1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 } 116 117 /// Generate a libcall taking the given operands as arguments and returning a 118 /// result of type RetVT. 119 std::pair<SDValue, SDValue> 120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 121 ArrayRef<SDValue> Ops, bool isSigned, 122 const SDLoc &dl, bool doesNotReturn, 123 bool isReturnValueUsed, 124 bool isPostTypeLegalization) const { 125 TargetLowering::ArgListTy Args; 126 Args.reserve(Ops.size()); 127 128 TargetLowering::ArgListEntry Entry; 129 for (SDValue Op : Ops) { 130 Entry.Node = Op; 131 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 132 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 134 Args.push_back(Entry); 135 } 136 137 if (LC == RTLIB::UNKNOWN_LIBCALL) 138 report_fatal_error("Unsupported library call operation!"); 139 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 140 getPointerTy(DAG.getDataLayout())); 141 142 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 143 TargetLowering::CallLoweringInfo CLI(DAG); 144 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 145 CLI.setDebugLoc(dl) 146 .setChain(DAG.getEntryNode()) 147 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 148 .setNoReturn(doesNotReturn) 149 .setDiscardResult(!isReturnValueUsed) 150 .setIsPostTypeLegalization(isPostTypeLegalization) 151 .setSExtResult(signExtend) 152 .setZExtResult(!signExtend); 153 return LowerCallTo(CLI); 154 } 155 156 bool 157 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 158 unsigned Limit, uint64_t Size, 159 unsigned DstAlign, unsigned SrcAlign, 160 bool IsMemset, 161 bool ZeroMemset, 162 bool MemcpyStrSrc, 163 bool AllowOverlap, 164 unsigned DstAS, unsigned SrcAS, 165 const AttributeList &FuncAttributes) const { 166 // If 'SrcAlign' is zero, that means the memory operation does not need to 167 // load the value, i.e. memset or memcpy from constant string. Otherwise, 168 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 169 // is the specified alignment of the memory operation. If it is zero, that 170 // means it's possible to change the alignment of the destination. 171 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 172 // not need to be loaded. 173 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 174 return false; 175 176 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 177 IsMemset, ZeroMemset, MemcpyStrSrc, 178 FuncAttributes); 179 180 if (VT == MVT::Other) { 181 // Use the largest integer type whose alignment constraints are satisfied. 182 // We only need to check DstAlign here as SrcAlign is always greater or 183 // equal to DstAlign (or zero). 184 VT = MVT::i64; 185 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 186 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 187 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 188 assert(VT.isInteger()); 189 190 // Find the largest legal integer type. 191 MVT LVT = MVT::i64; 192 while (!isTypeLegal(LVT)) 193 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 194 assert(LVT.isInteger()); 195 196 // If the type we've chosen is larger than the largest legal integer type 197 // then use that instead. 198 if (VT.bitsGT(LVT)) 199 VT = LVT; 200 } 201 202 unsigned NumMemOps = 0; 203 while (Size != 0) { 204 unsigned VTSize = VT.getSizeInBits() / 8; 205 while (VTSize > Size) { 206 // For now, only use non-vector load / store's for the left-over pieces. 207 EVT NewVT = VT; 208 unsigned NewVTSize; 209 210 bool Found = false; 211 if (VT.isVector() || VT.isFloatingPoint()) { 212 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 213 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 214 isSafeMemOpType(NewVT.getSimpleVT())) 215 Found = true; 216 else if (NewVT == MVT::i64 && 217 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 218 isSafeMemOpType(MVT::f64)) { 219 // i64 is usually not legal on 32-bit targets, but f64 may be. 220 NewVT = MVT::f64; 221 Found = true; 222 } 223 } 224 225 if (!Found) { 226 do { 227 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 228 if (NewVT == MVT::i8) 229 break; 230 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 231 } 232 NewVTSize = NewVT.getSizeInBits() / 8; 233 234 // If the new VT cannot cover all of the remaining bits, then consider 235 // issuing a (or a pair of) unaligned and overlapping load / store. 236 bool Fast; 237 if (NumMemOps && AllowOverlap && NewVTSize < Size && 238 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && 239 Fast) 240 VTSize = Size; 241 else { 242 VT = NewVT; 243 VTSize = NewVTSize; 244 } 245 } 246 247 if (++NumMemOps > Limit) 248 return false; 249 250 MemOps.push_back(VT); 251 Size -= VTSize; 252 } 253 254 return true; 255 } 256 257 /// Soften the operands of a comparison. This code is shared among BR_CC, 258 /// SELECT_CC, and SETCC handlers. 259 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 260 SDValue &NewLHS, SDValue &NewRHS, 261 ISD::CondCode &CCCode, 262 const SDLoc &dl) const { 263 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 264 && "Unsupported setcc type!"); 265 266 // Expand into one or more soft-fp libcall(s). 267 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 268 bool ShouldInvertCC = false; 269 switch (CCCode) { 270 case ISD::SETEQ: 271 case ISD::SETOEQ: 272 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 273 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 274 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 275 break; 276 case ISD::SETNE: 277 case ISD::SETUNE: 278 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 279 (VT == MVT::f64) ? RTLIB::UNE_F64 : 280 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 281 break; 282 case ISD::SETGE: 283 case ISD::SETOGE: 284 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 285 (VT == MVT::f64) ? RTLIB::OGE_F64 : 286 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 287 break; 288 case ISD::SETLT: 289 case ISD::SETOLT: 290 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 291 (VT == MVT::f64) ? RTLIB::OLT_F64 : 292 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 293 break; 294 case ISD::SETLE: 295 case ISD::SETOLE: 296 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 297 (VT == MVT::f64) ? RTLIB::OLE_F64 : 298 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 299 break; 300 case ISD::SETGT: 301 case ISD::SETOGT: 302 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 303 (VT == MVT::f64) ? RTLIB::OGT_F64 : 304 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 305 break; 306 case ISD::SETUO: 307 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 308 (VT == MVT::f64) ? RTLIB::UO_F64 : 309 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 310 break; 311 case ISD::SETO: 312 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 313 (VT == MVT::f64) ? RTLIB::O_F64 : 314 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 315 break; 316 case ISD::SETONE: 317 // SETONE = SETOLT | SETOGT 318 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 319 (VT == MVT::f64) ? RTLIB::OLT_F64 : 320 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 321 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 322 (VT == MVT::f64) ? RTLIB::OGT_F64 : 323 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 324 break; 325 case ISD::SETUEQ: 326 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 327 (VT == MVT::f64) ? RTLIB::UO_F64 : 328 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 329 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 330 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 331 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 332 break; 333 default: 334 // Invert CC for unordered comparisons 335 ShouldInvertCC = true; 336 switch (CCCode) { 337 case ISD::SETULT: 338 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 339 (VT == MVT::f64) ? RTLIB::OGE_F64 : 340 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 341 break; 342 case ISD::SETULE: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETUGT: 348 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 349 (VT == MVT::f64) ? RTLIB::OLE_F64 : 350 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 351 break; 352 case ISD::SETUGE: 353 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 354 (VT == MVT::f64) ? RTLIB::OLT_F64 : 355 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 356 break; 357 default: llvm_unreachable("Do not know how to soften this setcc!"); 358 } 359 } 360 361 // Use the target specific return value for comparions lib calls. 