1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 81 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 82 Alignment = CS->getParamAlignment(AttrIdx); 83 } 84 85 /// Generate a libcall taking the given operands as arguments and returning a 86 /// result of type RetVT. 87 std::pair<SDValue, SDValue> 88 TargetLowering::makeLibCall(SelectionDAG &DAG, 89 RTLIB::Libcall LC, EVT RetVT, 90 ArrayRef<SDValue> Ops, 91 bool isSigned, SDLoc dl, 92 bool doesNotReturn, 93 bool isReturnValueUsed) const { 94 TargetLowering::ArgListTy Args; 95 Args.reserve(Ops.size()); 96 97 TargetLowering::ArgListEntry Entry; 98 for (SDValue Op : Ops) { 99 Entry.Node = Op; 100 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 101 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 102 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 103 Args.push_back(Entry); 104 } 105 106 if (LC == RTLIB::UNKNOWN_LIBCALL) 107 report_fatal_error("Unsupported library call operation!"); 108 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 109 getPointerTy(DAG.getDataLayout())); 110 111 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 112 TargetLowering::CallLoweringInfo CLI(DAG); 113 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 114 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 115 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 116 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 117 .setSExtResult(signExtend).setZExtResult(!signExtend); 118 return LowerCallTo(CLI); 119 } 120 121 /// Soften the operands of a comparison. This code is shared among BR_CC, 122 /// SELECT_CC, and SETCC handlers. 123 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 124 SDValue &NewLHS, SDValue &NewRHS, 125 ISD::CondCode &CCCode, 126 SDLoc dl) const { 127 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 128 && "Unsupported setcc type!"); 129 130 // Expand into one or more soft-fp libcall(s). 131 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 132 bool ShouldInvertCC = false; 133 switch (CCCode) { 134 case ISD::SETEQ: 135 case ISD::SETOEQ: 136 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 137 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 138 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 139 break; 140 case ISD::SETNE: 141 case ISD::SETUNE: 142 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 143 (VT == MVT::f64) ? RTLIB::UNE_F64 : 144 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 145 break; 146 case ISD::SETGE: 147 case ISD::SETOGE: 148 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 149 (VT == MVT::f64) ? RTLIB::OGE_F64 : 150 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 151 break; 152 case ISD::SETLT: 153 case ISD::SETOLT: 154 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 155 (VT == MVT::f64) ? RTLIB::OLT_F64 : 156 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 157 break; 158 case ISD::SETLE: 159 case ISD::SETOLE: 160 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 161 (VT == MVT::f64) ? RTLIB::OLE_F64 : 162 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 163 break; 164 case ISD::SETGT: 165 case ISD::SETOGT: 166 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 167 (VT == MVT::f64) ? RTLIB::OGT_F64 : 168 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 169 break; 170 case ISD::SETUO: 171 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 172 (VT == MVT::f64) ? RTLIB::UO_F64 : 173 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 174 break; 175 case ISD::SETO: 176 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 177 (VT == MVT::f64) ? RTLIB::O_F64 : 178 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 179 break; 180 case ISD::SETONE: 181 // SETONE = SETOLT | SETOGT 182 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 183 (VT == MVT::f64) ? RTLIB::OLT_F64 : 184 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 185 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 186 (VT == MVT::f64) ? RTLIB::OGT_F64 : 187 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 188 break; 189 case ISD::SETUEQ: 190 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 191 (VT == MVT::f64) ? RTLIB::UO_F64 : 192 (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128; 193 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 194 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 195 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 196 break; 197 default: 198 // Invert CC for unordered comparisons 199 ShouldInvertCC = true; 200 switch (CCCode) { 201 case ISD::SETULT: 202 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 203 (VT == MVT::f64) ? RTLIB::OGE_F64 : 204 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 205 break; 206 case ISD::SETULE: 207 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 208 (VT == MVT::f64) ? RTLIB::OGT_F64 : 209 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 210 break; 211 case ISD::SETUGT: 212 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 213 (VT == MVT::f64) ? RTLIB::OLE_F64 : 214 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 215 break; 216 case ISD::SETUGE: 217 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 218 (VT == MVT::f64) ? RTLIB::OLT_F64 : 219 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 220 break; 221 default: llvm_unreachable("Do not know how to soften this setcc!"); 222 } 223 } 224 225 // Use the target specific return value for comparions lib calls. 226 EVT RetVT = getCmpLibcallReturnType(); 227 SDValue Ops[2] = {NewLHS, NewRHS}; 228 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 229 dl).first; 230 NewRHS = DAG.getConstant(0, dl, RetVT); 231 232 CCCode = getCmpLibcallCC(LC1); 233 if (ShouldInvertCC) 234 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 235 236 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 237 SDValue Tmp = DAG.getNode( 238 ISD::SETCC, dl, 239 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 240 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 241 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 242 dl).first; 243 NewLHS = DAG.getNode( 244 ISD::SETCC, dl, 245 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 246 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 247 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 248 NewRHS = SDValue(); 249 } 250 } 251 252 /// Return the entry encoding for a jump table in the current function. The 253 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 254 unsigned TargetLowering::getJumpTableEncoding() const { 255 // In non-pic modes, just use the address of a block. 256 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 257 return MachineJumpTableInfo::EK_BlockAddress; 258 259 // In PIC mode, if the target supports a GPRel32 directive, use it. 260 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 261 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 262 263 // Otherwise, use a label difference. 264 return MachineJumpTableInfo::EK_LabelDifference32; 265 } 266 267 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 268 SelectionDAG &DAG) const { 269 // If our PIC model is GP relative, use the global offset table as the base. 270 unsigned JTEncoding = getJumpTableEncoding(); 271 272 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 273 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 274 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 275 276 return Table; 277 } 278 279 /// This returns the relocation base for the given PIC jumptable, the same as 280 /// getPICJumpTableRelocBase, but as an MCExpr. 281 const MCExpr * 282 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 283 unsigned JTI,MCContext &Ctx) const{ 284 // The normal PIC reloc base is the label at the start of the jump table. 285 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 286 } 287 288 bool 289 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 290 // Assume that everything is safe in static mode. 291 if (getTargetMachine().getRelocationModel() == Reloc::Static) 292 return true; 293 294 // In dynamic-no-pic mode, assume that known defined values are safe. 295 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 296 GA && GA->getGlobal()->isStrongDefinitionForLinker()) 297 return true; 298 299 // Otherwise assume nothing is safe. 300 return false; 301 } 302 303 //===----------------------------------------------------------------------===// 304 // Optimization Methods 305 //===----------------------------------------------------------------------===// 306 307 /// Check to see if the specified operand of the specified instruction is a 308 /// constant integer. If so, check to see if there are any bits set in the 309 /// constant that are not demanded. If so, shrink the constant and return true. 310 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 311 const APInt &Demanded) { 312 SDLoc dl(Op); 313 314 // FIXME: ISD::SELECT, ISD::SELECT_CC 315 switch (Op.getOpcode()) { 316 default: break; 317 case ISD::XOR: 318 case ISD::AND: 319 case ISD::OR: { 320 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 321 if (!C) return false; 322 323 if (Op.getOpcode() == ISD::XOR && 324 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 325 return false; 326 327 // if we can expand it to have all bits set, do it 328 if (C->getAPIntValue().intersects(~Demanded)) { 329 EVT VT = Op.getValueType(); 330 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 331 DAG.getConstant(Demanded & 332 C->getAPIntValue(), 333 dl, VT)); 334 return CombineTo(Op, New); 335 } 336 337 break; 338 } 339 } 340 341 return false; 342 } 343 344 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 345 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 346 /// generalized for targets with other types of implicit widening casts. 347 bool 348 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 349 unsigned BitWidth, 350 const APInt &Demanded, 351 SDLoc dl) { 352 assert(Op.getNumOperands() == 2 && 353 "ShrinkDemandedOp only supports binary operators!"); 354 assert(Op.getNode()->getNumValues() == 1 && 355 "ShrinkDemandedOp only supports nodes with one result!"); 356 357 // Early return, as this function cannot handle vector types. 358 if (Op.getValueType().isVector()) 359 return false; 360 361 // Don't do this if the node has another user, which may require the 362 // full value. 363 if (!Op.getNode()->hasOneUse()) 364 return false; 365 366 // Search for the smallest integer type with free casts to and from 367 // Op's type. For expedience, just check power-of-2 integer types. 368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 369 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 370 unsigned SmallVTBits = DemandedSize; 371 if (!isPowerOf2_32(SmallVTBits)) 372 SmallVTBits = NextPowerOf2(SmallVTBits); 373 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 374 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 375 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 376 TLI.isZExtFree(SmallVT, Op.getValueType())) { 377 // We found a type with free casts. 378 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 379 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 380 Op.getNode()->getOperand(0)), 381 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 382 Op.getNode()->getOperand(1))); 383 bool NeedZext = DemandedSize > SmallVTBits; 384 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 385 dl, Op.getValueType(), X); 386 return CombineTo(Op, Z); 387 } 388 } 389 return false; 390 } 391 392 /// Look at Op. At this point, we know that only the DemandedMask bits of the 393 /// result of Op are ever used downstream. If we can use this information to 394 /// simplify Op, create a new simplified DAG node and return true, returning the 395 /// original and new nodes in Old and New. Otherwise, analyze the expression and 396 /// return a mask of KnownOne and KnownZero bits for the expression (used to 397 /// simplify the caller). The KnownZero/One bits may only be accurate for those 398 /// bits in the DemandedMask. 399 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 400 const APInt &DemandedMask, 401 APInt &KnownZero, 402 APInt &KnownOne, 403 TargetLoweringOpt &TLO, 404 unsigned Depth) const { 405 unsigned BitWidth = DemandedMask.getBitWidth(); 406 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 407 "Mask size mismatches value type size!"); 408 APInt NewMask = DemandedMask; 409 SDLoc dl(Op); 410 auto &DL = TLO.DAG.getDataLayout(); 411 412 // Don't know anything. 413 KnownZero = KnownOne = APInt(BitWidth, 0); 414 415 // Other users may use these bits. 416 if (!Op.getNode()->hasOneUse()) { 417 if (Depth != 0) { 418 // If not at the root, Just compute the KnownZero/KnownOne bits to 419 // simplify things downstream. 420 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 421 return false; 422 } 423 // If this is the root being simplified, allow it to have multiple uses, 424 // just set the NewMask to all bits. 425 NewMask = APInt::getAllOnesValue(BitWidth); 426 } else if (DemandedMask == 0) { 427 // Not demanding any bits from Op. 428 if (!Op.isUndef()) 429 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 430 return false; 431 } else if (Depth == 6) { // Limit search depth. 432 return false; 433 } 434 435 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 436 switch (Op.getOpcode()) { 437 case ISD::Constant: 438 // We know all of the bits for a constant! 439 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 440 KnownZero = ~KnownOne; 441 return false; // Don't fall through, will infinitely loop. 442 case ISD::AND: 443 // If the RHS is a constant, check to see if the LHS would be zero without 444 // using the bits from the RHS. Below, we use knowledge about the RHS to 445 // simplify the LHS, here we're using information from the LHS to simplify 446 // the RHS. 447 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 448 APInt LHSZero, LHSOne; 449 // Do not increment Depth here; that can cause an infinite loop. 450 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 451 // If the LHS already has zeros where RHSC does, this and is dead. 452 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 453 return TLO.CombineTo(Op, Op.getOperand(0)); 454 // If any of the set bits in the RHS are known zero on the LHS, shrink 455 // the constant. 456 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 457 return true; 458 } 459 460 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 461 KnownOne, TLO, Depth+1)) 462 return true; 463 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 464 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 465 KnownZero2, KnownOne2, TLO, Depth+1)) 466 return true; 467 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 468 469 // If all of the demanded bits are known one on one side, return the other. 