668                                         NewSub, Op.getOperand(2));
2669         return TLO.CombineTo(Op, NewOp);
2670       }
2671     }
2672     break;
2673   }
2674   case ISD::EXTRACT_SUBVECTOR: {
2675     // Offset the demanded elts by the subvector index.
2676     SDValue Src = Op.getOperand(0);
2677     if (Src.getValueType().isScalableVector())
2678       break;
2679     uint64_t Idx = Op.getConstantOperandVal(1);
2680     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2681     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2682 
2683     APInt SrcUndef, SrcZero;
2684     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2685                                    Depth + 1))
2686       return true;
2687     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2688     KnownZero = SrcZero.extractBits(NumElts, Idx);
2689 
2690     // Attempt to avoid multi-use ops if we don't need anything from them.
2691     if (!DemandedElts.isAllOnes()) {
2692       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2693           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2694       if (NewSrc) {
2695         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2696                                         Op.getOperand(1));
2697         return TLO.CombineTo(Op, NewOp);
2698       }
2699     }
2700     break;
2701   }
2702   case ISD::INSERT_VECTOR_ELT: {
2703     SDValue Vec = Op.getOperand(0);
2704     SDValue Scl = Op.getOperand(1);
2705     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2706 
2707     // For a legal, constant insertion index, if we don't need this insertion
2708     // then strip it, else remove it from the demanded elts.
2709     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2710       unsigned Idx = CIdx->getZExtValue();
2711       if (!DemandedElts[Idx])
2712         return TLO.CombineTo(Op, Vec);
2713 
2714       APInt DemandedVecElts(DemandedElts);
2715       DemandedVecElts.clearBit(Idx);
2716       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2717                                      KnownZero, TLO, Depth + 1))
2718         return true;
2719 
2720       KnownUndef.setBitVal(Idx, Scl.isUndef());
2721 
2722       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2723       break;
2724     }
2725 
2726     APInt VecUndef, VecZero;
2727     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2728                                    Depth + 1))
2729       return true;
2730     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2731     break;
2732   }
2733   case ISD::VSELECT: {
2734     // Try to transform the select condition based on the current demanded
2735     // elements.
2736     // TODO: If a condition element is undef, we can choose from one arm of the
2737     //       select (and if one arm is undef, then we can propagate that to the
2738     //       result).
2739     // TODO - add support for constant vselect masks (see IR version of this).
2740     APInt UnusedUndef, UnusedZero;
2741     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2742                                    UnusedZero, TLO, Depth + 1))
2743       return true;
2744 
2745     // See if we can simplify either vselect operand.
2746     APInt DemandedLHS(DemandedElts);
2747     APInt DemandedRHS(DemandedElts);
2748     APInt UndefLHS, ZeroLHS;
2749     APInt UndefRHS, ZeroRHS;
2750     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2751                                    ZeroLHS, TLO, Depth + 1))
2752       return true;
2753     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2754                                    ZeroRHS, TLO, Depth + 1))
2755       return true;
2756 
2757     KnownUndef = UndefLHS & UndefRHS;
2758     KnownZero = ZeroLHS & ZeroRHS;
2759     break;
2760   }
2761   case ISD::VECTOR_SHUFFLE: {
2762     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2763 
2764     // Collect demanded elements from shuffle operands..
2765     APInt DemandedLHS(NumElts, 0);
2766     APInt DemandedRHS(NumElts, 0);
2767     for (unsigned i = 0; i != NumElts; ++i) {
2768       int M = ShuffleMask[i];
2769       if (M < 0 || !DemandedElts[i])
2770         continue;
2771       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2772       if (M < (int)NumElts)
2773         DemandedLHS.setBit(M);
2774       else
2775         DemandedRHS.setBit(M - NumElts);
2776     }
2777 
2778     // See if we can simplify either shuffle operand.
2779     APInt UndefLHS, ZeroLHS;
2780     APInt UndefRHS, ZeroRHS;
2781     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2782                                    ZeroLHS, TLO, Depth + 1))
2783       return true;
2784     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2785                                    ZeroRHS, TLO, Depth + 1))
2786       return true;
2787 
2788     // Simplify mask using undef elements from LHS/RHS.
2789     bool Updated = false;
2790     bool IdentityLHS = true, IdentityRHS = true;
2791     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2792     for (unsigned i = 0; i != NumElts; ++i) {
2793       int &M = NewMask[i];
2794       if (M < 0)
2795         continue;
2796       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2797           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2798         Updated = true;
2799         M = -1;
2800       }
2801       IdentityLHS &= (M < 0) || (M == (int)i);
2802       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2803     }
2804 
2805     // Update legal shuffle masks based on demanded elements if it won't reduce
2806     // to Identity which can cause premature removal of the shuffle mask.
2807     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2808       SDValue LegalShuffle =
2809           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2810                                   NewMask, TLO.DAG);
2811       if (LegalShuffle)
2812         return TLO.CombineTo(Op, LegalShuffle);
2813     }
2814 
2815     // Propagate undef/zero elements from LHS/RHS.
2816     for (unsigned i = 0; i != NumElts; ++i) {
2817       int M = ShuffleMask[i];
2818       if (M < 0) {
2819         KnownUndef.setBit(i);
2820       } else if (M < (int)NumElts) {
2821         if (UndefLHS[M])
2822           KnownUndef.setBit(i);
2823         if (ZeroLHS[M])
2824           KnownZero.setBit(i);
2825       } else {
2826         if (UndefRHS[M - NumElts])
2827           KnownUndef.setBit(i);
2828         if (ZeroRHS[M - NumElts])
2829           KnownZero.setBit(i);
2830       }
2831     }
2832     break;
2833   }
2834   case ISD::ANY_EXTEND_VECTOR_INREG:
2835   case ISD::SIGN_EXTEND_VECTOR_INREG:
2836   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2837     APInt SrcUndef, SrcZero;
2838     SDValue Src = Op.getOperand(0);
2839     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2840     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2841     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2842                                    Depth + 1))
2843       return true;
2844     KnownZero = SrcZero.zextOrTrunc(NumElts);
2845     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2846 
2847     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2848         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2849         DemandedSrcElts == 1) {
2850       // aext - if we just need the bottom element then we can bitcast.
2851       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2852     }
2853 
2854     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2855       // zext(undef) upper bits are guaranteed to be zero.
2856       if (DemandedElts.isSubsetOf(KnownUndef))
2857         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2858       KnownUndef.clearAllBits();
2859 
2860       // zext - if we just need the bottom element then we can mask:
2861       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
2862       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
2863           Op->isOnlyUserOf(Src.getNode()) &&
2864           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
2865         SDLoc DL(Op);
2866         EVT SrcVT = Src.getValueType();
2867         EVT SrcSVT = SrcVT.getScalarType();
2868         SmallVector<SDValue> MaskElts;
2869         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
2870         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
2871         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
2872         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
2873                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
2874           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
2875           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
2876         }
2877       }
2878     }
2879     break;
2880   }
2881 
2882   // TODO: There are more binop opcodes that could be handled here - MIN,
2883   // MAX, saturated math, etc.
2884   case ISD::ADD: {
2885     SDValue Op0 = Op.getOperand(0);
2886     SDValue Op1 = Op.getOperand(1);
2887     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
2888       APInt UndefLHS, ZeroLHS;
2889       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2890                                      Depth + 1, /*AssumeSingleUse*/ true))
2891         return true;
2892     }
2893     LLVM_FALLTHROUGH;
2894   }
2895   case ISD::OR:
2896   case ISD::XOR:
2897   case ISD::SUB:
2898   case ISD::FADD:
2899   case ISD::FSUB:
2900   case ISD::FMUL:
2901   case ISD::FDIV:
2902   case ISD::FREM: {
2903     SDValue Op0 = Op.getOperand(0);
2904     SDValue Op1 = Op.getOperand(1);
2905 
2906     APInt UndefRHS, ZeroRHS;
2907     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2908                                    Depth + 1))
2909       return true;
2910     APInt UndefLHS, ZeroLHS;
2911     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2912                                    Depth + 1))
2913       return true;
2914 
2915     KnownZero = ZeroLHS & ZeroRHS;
2916     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2917 
2918     // Attempt to avoid multi-use ops if we don't need anything from them.
2919     // TODO - use KnownUndef to relax the demandedelts?
2920     if (!DemandedElts.isAllOnes())
2921       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2922         return true;
2923     break;
2924   }
2925   case ISD::SHL:
2926   case ISD::SRL:
2927   case ISD::SRA:
2928   case ISD::ROTL:
2929   case ISD::ROTR: {
2930     SDValue Op0 = Op.getOperand(0);
2931     SDValue Op1 = Op.getOperand(1);
2932 
2933     APInt UndefRHS, ZeroRHS;
2934     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2935                                    Depth + 1))
2936       return true;
2937     APInt UndefLHS, ZeroLHS;
2938     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2939                                    Depth + 1))
2940       return true;
2941 
2942     KnownZero = ZeroLHS;
2943     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2944 
2945     // Attempt to avoid multi-use ops if we don't need anything from them.
2946     // TODO - use KnownUndef to relax the demandedelts?
2947     if (!DemandedElts.isAllOnes())
2948       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2949         return true;
2950     break;
2951   }
2952   case ISD::MUL:
2953   case ISD::AND: {
2954     SDValue Op0 = Op.getOperand(0);
2955     SDValue Op1 = Op.getOperand(1);
2956 
2957     APInt SrcUndef, SrcZero;
2958     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2959                                    Depth + 1))
2960       return true;
2961     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2962                                    TLO, Depth + 1))
2963       return true;
2964 
2965     // If either side has a zero element, then the result element is zero, even
2966     // if the other is an UNDEF.
2967     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2968     // and then handle 'and' nodes with the rest of the binop opcodes.
2969     KnownZero |= SrcZero;
2970     KnownUndef &= SrcUndef;
2971     KnownUndef &= ~KnownZero;
2972 
2973     // Attempt to avoid multi-use ops if we don't need anything from them.
2974     // TODO - use KnownUndef to relax the demandedelts?
2975     if (!DemandedElts.isAllOnes())
2976       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2977         return true;
2978     break;
2979   }
2980   case ISD::TRUNCATE:
2981   case ISD::SIGN_EXTEND:
2982   case ISD::ZERO_EXTEND:
2983     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2984                                    KnownZero, TLO, Depth + 1))
2985       return true;
2986 
2987     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2988       // zext(undef) upper bits are guaranteed to be zero.
2989       if (DemandedElts.isSubsetOf(KnownUndef))
2990         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2991       KnownUndef.clearAllBits();
2992     }
2993     break;
2994   default: {
2995     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2996       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2997                                                   KnownZero, TLO, Depth))
2998         return true;
2999     } else {
3000       KnownBits Known;
3001       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3002       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3003                                TLO, Depth, AssumeSingleUse))
3004         return true;
3005     }
3006     break;
3007   }
3008   }
3009   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3010 
3011   // Constant fold all undef cases.
3012   // TODO: Handle zero cases as well.
3013   if (DemandedElts.isSubsetOf(KnownUndef))
3014     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3015 
3016   return false;
3017 }
3018 
3019 /// Determine which of the bits specified in Mask are known to be either zero or
3020 /// one and return them in the Known.
3021 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3022                                                    KnownBits &Known,
3023                                                    const APInt &DemandedElts,
3024                                                    const SelectionDAG &DAG,
3025                                                    unsigned Depth) const {
3026   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3027           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3028           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3029           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3030          "Should use MaskedValueIsZero if you don't know whether Op"
3031          " is a target node!");
3032   Known.resetAll();
3033 }
3034 
3035 void TargetLowering::computeKnownBitsForTargetInstr(
3036     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3037     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3038     unsigned Depth) const {
3039   Known.resetAll();
3040 }
3041 
3042 void TargetLowering::computeKnownBitsForFrameIndex(
3043   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3044   // The low bits are known zero if the pointer is aligned.
3045   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3046 }
3047 
3048 Align TargetLowering::computeKnownAlignForTargetInstr(
3049   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3050   unsigned Depth) const {
3051   return Align(1);
3052 }
3053 
3054 /// This method can be implemented by targets that want to expose additional
3055 /// information about sign bits to the DAG Combiner.
3056 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3057                                                          const APInt &,
3058                                                          const SelectionDAG &,
3059                                                          unsigned Depth) const {
3060   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3061           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3062           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3063           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3064          "Should use ComputeNumSignBits if you don't know whether Op"
3065          " is a target node!");
3066   return 1;
3067 }
3068 
3069 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3070   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3071   const MachineRegisterInfo &MRI, unsigned Depth) const {
3072   return 1;
3073 }
3074 
3075 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3076     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3077     TargetLoweringOpt &TLO, unsigned Depth) const {
3078   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3079           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3080           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3081           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3082          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3083          " is a target node!");
3084   return false;
3085 }
3086 
3087 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3088     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3089     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3090   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3091           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3092           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3093           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3094          "Should use SimplifyDemandedBits if you don't know whether Op"
3095          " is a target node!");
3096   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3097   return false;
3098 }
3099 
3100 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3101     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3102     SelectionDAG &DAG, unsigned Depth) const {
3103   assert(
3104       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3105        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3106        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3107        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3108       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3109       " is a target node!");
3110   return SDValue();
3111 }
3112 
3113 SDValue
3114 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3115                                         SDValue N1, MutableArrayRef<int> Mask,
3116                                         SelectionDAG &DAG) const {
3117   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3118   if (!LegalMask) {
3119     std::swap(N0, N1);
3120     ShuffleVectorSDNode::commuteMask(Mask);
3121     LegalMask = isShuffleMaskLegal(Mask, VT);
3122   }
3123 
3124   if (!LegalMask)
3125     return SDValue();
3126 
3127   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3128 }
3129 
3130 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3131   return nullptr;
3132 }
3133 
3134 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3135     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3136     bool PoisonOnly, unsigned Depth) const {
3137   assert(
3138       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3139        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3140        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3141        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3142       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3143       " is a target node!");
3144   return false;
3145 }
3146 
3147 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3148                                                   const SelectionDAG &DAG,
3149                                                   bool SNaN,
3150                                                   unsigned Depth) const {
3151   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3152           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3153           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3154           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3155          "Should use isKnownNeverNaN if you don't know whether Op"
3156          " is a target node!");
3157   return false;
3158 }
3159 
3160 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3161                                                const APInt &DemandedElts,
3162                                                APInt &UndefElts,
3163                                                unsigned Depth) const {
3164   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3165           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3166           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3167           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3168          "Should use isSplatValue if you don't know whether Op"
3169          " is a target node!");
3170   return false;
3171 }
3172 
3173 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3174 // work with truncating build vectors and vectors with elements of less than
3175 // 8 bits.
3176 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3177   if (!N)
3178     return false;
3179 
3180   APInt CVal;
3181   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3182     CVal = CN->getAPIntValue();
3183   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3184     auto *CN = BV->getConstantSplatNode();
3185     if (!CN)
3186       return false;
3187 
3188     // If this is a truncating build vector, truncate the splat value.
3189     // Otherwise, we may fail to match the expected values below.
3190     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3191     CVal = CN->getAPIntValue();
3192     if (BVEltWidth < CVal.getBitWidth())
3193       CVal = CVal.trunc(BVEltWidth);
3194   } else {
3195     return false;
3196   }
3197 
3198   switch (getBooleanContents(N->getValueType(0))) {
3199   case UndefinedBooleanContent:
3200     return CVal[0];
3201   case ZeroOrOneBooleanContent:
3202     return CVal.isOne();
3203   case ZeroOrNegativeOneBooleanContent:
3204     return CVal.isAllOnes();
3205   }
3206 
3207   llvm_unreachable("Invalid boolean contents");
3208 }
3209 
3210 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3211   if (!N)
3212     return false;
3213 
3214   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3215   if (!CN) {
3216     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3217     if (!BV)
3218       return false;
3219 
3220     // Only interested in constant splats, we don't care about undef
3221     // elements in identifying boolean constants and getConstantSplatNode
3222     // returns NULL if all ops are undef;
3223     CN = BV->getConstantSplatNode();
3224     if (!CN)
3225       return false;
3226   }
3227 
3228   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3229     return !CN->getAPIntValue()[0];
3230 
3231   return CN->isZero();
3232 }
3233 
3234 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3235                                        bool SExt) const {
3236   if (VT == MVT::i1)
3237     return N->isOne();
3238 
3239   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3240   switch (Cnt) {
3241   case TargetLowering::ZeroOrOneBooleanContent:
3242     // An extended value of 1 is always true, unless its original type is i1,
3243     // in which case it will be sign extended to -1.
3244     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3245   case TargetLowering::UndefinedBooleanContent:
3246   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3247     return N->isAllOnes() && SExt;
3248   }
3249   llvm_unreachable("Unexpected enumeration.");
3250 }
3251 
3252 /// This helper function of SimplifySetCC tries to optimize the comparison when
3253 /// either operand of the SetCC node is a bitwise-and instruction.
3254 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3255                                          ISD::CondCode Cond, const SDLoc &DL,
3256                                          DAGCombinerInfo &DCI) const {
3257   // Match these patterns in any of their permutations:
3258   // (X & Y) == Y
3259   // (X & Y) != Y
3260   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3261     std::swap(N0, N1);
3262 
3263   EVT OpVT = N0.getValueType();
3264   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3265       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3266     return SDValue();
3267 
3268   SDValue X, Y;
3269   if (N0.getOperand(0) == N1) {
3270     X = N0.getOperand(1);
3271     Y = N0.getOperand(0);
3272   } else if (N0.getOperand(1) == N1) {
3273     X = N0.getOperand(0);
3274     Y = N0.getOperand(1);
3275   } else {
3276     return SDValue();
3277   }
3278 
3279   SelectionDAG &DAG = DCI.DAG;
3280   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3281   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3282     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3283     // Note that where Y is variable and is known to have at most one bit set
3284     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3285     // equivalent when Y == 0.
3286     assert(OpVT.isInteger());
3287     Cond = ISD::getSetCCInverse(Cond, OpVT);
3288     if (DCI.isBeforeLegalizeOps() ||
3289         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3290       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3291   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3292     // If the target supports an 'and-not' or 'and-complement' logic operation,
3293     // try to use that to make a comparison operation more efficient.
3294     // But don't do this transform if the mask is a single bit because there are
3295     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3296     // 'rlwinm' on PPC).
3297 
3298     // Bail out if the compare operand that we want to turn into a zero is
3299     // already a zero (otherwise, infinite loop).
3300     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3301     if (YConst && YConst->isZero())
3302       return SDValue();
3303 
3304     // Transform this into: ~X & Y == 0.
3305     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3306     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3307     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3308   }
3309 
3310   return SDValue();
3311 }
3312 
3313 /// There are multiple IR patterns that could be checking whether certain
3314 /// truncation of a signed number would be lossy or not. The pattern which is
3315 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3316 /// We are looking for the following pattern: (KeptBits is a constant)
3317 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3318 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3319 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3320 /// We will unfold it into the natural trunc+sext pattern:
3321 ///   ((%x << C) a>> C) dstcond %x
3322 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3323 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3324     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3325     const SDLoc &DL) const {
3326   // We must be comparing with a constant.
3327   ConstantSDNode *C1;
3328   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3329     return SDValue();
3330 
3331   // N0 should be:  add %x, (1 << (KeptBits-1))
3332   if (N0->getOpcode() != ISD::ADD)
3333     return SDValue();
3334 
3335   // And we must be 'add'ing a constant.
3336   ConstantSDNode *C01;
3337   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3338     return SDValue();
3339 
3340   SDValue X = N0->getOperand(0);
3341   EVT XVT = X.getValueType();
3342 
3343   // Validate constants ...
3344 
3345   APInt I1 = C1->getAPIntValue();
3346 
3347   ISD::CondCode NewCond;
3348   if (Cond == ISD::CondCode::SETULT) {
3349     NewCond = ISD::CondCode::SETEQ;
3350   } else if (Cond == ISD::CondCode::SETULE) {
3351     NewCond = ISD::CondCode::SETEQ;
3352     // But need to 'canonicalize' the constant.
3353     I1 += 1;
3354   } else if (Cond == ISD::CondCode::SETUGT) {
3355     NewCond = ISD::CondCode::SETNE;
3356     // But need to 'canonicalize' the constant.
3357     I1 += 1;
3358   } else if (Cond == ISD::CondCode::SETUGE) {
3359     NewCond = ISD::CondCode::SETNE;
3360   } else
3361     return SDValue();
3362 
3363   APInt I01 = C01->getAPIntValue();
3364 
3365   auto checkConstants = [&I1, &I01]() -> bool {
3366     // Both of them must be power-of-two, and the constant from setcc is bigger.
3367     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3368   };
3369 
3370   if (checkConstants()) {
3371     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3372   } else {
3373     // What if we invert constants? (and the target predicate)
3374     I1.negate();
3375     I01.negate();
3376     assert(XVT.isInteger());
3377     NewCond = getSetCCInverse(NewCond, XVT);
3378     if (!checkConstants())
3379       return SDValue();
3380     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3381   }
3382 
3383   // They are power-of-two, so which bit is set?
3384   const unsigned KeptBits = I1.logBase2();
3385   const unsigned KeptBitsMinusOne = I01.logBase2();
3386 
3387   // Magic!
3388   if (KeptBits != (KeptBitsMinusOne + 1))
3389     return SDValue();
3390   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3391 
3392   // We don't want to do this in every single case.
3393   SelectionDAG &DAG = DCI.DAG;
3394   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3395           XVT, KeptBits))
3396     return SDValue();
3397 
3398   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3399   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3400 
3401   // Unfold into:  ((%x << C) a>> C) cond %x
3402   // Where 'cond' will be either 'eq' or 'ne'.
3403   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3404   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3405   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3406   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3407 
3408   return T2;
3409 }
3410 
3411 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3412 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3413     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3414     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3415   assert(isConstOrConstSplat(N1C) &&
3416          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3417          "Should be a comparison with 0.");
3418   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3419          "Valid only for [in]equality comparisons.");
3420 
3421   unsigned NewShiftOpcode;
3422   SDValue X, C, Y;
3423 
3424   SelectionDAG &DAG = DCI.DAG;
3425   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3426 
3427   // Look for '(C l>>/<< Y)'.
3428   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3429     // The shift should be one-use.
3430     if (!V.hasOneUse())
3431       return false;
3432     unsigned OldShiftOpcode = V.getOpcode();
3433     switch (OldShiftOpcode) {
3434     case ISD::SHL:
3435       NewShiftOpcode = ISD::SRL;
3436       break;
3437     case ISD::SRL:
3438       NewShiftOpcode = ISD::SHL;
3439       break;
3440     default:
3441       return false; // must be a logical shift.
3442     }
3443     // We should be shifting a constant.
3444     // FIXME: best to use isConstantOrConstantVector().
3445     C = V.getOperand(0);
3446     ConstantSDNode *CC =
3447         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3448     if (!CC)
3449       return false;
3450     Y = V.getOperand(1);
3451 
3452     ConstantSDNode *XC =
3453         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3454     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3455         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3456   };
3457 
3458   // LHS of comparison should be an one-use 'and'.