362 EVT RetVT = getCmpLibcallReturnType(); 363 SDValue Ops[2] = {NewLHS, NewRHS}; 364 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 365 dl).first; 366 NewRHS = DAG.getConstant(0, dl, RetVT); 367 368 CCCode = getCmpLibcallCC(LC1); 369 if (ShouldInvertCC) 370 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 371 372 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 373 SDValue Tmp = DAG.getNode( 374 ISD::SETCC, dl, 375 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 376 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 377 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 378 dl).first; 379 NewLHS = DAG.getNode( 380 ISD::SETCC, dl, 381 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 382 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 383 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 384 NewRHS = SDValue(); 385 } 386 } 387 388 /// Return the entry encoding for a jump table in the current function. The 389 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 390 unsigned TargetLowering::getJumpTableEncoding() const { 391 // In non-pic modes, just use the address of a block. 392 if (!isPositionIndependent()) 393 return MachineJumpTableInfo::EK_BlockAddress; 394 395 // In PIC mode, if the target supports a GPRel32 directive, use it. 396 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 397 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 398 399 // Otherwise, use a label difference. 400 return MachineJumpTableInfo::EK_LabelDifference32; 401 } 402 403 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 404 SelectionDAG &DAG) const { 405 // If our PIC model is GP relative, use the global offset table as the base. 406 unsigned JTEncoding = getJumpTableEncoding(); 407 408 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 409 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 410 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 411 412 return Table; 413 } 414 415 /// This returns the relocation base for the given PIC jumptable, the same as 416 /// getPICJumpTableRelocBase, but as an MCExpr. 417 const MCExpr * 418 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 419 unsigned JTI,MCContext &Ctx) const{ 420 // The normal PIC reloc base is the label at the start of the jump table. 421 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 422 } 423 424 bool 425 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 426 const TargetMachine &TM = getTargetMachine(); 427 const GlobalValue *GV = GA->getGlobal(); 428 429 // If the address is not even local to this DSO we will have to load it from 430 // a got and then add the offset. 431 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 432 return false; 433 434 // If the code is position independent we will have to add a base register. 435 if (isPositionIndependent()) 436 return false; 437 438 // Otherwise we can do it. 439 return true; 440 } 441 442 //===----------------------------------------------------------------------===// 443 // Optimization Methods 444 //===----------------------------------------------------------------------===// 445 446 /// If the specified instruction has a constant integer operand and there are 447 /// bits set in that constant that are not demanded, then clear those bits and 448 /// return true. 449 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 450 TargetLoweringOpt &TLO) const { 451 SDLoc DL(Op); 452 unsigned Opcode = Op.getOpcode(); 453 454 // Do target-specific constant optimization. 455 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 456 return TLO.New.getNode(); 457 458 // FIXME: ISD::SELECT, ISD::SELECT_CC 459 switch (Opcode) { 460 default: 461 break; 462 case ISD::XOR: 463 case ISD::AND: 464 case ISD::OR: { 465 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 466 if (!Op1C) 467 return false; 468 469 // If this is a 'not' op, don't touch it because that's a canonical form. 470 const APInt &C = Op1C->getAPIntValue(); 471 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 472 return false; 473 474 if (!C.isSubsetOf(Demanded)) { 475 EVT VT = Op.getValueType(); 476 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 477 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 478 return TLO.CombineTo(Op, NewOp); 479 } 480 481 break; 482 } 483 } 484 485 return false; 486 } 487 488 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 489 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 490 /// generalized for targets with other types of implicit widening casts. 491 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 492 const APInt &Demanded, 493 TargetLoweringOpt &TLO) const { 494 assert(Op.getNumOperands() == 2 && 495 "ShrinkDemandedOp only supports binary operators!"); 496 assert(Op.getNode()->getNumValues() == 1 && 497 "ShrinkDemandedOp only supports nodes with one result!"); 498 499 SelectionDAG &DAG = TLO.DAG; 500 SDLoc dl(Op); 501 502 // Early return, as this function cannot handle vector types. 503 if (Op.getValueType().isVector()) 504 return false; 505 506 // Don't do this if the node has another user, which may require the 507 // full value. 508 if (!Op.getNode()->hasOneUse()) 509 return false; 510 511 // Search for the smallest integer type with free casts to and from 512 // Op's type. For expedience, just check power-of-2 integer types. 513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 514 unsigned DemandedSize = Demanded.getActiveBits(); 515 unsigned SmallVTBits = DemandedSize; 516 if (!isPowerOf2_32(SmallVTBits)) 517 SmallVTBits = NextPowerOf2(SmallVTBits); 518 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 519 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 520 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 521 TLI.isZExtFree(SmallVT, Op.getValueType())) { 522 // We found a type with free casts. 523 SDValue X = DAG.getNode( 524 Op.getOpcode(), dl, SmallVT, 525 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 526 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 527 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 528 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 529 return TLO.CombineTo(Op, Z); 530 } 531 } 532 return false; 533 } 534 535 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 536 DAGCombinerInfo &DCI) const { 537 SelectionDAG &DAG = DCI.DAG; 538 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 539 !DCI.isBeforeLegalizeOps()); 540 KnownBits Known; 541 542 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 543 if (Simplified) { 544 DCI.AddToWorklist(Op.getNode()); 545 DCI.CommitTargetLoweringOpt(TLO); 546 } 547 return Simplified; 548 } 549 550 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 551 KnownBits &Known, 552 TargetLoweringOpt &TLO, 553 unsigned Depth, 554 bool AssumeSingleUse) const { 555 EVT VT = Op.getValueType(); 556 APInt DemandedElts = VT.isVector() 557 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 558 : APInt(1, 1); 559 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 560 AssumeSingleUse); 561 } 562 563 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 564 /// result of Op are ever used downstream. If we can use this information to 565 /// simplify Op, create a new simplified DAG node and return true, returning the 566 /// original and new nodes in Old and New. Otherwise, analyze the expression and 567 /// return a mask of Known bits for the expression (used to simplify the 568 /// caller). The Known bits may only be accurate for those bits in the 569 /// OriginalDemandedBits and OriginalDemandedElts. 