470 // These bits cannot contribute to the result of the 'and'. 471 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 472 return TLO.CombineTo(Op, Op.getOperand(0)); 473 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 474 return TLO.CombineTo(Op, Op.getOperand(1)); 475 // If all of the demanded bits in the inputs are known zeros, return zero. 476 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 477 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 478 // If the RHS is a constant, see if we can simplify it. 479 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 480 return true; 481 // If the operation can be done in a smaller type, do so. 482 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 483 return true; 484 485 // Output known-1 bits are only known if set in both the LHS & RHS. 486 KnownOne &= KnownOne2; 487 // Output known-0 are known to be clear if zero in either the LHS | RHS. 488 KnownZero |= KnownZero2; 489 break; 490 case ISD::OR: 491 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 492 KnownOne, TLO, Depth+1)) 493 return true; 494 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 495 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 496 KnownZero2, KnownOne2, TLO, Depth+1)) 497 return true; 498 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 499 500 // If all of the demanded bits are known zero on one side, return the other. 501 // These bits cannot contribute to the result of the 'or'. 502 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 503 return TLO.CombineTo(Op, Op.getOperand(0)); 504 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 505 return TLO.CombineTo(Op, Op.getOperand(1)); 506 // If all of the potentially set bits on one side are known to be set on 507 // the other side, just use the 'other' side. 508 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 509 return TLO.CombineTo(Op, Op.getOperand(0)); 510 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 511 return TLO.CombineTo(Op, Op.getOperand(1)); 512 // If the RHS is a constant, see if we can simplify it. 513 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 514 return true; 515 // If the operation can be done in a smaller type, do so. 516 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 517 return true; 518 519 // Output known-0 bits are only known if clear in both the LHS & RHS. 520 KnownZero &= KnownZero2; 521 // Output known-1 are known to be set if set in either the LHS | RHS. 522 KnownOne |= KnownOne2; 523 break; 524 case ISD::XOR: 525 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 526 KnownOne, TLO, Depth+1)) 527 return true; 528 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 529 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 530 KnownOne2, TLO, Depth+1)) 531 return true; 532 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 533 534 // If all of the demanded bits are known zero on one side, return the other. 535 // These bits cannot contribute to the result of the 'xor'. 536 if ((KnownZero & NewMask) == NewMask) 537 return TLO.CombineTo(Op, Op.getOperand(0)); 538 if ((KnownZero2 & NewMask) == NewMask) 539 return TLO.CombineTo(Op, Op.getOperand(1)); 540 // If the operation can be done in a smaller type, do so. 541 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 542 return true; 543 544 // If all of the unknown bits are known to be zero on one side or the other 545 // (but not both) turn this into an *inclusive* or. 546 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 547 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 548 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 549 Op.getOperand(0), 550 Op.getOperand(1))); 551 552 // Output known-0 bits are known if clear or set in both the LHS & RHS. 553 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 554 // Output known-1 are known to be set if set in only one of the LHS, RHS. 555 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 556 557 // If all of the demanded bits on one side are known, and all of the set 558 // bits on that side are also known to be set on the other side, turn this 559 // into an AND, as we know the bits will be cleared. 560 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 561 // NB: it is okay if more bits are known than are requested 562 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 563 if (KnownOne == KnownOne2) { // set bits are the same on both sides 564 EVT VT = Op.getValueType(); 565 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 566 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 567 Op.getOperand(0), ANDC)); 568 } 569 } 570 571 // If the RHS is a constant, see if we can simplify it. 572 // for XOR, we prefer to force bits to 1 if they will make a -1. 573 // if we can't force bits, try to shrink constant 574 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 575 APInt Expanded = C->getAPIntValue() | (~NewMask); 576 // if we can expand it to have all bits set, do it 577 if (Expanded.isAllOnesValue()) { 578 if (Expanded != C->getAPIntValue()) { 579 EVT VT = Op.getValueType(); 580 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 581 TLO.DAG.getConstant(Expanded, dl, VT)); 582 return TLO.CombineTo(Op, New); 583 } 584 // if it already has all the bits set, nothing to change 585 // but don't shrink either! 586 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 587 return true; 588 } 589 } 590 591 KnownZero = KnownZeroOut; 592 KnownOne = KnownOneOut; 593 break; 594 case ISD::SELECT: 595 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 596 KnownOne, TLO, Depth+1)) 597 return true; 598 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 599 KnownOne2, TLO, Depth+1)) 600 return true; 601 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 602 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 603 604 // If the operands are constants, see if we can simplify them. 605 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 606 return true; 607 608 // Only known if known in both the LHS and RHS. 609 KnownOne &= KnownOne2; 610 KnownZero &= KnownZero2; 611 break; 612 case ISD::SELECT_CC: 613 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 614 KnownOne, TLO, Depth+1)) 615 return true; 616 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 617 KnownOne2, TLO, Depth+1)) 618 return true; 619 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 620 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 621 622 // If the operands are constants, see if we can simplify them. 623 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 624 return true; 625 626 // Only known if known in both the LHS and RHS. 627 KnownOne &= KnownOne2; 628 KnownZero &= KnownZero2; 629 break; 630 case ISD::SHL: 631 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 632 unsigned ShAmt = SA->getZExtValue(); 633 SDValue InOp = Op.getOperand(0); 634 635 // If the shift count is an invalid immediate, don't do anything. 636 if (ShAmt >= BitWidth) 637 break; 638 639 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 640 // single shift. We can do this if the bottom bits (which are shifted 641 // out) are never demanded. 642 if (InOp.getOpcode() == ISD::SRL && 643 isa<ConstantSDNode>(InOp.getOperand(1))) { 644 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 645 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 646 unsigned Opc = ISD::SHL; 647 int Diff = ShAmt-C1; 648 if (Diff < 0) { 649 Diff = -Diff; 650 Opc = ISD::SRL; 651 } 652 653 SDValue NewSA = 654 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 655 EVT VT = Op.getValueType(); 656 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 657 InOp.getOperand(0), NewSA)); 658 } 659 } 660 661 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 662 KnownZero, KnownOne, TLO, Depth+1)) 663 return true; 664 665 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 666 // are not demanded. This will likely allow the anyext to be folded away. 667 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 668 SDValue InnerOp = InOp.getNode()->getOperand(0); 669 EVT InnerVT = InnerOp.getValueType(); 670 unsigned InnerBits = InnerVT.getSizeInBits(); 671 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 672 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 673 EVT ShTy = getShiftAmountTy(InnerVT, DL); 674 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 675 ShTy = InnerVT; 676 SDValue NarrowShl = 677 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 678 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 679 return 680 TLO.CombineTo(Op, 681 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 682 NarrowShl)); 683 } 684 // Repeat the SHL optimization above in cases where an extension 685 // intervenes: (shl (anyext (shr x, c1)), c2) to 686 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 687 // aren't demanded (as above) and that the shifted upper c1 bits of 688 // x aren't demanded. 689 if (InOp.hasOneUse() && 690 InnerOp.getOpcode() == ISD::SRL && 691 InnerOp.hasOneUse() && 692 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 693 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 694 ->getZExtValue(); 695 if (InnerShAmt < ShAmt && 696 InnerShAmt < InnerBits && 697 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 698 NewMask.trunc(ShAmt) == 0) { 699 SDValue NewSA = 700 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 701 Op.getOperand(1).getValueType()); 702 EVT VT = Op.getValueType(); 703 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 704 InnerOp.getOperand(0)); 705 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 706 NewExt, NewSA)); 707 } 708 } 709 } 710 711 KnownZero <<= SA->getZExtValue(); 712 KnownOne <<= SA->getZExtValue(); 713 // low bits known zero. 714 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 715 } 716 break; 717 case ISD::SRL: 718 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 719 EVT VT = Op.getValueType(); 720 unsigned ShAmt = SA->getZExtValue(); 721 unsigned VTSize = VT.getSizeInBits(); 722 SDValue InOp = Op.getOperand(0); 723 724 // If the shift count is an invalid immediate, don't do anything. 725 if (ShAmt >= BitWidth) 726 break; 727 728 APInt InDemandedMask = (NewMask << ShAmt); 729 730 // If the shift is exact, then it does demand the low bits (and knows that 731 // they are zero). 732 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 733 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 734 735 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 736 // single shift. We can do this if the top bits (which are shifted out) 737 // are never demanded. 738 if (InOp.getOpcode() == ISD::SHL && 739 isa<ConstantSDNode>(InOp.getOperand(1))) { 740 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 741 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 742 unsigned Opc = ISD::SRL; 743 int Diff = ShAmt-C1; 744 if (Diff < 0) { 745 Diff = -Diff; 746 Opc = ISD::SHL; 747 } 748 749 SDValue NewSA = 750 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 751 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 752 InOp.getOperand(0), NewSA)); 753 } 754 } 755 756 // Compute the new bits that are at the top now. 757 if (SimplifyDemandedBits(InOp, InDemandedMask, 758 KnownZero, KnownOne, TLO, Depth+1)) 759 return true; 760 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 761 KnownZero = KnownZero.lshr(ShAmt); 762 KnownOne = KnownOne.lshr(ShAmt); 763 764 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 765 KnownZero |= HighBits; // High bits known zero. 766 } 767 break; 768 case ISD::SRA: 769 // If this is an arithmetic shift right and only the low-bit is set, we can 770 // always convert this into a logical shr, even if the shift amount is 771 // variable. The low bit of the shift cannot be an input sign bit unless 772 // the shift amount is >= the size of the datatype, which is undefined. 773 if (NewMask == 1) 774 return TLO.CombineTo(Op, 775 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 776 Op.getOperand(0), Op.getOperand(1))); 777 778 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 779 EVT VT = Op.getValueType(); 780 unsigned ShAmt = SA->getZExtValue(); 781 782 // If the shift count is an invalid immediate, don't do anything. 783 if (ShAmt >= BitWidth) 784 break; 785 786 APInt InDemandedMask = (NewMask << ShAmt); 787 788 // If the shift is exact, then it does demand the low bits (and knows that 789 // they are zero). 790 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 791 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 792 793 // If any of the demanded bits are produced by the sign extension, we also 794 // demand the input sign bit. 795 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 796 if (HighBits.intersects(NewMask)) 797 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 798 799 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 800 KnownZero, KnownOne, TLO, Depth+1)) 801 return true; 802 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 803 KnownZero = KnownZero.lshr(ShAmt); 804 KnownOne = KnownOne.lshr(ShAmt); 805 806 // Handle the sign bit, adjusted to where it is now in the mask. 807 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 808 809 // If the input sign bit is known to be zero, or if none of the top bits 810 // are demanded, turn this into an unsigned shift right. 811 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 812 SDNodeFlags Flags; 813 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 814 return TLO.CombineTo(Op, 815 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 816 Op.getOperand(1), &Flags)); 817 } 818 819 int Log2 = NewMask.exactLogBase2(); 820 if (Log2 >= 0) { 821 // The bit must come from the sign. 822 SDValue NewSA = 823 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 824 Op.getOperand(1).getValueType()); 825 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 826 Op.getOperand(0), NewSA)); 827 } 828 829 if (KnownOne.intersects(SignBit)) 830 // New bits are known one. 831 KnownOne |= HighBits; 832 } 833 break; 834 case ISD::SIGN_EXTEND_INREG: { 835 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 836 837 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 838 // If we only care about the highest bit, don't bother shifting right. 839 if (MsbMask == NewMask) { 840 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 841 SDValue InOp = Op.getOperand(0); 842 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 843 bool AlreadySignExtended = 844 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 845 // However if the input is already sign extended we expect the sign 846 // extension to be dropped altogether later and do not simplify. 847 if (!AlreadySignExtended) { 848 // Compute the correct shift amount type, which must be getShiftAmountTy 849 // for scalar types after legalization. 