1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/DivisionByConstantInfo.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include <cctype> 34 using namespace llvm; 35 36 /// NOTE: The TargetMachine owns TLOF. 37 TargetLowering::TargetLowering(const TargetMachine &tm) 38 : TargetLoweringBase(tm) {} 39 40 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 41 return nullptr; 42 } 43 44 bool TargetLowering::isPositionIndependent() const { 45 return getTargetMachine().isPositionIndependent(); 46 } 47 48 /// Check whether a given call node is in tail position within its function. If 49 /// so, it sets Chain to the input chain of the tail call. 50 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 51 SDValue &Chain) const { 52 const Function &F = DAG.getMachineFunction().getFunction(); 53 54 // First, check if tail calls have been disabled in this function. 55 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 56 return false; 57 58 // Conservatively require the attributes of the call to match those of 59 // the return. Ignore following attributes because they don't affect the 60 // call sequence. 61 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 62 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 63 Attribute::DereferenceableOrNull, Attribute::NoAlias, 64 Attribute::NonNull, Attribute::NoUndef}) 65 CallerAttrs.removeAttribute(Attr); 66 67 if (CallerAttrs.hasAttributes()) 68 return false; 69 70 // It's not safe to eliminate the sign / zero extension of the return value. 71 if (CallerAttrs.contains(Attribute::ZExt) || 72 CallerAttrs.contains(Attribute::SExt)) 73 return false; 74 75 // Check if the only use is a function return node. 76 return isUsedByReturnOnly(Node, Chain); 77 } 78 79 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 80 const uint32_t *CallerPreservedMask, 81 const SmallVectorImpl<CCValAssign> &ArgLocs, 82 const SmallVectorImpl<SDValue> &OutVals) const { 83 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 84 const CCValAssign &ArgLoc = ArgLocs[I]; 85 if (!ArgLoc.isRegLoc()) 86 continue; 87 MCRegister Reg = ArgLoc.getLocReg(); 88 // Only look at callee saved registers. 89 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 90 continue; 91 // Check that we pass the value used for the caller. 92 // (We look for a CopyFromReg reading a virtual register that is used 93 // for the function live-in value of register Reg) 94 SDValue Value = OutVals[I]; 95 if (Value->getOpcode() != ISD::CopyFromReg) 96 return false; 97 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 98 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 99 return false; 100 } 101 return true; 102 } 103 104 /// Set CallLoweringInfo attribute flags based on a call instruction 105 /// and called function attributes. 106 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 107 unsigned ArgIdx) { 108 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 109 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 110 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 111 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 112 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 113 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 114 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 115 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 116 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 117 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 118 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 119 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 120 Alignment = Call->getParamStackAlign(ArgIdx); 121 IndirectType = nullptr; 122 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 123 "multiple ABI attributes?"); 124 if (IsByVal) { 125 IndirectType = Call->getParamByValType(ArgIdx); 126 if (!Alignment) 127 Alignment = Call->getParamAlign(ArgIdx); 128 } 129 if (IsPreallocated) 130 IndirectType = Call->getParamPreallocatedType(ArgIdx); 131 if (IsInAlloca) 132 IndirectType = Call->getParamInAllocaType(ArgIdx); 133 if (IsSRet) 134 IndirectType = Call->getParamStructRetType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 const APInt &DemandedElts, 610 DAGCombinerInfo &DCI) const { 611 SelectionDAG &DAG = DCI.DAG; 612 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 613 !DCI.isBeforeLegalizeOps()); 614 KnownBits Known; 615 616 bool Simplified = 617 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 618 if (Simplified) { 619 DCI.AddToWorklist(Op.getNode()); 620 DCI.CommitTargetLoweringOpt(TLO); 621 } 622 return Simplified; 623 } 624 625 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 626 KnownBits &Known, 627 TargetLoweringOpt &TLO, 628 unsigned Depth, 629 bool AssumeSingleUse) const { 630 EVT VT = Op.getValueType(); 631 632 // TODO: We can probably do more work on calculating the known bits and 633 // simplifying the operations for scalable vectors, but for now we just 634 // bail out. 635 if (VT.isScalableVector()) { 636 // Pretend we don't know anything for now. 637 Known = KnownBits(DemandedBits.getBitWidth()); 638 return false; 639 } 640 641 APInt DemandedElts = VT.isVector() 642 ? APInt::getAllOnes(VT.getVectorNumElements()) 643 : APInt(1, 1); 644 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 645 AssumeSingleUse); 646 } 647 648 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 649 // TODO: Under what circumstances can we create nodes? Constant folding? 650 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 651 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 652 SelectionDAG &DAG, unsigned Depth) const { 653 // Limit search depth. 654 if (Depth >= SelectionDAG::MaxRecursionDepth) 655 return SDValue(); 656 657 // Ignore UNDEFs. 658 if (Op.isUndef()) 659 return SDValue(); 660 661 // Not demanding any bits/elts from Op. 662 if (DemandedBits == 0 || DemandedElts == 0) 663 return DAG.getUNDEF(Op.getValueType()); 664 665 bool IsLE = DAG.getDataLayout().isLittleEndian(); 666 unsigned NumElts = DemandedElts.getBitWidth(); 667 unsigned BitWidth = DemandedBits.getBitWidth(); 668 KnownBits LHSKnown, RHSKnown; 669 switch (Op.getOpcode()) { 670 case ISD::BITCAST: { 671 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 672 EVT SrcVT = Src.getValueType(); 673 EVT DstVT = Op.getValueType(); 674 if (SrcVT == DstVT) 675 return Src; 676 677 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 678 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 679 if (NumSrcEltBits == NumDstEltBits) 680 if (SDValue V = SimplifyMultipleUseDemandedBits( 681 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 682 return DAG.getBitcast(DstVT, V); 683 684 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 685 unsigned Scale = NumDstEltBits / NumSrcEltBits; 686 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 687 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 688 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 689 for (unsigned i = 0; i != Scale; ++i) { 690 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 691 unsigned BitOffset = EltOffset * NumSrcEltBits; 692 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 693 if (!Sub.isZero()) { 694 DemandedSrcBits |= Sub; 695 for (unsigned j = 0; j != NumElts; ++j) 696 if (DemandedElts[j]) 697 DemandedSrcElts.setBit((j * Scale) + i); 698 } 699 } 700 701 if (SDValue V = SimplifyMultipleUseDemandedBits( 702 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 703 return DAG.getBitcast(DstVT, V); 704 } 705 706 // TODO - bigendian once we have test coverage. 707 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 708 unsigned Scale = NumSrcEltBits / NumDstEltBits; 709 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 710 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 711 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 712 for (unsigned i = 0; i != NumElts; ++i) 713 if (DemandedElts[i]) { 714 unsigned Offset = (i % Scale) * NumDstEltBits; 715 DemandedSrcBits.insertBits(DemandedBits, Offset); 716 DemandedSrcElts.setBit(i / Scale); 717 } 718 719 if (SDValue V = SimplifyMultipleUseDemandedBits( 720 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 721 return DAG.getBitcast(DstVT, V); 722 } 723 724 break; 725 } 726 case ISD::AND: { 727 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 728 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 729 730 // If all of the demanded bits are known 1 on one side, return the other. 731 // These bits cannot contribute to the result of the 'and' in this 732 // context. 733 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::OR: { 740 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 741 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 742 743 // If all of the demanded bits are known zero on one side, return the 744 // other. These bits cannot contribute to the result of the 'or' in this 745 // context. 746 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 747 return Op.getOperand(0); 748 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 749 return Op.getOperand(1); 750 break; 751 } 752 case ISD::XOR: { 753 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 754 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 755 756 // If all of the demanded bits are known zero on one side, return the 757 // other. 758 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 759 return Op.getOperand(0); 760 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 761 return Op.getOperand(1); 762 break; 763 } 764 case ISD::SHL: { 765 // If we are only demanding sign bits then we can use the shift source 766 // directly. 767 if (const APInt *MaxSA = 768 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 769 SDValue Op0 = Op.getOperand(0); 770 unsigned ShAmt = MaxSA->getZExtValue(); 771 unsigned NumSignBits = 772 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 773 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 774 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 775 return Op0; 776 } 777 break; 778 } 779 case ISD::SETCC: { 780 SDValue Op0 = Op.getOperand(0); 781 SDValue Op1 = Op.getOperand(1); 782 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 783 // If (1) we only need the sign-bit, (2) the setcc operands are the same 784 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 785 // -1, we may be able to bypass the setcc. 786 if (DemandedBits.isSignMask() && 787 Op0.getScalarValueSizeInBits() == BitWidth && 788 getBooleanContents(Op0.getValueType()) == 789 BooleanContent::ZeroOrNegativeOneBooleanContent) { 790 // If we're testing X < 0, then this compare isn't needed - just use X! 791 // FIXME: We're limiting to integer types here, but this should also work 792 // if we don't care about FP signed-zero. The use of SETLT with FP means 793 // that we don't care about NaNs. 794 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 795 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 796 return Op0; 797 } 798 break; 799 } 800 case ISD::SIGN_EXTEND_INREG: { 801 // If none of the extended bits are demanded, eliminate the sextinreg. 802 SDValue Op0 = Op.getOperand(0); 803 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 804 unsigned ExBits = ExVT.getScalarSizeInBits(); 805 if (DemandedBits.getActiveBits() <= ExBits) 806 return Op0; 807 // If the input is already sign extended, just drop the extension. 808 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 809 if (NumSignBits >= (BitWidth - ExBits + 1)) 810 return Op0; 811 break; 812 } 813 case ISD::ANY_EXTEND_VECTOR_INREG: 814 case ISD::SIGN_EXTEND_VECTOR_INREG: 815 case ISD::ZERO_EXTEND_VECTOR_INREG: { 816 // If we only want the lowest element and none of extended bits, then we can 817 // return the bitcasted source vector. 818 SDValue Src = Op.getOperand(0); 819 EVT SrcVT = Src.getValueType(); 820 EVT DstVT = Op.getValueType(); 821 if (IsLE && DemandedElts == 1 && 822 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 823 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 824 return DAG.getBitcast(DstVT, Src); 825 } 826 break; 827 } 828 case ISD::INSERT_VECTOR_ELT: { 829 // If we don't demand the inserted element, return the base vector. 830 SDValue Vec = Op.getOperand(0); 831 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 832 EVT VecVT = Vec.getValueType(); 833 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 834 !DemandedElts[CIdx->getZExtValue()]) 835 return Vec; 836 break; 837 } 838 case ISD::INSERT_SUBVECTOR: { 839 SDValue Vec = Op.getOperand(0); 840 SDValue Sub = Op.getOperand(1); 841 uint64_t Idx = Op.getConstantOperandVal(2); 842 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 843 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 844 // If we don't demand the inserted subvector, return the base vector. 845 if (DemandedSubElts == 0) 846 return Vec; 847 // If this simply widens the lowest subvector, see if we can do it earlier. 848 if (Idx == 0 && Vec.isUndef()) { 849 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 850 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 851 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 852 Op.getOperand(0), NewSub, Op.getOperand(2)); 853 } 854 break; 855 } 856 case ISD::VECTOR_SHUFFLE: { 857 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 858 859 // If all the demanded elts are from one operand and are inline, 860 // then we can use the operand directly. 861 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 862 for (unsigned i = 0; i != NumElts; ++i) { 863 int M = ShuffleMask[i]; 864 if (M < 0 || !DemandedElts[i]) 865 continue; 866 AllUndef = false; 867 IdentityLHS &= (M == (int)i); 868 IdentityRHS &= ((M - NumElts) == i); 869 } 870 871 if (AllUndef) 872 return DAG.getUNDEF(Op.getValueType()); 873 if (IdentityLHS) 874 return Op.getOperand(0); 875 if (IdentityRHS) 876 return Op.getOperand(1); 877 break; 878 } 879 default: 880 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 881 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 882 Op, DemandedBits, DemandedElts, DAG, Depth)) 883 return V; 884 break; 885 } 886 return SDValue(); 887 } 888 889 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 890 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 891 unsigned Depth) const { 892 EVT VT = Op.getValueType(); 893 APInt DemandedElts = VT.isVector() 894 ? APInt::getAllOnes(VT.getVectorNumElements()) 895 : APInt(1, 1); 896 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 897 Depth); 898 } 899 900 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 901 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 902 unsigned Depth) const { 903 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 904 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 905 Depth); 906 } 907 908 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 909 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 910 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 911 const TargetLowering &TLI, 912 const APInt &DemandedBits, 913 const APInt &DemandedElts, 914 unsigned Depth) { 915 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 916 "SRL or SRA node is required here!"); 917 // Is the right shift using an immediate value of 1? 918 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 919 if (!N1C || !N1C->isOne()) 920 return SDValue(); 921 922 // We are looking for an avgfloor 923 // add(ext, ext) 924 // or one of these as a avgceil 925 // add(add(ext, ext), 1) 926 // add(add(ext, 1), ext) 927 // add(ext, add(ext, 1)) 928 SDValue Add = Op.getOperand(0); 929 if (Add.getOpcode() != ISD::ADD) 930 return SDValue(); 931 932 SDValue ExtOpA = Add.getOperand(0); 933 SDValue ExtOpB = Add.getOperand(1); 934 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 935 ConstantSDNode *ConstOp; 936 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 937 ConstOp->isOne()) { 938 ExtOpA = Op2; 939 ExtOpB = Op3; 940 return true; 941 } 942 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 943 ConstOp->isOne()) { 944 ExtOpA = Op1; 945 ExtOpB = Op3; 946 return true; 947 } 948 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 949 ConstOp->isOne()) { 950 ExtOpA = Op1; 951 ExtOpB = Op2; 952 return true; 953 } 954 return false; 955 }; 956 bool IsCeil = 957 (ExtOpA.getOpcode() == ISD::ADD && 958 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 959 (ExtOpB.getOpcode() == ISD::ADD && 960 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 961 962 // If the shift is signed (sra): 963 // - Needs >= 2 sign bit for both operands. 964 // - Needs >= 2 zero bits. 965 // If the shift is unsigned (srl): 966 // - Needs >= 1 zero bit for both operands. 967 // - Needs 1 demanded bit zero and >= 2 sign bits. 968 unsigned ShiftOpc = Op.getOpcode(); 969 bool IsSigned = false; 970 unsigned KnownBits; 971 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 972 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 973 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 974 unsigned NumZeroA = 975 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 976 unsigned NumZeroB = 977 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 978 unsigned NumZero = std::min(NumZeroA, NumZeroB); 979 980 switch (ShiftOpc) { 981 default: 982 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 983 case ISD::SRA: { 984 if (NumZero >= 2 && NumSigned < NumZero) { 985 IsSigned = false; 986 KnownBits = NumZero; 987 break; 988 } 989 if (NumSigned >= 1) { 990 IsSigned = true; 991 KnownBits = NumSigned; 992 break; 993 } 994 return SDValue(); 995 } 996 case ISD::SRL: { 997 if (NumZero >= 1 && NumSigned < NumZero) { 998 IsSigned = false; 999 KnownBits = NumZero; 1000 break; 1001 } 1002 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1003 IsSigned = true; 1004 KnownBits = NumSigned; 1005 break; 1006 } 1007 return SDValue(); 1008 } 1009 } 1010 1011 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1012 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1013 1014 // Find the smallest power-2 type that is legal for this vector size and 1015 // operation, given the original type size and the number of known sign/zero 1016 // bits. 1017 EVT VT = Op.getValueType(); 1018 unsigned MinWidth = 1019 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1020 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1021 if (VT.isVector()) 1022 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1023 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1024 return SDValue(); 1025 1026 SDLoc DL(Op); 1027 SDValue ResultAVG = 1028 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1029 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1030 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1031 ResultAVG); 1032 } 1033 1034 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1035 /// result of Op are ever used downstream. If we can use this information to 1036 /// simplify Op, create a new simplified DAG node and return true, returning the 1037 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1038 /// return a mask of Known bits for the expression (used to simplify the 1039 /// caller). The Known bits may only be accurate for those bits in the 1040 /// OriginalDemandedBits and OriginalDemandedElts. 1041 bool TargetLowering::SimplifyDemandedBits( 1042 SDValue Op, const APInt &OriginalDemandedBits, 1043 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1044 unsigned Depth, bool AssumeSingleUse) const { 1045 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1046 assert(Op.getScalarValueSizeInBits() == BitWidth && 1047 "Mask size mismatches value type size!"); 1048 1049 // Don't know anything. 1050 Known = KnownBits(BitWidth); 1051 1052 // TODO: We can probably do more work on calculating the known bits and 1053 // simplifying the operations for scalable vectors, but for now we just 1054 // bail out. 1055 if (Op.getValueType().isScalableVector()) 1056 return false; 1057 1058 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1059 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1060 assert((!Op.getValueType().isVector() || 1061 NumElts == Op.getValueType().getVectorNumElements()) && 1062 "Unexpected vector size"); 1063 1064 APInt DemandedBits = OriginalDemandedBits; 1065 APInt DemandedElts = OriginalDemandedElts; 1066 SDLoc dl(Op); 1067 auto &DL = TLO.DAG.getDataLayout(); 1068 1069 // Undef operand. 1070 if (Op.isUndef()) 1071 return false; 1072 1073 if (Op.getOpcode() == ISD::Constant) { 1074 // We know all of the bits for a constant! 1075 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1076 return false; 1077 } 1078 1079 if (Op.getOpcode() == ISD::ConstantFP) { 1080 // We know all of the bits for a floating point constant! 1081 Known = KnownBits::makeConstant( 1082 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1083 return false; 1084 } 1085 1086 // Other users may use these bits. 1087 EVT VT = Op.getValueType(); 1088 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1089 if (Depth != 0) { 1090 // If not at the root, Just compute the Known bits to 1091 // simplify things downstream. 1092 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1093 return false; 1094 } 1095 // If this is the root being simplified, allow it to have multiple uses, 1096 // just set the DemandedBits/Elts to all bits. 1097 DemandedBits = APInt::getAllOnes(BitWidth); 1098 DemandedElts = APInt::getAllOnes(NumElts); 1099 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1100 // Not demanding any bits/elts from Op. 1101 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1102 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1103 // Limit search depth. 1104 return false; 1105 } 1106 1107 KnownBits Known2; 1108 switch (Op.getOpcode()) { 1109 case ISD::TargetConstant: 1110 llvm_unreachable("Can't simplify this node"); 1111 case ISD::SCALAR_TO_VECTOR: { 1112 if (!DemandedElts[0]) 1113 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1114 1115 KnownBits SrcKnown; 1116 SDValue Src = Op.getOperand(0); 1117 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1118 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 1119 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1120 return true; 1121 1122 // Upper elements are undef, so only get the knownbits if we just demand 1123 // the bottom element. 1124 if (DemandedElts == 1) 1125 Known = SrcKnown.anyextOrTrunc(BitWidth); 1126 break; 1127 } 1128 case ISD::BUILD_VECTOR: 1129 // Collect the known bits that are shared by every demanded element. 1130 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1131 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1132 return false; // Don't fall through, will infinitely loop. 1133 case ISD::LOAD: { 1134 auto *LD = cast<LoadSDNode>(Op); 1135 if (getTargetConstantFromLoad(LD)) { 1136 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1137 return false; // Don't fall through, will infinitely loop. 1138 } 1139 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1140 // If this is a ZEXTLoad and we are looking at the loaded value. 1141 EVT MemVT = LD->getMemoryVT(); 1142 unsigned MemBits = MemVT.getScalarSizeInBits(); 1143 Known.Zero.setBitsFrom(MemBits); 1144 return false; // Don't fall through, will infinitely loop. 1145 } 1146 break; 1147 } 1148 case ISD::INSERT_VECTOR_ELT: { 1149 SDValue Vec = Op.getOperand(0); 1150 SDValue Scl = Op.getOperand(1); 1151 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1152 EVT VecVT = Vec.getValueType(); 1153 1154 // If index isn't constant, assume we need all vector elements AND the 1155 // inserted element. 1156 APInt DemandedVecElts(DemandedElts); 1157 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1158 unsigned Idx = CIdx->getZExtValue(); 1159 DemandedVecElts.clearBit(Idx); 1160 1161 // Inserted element is not required. 1162 if (!DemandedElts[Idx]) 1163 return TLO.CombineTo(Op, Vec); 1164 } 1165 1166 KnownBits KnownScl; 1167 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1168 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1169 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1170 return true; 1171 1172 Known = KnownScl.anyextOrTrunc(BitWidth); 1173 1174 KnownBits KnownVec; 1175 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1176 Depth + 1)) 1177 return true; 1178 1179 if (!!DemandedVecElts) 1180 Known = KnownBits::commonBits(Known, KnownVec); 1181 1182 return false; 1183 } 1184 case ISD::INSERT_SUBVECTOR: { 1185 // Demand any elements from the subvector and the remainder from the src its 1186 // inserted into. 1187 SDValue Src = Op.getOperand(0); 1188 SDValue Sub = Op.getOperand(1); 1189 uint64_t Idx = Op.getConstantOperandVal(2); 1190 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1191 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1192 APInt DemandedSrcElts = DemandedElts; 1193 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1194 1195 KnownBits KnownSub, KnownSrc; 1196 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1197 Depth + 1)) 1198 return true; 1199 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1200 Depth + 1)) 1201 return true; 1202 1203 Known.Zero.setAllBits(); 1204 Known.One.setAllBits(); 1205 if (!!DemandedSubElts) 1206 Known = KnownBits::commonBits(Known, KnownSub); 1207 if (!!DemandedSrcElts) 1208 Known = KnownBits::commonBits(Known, KnownSrc); 1209 1210 // Attempt to avoid multi-use src if we don't need anything from it. 1211 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1212 !DemandedSrcElts.isAllOnes()) { 1213 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1214 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1215 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1216 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1217 if (NewSub || NewSrc) { 1218 NewSub = NewSub ? NewSub : Sub; 1219 NewSrc = NewSrc ? NewSrc : Src; 1220 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1221 Op.getOperand(2)); 1222 return TLO.CombineTo(Op, NewOp); 1223 } 1224 } 1225 break; 1226 } 1227 case ISD::EXTRACT_SUBVECTOR: { 1228 // Offset the demanded elts by the subvector index. 1229 SDValue Src = Op.getOperand(0); 1230 if (Src.getValueType().isScalableVector()) 1231 break; 1232 uint64_t Idx = Op.getConstantOperandVal(1); 1233 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1234 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1235 1236 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1237 Depth + 1)) 1238 return true; 1239 1240 // Attempt to avoid multi-use src if we don't need anything from it. 1241 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1242 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1243 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1244 if (DemandedSrc) { 1245 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1246 Op.getOperand(1)); 1247 return TLO.CombineTo(Op, NewOp); 1248 } 1249 } 1250 break; 1251 } 1252 case ISD::CONCAT_VECTORS: { 1253 Known.Zero.setAllBits(); 1254 Known.One.setAllBits(); 1255 EVT SubVT = Op.getOperand(0).getValueType(); 1256 unsigned NumSubVecs = Op.getNumOperands(); 1257 unsigned NumSubElts = SubVT.getVectorNumElements(); 1258 for (unsigned i = 0; i != NumSubVecs; ++i) { 1259 APInt DemandedSubElts = 1260 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1261 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1262 Known2, TLO, Depth + 1)) 1263 return true; 1264 // Known bits are shared by every demanded subvector element. 1265 if (!!DemandedSubElts) 1266 Known = KnownBits::commonBits(Known, Known2); 1267 } 1268 break; 1269 } 1270 case ISD::VECTOR_SHUFFLE: { 1271 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1272 1273 // Collect demanded elements from shuffle operands.. 1274 APInt DemandedLHS(NumElts, 0); 1275 APInt DemandedRHS(NumElts, 0); 1276 for (unsigned i = 0; i != NumElts; ++i) { 1277 if (!DemandedElts[i]) 1278 continue; 1279 int M = ShuffleMask[i]; 1280 if (M < 0) { 1281 // For UNDEF elements, we don't know anything about the common state of 1282 // the shuffle result. 1283 DemandedLHS.clearAllBits(); 1284 DemandedRHS.clearAllBits(); 1285 break; 1286 } 1287 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1288 if (M < (int)NumElts) 1289 DemandedLHS.setBit(M); 1290 else 1291 DemandedRHS.setBit(M - NumElts); 1292 } 1293 1294 if (!!DemandedLHS || !!DemandedRHS) { 1295 SDValue Op0 = Op.getOperand(0); 1296 SDValue Op1 = Op.getOperand(1); 1297 1298 Known.Zero.setAllBits(); 1299 Known.One.setAllBits(); 1300 if (!!DemandedLHS) { 1301 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1302 Depth + 1)) 1303 return true; 1304 Known = KnownBits::commonBits(Known, Known2); 1305 } 1306 if (!!DemandedRHS) { 1307 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1308 Depth + 1)) 1309 return true; 1310 Known = KnownBits::commonBits(Known, Known2); 1311 } 1312 1313 // Attempt to avoid multi-use ops if we don't need anything from them. 1314 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1315 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1316 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1317 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1318 if (DemandedOp0 || DemandedOp1) { 1319 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1320 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1321 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1322 return TLO.CombineTo(Op, NewOp); 1323 } 1324 } 1325 break; 1326 } 1327 case ISD::AND: { 1328 SDValue Op0 = Op.getOperand(0); 1329 SDValue Op1 = Op.getOperand(1); 1330 1331 // If the RHS is a constant, check to see if the LHS would be zero without 1332 // using the bits from the RHS. Below, we use knowledge about the RHS to 1333 // simplify the LHS, here we're using information from the LHS to simplify 1334 // the RHS. 1335 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1336 // Do not increment Depth here; that can cause an infinite loop. 1337 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1338 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1339 if ((LHSKnown.Zero & DemandedBits) == 1340 (~RHSC->getAPIntValue() & DemandedBits)) 1341 return TLO.CombineTo(Op, Op0); 1342 1343 // If any of the set bits in the RHS are known zero on the LHS, shrink 1344 // the constant. 1345 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1346 DemandedElts, TLO)) 1347 return true; 1348 1349 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1350 // constant, but if this 'and' is only clearing bits that were just set by 1351 // the xor, then this 'and' can be eliminated by shrinking the mask of 1352 // the xor. For example, for a 32-bit X: 1353 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1354 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1355 LHSKnown.One == ~RHSC->getAPIntValue()) { 1356 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1357 return TLO.CombineTo(Op, Xor); 1358 } 1359 } 1360 1361 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1362 Depth + 1)) 1363 return true; 1364 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1365 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1366 Known2, TLO, Depth + 1)) 1367 return true; 1368 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1369 1370 // Attempt to avoid multi-use ops if we don't need anything from them. 1371 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1372 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1373 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1374 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1375 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1376 if (DemandedOp0 || DemandedOp1) { 1377 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1378 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1379 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1380 return TLO.CombineTo(Op, NewOp); 1381 } 1382 } 1383 1384 // If all of the demanded bits are known one on one side, return the other. 1385 // These bits cannot contribute to the result of the 'and'. 1386 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1387 return TLO.CombineTo(Op, Op0); 1388 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1389 return TLO.CombineTo(Op, Op1); 1390 // If all of the demanded bits in the inputs are known zeros, return zero. 1391 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1392 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1393 // If the RHS is a constant, see if we can simplify it. 1394 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1395 TLO)) 1396 return true; 1397 // If the operation can be done in a smaller type, do so. 1398 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1399 return true; 1400 1401 Known &= Known2; 1402 break; 1403 } 1404 case ISD::OR: { 1405 SDValue Op0 = Op.getOperand(0); 1406 SDValue Op1 = Op.getOperand(1); 1407 1408 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1409 Depth + 1)) 1410 return true; 1411 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1412 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1413 Known2, TLO, Depth + 1)) 1414 return true; 1415 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1416 1417 // Attempt to avoid multi-use ops if we don't need anything from them. 1418 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1419 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1420 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1421 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1422 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1423 if (DemandedOp0 || DemandedOp1) { 1424 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1425 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1426 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1427 return TLO.CombineTo(Op, NewOp); 1428 } 1429 } 1430 1431 // If all of the demanded bits are known zero on one side, return the other. 1432 // These bits cannot contribute to the result of the 'or'. 1433 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1434 return TLO.CombineTo(Op, Op0); 1435 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1436 return TLO.CombineTo(Op, Op1); 1437 // If the RHS is a constant, see if we can simplify it. 1438 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1439 return true; 1440 // If the operation can be done in a smaller type, do so. 1441 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1442 return true; 1443 1444 Known |= Known2; 1445 break; 1446 } 1447 case ISD::XOR: { 1448 SDValue Op0 = Op.getOperand(0); 1449 SDValue Op1 = Op.getOperand(1); 1450 1451 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1452 Depth + 1)) 1453 return true; 1454 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1455 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1456 Depth + 1)) 1457 return true; 1458 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1459 1460 // Attempt to avoid multi-use ops if we don't need anything from them. 1461 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1462 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1463 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1464 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1465 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1466 if (DemandedOp0 || DemandedOp1) { 1467 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1468 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1469 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1470 return TLO.CombineTo(Op, NewOp); 1471 } 1472 } 1473 1474 // If all of the demanded bits are known zero on one side, return the other. 1475 // These bits cannot contribute to the result of the 'xor'. 1476 if (DemandedBits.isSubsetOf(Known.Zero)) 1477 return TLO.CombineTo(Op, Op0); 1478 if (DemandedBits.isSubsetOf(Known2.Zero)) 1479 return TLO.CombineTo(Op, Op1); 1480 // If the operation can be done in a smaller type, do so. 1481 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1482 return true; 1483 1484 // If all of the unknown bits are known to be zero on one side or the other 1485 // turn this into an *inclusive* or. 1486 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1487 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1488 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1489 1490 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1491 if (C) { 1492 // If one side is a constant, and all of the set bits in the constant are 1493 // also known set on the other side, turn this into an AND, as we know 1494 // the bits will be cleared. 1495 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1496 // NB: it is okay if more bits are known than are requested 1497 if (C->getAPIntValue() == Known2.One) { 1498 SDValue ANDC = 1499 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1500 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1501 } 1502 1503 // If the RHS is a constant, see if we can change it. Don't alter a -1 1504 // constant because that's a 'not' op, and that is better for combining 1505 // and codegen. 1506 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1507 // We're flipping all demanded bits. Flip the undemanded bits too. 1508 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1509 return TLO.CombineTo(Op, New); 1510 } 1511 } 1512 1513 // If we can't turn this into a 'not', try to shrink the constant. 1514 if (!C || !C->isAllOnes()) 1515 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1516 return true; 1517 1518 Known ^= Known2; 1519 break; 1520 } 1521 case ISD::SELECT: 1522 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1523 Depth + 1)) 1524 return true; 1525 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1526 Depth + 1)) 1527 return true; 1528 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1529 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1530 1531 // If the operands are constants, see if we can simplify them. 1532 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1533 return true; 1534 1535 // Only known if known in both the LHS and RHS. 1536 Known = KnownBits::commonBits(Known, Known2); 1537 break; 1538 case ISD::SELECT_CC: 1539 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1540 Depth + 1)) 1541 return true; 1542 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1543 Depth + 1)) 1544 return true; 1545 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1546 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1547 1548 // If the operands are constants, see if we can simplify them. 1549 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1550 return true; 1551 1552 // Only known if known in both the LHS and RHS. 1553 Known = KnownBits::commonBits(Known, Known2); 1554 break; 1555 case ISD::SETCC: { 1556 SDValue Op0 = Op.getOperand(0); 1557 SDValue Op1 = Op.getOperand(1); 1558 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1559 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1560 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1561 // -1, we may be able to bypass the setcc. 1562 if (DemandedBits.isSignMask() && 1563 Op0.getScalarValueSizeInBits() == BitWidth && 1564 getBooleanContents(Op0.getValueType()) == 1565 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1566 // If we're testing X < 0, then this compare isn't needed - just use X! 1567 // FIXME: We're limiting to integer types here, but this should also work 1568 // if we don't care about FP signed-zero. The use of SETLT with FP means 1569 // that we don't care about NaNs. 1570 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1571 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1572 return TLO.CombineTo(Op, Op0); 1573 1574 // TODO: Should we check for other forms of sign-bit comparisons? 1575 // Examples: X <= -1, X >= 0 1576 } 1577 if (getBooleanContents(Op0.getValueType()) == 1578 TargetLowering::ZeroOrOneBooleanContent && 1579 BitWidth > 1) 1580 Known.Zero.setBitsFrom(1); 1581 break; 1582 } 1583 case ISD::SHL: { 1584 SDValue Op0 = Op.getOperand(0); 1585 SDValue Op1 = Op.getOperand(1); 1586 EVT ShiftVT = Op1.getValueType(); 1587 1588 if (const APInt *SA = 1589 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1590 unsigned ShAmt = SA->getZExtValue(); 1591 if (ShAmt == 0) 1592 return TLO.CombineTo(Op, Op0); 1593 1594 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1595 // single shift. We can do this if the bottom bits (which are shifted 1596 // out) are never demanded. 1597 // TODO - support non-uniform vector amounts. 1598 if (Op0.getOpcode() == ISD::SRL) { 1599 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1600 if (const APInt *SA2 = 1601 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1602 unsigned C1 = SA2->getZExtValue(); 1603 unsigned Opc = ISD::SHL; 1604 int Diff = ShAmt - C1; 1605 if (Diff < 0) { 1606 Diff = -Diff; 1607 Opc = ISD::SRL; 1608 } 1609 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1610 return TLO.CombineTo( 1611 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1612 } 1613 } 1614 } 1615 1616 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1617 // are not demanded. This will likely allow the anyext to be folded away. 1618 // TODO - support non-uniform vector amounts. 