570 bool TargetLowering::SimplifyDemandedBits( 571 SDValue Op, const APInt &OriginalDemandedBits, 572 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 573 unsigned Depth, bool AssumeSingleUse) const { 574 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 575 assert(Op.getScalarValueSizeInBits() == BitWidth && 576 "Mask size mismatches value type size!"); 577 578 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 579 assert((!Op.getValueType().isVector() || 580 NumElts == Op.getValueType().getVectorNumElements()) && 581 "Unexpected vector size"); 582 583 APInt DemandedBits = OriginalDemandedBits; 584 APInt DemandedElts = OriginalDemandedElts; 585 SDLoc dl(Op); 586 auto &DL = TLO.DAG.getDataLayout(); 587 588 // Don't know anything. 589 Known = KnownBits(BitWidth); 590 591 // Undef operand. 592 if (Op.isUndef()) 593 return false; 594 595 if (Op.getOpcode() == ISD::Constant) { 596 // We know all of the bits for a constant! 597 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 598 Known.Zero = ~Known.One; 599 return false; 600 } 601 602 // Other users may use these bits. 603 EVT VT = Op.getValueType(); 604 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 605 if (Depth != 0) { 606 // If not at the root, Just compute the Known bits to 607 // simplify things downstream. 608 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 609 return false; 610 } 611 // If this is the root being simplified, allow it to have multiple uses, 612 // just set the DemandedBits/Elts to all bits. 613 DemandedBits = APInt::getAllOnesValue(BitWidth); 614 DemandedElts = APInt::getAllOnesValue(NumElts); 615 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 616 // Not demanding any bits/elts from Op. 617 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 618 } else if (Depth == 6) { // Limit search depth. 619 return false; 620 } 621 622 KnownBits Known2, KnownOut; 623 switch (Op.getOpcode()) { 624 case ISD::SCALAR_TO_VECTOR: { 625 if (!DemandedElts[0]) 626 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 627 628 KnownBits SrcKnown; 629 SDValue Src = Op.getOperand(0); 630 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 631 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 632 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 633 return true; 634 Known = SrcKnown.zextOrTrunc(BitWidth, false); 635 break; 636 } 637 case ISD::BUILD_VECTOR: 638 // Collect the known bits that are shared by every constant vector element. 639 Known.Zero.setAllBits(); Known.One.setAllBits(); 640 for (SDValue SrcOp : Op->ops()) { 641 if (!isa<ConstantSDNode>(SrcOp)) { 642 // We can only handle all constant values - bail out with no known bits. 643 Known = KnownBits(BitWidth); 644 return false; 645 } 646 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 647 Known2.Zero = ~Known2.One; 648 649 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 650 if (Known2.One.getBitWidth() != BitWidth) { 651 assert(Known2.getBitWidth() > BitWidth && 652 "Expected BUILD_VECTOR implicit truncation"); 653 Known2 = Known2.trunc(BitWidth); 654 } 655 656 // Known bits are the values that are shared by every element. 657 // TODO: support per-element known bits. 658 Known.One &= Known2.One; 659 Known.Zero &= Known2.Zero; 660 } 661 return false; // Don't fall through, will infinitely loop. 662 case ISD::INSERT_VECTOR_ELT: { 663 SDValue Vec = Op.getOperand(0); 664 SDValue Scl = Op.getOperand(1); 665 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 666 EVT VecVT = Vec.getValueType(); 667 668 // If index isn't constant, assume we need all vector elements AND the 669 // inserted element. 670 APInt DemandedVecElts(OriginalDemandedElts); 671 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 672 unsigned Idx = CIdx->getZExtValue(); 673 DemandedVecElts.clearBit(Idx); 674 675 // Inserted element is not required. 676 if (!OriginalDemandedElts[Idx]) 677 return TLO.CombineTo(Op, Vec); 678 } 679 680 KnownBits KnownScl; 681 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 682 APInt DemandedSclBits = OriginalDemandedBits.zextOrTrunc(NumSclBits); 683 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 684 return true; 685 686 Known = KnownScl.zextOrTrunc(BitWidth, false); 687 688 KnownBits KnownVec; 689 if (SimplifyDemandedBits(Vec, OriginalDemandedBits, DemandedVecElts, 690 KnownVec, TLO, Depth + 1)) 691 return true; 692 693 if (!!DemandedVecElts) { 694 Known.One &= KnownVec.One; 695 Known.Zero &= KnownVec.Zero; 696 } 697 698 return false; 699 } 700 case ISD::INSERT_SUBVECTOR: { 701 SDValue Base = Op.getOperand(0); 702 SDValue Sub = Op.getOperand(1); 703 EVT SubVT = Sub.getValueType(); 704 unsigned NumSubElts = SubVT.getVectorNumElements(); 705 706 // If index isn't constant, assume we need the original demanded base 707 // elements and ALL the inserted subvector elements. 708 APInt BaseElts = DemandedElts; 709 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 710 if (isa<ConstantSDNode>(Op.getOperand(2))) { 711 const APInt &Idx = Op.getConstantOperandAPInt(2); 712 if (Idx.ule(NumElts - NumSubElts)) { 713 unsigned SubIdx = Idx.getZExtValue(); 714 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 715 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 716 } 717 } 718 719 KnownBits KnownSub, KnownBase; 720 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 721 Depth + 1)) 722 return true; 723 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 724 Depth + 1)) 725 return true; 726 727 Known.Zero.setAllBits(); 728 Known.One.setAllBits(); 729 if (!!SubElts) { 730 Known.One &= KnownSub.One; 731 Known.Zero &= KnownSub.Zero; 732 } 733 if (!!BaseElts) { 734 Known.One &= KnownBase.One; 735 Known.Zero &= KnownBase.Zero; 736 } 737 break; 738 } 739 case ISD::CONCAT_VECTORS: { 740 Known.Zero.setAllBits(); 741 Known.One.setAllBits(); 742 EVT SubVT = Op.getOperand(0).getValueType(); 743 unsigned NumSubVecs = Op.getNumOperands(); 744 unsigned NumSubElts = SubVT.getVectorNumElements(); 745 for (unsigned i = 0; i != NumSubVecs; ++i) { 746 APInt DemandedSubElts = 747 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 748 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 749 Known2, TLO, Depth + 1)) 750 return true; 751 // Known bits are shared by every demanded subvector element. 752 if (!!DemandedSubElts) { 753 Known.One &= Known2.One; 754 Known.Zero &= Known2.Zero; 755 } 756 } 757 break; 758 } 759 case ISD::VECTOR_SHUFFLE: { 760 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 761 762 // Collect demanded elements from shuffle operands.. 763 APInt DemandedLHS(NumElts, 0); 764 APInt DemandedRHS(NumElts, 0); 765 for (unsigned i = 0; i != NumElts; ++i) { 766 if (!DemandedElts[i]) 767 continue; 768 int M = ShuffleMask[i]; 769 if (M < 0) { 770 // For UNDEF elements, we don't know anything about the common state of 771 // the shuffle result. 772 DemandedLHS.clearAllBits(); 773 DemandedRHS.clearAllBits(); 774 break; 775 } 776 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 777 if (M < (int)NumElts) 778 DemandedLHS.setBit(M); 779 else 780 DemandedRHS.setBit(M - NumElts); 781 } 782 783 if (!!DemandedLHS || !!DemandedRHS) { 784 Known.Zero.setAllBits(); 785 Known.One.setAllBits(); 786 if (!!DemandedLHS) { 787 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 788 Known2, TLO, Depth + 1)) 789 return true; 790 Known.One &= Known2.One; 791 Known.Zero &= Known2.Zero; 792 } 793 if (!!DemandedRHS) { 794 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 795 Known2, TLO, Depth + 1)) 796 return true; 797 Known.One &= Known2.One; 798 Known.Zero &= Known2.Zero; 799 } 800 } 801 break; 802 } 803 case ISD::AND: { 804 SDValue Op0 = Op.getOperand(0); 805 SDValue Op1 = Op.getOperand(1); 806 807 // If the RHS is a constant, check to see if the LHS would be zero without 808 // using the bits from the RHS. Below, we use knowledge about the RHS to 809 // simplify the LHS, here we're using information from the LHS to simplify 810 // the RHS. 811 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 812 // Do not increment Depth here; that can cause an infinite loop. 813 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 814 // If the LHS already has zeros where RHSC does, this 'and' is dead. 815 if ((LHSKnown.Zero & DemandedBits) == 816 (~RHSC->getAPIntValue() & DemandedBits)) 817 return TLO.CombineTo(Op, Op0); 818 819 // If any of the set bits in the RHS are known zero on the LHS, shrink 820 // the constant. 