850 EVT ShiftAmtTy = Op.getValueType(); 851 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 852 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 853 854 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 855 ShiftAmtTy); 856 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 857 Op.getValueType(), InOp, 858 ShiftAmt)); 859 } 860 } 861 862 // Sign extension. Compute the demanded bits in the result that are not 863 // present in the input. 864 APInt NewBits = 865 APInt::getHighBitsSet(BitWidth, 866 BitWidth - ExVT.getScalarType().getSizeInBits()); 867 868 // If none of the extended bits are demanded, eliminate the sextinreg. 869 if ((NewBits & NewMask) == 0) 870 return TLO.CombineTo(Op, Op.getOperand(0)); 871 872 APInt InSignBit = 873 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 874 APInt InputDemandedBits = 875 APInt::getLowBitsSet(BitWidth, 876 ExVT.getScalarType().getSizeInBits()) & 877 NewMask; 878 879 // Since the sign extended bits are demanded, we know that the sign 880 // bit is demanded. 881 InputDemandedBits |= InSignBit; 882 883 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 884 KnownZero, KnownOne, TLO, Depth+1)) 885 return true; 886 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 887 888 // If the sign bit of the input is known set or clear, then we know the 889 // top bits of the result. 890 891 // If the input sign bit is known zero, convert this into a zero extension. 892 if (KnownZero.intersects(InSignBit)) 893 return TLO.CombineTo(Op, 894 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 895 896 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 897 KnownOne |= NewBits; 898 KnownZero &= ~NewBits; 899 } else { // Input sign bit unknown 900 KnownZero &= ~NewBits; 901 KnownOne &= ~NewBits; 902 } 903 break; 904 } 905 case ISD::BUILD_PAIR: { 906 EVT HalfVT = Op.getOperand(0).getValueType(); 907 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 908 909 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 910 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 911 912 APInt KnownZeroLo, KnownOneLo; 913 APInt KnownZeroHi, KnownOneHi; 914 915 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 916 KnownOneLo, TLO, Depth + 1)) 917 return true; 918 919 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 920 KnownOneHi, TLO, Depth + 1)) 921 return true; 922 923 KnownZero = KnownZeroLo.zext(BitWidth) | 924 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 925 926 KnownOne = KnownOneLo.zext(BitWidth) | 927 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 928 break; 929 } 930 case ISD::ZERO_EXTEND: { 931 unsigned OperandBitWidth = 932 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 933 APInt InMask = NewMask.trunc(OperandBitWidth); 934 935 // If none of the top bits are demanded, convert this into an any_extend. 936 APInt NewBits = 937 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 938 if (!NewBits.intersects(NewMask)) 939 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 940 Op.getValueType(), 941 Op.getOperand(0))); 942 943 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 944 KnownZero, KnownOne, TLO, Depth+1)) 945 return true; 946 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 947 KnownZero = KnownZero.zext(BitWidth); 948 KnownOne = KnownOne.zext(BitWidth); 949 KnownZero |= NewBits; 950 break; 951 } 952 case ISD::SIGN_EXTEND: { 953 EVT InVT = Op.getOperand(0).getValueType(); 954 unsigned InBits = InVT.getScalarType().getSizeInBits(); 955 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 956 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 957 APInt NewBits = ~InMask & NewMask; 958 959 // If none of the top bits are demanded, convert this into an any_extend. 960 if (NewBits == 0) 961 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 962 Op.getValueType(), 963 Op.getOperand(0))); 964 965 // Since some of the sign extended bits are demanded, we know that the sign 966 // bit is demanded. 967 APInt InDemandedBits = InMask & NewMask; 968 InDemandedBits |= InSignBit; 969 InDemandedBits = InDemandedBits.trunc(InBits); 970 971 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 972 KnownOne, TLO, Depth+1)) 973 return true; 974 KnownZero = KnownZero.zext(BitWidth); 975 KnownOne = KnownOne.zext(BitWidth); 976 977 // If the sign bit is known zero, convert this to a zero extend. 978 if (KnownZero.intersects(InSignBit)) 979 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 980 Op.getValueType(), 981 Op.getOperand(0))); 982 983 // If the sign bit is known one, the top bits match. 984 if (KnownOne.intersects(InSignBit)) { 985 KnownOne |= NewBits; 986 assert((KnownZero & NewBits) == 0); 987 } else { // Otherwise, top bits aren't known. 988 assert((KnownOne & NewBits) == 0); 989 assert((KnownZero & NewBits) == 0); 990 } 991 break; 992 } 993 case ISD::ANY_EXTEND: { 994 unsigned OperandBitWidth = 995 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 996 APInt InMask = NewMask.trunc(OperandBitWidth); 997 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 998 KnownZero, KnownOne, TLO, Depth+1)) 999 return true; 1000 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1001 KnownZero = KnownZero.zext(BitWidth); 1002 KnownOne = KnownOne.zext(BitWidth); 1003 break; 1004 } 1005 case ISD::TRUNCATE: { 1006 // Simplify the input, using demanded bit information, and compute the known 1007 // zero/one bits live out. 1008 unsigned OperandBitWidth = 1009 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1010 APInt TruncMask = NewMask.zext(OperandBitWidth); 1011 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1012 KnownZero, KnownOne, TLO, Depth+1)) 1013 return true; 1014 KnownZero = KnownZero.trunc(BitWidth); 1015 KnownOne = KnownOne.trunc(BitWidth); 1016 1017 // If the input is only used by this truncate, see if we can shrink it based 1018 // on the known demanded bits. 1019 if (Op.getOperand(0).getNode()->hasOneUse()) { 1020 SDValue In = Op.getOperand(0); 1021 switch (In.getOpcode()) { 1022 default: break; 1023 case ISD::SRL: 1024 // Shrink SRL by a constant if none of the high bits shifted in are 1025 // demanded. 1026 if (TLO.LegalTypes() && 1027 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1028 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1029 // undesirable. 1030 break; 1031 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1032 if (!ShAmt) 1033 break; 1034 SDValue Shift = In.getOperand(1); 1035 if (TLO.LegalTypes()) { 1036 uint64_t ShVal = ShAmt->getZExtValue(); 1037 Shift = TLO.DAG.getConstant(ShVal, dl, 1038 getShiftAmountTy(Op.getValueType(), DL)); 1039 } 1040 1041 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1042 OperandBitWidth - BitWidth); 1043 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1044 1045 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1046 // None of the shifted in bits are needed. Add a truncate of the 1047 // shift input, then shift it. 1048 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1049 Op.getValueType(), 1050 In.getOperand(0)); 1051 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1052 Op.getValueType(), 1053 NewTrunc, 1054 Shift)); 1055 } 1056 break; 1057 } 1058 } 1059 1060 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1061 break; 1062 } 1063 case ISD::AssertZext: { 1064 // AssertZext demands all of the high bits, plus any of the low bits 1065 // demanded by its users. 1066 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1067 APInt InMask = APInt::getLowBitsSet(BitWidth, 1068 VT.getSizeInBits()); 1069 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1070 KnownZero, KnownOne, TLO, Depth+1)) 1071 return true; 1072 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1073 1074 KnownZero |= ~InMask & NewMask; 1075 break; 1076 } 1077 case ISD::BITCAST: 1078 // If this is an FP->Int bitcast and if the sign bit is the only 1079 // thing demanded, turn this into a FGETSIGN. 1080 if (!TLO.LegalOperations() && 1081 !Op.getValueType().isVector() && 1082 !Op.getOperand(0).getValueType().isVector() && 1083 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1084 Op.getOperand(0).getValueType().isFloatingPoint()) { 1085 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1086 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1087 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1088 Op.getOperand(0).getValueType() != MVT::f128) { 1089 // Cannot eliminate/lower SHL for f128 yet. 1090 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1091 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1092 // place. We expect the SHL to be eliminated by other optimizations. 1093 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1094 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1095 if (!OpVTLegal && OpVTSizeInBits > 32) 1096 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1097 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1098 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1099 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1100 Op.getValueType(), 1101 Sign, ShAmt)); 1102 } 1103 } 1104 break; 1105 case ISD::ADD: 1106 case ISD::MUL: 1107 case ISD::SUB: { 1108 // Add, Sub, and Mul don't demand any bits in positions beyond that 1109 // of the highest bit demanded of them. 1110 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1111 BitWidth - NewMask.countLeadingZeros()); 1112 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1113 KnownOne2, TLO, Depth+1)) 1114 return true; 1115 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1116 KnownOne2, TLO, Depth+1)) 1117 return true; 1118 // See if the operation should be performed at a smaller bit width. 1119 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1120 return true; 1121 } 1122 // FALL THROUGH 1123 default: 1124 // Just use computeKnownBits to compute output bits. 1125 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1126 break; 1127 } 1128 1129 // If we know the value of all of the demanded bits, return this as a 1130 // constant. 1131 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1132 // Avoid folding to a constant if any OpaqueConstant is involved. 1133 const SDNode *N = Op.getNode(); 1134 for (SDNodeIterator I = SDNodeIterator::begin(N), 1135 E = SDNodeIterator::end(N); I != E; ++I) { 1136 SDNode *Op = *I; 1137 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1138 if (C->isOpaque()) 1139 return false; 1140 } 1141 return TLO.CombineTo(Op, 1142 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1143 } 1144 1145 return false; 1146 } 1147 1148 /// Determine which of the bits specified in Mask are known to be either zero or 1149 /// one and return them in the KnownZero/KnownOne bitsets. 1150 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1151 APInt &KnownZero, 1152 APInt &KnownOne, 1153 const SelectionDAG &DAG, 1154 unsigned Depth) const { 1155 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1156 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1157 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1158 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1159 "Should use MaskedValueIsZero if you don't know whether Op" 1160 " is a target node!"); 1161 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1162 } 1163 1164 /// This method can be implemented by targets that want to expose additional 1165 /// information about sign bits to the DAG Combiner. 1166 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1167 const SelectionDAG &, 1168 unsigned Depth) const { 1169 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1170 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1171 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1172 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1173 "Should use ComputeNumSignBits if you don't know whether Op" 1174 " is a target node!"); 1175 return 1; 1176 } 1177 1178 /// Test if the given value is known to have exactly one bit set. This differs 1179 /// from computeKnownBits in that it doesn't need to determine which bit is set. 1180 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1181 // A left-shift of a constant one will have exactly one bit set, because 1182 // shifting the bit off the end is undefined. 1183 if (Val.getOpcode() == ISD::SHL) 1184 if (ConstantSDNode *C = 1185 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1186 if (C->getAPIntValue() == 1) 1187 return true; 1188 1189 // Similarly, a right-shift of a constant sign-bit will have exactly 1190 // one bit set. 1191 if (Val.getOpcode() == ISD::SRL) 1192 if (ConstantSDNode *C = 1193 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1194 if (C->getAPIntValue().isSignBit()) 1195 return true; 1196 1197 // More could be done here, though the above checks are enough 1198 // to handle some common cases. 1199 1200 // Fall back to computeKnownBits to catch other known cases. 1201 EVT OpVT = Val.getValueType(); 1202 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1203 APInt KnownZero, KnownOne; 1204 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1205 return (KnownZero.countPopulation() == BitWidth - 1) && 1206 (KnownOne.countPopulation() == 1); 1207 } 1208 1209 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1210 if (!N) 1211 return false; 1212 1213 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1214 if (!CN) { 1215 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1216 if (!BV) 1217 return false; 1218 1219 BitVector UndefElements; 1220 CN = BV->getConstantSplatNode(&UndefElements); 1221 // Only interested in constant splats, and we don't try to handle undef 1222 // elements in identifying boolean constants. 1223 if (!CN || UndefElements.none()) 1224 return false; 1225 } 1226 1227 switch (getBooleanContents(N->getValueType(0))) { 1228 case UndefinedBooleanContent: 1229 return CN->getAPIntValue()[0]; 1230 case ZeroOrOneBooleanContent: 1231 return CN->isOne(); 1232 case ZeroOrNegativeOneBooleanContent: 1233 return CN->isAllOnesValue(); 1234 } 1235 1236 llvm_unreachable("Invalid boolean contents"); 1237 } 1238 1239 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1240 if (!N) 1241 return false; 1242 1243 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1244 if (!CN) { 1245 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1246 if (!BV) 1247 return false; 1248 1249 BitVector UndefElements; 1250 CN = BV->getConstantSplatNode(&UndefElements); 1251 // Only interested in constant splats, and we don't try to handle undef 1252 // elements in identifying boolean constants. 