1619 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1620 SDValue InnerOp = Op0.getOperand(0); 1621 EVT InnerVT = InnerOp.getValueType(); 1622 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1623 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1624 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1625 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1626 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1627 ShTy = InnerVT; 1628 SDValue NarrowShl = 1629 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1630 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1631 return TLO.CombineTo( 1632 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1633 } 1634 1635 // Repeat the SHL optimization above in cases where an extension 1636 // intervenes: (shl (anyext (shr x, c1)), c2) to 1637 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1638 // aren't demanded (as above) and that the shifted upper c1 bits of 1639 // x aren't demanded. 1640 // TODO - support non-uniform vector amounts. 1641 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1642 InnerOp.hasOneUse()) { 1643 if (const APInt *SA2 = 1644 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1645 unsigned InnerShAmt = SA2->getZExtValue(); 1646 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1647 DemandedBits.getActiveBits() <= 1648 (InnerBits - InnerShAmt + ShAmt) && 1649 DemandedBits.countTrailingZeros() >= ShAmt) { 1650 SDValue NewSA = 1651 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1652 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1653 InnerOp.getOperand(0)); 1654 return TLO.CombineTo( 1655 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1656 } 1657 } 1658 } 1659 } 1660 1661 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1662 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1663 Depth + 1)) 1664 return true; 1665 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1666 Known.Zero <<= ShAmt; 1667 Known.One <<= ShAmt; 1668 // low bits known zero. 1669 Known.Zero.setLowBits(ShAmt); 1670 1671 // Try shrinking the operation as long as the shift amount will still be 1672 // in range. 1673 if ((ShAmt < DemandedBits.getActiveBits()) && 1674 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1675 return true; 1676 } 1677 1678 // If we are only demanding sign bits then we can use the shift source 1679 // directly. 1680 if (const APInt *MaxSA = 1681 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1682 unsigned ShAmt = MaxSA->getZExtValue(); 1683 unsigned NumSignBits = 1684 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1685 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1686 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1687 return TLO.CombineTo(Op, Op0); 1688 } 1689 break; 1690 } 1691 case ISD::SRL: { 1692 SDValue Op0 = Op.getOperand(0); 1693 SDValue Op1 = Op.getOperand(1); 1694 EVT ShiftVT = Op1.getValueType(); 1695 1696 // Try to match AVG patterns. 1697 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1698 DemandedElts, Depth + 1)) 1699 return TLO.CombineTo(Op, AVG); 1700 1701 if (const APInt *SA = 1702 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1703 unsigned ShAmt = SA->getZExtValue(); 1704 if (ShAmt == 0) 1705 return TLO.CombineTo(Op, Op0); 1706 1707 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1708 // single shift. We can do this if the top bits (which are shifted out) 1709 // are never demanded. 1710 // TODO - support non-uniform vector amounts. 1711 if (Op0.getOpcode() == ISD::SHL) { 1712 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1713 if (const APInt *SA2 = 1714 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1715 unsigned C1 = SA2->getZExtValue(); 1716 unsigned Opc = ISD::SRL; 1717 int Diff = ShAmt - C1; 1718 if (Diff < 0) { 1719 Diff = -Diff; 1720 Opc = ISD::SHL; 1721 } 1722 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1723 return TLO.CombineTo( 1724 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1725 } 1726 } 1727 } 1728 1729 APInt InDemandedMask = (DemandedBits << ShAmt); 1730 1731 // If the shift is exact, then it does demand the low bits (and knows that 1732 // they are zero). 1733 if (Op->getFlags().hasExact()) 1734 InDemandedMask.setLowBits(ShAmt); 1735 1736 // Compute the new bits that are at the top now. 1737 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1738 Depth + 1)) 1739 return true; 1740 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1741 Known.Zero.lshrInPlace(ShAmt); 1742 Known.One.lshrInPlace(ShAmt); 1743 // High bits known zero. 1744 Known.Zero.setHighBits(ShAmt); 1745 } 1746 break; 1747 } 1748 case ISD::SRA: { 1749 SDValue Op0 = Op.getOperand(0); 1750 SDValue Op1 = Op.getOperand(1); 1751 EVT ShiftVT = Op1.getValueType(); 1752 1753 // If we only want bits that already match the signbit then we don't need 1754 // to shift. 1755 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1756 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1757 NumHiDemandedBits) 1758 return TLO.CombineTo(Op, Op0); 1759 1760 // If this is an arithmetic shift right and only the low-bit is set, we can 1761 // always convert this into a logical shr, even if the shift amount is 1762 // variable. The low bit of the shift cannot be an input sign bit unless 1763 // the shift amount is >= the size of the datatype, which is undefined. 1764 if (DemandedBits.isOne()) 1765 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1766 1767 // Try to match AVG patterns. 1768 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1769 DemandedElts, Depth + 1)) 1770 return TLO.CombineTo(Op, AVG); 1771 1772 if (const APInt *SA = 1773 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1774 unsigned ShAmt = SA->getZExtValue(); 1775 if (ShAmt == 0) 1776 return TLO.CombineTo(Op, Op0); 1777 1778 APInt InDemandedMask = (DemandedBits << ShAmt); 1779 1780 // If the shift is exact, then it does demand the low bits (and knows that 1781 // they are zero). 1782 if (Op->getFlags().hasExact()) 1783 InDemandedMask.setLowBits(ShAmt); 1784 1785 // If any of the demanded bits are produced by the sign extension, we also 1786 // demand the input sign bit. 1787 if (DemandedBits.countLeadingZeros() < ShAmt) 1788 InDemandedMask.setSignBit(); 1789 1790 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1791 Depth + 1)) 1792 return true; 1793 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1794 Known.Zero.lshrInPlace(ShAmt); 1795 Known.One.lshrInPlace(ShAmt); 1796 1797 // If the input sign bit is known to be zero, or if none of the top bits 1798 // are demanded, turn this into an unsigned shift right. 1799 if (Known.Zero[BitWidth - ShAmt - 1] || 1800 DemandedBits.countLeadingZeros() >= ShAmt) { 1801 SDNodeFlags Flags; 1802 Flags.setExact(Op->getFlags().hasExact()); 1803 return TLO.CombineTo( 1804 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1805 } 1806 1807 int Log2 = DemandedBits.exactLogBase2(); 1808 if (Log2 >= 0) { 1809 // The bit must come from the sign. 1810 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1811 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1812 } 1813 1814 if (Known.One[BitWidth - ShAmt - 1]) 1815 // New bits are known one. 1816 Known.One.setHighBits(ShAmt); 1817 1818 // Attempt to avoid multi-use ops if we don't need anything from them. 1819 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1820 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1821 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1822 if (DemandedOp0) { 1823 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1824 return TLO.CombineTo(Op, NewOp); 1825 } 1826 } 1827 } 1828 break; 1829 } 1830 case ISD::FSHL: 1831 case ISD::FSHR: { 1832 SDValue Op0 = Op.getOperand(0); 1833 SDValue Op1 = Op.getOperand(1); 1834 SDValue Op2 = Op.getOperand(2); 1835 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1836 1837 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1838 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1839 1840 // For fshl, 0-shift returns the 1st arg. 1841 // For fshr, 0-shift returns the 2nd arg. 1842 if (Amt == 0) { 1843 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1844 Known, TLO, Depth + 1)) 1845 return true; 1846 break; 1847 } 1848 1849 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1850 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1851 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1852 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1853 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1854 Depth + 1)) 1855 return true; 1856 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1857 Depth + 1)) 1858 return true; 1859 1860 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1861 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1862 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1863 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1864 Known.One |= Known2.One; 1865 Known.Zero |= Known2.Zero; 1866 } 1867 1868 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1869 if (isPowerOf2_32(BitWidth)) { 1870 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1871 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1872 Known2, TLO, Depth + 1)) 1873 return true; 1874 } 1875 break; 1876 } 1877 case ISD::ROTL: 1878 case ISD::ROTR: { 1879 SDValue Op0 = Op.getOperand(0); 1880 SDValue Op1 = Op.getOperand(1); 1881 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1882 1883 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1884 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1885 return TLO.CombineTo(Op, Op0); 1886 1887 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1888 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1889 unsigned RevAmt = BitWidth - Amt; 1890 1891 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1892 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1893 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1894 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1895 Depth + 1)) 1896 return true; 1897 1898 // rot*(x, 0) --> x 1899 if (Amt == 0) 1900 return TLO.CombineTo(Op, Op0); 1901 1902 // See if we don't demand either half of the rotated bits. 1903 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1904 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1905 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1906 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1907 } 1908 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1909 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1910 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1911 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1912 } 1913 } 1914 1915 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1916 if (isPowerOf2_32(BitWidth)) { 1917 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1918 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1919 Depth + 1)) 1920 return true; 1921 } 1922 break; 1923 } 1924 case ISD::UMIN: { 1925 // Check if one arg is always less than (or equal) to the other arg. 1926 SDValue Op0 = Op.getOperand(0); 1927 SDValue Op1 = Op.getOperand(1); 1928 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1929 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1930 Known = KnownBits::umin(Known0, Known1); 1931 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1932 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1933 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1934 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1935 break; 1936 } 1937 case ISD::UMAX: { 1938 // Check if one arg is always greater than (or equal) to the other arg. 1939 SDValue Op0 = Op.getOperand(0); 1940 SDValue Op1 = Op.getOperand(1); 1941 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1942 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1943 Known = KnownBits::umax(Known0, Known1); 1944 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1945 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1946 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1947 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1948 break; 1949 } 1950 case ISD::BITREVERSE: { 1951 SDValue Src = Op.getOperand(0); 1952 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1953 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1954 Depth + 1)) 1955 return true; 1956 Known.One = Known2.One.reverseBits(); 1957 Known.Zero = Known2.Zero.reverseBits(); 1958 break; 1959 } 1960 case ISD::BSWAP: { 1961 SDValue Src = Op.getOperand(0); 1962 1963 // If the only bits demanded come from one byte of the bswap result, 1964 // just shift the input byte into position to eliminate the bswap. 1965 unsigned NLZ = DemandedBits.countLeadingZeros(); 1966 unsigned NTZ = DemandedBits.countTrailingZeros(); 1967 1968 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1969 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1970 // have 14 leading zeros, round to 8. 1971 NLZ = alignDown(NLZ, 8); 1972 NTZ = alignDown(NTZ, 8); 1973 // If we need exactly one byte, we can do this transformation. 1974 if (BitWidth - NLZ - NTZ == 8) { 1975 // Replace this with either a left or right shift to get the byte into 1976 // the right place. 1977 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1978 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1979 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1980 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1981 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1982 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1983 return TLO.CombineTo(Op, NewOp); 1984 } 1985 } 1986 1987 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1988 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1989 Depth + 1)) 1990 return true; 1991 Known.One = Known2.One.byteSwap(); 1992 Known.Zero = Known2.Zero.byteSwap(); 1993 break; 1994 } 1995 case ISD::CTPOP: { 1996 // If only 1 bit is demanded, replace with PARITY as long as we're before 1997 // op legalization. 1998 // FIXME: Limit to scalars for now. 1999 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2000 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2001 Op.getOperand(0))); 2002 2003 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2004 break; 2005 } 2006 case ISD::SIGN_EXTEND_INREG: { 2007 SDValue Op0 = Op.getOperand(0); 2008 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2009 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2010 2011 // If we only care about the highest bit, don't bother shifting right. 2012 if (DemandedBits.isSignMask()) { 2013 unsigned MinSignedBits = 2014 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2015 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2016 // However if the input is already sign extended we expect the sign 2017 // extension to be dropped altogether later and do not simplify. 2018 if (!AlreadySignExtended) { 2019 // Compute the correct shift amount type, which must be getShiftAmountTy 2020 // for scalar types after legalization. 2021 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2022 getShiftAmountTy(VT, DL)); 2023 return TLO.CombineTo(Op, 2024 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2025 } 2026 } 2027 2028 // If none of the extended bits are demanded, eliminate the sextinreg. 2029 if (DemandedBits.getActiveBits() <= ExVTBits) 2030 return TLO.CombineTo(Op, Op0); 2031 2032 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2033 2034 // Since the sign extended bits are demanded, we know that the sign 2035 // bit is demanded. 2036 InputDemandedBits.setBit(ExVTBits - 1); 2037 2038 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 2039 return true; 2040 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2041 2042 // If the sign bit of the input is known set or clear, then we know the 2043 // top bits of the result. 2044 2045 // If the input sign bit is known zero, convert this into a zero extension. 2046 if (Known.Zero[ExVTBits - 1]) 2047 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2048 2049 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2050 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2051 Known.One.setBitsFrom(ExVTBits); 2052 Known.Zero &= Mask; 2053 } else { // Input sign bit unknown 2054 Known.Zero &= Mask; 2055 Known.One &= Mask; 2056 } 2057 break; 2058 } 2059 case ISD::BUILD_PAIR: { 2060 EVT HalfVT = Op.getOperand(0).getValueType(); 2061 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2062 2063 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2064 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2065 2066 KnownBits KnownLo, KnownHi; 2067 2068 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2069 return true; 2070 2071 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2072 return true; 2073 2074 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2075 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2076 2077 Known.One = KnownLo.One.zext(BitWidth) | 2078 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2079 break; 2080 } 2081 case ISD::ZERO_EXTEND: 2082 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2083 SDValue Src = Op.getOperand(0); 2084 EVT SrcVT = Src.getValueType(); 2085 unsigned InBits = SrcVT.getScalarSizeInBits(); 2086 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2087 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2088 2089 // If none of the top bits are demanded, convert this into an any_extend. 2090 if (DemandedBits.getActiveBits() <= InBits) { 2091 // If we only need the non-extended bits of the bottom element 2092 // then we can just bitcast to the result. 2093 if (IsLE && IsVecInReg && DemandedElts == 1 && 2094 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2095 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2096 2097 unsigned Opc = 2098 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2099 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2100 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2101 } 2102 2103 APInt InDemandedBits = DemandedBits.trunc(InBits); 2104 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2105 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2106 Depth + 1)) 2107 return true; 2108 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2109 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2110 Known = Known.zext(BitWidth); 2111 2112 // Attempt to avoid multi-use ops if we don't need anything from them. 2113 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2114 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2115 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2116 break; 2117 } 2118 case ISD::SIGN_EXTEND: 2119 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2120 SDValue Src = Op.getOperand(0); 2121 EVT SrcVT = Src.getValueType(); 2122 unsigned InBits = SrcVT.getScalarSizeInBits(); 2123 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2124 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2125 2126 // If none of the top bits are demanded, convert this into an any_extend. 2127 if (DemandedBits.getActiveBits() <= InBits) { 2128 // If we only need the non-extended bits of the bottom element 2129 // then we can just bitcast to the result. 2130 if (IsLE && IsVecInReg && DemandedElts == 1 && 2131 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2132 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2133 2134 unsigned Opc = 2135 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2136 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2137 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2138 } 2139 2140 APInt InDemandedBits = DemandedBits.trunc(InBits); 2141 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2142 2143 // Since some of the sign extended bits are demanded, we know that the sign 2144 // bit is demanded. 2145 InDemandedBits.setBit(InBits - 1); 2146 2147 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2148 Depth + 1)) 2149 return true; 2150 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2151 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2152 2153 // If the sign bit is known one, the top bits match. 2154 Known = Known.sext(BitWidth); 2155 2156 // If the sign bit is known zero, convert this to a zero extend. 2157 if (Known.isNonNegative()) { 2158 unsigned Opc = 2159 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2160 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2161 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2162 } 2163 2164 // Attempt to avoid multi-use ops if we don't need anything from them. 2165 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2166 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2167 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2168 break; 2169 } 2170 case ISD::ANY_EXTEND: 2171 case ISD::ANY_EXTEND_VECTOR_INREG: { 2172 SDValue Src = Op.getOperand(0); 2173 EVT SrcVT = Src.getValueType(); 2174 unsigned InBits = SrcVT.getScalarSizeInBits(); 2175 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2176 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2177 2178 // If we only need the bottom element then we can just bitcast. 2179 // TODO: Handle ANY_EXTEND? 2180 if (IsLE && IsVecInReg && DemandedElts == 1 && 2181 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2182 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2183 2184 APInt InDemandedBits = DemandedBits.trunc(InBits); 2185 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2186 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2187 Depth + 1)) 2188 return true; 2189 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2190 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2191 Known = Known.anyext(BitWidth); 2192 2193 // Attempt to avoid multi-use ops if we don't need anything from them. 2194 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2195 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2196 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2197 break; 2198 } 2199 case ISD::TRUNCATE: { 2200 SDValue Src = Op.getOperand(0); 2201 2202 // Simplify the input, using demanded bit information, and compute the known 2203 // zero/one bits live out. 2204 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2205 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2206 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2207 Depth + 1)) 2208 return true; 2209 Known = Known.trunc(BitWidth); 2210 2211 // Attempt to avoid multi-use ops if we don't need anything from them. 2212 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2213 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2214 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2215 2216 // If the input is only used by this truncate, see if we can shrink it based 2217 // on the known demanded bits. 2218 if (Src.getNode()->hasOneUse()) { 2219 switch (Src.getOpcode()) { 2220 default: 2221 break; 2222 case ISD::SRL: 2223 // Shrink SRL by a constant if none of the high bits shifted in are 2224 // demanded. 2225 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2226 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2227 // undesirable. 2228 break; 2229 2230 const APInt *ShAmtC = 2231 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2232 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2233 break; 2234 uint64_t ShVal = ShAmtC->getZExtValue(); 2235 2236 APInt HighBits = 2237 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2238 HighBits.lshrInPlace(ShVal); 2239 HighBits = HighBits.trunc(BitWidth); 2240 2241 if (!(HighBits & DemandedBits)) { 2242 // None of the shifted in bits are needed. Add a truncate of the 2243 // shift input, then shift it. 2244 SDValue NewShAmt = TLO.DAG.getConstant( 2245 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2246 SDValue NewTrunc = 2247 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2248 return TLO.CombineTo( 2249 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2250 } 2251 break; 2252 } 2253 } 2254 2255 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2256 break; 2257 } 2258 case ISD::AssertZext: { 2259 // AssertZext demands all of the high bits, plus any of the low bits 2260 // demanded by its users. 2261 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2262 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2263 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2264 TLO, Depth + 1)) 2265 return true; 2266 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2267 2268 Known.Zero |= ~InMask; 2269 break; 2270 } 2271 case ISD::EXTRACT_VECTOR_ELT: { 2272 SDValue Src = Op.getOperand(0); 2273 SDValue Idx = Op.getOperand(1); 2274 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2275 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2276 2277 if (SrcEltCnt.isScalable()) 2278 return false; 2279 2280 // Demand the bits from every vector element without a constant index. 2281 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2282 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2283 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2284 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2285 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2286 2287 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2288 // anything about the extended bits. 2289 APInt DemandedSrcBits = DemandedBits; 2290 if (BitWidth > EltBitWidth) 2291 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2292 2293 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2294 Depth + 1)) 2295 return true; 2296 2297 // Attempt to avoid multi-use ops if we don't need anything from them. 2298 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2299 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2300 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2301 SDValue NewOp = 2302 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2303 return TLO.CombineTo(Op, NewOp); 2304 } 2305 } 2306 2307 Known = Known2; 2308 if (BitWidth > EltBitWidth) 2309 Known = Known.anyext(BitWidth); 2310 break; 2311 } 2312 case ISD::BITCAST: { 2313 SDValue Src = Op.getOperand(0); 2314 EVT SrcVT = Src.getValueType(); 2315 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2316 2317 // If this is an FP->Int bitcast and if the sign bit is the only 2318 // thing demanded, turn this into a FGETSIGN. 2319 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2320 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2321 SrcVT.isFloatingPoint()) { 2322 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2323 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2324 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2325 SrcVT != MVT::f128) { 2326 // Cannot eliminate/lower SHL for f128 yet. 2327 EVT Ty = OpVTLegal ? VT : MVT::i32; 2328 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2329 // place. We expect the SHL to be eliminated by other optimizations. 2330 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2331 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2332 if (!OpVTLegal && OpVTSizeInBits > 32) 2333 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2334 unsigned ShVal = Op.getValueSizeInBits() - 1; 2335 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2336 return TLO.CombineTo(Op, 2337 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2338 } 2339 } 2340 2341 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2342 // Demand the elt/bit if any of the original elts/bits are demanded. 2343 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2344 unsigned Scale = BitWidth / NumSrcEltBits; 2345 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2346 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2347 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2348 for (unsigned i = 0; i != Scale; ++i) { 2349 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2350 unsigned BitOffset = EltOffset * NumSrcEltBits; 2351 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2352 if (!Sub.isZero()) { 2353 DemandedSrcBits |= Sub; 2354 for (unsigned j = 0; j != NumElts; ++j) 2355 if (DemandedElts[j]) 2356 DemandedSrcElts.setBit((j * Scale) + i); 2357 } 2358 } 2359 2360 APInt KnownSrcUndef, KnownSrcZero; 2361 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2362 KnownSrcZero, TLO, Depth + 1)) 2363 return true; 2364 2365 KnownBits KnownSrcBits; 2366 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2367 KnownSrcBits, TLO, Depth + 1)) 2368 return true; 2369 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2370 // TODO - bigendian once we have test coverage. 2371 unsigned Scale = NumSrcEltBits / BitWidth; 2372 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2373 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2374 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2375 for (unsigned i = 0; i != NumElts; ++i) 2376 if (DemandedElts[i]) { 2377 unsigned Offset = (i % Scale) * BitWidth; 2378 DemandedSrcBits.insertBits(DemandedBits, Offset); 2379 DemandedSrcElts.setBit(i / Scale); 2380 } 2381 2382 if (SrcVT.isVector()) { 2383 APInt KnownSrcUndef, KnownSrcZero; 2384 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2385 KnownSrcZero, TLO, Depth + 1)) 2386 return true; 2387 } 2388 2389 KnownBits KnownSrcBits; 2390 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2391 KnownSrcBits, TLO, Depth + 1)) 2392 return true; 2393 } 2394 2395 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2396 // recursive call where Known may be useful to the caller. 2397 if (Depth > 0) { 2398 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2399 return false; 2400 } 2401 break; 2402 } 2403 case ISD::MUL: 2404 if (DemandedBits.isPowerOf2()) { 2405 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2406 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2407 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2408 unsigned CTZ = DemandedBits.countTrailingZeros(); 2409 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2410 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2411 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2412 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2413 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2414 return TLO.CombineTo(Op, Shl); 2415 } 2416 } 2417 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2418 // X * X is odd iff X is odd. 2419 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2420 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2421 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2422 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2423 return TLO.CombineTo(Op, And1); 2424 } 2425 LLVM_FALLTHROUGH; 2426 case ISD::ADD: 2427 case ISD::SUB: { 2428 // Add, Sub, and Mul don't demand any bits in positions beyond that 2429 // of the highest bit demanded of them. 2430 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2431 SDNodeFlags Flags = Op.getNode()->getFlags(); 2432 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2433 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2434 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2435 Depth + 1) || 2436 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2437 Depth + 1) || 2438 // See if the operation should be performed at a smaller bit width. 2439 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2440 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2441 // Disable the nsw and nuw flags. We can no longer guarantee that we 2442 // won't wrap after simplification. 2443 Flags.setNoSignedWrap(false); 2444 Flags.setNoUnsignedWrap(false); 2445 SDValue NewOp = 2446 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2447 return TLO.CombineTo(Op, NewOp); 2448 } 2449 return true; 2450 } 2451 2452 // Attempt to avoid multi-use ops if we don't need anything from them. 2453 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2454 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2455 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2456 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2457 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2458 if (DemandedOp0 || DemandedOp1) { 2459 Flags.setNoSignedWrap(false); 2460 Flags.setNoUnsignedWrap(false); 2461 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2462 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2463 SDValue NewOp = 2464 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2465 return TLO.CombineTo(Op, NewOp); 2466 } 2467 } 2468 2469 // If we have a constant operand, we may be able to turn it into -1 if we 2470 // do not demand the high bits. This can make the constant smaller to 2471 // encode, allow more general folding, or match specialized instruction 2472 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2473 // is probably not useful (and could be detrimental). 2474 ConstantSDNode *C = isConstOrConstSplat(Op1); 2475 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2476 if (C && !C->isAllOnes() && !C->isOne() && 2477 (C->getAPIntValue() | HighMask).isAllOnes()) { 2478 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2479 // Disable the nsw and nuw flags. We can no longer guarantee that we 2480 // won't wrap after simplification. 2481 Flags.setNoSignedWrap(false); 2482 Flags.setNoUnsignedWrap(false); 2483 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2484 return TLO.CombineTo(Op, NewOp); 2485 } 2486 2487 // Match a multiply with a disguised negated-power-of-2 and convert to a 2488 // an equivalent shift-left amount. 2489 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2490 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2491 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2492 return 0; 2493 2494 // Don't touch opaque constants. Also, ignore zero and power-of-2 2495 // multiplies. Those will get folded later. 2496 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2497 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2498 !MulC->getAPIntValue().isPowerOf2()) { 2499 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2500 if (UnmaskedC.isNegatedPowerOf2()) 2501 return (-UnmaskedC).logBase2(); 2502 } 2503 return 0; 2504 }; 2505 2506 auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) { 2507 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2508 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2509 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2510 SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl); 2511 return TLO.CombineTo(Op, Sub); 2512 }; 2513 2514 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2515 if (Op.getOpcode() == ISD::ADD) { 2516 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2517 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2518 return foldMul(Op0.getOperand(0), Op1, ShAmt); 2519 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2520 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2521 return foldMul(Op1.getOperand(0), Op0, ShAmt); 2522 // TODO: 2523 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2524 } 2525 } 2526 2527 LLVM_FALLTHROUGH; 2528 } 2529 default: 2530 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2531 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2532 Known, TLO, Depth)) 2533 return true; 2534 break; 2535 } 2536 2537 // Just use computeKnownBits to compute output bits. 2538 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2539 break; 2540 } 2541 2542 // If we know the value of all of the demanded bits, return this as a 2543 // constant. 2544 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2545 // Avoid folding to a constant if any OpaqueConstant is involved. 2546 const SDNode *N = Op.getNode(); 2547 for (SDNode *Op : 2548 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2550 if (C->isOpaque()) 2551 return false; 2552 } 2553 if (VT.isInteger()) 2554 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2555 if (VT.isFloatingPoint()) 2556 return TLO.CombineTo( 2557 Op, 2558 TLO.DAG.getConstantFP( 2559 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2560 } 2561 2562 return false; 2563 } 2564 2565 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2566 const APInt &DemandedElts, 2567 DAGCombinerInfo &DCI) const { 2568 SelectionDAG &DAG = DCI.DAG; 2569 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2570 !DCI.isBeforeLegalizeOps()); 2571 2572 APInt KnownUndef, KnownZero; 2573 bool Simplified = 2574 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2575 if (Simplified) { 2576 DCI.AddToWorklist(Op.getNode()); 2577 DCI.CommitTargetLoweringOpt(TLO); 2578 } 2579 2580 return Simplified; 2581 } 2582 2583 /// Given a vector binary operation and known undefined elements for each input 2584 /// operand, compute whether each element of the output is undefined. 2585 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2586 const APInt &UndefOp0, 2587 const APInt &UndefOp1) { 2588 EVT VT = BO.getValueType(); 2589 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2590 "Vector binop only"); 2591 2592 EVT EltVT = VT.getVectorElementType(); 2593 unsigned NumElts = VT.getVectorNumElements(); 2594 assert(UndefOp0.getBitWidth() == NumElts && 2595 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2596 2597 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2598 const APInt &UndefVals) { 2599 if (UndefVals[Index]) 2600 return DAG.getUNDEF(EltVT); 2601 2602 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2603 // Try hard to make sure that the getNode() call is not creating temporary 2604 // nodes. Ignore opaque integers because they do not constant fold. 2605 SDValue Elt = BV->getOperand(Index); 2606 auto *C = dyn_cast<ConstantSDNode>(Elt); 2607 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2608 return Elt; 2609 } 2610 2611 return SDValue(); 2612 }; 2613 2614 APInt KnownUndef = APInt::getZero(NumElts); 2615 for (unsigned i = 0; i != NumElts; ++i) { 2616 // If both inputs for this element are either constant or undef and match 2617 // the element type, compute the constant/undef result for this element of 2618 // the vector. 2619 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2620 // not handle FP constants. The code within getNode() should be refactored 2621 // to avoid the danger of creating a bogus temporary node here. 2622 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2623 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2624 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2625 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2626 KnownUndef.setBit(i); 2627 } 2628 return KnownUndef; 2629 } 2630 2631 bool TargetLowering::SimplifyDemandedVectorElts( 2632 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2633 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2634 bool AssumeSingleUse) const { 2635 EVT VT = Op.getValueType(); 2636 unsigned Opcode = Op.getOpcode(); 2637 APInt DemandedElts = OriginalDemandedElts; 2638 unsigned NumElts = DemandedElts.getBitWidth(); 2639 assert(VT.isVector() && "Expected vector op"); 2640 2641 KnownUndef = KnownZero = APInt::getZero(NumElts); 2642 2643 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2644 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2645 return false; 2646 2647 // TODO: For now we assume we know nothing about scalable vectors. 2648 if (VT.isScalableVector()) 2649 return false; 2650 2651 assert(VT.getVectorNumElements() == NumElts && 2652 "Mask size mismatches value type element count!"); 2653 2654 // Undef operand. 2655 if (Op.isUndef()) { 2656 KnownUndef.setAllBits(); 2657 return false; 2658 } 2659 2660 // If Op has other users, assume that all elements are needed. 2661 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2662 DemandedElts.setAllBits(); 2663 2664 // Not demanding any elements from Op. 2665 if (DemandedElts == 0) { 2666 KnownUndef.setAllBits(); 2667 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2668 } 2669 2670 // Limit search depth. 2671 if (Depth >= SelectionDAG::MaxRecursionDepth) 2672 return false; 2673 2674 SDLoc DL(Op); 2675 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2676 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2677 2678 // Helper for demanding the specified elements and all the bits of both binary 2679 // operands. 2680 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2681 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2682 TLO.DAG, Depth + 1); 2683 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2684 TLO.DAG, Depth + 1); 2685 if (NewOp0 || NewOp1) { 2686 SDValue NewOp = TLO.DAG.getNode( 2687 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2688 return TLO.CombineTo(Op, NewOp); 2689 } 2690 return false; 2691 }; 2692 2693 switch (Opcode) { 2694 case ISD::SCALAR_TO_VECTOR: { 2695 if (!DemandedElts[0]) { 2696 KnownUndef.setAllBits(); 2697 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2698 } 2699 SDValue ScalarSrc = Op.getOperand(0); 2700 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2701 SDValue Src = ScalarSrc.getOperand(0); 2702 SDValue Idx = ScalarSrc.getOperand(1); 2703 EVT SrcVT = Src.getValueType(); 2704 2705 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2706 2707 if (SrcEltCnt.isScalable()) 2708 return false; 2709 2710 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2711 if (isNullConstant(Idx)) { 2712 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2713 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2714 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2715 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2716 TLO, Depth + 1)) 2717 return true; 2718 } 2719 } 2720 KnownUndef.setHighBits(NumElts - 1); 2721 break; 2722 } 2723 case ISD::BITCAST: { 2724 SDValue Src = Op.getOperand(0); 2725 EVT SrcVT = Src.getValueType(); 2726 2727 // We only handle vectors here. 2728 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2729 if (!SrcVT.isVector()) 2730 break; 2731 2732 // Fast handling of 'identity' bitcasts. 