821 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 822 return true; 823 824 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 825 // constant, but if this 'and' is only clearing bits that were just set by 826 // the xor, then this 'and' can be eliminated by shrinking the mask of 827 // the xor. For example, for a 32-bit X: 828 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 829 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 830 LHSKnown.One == ~RHSC->getAPIntValue()) { 831 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 832 return TLO.CombineTo(Op, Xor); 833 } 834 } 835 836 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 837 Depth + 1)) 838 return true; 839 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 840 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 841 Known2, TLO, Depth + 1)) 842 return true; 843 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 844 845 // If all of the demanded bits are known one on one side, return the other. 846 // These bits cannot contribute to the result of the 'and'. 847 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 848 return TLO.CombineTo(Op, Op0); 849 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 850 return TLO.CombineTo(Op, Op1); 851 // If all of the demanded bits in the inputs are known zeros, return zero. 852 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 853 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 854 // If the RHS is a constant, see if we can simplify it. 855 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 856 return true; 857 // If the operation can be done in a smaller type, do so. 858 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 859 return true; 860 861 // Output known-1 bits are only known if set in both the LHS & RHS. 862 Known.One &= Known2.One; 863 // Output known-0 are known to be clear if zero in either the LHS | RHS. 864 Known.Zero |= Known2.Zero; 865 break; 866 } 867 case ISD::OR: { 868 SDValue Op0 = Op.getOperand(0); 869 SDValue Op1 = Op.getOperand(1); 870 871 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 872 Depth + 1)) 873 return true; 874 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 875 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 876 Known2, TLO, Depth + 1)) 877 return true; 878 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 879 880 // If all of the demanded bits are known zero on one side, return the other. 881 // These bits cannot contribute to the result of the 'or'. 882 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 883 return TLO.CombineTo(Op, Op0); 884 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 885 return TLO.CombineTo(Op, Op1); 886 // If the RHS is a constant, see if we can simplify it. 887 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 888 return true; 889 // If the operation can be done in a smaller type, do so. 890 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 891 return true; 892 893 // Output known-0 bits are only known if clear in both the LHS & RHS. 894 Known.Zero &= Known2.Zero; 895 // Output known-1 are known to be set if set in either the LHS | RHS. 896 Known.One |= Known2.One; 897 break; 898 } 899 case ISD::XOR: { 900 SDValue Op0 = Op.getOperand(0); 901 SDValue Op1 = Op.getOperand(1); 902 903 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 904 Depth + 1)) 905 return true; 906 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 907 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 908 Depth + 1)) 909 return true; 910 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 911 912 // If all of the demanded bits are known zero on one side, return the other. 913 // These bits cannot contribute to the result of the 'xor'. 914 if (DemandedBits.isSubsetOf(Known.Zero)) 915 return TLO.CombineTo(Op, Op0); 916 if (DemandedBits.isSubsetOf(Known2.Zero)) 917 return TLO.CombineTo(Op, Op1); 918 // If the operation can be done in a smaller type, do so. 919 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 920 return true; 921 922 // If all of the unknown bits are known to be zero on one side or the other 923 // (but not both) turn this into an *inclusive* or. 924 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 925 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 926 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 927 928 // Output known-0 bits are known if clear or set in both the LHS & RHS. 929 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 930 // Output known-1 are known to be set if set in only one of the LHS, RHS. 931 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 932 933 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 934 // If one side is a constant, and all of the known set bits on the other 935 // side are also set in the constant, turn this into an AND, as we know 936 // the bits will be cleared. 937 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 938 // NB: it is okay if more bits are known than are requested 939 if (C->getAPIntValue() == Known2.One) { 940 SDValue ANDC = 941 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 942 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 943 } 944 945 // If the RHS is a constant, see if we can change it. Don't alter a -1 946 // constant because that's a 'not' op, and that is better for combining 947 // and codegen. 948 if (!C->isAllOnesValue()) { 949 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 950 // We're flipping all demanded bits. Flip the undemanded bits too. 951 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 952 return TLO.CombineTo(Op, New); 953 } 954 // If we can't turn this into a 'not', try to shrink the constant. 955 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 956 return true; 957 } 958 } 959 960 Known = std::move(KnownOut); 961 break; 962 } 963 case ISD::SELECT: 964 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 965 Depth + 1)) 966 return true; 967 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 968 Depth + 1)) 969 return true; 970 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 971 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 972 973 // If the operands are constants, see if we can simplify them. 974 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 975 return true; 976 977 // Only known if known in both the LHS and RHS. 978 Known.One &= Known2.One; 979 Known.Zero &= Known2.Zero; 980 break; 981 case ISD::SELECT_CC: 982 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 983 Depth + 1)) 984 return true; 985 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 986 Depth + 1)) 987 return true; 988 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 989 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 990 991 // If the operands are constants, see if we can simplify them. 992 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 993 return true; 994 995 // Only known if known in both the LHS and RHS. 996 Known.One &= Known2.One; 997 Known.Zero &= Known2.Zero; 998 break; 999 case ISD::SETCC: { 1000 SDValue Op0 = Op.getOperand(0); 1001 SDValue Op1 = Op.getOperand(1); 1002 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1003 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1004 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1005 // -1, we may be able to bypass the setcc. 1006 if (DemandedBits.isSignMask() && 1007 Op0.getScalarValueSizeInBits() == BitWidth && 1008 getBooleanContents(VT) == 1009 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1010 // If we're testing X < 0, then this compare isn't needed - just use X! 1011 // FIXME: We're limiting to integer types here, but this should also work 1012 // if we don't care about FP signed-zero. The use of SETLT with FP means 1013 // that we don't care about NaNs. 1014 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1015 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1016 return TLO.CombineTo(Op, Op0); 1017 1018 // TODO: Should we check for other forms of sign-bit comparisons? 