3459   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3460     return SDValue();
3461 
3462   X = N0.getOperand(0);
3463   SDValue Mask = N0.getOperand(1);
3464 
3465   // 'and' is commutative!
3466   if (!Match(Mask)) {
3467     std::swap(X, Mask);
3468     if (!Match(Mask))
3469       return SDValue();
3470   }
3471 
3472   EVT VT = X.getValueType();
3473 
3474   // Produce:
3475   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3476   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3477   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3478   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3479   return T2;
3480 }
3481 
3482 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3483 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3484 /// handle the commuted versions of these patterns.
3485 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3486                                            ISD::CondCode Cond, const SDLoc &DL,
3487                                            DAGCombinerInfo &DCI) const {
3488   unsigned BOpcode = N0.getOpcode();
3489   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3490          "Unexpected binop");
3491   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3492 
3493   // (X + Y) == X --> Y == 0
3494   // (X - Y) == X --> Y == 0
3495   // (X ^ Y) == X --> Y == 0
3496   SelectionDAG &DAG = DCI.DAG;
3497   EVT OpVT = N0.getValueType();
3498   SDValue X = N0.getOperand(0);
3499   SDValue Y = N0.getOperand(1);
3500   if (X == N1)
3501     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3502 
3503   if (Y != N1)
3504     return SDValue();
3505 
3506   // (X + Y) == Y --> X == 0
3507   // (X ^ Y) == Y --> X == 0
3508   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3509     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3510 
3511   // The shift would not be valid if the operands are boolean (i1).
3512   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3513     return SDValue();
3514 
3515   // (X - Y) == Y --> X == Y << 1
3516   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3517                                  !DCI.isBeforeLegalize());
3518   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3519   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3520   if (!DCI.isCalledByLegalizer())
3521     DCI.AddToWorklist(YShl1.getNode());
3522   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3523 }
3524 
3525 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3526                                       SDValue N0, const APInt &C1,
3527                                       ISD::CondCode Cond, const SDLoc &dl,
3528                                       SelectionDAG &DAG) {
3529   // Look through truncs that don't change the value of a ctpop.
3530   // FIXME: Add vector support? Need to be careful with setcc result type below.
3531   SDValue CTPOP = N0;
3532   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3533       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3534     CTPOP = N0.getOperand(0);
3535 
3536   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3537     return SDValue();
3538 
3539   EVT CTVT = CTPOP.getValueType();
3540   SDValue CTOp = CTPOP.getOperand(0);
3541 
3542   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3543   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3544   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3545     return SDValue();
3546 
3547   // (ctpop x) u< 2 -> (x & x-1) == 0
3548   // (ctpop x) u> 1 -> (x & x-1) != 0
3549   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3550     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3551     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3552       return SDValue();
3553     if (C1 == 0 && (Cond == ISD::SETULT))
3554       return SDValue(); // This is handled elsewhere.
3555 
3556     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3557 
3558     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3559     SDValue Result = CTOp;
3560     for (unsigned i = 0; i < Passes; i++) {
3561       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3562       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3563     }
3564     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3565     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3566   }
3567 
3568   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3569   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3570     // For scalars, keep CTPOP if it is legal or custom.
3571     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3572       return SDValue();
3573     // This is based on X86's custom lowering for CTPOP which produces more
3574     // instructions than the expansion here.
3575 
3576     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3577     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3578     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3579     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3580     assert(CTVT.isInteger());
3581     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3582     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3583     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3584     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3585     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3586     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3587     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3588   }
3589 
3590   return SDValue();
3591 }
3592 
3593 /// Try to simplify a setcc built with the specified operands and cc. If it is
3594 /// unable to simplify it, return a null SDValue.
3595 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3596                                       ISD::CondCode Cond, bool foldBooleans,
3597                                       DAGCombinerInfo &DCI,
3598                                       const SDLoc &dl) const {
3599   SelectionDAG &DAG = DCI.DAG;
3600   const DataLayout &Layout = DAG.getDataLayout();
3601   EVT OpVT = N0.getValueType();
3602 
3603   // Constant fold or commute setcc.
3604   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3605     return Fold;
3606 
3607   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3608   // TODO: Handle non-splat vector constants. All undef causes trouble.
3609   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3610   // infinite loop here when we encounter one.
3611   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3612   if (isConstOrConstSplat(N0) &&
3613       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3614       (DCI.isBeforeLegalizeOps() ||
3615        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3616     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3617 
3618   // If we have a subtract with the same 2 non-constant operands as this setcc
3619   // -- but in reverse order -- then try to commute the operands of this setcc
3620   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3621   // instruction on some targets.
3622   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3623       (DCI.isBeforeLegalizeOps() ||
3624        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3625       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3626       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3627     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3628 
3629   if (auto *N1C = isConstOrConstSplat(N1)) {
3630     const APInt &C1 = N1C->getAPIntValue();
3631 
3632     // Optimize some CTPOP cases.
3633     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3634       return V;
3635 
3636     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3637     // equality comparison, then we're just comparing whether X itself is
3638     // zero.
3639     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3640         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3641         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3642       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3643         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3644             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3645           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3646             // (srl (ctlz x), 5) == 0  -> X != 0
3647             // (srl (ctlz x), 5) != 1  -> X != 0
3648             Cond = ISD::SETNE;
3649           } else {
3650             // (srl (ctlz x), 5) != 0  -> X == 0
3651             // (srl (ctlz x), 5) == 1  -> X == 0
3652             Cond = ISD::SETEQ;
3653           }
3654           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3655           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3656                               Cond);
3657         }
3658       }
3659     }
3660   }
3661 
3662   // FIXME: Support vectors.
3663   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3664     const APInt &C1 = N1C->getAPIntValue();
3665 
3666     // (zext x) == C --> x == (trunc C)
3667     // (sext x) == C --> x == (trunc C)
3668     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3669         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3670       unsigned MinBits = N0.getValueSizeInBits();
3671       SDValue PreExt;
3672       bool Signed = false;
3673       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3674         // ZExt
3675         MinBits = N0->getOperand(0).getValueSizeInBits();
3676         PreExt = N0->getOperand(0);
3677       } else if (N0->getOpcode() == ISD::AND) {
3678         // DAGCombine turns costly ZExts into ANDs
3679         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3680           if ((C->getAPIntValue()+1).isPowerOf2()) {
3681             MinBits = C->getAPIntValue().countTrailingOnes();
3682             PreExt = N0->getOperand(0);
3683           }
3684       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3685         // SExt
3686         MinBits = N0->getOperand(0).getValueSizeInBits();
3687         PreExt = N0->getOperand(0);
3688         Signed = true;
3689       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3690         // ZEXTLOAD / SEXTLOAD
3691         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3692           MinBits = LN0->getMemoryVT().getSizeInBits();
3693           PreExt = N0;
3694         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3695           Signed = true;
3696           MinBits = LN0->getMemoryVT().getSizeInBits();
3697           PreExt = N0;
3698         }
3699       }
3700 
3701       // Figure out how many bits we need to preserve this constant.
3702       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
3703 
3704       // Make sure we're not losing bits from the constant.
3705       if (MinBits > 0 &&
3706           MinBits < C1.getBitWidth() &&
3707           MinBits >= ReqdBits) {
3708         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3709         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3710           // Will get folded away.
3711           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3712           if (MinBits == 1 && C1 == 1)
3713             // Invert the condition.
3714             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3715                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3716           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3717           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3718         }
3719 
3720         // If truncating the setcc operands is not desirable, we can still
3721         // simplify the expression in some cases:
3722         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3723         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3724         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3725         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3726         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3727         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3728         SDValue TopSetCC = N0->getOperand(0);
3729         unsigned N0Opc = N0->getOpcode();
3730         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3731         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3732             TopSetCC.getOpcode() == ISD::SETCC &&
3733             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3734             (isConstFalseVal(N1C) ||
3735              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3736 
3737           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3738                          (!N1C->isZero() && Cond == ISD::SETNE);
3739 
3740           if (!Inverse)
3741             return TopSetCC;
3742 
3743           ISD::CondCode InvCond = ISD::getSetCCInverse(
3744               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3745               TopSetCC.getOperand(0).getValueType());
3746           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3747                                       TopSetCC.getOperand(1),
3748                                       InvCond);
3749         }
3750       }
3751     }
3752 
3753     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3754     // equality or unsigned, and all 1 bits of the const are in the same
3755     // partial word, see if we can shorten the load.
3756     if (DCI.isBeforeLegalize() &&
3757         !ISD::isSignedIntSetCC(Cond) &&
3758         N0.getOpcode() == ISD::AND && C1 == 0 &&
3759         N0.getNode()->hasOneUse() &&
3760         isa<LoadSDNode>(N0.getOperand(0)) &&
3761         N0.getOperand(0).getNode()->hasOneUse() &&
3762         isa<ConstantSDNode>(N0.getOperand(1))) {
3763       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3764       APInt bestMask;
3765       unsigned bestWidth = 0, bestOffset = 0;
3766       if (Lod->isSimple() && Lod->isUnindexed()) {
3767         unsigned origWidth = N0.getValueSizeInBits();
3768         unsigned maskWidth = origWidth;
3769         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3770         // 8 bits, but have to be careful...
3771         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3772           origWidth = Lod->getMemoryVT().getSizeInBits();
3773         const APInt &Mask = N0.getConstantOperandAPInt(1);
3774         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3775           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3776           for (unsigned offset=0; offset<origWidth/width; offset++) {
3777             if (Mask.isSubsetOf(newMask)) {
3778               if (Layout.isLittleEndian())
3779                 bestOffset = (uint64_t)offset * (width/8);
3780               else
3781                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3782               bestMask = Mask.lshr(offset * (width/8) * 8);
3783               bestWidth = width;
3784               break;
3785             }
3786             newMask <<= width;
3787           }
3788         }
3789       }
3790       if (bestWidth) {
3791         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3792         if (newVT.isRound() &&
3793             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3794           SDValue Ptr = Lod->getBasePtr();
3795           if (bestOffset != 0)
3796             Ptr =
3797                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3798           SDValue NewLoad =
3799               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3800                           Lod->getPointerInfo().getWithOffset(bestOffset),
3801                           Lod->getOriginalAlign());
3802           return DAG.getSetCC(dl, VT,
3803                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3804                                       DAG.getConstant(bestMask.trunc(bestWidth),
3805                                                       dl, newVT)),
3806                               DAG.getConstant(0LL, dl, newVT), Cond);
3807         }
3808       }
3809     }
3810 
3811     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3812     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3813       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3814 
3815       // If the comparison constant has bits in the upper part, the
3816       // zero-extended value could never match.
3817       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3818                                               C1.getBitWidth() - InSize))) {
3819         switch (Cond) {
3820         case ISD::SETUGT:
3821         case ISD::SETUGE:
3822         case ISD::SETEQ:
3823           return DAG.getConstant(0, dl, VT);
3824         case ISD::SETULT:
3825         case ISD::SETULE:
3826         case ISD::SETNE:
3827           return DAG.getConstant(1, dl, VT);
3828         case ISD::SETGT:
3829         case ISD::SETGE:
3830           // True if the sign bit of C1 is set.
3831           return DAG.getConstant(C1.isNegative(), dl, VT);
3832         case ISD::SETLT:
3833         case ISD::SETLE:
3834           // True if the sign bit of C1 isn't set.
3835           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3836         default:
3837           break;
3838         }
3839       }
3840 
3841       // Otherwise, we can perform the comparison with the low bits.
3842       switch (Cond) {
3843       case ISD::SETEQ:
3844       case ISD::SETNE:
3845       case ISD::SETUGT:
3846       case ISD::SETUGE:
3847       case ISD::SETULT:
3848       case ISD::SETULE: {
3849         EVT newVT = N0.getOperand(0).getValueType();
3850         if (DCI.isBeforeLegalizeOps() ||
3851             (isOperationLegal(ISD::SETCC, newVT) &&
3852              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3853           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3854           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3855 
3856           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3857                                           NewConst, Cond);
3858           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3859         }
3860         break;
3861       }
3862       default:
3863         break; // todo, be more careful with signed comparisons
3864       }
3865     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3866                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3867                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3868                                       OpVT)) {
3869       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3870       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3871       EVT ExtDstTy = N0.getValueType();
3872       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3873 
3874       // If the constant doesn't fit into the number of bits for the source of
3875       // the sign extension, it is impossible for both sides to be equal.
3876       if (C1.getMinSignedBits() > ExtSrcTyBits)
3877         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3878 
3879       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3880              ExtDstTy != ExtSrcTy && "Unexpected types!");
3881       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3882       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3883                                    DAG.getConstant(Imm, dl, ExtDstTy));
3884       if (!DCI.isCalledByLegalizer())
3885         DCI.AddToWorklist(ZextOp.getNode());
3886       // Otherwise, make this a use of a zext.
3887       return DAG.getSetCC(dl, VT, ZextOp,
3888                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3889     } else if ((N1C->isZero() || N1C->isOne()) &&
3890                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3891       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3892       if (N0.getOpcode() == ISD::SETCC &&
3893           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3894           (N0.getValueType() == MVT::i1 ||
3895            getBooleanContents(N0.getOperand(0).getValueType()) ==
3896                        ZeroOrOneBooleanContent)) {
3897         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3898         if (TrueWhenTrue)
3899           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3900         // Invert the condition.
3901         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3902         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3903         if (DCI.isBeforeLegalizeOps() ||
3904             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3905           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3906       }
3907 
3908       if ((N0.getOpcode() == ISD::XOR ||
3909            (N0.getOpcode() == ISD::AND &&
3910             N0.getOperand(0).getOpcode() == ISD::XOR &&
3911             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3912           isOneConstant(N0.getOperand(1))) {
3913         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3914         // can only do this if the top bits are known zero.
3915         unsigned BitWidth = N0.getValueSizeInBits();
3916         if (DAG.MaskedValueIsZero(N0,
3917                                   APInt::getHighBitsSet(BitWidth,
3918                                                         BitWidth-1))) {
3919           // Okay, get the un-inverted input value.
3920           SDValue Val;
3921           if (N0.getOpcode() == ISD::XOR) {
3922             Val = N0.getOperand(0);
3923           } else {
3924             assert(N0.getOpcode() == ISD::AND &&
3925                     N0.getOperand(0).getOpcode() == ISD::XOR);
3926             // ((X^1)&1)^1 -> X & 1
3927             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3928                               N0.getOperand(0).getOperand(0),
3929                               N0.getOperand(1));
3930           }
3931 
3932           return DAG.getSetCC(dl, VT, Val, N1,
3933                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3934         }
3935       } else if (N1C->isOne()) {
3936         SDValue Op0 = N0;
3937         if (Op0.getOpcode() == ISD::TRUNCATE)
3938           Op0 = Op0.getOperand(0);
3939 
3940         if ((Op0.getOpcode() == ISD::XOR) &&
3941             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3942             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3943           SDValue XorLHS = Op0.getOperand(0);
3944           SDValue XorRHS = Op0.getOperand(1);
3945           // Ensure that the input setccs return an i1 type or 0/1 value.
3946           if (Op0.getValueType() == MVT::i1 ||
3947               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3948                       ZeroOrOneBooleanContent &&
3949                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3950                         ZeroOrOneBooleanContent)) {
3951             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3952             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3953             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3954           }
3955         }
3956         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3957           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3958           if (Op0.getValueType().bitsGT(VT))
3959             Op0 = DAG.getNode(ISD::AND, dl, VT,
3960                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3961                           DAG.getConstant(1, dl, VT));
3962           else if (Op0.getValueType().bitsLT(VT))
3963             Op0 = DAG.getNode(ISD::AND, dl, VT,
3964                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3965                         DAG.getConstant(1, dl, VT));
3966 
3967           return DAG.getSetCC(dl, VT, Op0,
3968                               DAG.getConstant(0, dl, Op0.getValueType()),
3969                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3970         }
3971         if (Op0.getOpcode() == ISD::AssertZext &&
3972             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3973           return DAG.getSetCC(dl, VT, Op0,
3974                               DAG.getConstant(0, dl, Op0.getValueType()),
3975                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3976       }
3977     }
3978 
3979     // Given:
3980     //   icmp eq/ne (urem %x, %y), 0
3981     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3982     //   icmp eq/ne %x, 0
3983     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3984         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3985       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3986       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3987       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3988         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3989     }
3990 
3991     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3992     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3993     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3994         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3995         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3996         N1C && N1C->isAllOnes()) {
3997       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3998                           DAG.getConstant(0, dl, OpVT),
3999                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4000     }
4001 
4002     if (SDValue V =
4003             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4004       return V;
4005   }
4006 
4007   // These simplifications apply to splat vectors as well.
4008   // TODO: Handle more splat vector cases.
4009   if (auto *N1C = isConstOrConstSplat(N1)) {
4010     const APInt &C1 = N1C->getAPIntValue();
4011 
4012     APInt MinVal, MaxVal;
4013     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4014     if (ISD::isSignedIntSetCC(Cond)) {
4015       MinVal = APInt::getSignedMinValue(OperandBitSize);
4016       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4017     } else {
4018       MinVal = APInt::getMinValue(OperandBitSize);
4019       MaxVal = APInt::getMaxValue(OperandBitSize);
4020     }
4021 
4022     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4023     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4024       // X >= MIN --> true
4025       if (C1 == MinVal)
4026         return DAG.getBoolConstant(true, dl, VT, OpVT);
4027 
4028       if (!VT.isVector()) { // TODO: Support this for vectors.
4029         // X >= C0 --> X > (C0 - 1)
4030         APInt C = C1 - 1;
4031         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4032         if ((DCI.isBeforeLegalizeOps() ||
4033              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4034             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4035                                   isLegalICmpImmediate(C.getSExtValue())))) {
4036           return DAG.getSetCC(dl, VT, N0,
4037                               DAG.getConstant(C, dl, N1.getValueType()),
4038                               NewCC);
4039         }
4040       }
4041     }
4042 
4043     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4044       // X <= MAX --> true
4045       if (C1 == MaxVal)
4046         return DAG.getBoolConstant(true, dl, VT, OpVT);
4047 
4048       // X <= C0 --> X < (C0 + 1)
4049       if (!VT.isVector()) { // TODO: Support this for vectors.
4050         APInt C = C1 + 1;
4051         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4052         if ((DCI.isBeforeLegalizeOps() ||
4053              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4054             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4055                                   isLegalICmpImmediate(C.getSExtValue())))) {
4056           return DAG.getSetCC(dl, VT, N0,
4057                               DAG.getConstant(C, dl, N1.getValueType()),
4058                               NewCC);
4059         }
4060       }
4061     }
4062 
4063     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4064       if (C1 == MinVal)
4065         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4066 
4067       // TODO: Support this for vectors after legalize ops.
4068       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4069         // Canonicalize setlt X, Max --> setne X, Max
4070         if (C1 == MaxVal)
4071           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4072 
4073         // If we have setult X, 1, turn it into seteq X, 0
4074         if (C1 == MinVal+1)
4075           return DAG.getSetCC(dl, VT, N0,
4076                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4077                               ISD::SETEQ);
4078       }
4079     }
4080 
4081     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4082       if (C1 == MaxVal)
4083         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4084 
4085       // TODO: Support this for vectors after legalize ops.
4086       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4087         // Canonicalize setgt X, Min --> setne X, Min
4088         if (C1 == MinVal)
4089           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4090 
4091         // If we have setugt X, Max-1, turn it into seteq X, Max
4092         if (C1 == MaxVal-1)
4093           return DAG.getSetCC(dl, VT, N0,
4094                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4095                               ISD::SETEQ);
4096       }
4097     }
4098 
4099     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4100       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4101       if (C1.isZero())
4102         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4103                 VT, N0, N1, Cond, DCI, dl))
4104           return CC;
4105 
4106       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4107       // For example, when high 32-bits of i64 X are known clear:
4108       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4109       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4110       bool CmpZero = N1C->getAPIntValue().isZero();
4111       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4112       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4113         // Match or(lo,shl(hi,bw/2)) pattern.
4114         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4115           unsigned EltBits = V.getScalarValueSizeInBits();
4116           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4117             return false;
4118           SDValue LHS = V.getOperand(0);
4119           SDValue RHS = V.getOperand(1);
4120           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4121           // Unshifted element must have zero upperbits.
4122           if (RHS.getOpcode() == ISD::SHL &&
4123               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4124               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4125               DAG.MaskedValueIsZero(LHS, HiBits)) {
4126             Lo = LHS;
4127             Hi = RHS.getOperand(0);
4128             return true;
4129           }
4130           if (LHS.getOpcode() == ISD::SHL &&
4131               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4132               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4133               DAG.MaskedValueIsZero(RHS, HiBits)) {
4134             Lo = RHS;
4135             Hi = LHS.getOperand(0);
4136             return true;
4137           }
4138           return false;
4139         };
4140 
4141         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4142           unsigned EltBits = N0.getScalarValueSizeInBits();
4143           unsigned HalfBits = EltBits / 2;
4144           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4145           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4146           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4147           SDValue NewN0 =
4148               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4149           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4150           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4151         };
4152 
4153         SDValue Lo, Hi;
4154         if (IsConcat(N0, Lo, Hi))
4155           return MergeConcat(Lo, Hi);
4156 
4157         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4158           SDValue Lo0, Lo1, Hi0, Hi1;
4159           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4160               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4161             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4162                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4163           }
4164         }
4165       }
4166     }
4167 
4168     // If we have "setcc X, C0", check to see if we can shrink the immediate
4169     // by changing cc.
4170     // TODO: Support this for vectors after legalize ops.
4171     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4172       // SETUGT X, SINTMAX  -> SETLT X, 0
4173       // SETUGE X, SINTMIN -> SETLT X, 0
4174       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4175           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4176         return DAG.getSetCC(dl, VT, N0,
4177                             DAG.getConstant(0, dl, N1.getValueType()),
4178                             ISD::SETLT);
4179 
4180       // SETULT X, SINTMIN  -> SETGT X, -1
4181       // SETULE X, SINTMAX  -> SETGT X, -1
4182       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4183           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4184         return DAG.getSetCC(dl, VT, N0,
4185                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4186                             ISD::SETGT);
4187     }
4188   }
4189 
4190   // Back to non-vector simplifications.
4191   // TODO: Can we do these for vector splats?
4192   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4193     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4194     const APInt &C1 = N1C->getAPIntValue();
4195     EVT ShValTy = N0.getValueType();
4196 
4197     // Fold bit comparisons when we can. This will result in an
4198     // incorrect value when boolean false is negative one, unless
4199     // the bitsize is 1 in which case the false value is the same
4200     // in practice regardless of the representation.
4201     if ((VT.getSizeInBits() == 1 ||
4202          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4203         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4204         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4205         N0.getOpcode() == ISD::AND) {
4206       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4207         EVT ShiftTy =
4208             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4209         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4210           // Perform the xform if the AND RHS is a single bit.
4211           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4212           if (AndRHS->getAPIntValue().isPowerOf2() &&
4213               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4214             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4215                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4216                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4217           }
4218         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4219           // (X & 8) == 8  -->  (X & 8) >> 3
4220           // Perform the xform if C1 is a single bit.