2733 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2734 if (NumSrcElts == NumElts) 2735 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2736 KnownZero, TLO, Depth + 1); 2737 2738 APInt SrcDemandedElts, SrcZero, SrcUndef; 2739 2740 // Bitcast from 'large element' src vector to 'small element' vector, we 2741 // must demand a source element if any DemandedElt maps to it. 2742 if ((NumElts % NumSrcElts) == 0) { 2743 unsigned Scale = NumElts / NumSrcElts; 2744 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2745 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2746 TLO, Depth + 1)) 2747 return true; 2748 2749 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2750 // of the large element. 2751 // TODO - bigendian once we have test coverage. 2752 if (IsLE) { 2753 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2754 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2755 for (unsigned i = 0; i != NumElts; ++i) 2756 if (DemandedElts[i]) { 2757 unsigned Ofs = (i % Scale) * EltSizeInBits; 2758 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2759 } 2760 2761 KnownBits Known; 2762 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2763 TLO, Depth + 1)) 2764 return true; 2765 } 2766 2767 // If the src element is zero/undef then all the output elements will be - 2768 // only demanded elements are guaranteed to be correct. 2769 for (unsigned i = 0; i != NumSrcElts; ++i) { 2770 if (SrcDemandedElts[i]) { 2771 if (SrcZero[i]) 2772 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2773 if (SrcUndef[i]) 2774 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2775 } 2776 } 2777 } 2778 2779 // Bitcast from 'small element' src vector to 'large element' vector, we 2780 // demand all smaller source elements covered by the larger demanded element 2781 // of this vector. 2782 if ((NumSrcElts % NumElts) == 0) { 2783 unsigned Scale = NumSrcElts / NumElts; 2784 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2785 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2786 TLO, Depth + 1)) 2787 return true; 2788 2789 // If all the src elements covering an output element are zero/undef, then 2790 // the output element will be as well, assuming it was demanded. 2791 for (unsigned i = 0; i != NumElts; ++i) { 2792 if (DemandedElts[i]) { 2793 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2794 KnownZero.setBit(i); 2795 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2796 KnownUndef.setBit(i); 2797 } 2798 } 2799 } 2800 break; 2801 } 2802 case ISD::BUILD_VECTOR: { 2803 // Check all elements and simplify any unused elements with UNDEF. 2804 if (!DemandedElts.isAllOnes()) { 2805 // Don't simplify BROADCASTS. 2806 if (llvm::any_of(Op->op_values(), 2807 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2808 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2809 bool Updated = false; 2810 for (unsigned i = 0; i != NumElts; ++i) { 2811 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2812 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2813 KnownUndef.setBit(i); 2814 Updated = true; 2815 } 2816 } 2817 if (Updated) 2818 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2819 } 2820 } 2821 for (unsigned i = 0; i != NumElts; ++i) { 2822 SDValue SrcOp = Op.getOperand(i); 2823 if (SrcOp.isUndef()) { 2824 KnownUndef.setBit(i); 2825 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2826 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2827 KnownZero.setBit(i); 2828 } 2829 } 2830 break; 2831 } 2832 case ISD::CONCAT_VECTORS: { 2833 EVT SubVT = Op.getOperand(0).getValueType(); 2834 unsigned NumSubVecs = Op.getNumOperands(); 2835 unsigned NumSubElts = SubVT.getVectorNumElements(); 2836 for (unsigned i = 0; i != NumSubVecs; ++i) { 2837 SDValue SubOp = Op.getOperand(i); 2838 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2839 APInt SubUndef, SubZero; 2840 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2841 Depth + 1)) 2842 return true; 2843 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2844 KnownZero.insertBits(SubZero, i * NumSubElts); 2845 } 2846 break; 2847 } 2848 case ISD::INSERT_SUBVECTOR: { 2849 // Demand any elements from the subvector and the remainder from the src its 2850 // inserted into. 2851 SDValue Src = Op.getOperand(0); 2852 SDValue Sub = Op.getOperand(1); 2853 uint64_t Idx = Op.getConstantOperandVal(2); 2854 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2855 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2856 APInt DemandedSrcElts = DemandedElts; 2857 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2858 2859 APInt SubUndef, SubZero; 2860 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2861 Depth + 1)) 2862 return true; 2863 2864 // If none of the src operand elements are demanded, replace it with undef. 2865 if (!DemandedSrcElts && !Src.isUndef()) 2866 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2867 TLO.DAG.getUNDEF(VT), Sub, 2868 Op.getOperand(2))); 2869 2870 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2871 TLO, Depth + 1)) 2872 return true; 2873 KnownUndef.insertBits(SubUndef, Idx); 2874 KnownZero.insertBits(SubZero, Idx); 2875 2876 // Attempt to avoid multi-use ops if we don't need anything from them. 2877 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2878 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2879 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2880 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2881 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2882 if (NewSrc || NewSub) { 2883 NewSrc = NewSrc ? NewSrc : Src; 2884 NewSub = NewSub ? NewSub : Sub; 2885 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2886 NewSub, Op.getOperand(2)); 2887 return TLO.CombineTo(Op, NewOp); 2888 } 2889 } 2890 break; 2891 } 2892 case ISD::EXTRACT_SUBVECTOR: { 2893 // Offset the demanded elts by the subvector index. 2894 SDValue Src = Op.getOperand(0); 2895 if (Src.getValueType().isScalableVector()) 2896 break; 2897 uint64_t Idx = Op.getConstantOperandVal(1); 2898 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2899 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2900 2901 APInt SrcUndef, SrcZero; 2902 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2903 Depth + 1)) 2904 return true; 2905 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2906 KnownZero = SrcZero.extractBits(NumElts, Idx); 2907 2908 // Attempt to avoid multi-use ops if we don't need anything from them. 2909 if (!DemandedElts.isAllOnes()) { 2910 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2911 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2912 if (NewSrc) { 2913 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2914 Op.getOperand(1)); 2915 return TLO.CombineTo(Op, NewOp); 2916 } 2917 } 2918 break; 2919 } 2920 case ISD::INSERT_VECTOR_ELT: { 2921 SDValue Vec = Op.getOperand(0); 2922 SDValue Scl = Op.getOperand(1); 2923 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2924 2925 // For a legal, constant insertion index, if we don't need this insertion 2926 // then strip it, else remove it from the demanded elts. 2927 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2928 unsigned Idx = CIdx->getZExtValue(); 2929 if (!DemandedElts[Idx]) 2930 return TLO.CombineTo(Op, Vec); 2931 2932 APInt DemandedVecElts(DemandedElts); 2933 DemandedVecElts.clearBit(Idx); 2934 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2935 KnownZero, TLO, Depth + 1)) 2936 return true; 2937 2938 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2939 2940 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2941 break; 2942 } 2943 2944 APInt VecUndef, VecZero; 2945 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2946 Depth + 1)) 2947 return true; 2948 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2949 break; 2950 } 2951 case ISD::VSELECT: { 2952 // Try to transform the select condition based on the current demanded 2953 // elements. 2954 // TODO: If a condition element is undef, we can choose from one arm of the 2955 // select (and if one arm is undef, then we can propagate that to the 2956 // result). 2957 // TODO - add support for constant vselect masks (see IR version of this). 2958 APInt UnusedUndef, UnusedZero; 2959 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2960 UnusedZero, TLO, Depth + 1)) 2961 return true; 2962 2963 // See if we can simplify either vselect operand. 2964 APInt DemandedLHS(DemandedElts); 2965 APInt DemandedRHS(DemandedElts); 2966 APInt UndefLHS, ZeroLHS; 2967 APInt UndefRHS, ZeroRHS; 2968 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2969 ZeroLHS, TLO, Depth + 1)) 2970 return true; 2971 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2972 ZeroRHS, TLO, Depth + 1)) 2973 return true; 2974 2975 KnownUndef = UndefLHS & UndefRHS; 2976 KnownZero = ZeroLHS & ZeroRHS; 2977 break; 2978 } 2979 case ISD::VECTOR_SHUFFLE: { 2980 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2981 2982 // Collect demanded elements from shuffle operands.. 2983 APInt DemandedLHS(NumElts, 0); 2984 APInt DemandedRHS(NumElts, 0); 2985 for (unsigned i = 0; i != NumElts; ++i) { 2986 int M = ShuffleMask[i]; 2987 if (M < 0 || !DemandedElts[i]) 2988 continue; 2989 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2990 if (M < (int)NumElts) 2991 DemandedLHS.setBit(M); 2992 else 2993 DemandedRHS.setBit(M - NumElts); 2994 } 2995 2996 // See if we can simplify either shuffle operand. 2997 APInt UndefLHS, ZeroLHS; 2998 APInt UndefRHS, ZeroRHS; 2999 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3000 ZeroLHS, TLO, Depth + 1)) 3001 return true; 3002 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3003 ZeroRHS, TLO, Depth + 1)) 3004 return true; 3005 3006 // Simplify mask using undef elements from LHS/RHS. 3007 bool Updated = false; 3008 bool IdentityLHS = true, IdentityRHS = true; 3009 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3010 for (unsigned i = 0; i != NumElts; ++i) { 3011 int &M = NewMask[i]; 3012 if (M < 0) 3013 continue; 3014 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3015 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3016 Updated = true; 3017 M = -1; 3018 } 3019 IdentityLHS &= (M < 0) || (M == (int)i); 3020 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3021 } 3022 3023 // Update legal shuffle masks based on demanded elements if it won't reduce 3024 // to Identity which can cause premature removal of the shuffle mask. 3025 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3026 SDValue LegalShuffle = 3027 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3028 NewMask, TLO.DAG); 3029 if (LegalShuffle) 3030 return TLO.CombineTo(Op, LegalShuffle); 3031 } 3032 3033 // Propagate undef/zero elements from LHS/RHS. 3034 for (unsigned i = 0; i != NumElts; ++i) { 3035 int M = ShuffleMask[i]; 3036 if (M < 0) { 3037 KnownUndef.setBit(i); 3038 } else if (M < (int)NumElts) { 3039 if (UndefLHS[M]) 3040 KnownUndef.setBit(i); 3041 if (ZeroLHS[M]) 3042 KnownZero.setBit(i); 3043 } else { 3044 if (UndefRHS[M - NumElts]) 3045 KnownUndef.setBit(i); 3046 if (ZeroRHS[M - NumElts]) 3047 KnownZero.setBit(i); 3048 } 3049 } 3050 break; 3051 } 3052 case ISD::ANY_EXTEND_VECTOR_INREG: 3053 case ISD::SIGN_EXTEND_VECTOR_INREG: 3054 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3055 APInt SrcUndef, SrcZero; 3056 SDValue Src = Op.getOperand(0); 3057 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3058 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 3059 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3060 Depth + 1)) 3061 return true; 3062 KnownZero = SrcZero.zextOrTrunc(NumElts); 3063 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3064 3065 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3066 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3067 DemandedSrcElts == 1) { 3068 // aext - if we just need the bottom element then we can bitcast. 3069 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3070 } 3071 3072 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3073 // zext(undef) upper bits are guaranteed to be zero. 3074 if (DemandedElts.isSubsetOf(KnownUndef)) 3075 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3076 KnownUndef.clearAllBits(); 3077 3078 // zext - if we just need the bottom element then we can mask: 3079 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3080 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3081 Op->isOnlyUserOf(Src.getNode()) && 3082 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3083 SDLoc DL(Op); 3084 EVT SrcVT = Src.getValueType(); 3085 EVT SrcSVT = SrcVT.getScalarType(); 3086 SmallVector<SDValue> MaskElts; 3087 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3088 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3089 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3090 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3091 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3092 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3093 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3094 } 3095 } 3096 } 3097 break; 3098 } 3099 3100 // TODO: There are more binop opcodes that could be handled here - MIN, 3101 // MAX, saturated math, etc. 3102 case ISD::ADD: { 3103 SDValue Op0 = Op.getOperand(0); 3104 SDValue Op1 = Op.getOperand(1); 3105 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3106 APInt UndefLHS, ZeroLHS; 3107 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3108 Depth + 1, /*AssumeSingleUse*/ true)) 3109 return true; 3110 } 3111 LLVM_FALLTHROUGH; 3112 } 3113 case ISD::OR: 3114 case ISD::XOR: 3115 case ISD::SUB: 3116 case ISD::FADD: 3117 case ISD::FSUB: 3118 case ISD::FMUL: 3119 case ISD::FDIV: 3120 case ISD::FREM: { 3121 SDValue Op0 = Op.getOperand(0); 3122 SDValue Op1 = Op.getOperand(1); 3123 3124 APInt UndefRHS, ZeroRHS; 3125 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3126 Depth + 1)) 3127 return true; 3128 APInt UndefLHS, ZeroLHS; 3129 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3130 Depth + 1)) 3131 return true; 3132 3133 KnownZero = ZeroLHS & ZeroRHS; 3134 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3135 3136 // Attempt to avoid multi-use ops if we don't need anything from them. 3137 // TODO - use KnownUndef to relax the demandedelts? 3138 if (!DemandedElts.isAllOnes()) 3139 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3140 return true; 3141 break; 3142 } 3143 case ISD::SHL: 3144 case ISD::SRL: 3145 case ISD::SRA: 3146 case ISD::ROTL: 3147 case ISD::ROTR: { 3148 SDValue Op0 = Op.getOperand(0); 3149 SDValue Op1 = Op.getOperand(1); 3150 3151 APInt UndefRHS, ZeroRHS; 3152 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3153 Depth + 1)) 3154 return true; 3155 APInt UndefLHS, ZeroLHS; 3156 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3157 Depth + 1)) 3158 return true; 3159 3160 KnownZero = ZeroLHS; 3161 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3162 3163 // Attempt to avoid multi-use ops if we don't need anything from them. 3164 // TODO - use KnownUndef to relax the demandedelts? 3165 if (!DemandedElts.isAllOnes()) 3166 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3167 return true; 3168 break; 3169 } 3170 case ISD::MUL: 3171 case ISD::AND: { 3172 SDValue Op0 = Op.getOperand(0); 3173 SDValue Op1 = Op.getOperand(1); 3174 3175 APInt SrcUndef, SrcZero; 3176 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3177 Depth + 1)) 3178 return true; 3179 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3180 TLO, Depth + 1)) 3181 return true; 3182 3183 // If either side has a zero element, then the result element is zero, even 3184 // if the other is an UNDEF. 3185 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3186 // and then handle 'and' nodes with the rest of the binop opcodes. 3187 KnownZero |= SrcZero; 3188 KnownUndef &= SrcUndef; 3189 KnownUndef &= ~KnownZero; 3190 3191 // Attempt to avoid multi-use ops if we don't need anything from them. 3192 // TODO - use KnownUndef to relax the demandedelts? 3193 if (!DemandedElts.isAllOnes()) 3194 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3195 return true; 3196 break; 3197 } 3198 case ISD::TRUNCATE: 3199 case ISD::SIGN_EXTEND: 3200 case ISD::ZERO_EXTEND: 3201 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3202 KnownZero, TLO, Depth + 1)) 3203 return true; 3204 3205 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3206 // zext(undef) upper bits are guaranteed to be zero. 3207 if (DemandedElts.isSubsetOf(KnownUndef)) 3208 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3209 KnownUndef.clearAllBits(); 3210 } 3211 break; 3212 default: { 3213 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3214 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3215 KnownZero, TLO, Depth)) 3216 return true; 3217 } else { 3218 KnownBits Known; 3219 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3220 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3221 TLO, Depth, AssumeSingleUse)) 3222 return true; 3223 } 3224 break; 3225 } 3226 } 3227 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3228 3229 // Constant fold all undef cases. 3230 // TODO: Handle zero cases as well. 3231 if (DemandedElts.isSubsetOf(KnownUndef)) 3232 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3233 3234 return false; 3235 } 3236 3237 /// Determine which of the bits specified in Mask are known to be either zero or 3238 /// one and return them in the Known. 3239 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3240 KnownBits &Known, 3241 const APInt &DemandedElts, 3242 const SelectionDAG &DAG, 3243 unsigned Depth) const { 3244 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3245 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3246 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3247 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3248 "Should use MaskedValueIsZero if you don't know whether Op" 3249 " is a target node!"); 3250 Known.resetAll(); 3251 } 3252 3253 void TargetLowering::computeKnownBitsForTargetInstr( 3254 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3255 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3256 unsigned Depth) const { 3257 Known.resetAll(); 3258 } 3259 3260 void TargetLowering::computeKnownBitsForFrameIndex( 3261 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3262 // The low bits are known zero if the pointer is aligned. 3263 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3264 } 3265 3266 Align TargetLowering::computeKnownAlignForTargetInstr( 3267 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3268 unsigned Depth) const { 3269 return Align(1); 3270 } 3271 3272 /// This method can be implemented by targets that want to expose additional 3273 /// information about sign bits to the DAG Combiner. 3274 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3275 const APInt &, 3276 const SelectionDAG &, 3277 unsigned Depth) const { 3278 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3279 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3280 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3281 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3282 "Should use ComputeNumSignBits if you don't know whether Op" 3283 " is a target node!"); 3284 return 1; 3285 } 3286 3287 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3288 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3289 const MachineRegisterInfo &MRI, unsigned Depth) const { 3290 return 1; 3291 } 3292 3293 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3294 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3295 TargetLoweringOpt &TLO, unsigned Depth) const { 3296 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3297 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3298 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3299 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3300 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3301 " is a target node!"); 3302 return false; 3303 } 3304 3305 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3306 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3307 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3308 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3309 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3310 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3311 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3312 "Should use SimplifyDemandedBits if you don't know whether Op" 3313 " is a target node!"); 3314 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3315 return false; 3316 } 3317 3318 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3319 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3320 SelectionDAG &DAG, unsigned Depth) const { 3321 assert( 3322 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3323 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3324 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3325 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3326 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3327 " is a target node!"); 3328 return SDValue(); 3329 } 3330 3331 SDValue 3332 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3333 SDValue N1, MutableArrayRef<int> Mask, 3334 SelectionDAG &DAG) const { 3335 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3336 if (!LegalMask) { 3337 std::swap(N0, N1); 3338 ShuffleVectorSDNode::commuteMask(Mask); 3339 LegalMask = isShuffleMaskLegal(Mask, VT); 3340 } 3341 3342 if (!LegalMask) 3343 return SDValue(); 3344 3345 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3346 } 3347 3348 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3349 return nullptr; 3350 } 3351 3352 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3353 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3354 bool PoisonOnly, unsigned Depth) const { 3355 assert( 3356 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3357 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3358 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3359 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3360 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3361 " is a target node!"); 3362 return false; 3363 } 3364 3365 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3366 const SelectionDAG &DAG, 3367 bool SNaN, 3368 unsigned Depth) const { 3369 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3370 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3371 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3372 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3373 "Should use isKnownNeverNaN if you don't know whether Op" 3374 " is a target node!"); 3375 return false; 3376 } 3377 3378 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3379 const APInt &DemandedElts, 3380 APInt &UndefElts, 3381 unsigned Depth) const { 3382 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3383 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3384 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3385 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3386 "Should use isSplatValue if you don't know whether Op" 3387 " is a target node!"); 3388 return false; 3389 } 3390 3391 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3392 // work with truncating build vectors and vectors with elements of less than 3393 // 8 bits. 3394 bool TargetLowering::isConstTrueVal(SDValue N) const { 3395 if (!N) 3396 return false; 3397 3398 unsigned EltWidth; 3399 APInt CVal; 3400 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3401 /*AllowTruncation=*/true)) { 3402 CVal = CN->getAPIntValue(); 3403 EltWidth = N.getValueType().getScalarSizeInBits(); 3404 } else 3405 return false; 3406 3407 // If this is a truncating splat, truncate the splat value. 3408 // Otherwise, we may fail to match the expected values below. 3409 if (EltWidth < CVal.getBitWidth()) 3410 CVal = CVal.trunc(EltWidth); 3411 3412 switch (getBooleanContents(N.getValueType())) { 3413 case UndefinedBooleanContent: 3414 return CVal[0]; 3415 case ZeroOrOneBooleanContent: 3416 return CVal.isOne(); 3417 case ZeroOrNegativeOneBooleanContent: 3418 return CVal.isAllOnes(); 3419 } 3420 3421 llvm_unreachable("Invalid boolean contents"); 3422 } 3423 3424 bool TargetLowering::isConstFalseVal(SDValue N) const { 3425 if (!N) 3426 return false; 3427 3428 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3429 if (!CN) { 3430 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3431 if (!BV) 3432 return false; 3433 3434 // Only interested in constant splats, we don't care about undef 3435 // elements in identifying boolean constants and getConstantSplatNode 3436 // returns NULL if all ops are undef; 3437 CN = BV->getConstantSplatNode(); 3438 if (!CN) 3439 return false; 3440 } 3441 3442 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3443 return !CN->getAPIntValue()[0]; 3444 3445 return CN->isZero(); 3446 } 3447 3448 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3449 bool SExt) const { 3450 if (VT == MVT::i1) 3451 return N->isOne(); 3452 3453 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3454 switch (Cnt) { 3455 case TargetLowering::ZeroOrOneBooleanContent: 3456 // An extended value of 1 is always true, unless its original type is i1, 3457 // in which case it will be sign extended to -1. 3458 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3459 case TargetLowering::UndefinedBooleanContent: 3460 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3461 return N->isAllOnes() && SExt; 3462 } 3463 llvm_unreachable("Unexpected enumeration."); 3464 } 3465 3466 /// This helper function of SimplifySetCC tries to optimize the comparison when 3467 /// either operand of the SetCC node is a bitwise-and instruction. 3468 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3469 ISD::CondCode Cond, const SDLoc &DL, 3470 DAGCombinerInfo &DCI) const { 3471 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3472 std::swap(N0, N1); 3473 3474 SelectionDAG &DAG = DCI.DAG; 3475 EVT OpVT = N0.getValueType(); 3476 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3477 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3478 return SDValue(); 3479 3480 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3481 // iff everything but LSB is known zero: 3482 if (Cond == ISD::SETNE && isNullConstant(N1) && 3483 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3484 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3485 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3486 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3487 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3488 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3489 } 3490 3491 // Match these patterns in any of their permutations: 3492 // (X & Y) == Y 3493 // (X & Y) != Y 3494 SDValue X, Y; 3495 if (N0.getOperand(0) == N1) { 3496 X = N0.getOperand(1); 3497 Y = N0.getOperand(0); 3498 } else if (N0.getOperand(1) == N1) { 3499 X = N0.getOperand(0); 3500 Y = N0.getOperand(1); 3501 } else { 3502 return SDValue(); 3503 } 3504 3505 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3506 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3507 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3508 // Note that where Y is variable and is known to have at most one bit set 3509 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3510 // equivalent when Y == 0. 3511 assert(OpVT.isInteger()); 3512 Cond = ISD::getSetCCInverse(Cond, OpVT); 3513 if (DCI.isBeforeLegalizeOps() || 3514 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3515 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3516 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3517 // If the target supports an 'and-not' or 'and-complement' logic operation, 3518 // try to use that to make a comparison operation more efficient. 3519 // But don't do this transform if the mask is a single bit because there are 3520 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3521 // 'rlwinm' on PPC). 3522 3523 // Bail out if the compare operand that we want to turn into a zero is 3524 // already a zero (otherwise, infinite loop). 3525 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3526 if (YConst && YConst->isZero()) 3527 return SDValue(); 3528 3529 // Transform this into: ~X & Y == 0. 3530 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3531 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3532 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3533 } 3534 3535 return SDValue(); 3536 } 3537 3538 /// There are multiple IR patterns that could be checking whether certain 3539 /// truncation of a signed number would be lossy or not. The pattern which is 3540 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3541 /// We are looking for the following pattern: (KeptBits is a constant) 3542 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3543 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3544 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3545 /// We will unfold it into the natural trunc+sext pattern: 3546 /// ((%x << C) a>> C) dstcond %x 3547 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3548 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3549 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3550 const SDLoc &DL) const { 3551 // We must be comparing with a constant. 3552 ConstantSDNode *C1; 3553 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3554 return SDValue(); 3555 3556 // N0 should be: add %x, (1 << (KeptBits-1)) 3557 if (N0->getOpcode() != ISD::ADD) 3558 return SDValue(); 3559 3560 // And we must be 'add'ing a constant. 3561 ConstantSDNode *C01; 3562 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3563 return SDValue(); 3564 3565 SDValue X = N0->getOperand(0); 3566 EVT XVT = X.getValueType(); 3567 3568 // Validate constants ... 3569 3570 APInt I1 = C1->getAPIntValue(); 3571 3572 ISD::CondCode NewCond; 3573 if (Cond == ISD::CondCode::SETULT) { 3574 NewCond = ISD::CondCode::SETEQ; 3575 } else if (Cond == ISD::CondCode::SETULE) { 3576 NewCond = ISD::CondCode::SETEQ; 3577 // But need to 'canonicalize' the constant. 3578 I1 += 1; 3579 } else if (Cond == ISD::CondCode::SETUGT) { 3580 NewCond = ISD::CondCode::SETNE; 3581 // But need to 'canonicalize' the constant. 3582 I1 += 1; 3583 } else if (Cond == ISD::CondCode::SETUGE) { 3584 NewCond = ISD::CondCode::SETNE; 3585 } else 3586 return SDValue(); 3587 3588 APInt I01 = C01->getAPIntValue(); 3589 3590 auto checkConstants = [&I1, &I01]() -> bool { 3591 // Both of them must be power-of-two, and the constant from setcc is bigger. 3592 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3593 }; 3594 3595 if (checkConstants()) { 3596 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3597 } else { 3598 // What if we invert constants? (and the target predicate) 3599 I1.negate(); 3600 I01.negate(); 3601 assert(XVT.isInteger()); 3602 NewCond = getSetCCInverse(NewCond, XVT); 3603 if (!checkConstants()) 3604 return SDValue(); 3605 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3606 } 3607 3608 // They are power-of-two, so which bit is set? 3609 const unsigned KeptBits = I1.logBase2(); 3610 const unsigned KeptBitsMinusOne = I01.logBase2(); 3611 3612 // Magic! 3613 if (KeptBits != (KeptBitsMinusOne + 1)) 3614 return SDValue(); 3615 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3616 3617 // We don't want to do this in every single case. 3618 SelectionDAG &DAG = DCI.DAG; 3619 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3620 XVT, KeptBits)) 3621 return SDValue(); 3622 3623 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3624 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3625 3626 // Unfold into: ((%x << C) a>> C) cond %x 3627 // Where 'cond' will be either 'eq' or 'ne'. 3628 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3629 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3630 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3631 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3632 3633 return T2; 3634 } 3635 3636 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3637 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3638 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3639 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3640 assert(isConstOrConstSplat(N1C) && 3641 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3642 "Should be a comparison with 0."); 3643 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3644 "Valid only for [in]equality comparisons."); 3645 3646 unsigned NewShiftOpcode; 3647 SDValue X, C, Y; 3648 3649 SelectionDAG &DAG = DCI.DAG; 3650 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3651 3652 // Look for '(C l>>/<< Y)'. 3653 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3654 // The shift should be one-use. 3655 if (!V.hasOneUse()) 3656 return false; 3657 unsigned OldShiftOpcode = V.getOpcode(); 3658 switch (OldShiftOpcode) { 3659 case ISD::SHL: 3660 NewShiftOpcode = ISD::SRL; 3661 break; 3662 case ISD::SRL: 3663 NewShiftOpcode = ISD::SHL; 3664 break; 3665 default: 3666 return false; // must be a logical shift. 3667 } 3668 // We should be shifting a constant. 3669 // FIXME: best to use isConstantOrConstantVector(). 3670 C = V.getOperand(0); 3671 ConstantSDNode *CC = 3672 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3673 if (!CC) 3674 return false; 3675 Y = V.getOperand(1); 3676 3677 ConstantSDNode *XC = 3678 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3679 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3680 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3681 }; 3682 3683 // LHS of comparison should be an one-use 'and'. 3684 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3685 return SDValue(); 3686 3687 X = N0.getOperand(0); 3688 SDValue Mask = N0.getOperand(1); 3689 3690 // 'and' is commutative! 3691 if (!Match(Mask)) { 3692 std::swap(X, Mask); 3693 if (!Match(Mask)) 3694 return SDValue(); 3695 } 3696 3697 EVT VT = X.getValueType(); 3698 3699 // Produce: 3700 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3701 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3702 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3703 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3704 return T2; 3705 } 3706 3707 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3708 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3709 /// handle the commuted versions of these patterns. 3710 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3711 ISD::CondCode Cond, const SDLoc &DL, 3712 DAGCombinerInfo &DCI) const { 3713 unsigned BOpcode = N0.getOpcode(); 3714 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3715 "Unexpected binop"); 3716 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3717 3718 // (X + Y) == X --> Y == 0 3719 // (X - Y) == X --> Y == 0 3720 // (X ^ Y) == X --> Y == 0 3721 SelectionDAG &DAG = DCI.DAG; 3722 EVT OpVT = N0.getValueType(); 3723 SDValue X = N0.getOperand(0); 3724 SDValue Y = N0.getOperand(1); 3725 if (X == N1) 3726 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3727 3728 if (Y != N1) 3729 return SDValue(); 3730 3731 // (X + Y) == Y --> X == 0 3732 // (X ^ Y) == Y --> X == 0 3733 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3734 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3735 3736 // The shift would not be valid if the operands are boolean (i1). 3737 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3738 return SDValue(); 3739 3740 // (X - Y) == Y --> X == Y << 1 3741 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3742 !DCI.isBeforeLegalize()); 3743 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3744 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3745 if (!DCI.isCalledByLegalizer()) 3746 DCI.AddToWorklist(YShl1.getNode()); 3747 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3748 } 3749 3750 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3751 SDValue N0, const APInt &C1, 3752 ISD::CondCode Cond, const SDLoc &dl, 3753 SelectionDAG &DAG) { 3754 // Look through truncs that don't change the value of a ctpop. 3755 // FIXME: Add vector support? Need to be careful with setcc result type below. 3756 SDValue CTPOP = N0; 3757 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3758 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3759 CTPOP = N0.getOperand(0); 3760 3761 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3762 return SDValue(); 3763 3764 EVT CTVT = CTPOP.getValueType(); 3765 SDValue CTOp = CTPOP.getOperand(0); 3766 3767 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3768 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3769 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3770 return SDValue(); 3771 3772 // (ctpop x) u< 2 -> (x & x-1) == 0 3773 // (ctpop x) u> 1 -> (x & x-1) != 0 3774 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3775 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3776 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3777 return SDValue(); 3778 if (C1 == 0 && (Cond == ISD::SETULT)) 3779 return SDValue(); // This is handled elsewhere. 3780 3781 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3782 3783 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3784 SDValue Result = CTOp; 3785 for (unsigned i = 0; i < Passes; i++) { 3786 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3787 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3788 } 3789 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3790 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3791 } 3792 3793 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3794 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3795 // For scalars, keep CTPOP if it is legal or custom. 3796 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3797 return SDValue(); 3798 // This is based on X86's custom lowering for CTPOP which produces more 3799 // instructions than the expansion here. 3800 3801 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3802 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3803 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3804 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3805 assert(CTVT.isInteger()); 3806 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3807 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3808 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3809 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3810 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3811 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3812 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3813 } 3814 3815 return SDValue(); 3816 } 3817 3818 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3819 ISD::CondCode Cond, const SDLoc &dl, 3820 SelectionDAG &DAG) { 3821 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3822 return SDValue(); 3823 3824 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3825 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3826 return SDValue(); 3827 3828 auto getRotateSource = [](SDValue X) { 3829 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3830 return X.getOperand(0); 3831 return SDValue(); 3832 }; 3833 3834 // Peek through a rotated value compared against 0 or -1: 3835 // (rot X, Y) == 0/-1 --> X == 0/-1 3836 // (rot X, Y) != 0/-1 --> X != 0/-1 3837 if (SDValue R = getRotateSource(N0)) 3838 return DAG.getSetCC(dl, VT, R, N1, Cond); 3839 3840 // Peek through an 'or' of a rotated value compared against 0: 3841 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3842 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3843 // 3844 // TODO: Add the 'and' with -1 sibling. 3845 // TODO: Recurse through a series of 'or' ops to find the rotate. 3846 EVT OpVT = N0.getValueType(); 3847 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3848 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3849 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3850 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3851 } 3852 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3853 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3854 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3855 } 3856 } 3857 3858 return SDValue(); 3859 } 3860 3861 /// Try to simplify a setcc built with the specified operands and cc. If it is 3862 /// unable to simplify it, return a null SDValue. 3863 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3864 ISD::CondCode Cond, bool foldBooleans, 3865 DAGCombinerInfo &DCI, 3866 const SDLoc &dl) const { 3867 SelectionDAG &DAG = DCI.DAG; 3868 const DataLayout &Layout = DAG.getDataLayout(); 3869 EVT OpVT = N0.getValueType(); 3870 3871 // Constant fold or commute setcc. 3872 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3873 return Fold; 3874 3875 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3876 // TODO: Handle non-splat vector constants. All undef causes trouble. 