1019 // Examples: X <= -1, X >= 0 1020 } 1021 if (getBooleanContents(Op0.getValueType()) == 1022 TargetLowering::ZeroOrOneBooleanContent && 1023 BitWidth > 1) 1024 Known.Zero.setBitsFrom(1); 1025 break; 1026 } 1027 case ISD::SHL: { 1028 SDValue Op0 = Op.getOperand(0); 1029 SDValue Op1 = Op.getOperand(1); 1030 1031 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1032 // If the shift count is an invalid immediate, don't do anything. 1033 if (SA->getAPIntValue().uge(BitWidth)) 1034 break; 1035 1036 unsigned ShAmt = SA->getZExtValue(); 1037 1038 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1039 // single shift. We can do this if the bottom bits (which are shifted 1040 // out) are never demanded. 1041 if (Op0.getOpcode() == ISD::SRL) { 1042 if (ShAmt && 1043 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 1044 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 1045 if (SA2->getAPIntValue().ult(BitWidth)) { 1046 unsigned C1 = SA2->getZExtValue(); 1047 unsigned Opc = ISD::SHL; 1048 int Diff = ShAmt - C1; 1049 if (Diff < 0) { 1050 Diff = -Diff; 1051 Opc = ISD::SRL; 1052 } 1053 1054 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1055 return TLO.CombineTo( 1056 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1057 } 1058 } 1059 } 1060 } 1061 1062 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1063 Known, TLO, Depth + 1)) 1064 return true; 1065 1066 // Try shrinking the operation as long as the shift amount will still be 1067 // in range. 1068 if ((ShAmt < DemandedBits.getActiveBits()) && 1069 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1070 return true; 1071 1072 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1073 // are not demanded. This will likely allow the anyext to be folded away. 1074 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1075 SDValue InnerOp = Op0.getOperand(0); 1076 EVT InnerVT = InnerOp.getValueType(); 1077 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1078 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1079 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1080 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1081 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1082 ShTy = InnerVT; 1083 SDValue NarrowShl = 1084 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1085 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1086 return TLO.CombineTo( 1087 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1088 } 1089 // Repeat the SHL optimization above in cases where an extension 1090 // intervenes: (shl (anyext (shr x, c1)), c2) to 1091 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1092 // aren't demanded (as above) and that the shifted upper c1 bits of 1093 // x aren't demanded. 1094 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1095 InnerOp.hasOneUse()) { 1096 if (ConstantSDNode *SA2 = 1097 isConstOrConstSplat(InnerOp.getOperand(1))) { 1098 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1099 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1100 DemandedBits.getActiveBits() <= 1101 (InnerBits - InnerShAmt + ShAmt) && 1102 DemandedBits.countTrailingZeros() >= ShAmt) { 1103 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1104 Op1.getValueType()); 1105 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1106 InnerOp.getOperand(0)); 1107 return TLO.CombineTo( 1108 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1109 } 1110 } 1111 } 1112 } 1113 1114 Known.Zero <<= ShAmt; 1115 Known.One <<= ShAmt; 1116 // low bits known zero. 1117 Known.Zero.setLowBits(ShAmt); 1118 } 1119 break; 1120 } 1121 case ISD::SRL: { 1122 SDValue Op0 = Op.getOperand(0); 1123 SDValue Op1 = Op.getOperand(1); 1124 1125 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1126 // If the shift count is an invalid immediate, don't do anything. 1127 if (SA->getAPIntValue().uge(BitWidth)) 1128 break; 1129 1130 unsigned ShAmt = SA->getZExtValue(); 1131 APInt InDemandedMask = (DemandedBits << ShAmt); 1132 1133 // If the shift is exact, then it does demand the low bits (and knows that 1134 // they are zero). 1135 if (Op->getFlags().hasExact()) 1136 InDemandedMask.setLowBits(ShAmt); 1137 1138 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1139 // single shift. We can do this if the top bits (which are shifted out) 1140 // are never demanded. 1141 if (Op0.getOpcode() == ISD::SHL) { 1142 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 1143 if (ShAmt && 1144 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 1145 if (SA2->getAPIntValue().ult(BitWidth)) { 1146 unsigned C1 = SA2->getZExtValue(); 1147 unsigned Opc = ISD::SRL; 1148 int Diff = ShAmt - C1; 1149 if (Diff < 0) { 1150 Diff = -Diff; 1151 Opc = ISD::SHL; 1152 } 1153 1154 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1155 return TLO.CombineTo( 1156 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1157 } 1158 } 1159 } 1160 } 1161 1162 // Compute the new bits that are at the top now. 1163 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1164 Depth + 1)) 1165 return true; 1166 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1167 Known.Zero.lshrInPlace(ShAmt); 1168 Known.One.lshrInPlace(ShAmt); 1169 1170 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1171 } 1172 break; 1173 } 1174 case ISD::SRA: { 1175 SDValue Op0 = Op.getOperand(0); 1176 SDValue Op1 = Op.getOperand(1); 1177 1178 // If this is an arithmetic shift right and only the low-bit is set, we can 1179 // always convert this into a logical shr, even if the shift amount is 1180 // variable. The low bit of the shift cannot be an input sign bit unless 1181 // the shift amount is >= the size of the datatype, which is undefined. 1182 if (DemandedBits.isOneValue()) 1183 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1184 1185 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1186 // If the shift count is an invalid immediate, don't do anything. 1187 if (SA->getAPIntValue().uge(BitWidth)) 1188 break; 1189 1190 unsigned ShAmt = SA->getZExtValue(); 1191 APInt InDemandedMask = (DemandedBits << ShAmt); 1192 1193 // If the shift is exact, then it does demand the low bits (and knows that 1194 // they are zero). 1195 if (Op->getFlags().hasExact()) 1196 InDemandedMask.setLowBits(ShAmt); 1197 1198 // If any of the demanded bits are produced by the sign extension, we also 1199 // demand the input sign bit. 1200 if (DemandedBits.countLeadingZeros() < ShAmt) 1201 InDemandedMask.setSignBit(); 1202 1203 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1204 Depth + 1)) 1205 return true; 1206 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1207 Known.Zero.lshrInPlace(ShAmt); 1208 Known.One.lshrInPlace(ShAmt); 1209 1210 // If the input sign bit is known to be zero, or if none of the top bits 1211 // are demanded, turn this into an unsigned shift right. 