1253 if (!CN || UndefElements.none()) 1254 return false; 1255 } 1256 1257 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1258 return !CN->getAPIntValue()[0]; 1259 1260 return CN->isNullValue(); 1261 } 1262 1263 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1264 bool SExt) const { 1265 if (VT == MVT::i1) 1266 return N->isOne(); 1267 1268 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1269 switch (Cnt) { 1270 case TargetLowering::ZeroOrOneBooleanContent: 1271 // An extended value of 1 is always true, unless its original type is i1, 1272 // in which case it will be sign extended to -1. 1273 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1274 case TargetLowering::UndefinedBooleanContent: 1275 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1276 return N->isAllOnesValue() && SExt; 1277 } 1278 llvm_unreachable("Unexpected enumeration."); 1279 } 1280 1281 /// Try to simplify a setcc built with the specified operands and cc. If it is 1282 /// unable to simplify it, return a null SDValue. 1283 SDValue 1284 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1285 ISD::CondCode Cond, bool foldBooleans, 1286 DAGCombinerInfo &DCI, SDLoc dl) const { 1287 SelectionDAG &DAG = DCI.DAG; 1288 1289 // These setcc operations always fold. 1290 switch (Cond) { 1291 default: break; 1292 case ISD::SETFALSE: 1293 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1294 case ISD::SETTRUE: 1295 case ISD::SETTRUE2: { 1296 TargetLowering::BooleanContent Cnt = 1297 getBooleanContents(N0->getValueType(0)); 1298 return DAG.getConstant( 1299 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1300 VT); 1301 } 1302 } 1303 1304 // Ensure that the constant occurs on the RHS, and fold constant 1305 // comparisons. 1306 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1307 if (isa<ConstantSDNode>(N0.getNode()) && 1308 (DCI.isBeforeLegalizeOps() || 1309 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1310 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1311 1312 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1313 const APInt &C1 = N1C->getAPIntValue(); 1314 1315 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1316 // equality comparison, then we're just comparing whether X itself is 1317 // zero. 1318 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1319 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1320 N0.getOperand(1).getOpcode() == ISD::Constant) { 1321 const APInt &ShAmt 1322 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1323 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1324 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1325 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1326 // (srl (ctlz x), 5) == 0 -> X != 0 1327 // (srl (ctlz x), 5) != 1 -> X != 0 1328 Cond = ISD::SETNE; 1329 } else { 1330 // (srl (ctlz x), 5) != 0 -> X == 0 1331 // (srl (ctlz x), 5) == 1 -> X == 0 1332 Cond = ISD::SETEQ; 1333 } 1334 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1335 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1336 Zero, Cond); 1337 } 1338 } 1339 1340 SDValue CTPOP = N0; 1341 // Look through truncs that don't change the value of a ctpop. 1342 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1343 CTPOP = N0.getOperand(0); 1344 1345 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1346 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1347 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1348 EVT CTVT = CTPOP.getValueType(); 1349 SDValue CTOp = CTPOP.getOperand(0); 1350 1351 // (ctpop x) u< 2 -> (x & x-1) == 0 1352 // (ctpop x) u> 1 -> (x & x-1) != 0 1353 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1354 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1355 DAG.getConstant(1, dl, CTVT)); 1356 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1357 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1358 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1359 } 1360 1361 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1362 } 1363 1364 // (zext x) == C --> x == (trunc C) 1365 // (sext x) == C --> x == (trunc C) 1366 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1367 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1368 unsigned MinBits = N0.getValueSizeInBits(); 1369 SDValue PreExt; 1370 bool Signed = false; 1371 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1372 // ZExt 1373 MinBits = N0->getOperand(0).getValueSizeInBits(); 1374 PreExt = N0->getOperand(0); 1375 } else if (N0->getOpcode() == ISD::AND) { 1376 // DAGCombine turns costly ZExts into ANDs 1377 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1378 if ((C->getAPIntValue()+1).isPowerOf2()) { 1379 MinBits = C->getAPIntValue().countTrailingOnes(); 1380 PreExt = N0->getOperand(0); 1381 } 1382 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1383 // SExt 1384 MinBits = N0->getOperand(0).getValueSizeInBits(); 1385 PreExt = N0->getOperand(0); 1386 Signed = true; 1387 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1388 // ZEXTLOAD / SEXTLOAD 1389 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1390 MinBits = LN0->getMemoryVT().getSizeInBits(); 1391 PreExt = N0; 1392 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1393 Signed = true; 1394 MinBits = LN0->getMemoryVT().getSizeInBits(); 1395 PreExt = N0; 1396 } 1397 } 1398 1399 // Figure out how many bits we need to preserve this constant. 1400 unsigned ReqdBits = Signed ? 1401 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1402 C1.getActiveBits(); 1403 1404 // Make sure we're not losing bits from the constant. 1405 if (MinBits > 0 && 1406 MinBits < C1.getBitWidth() && 1407 MinBits >= ReqdBits) { 1408 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1409 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1410 // Will get folded away. 1411 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1412 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1413 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1414 } 1415 1416 // If truncating the setcc operands is not desirable, we can still 1417 // simplify the expression in some cases: 1418 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1419 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1420 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1421 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1422 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1423 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1424 SDValue TopSetCC = N0->getOperand(0); 1425 unsigned N0Opc = N0->getOpcode(); 1426 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1427 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1428 TopSetCC.getOpcode() == ISD::SETCC && 1429 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1430 (isConstFalseVal(N1C) || 1431 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1432 1433 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1434 (!N1C->isNullValue() && Cond == ISD::SETNE); 1435 1436 if (!Inverse) 1437 return TopSetCC; 1438 1439 ISD::CondCode InvCond = ISD::getSetCCInverse( 1440 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1441 TopSetCC.getOperand(0).getValueType().isInteger()); 1442 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1443 TopSetCC.getOperand(1), 1444 InvCond); 1445 1446 } 1447 } 1448 } 1449 1450 // If the LHS is '(and load, const)', the RHS is 0, 1451 // the test is for equality or unsigned, and all 1 bits of the const are 1452 // in the same partial word, see if we can shorten the load. 1453 if (DCI.isBeforeLegalize() && 1454 !ISD::isSignedIntSetCC(Cond) && 1455 N0.getOpcode() == ISD::AND && C1 == 0 && 1456 N0.getNode()->hasOneUse() && 1457 isa<LoadSDNode>(N0.getOperand(0)) && 1458 N0.getOperand(0).getNode()->hasOneUse() && 1459 isa<ConstantSDNode>(N0.getOperand(1))) { 1460 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1461 APInt bestMask; 1462 unsigned bestWidth = 0, bestOffset = 0; 1463 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1464 unsigned origWidth = N0.getValueType().getSizeInBits(); 1465 unsigned maskWidth = origWidth; 1466 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1467 // 8 bits, but have to be careful... 1468 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1469 origWidth = Lod->getMemoryVT().getSizeInBits(); 1470 const APInt &Mask = 1471 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1472 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1473 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1474 for (unsigned offset=0; offset<origWidth/width; offset++) { 1475 if ((newMask & Mask) == Mask) { 1476 if (!DAG.getDataLayout().isLittleEndian()) 1477 bestOffset = (origWidth/width - offset - 1) * (width/8); 1478 else 1479 bestOffset = (uint64_t)offset * (width/8); 1480 bestMask = Mask.lshr(offset * (width/8) * 8); 1481 bestWidth = width; 1482 break; 1483 } 1484 newMask = newMask << width; 1485 } 1486 } 1487 } 1488 if (bestWidth) { 1489 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1490 if (newVT.isRound()) { 1491 EVT PtrType = Lod->getOperand(1).getValueType(); 1492 SDValue Ptr = Lod->getBasePtr(); 1493 if (bestOffset != 0) 1494 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1495 DAG.getConstant(bestOffset, dl, PtrType)); 1496 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1497 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1498 Lod->getPointerInfo().getWithOffset(bestOffset), 1499 false, false, false, NewAlign); 1500 return DAG.getSetCC(dl, VT, 1501 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1502 DAG.getConstant(bestMask.trunc(bestWidth), 1503 dl, newVT)), 1504 DAG.getConstant(0LL, dl, newVT), Cond); 1505 } 1506 } 1507 } 1508 1509 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1510 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1511 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1512 1513 // If the comparison constant has bits in the upper part, the 1514 // zero-extended value could never match. 1515 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1516 C1.getBitWidth() - InSize))) { 1517 switch (Cond) { 1518 case ISD::SETUGT: 1519 case ISD::SETUGE: 1520 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1521 case ISD::SETULT: 1522 case ISD::SETULE: 1523 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1524 case ISD::SETGT: 1525 case ISD::SETGE: 1526 // True if the sign bit of C1 is set. 1527 return DAG.getConstant(C1.isNegative(), dl, VT); 1528 case ISD::SETLT: 1529 case ISD::SETLE: 1530 // True if the sign bit of C1 isn't set. 1531 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1532 default: 1533 break; 1534 } 1535 } 1536 1537 // Otherwise, we can perform the comparison with the low bits. 1538 switch (Cond) { 1539 case ISD::SETEQ: 1540 case ISD::SETNE: 1541 case ISD::SETUGT: 1542 case ISD::SETUGE: 1543 case ISD::SETULT: 1544 case ISD::SETULE: { 1545 EVT newVT = N0.getOperand(0).getValueType(); 1546 if (DCI.isBeforeLegalizeOps() || 1547 (isOperationLegal(ISD::SETCC, newVT) && 1548 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1549 EVT NewSetCCVT = 1550 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1551 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1552 1553 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1554 NewConst, Cond); 1555 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1556 } 1557 break; 1558 } 1559 default: 1560 break; // todo, be more careful with signed comparisons 1561 } 1562 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1563 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1564 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1565 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1566 EVT ExtDstTy = N0.getValueType(); 1567 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1568 1569 // If the constant doesn't fit into the number of bits for the source of 1570 // the sign extension, it is impossible for both sides to be equal. 1571 if (C1.getMinSignedBits() > ExtSrcTyBits) 1572 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1573 1574 SDValue ZextOp; 1575 EVT Op0Ty = N0.getOperand(0).getValueType(); 1576 if (Op0Ty == ExtSrcTy) { 1577 ZextOp = N0.getOperand(0); 1578 } else { 1579 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1580 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1581 DAG.getConstant(Imm, dl, Op0Ty)); 1582 } 1583 if (!DCI.isCalledByLegalizer()) 1584 DCI.AddToWorklist(ZextOp.getNode()); 1585 // Otherwise, make this a use of a zext. 1586 return DAG.getSetCC(dl, VT, ZextOp, 1587 DAG.getConstant(C1 & APInt::getLowBitsSet( 1588 ExtDstTyBits, 1589 ExtSrcTyBits), 1590 dl, ExtDstTy), 1591 Cond); 1592 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1593 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1594 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1595 if (N0.getOpcode() == ISD::SETCC && 1596 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1597 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1598 if (TrueWhenTrue) 1599 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1600 // Invert the condition. 1601 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1602 CC = ISD::getSetCCInverse(CC, 1603 N0.getOperand(0).getValueType().isInteger()); 1604 if (DCI.isBeforeLegalizeOps() || 1605 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1606 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1607 } 1608 1609 if ((N0.getOpcode() == ISD::XOR || 1610 (N0.getOpcode() == ISD::AND && 1611 N0.getOperand(0).getOpcode() == ISD::XOR && 1612 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1613 isa<ConstantSDNode>(N0.getOperand(1)) && 1614 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1615 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1616 // can only do this if the top bits are known zero. 1617 unsigned BitWidth = N0.getValueSizeInBits(); 1618 if (DAG.MaskedValueIsZero(N0, 1619 APInt::getHighBitsSet(BitWidth, 1620 BitWidth-1))) { 1621 // Okay, get the un-inverted input value. 