3877 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3878 // infinite loop here when we encounter one. 3879 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3880 if (isConstOrConstSplat(N0) && 3881 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3882 (DCI.isBeforeLegalizeOps() || 3883 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3884 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3885 3886 // If we have a subtract with the same 2 non-constant operands as this setcc 3887 // -- but in reverse order -- then try to commute the operands of this setcc 3888 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3889 // instruction on some targets. 3890 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3891 (DCI.isBeforeLegalizeOps() || 3892 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3893 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3894 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3895 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3896 3897 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 3898 return V; 3899 3900 if (auto *N1C = isConstOrConstSplat(N1)) { 3901 const APInt &C1 = N1C->getAPIntValue(); 3902 3903 // Optimize some CTPOP cases. 3904 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3905 return V; 3906 3907 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3908 // equality comparison, then we're just comparing whether X itself is 3909 // zero. 3910 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3911 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3912 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3913 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3914 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3915 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3916 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3917 // (srl (ctlz x), 5) == 0 -> X != 0 3918 // (srl (ctlz x), 5) != 1 -> X != 0 3919 Cond = ISD::SETNE; 3920 } else { 3921 // (srl (ctlz x), 5) != 0 -> X == 0 3922 // (srl (ctlz x), 5) == 1 -> X == 0 3923 Cond = ISD::SETEQ; 3924 } 3925 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3926 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3927 Cond); 3928 } 3929 } 3930 } 3931 } 3932 3933 // FIXME: Support vectors. 3934 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3935 const APInt &C1 = N1C->getAPIntValue(); 3936 3937 // (zext x) == C --> x == (trunc C) 3938 // (sext x) == C --> x == (trunc C) 3939 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3940 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3941 unsigned MinBits = N0.getValueSizeInBits(); 3942 SDValue PreExt; 3943 bool Signed = false; 3944 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3945 // ZExt 3946 MinBits = N0->getOperand(0).getValueSizeInBits(); 3947 PreExt = N0->getOperand(0); 3948 } else if (N0->getOpcode() == ISD::AND) { 3949 // DAGCombine turns costly ZExts into ANDs 3950 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3951 if ((C->getAPIntValue()+1).isPowerOf2()) { 3952 MinBits = C->getAPIntValue().countTrailingOnes(); 3953 PreExt = N0->getOperand(0); 3954 } 3955 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3956 // SExt 3957 MinBits = N0->getOperand(0).getValueSizeInBits(); 3958 PreExt = N0->getOperand(0); 3959 Signed = true; 3960 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3961 // ZEXTLOAD / SEXTLOAD 3962 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3963 MinBits = LN0->getMemoryVT().getSizeInBits(); 3964 PreExt = N0; 3965 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3966 Signed = true; 3967 MinBits = LN0->getMemoryVT().getSizeInBits(); 3968 PreExt = N0; 3969 } 3970 } 3971 3972 // Figure out how many bits we need to preserve this constant. 3973 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3974 3975 // Make sure we're not losing bits from the constant. 3976 if (MinBits > 0 && 3977 MinBits < C1.getBitWidth() && 3978 MinBits >= ReqdBits) { 3979 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3980 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3981 // Will get folded away. 3982 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3983 if (MinBits == 1 && C1 == 1) 3984 // Invert the condition. 3985 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3986 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3987 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3988 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3989 } 3990 3991 // If truncating the setcc operands is not desirable, we can still 3992 // simplify the expression in some cases: 3993 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3994 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3995 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3996 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3997 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3998 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3999 SDValue TopSetCC = N0->getOperand(0); 4000 unsigned N0Opc = N0->getOpcode(); 4001 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4002 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4003 TopSetCC.getOpcode() == ISD::SETCC && 4004 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4005 (isConstFalseVal(N1) || 4006 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4007 4008 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4009 (!N1C->isZero() && Cond == ISD::SETNE); 4010 4011 if (!Inverse) 4012 return TopSetCC; 4013 4014 ISD::CondCode InvCond = ISD::getSetCCInverse( 4015 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4016 TopSetCC.getOperand(0).getValueType()); 4017 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4018 TopSetCC.getOperand(1), 4019 InvCond); 4020 } 4021 } 4022 } 4023 4024 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4025 // equality or unsigned, and all 1 bits of the const are in the same 4026 // partial word, see if we can shorten the load. 4027 if (DCI.isBeforeLegalize() && 4028 !ISD::isSignedIntSetCC(Cond) && 4029 N0.getOpcode() == ISD::AND && C1 == 0 && 4030 N0.getNode()->hasOneUse() && 4031 isa<LoadSDNode>(N0.getOperand(0)) && 4032 N0.getOperand(0).getNode()->hasOneUse() && 4033 isa<ConstantSDNode>(N0.getOperand(1))) { 4034 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4035 APInt bestMask; 4036 unsigned bestWidth = 0, bestOffset = 0; 4037 if (Lod->isSimple() && Lod->isUnindexed()) { 4038 unsigned origWidth = N0.getValueSizeInBits(); 4039 unsigned maskWidth = origWidth; 4040 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4041 // 8 bits, but have to be careful... 4042 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4043 origWidth = Lod->getMemoryVT().getSizeInBits(); 4044 const APInt &Mask = N0.getConstantOperandAPInt(1); 4045 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4046 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4047 for (unsigned offset=0; offset<origWidth/width; offset++) { 4048 if (Mask.isSubsetOf(newMask)) { 4049 if (Layout.isLittleEndian()) 4050 bestOffset = (uint64_t)offset * (width/8); 4051 else 4052 bestOffset = (origWidth/width - offset - 1) * (width/8); 4053 bestMask = Mask.lshr(offset * (width/8) * 8); 4054 bestWidth = width; 4055 break; 4056 } 4057 newMask <<= width; 4058 } 4059 } 4060 } 4061 if (bestWidth) { 4062 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4063 if (newVT.isRound() && 4064 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4065 SDValue Ptr = Lod->getBasePtr(); 4066 if (bestOffset != 0) 4067 Ptr = 4068 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4069 SDValue NewLoad = 4070 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4071 Lod->getPointerInfo().getWithOffset(bestOffset), 4072 Lod->getOriginalAlign()); 4073 return DAG.getSetCC(dl, VT, 4074 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4075 DAG.getConstant(bestMask.trunc(bestWidth), 4076 dl, newVT)), 4077 DAG.getConstant(0LL, dl, newVT), Cond); 4078 } 4079 } 4080 } 4081 4082 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4083 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4084 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4085 4086 // If the comparison constant has bits in the upper part, the 4087 // zero-extended value could never match. 4088 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4089 C1.getBitWidth() - InSize))) { 4090 switch (Cond) { 4091 case ISD::SETUGT: 4092 case ISD::SETUGE: 4093 case ISD::SETEQ: 4094 return DAG.getConstant(0, dl, VT); 4095 case ISD::SETULT: 4096 case ISD::SETULE: 4097 case ISD::SETNE: 4098 return DAG.getConstant(1, dl, VT); 4099 case ISD::SETGT: 4100 case ISD::SETGE: 4101 // True if the sign bit of C1 is set. 4102 return DAG.getConstant(C1.isNegative(), dl, VT); 4103 case ISD::SETLT: 4104 case ISD::SETLE: 4105 // True if the sign bit of C1 isn't set. 4106 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4107 default: 4108 break; 4109 } 4110 } 4111 4112 // Otherwise, we can perform the comparison with the low bits. 4113 switch (Cond) { 4114 case ISD::SETEQ: 4115 case ISD::SETNE: 4116 case ISD::SETUGT: 4117 case ISD::SETUGE: 4118 case ISD::SETULT: 4119 case ISD::SETULE: { 4120 EVT newVT = N0.getOperand(0).getValueType(); 4121 if (DCI.isBeforeLegalizeOps() || 4122 (isOperationLegal(ISD::SETCC, newVT) && 4123 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4124 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4125 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4126 4127 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4128 NewConst, Cond); 4129 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4130 } 4131 break; 4132 } 4133 default: 4134 break; // todo, be more careful with signed comparisons 4135 } 4136 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4137 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4138 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4139 OpVT)) { 4140 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4141 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4142 EVT ExtDstTy = N0.getValueType(); 4143 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4144 4145 // If the constant doesn't fit into the number of bits for the source of 4146 // the sign extension, it is impossible for both sides to be equal. 4147 if (C1.getMinSignedBits() > ExtSrcTyBits) 4148 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4149 4150 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4151 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4152 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4153 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4154 DAG.getConstant(Imm, dl, ExtDstTy)); 4155 if (!DCI.isCalledByLegalizer()) 4156 DCI.AddToWorklist(ZextOp.getNode()); 4157 // Otherwise, make this a use of a zext. 4158 return DAG.getSetCC(dl, VT, ZextOp, 4159 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4160 } else if ((N1C->isZero() || N1C->isOne()) && 4161 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4162 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4163 if (N0.getOpcode() == ISD::SETCC && 4164 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4165 (N0.getValueType() == MVT::i1 || 4166 getBooleanContents(N0.getOperand(0).getValueType()) == 4167 ZeroOrOneBooleanContent)) { 4168 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4169 if (TrueWhenTrue) 4170 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4171 // Invert the condition. 4172 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4173 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4174 if (DCI.isBeforeLegalizeOps() || 4175 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4176 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4177 } 4178 4179 if ((N0.getOpcode() == ISD::XOR || 4180 (N0.getOpcode() == ISD::AND && 4181 N0.getOperand(0).getOpcode() == ISD::XOR && 4182 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4183 isOneConstant(N0.getOperand(1))) { 4184 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4185 // can only do this if the top bits are known zero. 4186 unsigned BitWidth = N0.getValueSizeInBits(); 4187 if (DAG.MaskedValueIsZero(N0, 4188 APInt::getHighBitsSet(BitWidth, 4189 BitWidth-1))) { 4190 // Okay, get the un-inverted input value. 4191 SDValue Val; 4192 if (N0.getOpcode() == ISD::XOR) { 4193 Val = N0.getOperand(0); 4194 } else { 4195 assert(N0.getOpcode() == ISD::AND && 4196 N0.getOperand(0).getOpcode() == ISD::XOR); 4197 // ((X^1)&1)^1 -> X & 1 4198 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4199 N0.getOperand(0).getOperand(0), 4200 N0.getOperand(1)); 4201 } 4202 4203 return DAG.getSetCC(dl, VT, Val, N1, 4204 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4205 } 4206 } else if (N1C->isOne()) { 4207 SDValue Op0 = N0; 4208 if (Op0.getOpcode() == ISD::TRUNCATE) 4209 Op0 = Op0.getOperand(0); 4210 4211 if ((Op0.getOpcode() == ISD::XOR) && 4212 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4213 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4214 SDValue XorLHS = Op0.getOperand(0); 4215 SDValue XorRHS = Op0.getOperand(1); 4216 // Ensure that the input setccs return an i1 type or 0/1 value. 4217 if (Op0.getValueType() == MVT::i1 || 4218 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4219 ZeroOrOneBooleanContent && 4220 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4221 ZeroOrOneBooleanContent)) { 4222 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4223 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4224 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4225 } 4226 } 4227 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4228 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4229 if (Op0.getValueType().bitsGT(VT)) 4230 Op0 = DAG.getNode(ISD::AND, dl, VT, 4231 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4232 DAG.getConstant(1, dl, VT)); 4233 else if (Op0.getValueType().bitsLT(VT)) 4234 Op0 = DAG.getNode(ISD::AND, dl, VT, 4235 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4236 DAG.getConstant(1, dl, VT)); 4237 4238 return DAG.getSetCC(dl, VT, Op0, 4239 DAG.getConstant(0, dl, Op0.getValueType()), 4240 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4241 } 4242 if (Op0.getOpcode() == ISD::AssertZext && 4243 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4244 return DAG.getSetCC(dl, VT, Op0, 4245 DAG.getConstant(0, dl, Op0.getValueType()), 4246 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4247 } 4248 } 4249 4250 // Given: 4251 // icmp eq/ne (urem %x, %y), 0 4252 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4253 // icmp eq/ne %x, 0 4254 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4255 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4256 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4257 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4258 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4259 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4260 } 4261 4262 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4263 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4264 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4265 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4266 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4267 N1C && N1C->isAllOnes()) { 4268 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4269 DAG.getConstant(0, dl, OpVT), 4270 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4271 } 4272 4273 if (SDValue V = 4274 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4275 return V; 4276 } 4277 4278 // These simplifications apply to splat vectors as well. 4279 // TODO: Handle more splat vector cases. 4280 if (auto *N1C = isConstOrConstSplat(N1)) { 4281 const APInt &C1 = N1C->getAPIntValue(); 4282 4283 APInt MinVal, MaxVal; 4284 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4285 if (ISD::isSignedIntSetCC(Cond)) { 4286 MinVal = APInt::getSignedMinValue(OperandBitSize); 4287 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4288 } else { 4289 MinVal = APInt::getMinValue(OperandBitSize); 4290 MaxVal = APInt::getMaxValue(OperandBitSize); 4291 } 4292 4293 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4294 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4295 // X >= MIN --> true 4296 if (C1 == MinVal) 4297 return DAG.getBoolConstant(true, dl, VT, OpVT); 4298 4299 if (!VT.isVector()) { // TODO: Support this for vectors. 4300 // X >= C0 --> X > (C0 - 1) 4301 APInt C = C1 - 1; 4302 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4303 if ((DCI.isBeforeLegalizeOps() || 4304 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4305 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4306 isLegalICmpImmediate(C.getSExtValue())))) { 4307 return DAG.getSetCC(dl, VT, N0, 4308 DAG.getConstant(C, dl, N1.getValueType()), 4309 NewCC); 4310 } 4311 } 4312 } 4313 4314 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4315 // X <= MAX --> true 4316 if (C1 == MaxVal) 4317 return DAG.getBoolConstant(true, dl, VT, OpVT); 4318 4319 // X <= C0 --> X < (C0 + 1) 4320 if (!VT.isVector()) { // TODO: Support this for vectors. 4321 APInt C = C1 + 1; 4322 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4323 if ((DCI.isBeforeLegalizeOps() || 4324 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4325 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4326 isLegalICmpImmediate(C.getSExtValue())))) { 4327 return DAG.getSetCC(dl, VT, N0, 4328 DAG.getConstant(C, dl, N1.getValueType()), 4329 NewCC); 4330 } 4331 } 4332 } 4333 4334 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4335 if (C1 == MinVal) 4336 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4337 4338 // TODO: Support this for vectors after legalize ops. 4339 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4340 // Canonicalize setlt X, Max --> setne X, Max 4341 if (C1 == MaxVal) 4342 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4343 4344 // If we have setult X, 1, turn it into seteq X, 0 4345 if (C1 == MinVal+1) 4346 return DAG.getSetCC(dl, VT, N0, 4347 DAG.getConstant(MinVal, dl, N0.getValueType()), 4348 ISD::SETEQ); 4349 } 4350 } 4351 4352 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4353 if (C1 == MaxVal) 4354 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4355 4356 // TODO: Support this for vectors after legalize ops. 4357 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4358 // Canonicalize setgt X, Min --> setne X, Min 4359 if (C1 == MinVal) 4360 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4361 4362 // If we have setugt X, Max-1, turn it into seteq X, Max 4363 if (C1 == MaxVal-1) 4364 return DAG.getSetCC(dl, VT, N0, 4365 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4366 ISD::SETEQ); 4367 } 4368 } 4369 4370 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4371 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4372 if (C1.isZero()) 4373 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4374 VT, N0, N1, Cond, DCI, dl)) 4375 return CC; 4376 4377 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4378 // For example, when high 32-bits of i64 X are known clear: 4379 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4380 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4381 bool CmpZero = N1C->getAPIntValue().isZero(); 4382 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4383 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4384 // Match or(lo,shl(hi,bw/2)) pattern. 4385 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4386 unsigned EltBits = V.getScalarValueSizeInBits(); 4387 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4388 return false; 4389 SDValue LHS = V.getOperand(0); 4390 SDValue RHS = V.getOperand(1); 4391 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4392 // Unshifted element must have zero upperbits. 4393 if (RHS.getOpcode() == ISD::SHL && 4394 isa<ConstantSDNode>(RHS.getOperand(1)) && 4395 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4396 DAG.MaskedValueIsZero(LHS, HiBits)) { 4397 Lo = LHS; 4398 Hi = RHS.getOperand(0); 4399 return true; 4400 } 4401 if (LHS.getOpcode() == ISD::SHL && 4402 isa<ConstantSDNode>(LHS.getOperand(1)) && 4403 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4404 DAG.MaskedValueIsZero(RHS, HiBits)) { 4405 Lo = RHS; 4406 Hi = LHS.getOperand(0); 4407 return true; 4408 } 4409 return false; 4410 }; 4411 4412 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4413 unsigned EltBits = N0.getScalarValueSizeInBits(); 4414 unsigned HalfBits = EltBits / 2; 4415 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4416 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4417 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4418 SDValue NewN0 = 4419 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4420 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4421 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4422 }; 4423 4424 SDValue Lo, Hi; 4425 if (IsConcat(N0, Lo, Hi)) 4426 return MergeConcat(Lo, Hi); 4427 4428 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4429 SDValue Lo0, Lo1, Hi0, Hi1; 4430 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4431 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4432 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4433 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4434 } 4435 } 4436 } 4437 } 4438 4439 // If we have "setcc X, C0", check to see if we can shrink the immediate 4440 // by changing cc. 4441 // TODO: Support this for vectors after legalize ops. 4442 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4443 // SETUGT X, SINTMAX -> SETLT X, 0 4444 // SETUGE X, SINTMIN -> SETLT X, 0 4445 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4446 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4447 return DAG.getSetCC(dl, VT, N0, 4448 DAG.getConstant(0, dl, N1.getValueType()), 4449 ISD::SETLT); 4450 4451 // SETULT X, SINTMIN -> SETGT X, -1 4452 // SETULE X, SINTMAX -> SETGT X, -1 4453 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4454 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4455 return DAG.getSetCC(dl, VT, N0, 4456 DAG.getAllOnesConstant(dl, N1.getValueType()), 4457 ISD::SETGT); 4458 } 4459 } 4460 4461 // Back to non-vector simplifications. 4462 // TODO: Can we do these for vector splats? 4463 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4465 const APInt &C1 = N1C->getAPIntValue(); 4466 EVT ShValTy = N0.getValueType(); 4467 4468 // Fold bit comparisons when we can. This will result in an 4469 // incorrect value when boolean false is negative one, unless 4470 // the bitsize is 1 in which case the false value is the same 4471 // in practice regardless of the representation. 4472 if ((VT.getSizeInBits() == 1 || 4473 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4474 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4475 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4476 N0.getOpcode() == ISD::AND) { 4477 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4478 EVT ShiftTy = 4479 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4480 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4481 // Perform the xform if the AND RHS is a single bit. 4482 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4483 if (AndRHS->getAPIntValue().isPowerOf2() && 4484 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4485 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4486 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4487 DAG.getConstant(ShCt, dl, ShiftTy))); 4488 } 4489 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4490 // (X & 8) == 8 --> (X & 8) >> 3 4491 // Perform the xform if C1 is a single bit. 4492 unsigned ShCt = C1.logBase2(); 4493 if (C1.isPowerOf2() && 4494 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4495 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4496 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4497 DAG.getConstant(ShCt, dl, ShiftTy))); 4498 } 4499 } 4500 } 4501 } 4502 4503 if (C1.getMinSignedBits() <= 64 && 4504 !isLegalICmpImmediate(C1.getSExtValue())) { 4505 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4506 // (X & -256) == 256 -> (X >> 8) == 1 4507 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4508 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4509 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4510 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4511 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4512 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4513 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4514 SDValue Shift = 4515 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4516 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4517 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4518 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4519 } 4520 } 4521 } 4522 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4523 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4524 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4525 // X < 0x100000000 -> (X >> 32) < 1 4526 // X >= 0x100000000 -> (X >> 32) >= 1 4527 // X <= 0x0ffffffff -> (X >> 32) < 1 4528 // X > 0x0ffffffff -> (X >> 32) >= 1 4529 unsigned ShiftBits; 4530 APInt NewC = C1; 4531 ISD::CondCode NewCond = Cond; 4532 if (AdjOne) { 4533 ShiftBits = C1.countTrailingOnes(); 4534 NewC = NewC + 1; 4535 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4536 } else { 4537 ShiftBits = C1.countTrailingZeros(); 4538 } 4539 NewC.lshrInPlace(ShiftBits); 4540 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4541 isLegalICmpImmediate(NewC.getSExtValue()) && 4542 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4543 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4544 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4545 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4546 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4547 } 4548 } 4549 } 4550 } 4551 4552 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4553 auto *CFP = cast<ConstantFPSDNode>(N1); 4554 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4555 4556 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4557 // constant if knowing that the operand is non-nan is enough. We prefer to 4558 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4559 // materialize 0.0. 4560 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4561 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4562 4563 // setcc (fneg x), C -> setcc swap(pred) x, -C 4564 if (N0.getOpcode() == ISD::FNEG) { 4565 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4566 if (DCI.isBeforeLegalizeOps() || 4567 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4568 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4569 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4570 } 4571 } 4572 4573 // If the condition is not legal, see if we can find an equivalent one 4574 // which is legal. 4575 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4576 // If the comparison was an awkward floating-point == or != and one of 4577 // the comparison operands is infinity or negative infinity, convert the 4578 // condition to a less-awkward <= or >=. 4579 if (CFP->getValueAPF().isInfinity()) { 4580 bool IsNegInf = CFP->getValueAPF().isNegative(); 4581 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4582 switch (Cond) { 4583 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4584 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4585 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4586 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4587 default: break; 4588 } 4589 if (NewCond != ISD::SETCC_INVALID && 4590 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4591 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4592 } 4593 } 4594 } 4595 4596 if (N0 == N1) { 4597 // The sext(setcc()) => setcc() optimization relies on the appropriate 4598 // constant being emitted. 4599 assert(!N0.getValueType().isInteger() && 4600 "Integer types should be handled by FoldSetCC"); 4601 4602 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4603 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4604 if (UOF == 2) // FP operators that are undefined on NaNs. 4605 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4606 if (UOF == unsigned(EqTrue)) 4607 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4608 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4609 // if it is not already. 4610 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4611 if (NewCond != Cond && 4612 (DCI.isBeforeLegalizeOps() || 4613 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4614 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4615 } 4616 4617 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4618 N0.getValueType().isInteger()) { 4619 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4620 N0.getOpcode() == ISD::XOR) { 4621 // Simplify (X+Y) == (X+Z) --> Y == Z 4622 if (N0.getOpcode() == N1.getOpcode()) { 4623 if (N0.getOperand(0) == N1.getOperand(0)) 4624 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4625 if (N0.getOperand(1) == N1.getOperand(1)) 4626 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4627 if (isCommutativeBinOp(N0.getOpcode())) { 4628 // If X op Y == Y op X, try other combinations. 4629 if (N0.getOperand(0) == N1.getOperand(1)) 4630 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4631 Cond); 4632 if (N0.getOperand(1) == N1.getOperand(0)) 4633 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4634 Cond); 4635 } 4636 } 4637 4638 // If RHS is a legal immediate value for a compare instruction, we need 4639 // to be careful about increasing register pressure needlessly. 4640 bool LegalRHSImm = false; 4641 4642 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4643 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4644 // Turn (X+C1) == C2 --> X == C2-C1 4645 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4646 return DAG.getSetCC( 4647 dl, VT, N0.getOperand(0), 4648 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4649 dl, N0.getValueType()), 4650 Cond); 4651 4652 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4653 // If we know that all of the inverted bits are zero, don't bother 4654 // performing the inversion. 4655 if (N0.getOpcode() == ISD::XOR && 4656 DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4657 return DAG.getSetCC( 4658 dl, VT, N0.getOperand(0), 4659 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4660 dl, N0.getValueType()), 4661 Cond); 4662 } 4663 4664 // Turn (C1-X) == C2 --> X == C1-C2 4665 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4666 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4667 return DAG.getSetCC( 4668 dl, VT, N0.getOperand(1), 4669 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4670 dl, N0.getValueType()), 4671 Cond); 4672 4673 // Could RHSC fold directly into a compare? 4674 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4675 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4676 } 4677 4678 // (X+Y) == X --> Y == 0 and similar folds. 4679 // Don't do this if X is an immediate that can fold into a cmp 4680 // instruction and X+Y has other uses. It could be an induction variable 4681 // chain, and the transform would increase register pressure. 4682 if (!LegalRHSImm || N0.hasOneUse()) 4683 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4684 return V; 4685 } 4686 4687 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4688 N1.getOpcode() == ISD::XOR) 4689 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4690 return V; 4691 4692 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4693 return V; 4694 } 4695 4696 // Fold remainder of division by a constant. 4697 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4698 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4699 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4700 4701 // When division is cheap or optimizing for minimum size, 4702 // fall through to DIVREM creation by skipping this fold. 4703 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4704 if (N0.getOpcode() == ISD::UREM) { 4705 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4706 return Folded; 4707 } else if (N0.getOpcode() == ISD::SREM) { 4708 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4709 return Folded; 4710 } 4711 } 4712 } 4713 4714 // Fold away ALL boolean setcc's. 4715 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4716 SDValue Temp; 4717 switch (Cond) { 4718 default: llvm_unreachable("Unknown integer setcc!"); 4719 case ISD::SETEQ: // X == Y -> ~(X^Y) 4720 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4721 N0 = DAG.getNOT(dl, Temp, OpVT); 4722 if (!DCI.isCalledByLegalizer()) 4723 DCI.AddToWorklist(Temp.getNode()); 4724 break; 4725 case ISD::SETNE: // X != Y --> (X^Y) 4726 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4727 break; 4728 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4729 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4730 Temp = DAG.getNOT(dl, N0, OpVT); 4731 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4732 if (!DCI.isCalledByLegalizer()) 4733 DCI.AddToWorklist(Temp.getNode()); 4734 break; 4735 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4736 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4737 Temp = DAG.getNOT(dl, N1, OpVT); 4738 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4739 if (!DCI.isCalledByLegalizer()) 4740 DCI.AddToWorklist(Temp.getNode()); 4741 break; 4742 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4743 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4744 Temp = DAG.getNOT(dl, N0, OpVT); 4745 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4746 if (!DCI.isCalledByLegalizer()) 4747 DCI.AddToWorklist(Temp.getNode()); 4748 break; 4749 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4750 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4751 Temp = DAG.getNOT(dl, N1, OpVT); 4752 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4753 break; 4754 } 4755 if (VT.getScalarType() != MVT::i1) { 4756 if (!DCI.isCalledByLegalizer()) 4757 DCI.AddToWorklist(N0.getNode()); 4758 // FIXME: If running after legalize, we probably can't do this. 4759 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4760 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4761 } 4762 return N0; 4763 } 4764 4765 // Could not fold it. 4766 return SDValue(); 4767 } 4768 4769 /// Returns true (and the GlobalValue and the offset) if the node is a 4770 /// GlobalAddress + offset. 4771 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4772 int64_t &Offset) const { 4773 4774 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4775 4776 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4777 GA = GASD->getGlobal(); 4778 Offset += GASD->getOffset(); 4779 return true; 4780 } 4781 4782 if (N->getOpcode() == ISD::ADD) { 4783 SDValue N1 = N->getOperand(0); 4784 SDValue N2 = N->getOperand(1); 4785 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4786 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4787 Offset += V->getSExtValue(); 4788 return true; 4789 } 4790 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4791 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4792 Offset += V->getSExtValue(); 4793 return true; 4794 } 4795 } 4796 } 4797 4798 return false; 4799 } 4800 4801 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4802 DAGCombinerInfo &DCI) const { 4803 // Default implementation: no optimization. 4804 return SDValue(); 4805 } 4806 4807 //===----------------------------------------------------------------------===// 4808 // Inline Assembler Implementation Methods 4809 //===----------------------------------------------------------------------===// 4810 4811 TargetLowering::ConstraintType 4812 TargetLowering::getConstraintType(StringRef Constraint) const { 4813 unsigned S = Constraint.size(); 4814 4815 if (S == 1) { 4816 switch (Constraint[0]) { 4817 default: break; 4818 case 'r': 4819 return C_RegisterClass; 4820 case 'm': // memory 4821 case 'o': // offsetable 4822 case 'V': // not offsetable 4823 return C_Memory; 4824 case 'n': // Simple Integer 4825 case 'E': // Floating Point Constant 4826 case 'F': // Floating Point Constant 4827 return C_Immediate; 4828 case 'i': // Simple Integer or Relocatable Constant 4829 case 's': // Relocatable Constant 4830 case 'p': // Address. 4831 case 'X': // Allow ANY value. 4832 case 'I': // Target registers. 4833 case 'J': 4834 case 'K': 4835 case 'L': 4836 case 'M': 4837 case 'N': 4838 case 'O': 4839 case 'P': 4840 case '<': 4841 case '>': 4842 return C_Other; 4843 } 4844 } 4845 4846 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4847 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4848 return C_Memory; 4849 return C_Register; 4850 } 4851 return C_Unknown; 4852 } 4853 4854 /// Try to replace an X constraint, which matches anything, with another that 4855 /// has more specific requirements based on the type of the corresponding 4856 /// operand. 4857 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4858 if (ConstraintVT.isInteger()) 4859 return "r"; 4860 if (ConstraintVT.isFloatingPoint()) 4861 return "f"; // works for many targets 4862 return nullptr; 4863 } 4864 4865 SDValue TargetLowering::LowerAsmOutputForConstraint( 4866 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4867 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4868 return SDValue(); 4869 } 4870 4871 /// Lower the specified operand into the Ops vector. 4872 /// If it is invalid, don't add anything to Ops. 4873 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4874 std::string &Constraint, 4875 std::vector<SDValue> &Ops, 4876 SelectionDAG &DAG) const { 4877 4878 if (Constraint.length() > 1) return; 4879 4880 char ConstraintLetter = Constraint[0]; 4881 switch (ConstraintLetter) { 4882 default: break; 4883 case 'X': // Allows any operand 4884 case 'i': // Simple Integer or Relocatable Constant 4885 case 'n': // Simple Integer 4886 case 's': { // Relocatable Constant 4887 4888 ConstantSDNode *C; 4889 uint64_t Offset = 0; 4890 4891 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4892 // etc., since getelementpointer is variadic. We can't use 4893 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4894 // while in this case the GA may be furthest from the root node which is 4895 // likely an ISD::ADD. 4896 while (true) { 4897 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4898 // gcc prints these as sign extended. Sign extend value to 64 bits 4899 // now; without this it would get ZExt'd later in 4900 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4901 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4902 BooleanContent BCont = getBooleanContents(MVT::i64); 4903 ISD::NodeType ExtOpc = 4904 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4905 int64_t ExtVal = 4906 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4907 Ops.push_back( 4908 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4909 return; 4910 } 4911 if (ConstraintLetter != 'n') { 4912 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4913 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4914 GA->getValueType(0), 4915 Offset + GA->getOffset())); 4916 return; 4917 } 4918 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4919 Ops.push_back(DAG.getTargetBlockAddress( 4920 BA->getBlockAddress(), BA->getValueType(0), 4921 Offset + BA->getOffset(), BA->getTargetFlags())); 4922 return; 4923 } 4924 if (isa<BasicBlockSDNode>(Op)) { 4925 Ops.push_back(Op); 4926 return; 4927 } 4928 } 4929 const unsigned OpCode = Op.getOpcode(); 4930 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4931 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4932 Op = Op.getOperand(1); 4933 // Subtraction is not commutative. 4934 else if (OpCode == ISD::ADD && 4935 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4936 Op = Op.getOperand(0); 4937 else 4938 return; 4939 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4940 continue; 4941 } 4942 return; 4943 } 4944 break; 4945 } 4946 } 4947 } 4948 4949 std::pair<unsigned, const TargetRegisterClass *> 4950 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4951 StringRef Constraint, 4952 MVT VT) const { 4953 if (Constraint.empty() || Constraint[0] != '{') 4954 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4955 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4956 4957 // Remove the braces from around the name. 4958 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4959 4960 std::pair<unsigned, const TargetRegisterClass *> R = 4961 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4962 4963 // Figure out which register class contains this reg. 4964 for (const TargetRegisterClass *RC : RI->regclasses()) { 4965 // If none of the value types for this register class are valid, we 4966 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4967 if (!isLegalRC(*RI, *RC)) 4968 continue; 4969 4970 for (const MCPhysReg &PR : *RC) { 4971 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4972 std::pair<unsigned, const TargetRegisterClass *> S = 4973 std::make_pair(PR, RC); 4974 4975 // If this register class has the requested value type, return it, 4976 // otherwise keep searching and return the first class found 4977 // if no other is found which explicitly has the requested type. 4978 if (RI->isTypeLegalForClass(*RC, VT)) 4979 return S; 4980 if (!R.second) 4981 R = S; 4982 } 4983 } 4984 } 4985 4986 return R; 4987 } 4988 4989 //===----------------------------------------------------------------------===// 4990 // Constraint Selection. 