1212 if (Known.Zero[BitWidth - ShAmt - 1] || 1213 DemandedBits.countLeadingZeros() >= ShAmt) { 1214 SDNodeFlags Flags; 1215 Flags.setExact(Op->getFlags().hasExact()); 1216 return TLO.CombineTo( 1217 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1218 } 1219 1220 int Log2 = DemandedBits.exactLogBase2(); 1221 if (Log2 >= 0) { 1222 // The bit must come from the sign. 1223 SDValue NewSA = 1224 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1225 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1226 } 1227 1228 if (Known.One[BitWidth - ShAmt - 1]) 1229 // New bits are known one. 1230 Known.One.setHighBits(ShAmt); 1231 } 1232 break; 1233 } 1234 case ISD::FSHL: 1235 case ISD::FSHR: { 1236 SDValue Op0 = Op.getOperand(0); 1237 SDValue Op1 = Op.getOperand(1); 1238 SDValue Op2 = Op.getOperand(2); 1239 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1240 1241 if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) { 1242 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1243 1244 // For fshl, 0-shift returns the 1st arg. 1245 // For fshr, 0-shift returns the 2nd arg. 1246 if (Amt == 0) { 1247 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1248 Known, TLO, Depth + 1)) 1249 return true; 1250 break; 1251 } 1252 1253 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1254 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1255 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1256 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1257 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1258 Depth + 1)) 1259 return true; 1260 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1261 Depth + 1)) 1262 return true; 1263 1264 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1265 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1266 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1267 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1268 Known.One |= Known2.One; 1269 Known.Zero |= Known2.Zero; 1270 } 1271 break; 1272 } 1273 case ISD::BITREVERSE: { 1274 SDValue Src = Op.getOperand(0); 1275 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1276 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1277 Depth + 1)) 1278 return true; 1279 Known.One = Known2.One.reverseBits(); 1280 Known.Zero = Known2.Zero.reverseBits(); 1281 break; 1282 } 1283 case ISD::SIGN_EXTEND_INREG: { 1284 SDValue Op0 = Op.getOperand(0); 1285 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1286 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1287 1288 // If we only care about the highest bit, don't bother shifting right. 1289 if (DemandedBits.isSignMask()) { 1290 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1291 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1292 // However if the input is already sign extended we expect the sign 1293 // extension to be dropped altogether later and do not simplify. 1294 if (!AlreadySignExtended) { 1295 // Compute the correct shift amount type, which must be getShiftAmountTy 1296 // for scalar types after legalization. 1297 EVT ShiftAmtTy = VT; 1298 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1299 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1300 1301 SDValue ShiftAmt = 1302 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1303 return TLO.CombineTo(Op, 1304 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1305 } 1306 } 1307 1308 // If none of the extended bits are demanded, eliminate the sextinreg. 1309 if (DemandedBits.getActiveBits() <= ExVTBits) 1310 return TLO.CombineTo(Op, Op0); 1311 1312 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1313 1314 // Since the sign extended bits are demanded, we know that the sign 1315 // bit is demanded. 1316 InputDemandedBits.setBit(ExVTBits - 1); 1317 1318 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1319 return true; 1320 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1321 1322 // If the sign bit of the input is known set or clear, then we know the 1323 // top bits of the result. 1324 1325 // If the input sign bit is known zero, convert this into a zero extension. 1326 if (Known.Zero[ExVTBits - 1]) 1327 return TLO.CombineTo( 1328 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1329 1330 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1331 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1332 Known.One.setBitsFrom(ExVTBits); 1333 Known.Zero &= Mask; 1334 } else { // Input sign bit unknown 1335 Known.Zero &= Mask; 1336 Known.One &= Mask; 1337 } 1338 break; 1339 } 1340 case ISD::BUILD_PAIR: { 1341 EVT HalfVT = Op.getOperand(0).getValueType(); 1342 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1343 1344 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1345 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1346 1347 KnownBits KnownLo, KnownHi; 1348 1349 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1350 return true; 1351 1352 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1353 return true; 1354 1355 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1356 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1357 1358 Known.One = KnownLo.One.zext(BitWidth) | 1359 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1360 break; 1361 } 1362 case ISD::ZERO_EXTEND: { 1363 SDValue Src = Op.getOperand(0); 1364 unsigned InBits = Src.getScalarValueSizeInBits(); 1365 1366 // If none of the top bits are demanded, convert this into an any_extend. 1367 if (DemandedBits.getActiveBits() <= InBits) 1368 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1369 1370 APInt InDemandedBits = DemandedBits.trunc(InBits); 1371 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1372 return true; 1373 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1374 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1375 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1376 break; 1377 } 1378 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1379 // TODO - merge this with ZERO_EXTEND above? 1380 SDValue Src = Op.getOperand(0); 1381 EVT SrcVT = Src.getValueType(); 1382 unsigned InBits = SrcVT.getScalarSizeInBits(); 1383 unsigned InElts = SrcVT.getVectorNumElements(); 1384 1385 // If we only need the non-extended bits of the bottom element 1386 // then we can just bitcast to the result. 1387 if (DemandedBits.getActiveBits() <= InBits && DemandedElts == 1 && 1388 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1389 TLO.DAG.getDataLayout().isLittleEndian()) 1390 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1391 1392 APInt InDemandedBits = DemandedBits.trunc(InBits); 1393 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1394 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1395 Depth + 1)) 1396 return true; 1397 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1398 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1399 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1400 break; 1401 } 1402 case ISD::SIGN_EXTEND: { 1403 SDValue Src = Op.getOperand(0); 1404 unsigned InBits = Src.getScalarValueSizeInBits(); 1405 1406 // If none of the top bits are demanded, convert this into an any_extend. 1407 if (DemandedBits.getActiveBits() <= InBits) 1408 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1409 1410 // Since some of the sign extended bits are demanded, we know that the sign 1411 // bit is demanded. 1412 APInt InDemandedBits = DemandedBits.trunc(InBits); 1413 InDemandedBits.setBit(InBits - 1); 1414 1415 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1416 return true; 1417 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1418 // If the sign bit is known one, the top bits match. 1419 Known = Known.sext(BitWidth); 1420 1421 // If the sign bit is known zero, convert this to a zero extend. 1422 if (Known.isNonNegative()) 1423 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1424 break; 1425 } 1426 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1427 // TODO - merge this with SIGN_EXTEND above? 1428 SDValue Src = Op.getOperand(0); 1429 unsigned InBits = Src.getScalarValueSizeInBits(); 1430 1431 APInt InDemandedBits = DemandedBits.trunc(InBits); 1432 1433 // If some of the sign extended bits are demanded, we know that the sign 1434 // bit is demanded. 1435 if (InBits < DemandedBits.getActiveBits()) 1436 InDemandedBits.setBit(InBits - 1); 1437 1438 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1439 return true; 1440 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1441 // If the sign bit is known one, the top bits match. 