4221           unsigned ShCt = C1.logBase2();
4222           if (C1.isPowerOf2() &&
4223               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4224             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4225                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4226                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4227           }
4228         }
4229       }
4230     }
4231 
4232     if (C1.getMinSignedBits() <= 64 &&
4233         !isLegalICmpImmediate(C1.getSExtValue())) {
4234       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4235       // (X & -256) == 256 -> (X >> 8) == 1
4236       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4237           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4238         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4239           const APInt &AndRHSC = AndRHS->getAPIntValue();
4240           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4241             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4242             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4243               SDValue Shift =
4244                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4245                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4246               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4247               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4248             }
4249           }
4250         }
4251       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4252                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4253         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4254         // X <  0x100000000 -> (X >> 32) <  1
4255         // X >= 0x100000000 -> (X >> 32) >= 1
4256         // X <= 0x0ffffffff -> (X >> 32) <  1
4257         // X >  0x0ffffffff -> (X >> 32) >= 1
4258         unsigned ShiftBits;
4259         APInt NewC = C1;
4260         ISD::CondCode NewCond = Cond;
4261         if (AdjOne) {
4262           ShiftBits = C1.countTrailingOnes();
4263           NewC = NewC + 1;
4264           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4265         } else {
4266           ShiftBits = C1.countTrailingZeros();
4267         }
4268         NewC.lshrInPlace(ShiftBits);
4269         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4270             isLegalICmpImmediate(NewC.getSExtValue()) &&
4271             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4272           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4273                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4274           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4275           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4276         }
4277       }
4278     }
4279   }
4280 
4281   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4282     auto *CFP = cast<ConstantFPSDNode>(N1);
4283     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4284 
4285     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4286     // constant if knowing that the operand is non-nan is enough.  We prefer to
4287     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4288     // materialize 0.0.
4289     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4290       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4291 
4292     // setcc (fneg x), C -> setcc swap(pred) x, -C
4293     if (N0.getOpcode() == ISD::FNEG) {
4294       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4295       if (DCI.isBeforeLegalizeOps() ||
4296           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4297         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4298         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4299       }
4300     }
4301 
4302     // If the condition is not legal, see if we can find an equivalent one
4303     // which is legal.
4304     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4305       // If the comparison was an awkward floating-point == or != and one of
4306       // the comparison operands is infinity or negative infinity, convert the
4307       // condition to a less-awkward <= or >=.
4308       if (CFP->getValueAPF().isInfinity()) {
4309         bool IsNegInf = CFP->getValueAPF().isNegative();
4310         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4311         switch (Cond) {
4312         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4313         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4314         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4315         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4316         default: break;
4317         }
4318         if (NewCond != ISD::SETCC_INVALID &&
4319             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4320           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4321       }
4322     }
4323   }
4324 
4325   if (N0 == N1) {
4326     // The sext(setcc()) => setcc() optimization relies on the appropriate
4327     // constant being emitted.
4328     assert(!N0.getValueType().isInteger() &&
4329            "Integer types should be handled by FoldSetCC");
4330 
4331     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4332     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4333     if (UOF == 2) // FP operators that are undefined on NaNs.
4334       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4335     if (UOF == unsigned(EqTrue))
4336       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4337     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4338     // if it is not already.
4339     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4340     if (NewCond != Cond &&
4341         (DCI.isBeforeLegalizeOps() ||
4342                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4343       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4344   }
4345 
4346   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4347       N0.getValueType().isInteger()) {
4348     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4349         N0.getOpcode() == ISD::XOR) {
4350       // Simplify (X+Y) == (X+Z) -->  Y == Z
4351       if (N0.getOpcode() == N1.getOpcode()) {
4352         if (N0.getOperand(0) == N1.getOperand(0))
4353           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4354         if (N0.getOperand(1) == N1.getOperand(1))
4355           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4356         if (isCommutativeBinOp(N0.getOpcode())) {
4357           // If X op Y == Y op X, try other combinations.
4358           if (N0.getOperand(0) == N1.getOperand(1))
4359             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4360                                 Cond);
4361           if (N0.getOperand(1) == N1.getOperand(0))
4362             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4363                                 Cond);
4364         }
4365       }
4366 
4367       // If RHS is a legal immediate value for a compare instruction, we need
4368       // to be careful about increasing register pressure needlessly.
4369       bool LegalRHSImm = false;
4370 
4371       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4372         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4373           // Turn (X+C1) == C2 --> X == C2-C1
4374           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4375             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4376                                 DAG.getConstant(RHSC->getAPIntValue()-
4377                                                 LHSR->getAPIntValue(),
4378                                 dl, N0.getValueType()), Cond);
4379           }
4380 
4381           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4382           if (N0.getOpcode() == ISD::XOR)
4383             // If we know that all of the inverted bits are zero, don't bother
4384             // performing the inversion.
4385             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4386               return
4387                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4388                              DAG.getConstant(LHSR->getAPIntValue() ^
4389                                                RHSC->getAPIntValue(),
4390                                              dl, N0.getValueType()),
4391                              Cond);
4392         }
4393 
4394         // Turn (C1-X) == C2 --> X == C1-C2
4395         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4396           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4397             return
4398               DAG.getSetCC(dl, VT, N0.getOperand(1),
4399                            DAG.getConstant(SUBC->getAPIntValue() -
4400                                              RHSC->getAPIntValue(),
4401                                            dl, N0.getValueType()),
4402                            Cond);
4403           }
4404         }
4405 
4406         // Could RHSC fold directly into a compare?
4407         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4408           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4409       }
4410 
4411       // (X+Y) == X --> Y == 0 and similar folds.
4412       // Don't do this if X is an immediate that can fold into a cmp
4413       // instruction and X+Y has other uses. It could be an induction variable
4414       // chain, and the transform would increase register pressure.
4415       if (!LegalRHSImm || N0.hasOneUse())
4416         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4417           return V;
4418     }
4419 
4420     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4421         N1.getOpcode() == ISD::XOR)
4422       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4423         return V;
4424 
4425     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4426       return V;
4427   }
4428 
4429   // Fold remainder of division by a constant.
4430   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4431       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4432     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4433 
4434     // When division is cheap or optimizing for minimum size,
4435     // fall through to DIVREM creation by skipping this fold.
4436     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4437       if (N0.getOpcode() == ISD::UREM) {
4438         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4439           return Folded;
4440       } else if (N0.getOpcode() == ISD::SREM) {
4441         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4442           return Folded;
4443       }
4444     }
4445   }
4446 
4447   // Fold away ALL boolean setcc's.
4448   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4449     SDValue Temp;
4450     switch (Cond) {
4451     default: llvm_unreachable("Unknown integer setcc!");
4452     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4453       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4454       N0 = DAG.getNOT(dl, Temp, OpVT);
4455       if (!DCI.isCalledByLegalizer())
4456         DCI.AddToWorklist(Temp.getNode());
4457       break;
4458     case ISD::SETNE:  // X != Y   -->  (X^Y)
4459       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4460       break;
4461     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4462     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4463       Temp = DAG.getNOT(dl, N0, OpVT);
4464       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4465       if (!DCI.isCalledByLegalizer())
4466         DCI.AddToWorklist(Temp.getNode());
4467       break;
4468     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4469     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4470       Temp = DAG.getNOT(dl, N1, OpVT);
4471       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4472       if (!DCI.isCalledByLegalizer())
4473         DCI.AddToWorklist(Temp.getNode());
4474       break;
4475     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4476     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4477       Temp = DAG.getNOT(dl, N0, OpVT);
4478       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4479       if (!DCI.isCalledByLegalizer())
4480         DCI.AddToWorklist(Temp.getNode());
4481       break;
4482     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4483     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4484       Temp = DAG.getNOT(dl, N1, OpVT);
4485       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4486       break;
4487     }
4488     if (VT.getScalarType() != MVT::i1) {
4489       if (!DCI.isCalledByLegalizer())
4490         DCI.AddToWorklist(N0.getNode());
4491       // FIXME: If running after legalize, we probably can't do this.
4492       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4493       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4494     }
4495     return N0;
4496   }
4497 
4498   // Could not fold it.
4499   return SDValue();
4500 }
4501 
4502 /// Returns true (and the GlobalValue and the offset) if the node is a
4503 /// GlobalAddress + offset.
4504 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4505                                     int64_t &Offset) const {
4506 
4507   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4508 
4509   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4510     GA = GASD->getGlobal();
4511     Offset += GASD->getOffset();
4512     return true;
4513   }
4514 
4515   if (N->getOpcode() == ISD::ADD) {
4516     SDValue N1 = N->getOperand(0);
4517     SDValue N2 = N->getOperand(1);
4518     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4519       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4520         Offset += V->getSExtValue();
4521         return true;
4522       }
4523     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4524       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4525         Offset += V->getSExtValue();
4526         return true;
4527       }
4528     }
4529   }
4530 
4531   return false;
4532 }
4533 
4534 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4535                                           DAGCombinerInfo &DCI) const {
4536   // Default implementation: no optimization.
4537   return SDValue();
4538 }
4539 
4540 //===----------------------------------------------------------------------===//
4541 //  Inline Assembler Implementation Methods
4542 //===----------------------------------------------------------------------===//
4543 
4544 TargetLowering::ConstraintType
4545 TargetLowering::getConstraintType(StringRef Constraint) const {
4546   unsigned S = Constraint.size();
4547 
4548   if (S == 1) {
4549     switch (Constraint[0]) {
4550     default: break;
4551     case 'r':
4552       return C_RegisterClass;
4553     case 'm': // memory
4554     case 'o': // offsetable
4555     case 'V': // not offsetable
4556       return C_Memory;
4557     case 'n': // Simple Integer
4558     case 'E': // Floating Point Constant
4559     case 'F': // Floating Point Constant
4560       return C_Immediate;
4561     case 'i': // Simple Integer or Relocatable Constant
4562     case 's': // Relocatable Constant
4563     case 'p': // Address.
4564     case 'X': // Allow ANY value.
4565     case 'I': // Target registers.
4566     case 'J':
4567     case 'K':
4568     case 'L':
4569     case 'M':
4570     case 'N':
4571     case 'O':
4572     case 'P':
4573     case '<':
4574     case '>':
4575       return C_Other;
4576     }
4577   }
4578 
4579   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4580     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4581       return C_Memory;
4582     return C_Register;
4583   }
4584   return C_Unknown;
4585 }
4586 
4587 /// Try to replace an X constraint, which matches anything, with another that
4588 /// has more specific requirements based on the type of the corresponding
4589 /// operand.
4590 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4591   if (ConstraintVT.isInteger())
4592     return "r";
4593   if (ConstraintVT.isFloatingPoint())
4594     return "f"; // works for many targets
4595   return nullptr;
4596 }
4597 
4598 SDValue TargetLowering::LowerAsmOutputForConstraint(
4599     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4600     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4601   return SDValue();
4602 }
4603 
4604 /// Lower the specified operand into the Ops vector.
4605 /// If it is invalid, don't add anything to Ops.
4606 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4607                                                   std::string &Constraint,
4608                                                   std::vector<SDValue> &Ops,
4609                                                   SelectionDAG &DAG) const {
4610 
4611   if (Constraint.length() > 1) return;
4612 
4613   char ConstraintLetter = Constraint[0];
4614   switch (ConstraintLetter) {
4615   default: break;
4616   case 'X':    // Allows any operand
4617   case 'i':    // Simple Integer or Relocatable Constant
4618   case 'n':    // Simple Integer
4619   case 's': {  // Relocatable Constant
4620 
4621     ConstantSDNode *C;
4622     uint64_t Offset = 0;
4623 
4624     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4625     // etc., since getelementpointer is variadic. We can't use
4626     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4627     // while in this case the GA may be furthest from the root node which is
4628     // likely an ISD::ADD.
4629     while (true) {
4630       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4631         // gcc prints these as sign extended.  Sign extend value to 64 bits
4632         // now; without this it would get ZExt'd later in
4633         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4634         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4635         BooleanContent BCont = getBooleanContents(MVT::i64);
4636         ISD::NodeType ExtOpc =
4637             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4638         int64_t ExtVal =
4639             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4640         Ops.push_back(
4641             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4642         return;
4643       }
4644       if (ConstraintLetter != 'n') {
4645         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4646           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4647                                                    GA->getValueType(0),
4648                                                    Offset + GA->getOffset()));
4649           return;
4650         }
4651         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
4652           Ops.push_back(DAG.getTargetBlockAddress(
4653               BA->getBlockAddress(), BA->getValueType(0),
4654               Offset + BA->getOffset(), BA->getTargetFlags()));
4655           return;
4656         }
4657         if (isa<BasicBlockSDNode>(Op)) {
4658           Ops.push_back(Op);
4659           return;
4660         }
4661       }
4662       const unsigned OpCode = Op.getOpcode();
4663       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4664         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4665           Op = Op.getOperand(1);
4666         // Subtraction is not commutative.
4667         else if (OpCode == ISD::ADD &&
4668                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4669           Op = Op.getOperand(0);
4670         else
4671           return;
4672         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4673         continue;
4674       }
4675       return;
4676     }
4677     break;
4678   }
4679   }
4680 }
4681 
4682 std::pair<unsigned, const TargetRegisterClass *>
4683 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4684                                              StringRef Constraint,
4685                                              MVT VT) const {
4686   if (Constraint.empty() || Constraint[0] != '{')
4687     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4688   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4689 
4690   // Remove the braces from around the name.
4691   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4692 
4693   std::pair<unsigned, const TargetRegisterClass *> R =
4694       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4695 
4696   // Figure out which register class contains this reg.
4697   for (const TargetRegisterClass *RC : RI->regclasses()) {
4698     // If none of the value types for this register class are valid, we
4699     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4700     if (!isLegalRC(*RI, *RC))
4701       continue;
4702 
4703     for (const MCPhysReg &PR : *RC) {
4704       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4705         std::pair<unsigned, const TargetRegisterClass *> S =
4706             std::make_pair(PR, RC);
4707 
4708         // If this register class has the requested value type, return it,
4709         // otherwise keep searching and return the first class found
4710         // if no other is found which explicitly has the requested type.
4711         if (RI->isTypeLegalForClass(*RC, VT))
4712           return S;
4713         if (!R.second)
4714           R = S;
4715       }
4716     }
4717   }
4718 
4719   return R;
4720 }
4721 
4722 //===----------------------------------------------------------------------===//
4723 // Constraint Selection.
4724 
4725 /// Return true of this is an input operand that is a matching constraint like
4726 /// "4".
4727 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4728   assert(!ConstraintCode.empty() && "No known constraint!");
4729   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4730 }
4731 
4732 /// If this is an input matching constraint, this method returns the output
4733 /// operand it matches.
4734 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4735   assert(!ConstraintCode.empty() && "No known constraint!");
4736   return atoi(ConstraintCode.c_str());
4737 }
4738 
4739 /// Split up the constraint string from the inline assembly value into the
4740 /// specific constraints and their prefixes, and also tie in the associated
4741 /// operand values.
4742 /// If this returns an empty vector, and if the constraint string itself
4743 /// isn't empty, there was an error parsing.
4744 TargetLowering::AsmOperandInfoVector
4745 TargetLowering::ParseConstraints(const DataLayout &DL,
4746                                  const TargetRegisterInfo *TRI,
4747                                  const CallBase &Call) const {
4748   /// Information about all of the constraints.
4749   AsmOperandInfoVector ConstraintOperands;
4750   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4751   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4752 
4753   // Do a prepass over the constraints, canonicalizing them, and building up the
4754   // ConstraintOperands list.
4755   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4756   unsigned ResNo = 0; // ResNo - The result number of the next output.
4757 
4758   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4759     ConstraintOperands.emplace_back(std::move(CI));
4760     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4761 
4762     // Update multiple alternative constraint count.
4763     if (OpInfo.multipleAlternatives.size() > maCount)
4764       maCount = OpInfo.multipleAlternatives.size();
4765 
4766     OpInfo.ConstraintVT = MVT::Other;
4767 
4768     // Compute the value type for each operand.
4769     switch (OpInfo.Type) {
4770     case InlineAsm::isOutput:
4771       // Indirect outputs just consume an argument.
4772       if (OpInfo.isIndirect) {
4773         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4774         break;
4775       }
4776 
4777       // The return value of the call is this value.  As such, there is no
4778       // corresponding argument.
4779       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4780       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4781         OpInfo.ConstraintVT =
4782             getSimpleValueType(DL, STy->getElementType(ResNo));
4783       } else {
4784         assert(ResNo == 0 && "Asm only has one result!");
4785         OpInfo.ConstraintVT =
4786             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4787       }
4788       ++ResNo;
4789       break;
4790     case InlineAsm::isInput:
4791       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4792       break;
4793     case InlineAsm::isClobber:
4794       // Nothing to do.
4795       break;
4796     }
4797 
4798     if (OpInfo.CallOperandVal) {
4799       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4800       if (OpInfo.isIndirect) {
4801         OpTy = Call.getAttributes().getParamElementType(ArgNo);
4802         assert(OpTy && "Indirect opernad must have elementtype attribute");
4803       }
4804 
4805       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4806       if (StructType *STy = dyn_cast<StructType>(OpTy))
4807         if (STy->getNumElements() == 1)
4808           OpTy = STy->getElementType(0);
4809 
4810       // If OpTy is not a single value, it may be a struct/union that we
4811       // can tile with integers.
4812       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4813         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4814         switch (BitSize) {
4815         default: break;
4816         case 1:
4817         case 8:
4818         case 16:
4819         case 32:
4820         case 64:
4821         case 128:
4822           OpInfo.ConstraintVT =
4823               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4824           break;
4825         }
4826       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4827         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4828         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4829       } else {
4830         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4831       }
4832 
4833       ArgNo++;
4834     }
4835   }
4836 
4837   // If we have multiple alternative constraints, select the best alternative.
4838   if (!ConstraintOperands.empty()) {
4839     if (maCount) {
4840       unsigned bestMAIndex = 0;
4841       int bestWeight = -1;
4842       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4843       int weight = -1;
4844       unsigned maIndex;
4845       // Compute the sums of the weights for each alternative, keeping track
4846       // of the best (highest weight) one so far.
4847       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4848         int weightSum = 0;
4849         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4850              cIndex != eIndex; ++cIndex) {
4851           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4852           if (OpInfo.Type == InlineAsm::isClobber)
4853             continue;
4854 
4855           // If this is an output operand with a matching input operand,
4856           // look up the matching input. If their types mismatch, e.g. one
4857           // is an integer, the other is floating point, or their sizes are
4858           // different, flag it as an maCantMatch.
4859           if (OpInfo.hasMatchingInput()) {
4860             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4861             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4862               if ((OpInfo.ConstraintVT.isInteger() !=
4863                    Input.ConstraintVT.isInteger()) ||
4864                   (OpInfo.ConstraintVT.getSizeInBits() !=
4865                    Input.ConstraintVT.getSizeInBits())) {
4866                 weightSum = -1; // Can't match.
4867                 break;
4868               }
4869             }
4870           }
4871           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4872           if (weight == -1) {
4873             weightSum = -1;
4874             break;
4875           }
4876           weightSum += weight;
4877         }
4878         // Update best.
4879         if (weightSum > bestWeight) {
4880           bestWeight = weightSum;
4881           bestMAIndex = maIndex;
4882         }
4883       }
4884 
4885       // Now select chosen alternative in each constraint.
4886       for (AsmOperandInfo &cInfo : ConstraintOperands)
4887         if (cInfo.Type != InlineAsm::isClobber)
4888           cInfo.selectAlternative(bestMAIndex);
4889     }
4890   }
4891 
4892   // Check and hook up tied operands, choose constraint code to use.
4893   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4894        cIndex != eIndex; ++cIndex) {
4895     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4896 
4897     // If this is an output operand with a matching input operand, look up the
4898     // matching input. If their types mismatch, e.g. one is an integer, the
4899     // other is floating point, or their sizes are different, flag it as an
4900     // error.
4901     if (OpInfo.hasMatchingInput()) {
4902       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4903 
4904       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4905         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4906             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4907                                          OpInfo.ConstraintVT);
4908         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4909             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4910                                          Input.ConstraintVT);
4911         if ((OpInfo.ConstraintVT.isInteger() !=
4912              Input.ConstraintVT.isInteger()) ||
4913             (MatchRC.second != InputRC.second)) {
4914           report_fatal_error("Unsupported asm: input constraint"
4915                              " with a matching output constraint of"
4916                              " incompatible type!");
4917         }
4918       }
4919     }
4920   }
4921 
4922   return ConstraintOperands;
4923 }
4924 
4925 /// Return an integer indicating how general CT is.
4926 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4927   switch (CT) {
4928   case TargetLowering::C_Immediate:
4929   case TargetLowering::C_Other:
4930   case TargetLowering::C_Unknown:
4931     return 0;
4932   case TargetLowering::C_Register:
4933     return 1;
4934   case TargetLowering::C_RegisterClass:
4935     return 2;
4936   case TargetLowering::C_Memory:
4937     return 3;
4938   }
4939   llvm_unreachable("Invalid constraint type");
4940 }
4941 
4942 /// Examine constraint type and operand type and determine a weight value.
4943 /// This object must already have been set up with the operand type
4944 /// and the current alternative constraint selected.
4945 TargetLowering::ConstraintWeight
4946   TargetLowering::getMultipleConstraintMatchWeight(
4947     AsmOperandInfo &info, int maIndex) const {
4948   InlineAsm::ConstraintCodeVector *rCodes;
4949   if (maIndex >= (int)info.multipleAlternatives.size())
4950     rCodes = &info.Codes;
4951   else
4952     rCodes = &info.multipleAlternatives[maIndex].Codes;
4953   ConstraintWeight BestWeight = CW_Invalid;
4954 
4955   // Loop over the options, keeping track of the most general one.
4956   for (const std::string &rCode : *rCodes) {
4957     ConstraintWeight weight =
4958         getSingleConstraintMatchWeight(info, rCode.c_str());
4959     if (weight > BestWeight)
4960       BestWeight = weight;
4961   }
4962 
4963   return BestWeight;
4964 }
4965 
4966 /// Examine constraint type and operand type and determine a weight value.
4967 /// This object must already have been set up with the operand type
4968 /// and the current alternative constraint selected.
4969 TargetLowering::ConstraintWeight
4970   TargetLowering::getSingleConstraintMatchWeight(
4971     AsmOperandInfo &info, const char *constraint) const {
4972   ConstraintWeight weight = CW_Invalid;
4973   Value *CallOperandVal = info.CallOperandVal;
4974     // If we don't have a value, we can't do a match,
4975     // but allow it at the lowest weight.
4976   if (!CallOperandVal)
4977     return CW_Default;
4978   // Look at the constraint type.
4979   switch (*constraint) {
4980     case 'i': // immediate integer.
4981     case 'n': // immediate integer with a known value.
4982       if (isa<ConstantInt>(CallOperandVal))
4983         weight = CW_Constant;
4984       break;
4985     case 's': // non-explicit intregal immediate.