4991 4992 /// Return true of this is an input operand that is a matching constraint like 4993 /// "4". 4994 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4995 assert(!ConstraintCode.empty() && "No known constraint!"); 4996 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4997 } 4998 4999 /// If this is an input matching constraint, this method returns the output 5000 /// operand it matches. 5001 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5002 assert(!ConstraintCode.empty() && "No known constraint!"); 5003 return atoi(ConstraintCode.c_str()); 5004 } 5005 5006 /// Split up the constraint string from the inline assembly value into the 5007 /// specific constraints and their prefixes, and also tie in the associated 5008 /// operand values. 5009 /// If this returns an empty vector, and if the constraint string itself 5010 /// isn't empty, there was an error parsing. 5011 TargetLowering::AsmOperandInfoVector 5012 TargetLowering::ParseConstraints(const DataLayout &DL, 5013 const TargetRegisterInfo *TRI, 5014 const CallBase &Call) const { 5015 /// Information about all of the constraints. 5016 AsmOperandInfoVector ConstraintOperands; 5017 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5018 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5019 5020 // Do a prepass over the constraints, canonicalizing them, and building up the 5021 // ConstraintOperands list. 5022 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5023 unsigned ResNo = 0; // ResNo - The result number of the next output. 5024 5025 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5026 ConstraintOperands.emplace_back(std::move(CI)); 5027 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5028 5029 // Update multiple alternative constraint count. 5030 if (OpInfo.multipleAlternatives.size() > maCount) 5031 maCount = OpInfo.multipleAlternatives.size(); 5032 5033 OpInfo.ConstraintVT = MVT::Other; 5034 5035 // Compute the value type for each operand. 5036 switch (OpInfo.Type) { 5037 case InlineAsm::isOutput: 5038 // Indirect outputs just consume an argument. 5039 if (OpInfo.isIndirect) { 5040 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5041 break; 5042 } 5043 5044 // The return value of the call is this value. As such, there is no 5045 // corresponding argument. 5046 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5047 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5048 OpInfo.ConstraintVT = 5049 getSimpleValueType(DL, STy->getElementType(ResNo)); 5050 } else { 5051 assert(ResNo == 0 && "Asm only has one result!"); 5052 OpInfo.ConstraintVT = 5053 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5054 } 5055 ++ResNo; 5056 break; 5057 case InlineAsm::isInput: 5058 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5059 break; 5060 case InlineAsm::isClobber: 5061 // Nothing to do. 5062 break; 5063 } 5064 5065 if (OpInfo.CallOperandVal) { 5066 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5067 if (OpInfo.isIndirect) { 5068 OpTy = Call.getParamElementType(ArgNo); 5069 assert(OpTy && "Indirect operand must have elementtype attribute"); 5070 } 5071 5072 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5073 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5074 if (STy->getNumElements() == 1) 5075 OpTy = STy->getElementType(0); 5076 5077 // If OpTy is not a single value, it may be a struct/union that we 5078 // can tile with integers. 5079 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5080 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5081 switch (BitSize) { 5082 default: break; 5083 case 1: 5084 case 8: 5085 case 16: 5086 case 32: 5087 case 64: 5088 case 128: 5089 OpInfo.ConstraintVT = 5090 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5091 break; 5092 } 5093 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5094 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5095 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5096 } else { 5097 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5098 } 5099 5100 ArgNo++; 5101 } 5102 } 5103 5104 // If we have multiple alternative constraints, select the best alternative. 5105 if (!ConstraintOperands.empty()) { 5106 if (maCount) { 5107 unsigned bestMAIndex = 0; 5108 int bestWeight = -1; 5109 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5110 int weight = -1; 5111 unsigned maIndex; 5112 // Compute the sums of the weights for each alternative, keeping track 5113 // of the best (highest weight) one so far. 5114 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5115 int weightSum = 0; 5116 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5117 cIndex != eIndex; ++cIndex) { 5118 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5119 if (OpInfo.Type == InlineAsm::isClobber) 5120 continue; 5121 5122 // If this is an output operand with a matching input operand, 5123 // look up the matching input. If their types mismatch, e.g. one 5124 // is an integer, the other is floating point, or their sizes are 5125 // different, flag it as an maCantMatch. 5126 if (OpInfo.hasMatchingInput()) { 5127 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5128 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5129 if ((OpInfo.ConstraintVT.isInteger() != 5130 Input.ConstraintVT.isInteger()) || 5131 (OpInfo.ConstraintVT.getSizeInBits() != 5132 Input.ConstraintVT.getSizeInBits())) { 5133 weightSum = -1; // Can't match. 5134 break; 5135 } 5136 } 5137 } 5138 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5139 if (weight == -1) { 5140 weightSum = -1; 5141 break; 5142 } 5143 weightSum += weight; 5144 } 5145 // Update best. 5146 if (weightSum > bestWeight) { 5147 bestWeight = weightSum; 5148 bestMAIndex = maIndex; 5149 } 5150 } 5151 5152 // Now select chosen alternative in each constraint. 5153 for (AsmOperandInfo &cInfo : ConstraintOperands) 5154 if (cInfo.Type != InlineAsm::isClobber) 5155 cInfo.selectAlternative(bestMAIndex); 5156 } 5157 } 5158 5159 // Check and hook up tied operands, choose constraint code to use. 5160 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5161 cIndex != eIndex; ++cIndex) { 5162 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5163 5164 // If this is an output operand with a matching input operand, look up the 5165 // matching input. If their types mismatch, e.g. one is an integer, the 5166 // other is floating point, or their sizes are different, flag it as an 5167 // error. 5168 if (OpInfo.hasMatchingInput()) { 5169 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5170 5171 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5172 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5173 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5174 OpInfo.ConstraintVT); 5175 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5176 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5177 Input.ConstraintVT); 5178 if ((OpInfo.ConstraintVT.isInteger() != 5179 Input.ConstraintVT.isInteger()) || 5180 (MatchRC.second != InputRC.second)) { 5181 report_fatal_error("Unsupported asm: input constraint" 5182 " with a matching output constraint of" 5183 " incompatible type!"); 5184 } 5185 } 5186 } 5187 } 5188 5189 return ConstraintOperands; 5190 } 5191 5192 /// Return an integer indicating how general CT is. 5193 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5194 switch (CT) { 5195 case TargetLowering::C_Immediate: 5196 case TargetLowering::C_Other: 5197 case TargetLowering::C_Unknown: 5198 return 0; 5199 case TargetLowering::C_Register: 5200 return 1; 5201 case TargetLowering::C_RegisterClass: 5202 return 2; 5203 case TargetLowering::C_Memory: 5204 return 3; 5205 } 5206 llvm_unreachable("Invalid constraint type"); 5207 } 5208 5209 /// Examine constraint type and operand type and determine a weight value. 5210 /// This object must already have been set up with the operand type 5211 /// and the current alternative constraint selected. 5212 TargetLowering::ConstraintWeight 5213 TargetLowering::getMultipleConstraintMatchWeight( 5214 AsmOperandInfo &info, int maIndex) const { 5215 InlineAsm::ConstraintCodeVector *rCodes; 5216 if (maIndex >= (int)info.multipleAlternatives.size()) 5217 rCodes = &info.Codes; 5218 else 5219 rCodes = &info.multipleAlternatives[maIndex].Codes; 5220 ConstraintWeight BestWeight = CW_Invalid; 5221 5222 // Loop over the options, keeping track of the most general one. 5223 for (const std::string &rCode : *rCodes) { 5224 ConstraintWeight weight = 5225 getSingleConstraintMatchWeight(info, rCode.c_str()); 5226 if (weight > BestWeight) 5227 BestWeight = weight; 5228 } 5229 5230 return BestWeight; 5231 } 5232 5233 /// Examine constraint type and operand type and determine a weight value. 5234 /// This object must already have been set up with the operand type 5235 /// and the current alternative constraint selected. 5236 TargetLowering::ConstraintWeight 5237 TargetLowering::getSingleConstraintMatchWeight( 5238 AsmOperandInfo &info, const char *constraint) const { 5239 ConstraintWeight weight = CW_Invalid; 5240 Value *CallOperandVal = info.CallOperandVal; 5241 // If we don't have a value, we can't do a match, 5242 // but allow it at the lowest weight. 5243 if (!CallOperandVal) 5244 return CW_Default; 5245 // Look at the constraint type. 5246 switch (*constraint) { 5247 case 'i': // immediate integer. 5248 case 'n': // immediate integer with a known value. 5249 if (isa<ConstantInt>(CallOperandVal)) 5250 weight = CW_Constant; 5251 break; 5252 case 's': // non-explicit intregal immediate. 5253 if (isa<GlobalValue>(CallOperandVal)) 5254 weight = CW_Constant; 5255 break; 5256 case 'E': // immediate float if host format. 5257 case 'F': // immediate float. 5258 if (isa<ConstantFP>(CallOperandVal)) 5259 weight = CW_Constant; 5260 break; 5261 case '<': // memory operand with autodecrement. 5262 case '>': // memory operand with autoincrement. 5263 case 'm': // memory operand. 5264 case 'o': // offsettable memory operand 5265 case 'V': // non-offsettable memory operand 5266 weight = CW_Memory; 5267 break; 5268 case 'r': // general register. 5269 case 'g': // general register, memory operand or immediate integer. 5270 // note: Clang converts "g" to "imr". 5271 if (CallOperandVal->getType()->isIntegerTy()) 5272 weight = CW_Register; 5273 break; 5274 case 'X': // any operand. 5275 default: 5276 weight = CW_Default; 5277 break; 5278 } 5279 return weight; 5280 } 5281 5282 /// If there are multiple different constraints that we could pick for this 5283 /// operand (e.g. "imr") try to pick the 'best' one. 5284 /// This is somewhat tricky: constraints fall into four classes: 5285 /// Other -> immediates and magic values 5286 /// Register -> one specific register 5287 /// RegisterClass -> a group of regs 5288 /// Memory -> memory 5289 /// Ideally, we would pick the most specific constraint possible: if we have 5290 /// something that fits into a register, we would pick it. The problem here 5291 /// is that if we have something that could either be in a register or in 5292 /// memory that use of the register could cause selection of *other* 5293 /// operands to fail: they might only succeed if we pick memory. Because of 5294 /// this the heuristic we use is: 5295 /// 5296 /// 1) If there is an 'other' constraint, and if the operand is valid for 5297 /// that constraint, use it. This makes us take advantage of 'i' 5298 /// constraints when available. 5299 /// 2) Otherwise, pick the most general constraint present. This prefers 5300 /// 'm' over 'r', for example. 5301 /// 5302 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5303 const TargetLowering &TLI, 5304 SDValue Op, SelectionDAG *DAG) { 5305 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5306 unsigned BestIdx = 0; 5307 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5308 int BestGenerality = -1; 5309 5310 // Loop over the options, keeping track of the most general one. 5311 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5312 TargetLowering::ConstraintType CType = 5313 TLI.getConstraintType(OpInfo.Codes[i]); 5314 5315 // Indirect 'other' or 'immediate' constraints are not allowed. 5316 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5317 CType == TargetLowering::C_Register || 5318 CType == TargetLowering::C_RegisterClass)) 5319 continue; 5320 5321 // If this is an 'other' or 'immediate' constraint, see if the operand is 5322 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5323 // the operand is an integer in the range [0..31] we want to use I (saving a 5324 // load of a register), otherwise we must use 'r'. 5325 if ((CType == TargetLowering::C_Other || 5326 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5327 assert(OpInfo.Codes[i].size() == 1 && 5328 "Unhandled multi-letter 'other' constraint"); 5329 std::vector<SDValue> ResultOps; 5330 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5331 ResultOps, *DAG); 5332 if (!ResultOps.empty()) { 5333 BestType = CType; 5334 BestIdx = i; 5335 break; 5336 } 5337 } 5338 5339 // Things with matching constraints can only be registers, per gcc 5340 // documentation. This mainly affects "g" constraints. 5341 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5342 continue; 5343 5344 // This constraint letter is more general than the previous one, use it. 5345 int Generality = getConstraintGenerality(CType); 5346 if (Generality > BestGenerality) { 5347 BestType = CType; 5348 BestIdx = i; 5349 BestGenerality = Generality; 5350 } 5351 } 5352 5353 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5354 OpInfo.ConstraintType = BestType; 5355 } 5356 5357 /// Determines the constraint code and constraint type to use for the specific 5358 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5359 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5360 SDValue Op, 5361 SelectionDAG *DAG) const { 5362 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5363 5364 // Single-letter constraints ('r') are very common. 5365 if (OpInfo.Codes.size() == 1) { 5366 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5367 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5368 } else { 5369 ChooseConstraint(OpInfo, *this, Op, DAG); 5370 } 5371 5372 // 'X' matches anything. 5373 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5374 // Constants are handled elsewhere. For Functions, the type here is the 5375 // type of the result, which is not what we want to look at; leave them 5376 // alone. 5377 Value *v = OpInfo.CallOperandVal; 5378 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5379 return; 5380 } 5381 5382 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5383 OpInfo.ConstraintCode = "i"; 5384 return; 5385 } 5386 5387 // Otherwise, try to resolve it to something we know about by looking at 5388 // the actual operand type. 5389 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5390 OpInfo.ConstraintCode = Repl; 5391 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5392 } 5393 } 5394 } 5395 5396 /// Given an exact SDIV by a constant, create a multiplication 5397 /// with the multiplicative inverse of the constant. 5398 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5399 const SDLoc &dl, SelectionDAG &DAG, 5400 SmallVectorImpl<SDNode *> &Created) { 5401 SDValue Op0 = N->getOperand(0); 5402 SDValue Op1 = N->getOperand(1); 5403 EVT VT = N->getValueType(0); 5404 EVT SVT = VT.getScalarType(); 5405 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5406 EVT ShSVT = ShVT.getScalarType(); 5407 5408 bool UseSRA = false; 5409 SmallVector<SDValue, 16> Shifts, Factors; 5410 5411 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5412 if (C->isZero()) 5413 return false; 5414 APInt Divisor = C->getAPIntValue(); 5415 unsigned Shift = Divisor.countTrailingZeros(); 5416 if (Shift) { 5417 Divisor.ashrInPlace(Shift); 5418 UseSRA = true; 5419 } 5420 // Calculate the multiplicative inverse, using Newton's method. 5421 APInt t; 5422 APInt Factor = Divisor; 5423 while ((t = Divisor * Factor) != 1) 5424 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5425 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5426 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5427 return true; 5428 }; 5429 5430 // Collect all magic values from the build vector. 5431 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5432 return SDValue(); 5433 5434 SDValue Shift, Factor; 5435 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5436 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5437 Factor = DAG.getBuildVector(VT, dl, Factors); 5438 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5439 assert(Shifts.size() == 1 && Factors.size() == 1 && 5440 "Expected matchUnaryPredicate to return one element for scalable " 5441 "vectors"); 5442 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5443 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5444 } else { 5445 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5446 Shift = Shifts[0]; 5447 Factor = Factors[0]; 5448 } 5449 5450 SDValue Res = Op0; 5451 5452 // Shift the value upfront if it is even, so the LSB is one. 5453 if (UseSRA) { 5454 // TODO: For UDIV use SRL instead of SRA. 5455 SDNodeFlags Flags; 5456 Flags.setExact(true); 5457 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5458 Created.push_back(Res.getNode()); 5459 } 5460 5461 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5462 } 5463 5464 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5465 SelectionDAG &DAG, 5466 SmallVectorImpl<SDNode *> &Created) const { 5467 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5469 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5470 return SDValue(N, 0); // Lower SDIV as SDIV 5471 return SDValue(); 5472 } 5473 5474 /// Given an ISD::SDIV node expressing a divide by constant, 5475 /// return a DAG expression to select that will generate the same value by 5476 /// multiplying by a magic number. 5477 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5478 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5479 bool IsAfterLegalization, 5480 SmallVectorImpl<SDNode *> &Created) const { 5481 SDLoc dl(N); 5482 EVT VT = N->getValueType(0); 5483 EVT SVT = VT.getScalarType(); 5484 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5485 EVT ShSVT = ShVT.getScalarType(); 5486 unsigned EltBits = VT.getScalarSizeInBits(); 5487 EVT MulVT; 5488 5489 // Check to see if we can do this. 5490 // FIXME: We should be more aggressive here. 5491 if (!isTypeLegal(VT)) { 5492 // Limit this to simple scalars for now. 5493 if (VT.isVector() || !VT.isSimple()) 5494 return SDValue(); 5495 5496 // If this type will be promoted to a large enough type with a legal 5497 // multiply operation, we can go ahead and do this transform. 5498 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5499 return SDValue(); 5500 5501 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5502 if (MulVT.getSizeInBits() < (2 * EltBits) || 5503 !isOperationLegal(ISD::MUL, MulVT)) 5504 return SDValue(); 5505 } 5506 5507 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5508 if (N->getFlags().hasExact()) 5509 return BuildExactSDIV(*this, N, dl, DAG, Created); 5510 5511 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5512 5513 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5514 if (C->isZero()) 5515 return false; 5516 5517 const APInt &Divisor = C->getAPIntValue(); 5518 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5519 int NumeratorFactor = 0; 5520 int ShiftMask = -1; 5521 5522 if (Divisor.isOne() || Divisor.isAllOnes()) { 5523 // If d is +1/-1, we just multiply the numerator by +1/-1. 5524 NumeratorFactor = Divisor.getSExtValue(); 5525 magics.Magic = 0; 5526 magics.ShiftAmount = 0; 5527 ShiftMask = 0; 5528 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5529 // If d > 0 and m < 0, add the numerator. 5530 NumeratorFactor = 1; 5531 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5532 // If d < 0 and m > 0, subtract the numerator. 5533 NumeratorFactor = -1; 5534 } 5535 5536 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5537 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5538 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5539 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5540 return true; 5541 }; 5542 5543 SDValue N0 = N->getOperand(0); 5544 SDValue N1 = N->getOperand(1); 5545 5546 // Collect the shifts / magic values from each element. 5547 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5548 return SDValue(); 5549 5550 SDValue MagicFactor, Factor, Shift, ShiftMask; 5551 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5552 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5553 Factor = DAG.getBuildVector(VT, dl, Factors); 5554 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5555 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5556 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5557 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5558 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5559 "Expected matchUnaryPredicate to return one element for scalable " 5560 "vectors"); 5561 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5562 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5563 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5564 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5565 } else { 5566 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5567 MagicFactor = MagicFactors[0]; 5568 Factor = Factors[0]; 5569 Shift = Shifts[0]; 5570 ShiftMask = ShiftMasks[0]; 5571 } 5572 5573 // Multiply the numerator (operand 0) by the magic value. 5574 // FIXME: We should support doing a MUL in a wider type. 5575 auto GetMULHS = [&](SDValue X, SDValue Y) { 5576 // If the type isn't legal, use a wider mul of the the type calculated 5577 // earlier. 5578 if (!isTypeLegal(VT)) { 5579 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5580 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5581 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5582 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5583 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5584 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5585 } 5586 5587 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5588 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5589 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5590 SDValue LoHi = 5591 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5592 return SDValue(LoHi.getNode(), 1); 5593 } 5594 return SDValue(); 5595 }; 5596 5597 SDValue Q = GetMULHS(N0, MagicFactor); 5598 if (!Q) 5599 return SDValue(); 5600 5601 Created.push_back(Q.getNode()); 5602 5603 // (Optionally) Add/subtract the numerator using Factor. 5604 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5605 Created.push_back(Factor.getNode()); 5606 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5607 Created.push_back(Q.getNode()); 5608 5609 // Shift right algebraic by shift value. 5610 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5611 Created.push_back(Q.getNode()); 5612 5613 // Extract the sign bit, mask it and add it to the quotient. 5614 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5615 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5616 Created.push_back(T.getNode()); 5617 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5618 Created.push_back(T.getNode()); 5619 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5620 } 5621 5622 /// Given an ISD::UDIV node expressing a divide by constant, 5623 /// return a DAG expression to select that will generate the same value by 5624 /// multiplying by a magic number. 5625 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5626 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5627 bool IsAfterLegalization, 5628 SmallVectorImpl<SDNode *> &Created) const { 5629 SDLoc dl(N); 5630 EVT VT = N->getValueType(0); 5631 EVT SVT = VT.getScalarType(); 5632 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5633 EVT ShSVT = ShVT.getScalarType(); 5634 unsigned EltBits = VT.getScalarSizeInBits(); 5635 EVT MulVT; 5636 5637 // Check to see if we can do this. 5638 // FIXME: We should be more aggressive here. 5639 if (!isTypeLegal(VT)) { 5640 // Limit this to simple scalars for now. 5641 if (VT.isVector() || !VT.isSimple()) 5642 return SDValue(); 5643 5644 // If this type will be promoted to a large enough type with a legal 5645 // multiply operation, we can go ahead and do this transform. 5646 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5647 return SDValue(); 5648 5649 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5650 if (MulVT.getSizeInBits() < (2 * EltBits) || 5651 !isOperationLegal(ISD::MUL, MulVT)) 5652 return SDValue(); 5653 } 5654 5655 bool UseNPQ = false; 5656 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5657 5658 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5659 if (C->isZero()) 5660 return false; 5661 // FIXME: We should use a narrower constant when the upper 5662 // bits are known to be zero. 5663 const APInt& Divisor = C->getAPIntValue(); 5664 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5665 unsigned PreShift = 0, PostShift = 0; 5666 5667 // If the divisor is even, we can avoid using the expensive fixup by 5668 // shifting the divided value upfront. 5669 if (magics.IsAdd != 0 && !Divisor[0]) { 5670 PreShift = Divisor.countTrailingZeros(); 5671 // Get magic number for the shifted divisor. 5672 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5673 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5674 } 5675 5676 APInt Magic = magics.Magic; 5677 5678 unsigned SelNPQ; 5679 if (magics.IsAdd == 0 || Divisor.isOne()) { 5680 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5681 "We shouldn't generate an undefined shift!"); 5682 PostShift = magics.ShiftAmount; 5683 SelNPQ = false; 5684 } else { 5685 PostShift = magics.ShiftAmount - 1; 5686 SelNPQ = true; 5687 } 5688 5689 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5690 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5691 NPQFactors.push_back( 5692 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5693 : APInt::getZero(EltBits), 5694 dl, SVT)); 5695 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5696 UseNPQ |= SelNPQ; 5697 return true; 5698 }; 5699 5700 SDValue N0 = N->getOperand(0); 5701 SDValue N1 = N->getOperand(1); 5702 5703 // Collect the shifts/magic values from each element. 5704 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5705 return SDValue(); 5706 5707 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5708 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5709 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5710 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5711 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5712 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5713 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5714 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5715 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5716 "Expected matchUnaryPredicate to return one for scalable vectors"); 5717 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5718 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5719 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5720 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5721 } else { 5722 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5723 PreShift = PreShifts[0]; 5724 MagicFactor = MagicFactors[0]; 5725 PostShift = PostShifts[0]; 5726 } 5727 5728 SDValue Q = N0; 5729 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5730 Created.push_back(Q.getNode()); 5731 5732 // FIXME: We should support doing a MUL in a wider type. 5733 auto GetMULHU = [&](SDValue X, SDValue Y) { 5734 // If the type isn't legal, use a wider mul of the the type calculated 5735 // earlier. 5736 if (!isTypeLegal(VT)) { 5737 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5738 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5739 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5740 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5741 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5742 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5743 } 5744 5745 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5746 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5747 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5748 SDValue LoHi = 5749 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5750 return SDValue(LoHi.getNode(), 1); 5751 } 5752 return SDValue(); // No mulhu or equivalent 5753 }; 5754 5755 // Multiply the numerator (operand 0) by the magic value. 5756 Q = GetMULHU(Q, MagicFactor); 5757 if (!Q) 5758 return SDValue(); 5759 5760 Created.push_back(Q.getNode()); 5761 5762 if (UseNPQ) { 5763 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5764 Created.push_back(NPQ.getNode()); 5765 5766 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5767 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5768 if (VT.isVector()) 5769 NPQ = GetMULHU(NPQ, NPQFactor); 5770 else 5771 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5772 5773 Created.push_back(NPQ.getNode()); 5774 5775 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5776 Created.push_back(Q.getNode()); 5777 } 5778 5779 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5780 Created.push_back(Q.getNode()); 5781 5782 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5783 5784 SDValue One = DAG.getConstant(1, dl, VT); 5785 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5786 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5787 } 5788 5789 /// If all values in Values that *don't* match the predicate are same 'splat' 5790 /// value, then replace all values with that splat value. 5791 /// Else, if AlternativeReplacement was provided, then replace all values that 5792 /// do match predicate with AlternativeReplacement value. 5793 static void 5794 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5795 std::function<bool(SDValue)> Predicate, 5796 SDValue AlternativeReplacement = SDValue()) { 5797 SDValue Replacement; 5798 // Is there a value for which the Predicate does *NOT* match? What is it? 5799 auto SplatValue = llvm::find_if_not(Values, Predicate); 5800 if (SplatValue != Values.end()) { 5801 // Does Values consist only of SplatValue's and values matching Predicate? 5802 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5803 return Value == *SplatValue || Predicate(Value); 5804 })) // Then we shall replace values matching predicate with SplatValue. 5805 Replacement = *SplatValue; 5806 } 5807 if (!Replacement) { 5808 // Oops, we did not find the "baseline" splat value. 5809 if (!AlternativeReplacement) 5810 return; // Nothing to do. 5811 // Let's replace with provided value then. 5812 Replacement = AlternativeReplacement; 5813 } 5814 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5815 } 5816 5817 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5818 /// where the divisor is constant and the comparison target is zero, 5819 /// return a DAG expression that will generate the same comparison result 5820 /// using only multiplications, additions and shifts/rotations. 5821 /// Ref: "Hacker's Delight" 10-17. 5822 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5823 SDValue CompTargetNode, 5824 ISD::CondCode Cond, 5825 DAGCombinerInfo &DCI, 5826 const SDLoc &DL) const { 5827 SmallVector<SDNode *, 5> Built; 5828 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5829 DCI, DL, Built)) { 5830 for (SDNode *N : Built) 5831 DCI.AddToWorklist(N); 5832 return Folded; 5833 } 5834 5835 return SDValue(); 5836 } 5837 5838 SDValue 5839 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5840 SDValue CompTargetNode, ISD::CondCode Cond, 5841 DAGCombinerInfo &DCI, const SDLoc &DL, 5842 SmallVectorImpl<SDNode *> &Created) const { 5843 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5844 // - D must be constant, with D = D0 * 2^K where D0 is odd 5845 // - P is the multiplicative inverse of D0 modulo 2^W 5846 // - Q = floor(((2^W) - 1) / D) 5847 // where W is the width of the common type of N and D. 5848 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5849 "Only applicable for (in)equality comparisons."); 5850 5851 SelectionDAG &DAG = DCI.DAG; 5852 5853 EVT VT = REMNode.getValueType(); 5854 EVT SVT = VT.getScalarType(); 5855 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5856 EVT ShSVT = ShVT.getScalarType(); 5857 5858 // If MUL is unavailable, we cannot proceed in any case. 5859 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5860 return SDValue(); 5861 5862 bool ComparingWithAllZeros = true; 5863 bool AllComparisonsWithNonZerosAreTautological = true; 5864 bool HadTautologicalLanes = false; 5865 bool AllLanesAreTautological = true; 5866 bool HadEvenDivisor = false; 5867 bool AllDivisorsArePowerOfTwo = true; 5868 bool HadTautologicalInvertedLanes = false; 5869 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5870 5871 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5872 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5873 if (CDiv->isZero()) 5874 return false; 5875 5876 const APInt &D = CDiv->getAPIntValue(); 5877 const APInt &Cmp = CCmp->getAPIntValue(); 5878 5879 ComparingWithAllZeros &= Cmp.isZero(); 5880 5881 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5882 // if C2 is not less than C1, the comparison is always false. 5883 // But we will only be able to produce the comparison that will give the 5884 // opposive tautological answer. So this lane would need to be fixed up. 5885 bool TautologicalInvertedLane = D.ule(Cmp); 5886 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5887 5888 // If all lanes are tautological (either all divisors are ones, or divisor 5889 // is not greater than the constant we are comparing with), 5890 // we will prefer to avoid the fold. 5891 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5892 HadTautologicalLanes |= TautologicalLane; 5893 AllLanesAreTautological &= TautologicalLane; 5894 5895 // If we are comparing with non-zero, we need'll need to subtract said 5896 // comparison value from the LHS. But there is no point in doing that if 5897 // every lane where we are comparing with non-zero is tautological.. 5898 if (!Cmp.isZero()) 5899 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5900 5901 // Decompose D into D0 * 2^K 5902 unsigned K = D.countTrailingZeros(); 5903 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5904 APInt D0 = D.lshr(K); 5905 5906 // D is even if it has trailing zeros. 5907 HadEvenDivisor |= (K != 0); 5908 // D is a power-of-two if D0 is one. 5909 // If all divisors are power-of-two, we will prefer to avoid the fold. 5910 AllDivisorsArePowerOfTwo &= D0.isOne(); 5911 5912 // P = inv(D0, 2^W) 5913 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5914 unsigned W = D.getBitWidth(); 5915 APInt P = D0.zext(W + 1) 5916 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5917 .trunc(W); 5918 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5919 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5920 5921 // Q = floor((2^W - 1) u/ D) 5922 // R = ((2^W - 1) u% D) 5923 APInt Q, R; 5924 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5925 5926 // If we are comparing with zero, then that comparison constant is okay, 5927 // else it may need to be one less than that. 5928 if (Cmp.ugt(R)) 5929 Q -= 1; 5930 5931 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5932 "We are expecting that K is always less than all-ones for ShSVT"); 5933 5934 // If the lane is tautological the result can be constant-folded. 5935 if (TautologicalLane) { 5936 // Set P and K amount to a bogus values so we can try to splat them. 5937 P = 0; 5938 K = -1; 5939 // And ensure that comparison constant is tautological, 5940 // it will always compare true/false. 5941 Q = -1; 5942 } 5943 5944 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5945 KAmts.push_back( 5946 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5947 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5948 return true; 5949 }; 5950 5951 SDValue N = REMNode.getOperand(0); 5952 SDValue D = REMNode.getOperand(1); 5953 5954 // Collect the values from each element. 5955 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5956 return SDValue(); 5957 5958 // If all lanes are tautological, the result can be constant-folded. 5959 if (AllLanesAreTautological) 5960 return SDValue(); 5961 5962 // If this is a urem by a powers-of-two, avoid the fold since it can be 5963 // best implemented as a bit test. 5964 if (AllDivisorsArePowerOfTwo) 5965 return SDValue(); 5966 5967 SDValue PVal, KVal, QVal; 5968 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5969 if (HadTautologicalLanes) { 5970 // Try to turn PAmts into a splat, since we don't care about the values 5971 // that are currently '0'. If we can't, just keep '0'`s. 5972 turnVectorIntoSplatVector(PAmts, isNullConstant); 5973 // Try to turn KAmts into a splat, since we don't care about the values 5974 // that are currently '-1'. If we can't, change them to '0'`s. 5975 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5976 DAG.getConstant(0, DL, ShSVT)); 5977 } 5978 5979 PVal = DAG.getBuildVector(VT, DL, PAmts); 5980 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5981 QVal = DAG.getBuildVector(VT, DL, QAmts); 5982 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5983 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5984 "Expected matchBinaryPredicate to return one element for " 5985 "SPLAT_VECTORs"); 5986 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5987 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5988 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5989 } else { 5990 PVal = PAmts[0]; 5991 KVal = KAmts[0]; 5992 QVal = QAmts[0]; 5993 } 5994 5995 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5996 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5997 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5998 assert(CompTargetNode.getValueType() == N.getValueType() && 5999 "Expecting that the types on LHS and RHS of comparisons match."); 6000 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6001 } 6002 6003 // (mul N, P) 6004 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6005 Created.push_back(Op0.getNode()); 6006 6007 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6008 // divisors as a performance improvement, since rotating by 0 is a no-op. 6009 if (HadEvenDivisor) { 6010 // We need ROTR to do this. 6011 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6012 return SDValue(); 6013 // UREM: (rotr (mul N, P), K) 6014 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6015 Created.push_back(Op0.getNode()); 6016 } 6017 6018 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6019 SDValue NewCC = 6020 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6021 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6022 if (!HadTautologicalInvertedLanes) 6023 return NewCC; 6024 6025 // If any lanes previously compared always-false, the NewCC will give 6026 // always-true result for them, so we need to fixup those lanes. 6027 // Or the other way around for inequality predicate. 6028 assert(VT.isVector() && "Can/should only get here for vectors."); 6029 Created.push_back(NewCC.getNode()); 6030 6031 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6032 // if C2 is not less than C1, the comparison is always false. 6033 // But we have produced the comparison that will give the 6034 // opposive tautological answer. So these lanes would need to be fixed up. 6035 SDValue TautologicalInvertedChannels = 6036 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6037 Created.push_back(TautologicalInvertedChannels.getNode()); 6038 6039 // NOTE: we avoid letting illegal types through even if we're before legalize 6040 // ops – legalization has a hard time producing good code for this. 6041 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6042 // If we have a vector select, let's replace the comparison results in the 6043 // affected lanes with the correct tautological result. 6044 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6045 DL, SETCCVT, SETCCVT); 6046 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6047 Replacement, NewCC); 6048 } 6049 6050 // Else, we can just invert the comparison result in the appropriate lanes. 6051 // 6052 // NOTE: see the note above VSELECT above. 6053 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6054 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6055 TautologicalInvertedChannels); 6056 6057 return SDValue(); // Don't know how to lower. 6058 } 6059 6060 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6061 /// where the divisor is constant and the comparison target is zero, 6062 /// return a DAG expression that will generate the same comparison result 6063 /// using only multiplications, additions and shifts/rotations. 6064 /// Ref: "Hacker's Delight" 10-17. 