1442 Known = Known.sext(BitWidth); 1443 break; 1444 } 1445 case ISD::ANY_EXTEND: { 1446 SDValue Src = Op.getOperand(0); 1447 unsigned InBits = Src.getScalarValueSizeInBits(); 1448 APInt InDemandedBits = DemandedBits.trunc(InBits); 1449 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1450 return true; 1451 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1452 Known = Known.zext(BitWidth, false /* => any extend */); 1453 break; 1454 } 1455 case ISD::TRUNCATE: { 1456 SDValue Src = Op.getOperand(0); 1457 1458 // Simplify the input, using demanded bit information, and compute the known 1459 // zero/one bits live out. 1460 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1461 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1462 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1463 return true; 1464 Known = Known.trunc(BitWidth); 1465 1466 // If the input is only used by this truncate, see if we can shrink it based 1467 // on the known demanded bits. 1468 if (Src.getNode()->hasOneUse()) { 1469 switch (Src.getOpcode()) { 1470 default: 1471 break; 1472 case ISD::SRL: 1473 // Shrink SRL by a constant if none of the high bits shifted in are 1474 // demanded. 1475 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1476 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1477 // undesirable. 1478 break; 1479 1480 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1481 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1482 break; 1483 1484 SDValue Shift = Src.getOperand(1); 1485 uint64_t ShVal = ShAmt->getZExtValue(); 1486 1487 if (TLO.LegalTypes()) 1488 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1489 1490 APInt HighBits = 1491 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1492 HighBits.lshrInPlace(ShVal); 1493 HighBits = HighBits.trunc(BitWidth); 1494 1495 if (!(HighBits & DemandedBits)) { 1496 // None of the shifted in bits are needed. Add a truncate of the 1497 // shift input, then shift it. 1498 SDValue NewTrunc = 1499 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1500 return TLO.CombineTo( 1501 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1502 } 1503 break; 1504 } 1505 } 1506 1507 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1508 break; 1509 } 1510 case ISD::AssertZext: { 1511 // AssertZext demands all of the high bits, plus any of the low bits 1512 // demanded by its users. 1513 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1514 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1515 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1516 TLO, Depth + 1)) 1517 return true; 1518 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1519 1520 Known.Zero |= ~InMask; 1521 break; 1522 } 1523 case ISD::EXTRACT_VECTOR_ELT: { 1524 SDValue Src = Op.getOperand(0); 1525 SDValue Idx = Op.getOperand(1); 1526 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1527 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1528 1529 // Demand the bits from every vector element without a constant index. 1530 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1531 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1532 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1533 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1534 1535 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1536 // anything about the extended bits. 1537 APInt DemandedSrcBits = DemandedBits; 1538 if (BitWidth > EltBitWidth) 1539 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1540 1541 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1542 Depth + 1)) 1543 return true; 1544 1545 Known = Known2; 1546 if (BitWidth > EltBitWidth) 1547 Known = Known.zext(BitWidth, false /* => any extend */); 1548 break; 1549 } 1550 case ISD::BITCAST: { 1551 SDValue Src = Op.getOperand(0); 1552 EVT SrcVT = Src.getValueType(); 1553 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1554 1555 // If this is an FP->Int bitcast and if the sign bit is the only 1556 // thing demanded, turn this into a FGETSIGN. 1557 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1558 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1559 SrcVT.isFloatingPoint()) { 1560 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1561 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1562 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1563 SrcVT != MVT::f128) { 1564 // Cannot eliminate/lower SHL for f128 yet. 1565 EVT Ty = OpVTLegal ? VT : MVT::i32; 1566 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1567 // place. We expect the SHL to be eliminated by other optimizations. 1568 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1569 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1570 if (!OpVTLegal && OpVTSizeInBits > 32) 1571 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1572 unsigned ShVal = Op.getValueSizeInBits() - 1; 1573 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1574 return TLO.CombineTo(Op, 1575 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1576 } 1577 } 1578 1579 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1580 // Demand the elt/bit if any of the original elts/bits are demanded. 1581 // TODO - bigendian once we have test coverage. 1582 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1583 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1584 (BitWidth % NumSrcEltBits) == 0 && 1585 TLO.DAG.getDataLayout().isLittleEndian()) { 1586 unsigned Scale = BitWidth / NumSrcEltBits; 1587 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1588 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1589 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1590 for (unsigned i = 0; i != Scale; ++i) { 1591 unsigned Offset = i * NumSrcEltBits; 1592 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1593 if (!Sub.isNullValue()) { 1594 DemandedSrcBits |= Sub; 1595 for (unsigned j = 0; j != NumElts; ++j) 1596 if (DemandedElts[j]) 1597 DemandedSrcElts.setBit((j * Scale) + i); 1598 } 1599 } 1600 1601 APInt KnownSrcUndef, KnownSrcZero; 1602 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1603 KnownSrcZero, TLO, Depth + 1)) 1604 return true; 1605 1606 KnownBits KnownSrcBits; 1607 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1608 KnownSrcBits, TLO, Depth + 1)) 1609 return true; 1610 } else if ((NumSrcEltBits % BitWidth) == 0 && 1611 TLO.DAG.getDataLayout().isLittleEndian()) { 1612 unsigned Scale = NumSrcEltBits / BitWidth; 1613 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1614 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1615 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1616 for (unsigned i = 0; i != NumElts; ++i) 1617 if (DemandedElts[i]) { 1618 unsigned Offset = (i % Scale) * BitWidth; 1619 DemandedSrcBits.insertBits(DemandedBits, Offset); 1620 DemandedSrcElts.setBit(i / Scale); 1621 } 1622 1623 if (SrcVT.isVector()) { 1624 APInt KnownSrcUndef, KnownSrcZero; 1625 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1626 KnownSrcZero, TLO, Depth + 1)) 1627 return true; 1628 } 1629 1630 KnownBits KnownSrcBits; 1631 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1632 KnownSrcBits, TLO, Depth + 1)) 1633 return true; 1634 } 1635 1636 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1637 // recursive call where Known may be useful to the caller. 1638 if (Depth > 0) { 1639 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1640 return false; 1641 } 1642 break; 1643 } 1644 case ISD::ADD: 1645 case ISD::MUL: 1646 case ISD::SUB: { 1647 // Add, Sub, and Mul don't demand any bits in positions beyond that 1648 // of the highest bit demanded of them. 1649 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1650 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1651 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1652 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1653 Depth + 1) || 1654 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1655 Depth + 1) || 1656 // See if the operation should be performed at a smaller bit width. 1657 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1658 SDNodeFlags Flags = Op.getNode()->getFlags(); 1659 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1660 // Disable the nsw and nuw flags. We can no longer guarantee that we 1661 // won't wrap after simplification. 