4986       if (isa<GlobalValue>(CallOperandVal))
4987         weight = CW_Constant;
4988       break;
4989     case 'E': // immediate float if host format.
4990     case 'F': // immediate float.
4991       if (isa<ConstantFP>(CallOperandVal))
4992         weight = CW_Constant;
4993       break;
4994     case '<': // memory operand with autodecrement.
4995     case '>': // memory operand with autoincrement.
4996     case 'm': // memory operand.
4997     case 'o': // offsettable memory operand
4998     case 'V': // non-offsettable memory operand
4999       weight = CW_Memory;
5000       break;
5001     case 'r': // general register.
5002     case 'g': // general register, memory operand or immediate integer.
5003               // note: Clang converts "g" to "imr".
5004       if (CallOperandVal->getType()->isIntegerTy())
5005         weight = CW_Register;
5006       break;
5007     case 'X': // any operand.
5008   default:
5009     weight = CW_Default;
5010     break;
5011   }
5012   return weight;
5013 }
5014 
5015 /// If there are multiple different constraints that we could pick for this
5016 /// operand (e.g. "imr") try to pick the 'best' one.
5017 /// This is somewhat tricky: constraints fall into four classes:
5018 ///    Other         -> immediates and magic values
5019 ///    Register      -> one specific register
5020 ///    RegisterClass -> a group of regs
5021 ///    Memory        -> memory
5022 /// Ideally, we would pick the most specific constraint possible: if we have
5023 /// something that fits into a register, we would pick it.  The problem here
5024 /// is that if we have something that could either be in a register or in
5025 /// memory that use of the register could cause selection of *other*
5026 /// operands to fail: they might only succeed if we pick memory.  Because of
5027 /// this the heuristic we use is:
5028 ///
5029 ///  1) If there is an 'other' constraint, and if the operand is valid for
5030 ///     that constraint, use it.  This makes us take advantage of 'i'
5031 ///     constraints when available.
5032 ///  2) Otherwise, pick the most general constraint present.  This prefers
5033 ///     'm' over 'r', for example.
5034 ///
5035 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5036                              const TargetLowering &TLI,
5037                              SDValue Op, SelectionDAG *DAG) {
5038   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5039   unsigned BestIdx = 0;
5040   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5041   int BestGenerality = -1;
5042 
5043   // Loop over the options, keeping track of the most general one.
5044   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5045     TargetLowering::ConstraintType CType =
5046       TLI.getConstraintType(OpInfo.Codes[i]);
5047 
5048     // Indirect 'other' or 'immediate' constraints are not allowed.
5049     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5050                                CType == TargetLowering::C_Register ||
5051                                CType == TargetLowering::C_RegisterClass))
5052       continue;
5053 
5054     // If this is an 'other' or 'immediate' constraint, see if the operand is
5055     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5056     // the operand is an integer in the range [0..31] we want to use I (saving a
5057     // load of a register), otherwise we must use 'r'.
5058     if ((CType == TargetLowering::C_Other ||
5059          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5060       assert(OpInfo.Codes[i].size() == 1 &&
5061              "Unhandled multi-letter 'other' constraint");
5062       std::vector<SDValue> ResultOps;
5063       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5064                                        ResultOps, *DAG);
5065       if (!ResultOps.empty()) {
5066         BestType = CType;
5067         BestIdx = i;
5068         break;
5069       }
5070     }
5071 
5072     // Things with matching constraints can only be registers, per gcc
5073     // documentation.  This mainly affects "g" constraints.
5074     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5075       continue;
5076 
5077     // This constraint letter is more general than the previous one, use it.
5078     int Generality = getConstraintGenerality(CType);
5079     if (Generality > BestGenerality) {
5080       BestType = CType;
5081       BestIdx = i;
5082       BestGenerality = Generality;
5083     }
5084   }
5085 
5086   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5087   OpInfo.ConstraintType = BestType;
5088 }
5089 
5090 /// Determines the constraint code and constraint type to use for the specific
5091 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5092 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5093                                             SDValue Op,
5094                                             SelectionDAG *DAG) const {
5095   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5096 
5097   // Single-letter constraints ('r') are very common.
5098   if (OpInfo.Codes.size() == 1) {
5099     OpInfo.ConstraintCode = OpInfo.Codes[0];
5100     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5101   } else {
5102     ChooseConstraint(OpInfo, *this, Op, DAG);
5103   }
5104 
5105   // 'X' matches anything.
5106   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5107     // Constants are handled elsewhere.  For Functions, the type here is the
5108     // type of the result, which is not what we want to look at; leave them
5109     // alone.
5110     Value *v = OpInfo.CallOperandVal;
5111     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5112       return;
5113     }
5114 
5115     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5116       OpInfo.ConstraintCode = "i";
5117       return;
5118     }
5119 
5120     // Otherwise, try to resolve it to something we know about by looking at
5121     // the actual operand type.
5122     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5123       OpInfo.ConstraintCode = Repl;
5124       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5125     }
5126   }
5127 }
5128 
5129 /// Given an exact SDIV by a constant, create a multiplication
5130 /// with the multiplicative inverse of the constant.
5131 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5132                               const SDLoc &dl, SelectionDAG &DAG,
5133                               SmallVectorImpl<SDNode *> &Created) {
5134   SDValue Op0 = N->getOperand(0);
5135   SDValue Op1 = N->getOperand(1);
5136   EVT VT = N->getValueType(0);
5137   EVT SVT = VT.getScalarType();
5138   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5139   EVT ShSVT = ShVT.getScalarType();
5140 
5141   bool UseSRA = false;
5142   SmallVector<SDValue, 16> Shifts, Factors;
5143 
5144   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5145     if (C->isZero())
5146       return false;
5147     APInt Divisor = C->getAPIntValue();
5148     unsigned Shift = Divisor.countTrailingZeros();
5149     if (Shift) {
5150       Divisor.ashrInPlace(Shift);
5151       UseSRA = true;
5152     }
5153     // Calculate the multiplicative inverse, using Newton's method.
5154     APInt t;
5155     APInt Factor = Divisor;
5156     while ((t = Divisor * Factor) != 1)
5157       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5158     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5159     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5160     return true;
5161   };
5162 
5163   // Collect all magic values from the build vector.
5164   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5165     return SDValue();
5166 
5167   SDValue Shift, Factor;
5168   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5169     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5170     Factor = DAG.getBuildVector(VT, dl, Factors);
5171   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5172     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5173            "Expected matchUnaryPredicate to return one element for scalable "
5174            "vectors");
5175     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5176     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5177   } else {
5178     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5179     Shift = Shifts[0];
5180     Factor = Factors[0];
5181   }
5182 
5183   SDValue Res = Op0;
5184 
5185   // Shift the value upfront if it is even, so the LSB is one.
5186   if (UseSRA) {
5187     // TODO: For UDIV use SRL instead of SRA.
5188     SDNodeFlags Flags;
5189     Flags.setExact(true);
5190     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5191     Created.push_back(Res.getNode());
5192   }
5193 
5194   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5195 }
5196 
5197 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5198                               SelectionDAG &DAG,
5199                               SmallVectorImpl<SDNode *> &Created) const {
5200   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5202   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5203     return SDValue(N, 0); // Lower SDIV as SDIV
5204   return SDValue();
5205 }
5206 
5207 /// Given an ISD::SDIV node expressing a divide by constant,
5208 /// return a DAG expression to select that will generate the same value by
5209 /// multiplying by a magic number.
5210 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5211 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5212                                   bool IsAfterLegalization,
5213                                   SmallVectorImpl<SDNode *> &Created) const {
5214   SDLoc dl(N);
5215   EVT VT = N->getValueType(0);
5216   EVT SVT = VT.getScalarType();
5217   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5218   EVT ShSVT = ShVT.getScalarType();
5219   unsigned EltBits = VT.getScalarSizeInBits();
5220   EVT MulVT;
5221 
5222   // Check to see if we can do this.
5223   // FIXME: We should be more aggressive here.
5224   if (!isTypeLegal(VT)) {
5225     // Limit this to simple scalars for now.
5226     if (VT.isVector() || !VT.isSimple())
5227       return SDValue();
5228 
5229     // If this type will be promoted to a large enough type with a legal
5230     // multiply operation, we can go ahead and do this transform.
5231     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5232       return SDValue();
5233 
5234     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5235     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5236         !isOperationLegal(ISD::MUL, MulVT))
5237       return SDValue();
5238   }
5239 
5240   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5241   if (N->getFlags().hasExact())
5242     return BuildExactSDIV(*this, N, dl, DAG, Created);
5243 
5244   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5245 
5246   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5247     if (C->isZero())
5248       return false;
5249 
5250     const APInt &Divisor = C->getAPIntValue();
5251     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5252     int NumeratorFactor = 0;
5253     int ShiftMask = -1;
5254 
5255     if (Divisor.isOne() || Divisor.isAllOnes()) {
5256       // If d is +1/-1, we just multiply the numerator by +1/-1.
5257       NumeratorFactor = Divisor.getSExtValue();
5258       magics.Magic = 0;
5259       magics.ShiftAmount = 0;
5260       ShiftMask = 0;
5261     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5262       // If d > 0 and m < 0, add the numerator.
5263       NumeratorFactor = 1;
5264     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5265       // If d < 0 and m > 0, subtract the numerator.
5266       NumeratorFactor = -1;
5267     }
5268 
5269     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5270     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5271     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5272     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5273     return true;
5274   };
5275 
5276   SDValue N0 = N->getOperand(0);
5277   SDValue N1 = N->getOperand(1);
5278 
5279   // Collect the shifts / magic values from each element.
5280   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5281     return SDValue();
5282 
5283   SDValue MagicFactor, Factor, Shift, ShiftMask;
5284   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5285     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5286     Factor = DAG.getBuildVector(VT, dl, Factors);
5287     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5288     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5289   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5290     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5291            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5292            "Expected matchUnaryPredicate to return one element for scalable "
5293            "vectors");
5294     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5295     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5296     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5297     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5298   } else {
5299     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5300     MagicFactor = MagicFactors[0];
5301     Factor = Factors[0];
5302     Shift = Shifts[0];
5303     ShiftMask = ShiftMasks[0];
5304   }
5305 
5306   // Multiply the numerator (operand 0) by the magic value.
5307   // FIXME: We should support doing a MUL in a wider type.
5308   auto GetMULHS = [&](SDValue X, SDValue Y) {
5309     // If the type isn't legal, use a wider mul of the the type calculated
5310     // earlier.
5311     if (!isTypeLegal(VT)) {
5312       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5313       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5314       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5315       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5316                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5317       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5318     }
5319 
5320     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5321       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5322     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5323       SDValue LoHi =
5324           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5325       return SDValue(LoHi.getNode(), 1);
5326     }
5327     return SDValue();
5328   };
5329 
5330   SDValue Q = GetMULHS(N0, MagicFactor);
5331   if (!Q)
5332     return SDValue();
5333 
5334   Created.push_back(Q.getNode());
5335 
5336   // (Optionally) Add/subtract the numerator using Factor.
5337   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5338   Created.push_back(Factor.getNode());
5339   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5340   Created.push_back(Q.getNode());
5341 
5342   // Shift right algebraic by shift value.
5343   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5344   Created.push_back(Q.getNode());
5345 
5346   // Extract the sign bit, mask it and add it to the quotient.
5347   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5348   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5349   Created.push_back(T.getNode());
5350   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5351   Created.push_back(T.getNode());
5352   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5353 }
5354 
5355 /// Given an ISD::UDIV node expressing a divide by constant,
5356 /// return a DAG expression to select that will generate the same value by
5357 /// multiplying by a magic number.
5358 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5359 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5360                                   bool IsAfterLegalization,
5361                                   SmallVectorImpl<SDNode *> &Created) const {
5362   SDLoc dl(N);
5363   EVT VT = N->getValueType(0);
5364   EVT SVT = VT.getScalarType();
5365   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5366   EVT ShSVT = ShVT.getScalarType();
5367   unsigned EltBits = VT.getScalarSizeInBits();
5368   EVT MulVT;
5369 
5370   // Check to see if we can do this.
5371   // FIXME: We should be more aggressive here.
5372   if (!isTypeLegal(VT)) {
5373     // Limit this to simple scalars for now.
5374     if (VT.isVector() || !VT.isSimple())
5375       return SDValue();
5376 
5377     // If this type will be promoted to a large enough type with a legal
5378     // multiply operation, we can go ahead and do this transform.
5379     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5380       return SDValue();
5381 
5382     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5383     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5384         !isOperationLegal(ISD::MUL, MulVT))
5385       return SDValue();
5386   }
5387 
5388   bool UseNPQ = false;
5389   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5390 
5391   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5392     if (C->isZero())
5393       return false;
5394     // FIXME: We should use a narrower constant when the upper
5395     // bits are known to be zero.
5396     const APInt& Divisor = C->getAPIntValue();
5397     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5398     unsigned PreShift = 0, PostShift = 0;
5399 
5400     // If the divisor is even, we can avoid using the expensive fixup by
5401     // shifting the divided value upfront.
5402     if (magics.IsAdd != 0 && !Divisor[0]) {
5403       PreShift = Divisor.countTrailingZeros();
5404       // Get magic number for the shifted divisor.
5405       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5406       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5407     }
5408 
5409     APInt Magic = magics.Magic;
5410 
5411     unsigned SelNPQ;
5412     if (magics.IsAdd == 0 || Divisor.isOne()) {
5413       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5414              "We shouldn't generate an undefined shift!");
5415       PostShift = magics.ShiftAmount;
5416       SelNPQ = false;
5417     } else {
5418       PostShift = magics.ShiftAmount - 1;
5419       SelNPQ = true;
5420     }
5421 
5422     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5423     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5424     NPQFactors.push_back(
5425         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5426                                : APInt::getZero(EltBits),
5427                         dl, SVT));
5428     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5429     UseNPQ |= SelNPQ;
5430     return true;
5431   };
5432 
5433   SDValue N0 = N->getOperand(0);
5434   SDValue N1 = N->getOperand(1);
5435 
5436   // Collect the shifts/magic values from each element.
5437   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5438     return SDValue();
5439 
5440   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5441   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5442     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5443     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5444     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5445     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5446   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5447     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5448            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5449            "Expected matchUnaryPredicate to return one for scalable vectors");
5450     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5451     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5452     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5453     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5454   } else {
5455     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5456     PreShift = PreShifts[0];
5457     MagicFactor = MagicFactors[0];
5458     PostShift = PostShifts[0];
5459   }
5460 
5461   SDValue Q = N0;
5462   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5463   Created.push_back(Q.getNode());
5464 
5465   // FIXME: We should support doing a MUL in a wider type.
5466   auto GetMULHU = [&](SDValue X, SDValue Y) {
5467     // If the type isn't legal, use a wider mul of the the type calculated
5468     // earlier.
5469     if (!isTypeLegal(VT)) {
5470       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5471       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5472       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5473       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5474                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5475       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5476     }
5477 
5478     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5479       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5480     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5481       SDValue LoHi =
5482           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5483       return SDValue(LoHi.getNode(), 1);
5484     }
5485     return SDValue(); // No mulhu or equivalent
5486   };
5487 
5488   // Multiply the numerator (operand 0) by the magic value.
5489   Q = GetMULHU(Q, MagicFactor);
5490   if (!Q)
5491     return SDValue();
5492 
5493   Created.push_back(Q.getNode());
5494 
5495   if (UseNPQ) {
5496     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5497     Created.push_back(NPQ.getNode());
5498 
5499     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5500     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5501     if (VT.isVector())
5502       NPQ = GetMULHU(NPQ, NPQFactor);
5503     else
5504       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5505 
5506     Created.push_back(NPQ.getNode());
5507 
5508     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5509     Created.push_back(Q.getNode());
5510   }
5511 
5512   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5513   Created.push_back(Q.getNode());
5514 
5515   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5516 
5517   SDValue One = DAG.getConstant(1, dl, VT);
5518   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5519   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5520 }
5521 
5522 /// If all values in Values that *don't* match the predicate are same 'splat'
5523 /// value, then replace all values with that splat value.
5524 /// Else, if AlternativeReplacement was provided, then replace all values that
5525 /// do match predicate with AlternativeReplacement value.
5526 static void
5527 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5528                           std::function<bool(SDValue)> Predicate,
5529                           SDValue AlternativeReplacement = SDValue()) {
5530   SDValue Replacement;
5531   // Is there a value for which the Predicate does *NOT* match? What is it?
5532   auto SplatValue = llvm::find_if_not(Values, Predicate);
5533   if (SplatValue != Values.end()) {
5534     // Does Values consist only of SplatValue's and values matching Predicate?
5535     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5536           return Value == *SplatValue || Predicate(Value);
5537         })) // Then we shall replace values matching predicate with SplatValue.
5538       Replacement = *SplatValue;
5539   }
5540   if (!Replacement) {
5541     // Oops, we did not find the "baseline" splat value.
5542     if (!AlternativeReplacement)
5543       return; // Nothing to do.
5544     // Let's replace with provided value then.
5545     Replacement = AlternativeReplacement;
5546   }
5547   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5548 }
5549 
5550 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5551 /// where the divisor is constant and the comparison target is zero,
5552 /// return a DAG expression that will generate the same comparison result
5553 /// using only multiplications, additions and shifts/rotations.
5554 /// Ref: "Hacker's Delight" 10-17.
5555 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5556                                         SDValue CompTargetNode,
5557                                         ISD::CondCode Cond,
5558                                         DAGCombinerInfo &DCI,
5559                                         const SDLoc &DL) const {
5560   SmallVector<SDNode *, 5> Built;
5561   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5562                                          DCI, DL, Built)) {
5563     for (SDNode *N : Built)
5564       DCI.AddToWorklist(N);
5565     return Folded;
5566   }
5567 
5568   return SDValue();
5569 }
5570 
5571 SDValue
5572 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5573                                   SDValue CompTargetNode, ISD::CondCode Cond,
5574                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5575                                   SmallVectorImpl<SDNode *> &Created) const {
5576   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5577   // - D must be constant, with D = D0 * 2^K where D0 is odd
5578   // - P is the multiplicative inverse of D0 modulo 2^W
5579   // - Q = floor(((2^W) - 1) / D)
5580   // where W is the width of the common type of N and D.
5581   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5582          "Only applicable for (in)equality comparisons.");
5583 
5584   SelectionDAG &DAG = DCI.DAG;
5585 
5586   EVT VT = REMNode.getValueType();
5587   EVT SVT = VT.getScalarType();
5588   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5589   EVT ShSVT = ShVT.getScalarType();
5590 
5591   // If MUL is unavailable, we cannot proceed in any case.
5592   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5593     return SDValue();
5594 
5595   bool ComparingWithAllZeros = true;
5596   bool AllComparisonsWithNonZerosAreTautological = true;
5597   bool HadTautologicalLanes = false;
5598   bool AllLanesAreTautological = true;
5599   bool HadEvenDivisor = false;
5600   bool AllDivisorsArePowerOfTwo = true;
5601   bool HadTautologicalInvertedLanes = false;
5602   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5603 
5604   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5605     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5606     if (CDiv->isZero())
5607       return false;
5608 
5609     const APInt &D = CDiv->getAPIntValue();
5610     const APInt &Cmp = CCmp->getAPIntValue();
5611 
5612     ComparingWithAllZeros &= Cmp.isZero();
5613 
5614     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5615     // if C2 is not less than C1, the comparison is always false.
5616     // But we will only be able to produce the comparison that will give the
5617     // opposive tautological answer. So this lane would need to be fixed up.
5618     bool TautologicalInvertedLane = D.ule(Cmp);
5619     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5620 
5621     // If all lanes are tautological (either all divisors are ones, or divisor
5622     // is not greater than the constant we are comparing with),
5623     // we will prefer to avoid the fold.
5624     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5625     HadTautologicalLanes |= TautologicalLane;
5626     AllLanesAreTautological &= TautologicalLane;
5627 
5628     // If we are comparing with non-zero, we need'll need  to subtract said
5629     // comparison value from the LHS. But there is no point in doing that if
5630     // every lane where we are comparing with non-zero is tautological..
5631     if (!Cmp.isZero())
5632       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5633 
5634     // Decompose D into D0 * 2^K
5635     unsigned K = D.countTrailingZeros();
5636     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5637     APInt D0 = D.lshr(K);
5638 
5639     // D is even if it has trailing zeros.
5640     HadEvenDivisor |= (K != 0);
5641     // D is a power-of-two if D0 is one.
5642     // If all divisors are power-of-two, we will prefer to avoid the fold.
5643     AllDivisorsArePowerOfTwo &= D0.isOne();
5644 
5645     // P = inv(D0, 2^W)
5646     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5647     unsigned W = D.getBitWidth();
5648     APInt P = D0.zext(W + 1)
5649                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5650                   .trunc(W);
5651     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5652     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5653 
5654     // Q = floor((2^W - 1) u/ D)
5655     // R = ((2^W - 1) u% D)
5656     APInt Q, R;
5657     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5658 
5659     // If we are comparing with zero, then that comparison constant is okay,
5660     // else it may need to be one less than that.
5661     if (Cmp.ugt(R))
5662       Q -= 1;
5663 
5664     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5665            "We are expecting that K is always less than all-ones for ShSVT");
5666 
5667     // If the lane is tautological the result can be constant-folded.
5668     if (TautologicalLane) {
5669       // Set P and K amount to a bogus values so we can try to splat them.
5670       P = 0;
5671       K = -1;
5672       // And ensure that comparison constant is tautological,
5673       // it will always compare true/false.
5674       Q = -1;
5675     }
5676 
5677     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5678     KAmts.push_back(
5679         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5680     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5681     return true;
5682   };
5683 
5684   SDValue N = REMNode.getOperand(0);
5685   SDValue D = REMNode.getOperand(1);
5686 
5687   // Collect the values from each element.
5688   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5689     return SDValue();
5690 
5691   // If all lanes are tautological, the result can be constant-folded.
5692   if (AllLanesAreTautological)
5693     return SDValue();
5694 
5695   // If this is a urem by a powers-of-two, avoid the fold since it can be
5696   // best implemented as a bit test.
5697   if (AllDivisorsArePowerOfTwo)
5698     return SDValue();
5699 
5700   SDValue PVal, KVal, QVal;
5701   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5702     if (HadTautologicalLanes) {
5703       // Try to turn PAmts into a splat, since we don't care about the values
5704       // that are currently '0'. If we can't, just keep '0'`s.
5705       turnVectorIntoSplatVector(PAmts, isNullConstant);
5706       // Try to turn KAmts into a splat, since we don't care about the values
5707       // that are currently '-1'. If we can't, change them to '0'`s.