6065 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6066 SDValue CompTargetNode, 6067 ISD::CondCode Cond, 6068 DAGCombinerInfo &DCI, 6069 const SDLoc &DL) const { 6070 SmallVector<SDNode *, 7> Built; 6071 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6072 DCI, DL, Built)) { 6073 assert(Built.size() <= 7 && "Max size prediction failed."); 6074 for (SDNode *N : Built) 6075 DCI.AddToWorklist(N); 6076 return Folded; 6077 } 6078 6079 return SDValue(); 6080 } 6081 6082 SDValue 6083 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6084 SDValue CompTargetNode, ISD::CondCode Cond, 6085 DAGCombinerInfo &DCI, const SDLoc &DL, 6086 SmallVectorImpl<SDNode *> &Created) const { 6087 // Fold: 6088 // (seteq/ne (srem N, D), 0) 6089 // To: 6090 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6091 // 6092 // - D must be constant, with D = D0 * 2^K where D0 is odd 6093 // - P is the multiplicative inverse of D0 modulo 2^W 6094 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6095 // - Q = floor((2 * A) / (2^K)) 6096 // where W is the width of the common type of N and D. 6097 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6098 "Only applicable for (in)equality comparisons."); 6099 6100 SelectionDAG &DAG = DCI.DAG; 6101 6102 EVT VT = REMNode.getValueType(); 6103 EVT SVT = VT.getScalarType(); 6104 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6105 EVT ShSVT = ShVT.getScalarType(); 6106 6107 // If we are after ops legalization, and MUL is unavailable, we can not 6108 // proceed. 6109 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6110 return SDValue(); 6111 6112 // TODO: Could support comparing with non-zero too. 6113 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6114 if (!CompTarget || !CompTarget->isZero()) 6115 return SDValue(); 6116 6117 bool HadIntMinDivisor = false; 6118 bool HadOneDivisor = false; 6119 bool AllDivisorsAreOnes = true; 6120 bool HadEvenDivisor = false; 6121 bool NeedToApplyOffset = false; 6122 bool AllDivisorsArePowerOfTwo = true; 6123 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6124 6125 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6126 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6127 if (C->isZero()) 6128 return false; 6129 6130 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6131 6132 // WARNING: this fold is only valid for positive divisors! 6133 APInt D = C->getAPIntValue(); 6134 if (D.isNegative()) 6135 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6136 6137 HadIntMinDivisor |= D.isMinSignedValue(); 6138 6139 // If all divisors are ones, we will prefer to avoid the fold. 6140 HadOneDivisor |= D.isOne(); 6141 AllDivisorsAreOnes &= D.isOne(); 6142 6143 // Decompose D into D0 * 2^K 6144 unsigned K = D.countTrailingZeros(); 6145 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6146 APInt D0 = D.lshr(K); 6147 6148 if (!D.isMinSignedValue()) { 6149 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6150 // we don't care about this lane in this fold, we'll special-handle it. 6151 HadEvenDivisor |= (K != 0); 6152 } 6153 6154 // D is a power-of-two if D0 is one. This includes INT_MIN. 6155 // If all divisors are power-of-two, we will prefer to avoid the fold. 6156 AllDivisorsArePowerOfTwo &= D0.isOne(); 6157 6158 // P = inv(D0, 2^W) 6159 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6160 unsigned W = D.getBitWidth(); 6161 APInt P = D0.zext(W + 1) 6162 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6163 .trunc(W); 6164 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6165 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6166 6167 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6168 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6169 A.clearLowBits(K); 6170 6171 if (!D.isMinSignedValue()) { 6172 // If divisor INT_MIN, then we don't care about this lane in this fold, 6173 // we'll special-handle it. 6174 NeedToApplyOffset |= A != 0; 6175 } 6176 6177 // Q = floor((2 * A) / (2^K)) 6178 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6179 6180 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6181 "We are expecting that A is always less than all-ones for SVT"); 6182 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6183 "We are expecting that K is always less than all-ones for ShSVT"); 6184 6185 // If the divisor is 1 the result can be constant-folded. Likewise, we 6186 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6187 if (D.isOne()) { 6188 // Set P, A and K to a bogus values so we can try to splat them. 6189 P = 0; 6190 A = -1; 6191 K = -1; 6192 6193 // x ?% 1 == 0 <--> true <--> x u<= -1 6194 Q = -1; 6195 } 6196 6197 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6198 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6199 KAmts.push_back( 6200 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6201 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6202 return true; 6203 }; 6204 6205 SDValue N = REMNode.getOperand(0); 6206 SDValue D = REMNode.getOperand(1); 6207 6208 // Collect the values from each element. 6209 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6210 return SDValue(); 6211 6212 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6213 if (AllDivisorsAreOnes) 6214 return SDValue(); 6215 6216 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6217 // since it can be best implemented as a bit test. 6218 if (AllDivisorsArePowerOfTwo) 6219 return SDValue(); 6220 6221 SDValue PVal, AVal, KVal, QVal; 6222 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6223 if (HadOneDivisor) { 6224 // Try to turn PAmts into a splat, since we don't care about the values 6225 // that are currently '0'. If we can't, just keep '0'`s. 6226 turnVectorIntoSplatVector(PAmts, isNullConstant); 6227 // Try to turn AAmts into a splat, since we don't care about the 6228 // values that are currently '-1'. If we can't, change them to '0'`s. 6229 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6230 DAG.getConstant(0, DL, SVT)); 6231 // Try to turn KAmts into a splat, since we don't care about the values 6232 // that are currently '-1'. If we can't, change them to '0'`s. 6233 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6234 DAG.getConstant(0, DL, ShSVT)); 6235 } 6236 6237 PVal = DAG.getBuildVector(VT, DL, PAmts); 6238 AVal = DAG.getBuildVector(VT, DL, AAmts); 6239 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6240 QVal = DAG.getBuildVector(VT, DL, QAmts); 6241 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6242 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6243 QAmts.size() == 1 && 6244 "Expected matchUnaryPredicate to return one element for scalable " 6245 "vectors"); 6246 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6247 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6248 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6249 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6250 } else { 6251 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6252 PVal = PAmts[0]; 6253 AVal = AAmts[0]; 6254 KVal = KAmts[0]; 6255 QVal = QAmts[0]; 6256 } 6257 6258 // (mul N, P) 6259 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6260 Created.push_back(Op0.getNode()); 6261 6262 if (NeedToApplyOffset) { 6263 // We need ADD to do this. 6264 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6265 return SDValue(); 6266 6267 // (add (mul N, P), A) 6268 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6269 Created.push_back(Op0.getNode()); 6270 } 6271 6272 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6273 // divisors as a performance improvement, since rotating by 0 is a no-op. 6274 if (HadEvenDivisor) { 6275 // We need ROTR to do this. 6276 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6277 return SDValue(); 6278 // SREM: (rotr (add (mul N, P), A), K) 6279 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6280 Created.push_back(Op0.getNode()); 6281 } 6282 6283 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6284 SDValue Fold = 6285 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6286 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6287 6288 // If we didn't have lanes with INT_MIN divisor, then we're done. 6289 if (!HadIntMinDivisor) 6290 return Fold; 6291 6292 // That fold is only valid for positive divisors. Which effectively means, 6293 // it is invalid for INT_MIN divisors. So if we have such a lane, 6294 // we must fix-up results for said lanes. 6295 assert(VT.isVector() && "Can/should only get here for vectors."); 6296 6297 // NOTE: we avoid letting illegal types through even if we're before legalize 6298 // ops – legalization has a hard time producing good code for the code that 6299 // follows. 6300 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6301 !isOperationLegalOrCustom(ISD::AND, VT) || 6302 !isOperationLegalOrCustom(Cond, VT) || 6303 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6304 return SDValue(); 6305 6306 Created.push_back(Fold.getNode()); 6307 6308 SDValue IntMin = DAG.getConstant( 6309 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6310 SDValue IntMax = DAG.getConstant( 6311 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6312 SDValue Zero = 6313 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6314 6315 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6316 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6317 Created.push_back(DivisorIsIntMin.getNode()); 6318 6319 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6320 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6321 Created.push_back(Masked.getNode()); 6322 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6323 Created.push_back(MaskedIsZero.getNode()); 6324 6325 // To produce final result we need to blend 2 vectors: 'SetCC' and 6326 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6327 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6328 // constant-folded, select can get lowered to a shuffle with constant mask. 6329 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6330 MaskedIsZero, Fold); 6331 6332 return Blended; 6333 } 6334 6335 bool TargetLowering:: 6336 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6337 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6338 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6339 "be a constant integer"); 6340 return true; 6341 } 6342 6343 return false; 6344 } 6345 6346 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6347 const DenormalMode &Mode) const { 6348 SDLoc DL(Op); 6349 EVT VT = Op.getValueType(); 6350 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6351 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6352 // Testing it with denormal inputs to avoid wrong estimate. 6353 if (Mode.Input == DenormalMode::IEEE) { 6354 // This is specifically a check for the handling of denormal inputs, 6355 // not the result. 6356 6357 // Test = fabs(X) < SmallestNormal 6358 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6359 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6360 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6361 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6362 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6363 } 6364 // Test = X == 0.0 6365 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6366 } 6367 6368 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6369 bool LegalOps, bool OptForSize, 6370 NegatibleCost &Cost, 6371 unsigned Depth) const { 6372 // fneg is removable even if it has multiple uses. 6373 if (Op.getOpcode() == ISD::FNEG) { 6374 Cost = NegatibleCost::Cheaper; 6375 return Op.getOperand(0); 6376 } 6377 6378 // Don't recurse exponentially. 6379 if (Depth > SelectionDAG::MaxRecursionDepth) 6380 return SDValue(); 6381 6382 // Pre-increment recursion depth for use in recursive calls. 6383 ++Depth; 6384 const SDNodeFlags Flags = Op->getFlags(); 6385 const TargetOptions &Options = DAG.getTarget().Options; 6386 EVT VT = Op.getValueType(); 6387 unsigned Opcode = Op.getOpcode(); 6388 6389 // Don't allow anything with multiple uses unless we know it is free. 6390 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6391 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6392 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6393 if (!IsFreeExtend) 6394 return SDValue(); 6395 } 6396 6397 auto RemoveDeadNode = [&](SDValue N) { 6398 if (N && N.getNode()->use_empty()) 6399 DAG.RemoveDeadNode(N.getNode()); 6400 }; 6401 6402 SDLoc DL(Op); 6403 6404 // Because getNegatedExpression can delete nodes we need a handle to keep 6405 // temporary nodes alive in case the recursion manages to create an identical 6406 // node. 6407 std::list<HandleSDNode> Handles; 6408 6409 switch (Opcode) { 6410 case ISD::ConstantFP: { 6411 // Don't invert constant FP values after legalization unless the target says 6412 // the negated constant is legal. 6413 bool IsOpLegal = 6414 isOperationLegal(ISD::ConstantFP, VT) || 6415 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6416 OptForSize); 6417 6418 if (LegalOps && !IsOpLegal) 6419 break; 6420 6421 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6422 V.changeSign(); 6423 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6424 6425 // If we already have the use of the negated floating constant, it is free 6426 // to negate it even it has multiple uses. 6427 if (!Op.hasOneUse() && CFP.use_empty()) 6428 break; 6429 Cost = NegatibleCost::Neutral; 6430 return CFP; 6431 } 6432 case ISD::BUILD_VECTOR: { 6433 // Only permit BUILD_VECTOR of constants. 6434 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6435 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6436 })) 6437 break; 6438 6439 bool IsOpLegal = 6440 (isOperationLegal(ISD::ConstantFP, VT) && 6441 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6442 llvm::all_of(Op->op_values(), [&](SDValue N) { 6443 return N.isUndef() || 6444 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6445 OptForSize); 6446 }); 6447 6448 if (LegalOps && !IsOpLegal) 6449 break; 6450 6451 SmallVector<SDValue, 4> Ops; 6452 for (SDValue C : Op->op_values()) { 6453 if (C.isUndef()) { 6454 Ops.push_back(C); 6455 continue; 6456 } 6457 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6458 V.changeSign(); 6459 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6460 } 6461 Cost = NegatibleCost::Neutral; 6462 return DAG.getBuildVector(VT, DL, Ops); 6463 } 6464 case ISD::FADD: { 6465 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6466 break; 6467 6468 // After operation legalization, it might not be legal to create new FSUBs. 6469 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6470 break; 6471 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6472 6473 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6474 NegatibleCost CostX = NegatibleCost::Expensive; 6475 SDValue NegX = 6476 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6477 // Prevent this node from being deleted by the next call. 6478 if (NegX) 6479 Handles.emplace_back(NegX); 6480 6481 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6482 NegatibleCost CostY = NegatibleCost::Expensive; 6483 SDValue NegY = 6484 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6485 6486 // We're done with the handles. 6487 Handles.clear(); 6488 6489 // Negate the X if its cost is less or equal than Y. 6490 if (NegX && (CostX <= CostY)) { 6491 Cost = CostX; 6492 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6493 if (NegY != N) 6494 RemoveDeadNode(NegY); 6495 return N; 6496 } 6497 6498 // Negate the Y if it is not expensive. 6499 if (NegY) { 6500 Cost = CostY; 6501 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6502 if (NegX != N) 6503 RemoveDeadNode(NegX); 6504 return N; 6505 } 6506 break; 6507 } 6508 case ISD::FSUB: { 6509 // We can't turn -(A-B) into B-A when we honor signed zeros. 6510 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6511 break; 6512 6513 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6514 // fold (fneg (fsub 0, Y)) -> Y 6515 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6516 if (C->isZero()) { 6517 Cost = NegatibleCost::Cheaper; 6518 return Y; 6519 } 6520 6521 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6522 Cost = NegatibleCost::Neutral; 6523 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6524 } 6525 case ISD::FMUL: 6526 case ISD::FDIV: { 6527 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6528 6529 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6530 NegatibleCost CostX = NegatibleCost::Expensive; 6531 SDValue NegX = 6532 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6533 // Prevent this node from being deleted by the next call. 6534 if (NegX) 6535 Handles.emplace_back(NegX); 6536 6537 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6538 NegatibleCost CostY = NegatibleCost::Expensive; 6539 SDValue NegY = 6540 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6541 6542 // We're done with the handles. 6543 Handles.clear(); 6544 6545 // Negate the X if its cost is less or equal than Y. 6546 if (NegX && (CostX <= CostY)) { 6547 Cost = CostX; 6548 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6549 if (NegY != N) 6550 RemoveDeadNode(NegY); 6551 return N; 6552 } 6553 6554 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6555 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6556 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6557 break; 6558 6559 // Negate the Y if it is not expensive. 6560 if (NegY) { 6561 Cost = CostY; 6562 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6563 if (NegX != N) 6564 RemoveDeadNode(NegX); 6565 return N; 6566 } 6567 break; 6568 } 6569 case ISD::FMA: 6570 case ISD::FMAD: { 6571 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6572 break; 6573 6574 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6575 NegatibleCost CostZ = NegatibleCost::Expensive; 6576 SDValue NegZ = 6577 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6578 // Give up if fail to negate the Z. 6579 if (!NegZ) 6580 break; 6581 6582 // Prevent this node from being deleted by the next two calls. 6583 Handles.emplace_back(NegZ); 6584 6585 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6586 NegatibleCost CostX = NegatibleCost::Expensive; 6587 SDValue NegX = 6588 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6589 // Prevent this node from being deleted by the next call. 6590 if (NegX) 6591 Handles.emplace_back(NegX); 6592 6593 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6594 NegatibleCost CostY = NegatibleCost::Expensive; 6595 SDValue NegY = 6596 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6597 6598 // We're done with the handles. 6599 Handles.clear(); 6600 6601 // Negate the X if its cost is less or equal than Y. 6602 if (NegX && (CostX <= CostY)) { 6603 Cost = std::min(CostX, CostZ); 6604 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6605 if (NegY != N) 6606 RemoveDeadNode(NegY); 6607 return N; 6608 } 6609 6610 // Negate the Y if it is not expensive. 6611 if (NegY) { 6612 Cost = std::min(CostY, CostZ); 6613 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6614 if (NegX != N) 6615 RemoveDeadNode(NegX); 6616 return N; 6617 } 6618 break; 6619 } 6620 6621 case ISD::FP_EXTEND: 6622 case ISD::FSIN: 6623 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6624 OptForSize, Cost, Depth)) 6625 return DAG.getNode(Opcode, DL, VT, NegV); 6626 break; 6627 case ISD::FP_ROUND: 6628 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6629 OptForSize, Cost, Depth)) 6630 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6631 break; 6632 } 6633 6634 return SDValue(); 6635 } 6636 6637 //===----------------------------------------------------------------------===// 6638 // Legalization Utilities 6639 //===----------------------------------------------------------------------===// 6640 6641 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6642 SDValue LHS, SDValue RHS, 6643 SmallVectorImpl<SDValue> &Result, 6644 EVT HiLoVT, SelectionDAG &DAG, 6645 MulExpansionKind Kind, SDValue LL, 6646 SDValue LH, SDValue RL, SDValue RH) const { 6647 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6648 Opcode == ISD::SMUL_LOHI); 6649 6650 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6651 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6652 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6653 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6654 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6655 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6656 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6657 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6658 6659 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6660 return false; 6661 6662 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6663 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6664 6665 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6666 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6667 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6668 6669 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6670 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6671 bool Signed) -> bool { 6672 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6673 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6674 Hi = SDValue(Lo.getNode(), 1); 6675 return true; 6676 } 6677 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6678 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6679 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6680 return true; 6681 } 6682 return false; 6683 }; 6684 6685 SDValue Lo, Hi; 6686 6687 if (!LL.getNode() && !RL.getNode() && 6688 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6689 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6690 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6691 } 6692 6693 if (!LL.getNode()) 6694 return false; 6695 6696 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6697 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6698 DAG.MaskedValueIsZero(RHS, HighMask)) { 6699 // The inputs are both zero-extended. 6700 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6701 Result.push_back(Lo); 6702 Result.push_back(Hi); 6703 if (Opcode != ISD::MUL) { 6704 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6705 Result.push_back(Zero); 6706 Result.push_back(Zero); 6707 } 6708 return true; 6709 } 6710 } 6711 6712 if (!VT.isVector() && Opcode == ISD::MUL && 6713 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6714 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6715 // The input values are both sign-extended. 6716 // TODO non-MUL case? 6717 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6718 Result.push_back(Lo); 6719 Result.push_back(Hi); 6720 return true; 6721 } 6722 } 6723 6724 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6725 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6726 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6727 6728 if (!LH.getNode() && !RH.getNode() && 6729 isOperationLegalOrCustom(ISD::SRL, VT) && 6730 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6731 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6732 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6733 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6734 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6735 } 6736 6737 if (!LH.getNode()) 6738 return false; 6739 6740 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6741 return false; 6742 6743 Result.push_back(Lo); 6744 6745 if (Opcode == ISD::MUL) { 6746 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6747 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6748 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6749 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6750 Result.push_back(Hi); 6751 return true; 6752 } 6753 6754 // Compute the full width result. 6755 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6756 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6757 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6758 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6759 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6760 }; 6761 6762 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6763 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6764 return false; 6765 6766 // This is effectively the add part of a multiply-add of half-sized operands, 6767 // so it cannot overflow. 6768 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6769 6770 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6771 return false; 6772 6773 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6774 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6775 6776 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6777 isOperationLegalOrCustom(ISD::ADDE, VT)); 6778 if (UseGlue) 6779 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6780 Merge(Lo, Hi)); 6781 else 6782 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6783 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6784 6785 SDValue Carry = Next.getValue(1); 6786 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6787 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6788 6789 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6790 return false; 6791 6792 if (UseGlue) 6793 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6794 Carry); 6795 else 6796 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6797 Zero, Carry); 6798 6799 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6800 6801 if (Opcode == ISD::SMUL_LOHI) { 6802 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6803 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6804 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6805 6806 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6807 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6808 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6809 } 6810 6811 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6812 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6813 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6814 return true; 6815 } 6816 6817 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6818 SelectionDAG &DAG, MulExpansionKind Kind, 6819 SDValue LL, SDValue LH, SDValue RL, 6820 SDValue RH) const { 6821 SmallVector<SDValue, 2> Result; 6822 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6823 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6824 DAG, Kind, LL, LH, RL, RH); 6825 if (Ok) { 6826 assert(Result.size() == 2); 6827 Lo = Result[0]; 6828 Hi = Result[1]; 6829 } 6830 return Ok; 6831 } 6832 6833 // Check that (every element of) Z is undef or not an exact multiple of BW. 6834 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6835 return ISD::matchUnaryPredicate( 6836 Z, 6837 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6838 true); 6839 } 6840 6841 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6842 SelectionDAG &DAG) const { 6843 EVT VT = Node->getValueType(0); 6844 6845 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6846 !isOperationLegalOrCustom(ISD::SRL, VT) || 6847 !isOperationLegalOrCustom(ISD::SUB, VT) || 6848 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6849 return SDValue(); 6850 6851 SDValue X = Node->getOperand(0); 6852 SDValue Y = Node->getOperand(1); 6853 SDValue Z = Node->getOperand(2); 6854 6855 unsigned BW = VT.getScalarSizeInBits(); 6856 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6857 SDLoc DL(SDValue(Node, 0)); 6858 6859 EVT ShVT = Z.getValueType(); 6860 6861 // If a funnel shift in the other direction is more supported, use it. 6862 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6863 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6864 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6865 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6866 // fshl X, Y, Z -> fshr X, Y, -Z 6867 // fshr X, Y, Z -> fshl X, Y, -Z 6868 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6869 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6870 } else { 6871 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6872 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6873 SDValue One = DAG.getConstant(1, DL, ShVT); 6874 if (IsFSHL) { 6875 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6876 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6877 } else { 6878 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6879 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6880 } 6881 Z = DAG.getNOT(DL, Z, ShVT); 6882 } 6883 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6884 } 6885 6886 SDValue ShX, ShY; 6887 SDValue ShAmt, InvShAmt; 6888 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6889 // fshl: X << C | Y >> (BW - C) 6890 // fshr: X << (BW - C) | Y >> C 6891 // where C = Z % BW is not zero 6892 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6893 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6894 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6895 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6896 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6897 } else { 6898 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6899 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6900 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6901 if (isPowerOf2_32(BW)) { 6902 // Z % BW -> Z & (BW - 1) 6903 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6904 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6905 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6906 } else { 6907 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6908 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6909 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6910 } 6911 6912 SDValue One = DAG.getConstant(1, DL, ShVT); 6913 if (IsFSHL) { 6914 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6915 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6916 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6917 } else { 6918 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6919 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6920 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6921 } 6922 } 6923 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6924 } 6925 6926 // TODO: Merge with expandFunnelShift. 6927 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6928 SelectionDAG &DAG) const { 6929 EVT VT = Node->getValueType(0); 6930 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6931 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6932 SDValue Op0 = Node->getOperand(0); 6933 SDValue Op1 = Node->getOperand(1); 6934 SDLoc DL(SDValue(Node, 0)); 6935 6936 EVT ShVT = Op1.getValueType(); 6937 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6938 6939 // If a rotate in the other direction is more supported, use it. 6940 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6941 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6942 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6943 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6944 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6945 } 6946 6947 if (!AllowVectorOps && VT.isVector() && 6948 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6949 !isOperationLegalOrCustom(ISD::SRL, VT) || 6950 !isOperationLegalOrCustom(ISD::SUB, VT) || 6951 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6952 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6953 return SDValue(); 6954 6955 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6956 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6957 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6958 SDValue ShVal; 6959 SDValue HsVal; 6960 if (isPowerOf2_32(EltSizeInBits)) { 6961 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6962 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6963 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6964 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6965 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6966 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6967 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6968 } else { 6969 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6970 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6971 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6972 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6973 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6974 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6975 SDValue One = DAG.getConstant(1, DL, ShVT); 6976 HsVal = 6977 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6978 } 6979 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6980 } 6981 6982 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6983 SelectionDAG &DAG) const { 6984 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6985 EVT VT = Node->getValueType(0); 6986 unsigned VTBits = VT.getScalarSizeInBits(); 6987 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6988 6989 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6990 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6991 SDValue ShOpLo = Node->getOperand(0); 6992 SDValue ShOpHi = Node->getOperand(1); 6993 SDValue ShAmt = Node->getOperand(2); 6994 EVT ShAmtVT = ShAmt.getValueType(); 6995 EVT ShAmtCCVT = 6996 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6997 SDLoc dl(Node); 6998 6999 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7000 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7001 // away during isel. 7002 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7003 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7004 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7005 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7006 : DAG.getConstant(0, dl, VT); 7007 7008 SDValue Tmp2, Tmp3; 7009 if (IsSHL) { 7010 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7011 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7012 } else { 7013 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7014 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7015 } 7016 7017 // If the shift amount is larger or equal than the width of a part we don't 7018 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7019 // values for large shift amounts. 7020 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7021 DAG.getConstant(VTBits, dl, ShAmtVT)); 7022 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7023 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7024 7025 if (IsSHL) { 7026 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7027 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7028 } else { 7029 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7030 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7031 } 7032 } 7033 7034 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7035 SelectionDAG &DAG) const { 7036 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7037 SDValue Src = Node->getOperand(OpNo); 7038 EVT SrcVT = Src.getValueType(); 7039 EVT DstVT = Node->getValueType(0); 7040 SDLoc dl(SDValue(Node, 0)); 7041 7042 // FIXME: Only f32 to i64 conversions are supported. 7043 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7044 return false; 7045 7046 if (Node->isStrictFPOpcode()) 7047 // When a NaN is converted to an integer a trap is allowed. We can't 7048 // use this expansion here because it would eliminate that trap. Other 7049 // traps are also allowed and cannot be eliminated. See 7050 // IEEE 754-2008 sec 5.8. 7051 return false; 7052 7053 // Expand f32 -> i64 conversion 7054 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7055 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7056 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7057 EVT IntVT = SrcVT.changeTypeToInteger(); 7058 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7059 7060 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7061 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7062 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7063 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7064 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7065 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7066 7067 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7068 7069 SDValue ExponentBits = DAG.getNode( 7070 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7071 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7072 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7073 7074 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7075 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7076 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7077 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7078 7079 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7080 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7081 DAG.getConstant(0x00800000, dl, IntVT)); 7082 7083 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7084 7085 R = DAG.getSelectCC( 7086 dl, Exponent, ExponentLoBit, 7087 DAG.getNode(ISD::SHL, dl, DstVT, R, 7088 DAG.getZExtOrTrunc( 7089 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7090 dl, IntShVT)), 7091 DAG.getNode(ISD::SRL, dl, DstVT, R, 7092 DAG.getZExtOrTrunc( 7093 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7094 dl, IntShVT)), 7095 ISD::SETGT); 7096 7097 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7098 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7099 7100 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7101 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7102 return true; 7103 } 7104 7105 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7106 SDValue &Chain, 7107 SelectionDAG &DAG) const { 7108 SDLoc dl(SDValue(Node, 0)); 7109 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7110 SDValue Src = Node->getOperand(OpNo); 7111 7112 EVT SrcVT = Src.getValueType(); 7113 EVT DstVT = Node->getValueType(0); 7114 EVT SetCCVT = 7115 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7116 EVT DstSetCCVT = 7117 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7118 7119 // Only expand vector types if we have the appropriate vector bit operations. 7120 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7121 ISD::FP_TO_SINT; 7122 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7123 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7124 return false; 7125 7126 // If the maximum float value is smaller then the signed integer range, 7127 // the destination signmask can't be represented by the float, so we can 7128 // just use FP_TO_SINT directly. 7129 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7130 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7131 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7132 if (APFloat::opOverflow & 7133 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7134 if (Node->isStrictFPOpcode()) { 7135 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7136 { Node->getOperand(0), Src }); 7137 Chain = Result.getValue(1); 7138 } else 7139 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7140 return true; 7141 } 7142 7143 // Don't expand it if there isn't cheap fsub instruction. 7144 if (!isOperationLegalOrCustom( 7145 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7146 return false; 7147 7148 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7149 SDValue Sel; 7150 7151 if (Node->isStrictFPOpcode()) { 7152 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7153 Node->getOperand(0), /*IsSignaling*/ true); 7154 Chain = Sel.getValue(1); 7155 } else { 7156 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7157 } 7158 7159 bool Strict = Node->isStrictFPOpcode() || 7160 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7161 7162 if (Strict) { 7163 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7164 // signmask then offset (the result of which should be fully representable). 7165 // Sel = Src < 0x8000000000000000 7166 // FltOfs = select Sel, 0, 0x8000000000000000 7167 // IntOfs = select Sel, 0, 0x8000000000000000 7168 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7169 7170 // TODO: Should any fast-math-flags be set for the FSUB? 7171 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7172 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7173 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7174 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7175 DAG.getConstant(0, dl, DstVT), 7176 DAG.getConstant(SignMask, dl, DstVT)); 7177 SDValue SInt; 7178 if (Node->isStrictFPOpcode()) { 7179 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7180 { Chain, Src, FltOfs }); 7181 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7182 { Val.getValue(1), Val }); 7183 Chain = SInt.getValue(1); 7184 } else { 7185 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7186 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7187 } 7188 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7189 } else { 7190 // Expand based on maximum range of FP_TO_SINT: 7191 // True = fp_to_sint(Src) 7192 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7193 // Result = select (Src < 0x8000000000000000), True, False 7194 7195 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7196 // TODO: Should any fast-math-flags be set for the FSUB? 7197 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7198 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7199 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7200 DAG.getConstant(SignMask, dl, DstVT)); 7201 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7202 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7203 } 7204 return true; 7205 } 7206 7207 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7208 SDValue &Chain, 7209 SelectionDAG &DAG) const { 7210 // This transform is not correct for converting 0 when rounding mode is set 7211 // to round toward negative infinity which will produce -0.0. So disable under 7212 // strictfp. 