1622 SDValue Val; 1623 if (N0.getOpcode() == ISD::XOR) 1624 Val = N0.getOperand(0); 1625 else { 1626 assert(N0.getOpcode() == ISD::AND && 1627 N0.getOperand(0).getOpcode() == ISD::XOR); 1628 // ((X^1)&1)^1 -> X & 1 1629 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1630 N0.getOperand(0).getOperand(0), 1631 N0.getOperand(1)); 1632 } 1633 1634 return DAG.getSetCC(dl, VT, Val, N1, 1635 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1636 } 1637 } else if (N1C->getAPIntValue() == 1 && 1638 (VT == MVT::i1 || 1639 getBooleanContents(N0->getValueType(0)) == 1640 ZeroOrOneBooleanContent)) { 1641 SDValue Op0 = N0; 1642 if (Op0.getOpcode() == ISD::TRUNCATE) 1643 Op0 = Op0.getOperand(0); 1644 1645 if ((Op0.getOpcode() == ISD::XOR) && 1646 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1647 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1648 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1649 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1650 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1651 Cond); 1652 } 1653 if (Op0.getOpcode() == ISD::AND && 1654 isa<ConstantSDNode>(Op0.getOperand(1)) && 1655 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1656 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1657 if (Op0.getValueType().bitsGT(VT)) 1658 Op0 = DAG.getNode(ISD::AND, dl, VT, 1659 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1660 DAG.getConstant(1, dl, VT)); 1661 else if (Op0.getValueType().bitsLT(VT)) 1662 Op0 = DAG.getNode(ISD::AND, dl, VT, 1663 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1664 DAG.getConstant(1, dl, VT)); 1665 1666 return DAG.getSetCC(dl, VT, Op0, 1667 DAG.getConstant(0, dl, Op0.getValueType()), 1668 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1669 } 1670 if (Op0.getOpcode() == ISD::AssertZext && 1671 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1672 return DAG.getSetCC(dl, VT, Op0, 1673 DAG.getConstant(0, dl, Op0.getValueType()), 1674 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1675 } 1676 } 1677 1678 APInt MinVal, MaxVal; 1679 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1680 if (ISD::isSignedIntSetCC(Cond)) { 1681 MinVal = APInt::getSignedMinValue(OperandBitSize); 1682 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1683 } else { 1684 MinVal = APInt::getMinValue(OperandBitSize); 1685 MaxVal = APInt::getMaxValue(OperandBitSize); 1686 } 1687 1688 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1689 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1690 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1691 // X >= C0 --> X > (C0 - 1) 1692 APInt C = C1 - 1; 1693 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1694 if ((DCI.isBeforeLegalizeOps() || 1695 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1696 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1697 isLegalICmpImmediate(C.getSExtValue())))) { 1698 return DAG.getSetCC(dl, VT, N0, 1699 DAG.getConstant(C, dl, N1.getValueType()), 1700 NewCC); 1701 } 1702 } 1703 1704 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1705 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1706 // X <= C0 --> X < (C0 + 1) 1707 APInt C = C1 + 1; 1708 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1709 if ((DCI.isBeforeLegalizeOps() || 1710 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1711 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1712 isLegalICmpImmediate(C.getSExtValue())))) { 1713 return DAG.getSetCC(dl, VT, N0, 1714 DAG.getConstant(C, dl, N1.getValueType()), 1715 NewCC); 1716 } 1717 } 1718 1719 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1720 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1721 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1722 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1723 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1724 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1725 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1726 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1727 1728 // Canonicalize setgt X, Min --> setne X, Min 1729 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1730 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1731 // Canonicalize setlt X, Max --> setne X, Max 1732 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1733 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1734 1735 // If we have setult X, 1, turn it into seteq X, 0 1736 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1737 return DAG.getSetCC(dl, VT, N0, 1738 DAG.getConstant(MinVal, dl, N0.getValueType()), 1739 ISD::SETEQ); 1740 // If we have setugt X, Max-1, turn it into seteq X, Max 1741 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1742 return DAG.getSetCC(dl, VT, N0, 1743 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1744 ISD::SETEQ); 1745 1746 // If we have "setcc X, C0", check to see if we can shrink the immediate 1747 // by changing cc. 1748 1749 // SETUGT X, SINTMAX -> SETLT X, 0 1750 if (Cond == ISD::SETUGT && 1751 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1752 return DAG.getSetCC(dl, VT, N0, 1753 DAG.getConstant(0, dl, N1.getValueType()), 1754 ISD::SETLT); 1755 1756 // SETULT X, SINTMIN -> SETGT X, -1 1757 if (Cond == ISD::SETULT && 1758 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1759 SDValue ConstMinusOne = 1760 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1761 N1.getValueType()); 1762 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1763 } 1764 1765 // Fold bit comparisons when we can. 1766 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1767 (VT == N0.getValueType() || 1768 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1769 N0.getOpcode() == ISD::AND) { 1770 auto &DL = DAG.getDataLayout(); 1771 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1772 EVT ShiftTy = DCI.isBeforeLegalize() 1773 ? getPointerTy(DL) 1774 : getShiftAmountTy(N0.getValueType(), DL); 1775 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1776 // Perform the xform if the AND RHS is a single bit. 1777 if (AndRHS->getAPIntValue().isPowerOf2()) { 1778 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1779 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1780 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1781 ShiftTy))); 1782 } 1783 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1784 // (X & 8) == 8 --> (X & 8) >> 3 1785 // Perform the xform if C1 is a single bit. 1786 if (C1.isPowerOf2()) { 1787 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1788 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1789 DAG.getConstant(C1.logBase2(), dl, 1790 ShiftTy))); 1791 } 1792 } 1793 } 1794 } 1795 1796 if (C1.getMinSignedBits() <= 64 && 1797 !isLegalICmpImmediate(C1.getSExtValue())) { 1798 // (X & -256) == 256 -> (X >> 8) == 1 1799 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1800 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1801 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1802 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1803 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1804 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1805 auto &DL = DAG.getDataLayout(); 1806 EVT ShiftTy = DCI.isBeforeLegalize() 1807 ? getPointerTy(DL) 1808 : getShiftAmountTy(N0.getValueType(), DL); 1809 EVT CmpTy = N0.getValueType(); 1810 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1811 DAG.getConstant(ShiftBits, dl, 1812 ShiftTy)); 1813 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1814 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1815 } 1816 } 1817 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1818 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1819 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1820 // X < 0x100000000 -> (X >> 32) < 1 1821 // X >= 0x100000000 -> (X >> 32) >= 1 1822 // X <= 0x0ffffffff -> (X >> 32) < 1 1823 // X > 0x0ffffffff -> (X >> 32) >= 1 1824 unsigned ShiftBits; 1825 APInt NewC = C1; 1826 ISD::CondCode NewCond = Cond; 1827 if (AdjOne) { 1828 ShiftBits = C1.countTrailingOnes(); 1829 NewC = NewC + 1; 1830 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1831 } else { 1832 ShiftBits = C1.countTrailingZeros(); 1833 } 1834 NewC = NewC.lshr(ShiftBits); 1835 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1836 isLegalICmpImmediate(NewC.getSExtValue())) { 1837 auto &DL = DAG.getDataLayout(); 1838 EVT ShiftTy = DCI.isBeforeLegalize() 1839 ? getPointerTy(DL) 1840 : getShiftAmountTy(N0.getValueType(), DL); 1841 EVT CmpTy = N0.getValueType(); 1842 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1843 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1844 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1845 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1846 } 1847 } 1848 } 1849 } 1850 1851 if (isa<ConstantFPSDNode>(N0.getNode())) { 1852 // Constant fold or commute setcc. 1853 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1854 if (O.getNode()) return O; 1855 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1856 // If the RHS of an FP comparison is a constant, simplify it away in 1857 // some cases. 1858 if (CFP->getValueAPF().isNaN()) { 1859 // If an operand is known to be a nan, we can fold it. 1860 switch (ISD::getUnorderedFlavor(Cond)) { 1861 default: llvm_unreachable("Unknown flavor!"); 1862 case 0: // Known false. 1863 return DAG.getConstant(0, dl, VT); 1864 case 1: // Known true. 1865 return DAG.getConstant(1, dl, VT); 1866 case 2: // Undefined. 1867 return DAG.getUNDEF(VT); 1868 } 1869 } 1870 1871 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1872 // constant if knowing that the operand is non-nan is enough. We prefer to 1873 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1874 // materialize 0.0. 1875 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1876 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1877 1878 // If the condition is not legal, see if we can find an equivalent one 1879 // which is legal. 1880 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1881 // If the comparison was an awkward floating-point == or != and one of 1882 // the comparison operands is infinity or negative infinity, convert the 1883 // condition to a less-awkward <= or >=. 1884 if (CFP->getValueAPF().isInfinity()) { 1885 if (CFP->getValueAPF().isNegative()) { 1886 if (Cond == ISD::SETOEQ && 1887 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1888 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1889 if (Cond == ISD::SETUEQ && 1890 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1891 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1892 if (Cond == ISD::SETUNE && 1893 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1894 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1895 if (Cond == ISD::SETONE && 1896 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1897 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1898 } else { 1899 if (Cond == ISD::SETOEQ && 1900 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1901 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1902 if (Cond == ISD::SETUEQ && 1903 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1904 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1905 if (Cond == ISD::SETUNE && 1906 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1907 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1908 if (Cond == ISD::SETONE && 1909 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1910 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1911 } 1912 } 1913 } 1914 } 1915 1916 if (N0 == N1) { 1917 // The sext(setcc()) => setcc() optimization relies on the appropriate 1918 // constant being emitted. 1919 uint64_t EqVal = 0; 1920 switch (getBooleanContents(N0.getValueType())) { 1921 case UndefinedBooleanContent: 1922 case ZeroOrOneBooleanContent: 1923 EqVal = ISD::isTrueWhenEqual(Cond); 1924 break; 1925 case ZeroOrNegativeOneBooleanContent: 1926 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1927 break; 1928 } 1929 1930 // We can always fold X == X for integer setcc's. 1931 if (N0.getValueType().isInteger()) { 1932 return DAG.getConstant(EqVal, dl, VT); 1933 } 1934 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1935 if (UOF == 2) // FP operators that are undefined on NaNs. 1936 return DAG.getConstant(EqVal, dl, VT); 1937 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1938 return DAG.getConstant(EqVal, dl, VT); 1939 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1940 // if it is not already. 1941 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1942 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1943 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1944 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1945 } 1946 1947 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1948 N0.getValueType().isInteger()) { 1949 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1950 N0.getOpcode() == ISD::XOR) { 1951 // Simplify (X+Y) == (X+Z) --> Y == Z 1952 if (N0.getOpcode() == N1.getOpcode()) { 1953 if (N0.getOperand(0) == N1.getOperand(0)) 1954 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1955 if (N0.getOperand(1) == N1.getOperand(1)) 1956 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1957 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1958 // If X op Y == Y op X, try other combinations. 1959 if (N0.getOperand(0) == N1.getOperand(1)) 1960 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1961 Cond); 1962 if (N0.getOperand(1) == N1.getOperand(0)) 1963 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1964 Cond); 1965 } 1966 } 1967 1968 // If RHS is a legal immediate value for a compare instruction, we need 1969 // to be careful about increasing register pressure needlessly. 1970 bool LegalRHSImm = false; 1971 1972 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1973 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1974 // Turn (X+C1) == C2 --> X == C2-C1 1975 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1976 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1977 DAG.getConstant(RHSC->getAPIntValue()- 1978 LHSR->getAPIntValue(), 1979 dl, N0.getValueType()), Cond); 1980 } 1981 1982 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1983 if (N0.getOpcode() == ISD::XOR) 1984 // If we know that all of the inverted bits are zero, don't bother 1985 // performing the inversion. 1986 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1987 return 1988 DAG.getSetCC(dl, VT, N0.getOperand(0), 1989 DAG.getConstant(LHSR->getAPIntValue() ^ 1990 RHSC->getAPIntValue(), 1991 dl, N0.getValueType()), 1992 Cond); 1993 } 1994 1995 // Turn (C1-X) == C2 --> X == C1-C2 1996 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1997 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1998 return 1999 DAG.getSetCC(dl, VT, N0.getOperand(1), 2000 DAG.getConstant(SUBC->getAPIntValue() - 2001 RHSC->getAPIntValue(), 2002 dl, N0.getValueType()), 2003 Cond); 2004 } 2005 } 2006 2007 // Could RHSC fold directly into a compare? 2008 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2009 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2010 } 2011 2012 // Simplify (X+Z) == X --> Z == 0 2013 // Don't do this if X is an immediate that can fold into a cmp 2014 // instruction and X+Z has other uses. It could be an induction variable 2015 // chain, and the transform would increase register pressure. 