5708       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5709                                 DAG.getConstant(0, DL, ShSVT));
5710     }
5711 
5712     PVal = DAG.getBuildVector(VT, DL, PAmts);
5713     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5714     QVal = DAG.getBuildVector(VT, DL, QAmts);
5715   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5716     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5717            "Expected matchBinaryPredicate to return one element for "
5718            "SPLAT_VECTORs");
5719     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5720     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5721     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5722   } else {
5723     PVal = PAmts[0];
5724     KVal = KAmts[0];
5725     QVal = QAmts[0];
5726   }
5727 
5728   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5729     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5730       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5731     assert(CompTargetNode.getValueType() == N.getValueType() &&
5732            "Expecting that the types on LHS and RHS of comparisons match.");
5733     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5734   }
5735 
5736   // (mul N, P)
5737   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5738   Created.push_back(Op0.getNode());
5739 
5740   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5741   // divisors as a performance improvement, since rotating by 0 is a no-op.
5742   if (HadEvenDivisor) {
5743     // We need ROTR to do this.
5744     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5745       return SDValue();
5746     // UREM: (rotr (mul N, P), K)
5747     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5748     Created.push_back(Op0.getNode());
5749   }
5750 
5751   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5752   SDValue NewCC =
5753       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5754                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5755   if (!HadTautologicalInvertedLanes)
5756     return NewCC;
5757 
5758   // If any lanes previously compared always-false, the NewCC will give
5759   // always-true result for them, so we need to fixup those lanes.
5760   // Or the other way around for inequality predicate.
5761   assert(VT.isVector() && "Can/should only get here for vectors.");
5762   Created.push_back(NewCC.getNode());
5763 
5764   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5765   // if C2 is not less than C1, the comparison is always false.
5766   // But we have produced the comparison that will give the
5767   // opposive tautological answer. So these lanes would need to be fixed up.
5768   SDValue TautologicalInvertedChannels =
5769       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5770   Created.push_back(TautologicalInvertedChannels.getNode());
5771 
5772   // NOTE: we avoid letting illegal types through even if we're before legalize
5773   // ops – legalization has a hard time producing good code for this.
5774   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5775     // If we have a vector select, let's replace the comparison results in the
5776     // affected lanes with the correct tautological result.
5777     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5778                                               DL, SETCCVT, SETCCVT);
5779     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5780                        Replacement, NewCC);
5781   }
5782 
5783   // Else, we can just invert the comparison result in the appropriate lanes.
5784   //
5785   // NOTE: see the note above VSELECT above.
5786   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5787     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5788                        TautologicalInvertedChannels);
5789 
5790   return SDValue(); // Don't know how to lower.
5791 }
5792 
5793 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5794 /// where the divisor is constant and the comparison target is zero,
5795 /// return a DAG expression that will generate the same comparison result
5796 /// using only multiplications, additions and shifts/rotations.
5797 /// Ref: "Hacker's Delight" 10-17.
5798 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5799                                         SDValue CompTargetNode,
5800                                         ISD::CondCode Cond,
5801                                         DAGCombinerInfo &DCI,
5802                                         const SDLoc &DL) const {
5803   SmallVector<SDNode *, 7> Built;
5804   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5805                                          DCI, DL, Built)) {
5806     assert(Built.size() <= 7 && "Max size prediction failed.");
5807     for (SDNode *N : Built)
5808       DCI.AddToWorklist(N);
5809     return Folded;
5810   }
5811 
5812   return SDValue();
5813 }
5814 
5815 SDValue
5816 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5817                                   SDValue CompTargetNode, ISD::CondCode Cond,
5818                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5819                                   SmallVectorImpl<SDNode *> &Created) const {
5820   // Fold:
5821   //   (seteq/ne (srem N, D), 0)
5822   // To:
5823   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5824   //
5825   // - D must be constant, with D = D0 * 2^K where D0 is odd
5826   // - P is the multiplicative inverse of D0 modulo 2^W
5827   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5828   // - Q = floor((2 * A) / (2^K))
5829   // where W is the width of the common type of N and D.
5830   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5831          "Only applicable for (in)equality comparisons.");
5832 
5833   SelectionDAG &DAG = DCI.DAG;
5834 
5835   EVT VT = REMNode.getValueType();
5836   EVT SVT = VT.getScalarType();
5837   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5838   EVT ShSVT = ShVT.getScalarType();
5839 
5840   // If we are after ops legalization, and MUL is unavailable, we can not
5841   // proceed.
5842   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5843     return SDValue();
5844 
5845   // TODO: Could support comparing with non-zero too.
5846   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5847   if (!CompTarget || !CompTarget->isZero())
5848     return SDValue();
5849 
5850   bool HadIntMinDivisor = false;
5851   bool HadOneDivisor = false;
5852   bool AllDivisorsAreOnes = true;
5853   bool HadEvenDivisor = false;
5854   bool NeedToApplyOffset = false;
5855   bool AllDivisorsArePowerOfTwo = true;
5856   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5857 
5858   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5859     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5860     if (C->isZero())
5861       return false;
5862 
5863     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5864 
5865     // WARNING: this fold is only valid for positive divisors!
5866     APInt D = C->getAPIntValue();
5867     if (D.isNegative())
5868       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5869 
5870     HadIntMinDivisor |= D.isMinSignedValue();
5871 
5872     // If all divisors are ones, we will prefer to avoid the fold.
5873     HadOneDivisor |= D.isOne();
5874     AllDivisorsAreOnes &= D.isOne();
5875 
5876     // Decompose D into D0 * 2^K
5877     unsigned K = D.countTrailingZeros();
5878     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5879     APInt D0 = D.lshr(K);
5880 
5881     if (!D.isMinSignedValue()) {
5882       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5883       // we don't care about this lane in this fold, we'll special-handle it.
5884       HadEvenDivisor |= (K != 0);
5885     }
5886 
5887     // D is a power-of-two if D0 is one. This includes INT_MIN.
5888     // If all divisors are power-of-two, we will prefer to avoid the fold.
5889     AllDivisorsArePowerOfTwo &= D0.isOne();
5890 
5891     // P = inv(D0, 2^W)
5892     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5893     unsigned W = D.getBitWidth();
5894     APInt P = D0.zext(W + 1)
5895                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5896                   .trunc(W);
5897     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5898     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5899 
5900     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5901     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5902     A.clearLowBits(K);
5903 
5904     if (!D.isMinSignedValue()) {
5905       // If divisor INT_MIN, then we don't care about this lane in this fold,
5906       // we'll special-handle it.
5907       NeedToApplyOffset |= A != 0;
5908     }
5909 
5910     // Q = floor((2 * A) / (2^K))
5911     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5912 
5913     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5914            "We are expecting that A is always less than all-ones for SVT");
5915     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5916            "We are expecting that K is always less than all-ones for ShSVT");
5917 
5918     // If the divisor is 1 the result can be constant-folded. Likewise, we
5919     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5920     if (D.isOne()) {
5921       // Set P, A and K to a bogus values so we can try to splat them.
5922       P = 0;
5923       A = -1;
5924       K = -1;
5925 
5926       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5927       Q = -1;
5928     }
5929 
5930     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5931     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5932     KAmts.push_back(
5933         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5934     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5935     return true;
5936   };
5937 
5938   SDValue N = REMNode.getOperand(0);
5939   SDValue D = REMNode.getOperand(1);
5940 
5941   // Collect the values from each element.
5942   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5943     return SDValue();
5944 
5945   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5946   if (AllDivisorsAreOnes)
5947     return SDValue();
5948 
5949   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5950   // since it can be best implemented as a bit test.
5951   if (AllDivisorsArePowerOfTwo)
5952     return SDValue();
5953 
5954   SDValue PVal, AVal, KVal, QVal;
5955   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5956     if (HadOneDivisor) {
5957       // Try to turn PAmts into a splat, since we don't care about the values
5958       // that are currently '0'. If we can't, just keep '0'`s.
5959       turnVectorIntoSplatVector(PAmts, isNullConstant);
5960       // Try to turn AAmts into a splat, since we don't care about the
5961       // values that are currently '-1'. If we can't, change them to '0'`s.
5962       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5963                                 DAG.getConstant(0, DL, SVT));
5964       // Try to turn KAmts into a splat, since we don't care about the values
5965       // that are currently '-1'. If we can't, change them to '0'`s.
5966       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5967                                 DAG.getConstant(0, DL, ShSVT));
5968     }
5969 
5970     PVal = DAG.getBuildVector(VT, DL, PAmts);
5971     AVal = DAG.getBuildVector(VT, DL, AAmts);
5972     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5973     QVal = DAG.getBuildVector(VT, DL, QAmts);
5974   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5975     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5976            QAmts.size() == 1 &&
5977            "Expected matchUnaryPredicate to return one element for scalable "
5978            "vectors");
5979     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5980     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5981     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5982     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5983   } else {
5984     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5985     PVal = PAmts[0];
5986     AVal = AAmts[0];
5987     KVal = KAmts[0];
5988     QVal = QAmts[0];
5989   }
5990 
5991   // (mul N, P)
5992   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5993   Created.push_back(Op0.getNode());
5994 
5995   if (NeedToApplyOffset) {
5996     // We need ADD to do this.
5997     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5998       return SDValue();
5999 
6000     // (add (mul N, P), A)
6001     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6002     Created.push_back(Op0.getNode());
6003   }
6004 
6005   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6006   // divisors as a performance improvement, since rotating by 0 is a no-op.
6007   if (HadEvenDivisor) {
6008     // We need ROTR to do this.
6009     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6010       return SDValue();
6011     // SREM: (rotr (add (mul N, P), A), K)
6012     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6013     Created.push_back(Op0.getNode());
6014   }
6015 
6016   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6017   SDValue Fold =
6018       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6019                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6020 
6021   // If we didn't have lanes with INT_MIN divisor, then we're done.
6022   if (!HadIntMinDivisor)
6023     return Fold;
6024 
6025   // That fold is only valid for positive divisors. Which effectively means,
6026   // it is invalid for INT_MIN divisors. So if we have such a lane,
6027   // we must fix-up results for said lanes.
6028   assert(VT.isVector() && "Can/should only get here for vectors.");
6029 
6030   // NOTE: we avoid letting illegal types through even if we're before legalize
6031   // ops – legalization has a hard time producing good code for the code that
6032   // follows.
6033   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6034       !isOperationLegalOrCustom(ISD::AND, VT) ||
6035       !isOperationLegalOrCustom(Cond, VT) ||
6036       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6037     return SDValue();
6038 
6039   Created.push_back(Fold.getNode());
6040 
6041   SDValue IntMin = DAG.getConstant(
6042       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6043   SDValue IntMax = DAG.getConstant(
6044       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6045   SDValue Zero =
6046       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6047 
6048   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6049   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6050   Created.push_back(DivisorIsIntMin.getNode());
6051 
6052   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6053   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6054   Created.push_back(Masked.getNode());
6055   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6056   Created.push_back(MaskedIsZero.getNode());
6057 
6058   // To produce final result we need to blend 2 vectors: 'SetCC' and
6059   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6060   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6061   // constant-folded, select can get lowered to a shuffle with constant mask.
6062   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6063                                 MaskedIsZero, Fold);
6064 
6065   return Blended;
6066 }
6067 
6068 bool TargetLowering::
6069 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6070   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6071     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6072                                 "be a constant integer");
6073     return true;
6074   }
6075 
6076   return false;
6077 }
6078 
6079 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6080                                          const DenormalMode &Mode) const {
6081   SDLoc DL(Op);
6082   EVT VT = Op.getValueType();
6083   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6084   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6085   // Testing it with denormal inputs to avoid wrong estimate.
6086   if (Mode.Input == DenormalMode::IEEE) {
6087     // This is specifically a check for the handling of denormal inputs,
6088     // not the result.
6089 
6090     // Test = fabs(X) < SmallestNormal
6091     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6092     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6093     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6094     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6095     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6096   }
6097   // Test = X == 0.0
6098   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6099 }
6100 
6101 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6102                                              bool LegalOps, bool OptForSize,
6103                                              NegatibleCost &Cost,
6104                                              unsigned Depth) const {
6105   // fneg is removable even if it has multiple uses.
6106   if (Op.getOpcode() == ISD::FNEG) {
6107     Cost = NegatibleCost::Cheaper;
6108     return Op.getOperand(0);
6109   }
6110 
6111   // Don't recurse exponentially.
6112   if (Depth > SelectionDAG::MaxRecursionDepth)
6113     return SDValue();
6114 
6115   // Pre-increment recursion depth for use in recursive calls.
6116   ++Depth;
6117   const SDNodeFlags Flags = Op->getFlags();
6118   const TargetOptions &Options = DAG.getTarget().Options;
6119   EVT VT = Op.getValueType();
6120   unsigned Opcode = Op.getOpcode();
6121 
6122   // Don't allow anything with multiple uses unless we know it is free.
6123   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6124     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6125                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6126     if (!IsFreeExtend)
6127       return SDValue();
6128   }
6129 
6130   auto RemoveDeadNode = [&](SDValue N) {
6131     if (N && N.getNode()->use_empty())
6132       DAG.RemoveDeadNode(N.getNode());
6133   };
6134 
6135   SDLoc DL(Op);
6136 
6137   // Because getNegatedExpression can delete nodes we need a handle to keep
6138   // temporary nodes alive in case the recursion manages to create an identical
6139   // node.
6140   std::list<HandleSDNode> Handles;
6141 
6142   switch (Opcode) {
6143   case ISD::ConstantFP: {
6144     // Don't invert constant FP values after legalization unless the target says
6145     // the negated constant is legal.
6146     bool IsOpLegal =
6147         isOperationLegal(ISD::ConstantFP, VT) ||
6148         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6149                      OptForSize);
6150 
6151     if (LegalOps && !IsOpLegal)
6152       break;
6153 
6154     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6155     V.changeSign();
6156     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6157 
6158     // If we already have the use of the negated floating constant, it is free
6159     // to negate it even it has multiple uses.
6160     if (!Op.hasOneUse() && CFP.use_empty())
6161       break;
6162     Cost = NegatibleCost::Neutral;
6163     return CFP;
6164   }
6165   case ISD::BUILD_VECTOR: {
6166     // Only permit BUILD_VECTOR of constants.
6167     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6168           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6169         }))
6170       break;
6171 
6172     bool IsOpLegal =
6173         (isOperationLegal(ISD::ConstantFP, VT) &&
6174          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6175         llvm::all_of(Op->op_values(), [&](SDValue N) {
6176           return N.isUndef() ||
6177                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6178                               OptForSize);
6179         });
6180 
6181     if (LegalOps && !IsOpLegal)
6182       break;
6183 
6184     SmallVector<SDValue, 4> Ops;
6185     for (SDValue C : Op->op_values()) {
6186       if (C.isUndef()) {
6187         Ops.push_back(C);
6188         continue;
6189       }
6190       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6191       V.changeSign();
6192       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6193     }
6194     Cost = NegatibleCost::Neutral;
6195     return DAG.getBuildVector(VT, DL, Ops);
6196   }
6197   case ISD::FADD: {
6198     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6199       break;
6200 
6201     // After operation legalization, it might not be legal to create new FSUBs.
6202     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6203       break;
6204     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6205 
6206     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6207     NegatibleCost CostX = NegatibleCost::Expensive;
6208     SDValue NegX =
6209         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6210     // Prevent this node from being deleted by the next call.
6211     if (NegX)
6212       Handles.emplace_back(NegX);
6213 
6214     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6215     NegatibleCost CostY = NegatibleCost::Expensive;
6216     SDValue NegY =
6217         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6218 
6219     // We're done with the handles.
6220     Handles.clear();
6221 
6222     // Negate the X if its cost is less or equal than Y.
6223     if (NegX && (CostX <= CostY)) {
6224       Cost = CostX;
6225       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6226       if (NegY != N)
6227         RemoveDeadNode(NegY);
6228       return N;
6229     }
6230 
6231     // Negate the Y if it is not expensive.
6232     if (NegY) {
6233       Cost = CostY;
6234       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6235       if (NegX != N)
6236         RemoveDeadNode(NegX);
6237       return N;
6238     }
6239     break;
6240   }
6241   case ISD::FSUB: {
6242     // We can't turn -(A-B) into B-A when we honor signed zeros.
6243     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6244       break;
6245 
6246     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6247     // fold (fneg (fsub 0, Y)) -> Y
6248     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6249       if (C->isZero()) {
6250         Cost = NegatibleCost::Cheaper;
6251         return Y;
6252       }
6253 
6254     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6255     Cost = NegatibleCost::Neutral;
6256     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6257   }
6258   case ISD::FMUL:
6259   case ISD::FDIV: {
6260     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6261 
6262     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6263     NegatibleCost CostX = NegatibleCost::Expensive;
6264     SDValue NegX =
6265         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6266     // Prevent this node from being deleted by the next call.
6267     if (NegX)
6268       Handles.emplace_back(NegX);
6269 
6270     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6271     NegatibleCost CostY = NegatibleCost::Expensive;
6272     SDValue NegY =
6273         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6274 
6275     // We're done with the handles.
6276     Handles.clear();
6277 
6278     // Negate the X if its cost is less or equal than Y.
6279     if (NegX && (CostX <= CostY)) {
6280       Cost = CostX;
6281       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6282       if (NegY != N)
6283         RemoveDeadNode(NegY);
6284       return N;
6285     }
6286 
6287     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6288     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6289       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6290         break;
6291 
6292     // Negate the Y if it is not expensive.
6293     if (NegY) {
6294       Cost = CostY;
6295       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6296       if (NegX != N)
6297         RemoveDeadNode(NegX);
6298       return N;
6299     }
6300     break;
6301   }
6302   case ISD::FMA:
6303   case ISD::FMAD: {
6304     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6305       break;
6306 
6307     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6308     NegatibleCost CostZ = NegatibleCost::Expensive;
6309     SDValue NegZ =
6310         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6311     // Give up if fail to negate the Z.
6312     if (!NegZ)
6313       break;
6314 
6315     // Prevent this node from being deleted by the next two calls.
6316     Handles.emplace_back(NegZ);
6317 
6318     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6319     NegatibleCost CostX = NegatibleCost::Expensive;
6320     SDValue NegX =
6321         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6322     // Prevent this node from being deleted by the next call.
6323     if (NegX)
6324       Handles.emplace_back(NegX);
6325 
6326     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6327     NegatibleCost CostY = NegatibleCost::Expensive;
6328     SDValue NegY =
6329         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6330 
6331     // We're done with the handles.
6332     Handles.clear();
6333 
6334     // Negate the X if its cost is less or equal than Y.
6335     if (NegX && (CostX <= CostY)) {
6336       Cost = std::min(CostX, CostZ);
6337       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6338       if (NegY != N)
6339         RemoveDeadNode(NegY);
6340       return N;
6341     }
6342 
6343     // Negate the Y if it is not expensive.
6344     if (NegY) {
6345       Cost = std::min(CostY, CostZ);
6346       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6347       if (NegX != N)
6348         RemoveDeadNode(NegX);
6349       return N;
6350     }
6351     break;
6352   }
6353 
6354   case ISD::FP_EXTEND:
6355   case ISD::FSIN:
6356     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6357                                             OptForSize, Cost, Depth))
6358       return DAG.getNode(Opcode, DL, VT, NegV);
6359     break;
6360   case ISD::FP_ROUND:
6361     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6362                                             OptForSize, Cost, Depth))
6363       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6364     break;
6365   }
6366 
6367   return SDValue();
6368 }
6369 
6370 //===----------------------------------------------------------------------===//
6371 // Legalization Utilities
6372 //===----------------------------------------------------------------------===//
6373 
6374 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6375                                     SDValue LHS, SDValue RHS,
6376                                     SmallVectorImpl<SDValue> &Result,
6377                                     EVT HiLoVT, SelectionDAG &DAG,
6378                                     MulExpansionKind Kind, SDValue LL,
6379                                     SDValue LH, SDValue RL, SDValue RH) const {
6380   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6381          Opcode == ISD::SMUL_LOHI);
6382 
6383   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6384                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6385   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6386                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6387   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6388                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6389   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6390                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6391 
6392   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6393     return false;
6394 
6395   unsigned OuterBitSize = VT.getScalarSizeInBits();
6396   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6397 
6398   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6399   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6400          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6401 
6402   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6403   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6404                           bool Signed) -> bool {
6405     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6406       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6407       Hi = SDValue(Lo.getNode(), 1);
6408       return true;
6409     }
6410     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6411       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6412       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6413       return true;
6414     }
6415     return false;
6416   };
6417 
6418   SDValue Lo, Hi;
6419 
6420   if (!LL.getNode() && !RL.getNode() &&
6421       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6422     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6423     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6424   }
6425 
6426   if (!LL.getNode())
6427     return false;
6428 
6429   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6430   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6431       DAG.MaskedValueIsZero(RHS, HighMask)) {
6432     // The inputs are both zero-extended.
6433     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6434       Result.push_back(Lo);
6435       Result.push_back(Hi);
6436       if (Opcode != ISD::MUL) {
6437         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6438         Result.push_back(Zero);
6439         Result.push_back(Zero);
6440       }
6441       return true;
6442     }
6443   }
6444 
6445   if (!VT.isVector() && Opcode == ISD::MUL &&
6446       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6447       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6448     // The input values are both sign-extended.
6449     // TODO non-MUL case?
6450     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6451       Result.push_back(Lo);
6452       Result.push_back(Hi);
6453       return true;
6454     }
6455   }
6456 
6457   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6458   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6459   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6460 
6461   if (!LH.getNode() && !RH.getNode() &&
6462       isOperationLegalOrCustom(ISD::SRL, VT) &&
6463       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6464     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6465     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6466     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6467     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6468   }
6469 
6470   if (!LH.getNode())
6471     return false;
6472 
6473   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6474     return false;
6475 
6476   Result.push_back(Lo);
6477 
6478   if (Opcode == ISD::MUL) {
6479     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6480     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6481     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6482     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6483     Result.push_back(Hi);
6484     return true;
6485   }
6486 
6487   // Compute the full width result.
6488   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6489     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6490     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6491     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6492     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6493   };
6494 
6495   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6496   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6497     return false;
6498 
6499   // This is effectively the add part of a multiply-add of half-sized operands,
6500   // so it cannot overflow.
6501   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6502 
6503   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6504     return false;
6505 
6506   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6507   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6508 
6509   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6510                   isOperationLegalOrCustom(ISD::ADDE, VT));
6511   if (UseGlue)
6512     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6513                        Merge(Lo, Hi));
6514   else
6515     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6516                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6517 
6518   SDValue Carry = Next.getValue(1);
6519   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6520   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6521 
6522   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6523     return false;
6524 
6525   if (UseGlue)
6526     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6527                      Carry);
6528   else
6529     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6530                      Zero, Carry);
6531 
6532   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6533 
6534   if (Opcode == ISD::SMUL_LOHI) {
6535     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6536                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6537     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6538 
6539     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6540                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6541     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6542   }
6543 
6544   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6545   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6546   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6547   return true;
6548 }
6549 
6550 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6551                                SelectionDAG &DAG, MulExpansionKind Kind,
6552                                SDValue LL, SDValue LH, SDValue RL,
6553                                SDValue RH) const {
6554   SmallVector<SDValue, 2> Result;
6555   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6556                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6557                            DAG, Kind, LL, LH, RL, RH);
6558   if (Ok) {
6559     assert(Result.size() == 2);
6560     Lo = Result[0];
6561     Hi = Result[1];
6562   }
6563   return Ok;
6564 }
6565 
6566 // Check that (every element of) Z is undef or not an exact multiple of BW.