7213 if (Node->isStrictFPOpcode()) 7214 return false; 7215 7216 SDValue Src = Node->getOperand(0); 7217 EVT SrcVT = Src.getValueType(); 7218 EVT DstVT = Node->getValueType(0); 7219 7220 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7221 return false; 7222 7223 // Only expand vector types if we have the appropriate vector bit operations. 7224 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7225 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7226 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7227 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7228 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7229 return false; 7230 7231 SDLoc dl(SDValue(Node, 0)); 7232 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7233 7234 // Implementation of unsigned i64 to f64 following the algorithm in 7235 // __floatundidf in compiler_rt. This implementation performs rounding 7236 // correctly in all rounding modes with the exception of converting 0 7237 // when rounding toward negative infinity. In that case the fsub will produce 7238 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7239 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7240 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7241 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7242 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7243 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7244 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7245 7246 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7247 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7248 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7249 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7250 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7251 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7252 SDValue HiSub = 7253 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7254 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7255 return true; 7256 } 7257 7258 SDValue 7259 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7260 SelectionDAG &DAG) const { 7261 unsigned Opcode = Node->getOpcode(); 7262 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7263 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7264 "Wrong opcode"); 7265 7266 if (Node->getFlags().hasNoNaNs()) { 7267 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7268 SDValue Op1 = Node->getOperand(0); 7269 SDValue Op2 = Node->getOperand(1); 7270 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7271 // Copy FMF flags, but always set the no-signed-zeros flag 7272 // as this is implied by the FMINNUM/FMAXNUM semantics. 7273 SDNodeFlags Flags = Node->getFlags(); 7274 Flags.setNoSignedZeros(true); 7275 SelCC->setFlags(Flags); 7276 return SelCC; 7277 } 7278 7279 return SDValue(); 7280 } 7281 7282 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7283 SelectionDAG &DAG) const { 7284 SDLoc dl(Node); 7285 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7286 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7287 EVT VT = Node->getValueType(0); 7288 7289 if (VT.isScalableVector()) 7290 report_fatal_error( 7291 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7292 7293 if (isOperationLegalOrCustom(NewOp, VT)) { 7294 SDValue Quiet0 = Node->getOperand(0); 7295 SDValue Quiet1 = Node->getOperand(1); 7296 7297 if (!Node->getFlags().hasNoNaNs()) { 7298 // Insert canonicalizes if it's possible we need to quiet to get correct 7299 // sNaN behavior. 7300 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7301 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7302 Node->getFlags()); 7303 } 7304 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7305 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7306 Node->getFlags()); 7307 } 7308 } 7309 7310 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7311 } 7312 7313 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7314 // instead if there are no NaNs. 7315 if (Node->getFlags().hasNoNaNs()) { 7316 unsigned IEEE2018Op = 7317 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7318 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7319 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7320 Node->getOperand(1), Node->getFlags()); 7321 } 7322 } 7323 7324 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7325 return SelCC; 7326 7327 return SDValue(); 7328 } 7329 7330 // Only expand vector types if we have the appropriate vector bit operations. 7331 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7332 assert(VT.isVector() && "Expected vector type"); 7333 unsigned Len = VT.getScalarSizeInBits(); 7334 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7335 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7336 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7337 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7338 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7339 } 7340 7341 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7342 SDLoc dl(Node); 7343 EVT VT = Node->getValueType(0); 7344 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7345 SDValue Op = Node->getOperand(0); 7346 unsigned Len = VT.getScalarSizeInBits(); 7347 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7348 7349 // TODO: Add support for irregular type lengths. 7350 if (!(Len <= 128 && Len % 8 == 0)) 7351 return SDValue(); 7352 7353 // Only expand vector types if we have the appropriate vector bit operations. 7354 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7355 return SDValue(); 7356 7357 // This is the "best" algorithm from 7358 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7359 SDValue Mask55 = 7360 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7361 SDValue Mask33 = 7362 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7363 SDValue Mask0F = 7364 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7365 SDValue Mask01 = 7366 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7367 7368 // v = v - ((v >> 1) & 0x55555555...) 7369 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7370 DAG.getNode(ISD::AND, dl, VT, 7371 DAG.getNode(ISD::SRL, dl, VT, Op, 7372 DAG.getConstant(1, dl, ShVT)), 7373 Mask55)); 7374 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7375 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7376 DAG.getNode(ISD::AND, dl, VT, 7377 DAG.getNode(ISD::SRL, dl, VT, Op, 7378 DAG.getConstant(2, dl, ShVT)), 7379 Mask33)); 7380 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7381 Op = DAG.getNode(ISD::AND, dl, VT, 7382 DAG.getNode(ISD::ADD, dl, VT, Op, 7383 DAG.getNode(ISD::SRL, dl, VT, Op, 7384 DAG.getConstant(4, dl, ShVT))), 7385 Mask0F); 7386 // v = (v * 0x01010101...) >> (Len - 8) 7387 if (Len > 8) 7388 Op = 7389 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7390 DAG.getConstant(Len - 8, dl, ShVT)); 7391 7392 return Op; 7393 } 7394 7395 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7396 SDLoc dl(Node); 7397 EVT VT = Node->getValueType(0); 7398 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7399 SDValue Op = Node->getOperand(0); 7400 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7401 7402 // If the non-ZERO_UNDEF version is supported we can use that instead. 7403 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7404 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7405 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7406 7407 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7408 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7409 EVT SetCCVT = 7410 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7411 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7412 SDValue Zero = DAG.getConstant(0, dl, VT); 7413 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7414 return DAG.getSelect(dl, VT, SrcIsZero, 7415 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7416 } 7417 7418 // Only expand vector types if we have the appropriate vector bit operations. 7419 // This includes the operations needed to expand CTPOP if it isn't supported. 7420 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7421 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7422 !canExpandVectorCTPOP(*this, VT)) || 7423 !isOperationLegalOrCustom(ISD::SRL, VT) || 7424 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7425 return SDValue(); 7426 7427 // for now, we do this: 7428 // x = x | (x >> 1); 7429 // x = x | (x >> 2); 7430 // ... 7431 // x = x | (x >>16); 7432 // x = x | (x >>32); // for 64-bit input 7433 // return popcount(~x); 7434 // 7435 // Ref: "Hacker's Delight" by Henry Warren 7436 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7437 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7438 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7439 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7440 } 7441 Op = DAG.getNOT(dl, Op, VT); 7442 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7443 } 7444 7445 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7446 SDLoc dl(Node); 7447 EVT VT = Node->getValueType(0); 7448 SDValue Op = Node->getOperand(0); 7449 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7450 7451 // If the non-ZERO_UNDEF version is supported we can use that instead. 7452 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7453 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7454 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7455 7456 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7457 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7458 EVT SetCCVT = 7459 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7460 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7461 SDValue Zero = DAG.getConstant(0, dl, VT); 7462 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7463 return DAG.getSelect(dl, VT, SrcIsZero, 7464 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7465 } 7466 7467 // Only expand vector types if we have the appropriate vector bit operations. 7468 // This includes the operations needed to expand CTPOP if it isn't supported. 7469 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7470 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7471 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7472 !canExpandVectorCTPOP(*this, VT)) || 7473 !isOperationLegalOrCustom(ISD::SUB, VT) || 7474 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7475 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7476 return SDValue(); 7477 7478 // for now, we use: { return popcount(~x & (x - 1)); } 7479 // unless the target has ctlz but not ctpop, in which case we use: 7480 // { return 32 - nlz(~x & (x-1)); } 7481 // Ref: "Hacker's Delight" by Henry Warren 7482 SDValue Tmp = DAG.getNode( 7483 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7484 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7485 7486 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7487 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7488 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7489 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7490 } 7491 7492 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7493 } 7494 7495 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7496 bool IsNegative) const { 7497 SDLoc dl(N); 7498 EVT VT = N->getValueType(0); 7499 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7500 SDValue Op = N->getOperand(0); 7501 7502 // abs(x) -> smax(x,sub(0,x)) 7503 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7504 isOperationLegal(ISD::SMAX, VT)) { 7505 SDValue Zero = DAG.getConstant(0, dl, VT); 7506 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7507 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7508 } 7509 7510 // abs(x) -> umin(x,sub(0,x)) 7511 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7512 isOperationLegal(ISD::UMIN, VT)) { 7513 SDValue Zero = DAG.getConstant(0, dl, VT); 7514 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7515 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7516 } 7517 7518 // 0 - abs(x) -> smin(x, sub(0,x)) 7519 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7520 isOperationLegal(ISD::SMIN, VT)) { 7521 SDValue Zero = DAG.getConstant(0, dl, VT); 7522 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7523 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7524 } 7525 7526 // Only expand vector types if we have the appropriate vector operations. 7527 if (VT.isVector() && 7528 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7529 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7530 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7531 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7532 return SDValue(); 7533 7534 SDValue Shift = 7535 DAG.getNode(ISD::SRA, dl, VT, Op, 7536 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7537 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7538 7539 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7540 if (!IsNegative) 7541 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7542 7543 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7544 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7545 } 7546 7547 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7548 SDLoc dl(N); 7549 EVT VT = N->getValueType(0); 7550 SDValue Op = N->getOperand(0); 7551 7552 if (!VT.isSimple()) 7553 return SDValue(); 7554 7555 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7556 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7557 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7558 default: 7559 return SDValue(); 7560 case MVT::i16: 7561 // Use a rotate by 8. This can be further expanded if necessary. 7562 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7563 case MVT::i32: 7564 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7565 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7566 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7567 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7568 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7569 DAG.getConstant(0xFF0000, dl, VT)); 7570 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7571 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7572 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7573 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7574 case MVT::i64: 7575 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7576 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7577 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7578 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7579 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7580 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7581 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7582 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7583 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7584 DAG.getConstant(255ULL<<48, dl, VT)); 7585 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7586 DAG.getConstant(255ULL<<40, dl, VT)); 7587 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7588 DAG.getConstant(255ULL<<32, dl, VT)); 7589 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7590 DAG.getConstant(255ULL<<24, dl, VT)); 7591 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7592 DAG.getConstant(255ULL<<16, dl, VT)); 7593 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7594 DAG.getConstant(255ULL<<8 , dl, VT)); 7595 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7596 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7597 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7598 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7599 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7600 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7601 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7602 } 7603 } 7604 7605 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7606 SDLoc dl(N); 7607 EVT VT = N->getValueType(0); 7608 SDValue Op = N->getOperand(0); 7609 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7610 unsigned Sz = VT.getScalarSizeInBits(); 7611 7612 SDValue Tmp, Tmp2, Tmp3; 7613 7614 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7615 // and finally the i1 pairs. 7616 // TODO: We can easily support i4/i2 legal types if any target ever does. 7617 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7618 // Create the masks - repeating the pattern every byte. 7619 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7620 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7621 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7622 7623 // BSWAP if the type is wider than a single byte. 7624 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7625 7626 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7627 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7628 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7629 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7630 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7631 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7632 7633 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7634 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7635 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7636 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7637 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7638 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7639 7640 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7641 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7642 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7643 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7644 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7645 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7646 return Tmp; 7647 } 7648 7649 Tmp = DAG.getConstant(0, dl, VT); 7650 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7651 if (I < J) 7652 Tmp2 = 7653 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7654 else 7655 Tmp2 = 7656 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7657 7658 APInt Shift(Sz, 1); 7659 Shift <<= J; 7660 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7661 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7662 } 7663 7664 return Tmp; 7665 } 7666 7667 std::pair<SDValue, SDValue> 7668 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7669 SelectionDAG &DAG) const { 7670 SDLoc SL(LD); 7671 SDValue Chain = LD->getChain(); 7672 SDValue BasePTR = LD->getBasePtr(); 7673 EVT SrcVT = LD->getMemoryVT(); 7674 EVT DstVT = LD->getValueType(0); 7675 ISD::LoadExtType ExtType = LD->getExtensionType(); 7676 7677 if (SrcVT.isScalableVector()) 7678 report_fatal_error("Cannot scalarize scalable vector loads"); 7679 7680 unsigned NumElem = SrcVT.getVectorNumElements(); 7681 7682 EVT SrcEltVT = SrcVT.getScalarType(); 7683 EVT DstEltVT = DstVT.getScalarType(); 7684 7685 // A vector must always be stored in memory as-is, i.e. without any padding 7686 // between the elements, since various code depend on it, e.g. in the 7687 // handling of a bitcast of a vector type to int, which may be done with a 7688 // vector store followed by an integer load. A vector that does not have 7689 // elements that are byte-sized must therefore be stored as an integer 7690 // built out of the extracted vector elements. 7691 if (!SrcEltVT.isByteSized()) { 7692 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7693 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7694 7695 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7696 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7697 7698 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7699 SDValue SrcEltBitMask = DAG.getConstant( 7700 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7701 7702 // Load the whole vector and avoid masking off the top bits as it makes 7703 // the codegen worse. 7704 SDValue Load = 7705 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7706 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7707 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7708 7709 SmallVector<SDValue, 8> Vals; 7710 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7711 unsigned ShiftIntoIdx = 7712 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7713 SDValue ShiftAmount = 7714 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7715 LoadVT, SL, /*LegalTypes=*/false); 7716 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7717 SDValue Elt = 7718 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7719 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7720 7721 if (ExtType != ISD::NON_EXTLOAD) { 7722 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7723 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7724 } 7725 7726 Vals.push_back(Scalar); 7727 } 7728 7729 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7730 return std::make_pair(Value, Load.getValue(1)); 7731 } 7732 7733 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7734 assert(SrcEltVT.isByteSized()); 7735 7736 SmallVector<SDValue, 8> Vals; 7737 SmallVector<SDValue, 8> LoadChains; 7738 7739 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7740 SDValue ScalarLoad = 7741 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7742 LD->getPointerInfo().getWithOffset(Idx * Stride), 7743 SrcEltVT, LD->getOriginalAlign(), 7744 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7745 7746 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7747 7748 Vals.push_back(ScalarLoad.getValue(0)); 7749 LoadChains.push_back(ScalarLoad.getValue(1)); 7750 } 7751 7752 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7753 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7754 7755 return std::make_pair(Value, NewChain); 7756 } 7757 7758 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7759 SelectionDAG &DAG) const { 7760 SDLoc SL(ST); 7761 7762 SDValue Chain = ST->getChain(); 7763 SDValue BasePtr = ST->getBasePtr(); 7764 SDValue Value = ST->getValue(); 7765 EVT StVT = ST->getMemoryVT(); 7766 7767 if (StVT.isScalableVector()) 7768 report_fatal_error("Cannot scalarize scalable vector stores"); 7769 7770 // The type of the data we want to save 7771 EVT RegVT = Value.getValueType(); 7772 EVT RegSclVT = RegVT.getScalarType(); 7773 7774 // The type of data as saved in memory. 7775 EVT MemSclVT = StVT.getScalarType(); 7776 7777 unsigned NumElem = StVT.getVectorNumElements(); 7778 7779 // A vector must always be stored in memory as-is, i.e. without any padding 7780 // between the elements, since various code depend on it, e.g. in the 7781 // handling of a bitcast of a vector type to int, which may be done with a 7782 // vector store followed by an integer load. A vector that does not have 7783 // elements that are byte-sized must therefore be stored as an integer 7784 // built out of the extracted vector elements. 7785 if (!MemSclVT.isByteSized()) { 7786 unsigned NumBits = StVT.getSizeInBits(); 7787 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7788 7789 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7790 7791 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7792 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7793 DAG.getVectorIdxConstant(Idx, SL)); 7794 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7795 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7796 unsigned ShiftIntoIdx = 7797 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7798 SDValue ShiftAmount = 7799 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7800 SDValue ShiftedElt = 7801 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7802 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7803 } 7804 7805 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7806 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7807 ST->getAAInfo()); 7808 } 7809 7810 // Store Stride in bytes 7811 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7812 assert(Stride && "Zero stride!"); 7813 // Extract each of the elements from the original vector and save them into 7814 // memory individually. 7815 SmallVector<SDValue, 8> Stores; 7816 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7817 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7818 DAG.getVectorIdxConstant(Idx, SL)); 7819 7820 SDValue Ptr = 7821 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7822 7823 // This scalar TruncStore may be illegal, but we legalize it later. 7824 SDValue Store = DAG.getTruncStore( 7825 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7826 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7827 ST->getAAInfo()); 7828 7829 Stores.push_back(Store); 7830 } 7831 7832 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7833 } 7834 7835 std::pair<SDValue, SDValue> 7836 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7837 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7838 "unaligned indexed loads not implemented!"); 7839 SDValue Chain = LD->getChain(); 7840 SDValue Ptr = LD->getBasePtr(); 7841 EVT VT = LD->getValueType(0); 7842 EVT LoadedVT = LD->getMemoryVT(); 7843 SDLoc dl(LD); 7844 auto &MF = DAG.getMachineFunction(); 7845 7846 if (VT.isFloatingPoint() || VT.isVector()) { 7847 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7848 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7849 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7850 LoadedVT.isVector()) { 7851 // Scalarize the load and let the individual components be handled. 7852 return scalarizeVectorLoad(LD, DAG); 7853 } 7854 7855 // Expand to a (misaligned) integer load of the same size, 7856 // then bitconvert to floating point or vector. 7857 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7858 LD->getMemOperand()); 7859 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7860 if (LoadedVT != VT) 7861 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7862 ISD::ANY_EXTEND, dl, VT, Result); 7863 7864 return std::make_pair(Result, newLoad.getValue(1)); 7865 } 7866 7867 // Copy the value to a (aligned) stack slot using (unaligned) integer 7868 // loads and stores, then do a (aligned) load from the stack slot. 7869 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7870 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7871 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7872 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7873 7874 // Make sure the stack slot is also aligned for the register type. 7875 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7876 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7877 SmallVector<SDValue, 8> Stores; 7878 SDValue StackPtr = StackBase; 7879 unsigned Offset = 0; 7880 7881 EVT PtrVT = Ptr.getValueType(); 7882 EVT StackPtrVT = StackPtr.getValueType(); 7883 7884 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7885 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7886 7887 // Do all but one copies using the full register width. 7888 for (unsigned i = 1; i < NumRegs; i++) { 7889 // Load one integer register's worth from the original location. 7890 SDValue Load = DAG.getLoad( 7891 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7892 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7893 LD->getAAInfo()); 7894 // Follow the load with a store to the stack slot. Remember the store. 7895 Stores.push_back(DAG.getStore( 7896 Load.getValue(1), dl, Load, StackPtr, 7897 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7898 // Increment the pointers. 7899 Offset += RegBytes; 7900 7901 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7902 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7903 } 7904 7905 // The last copy may be partial. Do an extending load. 7906 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7907 8 * (LoadedBytes - Offset)); 7908 SDValue Load = 7909 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7910 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7911 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7912 LD->getAAInfo()); 7913 // Follow the load with a store to the stack slot. Remember the store. 7914 // On big-endian machines this requires a truncating store to ensure 7915 // that the bits end up in the right place. 7916 Stores.push_back(DAG.getTruncStore( 7917 Load.getValue(1), dl, Load, StackPtr, 7918 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7919 7920 // The order of the stores doesn't matter - say it with a TokenFactor. 7921 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7922 7923 // Finally, perform the original load only redirected to the stack slot. 7924 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7925 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7926 LoadedVT); 7927 7928 // Callers expect a MERGE_VALUES node. 7929 return std::make_pair(Load, TF); 7930 } 7931 7932 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7933 "Unaligned load of unsupported type."); 7934 7935 // Compute the new VT that is half the size of the old one. This is an 7936 // integer MVT. 7937 unsigned NumBits = LoadedVT.getSizeInBits(); 7938 EVT NewLoadedVT; 7939 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7940 NumBits >>= 1; 7941 7942 Align Alignment = LD->getOriginalAlign(); 7943 unsigned IncrementSize = NumBits / 8; 7944 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7945 7946 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7947 if (HiExtType == ISD::NON_EXTLOAD) 7948 HiExtType = ISD::ZEXTLOAD; 7949 7950 // Load the value in two parts 7951 SDValue Lo, Hi; 7952 if (DAG.getDataLayout().isLittleEndian()) { 7953 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7954 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7955 LD->getAAInfo()); 7956 7957 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7958 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7959 LD->getPointerInfo().getWithOffset(IncrementSize), 7960 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7961 LD->getAAInfo()); 7962 } else { 7963 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7964 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7965 LD->getAAInfo()); 7966 7967 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7968 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7969 LD->getPointerInfo().getWithOffset(IncrementSize), 7970 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7971 LD->getAAInfo()); 7972 } 7973 7974 // aggregate the two parts 7975 SDValue ShiftAmount = 7976 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7977 DAG.getDataLayout())); 7978 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7979 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7980 7981 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7982 Hi.getValue(1)); 7983 7984 return std::make_pair(Result, TF); 7985 } 7986 7987 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7988 SelectionDAG &DAG) const { 7989 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7990 "unaligned indexed stores not implemented!"); 7991 SDValue Chain = ST->getChain(); 7992 SDValue Ptr = ST->getBasePtr(); 7993 SDValue Val = ST->getValue(); 7994 EVT VT = Val.getValueType(); 7995 Align Alignment = ST->getOriginalAlign(); 7996 auto &MF = DAG.getMachineFunction(); 7997 EVT StoreMemVT = ST->getMemoryVT(); 7998 7999 SDLoc dl(ST); 8000 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8001 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8002 if (isTypeLegal(intVT)) { 8003 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8004 StoreMemVT.isVector()) { 8005 // Scalarize the store and let the individual components be handled. 8006 SDValue Result = scalarizeVectorStore(ST, DAG); 8007 return Result; 8008 } 8009 // Expand to a bitconvert of the value to the integer type of the 8010 // same size, then a (misaligned) int store. 8011 // FIXME: Does not handle truncating floating point stores! 8012 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8013 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8014 Alignment, ST->getMemOperand()->getFlags()); 8015 return Result; 8016 } 8017 // Do a (aligned) store to a stack slot, then copy from the stack slot 8018 // to the final destination using (unaligned) integer loads and stores. 8019 MVT RegVT = getRegisterType( 8020 *DAG.getContext(), 8021 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8022 EVT PtrVT = Ptr.getValueType(); 8023 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8024 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8025 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8026 8027 // Make sure the stack slot is also aligned for the register type. 8028 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8029 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8030 8031 // Perform the original store, only redirected to the stack slot. 8032 SDValue Store = DAG.getTruncStore( 8033 Chain, dl, Val, StackPtr, 8034 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8035 8036 EVT StackPtrVT = StackPtr.getValueType(); 8037 8038 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8039 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8040 SmallVector<SDValue, 8> Stores; 8041 unsigned Offset = 0; 8042 8043 // Do all but one copies using the full register width. 8044 for (unsigned i = 1; i < NumRegs; i++) { 8045 // Load one integer register's worth from the stack slot. 8046 SDValue Load = DAG.getLoad( 8047 RegVT, dl, Store, StackPtr, 8048 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8049 // Store it to the final location. Remember the store. 8050 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8051 ST->getPointerInfo().getWithOffset(Offset), 8052 ST->getOriginalAlign(), 8053 ST->getMemOperand()->getFlags())); 8054 // Increment the pointers. 8055 Offset += RegBytes; 8056 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8057 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8058 } 8059 8060 // The last store may be partial. Do a truncating store. On big-endian 8061 // machines this requires an extending load from the stack slot to ensure 8062 // that the bits are in the right place. 8063 EVT LoadMemVT = 8064 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8065 8066 // Load from the stack slot. 8067 SDValue Load = DAG.getExtLoad( 8068 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8069 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8070 8071 Stores.push_back( 8072 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8073 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8074 ST->getOriginalAlign(), 8075 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8076 // The order of the stores doesn't matter - say it with a TokenFactor. 8077 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8078 return Result; 8079 } 8080 8081 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8082 "Unaligned store of unknown type."); 8083 // Get the half-size VT 8084 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8085 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8086 unsigned IncrementSize = NumBits / 8; 8087 8088 // Divide the stored value in two parts. 8089 SDValue ShiftAmount = DAG.getConstant( 8090 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8091 SDValue Lo = Val; 8092 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8093 8094 // Store the two parts 8095 SDValue Store1, Store2; 8096 Store1 = DAG.getTruncStore(Chain, dl, 8097 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8098 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8099 ST->getMemOperand()->getFlags()); 8100 8101 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8102 Store2 = DAG.getTruncStore( 8103 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8104 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8105 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8106 8107 SDValue Result = 8108 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8109 return Result; 8110 } 8111 8112 SDValue 8113 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8114 const SDLoc &DL, EVT DataVT, 8115 SelectionDAG &DAG, 8116 bool IsCompressedMemory) const { 8117 SDValue Increment; 8118 EVT AddrVT = Addr.getValueType(); 8119 EVT MaskVT = Mask.getValueType(); 8120 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8121 "Incompatible types of Data and Mask"); 8122 if (IsCompressedMemory) { 8123 if (DataVT.isScalableVector()) 8124 report_fatal_error( 8125 "Cannot currently handle compressed memory with scalable vectors"); 8126 // Incrementing the pointer according to number of '1's in the mask. 8127 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8128 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8129 if (MaskIntVT.getSizeInBits() < 32) { 8130 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8131 MaskIntVT = MVT::i32; 8132 } 8133 8134 // Count '1's with POPCNT. 8135 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8136 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8137 // Scale is an element size in bytes. 8138 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8139 AddrVT); 8140 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8141 } else if (DataVT.isScalableVector()) { 8142 Increment = DAG.getVScale(DL, AddrVT, 8143 APInt(AddrVT.getFixedSizeInBits(), 8144 DataVT.getStoreSize().getKnownMinSize())); 8145 } else 8146 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8147 8148 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8149 } 8150 8151 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8152 EVT VecVT, const SDLoc &dl, 8153 ElementCount SubEC) { 8154 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8155 "Cannot index a scalable vector within a fixed-width vector"); 8156 8157 unsigned NElts = VecVT.getVectorMinNumElements(); 8158 unsigned NumSubElts = SubEC.getKnownMinValue(); 8159 EVT IdxVT = Idx.getValueType(); 8160 8161 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8162 // If this is a constant index and we know the value plus the number of the 8163 // elements in the subvector minus one is less than the minimum number of 8164 // elements then it's safe to return Idx. 8165 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8166 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8167 return Idx; 8168 SDValue VS = 8169 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8170 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8171 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8172 DAG.getConstant(NumSubElts, dl, IdxVT)); 8173 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8174 } 8175 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8176 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8177 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8178 DAG.getConstant(Imm, dl, IdxVT)); 8179 } 8180 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8181 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8182 DAG.getConstant(MaxIndex, dl, IdxVT)); 8183 } 8184 8185 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8186 SDValue VecPtr, EVT VecVT, 8187 SDValue Index) const { 8188 return getVectorSubVecPointer( 8189 DAG, VecPtr, VecVT, 8190 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8191 Index); 8192 } 8193 8194 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8195 SDValue VecPtr, EVT VecVT, 8196 EVT SubVecVT, 8197 SDValue Index) const { 8198 SDLoc dl(Index); 8199 // Make sure the index type is big enough to compute in. 8200 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8201 8202 EVT EltVT = VecVT.getVectorElementType(); 8203 8204 // Calculate the element offset and add it to the pointer. 