2016 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2017 if (N0.getOperand(0) == N1) 2018 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2019 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2020 if (N0.getOperand(1) == N1) { 2021 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2022 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2023 DAG.getConstant(0, dl, N0.getValueType()), 2024 Cond); 2025 if (N0.getNode()->hasOneUse()) { 2026 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2027 auto &DL = DAG.getDataLayout(); 2028 // (Z-X) == X --> Z == X<<1 2029 SDValue SH = DAG.getNode( 2030 ISD::SHL, dl, N1.getValueType(), N1, 2031 DAG.getConstant(1, dl, 2032 getShiftAmountTy(N1.getValueType(), DL))); 2033 if (!DCI.isCalledByLegalizer()) 2034 DCI.AddToWorklist(SH.getNode()); 2035 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2036 } 2037 } 2038 } 2039 } 2040 2041 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2042 N1.getOpcode() == ISD::XOR) { 2043 // Simplify X == (X+Z) --> Z == 0 2044 if (N1.getOperand(0) == N0) 2045 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2046 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2047 if (N1.getOperand(1) == N0) { 2048 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2049 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2050 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2051 if (N1.getNode()->hasOneUse()) { 2052 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2053 auto &DL = DAG.getDataLayout(); 2054 // X == (Z-X) --> X<<1 == Z 2055 SDValue SH = DAG.getNode( 2056 ISD::SHL, dl, N1.getValueType(), N0, 2057 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2058 if (!DCI.isCalledByLegalizer()) 2059 DCI.AddToWorklist(SH.getNode()); 2060 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2061 } 2062 } 2063 } 2064 2065 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 2066 // Note that where y is variable and is known to have at most 2067 // one bit set (for example, if it is z&1) we cannot do this; 2068 // the expressions are not equivalent when y==0. 2069 if (N0.getOpcode() == ISD::AND) 2070 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 2071 if (ValueHasExactlyOneBitSet(N1, DAG)) { 2072 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2073 if (DCI.isBeforeLegalizeOps() || 2074 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2075 SDValue Zero = DAG.getConstant(0, dl, N1.getValueType()); 2076 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 2077 } 2078 } 2079 } 2080 if (N1.getOpcode() == ISD::AND) 2081 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 2082 if (ValueHasExactlyOneBitSet(N0, DAG)) { 2083 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2084 if (DCI.isBeforeLegalizeOps() || 2085 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 2086 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2087 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 2088 } 2089 } 2090 } 2091 } 2092 2093 // Fold away ALL boolean setcc's. 2094 SDValue Temp; 2095 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2096 switch (Cond) { 2097 default: llvm_unreachable("Unknown integer setcc!"); 2098 case ISD::SETEQ: // X == Y -> ~(X^Y) 2099 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2100 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2101 if (!DCI.isCalledByLegalizer()) 2102 DCI.AddToWorklist(Temp.getNode()); 2103 break; 2104 case ISD::SETNE: // X != Y --> (X^Y) 2105 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2106 break; 2107 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2108 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2109 Temp = DAG.getNOT(dl, N0, MVT::i1); 2110 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2111 if (!DCI.isCalledByLegalizer()) 2112 DCI.AddToWorklist(Temp.getNode()); 2113 break; 2114 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2115 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2116 Temp = DAG.getNOT(dl, N1, MVT::i1); 2117 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2118 if (!DCI.isCalledByLegalizer()) 2119 DCI.AddToWorklist(Temp.getNode()); 2120 break; 2121 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2122 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2123 Temp = DAG.getNOT(dl, N0, MVT::i1); 2124 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2125 if (!DCI.isCalledByLegalizer()) 2126 DCI.AddToWorklist(Temp.getNode()); 2127 break; 2128 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2129 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2130 Temp = DAG.getNOT(dl, N1, MVT::i1); 2131 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2132 break; 2133 } 2134 if (VT != MVT::i1) { 2135 if (!DCI.isCalledByLegalizer()) 2136 DCI.AddToWorklist(N0.getNode()); 2137 // FIXME: If running after legalize, we probably can't do this. 2138 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2139 } 2140 return N0; 2141 } 2142 2143 // Could not fold it. 2144 return SDValue(); 2145 } 2146 2147 /// Returns true (and the GlobalValue and the offset) if the node is a 2148 /// GlobalAddress + offset. 2149 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2150 int64_t &Offset) const { 2151 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2152 GA = GASD->getGlobal(); 2153 Offset += GASD->getOffset(); 2154 return true; 2155 } 2156 2157 if (N->getOpcode() == ISD::ADD) { 2158 SDValue N1 = N->getOperand(0); 2159 SDValue N2 = N->getOperand(1); 2160 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2161 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2162 Offset += V->getSExtValue(); 2163 return true; 2164 } 2165 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2166 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2167 Offset += V->getSExtValue(); 2168 return true; 2169 } 2170 } 2171 } 2172 2173 return false; 2174 } 2175 2176 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2177 DAGCombinerInfo &DCI) const { 2178 // Default implementation: no optimization. 2179 return SDValue(); 2180 } 2181 2182 //===----------------------------------------------------------------------===// 2183 // Inline Assembler Implementation Methods 2184 //===----------------------------------------------------------------------===// 2185 2186 TargetLowering::ConstraintType 2187 TargetLowering::getConstraintType(StringRef Constraint) const { 2188 unsigned S = Constraint.size(); 2189 2190 if (S == 1) { 2191 switch (Constraint[0]) { 2192 default: break; 2193 case 'r': return C_RegisterClass; 2194 case 'm': // memory 2195 case 'o': // offsetable 2196 case 'V': // not offsetable 2197 return C_Memory; 2198 case 'i': // Simple Integer or Relocatable Constant 2199 case 'n': // Simple Integer 2200 case 'E': // Floating Point Constant 2201 case 'F': // Floating Point Constant 2202 case 's': // Relocatable Constant 2203 case 'p': // Address. 2204 case 'X': // Allow ANY value. 2205 case 'I': // Target registers. 2206 case 'J': 2207 case 'K': 2208 case 'L': 2209 case 'M': 2210 case 'N': 2211 case 'O': 2212 case 'P': 2213 case '<': 2214 case '>': 2215 return C_Other; 2216 } 2217 } 2218 2219 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2220 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2221 return C_Memory; 2222 return C_Register; 2223 } 2224 return C_Unknown; 2225 } 2226 2227 /// Try to replace an X constraint, which matches anything, with another that 2228 /// has more specific requirements based on the type of the corresponding 2229 /// operand. 2230 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2231 if (ConstraintVT.isInteger()) 2232 return "r"; 2233 if (ConstraintVT.isFloatingPoint()) 2234 return "f"; // works for many targets 2235 return nullptr; 2236 } 2237 2238 /// Lower the specified operand into the Ops vector. 2239 /// If it is invalid, don't add anything to Ops. 2240 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2241 std::string &Constraint, 2242 std::vector<SDValue> &Ops, 2243 SelectionDAG &DAG) const { 2244 2245 if (Constraint.length() > 1) return; 2246 2247 char ConstraintLetter = Constraint[0]; 2248 switch (ConstraintLetter) { 2249 default: break; 2250 case 'X': // Allows any operand; labels (basic block) use this. 2251 if (Op.getOpcode() == ISD::BasicBlock) { 2252 Ops.push_back(Op); 2253 return; 2254 } 2255 // fall through 2256 case 'i': // Simple Integer or Relocatable Constant 2257 case 'n': // Simple Integer 2258 case 's': { // Relocatable Constant 2259 // These operands are interested in values of the form (GV+C), where C may 2260 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2261 // is possible and fine if either GV or C are missing. 2262 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2263 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2264 2265 // If we have "(add GV, C)", pull out GV/C 2266 if (Op.getOpcode() == ISD::ADD) { 2267 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2268 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2269 if (!C || !GA) { 2270 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2271 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2272 } 2273 if (!C || !GA) { 2274 C = nullptr; 2275 GA = nullptr; 2276 } 2277 } 2278 2279 // If we find a valid operand, map to the TargetXXX version so that the 2280 // value itself doesn't get selected. 2281 if (GA) { // Either &GV or &GV+C 2282 if (ConstraintLetter != 'n') { 2283 int64_t Offs = GA->getOffset(); 2284 if (C) Offs += C->getZExtValue(); 2285 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2286 C ? SDLoc(C) : SDLoc(), 2287 Op.getValueType(), Offs)); 2288 } 2289 return; 2290 } 2291 if (C) { // just C, no GV. 2292 // Simple constants are not allowed for 's'. 2293 if (ConstraintLetter != 's') { 2294 // gcc prints these as sign extended. Sign extend value to 64 bits 2295 // now; without this it would get ZExt'd later in 2296 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2297 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2298 SDLoc(C), MVT::i64)); 2299 } 2300 return; 2301 } 2302 break; 2303 } 2304 } 2305 } 2306 2307 std::pair<unsigned, const TargetRegisterClass *> 2308 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2309 StringRef Constraint, 2310 MVT VT) const { 2311 if (Constraint.empty() || Constraint[0] != '{') 2312 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2313 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2314 2315 // Remove the braces from around the name. 2316 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2317 2318 std::pair<unsigned, const TargetRegisterClass*> R = 2319 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2320 2321 // Figure out which register class contains this reg. 2322 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2323 E = RI->regclass_end(); RCI != E; ++RCI) { 2324 const TargetRegisterClass *RC = *RCI; 2325 2326 // If none of the value types for this register class are valid, we 2327 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2328 if (!isLegalRC(RC)) 2329 continue; 2330 2331 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2332 I != E; ++I) { 2333 if (RegName.equals_lower(RI->getName(*I))) { 2334 std::pair<unsigned, const TargetRegisterClass*> S = 2335 std::make_pair(*I, RC); 2336 2337 // If this register class has the requested value type, return it, 2338 // otherwise keep searching and return the first class found 2339 // if no other is found which explicitly has the requested type. 2340 if (RC->hasType(VT)) 2341 return S; 2342 else if (!R.second) 2343 R = S; 2344 } 2345 } 2346 } 2347 2348 return R; 2349 } 2350 2351 //===----------------------------------------------------------------------===// 2352 // Constraint Selection. 2353 2354 /// Return true of this is an input operand that is a matching constraint like 2355 /// "4". 2356 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2357 assert(!ConstraintCode.empty() && "No known constraint!"); 2358 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2359 } 2360 2361 /// If this is an input matching constraint, this method returns the output 2362 /// operand it matches. 2363 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2364 assert(!ConstraintCode.empty() && "No known constraint!"); 2365 return atoi(ConstraintCode.c_str()); 2366 } 2367 2368 /// Split up the constraint string from the inline assembly value into the 2369 /// specific constraints and their prefixes, and also tie in the associated 2370 /// operand values. 2371 /// If this returns an empty vector, and if the constraint string itself 2372 /// isn't empty, there was an error parsing. 2373 TargetLowering::AsmOperandInfoVector 2374 TargetLowering::ParseConstraints(const DataLayout &DL, 2375 const TargetRegisterInfo *TRI, 2376 ImmutableCallSite CS) const { 2377 /// Information about all of the constraints. 2378 AsmOperandInfoVector ConstraintOperands; 2379 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2380 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2381 2382 // Do a prepass over the constraints, canonicalizing them, and building up the 2383 // ConstraintOperands list. 2384 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2385 unsigned ResNo = 0; // ResNo - The result number of the next output. 2386 2387 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2388 ConstraintOperands.emplace_back(std::move(CI)); 2389 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2390 2391 // Update multiple alternative constraint count. 2392 if (OpInfo.multipleAlternatives.size() > maCount) 2393 maCount = OpInfo.multipleAlternatives.size(); 2394 2395 OpInfo.ConstraintVT = MVT::Other; 2396 2397 // Compute the value type for each operand. 2398 switch (OpInfo.Type) { 2399 case InlineAsm::isOutput: 2400 // Indirect outputs just consume an argument. 2401 if (OpInfo.isIndirect) { 2402 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2403 break; 2404 } 2405 2406 // The return value of the call is this value. As such, there is no 2407 // corresponding argument. 2408 assert(!CS.getType()->isVoidTy() && 2409 "Bad inline asm!"); 2410 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2411 OpInfo.ConstraintVT = 2412 getSimpleValueType(DL, STy->getElementType(ResNo)); 2413 } else { 2414 assert(ResNo == 0 && "Asm only has one result!"); 2415 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2416 } 2417 ++ResNo; 2418 break; 2419 case InlineAsm::isInput: 2420 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2421 break; 2422 case InlineAsm::isClobber: 2423 // Nothing to do. 2424 break; 2425 } 2426 2427 if (OpInfo.CallOperandVal) { 2428 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2429 if (OpInfo.isIndirect) { 2430 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2431 if (!PtrTy) 2432 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2433 OpTy = PtrTy->getElementType(); 2434 } 2435 2436 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2437 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2438 if (STy->getNumElements() == 1) 2439 OpTy = STy->getElementType(0); 2440 2441 // If OpTy is not a single value, it may be a struct/union that we 2442 // can tile with integers. 