6567 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6568   return ISD::matchUnaryPredicate(
6569       Z,
6570       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6571       true);
6572 }
6573 
6574 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6575                                           SelectionDAG &DAG) const {
6576   EVT VT = Node->getValueType(0);
6577 
6578   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6579                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6580                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6581                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6582     return SDValue();
6583 
6584   SDValue X = Node->getOperand(0);
6585   SDValue Y = Node->getOperand(1);
6586   SDValue Z = Node->getOperand(2);
6587 
6588   unsigned BW = VT.getScalarSizeInBits();
6589   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6590   SDLoc DL(SDValue(Node, 0));
6591 
6592   EVT ShVT = Z.getValueType();
6593 
6594   // If a funnel shift in the other direction is more supported, use it.
6595   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6596   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6597       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6598     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6599       // fshl X, Y, Z -> fshr X, Y, -Z
6600       // fshr X, Y, Z -> fshl X, Y, -Z
6601       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6602       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6603     } else {
6604       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6605       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6606       SDValue One = DAG.getConstant(1, DL, ShVT);
6607       if (IsFSHL) {
6608         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6609         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6610       } else {
6611         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6612         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6613       }
6614       Z = DAG.getNOT(DL, Z, ShVT);
6615     }
6616     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6617   }
6618 
6619   SDValue ShX, ShY;
6620   SDValue ShAmt, InvShAmt;
6621   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6622     // fshl: X << C | Y >> (BW - C)
6623     // fshr: X << (BW - C) | Y >> C
6624     // where C = Z % BW is not zero
6625     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6626     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6627     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6628     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6629     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6630   } else {
6631     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6632     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6633     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6634     if (isPowerOf2_32(BW)) {
6635       // Z % BW -> Z & (BW - 1)
6636       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6637       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6638       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6639     } else {
6640       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6641       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6642       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6643     }
6644 
6645     SDValue One = DAG.getConstant(1, DL, ShVT);
6646     if (IsFSHL) {
6647       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6648       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6649       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6650     } else {
6651       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6652       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6653       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6654     }
6655   }
6656   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6657 }
6658 
6659 // TODO: Merge with expandFunnelShift.
6660 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6661                                   SelectionDAG &DAG) const {
6662   EVT VT = Node->getValueType(0);
6663   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6664   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6665   SDValue Op0 = Node->getOperand(0);
6666   SDValue Op1 = Node->getOperand(1);
6667   SDLoc DL(SDValue(Node, 0));
6668 
6669   EVT ShVT = Op1.getValueType();
6670   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6671 
6672   // If a rotate in the other direction is more supported, use it.
6673   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6674   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6675       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6676     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6677     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6678   }
6679 
6680   if (!AllowVectorOps && VT.isVector() &&
6681       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6682        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6683        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6684        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6685        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6686     return SDValue();
6687 
6688   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6689   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6690   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6691   SDValue ShVal;
6692   SDValue HsVal;
6693   if (isPowerOf2_32(EltSizeInBits)) {
6694     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6695     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6696     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6697     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6698     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6699     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6700     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6701   } else {
6702     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6703     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6704     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6705     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6706     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6707     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6708     SDValue One = DAG.getConstant(1, DL, ShVT);
6709     HsVal =
6710         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6711   }
6712   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6713 }
6714 
6715 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6716                                       SelectionDAG &DAG) const {
6717   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6718   EVT VT = Node->getValueType(0);
6719   unsigned VTBits = VT.getScalarSizeInBits();
6720   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6721 
6722   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6723   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6724   SDValue ShOpLo = Node->getOperand(0);
6725   SDValue ShOpHi = Node->getOperand(1);
6726   SDValue ShAmt = Node->getOperand(2);
6727   EVT ShAmtVT = ShAmt.getValueType();
6728   EVT ShAmtCCVT =
6729       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6730   SDLoc dl(Node);
6731 
6732   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6733   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6734   // away during isel.
6735   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6736                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6737   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6738                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6739                        : DAG.getConstant(0, dl, VT);
6740 
6741   SDValue Tmp2, Tmp3;
6742   if (IsSHL) {
6743     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6744     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6745   } else {
6746     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6747     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6748   }
6749 
6750   // If the shift amount is larger or equal than the width of a part we don't
6751   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6752   // values for large shift amounts.
6753   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6754                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6755   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6756                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6757 
6758   if (IsSHL) {
6759     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6760     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6761   } else {
6762     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6763     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6764   }
6765 }
6766 
6767 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6768                                       SelectionDAG &DAG) const {
6769   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6770   SDValue Src = Node->getOperand(OpNo);
6771   EVT SrcVT = Src.getValueType();
6772   EVT DstVT = Node->getValueType(0);
6773   SDLoc dl(SDValue(Node, 0));
6774 
6775   // FIXME: Only f32 to i64 conversions are supported.
6776   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6777     return false;
6778 
6779   if (Node->isStrictFPOpcode())
6780     // When a NaN is converted to an integer a trap is allowed. We can't
6781     // use this expansion here because it would eliminate that trap. Other
6782     // traps are also allowed and cannot be eliminated. See
6783     // IEEE 754-2008 sec 5.8.
6784     return false;
6785 
6786   // Expand f32 -> i64 conversion
6787   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6788   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6789   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6790   EVT IntVT = SrcVT.changeTypeToInteger();
6791   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6792 
6793   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6794   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6795   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6796   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6797   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6798   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6799 
6800   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6801 
6802   SDValue ExponentBits = DAG.getNode(
6803       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6804       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6805   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6806 
6807   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6808                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6809                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6810   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6811 
6812   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6813                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6814                           DAG.getConstant(0x00800000, dl, IntVT));
6815 
6816   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6817 
6818   R = DAG.getSelectCC(
6819       dl, Exponent, ExponentLoBit,
6820       DAG.getNode(ISD::SHL, dl, DstVT, R,
6821                   DAG.getZExtOrTrunc(
6822                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6823                       dl, IntShVT)),
6824       DAG.getNode(ISD::SRL, dl, DstVT, R,
6825                   DAG.getZExtOrTrunc(
6826                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6827                       dl, IntShVT)),
6828       ISD::SETGT);
6829 
6830   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6831                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6832 
6833   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6834                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6835   return true;
6836 }
6837 
6838 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6839                                       SDValue &Chain,
6840                                       SelectionDAG &DAG) const {
6841   SDLoc dl(SDValue(Node, 0));
6842   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6843   SDValue Src = Node->getOperand(OpNo);
6844 
6845   EVT SrcVT = Src.getValueType();
6846   EVT DstVT = Node->getValueType(0);
6847   EVT SetCCVT =
6848       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6849   EVT DstSetCCVT =
6850       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6851 
6852   // Only expand vector types if we have the appropriate vector bit operations.
6853   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6854                                                    ISD::FP_TO_SINT;
6855   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6856                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6857     return false;
6858 
6859   // If the maximum float value is smaller then the signed integer range,
6860   // the destination signmask can't be represented by the float, so we can
6861   // just use FP_TO_SINT directly.
6862   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6863   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6864   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6865   if (APFloat::opOverflow &
6866       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6867     if (Node->isStrictFPOpcode()) {
6868       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6869                            { Node->getOperand(0), Src });
6870       Chain = Result.getValue(1);
6871     } else
6872       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6873     return true;
6874   }
6875 
6876   // Don't expand it if there isn't cheap fsub instruction.
6877   if (!isOperationLegalOrCustom(
6878           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6879     return false;
6880 
6881   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6882   SDValue Sel;
6883 
6884   if (Node->isStrictFPOpcode()) {
6885     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6886                        Node->getOperand(0), /*IsSignaling*/ true);
6887     Chain = Sel.getValue(1);
6888   } else {
6889     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6890   }
6891 
6892   bool Strict = Node->isStrictFPOpcode() ||
6893                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6894 
6895   if (Strict) {
6896     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6897     // signmask then offset (the result of which should be fully representable).
6898     // Sel = Src < 0x8000000000000000
6899     // FltOfs = select Sel, 0, 0x8000000000000000
6900     // IntOfs = select Sel, 0, 0x8000000000000000
6901     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6902 
6903     // TODO: Should any fast-math-flags be set for the FSUB?
6904     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6905                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6906     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6907     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6908                                    DAG.getConstant(0, dl, DstVT),
6909                                    DAG.getConstant(SignMask, dl, DstVT));
6910     SDValue SInt;
6911     if (Node->isStrictFPOpcode()) {
6912       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6913                                 { Chain, Src, FltOfs });
6914       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6915                          { Val.getValue(1), Val });
6916       Chain = SInt.getValue(1);
6917     } else {
6918       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6919       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6920     }
6921     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6922   } else {
6923     // Expand based on maximum range of FP_TO_SINT:
6924     // True = fp_to_sint(Src)
6925     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6926     // Result = select (Src < 0x8000000000000000), True, False
6927 
6928     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6929     // TODO: Should any fast-math-flags be set for the FSUB?
6930     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6931                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6932     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6933                         DAG.getConstant(SignMask, dl, DstVT));
6934     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6935     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6936   }
6937   return true;
6938 }
6939 
6940 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6941                                       SDValue &Chain,
6942                                       SelectionDAG &DAG) const {
6943   // This transform is not correct for converting 0 when rounding mode is set
6944   // to round toward negative infinity which will produce -0.0. So disable under
6945   // strictfp.
6946   if (Node->isStrictFPOpcode())
6947     return false;
6948 
6949   SDValue Src = Node->getOperand(0);
6950   EVT SrcVT = Src.getValueType();
6951   EVT DstVT = Node->getValueType(0);
6952 
6953   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6954     return false;
6955 
6956   // Only expand vector types if we have the appropriate vector bit operations.
6957   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6958                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6959                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6960                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6961                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6962     return false;
6963 
6964   SDLoc dl(SDValue(Node, 0));
6965   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6966 
6967   // Implementation of unsigned i64 to f64 following the algorithm in
6968   // __floatundidf in compiler_rt.  This implementation performs rounding
6969   // correctly in all rounding modes with the exception of converting 0
6970   // when rounding toward negative infinity. In that case the fsub will produce
6971   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6972   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6973   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6974       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6975   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6976   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6977   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6978 
6979   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6980   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6981   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6982   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6983   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6984   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6985   SDValue HiSub =
6986       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6987   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6988   return true;
6989 }
6990 
6991 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6992                                               SelectionDAG &DAG) const {
6993   SDLoc dl(Node);
6994   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6995     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6996   EVT VT = Node->getValueType(0);
6997 
6998   if (VT.isScalableVector())
6999     report_fatal_error(
7000         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7001 
7002   if (isOperationLegalOrCustom(NewOp, VT)) {
7003     SDValue Quiet0 = Node->getOperand(0);
7004     SDValue Quiet1 = Node->getOperand(1);
7005 
7006     if (!Node->getFlags().hasNoNaNs()) {
7007       // Insert canonicalizes if it's possible we need to quiet to get correct
7008       // sNaN behavior.
7009       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7010         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7011                              Node->getFlags());
7012       }
7013       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7014         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7015                              Node->getFlags());
7016       }
7017     }
7018 
7019     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7020   }
7021 
7022   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7023   // instead if there are no NaNs.
7024   if (Node->getFlags().hasNoNaNs()) {
7025     unsigned IEEE2018Op =
7026         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7027     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7028       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7029                          Node->getOperand(1), Node->getFlags());
7030     }
7031   }
7032 
7033   // If none of the above worked, but there are no NaNs, then expand to
7034   // a compare/select sequence.  This is required for correctness since
7035   // InstCombine might have canonicalized a fcmp+select sequence to a
7036   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7037   // expansion to libcall, we might introduce a link-time dependency
7038   // on libm into a file that originally did not have one.
7039   if (Node->getFlags().hasNoNaNs()) {
7040     ISD::CondCode Pred =
7041         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7042     SDValue Op1 = Node->getOperand(0);
7043     SDValue Op2 = Node->getOperand(1);
7044     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7045     // Copy FMF flags, but always set the no-signed-zeros flag
7046     // as this is implied by the FMINNUM/FMAXNUM semantics.
7047     SDNodeFlags Flags = Node->getFlags();
7048     Flags.setNoSignedZeros(true);
7049     SelCC->setFlags(Flags);
7050     return SelCC;
7051   }
7052 
7053   return SDValue();
7054 }
7055 
7056 // Only expand vector types if we have the appropriate vector bit operations.
7057 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7058   assert(VT.isVector() && "Expected vector type");
7059   unsigned Len = VT.getScalarSizeInBits();
7060   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7061          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7062          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7063          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7064          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7065 }
7066 
7067 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7068   SDLoc dl(Node);
7069   EVT VT = Node->getValueType(0);
7070   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7071   SDValue Op = Node->getOperand(0);
7072   unsigned Len = VT.getScalarSizeInBits();
7073   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7074 
7075   // TODO: Add support for irregular type lengths.
7076   if (!(Len <= 128 && Len % 8 == 0))
7077     return SDValue();
7078 
7079   // Only expand vector types if we have the appropriate vector bit operations.
7080   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7081     return SDValue();
7082 
7083   // This is the "best" algorithm from
7084   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7085   SDValue Mask55 =
7086       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7087   SDValue Mask33 =
7088       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7089   SDValue Mask0F =
7090       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7091   SDValue Mask01 =
7092       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7093 
7094   // v = v - ((v >> 1) & 0x55555555...)
7095   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7096                    DAG.getNode(ISD::AND, dl, VT,
7097                                DAG.getNode(ISD::SRL, dl, VT, Op,
7098                                            DAG.getConstant(1, dl, ShVT)),
7099                                Mask55));
7100   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7101   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7102                    DAG.getNode(ISD::AND, dl, VT,
7103                                DAG.getNode(ISD::SRL, dl, VT, Op,
7104                                            DAG.getConstant(2, dl, ShVT)),
7105                                Mask33));
7106   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7107   Op = DAG.getNode(ISD::AND, dl, VT,
7108                    DAG.getNode(ISD::ADD, dl, VT, Op,
7109                                DAG.getNode(ISD::SRL, dl, VT, Op,
7110                                            DAG.getConstant(4, dl, ShVT))),
7111                    Mask0F);
7112   // v = (v * 0x01010101...) >> (Len - 8)
7113   if (Len > 8)
7114     Op =
7115         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7116                     DAG.getConstant(Len - 8, dl, ShVT));
7117 
7118   return Op;
7119 }
7120 
7121 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7122   SDLoc dl(Node);
7123   EVT VT = Node->getValueType(0);
7124   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7125   SDValue Op = Node->getOperand(0);
7126   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7127 
7128   // If the non-ZERO_UNDEF version is supported we can use that instead.
7129   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7130       isOperationLegalOrCustom(ISD::CTLZ, VT))
7131     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7132 
7133   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7134   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7135     EVT SetCCVT =
7136         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7137     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7138     SDValue Zero = DAG.getConstant(0, dl, VT);
7139     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7140     return DAG.getSelect(dl, VT, SrcIsZero,
7141                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7142   }
7143 
7144   // Only expand vector types if we have the appropriate vector bit operations.
7145   // This includes the operations needed to expand CTPOP if it isn't supported.
7146   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7147                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7148                          !canExpandVectorCTPOP(*this, VT)) ||
7149                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7150                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7151     return SDValue();
7152 
7153   // for now, we do this:
7154   // x = x | (x >> 1);
7155   // x = x | (x >> 2);
7156   // ...
7157   // x = x | (x >>16);
7158   // x = x | (x >>32); // for 64-bit input
7159   // return popcount(~x);
7160   //
7161   // Ref: "Hacker's Delight" by Henry Warren
7162   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7163     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7164     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7165                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7166   }
7167   Op = DAG.getNOT(dl, Op, VT);
7168   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7169 }
7170 
7171 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7172   SDLoc dl(Node);
7173   EVT VT = Node->getValueType(0);
7174   SDValue Op = Node->getOperand(0);
7175   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7176 
7177   // If the non-ZERO_UNDEF version is supported we can use that instead.
7178   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7179       isOperationLegalOrCustom(ISD::CTTZ, VT))
7180     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7181 
7182   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7183   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7184     EVT SetCCVT =
7185         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7186     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7187     SDValue Zero = DAG.getConstant(0, dl, VT);
7188     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7189     return DAG.getSelect(dl, VT, SrcIsZero,
7190                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7191   }
7192 
7193   // Only expand vector types if we have the appropriate vector bit operations.
7194   // This includes the operations needed to expand CTPOP if it isn't supported.
7195   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7196                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7197                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7198                          !canExpandVectorCTPOP(*this, VT)) ||
7199                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7200                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7201                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7202     return SDValue();
7203 
7204   // for now, we use: { return popcount(~x & (x - 1)); }
7205   // unless the target has ctlz but not ctpop, in which case we use:
7206   // { return 32 - nlz(~x & (x-1)); }
7207   // Ref: "Hacker's Delight" by Henry Warren
7208   SDValue Tmp = DAG.getNode(
7209       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7210       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7211 
7212   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7213   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7214     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7215                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7216   }
7217 
7218   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7219 }
7220 
7221 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7222                                   bool IsNegative) const {
7223   SDLoc dl(N);
7224   EVT VT = N->getValueType(0);
7225   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7226   SDValue Op = N->getOperand(0);
7227 
7228   // abs(x) -> smax(x,sub(0,x))
7229   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7230       isOperationLegal(ISD::SMAX, VT)) {
7231     SDValue Zero = DAG.getConstant(0, dl, VT);
7232     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7233                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7234   }
7235 
7236   // abs(x) -> umin(x,sub(0,x))
7237   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7238       isOperationLegal(ISD::UMIN, VT)) {
7239     SDValue Zero = DAG.getConstant(0, dl, VT);
7240     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7241                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7242   }
7243 
7244   // 0 - abs(x) -> smin(x, sub(0,x))
7245   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7246       isOperationLegal(ISD::SMIN, VT)) {
7247     SDValue Zero = DAG.getConstant(0, dl, VT);
7248     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7249                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7250   }
7251 
7252   // Only expand vector types if we have the appropriate vector operations.
7253   if (VT.isVector() &&
7254       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7255        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7256        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7257        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7258     return SDValue();
7259 
7260   SDValue Shift =
7261       DAG.getNode(ISD::SRA, dl, VT, Op,
7262                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7263   if (!IsNegative) {
7264     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7265     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7266   }
7267 
7268   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7269   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7270   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7271 }
7272 
7273 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7274   SDLoc dl(N);
7275   EVT VT = N->getValueType(0);
7276   SDValue Op = N->getOperand(0);
7277 
7278   if (!VT.isSimple())
7279     return SDValue();
7280 
7281   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7282   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7283   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7284   default:
7285     return SDValue();
7286   case MVT::i16:
7287     // Use a rotate by 8. This can be further expanded if necessary.
7288     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7289   case MVT::i32:
7290     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7291     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7292     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7293     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7294     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7295                        DAG.getConstant(0xFF0000, dl, VT));
7296     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7297     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7298     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7299     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7300   case MVT::i64:
7301     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7302     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7303     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7304     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7305     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7306     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7307     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7308     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7309     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7310                        DAG.getConstant(255ULL<<48, dl, VT));
7311     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7312                        DAG.getConstant(255ULL<<40, dl, VT));
7313     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7314                        DAG.getConstant(255ULL<<32, dl, VT));
7315     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7316                        DAG.getConstant(255ULL<<24, dl, VT));
7317     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7318                        DAG.getConstant(255ULL<<16, dl, VT));
7319     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7320                        DAG.getConstant(255ULL<<8 , dl, VT));
7321     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7322     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7323     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7324     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7325     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7326     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7327     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7328   }
7329 }
7330 
7331 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7332   SDLoc dl(N);
7333   EVT VT = N->getValueType(0);
7334   SDValue Op = N->getOperand(0);
7335   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7336   unsigned Sz = VT.getScalarSizeInBits();
7337 
7338   SDValue Tmp, Tmp2, Tmp3;
7339 
7340   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7341   // and finally the i1 pairs.
7342   // TODO: We can easily support i4/i2 legal types if any target ever does.
7343   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7344     // Create the masks - repeating the pattern every byte.
7345     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7346     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7347     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7348 
7349     // BSWAP if the type is wider than a single byte.
7350     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7351 
7352     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7353     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7354     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7355     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7356     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7357     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7358 
7359     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7360     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7361     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7362     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7363     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7364     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7365 
7366     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7367     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7368     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7369     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7370     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7371     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7372     return Tmp;
7373   }
7374 
7375   Tmp = DAG.getConstant(0, dl, VT);
7376   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7377     if (I < J)
7378       Tmp2 =
7379           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7380     else
7381       Tmp2 =
7382           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7383 
7384     APInt Shift(Sz, 1);
7385     Shift <<= J;
7386     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7387     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7388   }
7389 
7390   return Tmp;
7391 }
7392 
7393 std::pair<SDValue, SDValue>
7394 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7395                                     SelectionDAG &DAG) const {
7396   SDLoc SL(LD);
7397   SDValue Chain = LD->getChain();
7398   SDValue BasePTR = LD->getBasePtr();
7399   EVT SrcVT = LD->getMemoryVT();
7400   EVT DstVT = LD->getValueType(0);
7401   ISD::LoadExtType ExtType = LD->getExtensionType();
7402 
7403   if (SrcVT.isScalableVector())
7404     report_fatal_error("Cannot scalarize scalable vector loads");
7405 
7406   unsigned NumElem = SrcVT.getVectorNumElements();
7407 
7408   EVT SrcEltVT = SrcVT.getScalarType();
7409   EVT DstEltVT = DstVT.getScalarType();
7410 
7411   // A vector must always be stored in memory as-is, i.e. without any padding
7412   // between the elements, since various code depend on it, e.g. in the
7413   // handling of a bitcast of a vector type to int, which may be done with a
7414   // vector store followed by an integer load. A vector that does not have
7415   // elements that are byte-sized must therefore be stored as an integer
7416   // built out of the extracted vector elements.
7417   if (!SrcEltVT.isByteSized()) {
7418     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7419     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7420 
7421     unsigned NumSrcBits = SrcVT.getSizeInBits();
7422     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7423 
7424     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7425     SDValue SrcEltBitMask = DAG.getConstant(
7426         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7427 
7428     // Load the whole vector and avoid masking off the top bits as it makes
7429     // the codegen worse.