8205 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8206 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8207 "Converting bits to bytes lost precision"); 8208 assert(SubVecVT.getVectorElementType() == EltVT && 8209 "Sub-vector must be a vector with matching element type"); 8210 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8211 SubVecVT.getVectorElementCount()); 8212 8213 EVT IdxVT = Index.getValueType(); 8214 if (SubVecVT.isScalableVector()) 8215 Index = 8216 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8217 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8218 8219 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8220 DAG.getConstant(EltSize, dl, IdxVT)); 8221 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8222 } 8223 8224 //===----------------------------------------------------------------------===// 8225 // Implementation of Emulated TLS Model 8226 //===----------------------------------------------------------------------===// 8227 8228 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8229 SelectionDAG &DAG) const { 8230 // Access to address of TLS varialbe xyz is lowered to a function call: 8231 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8232 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8233 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8234 SDLoc dl(GA); 8235 8236 ArgListTy Args; 8237 ArgListEntry Entry; 8238 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8239 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8240 StringRef EmuTlsVarName(NameString); 8241 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8242 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8243 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8244 Entry.Ty = VoidPtrType; 8245 Args.push_back(Entry); 8246 8247 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8248 8249 TargetLowering::CallLoweringInfo CLI(DAG); 8250 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8251 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8252 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8253 8254 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8255 // At last for X86 targets, maybe good for other targets too? 8256 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8257 MFI.setAdjustsStack(true); // Is this only for X86 target? 8258 MFI.setHasCalls(true); 8259 8260 assert((GA->getOffset() == 0) && 8261 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8262 return CallResult.first; 8263 } 8264 8265 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8266 SelectionDAG &DAG) const { 8267 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8268 if (!isCtlzFast()) 8269 return SDValue(); 8270 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8271 SDLoc dl(Op); 8272 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8273 if (C->isZero() && CC == ISD::SETEQ) { 8274 EVT VT = Op.getOperand(0).getValueType(); 8275 SDValue Zext = Op.getOperand(0); 8276 if (VT.bitsLT(MVT::i32)) { 8277 VT = MVT::i32; 8278 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8279 } 8280 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8281 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8282 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8283 DAG.getConstant(Log2b, dl, MVT::i32)); 8284 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8285 } 8286 } 8287 return SDValue(); 8288 } 8289 8290 // Convert redundant addressing modes (e.g. scaling is redundant 8291 // when accessing bytes). 8292 ISD::MemIndexType 8293 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8294 SDValue Offsets) const { 8295 bool IsScaledIndex = 8296 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8297 bool IsSignedIndex = 8298 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8299 8300 // Scaling is unimportant for bytes, canonicalize to unscaled. 8301 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8302 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8303 8304 return IndexType; 8305 } 8306 8307 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8308 SDValue Op0 = Node->getOperand(0); 8309 SDValue Op1 = Node->getOperand(1); 8310 EVT VT = Op0.getValueType(); 8311 unsigned Opcode = Node->getOpcode(); 8312 SDLoc DL(Node); 8313 8314 // umin(x,y) -> sub(x,usubsat(x,y)) 8315 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8316 isOperationLegal(ISD::USUBSAT, VT)) { 8317 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8318 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8319 } 8320 8321 // umax(x,y) -> add(x,usubsat(y,x)) 8322 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8323 isOperationLegal(ISD::USUBSAT, VT)) { 8324 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8325 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8326 } 8327 8328 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8329 ISD::CondCode CC; 8330 switch (Opcode) { 8331 default: llvm_unreachable("How did we get here?"); 8332 case ISD::SMAX: CC = ISD::SETGT; break; 8333 case ISD::SMIN: CC = ISD::SETLT; break; 8334 case ISD::UMAX: CC = ISD::SETUGT; break; 8335 case ISD::UMIN: CC = ISD::SETULT; break; 8336 } 8337 8338 // FIXME: Should really try to split the vector in case it's legal on a 8339 // subvector. 8340 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8341 return DAG.UnrollVectorOp(Node); 8342 8343 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8344 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8345 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8346 } 8347 8348 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8349 unsigned Opcode = Node->getOpcode(); 8350 SDValue LHS = Node->getOperand(0); 8351 SDValue RHS = Node->getOperand(1); 8352 EVT VT = LHS.getValueType(); 8353 SDLoc dl(Node); 8354 8355 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8356 assert(VT.isInteger() && "Expected operands to be integers"); 8357 8358 // usub.sat(a, b) -> umax(a, b) - b 8359 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8360 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8361 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8362 } 8363 8364 // uadd.sat(a, b) -> umin(a, ~b) + b 8365 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8366 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8367 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8368 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8369 } 8370 8371 unsigned OverflowOp; 8372 switch (Opcode) { 8373 case ISD::SADDSAT: 8374 OverflowOp = ISD::SADDO; 8375 break; 8376 case ISD::UADDSAT: 8377 OverflowOp = ISD::UADDO; 8378 break; 8379 case ISD::SSUBSAT: 8380 OverflowOp = ISD::SSUBO; 8381 break; 8382 case ISD::USUBSAT: 8383 OverflowOp = ISD::USUBO; 8384 break; 8385 default: 8386 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8387 "addition or subtraction node."); 8388 } 8389 8390 // FIXME: Should really try to split the vector in case it's legal on a 8391 // subvector. 8392 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8393 return DAG.UnrollVectorOp(Node); 8394 8395 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8396 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8397 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8398 SDValue SumDiff = Result.getValue(0); 8399 SDValue Overflow = Result.getValue(1); 8400 SDValue Zero = DAG.getConstant(0, dl, VT); 8401 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8402 8403 if (Opcode == ISD::UADDSAT) { 8404 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8405 // (LHS + RHS) | OverflowMask 8406 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8407 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8408 } 8409 // Overflow ? 0xffff.... : (LHS + RHS) 8410 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8411 } 8412 8413 if (Opcode == ISD::USUBSAT) { 8414 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8415 // (LHS - RHS) & ~OverflowMask 8416 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8417 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8418 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8419 } 8420 // Overflow ? 0 : (LHS - RHS) 8421 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8422 } 8423 8424 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8425 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8426 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8427 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8428 DAG.getConstant(BitWidth - 1, dl, VT)); 8429 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8430 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8431 } 8432 8433 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8434 unsigned Opcode = Node->getOpcode(); 8435 bool IsSigned = Opcode == ISD::SSHLSAT; 8436 SDValue LHS = Node->getOperand(0); 8437 SDValue RHS = Node->getOperand(1); 8438 EVT VT = LHS.getValueType(); 8439 SDLoc dl(Node); 8440 8441 assert((Node->getOpcode() == ISD::SSHLSAT || 8442 Node->getOpcode() == ISD::USHLSAT) && 8443 "Expected a SHLSAT opcode"); 8444 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8445 assert(VT.isInteger() && "Expected operands to be integers"); 8446 8447 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8448 8449 unsigned BW = VT.getScalarSizeInBits(); 8450 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8451 SDValue Orig = 8452 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8453 8454 SDValue SatVal; 8455 if (IsSigned) { 8456 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8457 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8458 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8459 SatMin, SatMax, ISD::SETLT); 8460 } else { 8461 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8462 } 8463 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8464 8465 return Result; 8466 } 8467 8468 SDValue 8469 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8470 assert((Node->getOpcode() == ISD::SMULFIX || 8471 Node->getOpcode() == ISD::UMULFIX || 8472 Node->getOpcode() == ISD::SMULFIXSAT || 8473 Node->getOpcode() == ISD::UMULFIXSAT) && 8474 "Expected a fixed point multiplication opcode"); 8475 8476 SDLoc dl(Node); 8477 SDValue LHS = Node->getOperand(0); 8478 SDValue RHS = Node->getOperand(1); 8479 EVT VT = LHS.getValueType(); 8480 unsigned Scale = Node->getConstantOperandVal(2); 8481 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8482 Node->getOpcode() == ISD::UMULFIXSAT); 8483 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8484 Node->getOpcode() == ISD::SMULFIXSAT); 8485 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8486 unsigned VTSize = VT.getScalarSizeInBits(); 8487 8488 if (!Scale) { 8489 // [us]mul.fix(a, b, 0) -> mul(a, b) 8490 if (!Saturating) { 8491 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8492 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8493 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8494 SDValue Result = 8495 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8496 SDValue Product = Result.getValue(0); 8497 SDValue Overflow = Result.getValue(1); 8498 SDValue Zero = DAG.getConstant(0, dl, VT); 8499 8500 APInt MinVal = APInt::getSignedMinValue(VTSize); 8501 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8502 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8503 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8504 // Xor the inputs, if resulting sign bit is 0 the product will be 8505 // positive, else negative. 8506 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8507 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8508 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8509 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8510 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8511 SDValue Result = 8512 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8513 SDValue Product = Result.getValue(0); 8514 SDValue Overflow = Result.getValue(1); 8515 8516 APInt MaxVal = APInt::getMaxValue(VTSize); 8517 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8518 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8519 } 8520 } 8521 8522 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8523 "Expected scale to be less than the number of bits if signed or at " 8524 "most the number of bits if unsigned."); 8525 assert(LHS.getValueType() == RHS.getValueType() && 8526 "Expected both operands to be the same type"); 8527 8528 // Get the upper and lower bits of the result. 8529 SDValue Lo, Hi; 8530 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8531 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8532 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8533 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8534 Lo = Result.getValue(0); 8535 Hi = Result.getValue(1); 8536 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8537 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8538 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8539 } else if (VT.isVector()) { 8540 return SDValue(); 8541 } else { 8542 report_fatal_error("Unable to expand fixed point multiplication."); 8543 } 8544 8545 if (Scale == VTSize) 8546 // Result is just the top half since we'd be shifting by the width of the 8547 // operand. Overflow impossible so this works for both UMULFIX and 8548 // UMULFIXSAT. 8549 return Hi; 8550 8551 // The result will need to be shifted right by the scale since both operands 8552 // are scaled. The result is given to us in 2 halves, so we only want part of 8553 // both in the result. 8554 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8555 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8556 DAG.getConstant(Scale, dl, ShiftTy)); 8557 if (!Saturating) 8558 return Result; 8559 8560 if (!Signed) { 8561 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8562 // widened multiplication) aren't all zeroes. 8563 8564 // Saturate to max if ((Hi >> Scale) != 0), 8565 // which is the same as if (Hi > ((1 << Scale) - 1)) 8566 APInt MaxVal = APInt::getMaxValue(VTSize); 8567 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8568 dl, VT); 8569 Result = DAG.getSelectCC(dl, Hi, LowMask, 8570 DAG.getConstant(MaxVal, dl, VT), Result, 8571 ISD::SETUGT); 8572 8573 return Result; 8574 } 8575 8576 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8577 // widened multiplication) aren't all ones or all zeroes. 8578 8579 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8580 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8581 8582 if (Scale == 0) { 8583 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8584 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8585 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8586 // Saturated to SatMin if wide product is negative, and SatMax if wide 8587 // product is positive ... 8588 SDValue Zero = DAG.getConstant(0, dl, VT); 8589 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8590 ISD::SETLT); 8591 // ... but only if we overflowed. 8592 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8593 } 8594 8595 // We handled Scale==0 above so all the bits to examine is in Hi. 8596 8597 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8598 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8599 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8600 dl, VT); 8601 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8602 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8603 // which is the same as if (HI < (-1 << (Scale - 1)) 8604 SDValue HighMask = 8605 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8606 dl, VT); 8607 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8608 return Result; 8609 } 8610 8611 SDValue 8612 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8613 SDValue LHS, SDValue RHS, 8614 unsigned Scale, SelectionDAG &DAG) const { 8615 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8616 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8617 "Expected a fixed point division opcode"); 8618 8619 EVT VT = LHS.getValueType(); 8620 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8621 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8622 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8623 8624 // If there is enough room in the type to upscale the LHS or downscale the 8625 // RHS before the division, we can perform it in this type without having to 8626 // resize. For signed operations, the LHS headroom is the number of 8627 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8628 // The headroom for the RHS is the number of trailing zeroes. 8629 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8630 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8631 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8632 8633 // For signed saturating operations, we need to be able to detect true integer 8634 // division overflow; that is, when you have MIN / -EPS. However, this 8635 // is undefined behavior and if we emit divisions that could take such 8636 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8637 // example). 8638 // Avoid this by requiring an extra bit so that we never get this case. 8639 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8640 // signed saturating division, we need to emit a whopping 32-bit division. 8641 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8642 return SDValue(); 8643 8644 unsigned LHSShift = std::min(LHSLead, Scale); 8645 unsigned RHSShift = Scale - LHSShift; 8646 8647 // At this point, we know that if we shift the LHS up by LHSShift and the 8648 // RHS down by RHSShift, we can emit a regular division with a final scaling 8649 // factor of Scale. 8650 8651 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8652 if (LHSShift) 8653 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8654 DAG.getConstant(LHSShift, dl, ShiftTy)); 8655 if (RHSShift) 8656 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8657 DAG.getConstant(RHSShift, dl, ShiftTy)); 8658 8659 SDValue Quot; 8660 if (Signed) { 8661 // For signed operations, if the resulting quotient is negative and the 8662 // remainder is nonzero, subtract 1 from the quotient to round towards 8663 // negative infinity. 8664 SDValue Rem; 8665 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8666 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8667 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8668 if (isTypeLegal(VT) && 8669 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8670 Quot = DAG.getNode(ISD::SDIVREM, dl, 8671 DAG.getVTList(VT, VT), 8672 LHS, RHS); 8673 Rem = Quot.getValue(1); 8674 Quot = Quot.getValue(0); 8675 } else { 8676 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8677 LHS, RHS); 8678 Rem = DAG.getNode(ISD::SREM, dl, VT, 8679 LHS, RHS); 8680 } 8681 SDValue Zero = DAG.getConstant(0, dl, VT); 8682 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8683 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8684 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8685 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8686 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8687 DAG.getConstant(1, dl, VT)); 8688 Quot = DAG.getSelect(dl, VT, 8689 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8690 Sub1, Quot); 8691 } else 8692 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8693 LHS, RHS); 8694 8695 return Quot; 8696 } 8697 8698 void TargetLowering::expandUADDSUBO( 8699 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8700 SDLoc dl(Node); 8701 SDValue LHS = Node->getOperand(0); 8702 SDValue RHS = Node->getOperand(1); 8703 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8704 8705 // If ADD/SUBCARRY is legal, use that instead. 8706 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8707 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8708 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8709 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8710 { LHS, RHS, CarryIn }); 8711 Result = SDValue(NodeCarry.getNode(), 0); 8712 Overflow = SDValue(NodeCarry.getNode(), 1); 8713 return; 8714 } 8715 8716 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8717 LHS.getValueType(), LHS, RHS); 8718 8719 EVT ResultType = Node->getValueType(1); 8720 EVT SetCCType = getSetCCResultType( 8721 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8722 SDValue SetCC; 8723 if (IsAdd && isOneConstant(RHS)) { 8724 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 8725 // the live range of X. We assume comparing with 0 is cheap. 8726 // TODO: This generalizes to (X + C) < C. 8727 SetCC = 8728 DAG.getSetCC(dl, SetCCType, Result, 8729 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 8730 } else { 8731 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8732 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8733 } 8734 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8735 } 8736 8737 void TargetLowering::expandSADDSUBO( 8738 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8739 SDLoc dl(Node); 8740 SDValue LHS = Node->getOperand(0); 8741 SDValue RHS = Node->getOperand(1); 8742 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8743 8744 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8745 LHS.getValueType(), LHS, RHS); 8746 8747 EVT ResultType = Node->getValueType(1); 8748 EVT OType = getSetCCResultType( 8749 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8750 8751 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8752 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8753 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8754 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8755 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8756 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8757 return; 8758 } 8759 8760 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8761 8762 // For an addition, the result should be less than one of the operands (LHS) 8763 // if and only if the other operand (RHS) is negative, otherwise there will 8764 // be overflow. 8765 // For a subtraction, the result should be less than one of the operands 8766 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8767 // otherwise there will be overflow. 8768 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8769 SDValue ConditionRHS = 8770 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8771 8772 Overflow = DAG.getBoolExtOrTrunc( 8773 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8774 ResultType, ResultType); 8775 } 8776 8777 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8778 SDValue &Overflow, SelectionDAG &DAG) const { 8779 SDLoc dl(Node); 8780 EVT VT = Node->getValueType(0); 8781 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8782 SDValue LHS = Node->getOperand(0); 8783 SDValue RHS = Node->getOperand(1); 8784 bool isSigned = Node->getOpcode() == ISD::SMULO; 8785 8786 // For power-of-two multiplications we can use a simpler shift expansion. 8787 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8788 const APInt &C = RHSC->getAPIntValue(); 8789 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8790 if (C.isPowerOf2()) { 8791 // smulo(x, signed_min) is same as umulo(x, signed_min). 8792 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8793 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8794 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8795 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8796 Overflow = DAG.getSetCC(dl, SetCCVT, 8797 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8798 dl, VT, Result, ShiftAmt), 8799 LHS, ISD::SETNE); 8800 return true; 8801 } 8802 } 8803 8804 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8805 if (VT.isVector()) 8806 WideVT = 8807 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8808 8809 SDValue BottomHalf; 8810 SDValue TopHalf; 8811 static const unsigned Ops[2][3] = 8812 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8813 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8814 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8815 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8816 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8817 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8818 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8819 RHS); 8820 TopHalf = BottomHalf.getValue(1); 8821 } else if (isTypeLegal(WideVT)) { 8822 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8823 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8824 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8825 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8826 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8827 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8828 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8829 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8830 } else { 8831 if (VT.isVector()) 8832 return false; 8833 8834 // We can fall back to a libcall with an illegal type for the MUL if we 8835 // have a libcall big enough. 8836 // Also, we can fall back to a division in some cases, but that's a big 8837 // performance hit in the general case. 8838 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8839 if (WideVT == MVT::i16) 8840 LC = RTLIB::MUL_I16; 8841 else if (WideVT == MVT::i32) 8842 LC = RTLIB::MUL_I32; 8843 else if (WideVT == MVT::i64) 8844 LC = RTLIB::MUL_I64; 8845 else if (WideVT == MVT::i128) 8846 LC = RTLIB::MUL_I128; 8847 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8848 8849 SDValue HiLHS; 8850 SDValue HiRHS; 8851 if (isSigned) { 8852 // The high part is obtained by SRA'ing all but one of the bits of low 8853 // part. 8854 unsigned LoSize = VT.getFixedSizeInBits(); 8855 HiLHS = 8856 DAG.getNode(ISD::SRA, dl, VT, LHS, 8857 DAG.getConstant(LoSize - 1, dl, 8858 getPointerTy(DAG.getDataLayout()))); 8859 HiRHS = 8860 DAG.getNode(ISD::SRA, dl, VT, RHS, 8861 DAG.getConstant(LoSize - 1, dl, 8862 getPointerTy(DAG.getDataLayout()))); 8863 } else { 8864 HiLHS = DAG.getConstant(0, dl, VT); 8865 HiRHS = DAG.getConstant(0, dl, VT); 8866 } 8867 8868 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8869 // pre-lowered to the correct types. This all depends upon WideVT not 8870 // being a legal type for the architecture and thus has to be split to 8871 // two arguments. 8872 SDValue Ret; 8873 TargetLowering::MakeLibCallOptions CallOptions; 8874 CallOptions.setSExt(isSigned); 8875 CallOptions.setIsPostTypeLegalization(true); 8876 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8877 // Halves of WideVT are packed into registers in different order 8878 // depending on platform endianness. This is usually handled by 8879 // the C calling convention, but we can't defer to it in 8880 // the legalizer. 8881 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8882 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8883 } else { 8884 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8885 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8886 } 8887 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8888 "Ret value is a collection of constituent nodes holding result."); 8889 if (DAG.getDataLayout().isLittleEndian()) { 8890 // Same as above. 8891 BottomHalf = Ret.getOperand(0); 8892 TopHalf = Ret.getOperand(1); 8893 } else { 8894 BottomHalf = Ret.getOperand(1); 8895 TopHalf = Ret.getOperand(0); 8896 } 8897 } 8898 8899 Result = BottomHalf; 8900 if (isSigned) { 8901 SDValue ShiftAmt = DAG.getConstant( 8902 VT.getScalarSizeInBits() - 1, dl, 8903 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8904 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8905 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8906 } else { 8907 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8908 DAG.getConstant(0, dl, VT), ISD::SETNE); 8909 } 8910 8911 // Truncate the result if SetCC returns a larger type than needed. 8912 EVT RType = Node->getValueType(1); 8913 if (RType.bitsLT(Overflow.getValueType())) 8914 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8915 8916 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8917 "Unexpected result type for S/UMULO legalization"); 8918 return true; 8919 } 8920 8921 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8922 SDLoc dl(Node); 8923 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8924 SDValue Op = Node->getOperand(0); 8925 EVT VT = Op.getValueType(); 8926 8927 if (VT.isScalableVector()) 8928 report_fatal_error( 8929 "Expanding reductions for scalable vectors is undefined."); 8930 8931 // Try to use a shuffle reduction for power of two vectors. 8932 if (VT.isPow2VectorType()) { 8933 while (VT.getVectorNumElements() > 1) { 8934 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8935 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8936 break; 8937 8938 SDValue Lo, Hi; 8939 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8940 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8941 VT = HalfVT; 8942 } 8943 } 8944 8945 EVT EltVT = VT.getVectorElementType(); 8946 unsigned NumElts = VT.getVectorNumElements(); 8947 8948 SmallVector<SDValue, 8> Ops; 8949 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8950 8951 SDValue Res = Ops[0]; 8952 for (unsigned i = 1; i < NumElts; i++) 8953 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8954 8955 // Result type may be wider than element type. 8956 if (EltVT != Node->getValueType(0)) 8957 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8958 return Res; 8959 } 8960 8961 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8962 SDLoc dl(Node); 8963 SDValue AccOp = Node->getOperand(0); 8964 SDValue VecOp = Node->getOperand(1); 8965 SDNodeFlags Flags = Node->getFlags(); 8966 8967 EVT VT = VecOp.getValueType(); 8968 EVT EltVT = VT.getVectorElementType(); 8969 8970 if (VT.isScalableVector()) 8971 report_fatal_error( 8972 "Expanding reductions for scalable vectors is undefined."); 8973 8974 unsigned NumElts = VT.getVectorNumElements(); 8975 8976 SmallVector<SDValue, 8> Ops; 8977 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8978 8979 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8980 8981 SDValue Res = AccOp; 8982 for (unsigned i = 0; i < NumElts; i++) 8983 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8984 8985 return Res; 8986 } 8987 8988 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8989 SelectionDAG &DAG) const { 8990 EVT VT = Node->getValueType(0); 8991 SDLoc dl(Node); 8992 bool isSigned = Node->getOpcode() == ISD::SREM; 8993 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8994 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8995 SDValue Dividend = Node->getOperand(0); 8996 SDValue Divisor = Node->getOperand(1); 8997 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8998 SDVTList VTs = DAG.getVTList(VT, VT); 8999 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9000 return true; 9001 } 9002 if (isOperationLegalOrCustom(DivOpc, VT)) { 9003 // X % Y -> X-X/Y*Y 9004 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9005 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9006 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9007 return true; 9008 } 9009 return false; 9010 } 9011 9012 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9013 SelectionDAG &DAG) const { 9014 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9015 SDLoc dl(SDValue(Node, 0)); 9016 SDValue Src = Node->getOperand(0); 9017 9018 // DstVT is the result type, while SatVT is the size to which we saturate 9019 EVT SrcVT = Src.getValueType(); 9020 EVT DstVT = Node->getValueType(0); 9021 9022 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9023 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9024 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9025 assert(SatWidth <= DstWidth && 9026 "Expected saturation width smaller than result width"); 9027 9028 // Determine minimum and maximum integer values and their corresponding 9029 // floating-point values. 9030 APInt MinInt, MaxInt; 9031 if (IsSigned) { 9032 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 9033 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 9034 } else { 9035 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 9036 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 9037 } 9038 9039 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9040 // libcall emission cannot handle this. Large result types will fail. 9041 if (SrcVT == MVT::f16) { 9042 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9043 SrcVT = Src.getValueType(); 9044 } 9045 9046 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9047 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9048 9049 APFloat::opStatus MinStatus = 9050 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9051 APFloat::opStatus MaxStatus = 9052 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9053 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9054 !(MaxStatus & APFloat::opStatus::opInexact); 9055 9056 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9057 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9058 9059 // If the integer bounds are exactly representable as floats and min/max are 9060 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9061 // of comparisons and selects. 9062 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9063 isOperationLegal(ISD::FMAXNUM, SrcVT); 9064 if (AreExactFloatBounds && MinMaxLegal) { 9065 SDValue Clamped = Src; 9066 9067 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9068 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9069 // Clamp by MaxFloat from above. NaN cannot occur. 9070 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9071 // Convert clamped value to integer. 9072 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9073 dl, DstVT, Clamped); 9074 9075 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9076 // which will cast to zero. 9077 if (!IsSigned) 9078 return FpToInt; 9079 9080 // Otherwise, select 0 if Src is NaN. 9081 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9082 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9083 ISD::CondCode::SETUO); 9084 } 9085 9086 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9087 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9088 9089 // Result of direct conversion. The assumption here is that the operation is 9090 // non-trapping and it's fine to apply it to an out-of-range value if we 9091 // select it away later. 9092 SDValue FpToInt = 9093 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9094 9095 SDValue Select = FpToInt; 9096 9097 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9098 // MinInt if Src is NaN. 9099 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9100 ISD::CondCode::SETULT); 9101 // If Src OGT MaxFloat, select MaxInt. 9102 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9103 ISD::CondCode::SETOGT); 9104 9105 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9106 // is already zero. 9107 if (!IsSigned) 9108 return Select; 9109 9110 // Otherwise, select 0 if Src is NaN. 9111 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9112 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9113 } 9114 9115 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9116 SelectionDAG &DAG) const { 9117 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9118 assert(Node->getValueType(0).isScalableVector() && 9119 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9120 9121 EVT VT = Node->getValueType(0); 9122 SDValue V1 = Node->getOperand(0); 9123 SDValue V2 = Node->getOperand(1); 9124 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9125 SDLoc DL(Node); 9126 9127 // Expand through memory thusly: 9128 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9129 // Store V1, Ptr 9130 // Store V2, Ptr + sizeof(V1) 9131 // If (Imm < 0) 9132 // TrailingElts = -Imm 9133 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9134 // else 9135 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9136 // Res = Load Ptr 9137 9138 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9139 9140 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9141 VT.getVectorElementCount() * 2); 9142 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9143 EVT PtrVT = StackPtr.getValueType(); 9144 auto &MF = DAG.getMachineFunction(); 9145 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9146 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9147 9148 // Store the lo part of CONCAT_VECTORS(V1, V2) 9149 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9150 // Store the hi part of CONCAT_VECTORS(V1, V2) 9151 SDValue OffsetToV2 = DAG.getVScale( 9152 DL, PtrVT, 9153 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9154 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9155 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9156 9157 if (Imm >= 0) { 9158 // Load back the required element. getVectorElementPointer takes care of 9159 // clamping the index if it's out-of-bounds. 9160 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9161 // Load the spliced result 9162 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9163 MachinePointerInfo::getUnknownStack(MF)); 9164 } 9165 9166 uint64_t TrailingElts = -Imm; 9167 9168 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9169 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9170 SDValue TrailingBytes = 9171 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9172 9173 if (TrailingElts > VT.getVectorMinNumElements()) { 9174 SDValue VLBytes = DAG.getVScale( 9175 DL, PtrVT, 9176 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9177 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9178 } 9179 9180 // Calculate the start address of the spliced result. 9181 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9182 9183 // Load the spliced result 9184 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9185 MachinePointerInfo::getUnknownStack(MF)); 9186 } 9187 9188 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9189 SDValue &LHS, SDValue &RHS, 9190 SDValue &CC, bool &NeedInvert, 9191 const SDLoc &dl, SDValue &Chain, 9192 bool IsSignaling) const { 9193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9194 MVT OpVT = LHS.getSimpleValueType(); 9195 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9196 NeedInvert = false; 9197 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9198 default: 9199 llvm_unreachable("Unknown condition code action!"); 9200 case TargetLowering::Legal: 9201 // Nothing to do. 9202 break; 9203 case TargetLowering::Expand: { 9204 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9205 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9206 std::swap(LHS, RHS); 9207 CC = DAG.getCondCode(InvCC); 9208 return true; 9209 } 9210 // Swapping operands didn't work. Try inverting the condition. 9211 bool NeedSwap = false; 9212 InvCC = getSetCCInverse(CCCode, OpVT); 9213 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9214 // If inverting the condition is not enough, try swapping operands 9215 // on top of it. 9216 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9217 NeedSwap = true; 9218 } 9219 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9220 CC = DAG.getCondCode(InvCC); 9221 NeedInvert = true; 9222 if (NeedSwap) 9223 std::swap(LHS, RHS); 9224 return true; 9225 } 9226 9227 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9228 unsigned Opc = 0; 9229 switch (CCCode) { 9230 default: 9231 llvm_unreachable("Don't know how to expand this condition!"); 9232 case ISD::SETUO: 9233 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9234 CC1 = ISD::SETUNE; 9235 CC2 = ISD::SETUNE; 9236 Opc = ISD::OR; 9237 break; 9238 } 9239 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9240 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9241 NeedInvert = true; 9242 LLVM_FALLTHROUGH; 9243 case ISD::SETO: 9244 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9245 "If SETO is expanded, SETOEQ must be legal!"); 9246 CC1 = ISD::SETOEQ; 9247 CC2 = ISD::SETOEQ; 9248 Opc = ISD::AND; 9249 break; 9250 case ISD::SETONE: 9251 case ISD::SETUEQ: 9252 // If the SETUO or SETO CC isn't legal, we might be able to use 9253 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9254 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9255 // the operands. 9256 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9257 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9258 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9259 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9260 CC1 = ISD::SETOGT; 9261 CC2 = ISD::SETOLT; 9262 Opc = ISD::OR; 9263 NeedInvert = ((unsigned)CCCode & 0x8U); 9264 break; 9265 } 9266 LLVM_FALLTHROUGH; 9267 case ISD::SETOEQ: 9268 case ISD::SETOGT: 9269 case ISD::SETOGE: 9270 case ISD::SETOLT: 9271 case ISD::SETOLE: 9272 case ISD::SETUNE: 9273 case ISD::SETUGT: 9274 case ISD::SETUGE: 9275 case ISD::SETULT: 9276 case ISD::SETULE: 9277 // If we are floating point, assign and break, otherwise fall through. 9278 if (!OpVT.isInteger()) { 9279 // We can use the 4th bit to tell if we are the unordered 9280 // or ordered version of the opcode. 9281 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9282 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9283 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9284 break; 9285 } 9286 // Fallthrough if we are unsigned integer. 9287 LLVM_FALLTHROUGH; 9288 case ISD::SETLE: 9289 case ISD::SETGT: 9290 case ISD::SETGE: 9291 case ISD::SETLT: 9292 case ISD::SETNE: 9293 case ISD::SETEQ: 9294 // If all combinations of inverting the condition and swapping operands 9295 // didn't work then we have no means to expand the condition. 9296 llvm_unreachable("Don't know how to expand this condition!"); 9297 } 9298 9299 SDValue SetCC1, SetCC2; 9300 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9301 // If we aren't the ordered or unorder operation, 9302 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9303 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9304 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9305 } else { 9306 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9307 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9308 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9309 } 9310 if (Chain) 9311 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9312 SetCC2.getValue(1)); 9313 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9314 RHS = SDValue(); 9315 CC = SDValue(); 9316 return true; 9317 } 9318 } 9319 return false; 9320 } 9321