2443 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2444 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2445 switch (BitSize) { 2446 default: break; 2447 case 1: 2448 case 8: 2449 case 16: 2450 case 32: 2451 case 64: 2452 case 128: 2453 OpInfo.ConstraintVT = 2454 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2455 break; 2456 } 2457 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2458 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2459 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2460 } else { 2461 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2462 } 2463 } 2464 } 2465 2466 // If we have multiple alternative constraints, select the best alternative. 2467 if (!ConstraintOperands.empty()) { 2468 if (maCount) { 2469 unsigned bestMAIndex = 0; 2470 int bestWeight = -1; 2471 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2472 int weight = -1; 2473 unsigned maIndex; 2474 // Compute the sums of the weights for each alternative, keeping track 2475 // of the best (highest weight) one so far. 2476 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2477 int weightSum = 0; 2478 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2479 cIndex != eIndex; ++cIndex) { 2480 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2481 if (OpInfo.Type == InlineAsm::isClobber) 2482 continue; 2483 2484 // If this is an output operand with a matching input operand, 2485 // look up the matching input. If their types mismatch, e.g. one 2486 // is an integer, the other is floating point, or their sizes are 2487 // different, flag it as an maCantMatch. 2488 if (OpInfo.hasMatchingInput()) { 2489 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2490 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2491 if ((OpInfo.ConstraintVT.isInteger() != 2492 Input.ConstraintVT.isInteger()) || 2493 (OpInfo.ConstraintVT.getSizeInBits() != 2494 Input.ConstraintVT.getSizeInBits())) { 2495 weightSum = -1; // Can't match. 2496 break; 2497 } 2498 } 2499 } 2500 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2501 if (weight == -1) { 2502 weightSum = -1; 2503 break; 2504 } 2505 weightSum += weight; 2506 } 2507 // Update best. 2508 if (weightSum > bestWeight) { 2509 bestWeight = weightSum; 2510 bestMAIndex = maIndex; 2511 } 2512 } 2513 2514 // Now select chosen alternative in each constraint. 2515 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2516 cIndex != eIndex; ++cIndex) { 2517 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2518 if (cInfo.Type == InlineAsm::isClobber) 2519 continue; 2520 cInfo.selectAlternative(bestMAIndex); 2521 } 2522 } 2523 } 2524 2525 // Check and hook up tied operands, choose constraint code to use. 2526 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2527 cIndex != eIndex; ++cIndex) { 2528 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2529 2530 // If this is an output operand with a matching input operand, look up the 2531 // matching input. If their types mismatch, e.g. one is an integer, the 2532 // other is floating point, or their sizes are different, flag it as an 2533 // error. 2534 if (OpInfo.hasMatchingInput()) { 2535 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2536 2537 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2538 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2539 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2540 OpInfo.ConstraintVT); 2541 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2542 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2543 Input.ConstraintVT); 2544 if ((OpInfo.ConstraintVT.isInteger() != 2545 Input.ConstraintVT.isInteger()) || 2546 (MatchRC.second != InputRC.second)) { 2547 report_fatal_error("Unsupported asm: input constraint" 2548 " with a matching output constraint of" 2549 " incompatible type!"); 2550 } 2551 } 2552 } 2553 } 2554 2555 return ConstraintOperands; 2556 } 2557 2558 /// Return an integer indicating how general CT is. 2559 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2560 switch (CT) { 2561 case TargetLowering::C_Other: 2562 case TargetLowering::C_Unknown: 2563 return 0; 2564 case TargetLowering::C_Register: 2565 return 1; 2566 case TargetLowering::C_RegisterClass: 2567 return 2; 2568 case TargetLowering::C_Memory: 2569 return 3; 2570 } 2571 llvm_unreachable("Invalid constraint type"); 2572 } 2573 2574 /// Examine constraint type and operand type and determine a weight value. 2575 /// This object must already have been set up with the operand type 2576 /// and the current alternative constraint selected. 2577 TargetLowering::ConstraintWeight 2578 TargetLowering::getMultipleConstraintMatchWeight( 2579 AsmOperandInfo &info, int maIndex) const { 2580 InlineAsm::ConstraintCodeVector *rCodes; 2581 if (maIndex >= (int)info.multipleAlternatives.size()) 2582 rCodes = &info.Codes; 2583 else 2584 rCodes = &info.multipleAlternatives[maIndex].Codes; 2585 ConstraintWeight BestWeight = CW_Invalid; 2586 2587 // Loop over the options, keeping track of the most general one. 2588 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2589 ConstraintWeight weight = 2590 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2591 if (weight > BestWeight) 2592 BestWeight = weight; 2593 } 2594 2595 return BestWeight; 2596 } 2597 2598 /// Examine constraint type and operand type and determine a weight value. 2599 /// This object must already have been set up with the operand type 2600 /// and the current alternative constraint selected. 2601 TargetLowering::ConstraintWeight 2602 TargetLowering::getSingleConstraintMatchWeight( 2603 AsmOperandInfo &info, const char *constraint) const { 2604 ConstraintWeight weight = CW_Invalid; 2605 Value *CallOperandVal = info.CallOperandVal; 2606 // If we don't have a value, we can't do a match, 2607 // but allow it at the lowest weight. 2608 if (!CallOperandVal) 2609 return CW_Default; 2610 // Look at the constraint type. 2611 switch (*constraint) { 2612 case 'i': // immediate integer. 2613 case 'n': // immediate integer with a known value. 2614 if (isa<ConstantInt>(CallOperandVal)) 2615 weight = CW_Constant; 2616 break; 2617 case 's': // non-explicit intregal immediate. 2618 if (isa<GlobalValue>(CallOperandVal)) 2619 weight = CW_Constant; 2620 break; 2621 case 'E': // immediate float if host format. 2622 case 'F': // immediate float. 2623 if (isa<ConstantFP>(CallOperandVal)) 2624 weight = CW_Constant; 2625 break; 2626 case '<': // memory operand with autodecrement. 2627 case '>': // memory operand with autoincrement. 2628 case 'm': // memory operand. 2629 case 'o': // offsettable memory operand 2630 case 'V': // non-offsettable memory operand 2631 weight = CW_Memory; 2632 break; 2633 case 'r': // general register. 2634 case 'g': // general register, memory operand or immediate integer. 2635 // note: Clang converts "g" to "imr". 2636 if (CallOperandVal->getType()->isIntegerTy()) 2637 weight = CW_Register; 2638 break; 2639 case 'X': // any operand. 2640 default: 2641 weight = CW_Default; 2642 break; 2643 } 2644 return weight; 2645 } 2646 2647 /// If there are multiple different constraints that we could pick for this 2648 /// operand (e.g. "imr") try to pick the 'best' one. 2649 /// This is somewhat tricky: constraints fall into four classes: 2650 /// Other -> immediates and magic values 2651 /// Register -> one specific register 2652 /// RegisterClass -> a group of regs 2653 /// Memory -> memory 2654 /// Ideally, we would pick the most specific constraint possible: if we have 2655 /// something that fits into a register, we would pick it. The problem here 2656 /// is that if we have something that could either be in a register or in 2657 /// memory that use of the register could cause selection of *other* 2658 /// operands to fail: they might only succeed if we pick memory. Because of 2659 /// this the heuristic we use is: 2660 /// 2661 /// 1) If there is an 'other' constraint, and if the operand is valid for 2662 /// that constraint, use it. This makes us take advantage of 'i' 2663 /// constraints when available. 2664 /// 2) Otherwise, pick the most general constraint present. This prefers 2665 /// 'm' over 'r', for example. 2666 /// 2667 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2668 const TargetLowering &TLI, 2669 SDValue Op, SelectionDAG *DAG) { 2670 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2671 unsigned BestIdx = 0; 2672 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2673 int BestGenerality = -1; 2674 2675 // Loop over the options, keeping track of the most general one. 2676 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2677 TargetLowering::ConstraintType CType = 2678 TLI.getConstraintType(OpInfo.Codes[i]); 2679 2680 // If this is an 'other' constraint, see if the operand is valid for it. 2681 // For example, on X86 we might have an 'rI' constraint. If the operand 2682 // is an integer in the range [0..31] we want to use I (saving a load 2683 // of a register), otherwise we must use 'r'. 2684 if (CType == TargetLowering::C_Other && Op.getNode()) { 2685 assert(OpInfo.Codes[i].size() == 1 && 2686 "Unhandled multi-letter 'other' constraint"); 2687 std::vector<SDValue> ResultOps; 2688 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2689 ResultOps, *DAG); 2690 if (!ResultOps.empty()) { 2691 BestType = CType; 2692 BestIdx = i; 2693 break; 2694 } 2695 } 2696 2697 // Things with matching constraints can only be registers, per gcc 2698 // documentation. This mainly affects "g" constraints. 2699 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2700 continue; 2701 2702 // This constraint letter is more general than the previous one, use it. 2703 int Generality = getConstraintGenerality(CType); 2704 if (Generality > BestGenerality) { 2705 BestType = CType; 2706 BestIdx = i; 2707 BestGenerality = Generality; 2708 } 2709 } 2710 2711 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2712 OpInfo.ConstraintType = BestType; 2713 } 2714 2715 /// Determines the constraint code and constraint type to use for the specific 2716 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2717 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2718 SDValue Op, 2719 SelectionDAG *DAG) const { 2720 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2721 2722 // Single-letter constraints ('r') are very common. 2723 if (OpInfo.Codes.size() == 1) { 2724 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2725 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2726 } else { 2727 ChooseConstraint(OpInfo, *this, Op, DAG); 2728 } 2729 2730 // 'X' matches anything. 2731 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2732 // Labels and constants are handled elsewhere ('X' is the only thing 2733 // that matches labels). For Functions, the type here is the type of 2734 // the result, which is not what we want to look at; leave them alone. 2735 Value *v = OpInfo.CallOperandVal; 2736 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2737 OpInfo.CallOperandVal = v; 2738 return; 2739 } 2740 2741 // Otherwise, try to resolve it to something we know about by looking at 2742 // the actual operand type. 2743 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2744 OpInfo.ConstraintCode = Repl; 2745 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2746 } 2747 } 2748 } 2749 2750 /// \brief Given an exact SDIV by a constant, create a multiplication 2751 /// with the multiplicative inverse of the constant. 2752 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2753 SDLoc dl, SelectionDAG &DAG, 2754 std::vector<SDNode *> &Created) { 2755 assert(d != 0 && "Division by zero!"); 2756 2757 // Shift the value upfront if it is even, so the LSB is one. 2758 unsigned ShAmt = d.countTrailingZeros(); 2759 if (ShAmt) { 2760 // TODO: For UDIV use SRL instead of SRA. 2761 SDValue Amt = 2762 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2763 DAG.getDataLayout())); 2764 SDNodeFlags Flags; 2765 Flags.setExact(true); 2766 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2767 Created.push_back(Op1.getNode()); 2768 d = d.ashr(ShAmt); 2769 } 2770 2771 // Calculate the multiplicative inverse, using Newton's method. 2772 APInt t, xn = d; 2773 while ((t = d*xn) != 1) 2774 xn *= APInt(d.getBitWidth(), 2) - t; 2775 2776 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2777 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2778 Created.push_back(Mul.getNode()); 2779 return Mul; 2780 } 2781 2782 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2783 SelectionDAG &DAG, 2784 std::vector<SDNode *> *Created) const { 2785 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2787 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2788 return SDValue(N,0); // Lower SDIV as SDIV 2789 return SDValue(); 2790 } 2791 2792 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2793 /// return a DAG expression to select that will generate the same value by 2794 /// multiplying by a magic number. 2795 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2796 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2797 SelectionDAG &DAG, bool IsAfterLegalization, 2798 std::vector<SDNode *> *Created) const { 2799 assert(Created && "No vector to hold sdiv ops."); 2800 2801 EVT VT = N->getValueType(0); 2802 SDLoc dl(N); 2803 2804 // Check to see if we can do this. 2805 // FIXME: We should be more aggressive here. 2806 if (!isTypeLegal(VT)) 2807 return SDValue(); 2808 2809 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2810 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2811 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2812 2813 APInt::ms magics = Divisor.magic(); 2814 2815 // Multiply the numerator (operand 0) by the magic value 2816 // FIXME: We should support doing a MUL in a wider type 2817 SDValue Q; 2818 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2819 isOperationLegalOrCustom(ISD::MULHS, VT)) 2820 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2821 DAG.getConstant(magics.m, dl, VT)); 2822 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2823 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2824 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2825 N->getOperand(0), 2826 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2827 else 2828 return SDValue(); // No mulhs or equvialent 2829 // If d > 0 and m < 0, add the numerator 2830 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2831 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2832 Created->push_back(Q.getNode()); 2833 } 2834 // If d < 0 and m > 0, subtract the numerator. 2835 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2836 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2837 Created->push_back(Q.getNode()); 2838 } 2839 auto &DL = DAG.getDataLayout(); 2840 // Shift right algebraic if shift value is nonzero 2841 if (magics.s > 0) { 2842 Q = DAG.getNode( 2843 ISD::SRA, dl, VT, Q, 2844 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2845 Created->push_back(Q.getNode()); 2846 } 2847 // Extract the sign bit and add it to the quotient 2848 SDValue T = 2849 DAG.getNode(ISD::SRL, dl, VT, Q, 2850 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2851 getShiftAmountTy(Q.getValueType(), DL))); 2852 Created->push_back(T.getNode()); 2853 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2854 } 2855 2856 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2857 /// return a DAG expression to select that will generate the same value by 2858 /// multiplying by a magic number. 