7430     SDValue Load =
7431         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7432                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7433                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7434 
7435     SmallVector<SDValue, 8> Vals;
7436     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7437       unsigned ShiftIntoIdx =
7438           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7439       SDValue ShiftAmount =
7440           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7441                                      LoadVT, SL, /*LegalTypes=*/false);
7442       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7443       SDValue Elt =
7444           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7445       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7446 
7447       if (ExtType != ISD::NON_EXTLOAD) {
7448         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7449         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7450       }
7451 
7452       Vals.push_back(Scalar);
7453     }
7454 
7455     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7456     return std::make_pair(Value, Load.getValue(1));
7457   }
7458 
7459   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7460   assert(SrcEltVT.isByteSized());
7461 
7462   SmallVector<SDValue, 8> Vals;
7463   SmallVector<SDValue, 8> LoadChains;
7464 
7465   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7466     SDValue ScalarLoad =
7467         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7468                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7469                        SrcEltVT, LD->getOriginalAlign(),
7470                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7471 
7472     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7473 
7474     Vals.push_back(ScalarLoad.getValue(0));
7475     LoadChains.push_back(ScalarLoad.getValue(1));
7476   }
7477 
7478   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7479   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7480 
7481   return std::make_pair(Value, NewChain);
7482 }
7483 
7484 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7485                                              SelectionDAG &DAG) const {
7486   SDLoc SL(ST);
7487 
7488   SDValue Chain = ST->getChain();
7489   SDValue BasePtr = ST->getBasePtr();
7490   SDValue Value = ST->getValue();
7491   EVT StVT = ST->getMemoryVT();
7492 
7493   if (StVT.isScalableVector())
7494     report_fatal_error("Cannot scalarize scalable vector stores");
7495 
7496   // The type of the data we want to save
7497   EVT RegVT = Value.getValueType();
7498   EVT RegSclVT = RegVT.getScalarType();
7499 
7500   // The type of data as saved in memory.
7501   EVT MemSclVT = StVT.getScalarType();
7502 
7503   unsigned NumElem = StVT.getVectorNumElements();
7504 
7505   // A vector must always be stored in memory as-is, i.e. without any padding
7506   // between the elements, since various code depend on it, e.g. in the
7507   // handling of a bitcast of a vector type to int, which may be done with a
7508   // vector store followed by an integer load. A vector that does not have
7509   // elements that are byte-sized must therefore be stored as an integer
7510   // built out of the extracted vector elements.
7511   if (!MemSclVT.isByteSized()) {
7512     unsigned NumBits = StVT.getSizeInBits();
7513     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7514 
7515     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7516 
7517     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7518       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7519                                 DAG.getVectorIdxConstant(Idx, SL));
7520       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7521       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7522       unsigned ShiftIntoIdx =
7523           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7524       SDValue ShiftAmount =
7525           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7526       SDValue ShiftedElt =
7527           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7528       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7529     }
7530 
7531     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7532                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7533                         ST->getAAInfo());
7534   }
7535 
7536   // Store Stride in bytes
7537   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7538   assert(Stride && "Zero stride!");
7539   // Extract each of the elements from the original vector and save them into
7540   // memory individually.
7541   SmallVector<SDValue, 8> Stores;
7542   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7543     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7544                               DAG.getVectorIdxConstant(Idx, SL));
7545 
7546     SDValue Ptr =
7547         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7548 
7549     // This scalar TruncStore may be illegal, but we legalize it later.
7550     SDValue Store = DAG.getTruncStore(
7551         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7552         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7553         ST->getAAInfo());
7554 
7555     Stores.push_back(Store);
7556   }
7557 
7558   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7559 }
7560 
7561 std::pair<SDValue, SDValue>
7562 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7563   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7564          "unaligned indexed loads not implemented!");
7565   SDValue Chain = LD->getChain();
7566   SDValue Ptr = LD->getBasePtr();
7567   EVT VT = LD->getValueType(0);
7568   EVT LoadedVT = LD->getMemoryVT();
7569   SDLoc dl(LD);
7570   auto &MF = DAG.getMachineFunction();
7571 
7572   if (VT.isFloatingPoint() || VT.isVector()) {
7573     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7574     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7575       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7576           LoadedVT.isVector()) {
7577         // Scalarize the load and let the individual components be handled.
7578         return scalarizeVectorLoad(LD, DAG);
7579       }
7580 
7581       // Expand to a (misaligned) integer load of the same size,
7582       // then bitconvert to floating point or vector.
7583       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7584                                     LD->getMemOperand());
7585       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7586       if (LoadedVT != VT)
7587         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7588                              ISD::ANY_EXTEND, dl, VT, Result);
7589 
7590       return std::make_pair(Result, newLoad.getValue(1));
7591     }
7592 
7593     // Copy the value to a (aligned) stack slot using (unaligned) integer
7594     // loads and stores, then do a (aligned) load from the stack slot.
7595     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7596     unsigned LoadedBytes = LoadedVT.getStoreSize();
7597     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7598     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7599 
7600     // Make sure the stack slot is also aligned for the register type.
7601     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7602     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7603     SmallVector<SDValue, 8> Stores;
7604     SDValue StackPtr = StackBase;
7605     unsigned Offset = 0;
7606 
7607     EVT PtrVT = Ptr.getValueType();
7608     EVT StackPtrVT = StackPtr.getValueType();
7609 
7610     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7611     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7612 
7613     // Do all but one copies using the full register width.
7614     for (unsigned i = 1; i < NumRegs; i++) {
7615       // Load one integer register's worth from the original location.
7616       SDValue Load = DAG.getLoad(
7617           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7618           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7619           LD->getAAInfo());
7620       // Follow the load with a store to the stack slot.  Remember the store.
7621       Stores.push_back(DAG.getStore(
7622           Load.getValue(1), dl, Load, StackPtr,
7623           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7624       // Increment the pointers.
7625       Offset += RegBytes;
7626 
7627       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7628       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7629     }
7630 
7631     // The last copy may be partial.  Do an extending load.
7632     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7633                                   8 * (LoadedBytes - Offset));
7634     SDValue Load =
7635         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7636                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7637                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7638                        LD->getAAInfo());
7639     // Follow the load with a store to the stack slot.  Remember the store.
7640     // On big-endian machines this requires a truncating store to ensure
7641     // that the bits end up in the right place.
7642     Stores.push_back(DAG.getTruncStore(
7643         Load.getValue(1), dl, Load, StackPtr,
7644         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7645 
7646     // The order of the stores doesn't matter - say it with a TokenFactor.
7647     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7648 
7649     // Finally, perform the original load only redirected to the stack slot.
7650     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7651                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7652                           LoadedVT);
7653 
7654     // Callers expect a MERGE_VALUES node.
7655     return std::make_pair(Load, TF);
7656   }
7657 
7658   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7659          "Unaligned load of unsupported type.");
7660 
7661   // Compute the new VT that is half the size of the old one.  This is an
7662   // integer MVT.
7663   unsigned NumBits = LoadedVT.getSizeInBits();
7664   EVT NewLoadedVT;
7665   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7666   NumBits >>= 1;
7667 
7668   Align Alignment = LD->getOriginalAlign();
7669   unsigned IncrementSize = NumBits / 8;
7670   ISD::LoadExtType HiExtType = LD->getExtensionType();
7671 
7672   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7673   if (HiExtType == ISD::NON_EXTLOAD)
7674     HiExtType = ISD::ZEXTLOAD;
7675 
7676   // Load the value in two parts
7677   SDValue Lo, Hi;
7678   if (DAG.getDataLayout().isLittleEndian()) {
7679     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7680                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7681                         LD->getAAInfo());
7682 
7683     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7684     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7685                         LD->getPointerInfo().getWithOffset(IncrementSize),
7686                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7687                         LD->getAAInfo());
7688   } else {
7689     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7690                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7691                         LD->getAAInfo());
7692 
7693     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7694     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7695                         LD->getPointerInfo().getWithOffset(IncrementSize),
7696                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7697                         LD->getAAInfo());
7698   }
7699 
7700   // aggregate the two parts
7701   SDValue ShiftAmount =
7702       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7703                                                     DAG.getDataLayout()));
7704   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7705   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7706 
7707   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7708                              Hi.getValue(1));
7709 
7710   return std::make_pair(Result, TF);
7711 }
7712 
7713 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7714                                              SelectionDAG &DAG) const {
7715   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7716          "unaligned indexed stores not implemented!");
7717   SDValue Chain = ST->getChain();
7718   SDValue Ptr = ST->getBasePtr();
7719   SDValue Val = ST->getValue();
7720   EVT VT = Val.getValueType();
7721   Align Alignment = ST->getOriginalAlign();
7722   auto &MF = DAG.getMachineFunction();
7723   EVT StoreMemVT = ST->getMemoryVT();
7724 
7725   SDLoc dl(ST);
7726   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7727     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7728     if (isTypeLegal(intVT)) {
7729       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7730           StoreMemVT.isVector()) {
7731         // Scalarize the store and let the individual components be handled.
7732         SDValue Result = scalarizeVectorStore(ST, DAG);
7733         return Result;
7734       }
7735       // Expand to a bitconvert of the value to the integer type of the
7736       // same size, then a (misaligned) int store.
7737       // FIXME: Does not handle truncating floating point stores!
7738       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7739       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7740                             Alignment, ST->getMemOperand()->getFlags());
7741       return Result;
7742     }
7743     // Do a (aligned) store to a stack slot, then copy from the stack slot
7744     // to the final destination using (unaligned) integer loads and stores.
7745     MVT RegVT = getRegisterType(
7746         *DAG.getContext(),
7747         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7748     EVT PtrVT = Ptr.getValueType();
7749     unsigned StoredBytes = StoreMemVT.getStoreSize();
7750     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7751     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7752 
7753     // Make sure the stack slot is also aligned for the register type.
7754     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7755     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7756 
7757     // Perform the original store, only redirected to the stack slot.
7758     SDValue Store = DAG.getTruncStore(
7759         Chain, dl, Val, StackPtr,
7760         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7761 
7762     EVT StackPtrVT = StackPtr.getValueType();
7763 
7764     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7765     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7766     SmallVector<SDValue, 8> Stores;
7767     unsigned Offset = 0;
7768 
7769     // Do all but one copies using the full register width.
7770     for (unsigned i = 1; i < NumRegs; i++) {
7771       // Load one integer register's worth from the stack slot.
7772       SDValue Load = DAG.getLoad(
7773           RegVT, dl, Store, StackPtr,
7774           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7775       // Store it to the final location.  Remember the store.
7776       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7777                                     ST->getPointerInfo().getWithOffset(Offset),
7778                                     ST->getOriginalAlign(),
7779                                     ST->getMemOperand()->getFlags()));
7780       // Increment the pointers.
7781       Offset += RegBytes;
7782       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7783       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7784     }
7785 
7786     // The last store may be partial.  Do a truncating store.  On big-endian
7787     // machines this requires an extending load from the stack slot to ensure
7788     // that the bits are in the right place.
7789     EVT LoadMemVT =
7790         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7791 
7792     // Load from the stack slot.
7793     SDValue Load = DAG.getExtLoad(
7794         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7795         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7796 
7797     Stores.push_back(
7798         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7799                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7800                           ST->getOriginalAlign(),
7801                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7802     // The order of the stores doesn't matter - say it with a TokenFactor.
7803     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7804     return Result;
7805   }
7806 
7807   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7808          "Unaligned store of unknown type.");
7809   // Get the half-size VT
7810   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7811   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7812   unsigned IncrementSize = NumBits / 8;
7813 
7814   // Divide the stored value in two parts.
7815   SDValue ShiftAmount = DAG.getConstant(
7816       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7817   SDValue Lo = Val;
7818   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7819 
7820   // Store the two parts
7821   SDValue Store1, Store2;
7822   Store1 = DAG.getTruncStore(Chain, dl,
7823                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7824                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7825                              ST->getMemOperand()->getFlags());
7826 
7827   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7828   Store2 = DAG.getTruncStore(
7829       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7830       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7831       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7832 
7833   SDValue Result =
7834       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7835   return Result;
7836 }
7837 
7838 SDValue
7839 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7840                                        const SDLoc &DL, EVT DataVT,
7841                                        SelectionDAG &DAG,
7842                                        bool IsCompressedMemory) const {
7843   SDValue Increment;
7844   EVT AddrVT = Addr.getValueType();
7845   EVT MaskVT = Mask.getValueType();
7846   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7847          "Incompatible types of Data and Mask");
7848   if (IsCompressedMemory) {
7849     if (DataVT.isScalableVector())
7850       report_fatal_error(
7851           "Cannot currently handle compressed memory with scalable vectors");
7852     // Incrementing the pointer according to number of '1's in the mask.
7853     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7854     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7855     if (MaskIntVT.getSizeInBits() < 32) {
7856       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7857       MaskIntVT = MVT::i32;
7858     }
7859 
7860     // Count '1's with POPCNT.
7861     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7862     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7863     // Scale is an element size in bytes.
7864     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7865                                     AddrVT);
7866     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7867   } else if (DataVT.isScalableVector()) {
7868     Increment = DAG.getVScale(DL, AddrVT,
7869                               APInt(AddrVT.getFixedSizeInBits(),
7870                                     DataVT.getStoreSize().getKnownMinSize()));
7871   } else
7872     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7873 
7874   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7875 }
7876 
7877 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7878                                        EVT VecVT, const SDLoc &dl,
7879                                        ElementCount SubEC) {
7880   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7881          "Cannot index a scalable vector within a fixed-width vector");
7882 
7883   unsigned NElts = VecVT.getVectorMinNumElements();
7884   unsigned NumSubElts = SubEC.getKnownMinValue();
7885   EVT IdxVT = Idx.getValueType();
7886 
7887   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7888     // If this is a constant index and we know the value plus the number of the
7889     // elements in the subvector minus one is less than the minimum number of
7890     // elements then it's safe to return Idx.
7891     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7892       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7893         return Idx;
7894     SDValue VS =
7895         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7896     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7897     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7898                               DAG.getConstant(NumSubElts, dl, IdxVT));
7899     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7900   }
7901   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7902     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7903     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7904                        DAG.getConstant(Imm, dl, IdxVT));
7905   }
7906   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7907   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7908                      DAG.getConstant(MaxIndex, dl, IdxVT));
7909 }
7910 
7911 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7912                                                 SDValue VecPtr, EVT VecVT,
7913                                                 SDValue Index) const {
7914   return getVectorSubVecPointer(
7915       DAG, VecPtr, VecVT,
7916       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7917       Index);
7918 }
7919 
7920 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7921                                                SDValue VecPtr, EVT VecVT,
7922                                                EVT SubVecVT,
7923                                                SDValue Index) const {
7924   SDLoc dl(Index);
7925   // Make sure the index type is big enough to compute in.
7926   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7927 
7928   EVT EltVT = VecVT.getVectorElementType();
7929 
7930   // Calculate the element offset and add it to the pointer.
7931   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7932   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7933          "Converting bits to bytes lost precision");
7934   assert(SubVecVT.getVectorElementType() == EltVT &&
7935          "Sub-vector must be a vector with matching element type");
7936   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7937                                   SubVecVT.getVectorElementCount());
7938 
7939   EVT IdxVT = Index.getValueType();
7940   if (SubVecVT.isScalableVector())
7941     Index =
7942         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7943                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7944 
7945   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7946                       DAG.getConstant(EltSize, dl, IdxVT));
7947   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7948 }
7949 
7950 //===----------------------------------------------------------------------===//
7951 // Implementation of Emulated TLS Model
7952 //===----------------------------------------------------------------------===//
7953 
7954 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7955                                                 SelectionDAG &DAG) const {
7956   // Access to address of TLS varialbe xyz is lowered to a function call:
7957   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7958   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7959   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7960   SDLoc dl(GA);
7961 
7962   ArgListTy Args;
7963   ArgListEntry Entry;
7964   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7965   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7966   StringRef EmuTlsVarName(NameString);
7967   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7968   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7969   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7970   Entry.Ty = VoidPtrType;
7971   Args.push_back(Entry);
7972 
7973   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7974 
7975   TargetLowering::CallLoweringInfo CLI(DAG);
7976   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7977   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7978   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7979 
7980   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7981   // At last for X86 targets, maybe good for other targets too?
7982   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7983   MFI.setAdjustsStack(true); // Is this only for X86 target?
7984   MFI.setHasCalls(true);
7985 
7986   assert((GA->getOffset() == 0) &&
7987          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7988   return CallResult.first;
7989 }
7990 
7991 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7992                                                 SelectionDAG &DAG) const {
7993   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7994   if (!isCtlzFast())
7995     return SDValue();
7996   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7997   SDLoc dl(Op);
7998   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7999     if (C->isZero() && CC == ISD::SETEQ) {
8000       EVT VT = Op.getOperand(0).getValueType();
8001       SDValue Zext = Op.getOperand(0);
8002       if (VT.bitsLT(MVT::i32)) {
8003         VT = MVT::i32;
8004         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8005       }
8006       unsigned Log2b = Log2_32(VT.getSizeInBits());
8007       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8008       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8009                                 DAG.getConstant(Log2b, dl, MVT::i32));
8010       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8011     }
8012   }
8013   return SDValue();
8014 }
8015 
8016 // Convert redundant addressing modes (e.g. scaling is redundant
8017 // when accessing bytes).
8018 ISD::MemIndexType
8019 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8020                                       SDValue Offsets) const {
8021   bool IsScaledIndex =
8022       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8023   bool IsSignedIndex =
8024       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8025 
8026   // Scaling is unimportant for bytes, canonicalize to unscaled.
8027   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8028     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8029 
8030   return IndexType;
8031 }
8032 
8033 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8034   SDValue Op0 = Node->getOperand(0);
8035   SDValue Op1 = Node->getOperand(1);
8036   EVT VT = Op0.getValueType();
8037   unsigned Opcode = Node->getOpcode();
8038   SDLoc DL(Node);
8039 
8040   // umin(x,y) -> sub(x,usubsat(x,y))
8041   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8042       isOperationLegal(ISD::USUBSAT, VT)) {
8043     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8044                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8045   }
8046 
8047   // umax(x,y) -> add(x,usubsat(y,x))
8048   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8049       isOperationLegal(ISD::USUBSAT, VT)) {
8050     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8051                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8052   }
8053 
8054   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8055   ISD::CondCode CC;
8056   switch (Opcode) {
8057   default: llvm_unreachable("How did we get here?");
8058   case ISD::SMAX: CC = ISD::SETGT; break;
8059   case ISD::SMIN: CC = ISD::SETLT; break;
8060   case ISD::UMAX: CC = ISD::SETUGT; break;
8061   case ISD::UMIN: CC = ISD::SETULT; break;
8062   }
8063 
8064   // FIXME: Should really try to split the vector in case it's legal on a
8065   // subvector.
8066   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8067     return DAG.UnrollVectorOp(Node);
8068 
8069   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8070   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8071   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8072 }
8073 
8074 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8075   unsigned Opcode = Node->getOpcode();
8076   SDValue LHS = Node->getOperand(0);
8077   SDValue RHS = Node->getOperand(1);
8078   EVT VT = LHS.getValueType();
8079   SDLoc dl(Node);
8080 
8081   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8082   assert(VT.isInteger() && "Expected operands to be integers");
8083 
8084   // usub.sat(a, b) -> umax(a, b) - b
8085   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8086     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8087     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8088   }
8089 
8090   // uadd.sat(a, b) -> umin(a, ~b) + b
8091   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8092     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8093     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8094     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8095   }
8096 
8097   unsigned OverflowOp;
8098   switch (Opcode) {
8099   case ISD::SADDSAT:
8100     OverflowOp = ISD::SADDO;
8101     break;
8102   case ISD::UADDSAT:
8103     OverflowOp = ISD::UADDO;
8104     break;
8105   case ISD::SSUBSAT:
8106     OverflowOp = ISD::SSUBO;
8107     break;
8108   case ISD::USUBSAT:
8109     OverflowOp = ISD::USUBO;
8110     break;
8111   default:
8112     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8113                      "addition or subtraction node.");
8114   }
8115 
8116   // FIXME: Should really try to split the vector in case it's legal on a
8117   // subvector.
8118   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8119     return DAG.UnrollVectorOp(Node);
8120 
8121   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8122   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8123   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8124   SDValue SumDiff = Result.getValue(0);
8125   SDValue Overflow = Result.getValue(1);
8126   SDValue Zero = DAG.getConstant(0, dl, VT);
8127   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8128 
8129   if (Opcode == ISD::UADDSAT) {
8130     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8131       // (LHS + RHS) | OverflowMask
8132       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8133       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8134     }
8135     // Overflow ? 0xffff.... : (LHS + RHS)
8136     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8137   }
8138 
8139   if (Opcode == ISD::USUBSAT) {
8140     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8141       // (LHS - RHS) & ~OverflowMask
8142       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8143       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8144       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8145     }
8146     // Overflow ? 0 : (LHS - RHS)
8147     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8148   }
8149 
8150   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8151   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8152   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8153   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8154                               DAG.getConstant(BitWidth - 1, dl, VT));
8155   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8156   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8157 }
8158 
8159 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8160   unsigned Opcode = Node->getOpcode();
8161   bool IsSigned = Opcode == ISD::SSHLSAT;
8162   SDValue LHS = Node->getOperand(0);
8163   SDValue RHS = Node->getOperand(1);
8164   EVT VT = LHS.getValueType();
8165   SDLoc dl(Node);
8166 
8167   assert((Node->getOpcode() == ISD::SSHLSAT ||
8168           Node->getOpcode() == ISD::USHLSAT) &&
8169           "Expected a SHLSAT opcode");
8170   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8171   assert(VT.isInteger() && "Expected operands to be integers");
8172 
8173   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8174 
8175   unsigned BW = VT.getScalarSizeInBits();
8176   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8177   SDValue Orig =
8178       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8179 
8180   SDValue SatVal;
8181   if (IsSigned) {
8182     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8183     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8184     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8185                              SatMin, SatMax, ISD::SETLT);
8186   } else {
8187     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8188   }
8189   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8190 
8191   return Result;
8192 }
8193 
8194 SDValue
8195 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8196   assert((Node->getOpcode() == ISD::SMULFIX ||
8197           Node->getOpcode() == ISD::UMULFIX ||
8198           Node->getOpcode() == ISD::SMULFIXSAT ||
8199           Node->getOpcode() == ISD::UMULFIXSAT) &&
8200          "Expected a fixed point multiplication opcode");
8201 
8202   SDLoc dl(Node);
8203   SDValue LHS = Node->getOperand(0);
8204   SDValue RHS = Node->getOperand(1);
8205   EVT VT = LHS.getValueType();
8206   unsigned Scale = Node->getConstantOperandVal(2);
8207   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8208                      Node->getOpcode() == ISD::UMULFIXSAT);
8209   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8210                  Node->getOpcode() == ISD::SMULFIXSAT);
8211   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8212   unsigned VTSize = VT.getScalarSizeInBits();
8213 
8214   if (!Scale) {
8215     // [us]mul.fix(a, b, 0) -> mul(a, b)
8216     if (!Saturating) {
8217       if (isOperationLegalOrCustom(ISD::MUL, VT))
8218         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8219     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8220       SDValue Result =
8221           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8222       SDValue Product = Result.getValue(0);
8223       SDValue Overflow = Result.getValue(1);
8224       SDValue Zero = DAG.getConstant(0, dl, VT);
8225 
8226       APInt MinVal = APInt::getSignedMinValue(VTSize);
8227       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8228       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8229       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8230       // Xor the inputs, if resulting sign bit is 0 the product will be
8231       // positive, else negative.