2859 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2860 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2861 SelectionDAG &DAG, bool IsAfterLegalization, 2862 std::vector<SDNode *> *Created) const { 2863 assert(Created && "No vector to hold udiv ops."); 2864 2865 EVT VT = N->getValueType(0); 2866 SDLoc dl(N); 2867 auto &DL = DAG.getDataLayout(); 2868 2869 // Check to see if we can do this. 2870 // FIXME: We should be more aggressive here. 2871 if (!isTypeLegal(VT)) 2872 return SDValue(); 2873 2874 // FIXME: We should use a narrower constant when the upper 2875 // bits are known to be zero. 2876 APInt::mu magics = Divisor.magicu(); 2877 2878 SDValue Q = N->getOperand(0); 2879 2880 // If the divisor is even, we can avoid using the expensive fixup by shifting 2881 // the divided value upfront. 2882 if (magics.a != 0 && !Divisor[0]) { 2883 unsigned Shift = Divisor.countTrailingZeros(); 2884 Q = DAG.getNode( 2885 ISD::SRL, dl, VT, Q, 2886 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 2887 Created->push_back(Q.getNode()); 2888 2889 // Get magic number for the shifted divisor. 2890 magics = Divisor.lshr(Shift).magicu(Shift); 2891 assert(magics.a == 0 && "Should use cheap fixup now"); 2892 } 2893 2894 // Multiply the numerator (operand 0) by the magic value 2895 // FIXME: We should support doing a MUL in a wider type 2896 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2897 isOperationLegalOrCustom(ISD::MULHU, VT)) 2898 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2899 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2900 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2901 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2902 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2903 else 2904 return SDValue(); // No mulhu or equvialent 2905 2906 Created->push_back(Q.getNode()); 2907 2908 if (magics.a == 0) { 2909 assert(magics.s < Divisor.getBitWidth() && 2910 "We shouldn't generate an undefined shift!"); 2911 return DAG.getNode( 2912 ISD::SRL, dl, VT, Q, 2913 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2914 } else { 2915 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2916 Created->push_back(NPQ.getNode()); 2917 NPQ = DAG.getNode( 2918 ISD::SRL, dl, VT, NPQ, 2919 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 2920 Created->push_back(NPQ.getNode()); 2921 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2922 Created->push_back(NPQ.getNode()); 2923 return DAG.getNode( 2924 ISD::SRL, dl, VT, NPQ, 2925 DAG.getConstant(magics.s - 1, dl, 2926 getShiftAmountTy(NPQ.getValueType(), DL))); 2927 } 2928 } 2929 2930 bool TargetLowering:: 2931 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2932 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2933 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2934 "be a constant integer"); 2935 return true; 2936 } 2937 2938 return false; 2939 } 2940 2941 //===----------------------------------------------------------------------===// 2942 // Legalization Utilities 2943 //===----------------------------------------------------------------------===// 2944 2945 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2946 SelectionDAG &DAG, SDValue LL, SDValue LH, 2947 SDValue RL, SDValue RH) const { 2948 EVT VT = N->getValueType(0); 2949 SDLoc dl(N); 2950 2951 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2952 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2953 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2954 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2955 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2956 unsigned OuterBitSize = VT.getSizeInBits(); 2957 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2958 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2959 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2960 2961 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2962 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2963 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2964 2965 if (!LL.getNode() && !RL.getNode() && 2966 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2967 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2968 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2969 } 2970 2971 if (!LL.getNode()) 2972 return false; 2973 2974 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2975 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2976 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2977 // The inputs are both zero-extended. 2978 if (HasUMUL_LOHI) { 2979 // We can emit a umul_lohi. 2980 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2981 RL); 2982 Hi = SDValue(Lo.getNode(), 1); 2983 return true; 2984 } 2985 if (HasMULHU) { 2986 // We can emit a mulhu+mul. 2987 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2988 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2989 return true; 2990 } 2991 } 2992 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2993 // The input values are both sign-extended. 2994 if (HasSMUL_LOHI) { 2995 // We can emit a smul_lohi. 2996 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2997 RL); 2998 Hi = SDValue(Lo.getNode(), 1); 2999 return true; 3000 } 3001 if (HasMULHS) { 3002 // We can emit a mulhs+mul. 3003 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3004 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 3005 return true; 3006 } 3007 } 3008 3009 if (!LH.getNode() && !RH.getNode() && 3010 isOperationLegalOrCustom(ISD::SRL, VT) && 3011 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3012 auto &DL = DAG.getDataLayout(); 3013 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 3014 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 3015 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 3016 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3017 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 3018 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3019 } 3020 3021 if (!LH.getNode()) 3022 return false; 3023 3024 if (HasUMUL_LOHI) { 3025 // Lo,Hi = umul LHS, RHS. 3026 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 3027 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 3028 Lo = UMulLOHI; 3029 Hi = UMulLOHI.getValue(1); 3030 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3031 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3032 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3033 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3034 return true; 3035 } 3036 if (HasMULHU) { 3037 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3038 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3039 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3040 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3041 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3042 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3043 return true; 3044 } 3045 } 3046 return false; 3047 } 3048 3049 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3050 SelectionDAG &DAG) const { 3051 EVT VT = Node->getOperand(0).getValueType(); 3052 EVT NVT = Node->getValueType(0); 3053 SDLoc dl(SDValue(Node, 0)); 3054 3055 // FIXME: Only f32 to i64 conversions are supported. 3056 if (VT != MVT::f32 || NVT != MVT::i64) 3057 return false; 3058 3059 // Expand f32 -> i64 conversion 3060 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3061 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3062 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3063 VT.getSizeInBits()); 3064 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3065 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3066 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3067 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3068 IntVT); 3069 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3070 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3071 3072 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3073 3074 auto &DL = DAG.getDataLayout(); 3075 SDValue ExponentBits = DAG.getNode( 3076 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3077 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3078 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3079 3080 SDValue Sign = DAG.getNode( 3081 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3082 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3083 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3084 3085 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3086 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3087 DAG.getConstant(0x00800000, dl, IntVT)); 3088 3089 R = DAG.getZExtOrTrunc(R, dl, NVT); 3090 3091 R = DAG.getSelectCC( 3092 dl, Exponent, ExponentLoBit, 3093 DAG.getNode(ISD::SHL, dl, NVT, R, 3094 DAG.getZExtOrTrunc( 3095 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3096 dl, getShiftAmountTy(IntVT, DL))), 3097 DAG.getNode(ISD::SRL, dl, NVT, R, 3098 DAG.getZExtOrTrunc( 3099 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3100 dl, getShiftAmountTy(IntVT, DL))), 3101 ISD::SETGT); 3102 3103 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3104 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3105 Sign); 3106 3107 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3108 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3109 return true; 3110 } 3111 3112 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3113 SelectionDAG &DAG) const { 3114 SDLoc SL(LD); 3115 SDValue Chain = LD->getChain(); 3116 SDValue BasePTR = LD->getBasePtr(); 3117 EVT SrcVT = LD->getMemoryVT(); 3118 ISD::LoadExtType ExtType = LD->getExtensionType(); 3119 3120 unsigned NumElem = SrcVT.getVectorNumElements(); 3121 3122 EVT SrcEltVT = SrcVT.getScalarType(); 3123 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3124 3125 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3126 assert(SrcEltVT.isByteSized()); 3127 3128 EVT PtrVT = BasePTR.getValueType(); 3129 3130 SmallVector<SDValue, 8> Vals; 3131 SmallVector<SDValue, 8> LoadChains; 3132 3133 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3134 SDValue ScalarLoad = DAG.getExtLoad( 3135 ExtType, SL, DstEltVT, 3136 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 3137 SrcEltVT, 3138 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 3139 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 3140 3141 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3142 DAG.getConstant(Stride, SL, PtrVT)); 3143 3144 Vals.push_back(ScalarLoad.getValue(0)); 3145 LoadChains.push_back(ScalarLoad.getValue(1)); 3146 } 3147 3148 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3149 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); 3150 3151 return DAG.getMergeValues({ Value, NewChain }, SL); 3152 } 3153 3154 // FIXME: This relies on each element having a byte size, otherwise the stride 3155 // is 0 and just overwrites the same location. ExpandStore currently expects 3156 // this broken behavior. 3157 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3158 SelectionDAG &DAG) const { 3159 SDLoc SL(ST); 3160 3161 SDValue Chain = ST->getChain(); 3162 SDValue BasePtr = ST->getBasePtr(); 3163 SDValue Value = ST->getValue(); 3164 EVT StVT = ST->getMemoryVT(); 3165 3166 unsigned Alignment = ST->getAlignment(); 3167 bool isVolatile = ST->isVolatile(); 3168 bool isNonTemporal = ST->isNonTemporal(); 3169 AAMDNodes AAInfo = ST->getAAInfo(); 3170 3171 // The type of the data we want to save 3172 EVT RegVT = Value.getValueType(); 3173 EVT RegSclVT = RegVT.getScalarType(); 3174 3175 // The type of data as saved in memory. 3176 EVT MemSclVT = StVT.getScalarType(); 3177 3178 EVT PtrVT = BasePtr.getValueType(); 3179 3180 // Store Stride in bytes 3181 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3182 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3183 unsigned NumElem = StVT.getVectorNumElements(); 3184 3185 // Extract each of the elements from the original vector and save them into 3186 // memory individually. 3187 SmallVector<SDValue, 8> Stores; 3188 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3189 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3190 DAG.getConstant(Idx, SL, IdxVT)); 3191 3192 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3193 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3194 3195 // This scalar TruncStore may be illegal, but we legalize it later. 3196 SDValue Store = DAG.getTruncStore( 3197 Chain, SL, Elt, Ptr, 3198 ST->getPointerInfo().getWithOffset(Idx * Stride), MemSclVT, 3199 isVolatile, isNonTemporal, MinAlign(Alignment, Idx * Stride), 3200 AAInfo); 3201 3202 Stores.push_back(Store); 3203 } 3204 3205 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3206 } 3207 3208 //===----------------------------------------------------------------------===// 3209 // Implementation of Emulated TLS Model 3210 //===----------------------------------------------------------------------===// 3211 3212 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3213 SelectionDAG &DAG) const { 3214 // Access to address of TLS varialbe xyz is lowered to a function call: 3215 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3216 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3217 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3218 SDLoc dl(GA); 3219 3220 ArgListTy Args; 3221 ArgListEntry Entry; 3222 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3223 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3224 StringRef EmuTlsVarName(NameString); 3225 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3226 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3227 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3228 Entry.Ty = VoidPtrType; 3229 Args.push_back(Entry); 3230 3231 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3232 3233 TargetLowering::CallLoweringInfo CLI(DAG); 3234 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3235 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args), 0); 3236 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3237 3238 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3239 // At last for X86 targets, maybe good for other targets too? 3240 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 3241 MFI->setAdjustsStack(true); // Is this only for X86 target? 3242 MFI->setHasCalls(true); 3243 3244 assert((GA->getOffset() == 0) && 3245 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3246 return CallResult.first; 3247 } 3248