8232       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8233       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8234       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8235       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8236     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8237       SDValue Result =
8238           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8239       SDValue Product = Result.getValue(0);
8240       SDValue Overflow = Result.getValue(1);
8241 
8242       APInt MaxVal = APInt::getMaxValue(VTSize);
8243       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8244       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8245     }
8246   }
8247 
8248   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8249          "Expected scale to be less than the number of bits if signed or at "
8250          "most the number of bits if unsigned.");
8251   assert(LHS.getValueType() == RHS.getValueType() &&
8252          "Expected both operands to be the same type");
8253 
8254   // Get the upper and lower bits of the result.
8255   SDValue Lo, Hi;
8256   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8257   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8258   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8259     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8260     Lo = Result.getValue(0);
8261     Hi = Result.getValue(1);
8262   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8263     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8264     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8265   } else if (VT.isVector()) {
8266     return SDValue();
8267   } else {
8268     report_fatal_error("Unable to expand fixed point multiplication.");
8269   }
8270 
8271   if (Scale == VTSize)
8272     // Result is just the top half since we'd be shifting by the width of the
8273     // operand. Overflow impossible so this works for both UMULFIX and
8274     // UMULFIXSAT.
8275     return Hi;
8276 
8277   // The result will need to be shifted right by the scale since both operands
8278   // are scaled. The result is given to us in 2 halves, so we only want part of
8279   // both in the result.
8280   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8281   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8282                                DAG.getConstant(Scale, dl, ShiftTy));
8283   if (!Saturating)
8284     return Result;
8285 
8286   if (!Signed) {
8287     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8288     // widened multiplication) aren't all zeroes.
8289 
8290     // Saturate to max if ((Hi >> Scale) != 0),
8291     // which is the same as if (Hi > ((1 << Scale) - 1))
8292     APInt MaxVal = APInt::getMaxValue(VTSize);
8293     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8294                                       dl, VT);
8295     Result = DAG.getSelectCC(dl, Hi, LowMask,
8296                              DAG.getConstant(MaxVal, dl, VT), Result,
8297                              ISD::SETUGT);
8298 
8299     return Result;
8300   }
8301 
8302   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8303   // widened multiplication) aren't all ones or all zeroes.
8304 
8305   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8306   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8307 
8308   if (Scale == 0) {
8309     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8310                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8311     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8312     // Saturated to SatMin if wide product is negative, and SatMax if wide
8313     // product is positive ...
8314     SDValue Zero = DAG.getConstant(0, dl, VT);
8315     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8316                                                ISD::SETLT);
8317     // ... but only if we overflowed.
8318     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8319   }
8320 
8321   //  We handled Scale==0 above so all the bits to examine is in Hi.
8322 
8323   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8324   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8325   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8326                                     dl, VT);
8327   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8328   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8329   // which is the same as if (HI < (-1 << (Scale - 1))
8330   SDValue HighMask =
8331       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8332                       dl, VT);
8333   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8334   return Result;
8335 }
8336 
8337 SDValue
8338 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8339                                     SDValue LHS, SDValue RHS,
8340                                     unsigned Scale, SelectionDAG &DAG) const {
8341   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8342           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8343          "Expected a fixed point division opcode");
8344 
8345   EVT VT = LHS.getValueType();
8346   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8347   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8348   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8349 
8350   // If there is enough room in the type to upscale the LHS or downscale the
8351   // RHS before the division, we can perform it in this type without having to
8352   // resize. For signed operations, the LHS headroom is the number of
8353   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8354   // The headroom for the RHS is the number of trailing zeroes.
8355   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8356                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8357   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8358 
8359   // For signed saturating operations, we need to be able to detect true integer
8360   // division overflow; that is, when you have MIN / -EPS. However, this
8361   // is undefined behavior and if we emit divisions that could take such
8362   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8363   // example).
8364   // Avoid this by requiring an extra bit so that we never get this case.
8365   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8366   // signed saturating division, we need to emit a whopping 32-bit division.
8367   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8368     return SDValue();
8369 
8370   unsigned LHSShift = std::min(LHSLead, Scale);
8371   unsigned RHSShift = Scale - LHSShift;
8372 
8373   // At this point, we know that if we shift the LHS up by LHSShift and the
8374   // RHS down by RHSShift, we can emit a regular division with a final scaling
8375   // factor of Scale.
8376 
8377   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8378   if (LHSShift)
8379     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8380                       DAG.getConstant(LHSShift, dl, ShiftTy));
8381   if (RHSShift)
8382     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8383                       DAG.getConstant(RHSShift, dl, ShiftTy));
8384 
8385   SDValue Quot;
8386   if (Signed) {
8387     // For signed operations, if the resulting quotient is negative and the
8388     // remainder is nonzero, subtract 1 from the quotient to round towards
8389     // negative infinity.
8390     SDValue Rem;
8391     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8392     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8393     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8394     if (isTypeLegal(VT) &&
8395         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8396       Quot = DAG.getNode(ISD::SDIVREM, dl,
8397                          DAG.getVTList(VT, VT),
8398                          LHS, RHS);
8399       Rem = Quot.getValue(1);
8400       Quot = Quot.getValue(0);
8401     } else {
8402       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8403                          LHS, RHS);
8404       Rem = DAG.getNode(ISD::SREM, dl, VT,
8405                         LHS, RHS);
8406     }
8407     SDValue Zero = DAG.getConstant(0, dl, VT);
8408     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8409     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8410     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8411     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8412     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8413                                DAG.getConstant(1, dl, VT));
8414     Quot = DAG.getSelect(dl, VT,
8415                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8416                          Sub1, Quot);
8417   } else
8418     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8419                        LHS, RHS);
8420 
8421   return Quot;
8422 }
8423 
8424 void TargetLowering::expandUADDSUBO(
8425     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8426   SDLoc dl(Node);
8427   SDValue LHS = Node->getOperand(0);
8428   SDValue RHS = Node->getOperand(1);
8429   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8430 
8431   // If ADD/SUBCARRY is legal, use that instead.
8432   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8433   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8434     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8435     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8436                                     { LHS, RHS, CarryIn });
8437     Result = SDValue(NodeCarry.getNode(), 0);
8438     Overflow = SDValue(NodeCarry.getNode(), 1);
8439     return;
8440   }
8441 
8442   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8443                             LHS.getValueType(), LHS, RHS);
8444 
8445   EVT ResultType = Node->getValueType(1);
8446   EVT SetCCType = getSetCCResultType(
8447       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8448   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8449   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8450   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8451 }
8452 
8453 void TargetLowering::expandSADDSUBO(
8454     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8455   SDLoc dl(Node);
8456   SDValue LHS = Node->getOperand(0);
8457   SDValue RHS = Node->getOperand(1);
8458   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8459 
8460   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8461                             LHS.getValueType(), LHS, RHS);
8462 
8463   EVT ResultType = Node->getValueType(1);
8464   EVT OType = getSetCCResultType(
8465       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8466 
8467   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8468   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8469   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8470     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8471     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8472     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8473     return;
8474   }
8475 
8476   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8477 
8478   // For an addition, the result should be less than one of the operands (LHS)
8479   // if and only if the other operand (RHS) is negative, otherwise there will
8480   // be overflow.
8481   // For a subtraction, the result should be less than one of the operands
8482   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8483   // otherwise there will be overflow.
8484   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8485   SDValue ConditionRHS =
8486       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8487 
8488   Overflow = DAG.getBoolExtOrTrunc(
8489       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8490       ResultType, ResultType);
8491 }
8492 
8493 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8494                                 SDValue &Overflow, SelectionDAG &DAG) const {
8495   SDLoc dl(Node);
8496   EVT VT = Node->getValueType(0);
8497   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8498   SDValue LHS = Node->getOperand(0);
8499   SDValue RHS = Node->getOperand(1);
8500   bool isSigned = Node->getOpcode() == ISD::SMULO;
8501 
8502   // For power-of-two multiplications we can use a simpler shift expansion.
8503   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8504     const APInt &C = RHSC->getAPIntValue();
8505     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8506     if (C.isPowerOf2()) {
8507       // smulo(x, signed_min) is same as umulo(x, signed_min).
8508       bool UseArithShift = isSigned && !C.isMinSignedValue();
8509       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8510       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8511       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8512       Overflow = DAG.getSetCC(dl, SetCCVT,
8513           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8514                       dl, VT, Result, ShiftAmt),
8515           LHS, ISD::SETNE);
8516       return true;
8517     }
8518   }
8519 
8520   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8521   if (VT.isVector())
8522     WideVT =
8523         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8524 
8525   SDValue BottomHalf;
8526   SDValue TopHalf;
8527   static const unsigned Ops[2][3] =
8528       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8529         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8530   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8531     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8532     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8533   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8534     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8535                              RHS);
8536     TopHalf = BottomHalf.getValue(1);
8537   } else if (isTypeLegal(WideVT)) {
8538     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8539     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8540     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8541     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8542     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8543         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8544     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8545                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8546   } else {
8547     if (VT.isVector())
8548       return false;
8549 
8550     // We can fall back to a libcall with an illegal type for the MUL if we
8551     // have a libcall big enough.
8552     // Also, we can fall back to a division in some cases, but that's a big
8553     // performance hit in the general case.
8554     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8555     if (WideVT == MVT::i16)
8556       LC = RTLIB::MUL_I16;
8557     else if (WideVT == MVT::i32)
8558       LC = RTLIB::MUL_I32;
8559     else if (WideVT == MVT::i64)
8560       LC = RTLIB::MUL_I64;
8561     else if (WideVT == MVT::i128)
8562       LC = RTLIB::MUL_I128;
8563     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8564 
8565     SDValue HiLHS;
8566     SDValue HiRHS;
8567     if (isSigned) {
8568       // The high part is obtained by SRA'ing all but one of the bits of low
8569       // part.
8570       unsigned LoSize = VT.getFixedSizeInBits();
8571       HiLHS =
8572           DAG.getNode(ISD::SRA, dl, VT, LHS,
8573                       DAG.getConstant(LoSize - 1, dl,
8574                                       getPointerTy(DAG.getDataLayout())));
8575       HiRHS =
8576           DAG.getNode(ISD::SRA, dl, VT, RHS,
8577                       DAG.getConstant(LoSize - 1, dl,
8578                                       getPointerTy(DAG.getDataLayout())));
8579     } else {
8580         HiLHS = DAG.getConstant(0, dl, VT);
8581         HiRHS = DAG.getConstant(0, dl, VT);
8582     }
8583 
8584     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8585     // pre-lowered to the correct types. This all depends upon WideVT not
8586     // being a legal type for the architecture and thus has to be split to
8587     // two arguments.
8588     SDValue Ret;
8589     TargetLowering::MakeLibCallOptions CallOptions;
8590     CallOptions.setSExt(isSigned);
8591     CallOptions.setIsPostTypeLegalization(true);
8592     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8593       // Halves of WideVT are packed into registers in different order
8594       // depending on platform endianness. This is usually handled by
8595       // the C calling convention, but we can't defer to it in
8596       // the legalizer.
8597       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8598       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8599     } else {
8600       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8601       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8602     }
8603     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8604            "Ret value is a collection of constituent nodes holding result.");
8605     if (DAG.getDataLayout().isLittleEndian()) {
8606       // Same as above.
8607       BottomHalf = Ret.getOperand(0);
8608       TopHalf = Ret.getOperand(1);
8609     } else {
8610       BottomHalf = Ret.getOperand(1);
8611       TopHalf = Ret.getOperand(0);
8612     }
8613   }
8614 
8615   Result = BottomHalf;
8616   if (isSigned) {
8617     SDValue ShiftAmt = DAG.getConstant(
8618         VT.getScalarSizeInBits() - 1, dl,
8619         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8620     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8621     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8622   } else {
8623     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8624                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8625   }
8626 
8627   // Truncate the result if SetCC returns a larger type than needed.
8628   EVT RType = Node->getValueType(1);
8629   if (RType.bitsLT(Overflow.getValueType()))
8630     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8631 
8632   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8633          "Unexpected result type for S/UMULO legalization");
8634   return true;
8635 }
8636 
8637 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8638   SDLoc dl(Node);
8639   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8640   SDValue Op = Node->getOperand(0);
8641   EVT VT = Op.getValueType();
8642 
8643   if (VT.isScalableVector())
8644     report_fatal_error(
8645         "Expanding reductions for scalable vectors is undefined.");
8646 
8647   // Try to use a shuffle reduction for power of two vectors.
8648   if (VT.isPow2VectorType()) {
8649     while (VT.getVectorNumElements() > 1) {
8650       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8651       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8652         break;
8653 
8654       SDValue Lo, Hi;
8655       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8656       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8657       VT = HalfVT;
8658     }
8659   }
8660 
8661   EVT EltVT = VT.getVectorElementType();
8662   unsigned NumElts = VT.getVectorNumElements();
8663 
8664   SmallVector<SDValue, 8> Ops;
8665   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8666 
8667   SDValue Res = Ops[0];
8668   for (unsigned i = 1; i < NumElts; i++)
8669     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8670 
8671   // Result type may be wider than element type.
8672   if (EltVT != Node->getValueType(0))
8673     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8674   return Res;
8675 }
8676 
8677 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8678   SDLoc dl(Node);
8679   SDValue AccOp = Node->getOperand(0);
8680   SDValue VecOp = Node->getOperand(1);
8681   SDNodeFlags Flags = Node->getFlags();
8682 
8683   EVT VT = VecOp.getValueType();
8684   EVT EltVT = VT.getVectorElementType();
8685 
8686   if (VT.isScalableVector())
8687     report_fatal_error(
8688         "Expanding reductions for scalable vectors is undefined.");
8689 
8690   unsigned NumElts = VT.getVectorNumElements();
8691 
8692   SmallVector<SDValue, 8> Ops;
8693   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8694 
8695   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8696 
8697   SDValue Res = AccOp;
8698   for (unsigned i = 0; i < NumElts; i++)
8699     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8700 
8701   return Res;
8702 }
8703 
8704 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8705                                SelectionDAG &DAG) const {
8706   EVT VT = Node->getValueType(0);
8707   SDLoc dl(Node);
8708   bool isSigned = Node->getOpcode() == ISD::SREM;
8709   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8710   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8711   SDValue Dividend = Node->getOperand(0);
8712   SDValue Divisor = Node->getOperand(1);
8713   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8714     SDVTList VTs = DAG.getVTList(VT, VT);
8715     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8716     return true;
8717   }
8718   if (isOperationLegalOrCustom(DivOpc, VT)) {
8719     // X % Y -> X-X/Y*Y
8720     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8721     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8722     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8723     return true;
8724   }
8725   return false;
8726 }
8727 
8728 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8729                                             SelectionDAG &DAG) const {
8730   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8731   SDLoc dl(SDValue(Node, 0));
8732   SDValue Src = Node->getOperand(0);
8733 
8734   // DstVT is the result type, while SatVT is the size to which we saturate
8735   EVT SrcVT = Src.getValueType();
8736   EVT DstVT = Node->getValueType(0);
8737 
8738   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8739   unsigned SatWidth = SatVT.getScalarSizeInBits();
8740   unsigned DstWidth = DstVT.getScalarSizeInBits();
8741   assert(SatWidth <= DstWidth &&
8742          "Expected saturation width smaller than result width");
8743 
8744   // Determine minimum and maximum integer values and their corresponding
8745   // floating-point values.
8746   APInt MinInt, MaxInt;
8747   if (IsSigned) {
8748     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8749     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8750   } else {
8751     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8752     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8753   }
8754 
8755   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8756   // libcall emission cannot handle this. Large result types will fail.
8757   if (SrcVT == MVT::f16) {
8758     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8759     SrcVT = Src.getValueType();
8760   }
8761 
8762   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8763   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8764 
8765   APFloat::opStatus MinStatus =
8766       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8767   APFloat::opStatus MaxStatus =
8768       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8769   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8770                              !(MaxStatus & APFloat::opStatus::opInexact);
8771 
8772   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8773   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8774 
8775   // If the integer bounds are exactly representable as floats and min/max are
8776   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8777   // of comparisons and selects.
8778   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8779                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8780   if (AreExactFloatBounds && MinMaxLegal) {
8781     SDValue Clamped = Src;
8782 
8783     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8784     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8785     // Clamp by MaxFloat from above. NaN cannot occur.
8786     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8787     // Convert clamped value to integer.
8788     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8789                                   dl, DstVT, Clamped);
8790 
8791     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8792     // which will cast to zero.
8793     if (!IsSigned)
8794       return FpToInt;
8795 
8796     // Otherwise, select 0 if Src is NaN.
8797     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8798     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8799                            ISD::CondCode::SETUO);
8800   }
8801 
8802   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8803   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8804 
8805   // Result of direct conversion. The assumption here is that the operation is
8806   // non-trapping and it's fine to apply it to an out-of-range value if we
8807   // select it away later.
8808   SDValue FpToInt =
8809       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8810 
8811   SDValue Select = FpToInt;
8812 
8813   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8814   // MinInt if Src is NaN.
8815   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8816                            ISD::CondCode::SETULT);
8817   // If Src OGT MaxFloat, select MaxInt.
8818   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8819                            ISD::CondCode::SETOGT);
8820 
8821   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8822   // is already zero.
8823   if (!IsSigned)
8824     return Select;
8825 
8826   // Otherwise, select 0 if Src is NaN.
8827   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8828   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8829 }
8830 
8831 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8832                                            SelectionDAG &DAG) const {
8833   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8834   assert(Node->getValueType(0).isScalableVector() &&
8835          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8836 
8837   EVT VT = Node->getValueType(0);
8838   SDValue V1 = Node->getOperand(0);
8839   SDValue V2 = Node->getOperand(1);
8840   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8841   SDLoc DL(Node);
8842 
8843   // Expand through memory thusly:
8844   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8845   //  Store V1, Ptr
8846   //  Store V2, Ptr + sizeof(V1)
8847   //  If (Imm < 0)
8848   //    TrailingElts = -Imm
8849   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8850   //  else
8851   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8852   //  Res = Load Ptr
8853 
8854   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8855 
8856   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8857                                VT.getVectorElementCount() * 2);
8858   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8859   EVT PtrVT = StackPtr.getValueType();
8860   auto &MF = DAG.getMachineFunction();
8861   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8862   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8863 
8864   // Store the lo part of CONCAT_VECTORS(V1, V2)
8865   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8866   // Store the hi part of CONCAT_VECTORS(V1, V2)
8867   SDValue OffsetToV2 = DAG.getVScale(
8868       DL, PtrVT,
8869       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8870   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8871   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8872 
8873   if (Imm >= 0) {
8874     // Load back the required element. getVectorElementPointer takes care of
8875     // clamping the index if it's out-of-bounds.
8876     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8877     // Load the spliced result
8878     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8879                        MachinePointerInfo::getUnknownStack(MF));
8880   }
8881 
8882   uint64_t TrailingElts = -Imm;
8883 
8884   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8885   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8886   SDValue TrailingBytes =
8887       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8888 
8889   if (TrailingElts > VT.getVectorMinNumElements()) {
8890     SDValue VLBytes = DAG.getVScale(
8891         DL, PtrVT,
8892         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8893     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8894   }
8895 
8896   // Calculate the start address of the spliced result.
8897   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8898 
8899   // Load the spliced result
8900   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8901                      MachinePointerInfo::getUnknownStack(MF));
8902 }
8903 
8904 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8905                                            SDValue &LHS, SDValue &RHS,
8906                                            SDValue &CC, bool &NeedInvert,
8907                                            const SDLoc &dl, SDValue &Chain,
8908                                            bool IsSignaling) const {
8909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8910   MVT OpVT = LHS.getSimpleValueType();
8911   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8912   NeedInvert = false;
8913   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8914   default:
8915     llvm_unreachable("Unknown condition code action!");
8916   case TargetLowering::Legal:
8917     // Nothing to do.
8918     break;
8919   case TargetLowering::Expand: {
8920     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8921     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8922       std::swap(LHS, RHS);
8923       CC = DAG.getCondCode(InvCC);
8924       return true;
8925     }
8926     // Swapping operands didn't work. Try inverting the condition.
8927     bool NeedSwap = false;
8928     InvCC = getSetCCInverse(CCCode, OpVT);
8929     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8930       // If inverting the condition is not enough, try swapping operands
8931       // on top of it.
8932       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8933       NeedSwap = true;
8934     }
8935     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8936       CC = DAG.getCondCode(InvCC);
8937       NeedInvert = true;
8938       if (NeedSwap)
8939         std::swap(LHS, RHS);
8940       return true;
8941     }
8942 
8943     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8944     unsigned Opc = 0;
8945     switch (CCCode) {
8946     default:
8947       llvm_unreachable("Don't know how to expand this condition!");
8948     case ISD::SETUO:
8949       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8950         CC1 = ISD::SETUNE;
8951         CC2 = ISD::SETUNE;
8952         Opc = ISD::OR;
8953         break;
8954       }
8955       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8956              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8957       NeedInvert = true;
8958       LLVM_FALLTHROUGH;
8959     case ISD::SETO:
8960       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8961              "If SETO is expanded, SETOEQ must be legal!");
8962       CC1 = ISD::SETOEQ;
8963       CC2 = ISD::SETOEQ;
8964       Opc = ISD::AND;
8965       break;
8966     case ISD::SETONE:
8967     case ISD::SETUEQ:
8968       // If the SETUO or SETO CC isn't legal, we might be able to use
8969       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8970       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8971       // the operands.
8972       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8973       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8974           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8975            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8976         CC1 = ISD::SETOGT;
8977         CC2 = ISD::SETOLT;
8978         Opc = ISD::OR;
8979         NeedInvert = ((unsigned)CCCode & 0x8U);
8980         break;
8981       }
8982       LLVM_FALLTHROUGH;
8983     case ISD::SETOEQ:
8984     case ISD::SETOGT:
8985     case ISD::SETOGE:
8986     case ISD::SETOLT:
8987     case ISD::SETOLE:
8988     case ISD::SETUNE:
8989     case ISD::SETUGT:
8990     case ISD::SETUGE:
8991     case ISD::SETULT:
8992     case ISD::SETULE:
8993       // If we are floating point, assign and break, otherwise fall through.
8994       if (!OpVT.isInteger()) {
8995         // We can use the 4th bit to tell if we are the unordered
8996         // or ordered version of the opcode.
8997         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8998         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8999         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9000         break;
9001       }
9002       // Fallthrough if we are unsigned integer.
9003       LLVM_FALLTHROUGH;
9004     case ISD::SETLE:
9005     case ISD::SETGT:
9006     case ISD::SETGE:
9007     case ISD::SETLT:
9008     case ISD::SETNE:
9009     case ISD::SETEQ:
9010       // If all combinations of inverting the condition and swapping operands
9011       // didn't work then we have no means to expand the condition.
9012       llvm_unreachable("Don't know how to expand this condition!");
9013     }
9014 
9015     SDValue SetCC1, SetCC2;
9016     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9017       // If we aren't the ordered or unorder operation,
9018       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9019       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9020       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9021     } else {
9022       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9023       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9024       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9025     }
9026     if (Chain)
9027       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9028                           SetCC2.getValue(1));
9029     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9030     RHS = SDValue();
9031     CC = SDValue();
9032     return true;
9033   }
9034   }
9035   return false;
9036 }
9037