1662 Flags.setNoSignedWrap(false); 1663 Flags.setNoUnsignedWrap(false); 1664 SDValue NewOp = 1665 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1666 return TLO.CombineTo(Op, NewOp); 1667 } 1668 return true; 1669 } 1670 1671 // If we have a constant operand, we may be able to turn it into -1 if we 1672 // do not demand the high bits. This can make the constant smaller to 1673 // encode, allow more general folding, or match specialized instruction 1674 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1675 // is probably not useful (and could be detrimental). 1676 ConstantSDNode *C = isConstOrConstSplat(Op1); 1677 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1678 if (C && !C->isAllOnesValue() && !C->isOne() && 1679 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1680 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1681 // We can't guarantee that the new math op doesn't wrap, so explicitly 1682 // clear those flags to prevent folding with a potential existing node 1683 // that has those flags set. 1684 SDNodeFlags Flags; 1685 Flags.setNoSignedWrap(false); 1686 Flags.setNoUnsignedWrap(false); 1687 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1688 return TLO.CombineTo(Op, NewOp); 1689 } 1690 1691 LLVM_FALLTHROUGH; 1692 } 1693 default: 1694 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1695 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1696 Known, TLO, Depth)) 1697 return true; 1698 break; 1699 } 1700 1701 // Just use computeKnownBits to compute output bits. 1702 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1703 break; 1704 } 1705 1706 // If we know the value of all of the demanded bits, return this as a 1707 // constant. 1708 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1709 // Avoid folding to a constant if any OpaqueConstant is involved. 1710 const SDNode *N = Op.getNode(); 1711 for (SDNodeIterator I = SDNodeIterator::begin(N), 1712 E = SDNodeIterator::end(N); 1713 I != E; ++I) { 1714 SDNode *Op = *I; 1715 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1716 if (C->isOpaque()) 1717 return false; 1718 } 1719 // TODO: Handle float bits as well. 1720 if (VT.isInteger()) 1721 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1722 } 1723 1724 return false; 1725 } 1726 1727 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1728 const APInt &DemandedElts, 1729 APInt &KnownUndef, 1730 APInt &KnownZero, 1731 DAGCombinerInfo &DCI) const { 1732 SelectionDAG &DAG = DCI.DAG; 1733 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1734 !DCI.isBeforeLegalizeOps()); 1735 1736 bool Simplified = 1737 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1738 if (Simplified) { 1739 DCI.AddToWorklist(Op.getNode()); 1740 DCI.CommitTargetLoweringOpt(TLO); 1741 } 1742 return Simplified; 1743 } 1744 1745 /// Given a vector binary operation and known undefined elements for each input 1746 /// operand, compute whether each element of the output is undefined. 1747 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1748 const APInt &UndefOp0, 1749 const APInt &UndefOp1) { 1750 EVT VT = BO.getValueType(); 1751 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 1752 "Vector binop only"); 1753 1754 EVT EltVT = VT.getVectorElementType(); 1755 unsigned NumElts = VT.getVectorNumElements(); 1756 assert(UndefOp0.getBitWidth() == NumElts && 1757 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1758 1759 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1760 const APInt &UndefVals) { 1761 if (UndefVals[Index]) 1762 return DAG.getUNDEF(EltVT); 1763 1764 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1765 // Try hard to make sure that the getNode() call is not creating temporary 1766 // nodes. Ignore opaque integers because they do not constant fold. 1767 SDValue Elt = BV->getOperand(Index); 1768 auto *C = dyn_cast<ConstantSDNode>(Elt); 1769 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1770 return Elt; 1771 } 1772 1773 return SDValue(); 1774 }; 1775 1776 APInt KnownUndef = APInt::getNullValue(NumElts); 1777 for (unsigned i = 0; i != NumElts; ++i) { 1778 // If both inputs for this element are either constant or undef and match 1779 // the element type, compute the constant/undef result for this element of 1780 // the vector. 1781 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1782 // not handle FP constants. The code within getNode() should be refactored 1783 // to avoid the danger of creating a bogus temporary node here. 1784 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1785 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1786 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1787 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1788 KnownUndef.setBit(i); 1789 } 1790 return KnownUndef; 1791 } 1792 1793 bool TargetLowering::SimplifyDemandedVectorElts( 1794 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1795 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1796 bool AssumeSingleUse) const { 1797 EVT VT = Op.getValueType(); 1798 APInt DemandedElts = DemandedEltMask; 1799 unsigned NumElts = DemandedElts.getBitWidth(); 1800 assert(VT.isVector() && "Expected vector op"); 1801 assert(VT.getVectorNumElements() == NumElts && 1802 "Mask size mismatches value type element count!"); 1803 1804 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1805 1806 // Undef operand. 1807 if (Op.isUndef()) { 1808 KnownUndef.setAllBits(); 1809 return false; 1810 } 1811 1812 // If Op has other users, assume that all elements are needed. 1813 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1814 DemandedElts.setAllBits(); 1815 1816 // Not demanding any elements from Op. 1817 if (DemandedElts == 0) { 1818 KnownUndef.setAllBits(); 1819 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1820 } 1821 1822 // Limit search depth. 1823 if (Depth >= 6) 1824 return false; 1825 1826 SDLoc DL(Op); 1827 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1828 1829 switch (Op.getOpcode()) { 1830 case ISD::SCALAR_TO_VECTOR: { 1831 if (!DemandedElts[0]) { 1832 KnownUndef.setAllBits(); 1833 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1834 } 1835 KnownUndef.setHighBits(NumElts - 1); 1836 break; 1837 } 1838 case ISD::BITCAST: { 1839 SDValue Src = Op.getOperand(0); 1840 EVT SrcVT = Src.getValueType(); 1841 1842 // We only handle vectors here. 1843 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1844 if (!SrcVT.isVector()) 1845 break; 1846 1847 // Fast handling of 'identity' bitcasts. 1848 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1849 if (NumSrcElts == NumElts) 1850 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1851 KnownZero, TLO, Depth + 1); 1852 1853 APInt SrcZero, SrcUndef; 1854 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1855 1856 // Bitcast from 'large element' src vector to 'small element' vector, we 1857 // must demand a source element if any DemandedElt maps to it. 1858 if ((NumElts % NumSrcElts) == 0) { 1859 unsigned Scale = NumElts / NumSrcElts; 1860 for (unsigned i = 0; i != NumElts; ++i) 1861 if (DemandedElts[i]) 1862 SrcDemandedElts.setBit(i / Scale); 1863 1864 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1865 TLO, Depth + 1)) 1866 return true; 1867 1868 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1869 // of the large element. 1870 // TODO - bigendian once we have test coverage. 1871 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1872 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1873 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1874 for (unsigned i = 0; i != NumElts; ++i) 1875 if (DemandedElts[i]) { 1876 unsigned Ofs = (i % Scale) * EltSizeInBits; 1877 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1878 } 1879 1880 KnownBits Known; 1881 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1882 return true; 1883 } 1884 1885 // If the src element is zero/undef then all the output elements will be - 1886 // only demanded elements are guaranteed to be correct. 1887 for (unsigned i = 0; i != NumSrcElts; ++i) { 1888 if (SrcDemandedElts[i]) { 1889 if (SrcZero[i]) 1890 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1891 if (SrcUndef[i]) 1892 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1893 } 1894 } 1895 } 1896 1897 // Bitcast from 'small element' src vector to 'large element' vector, we 1898 // demand all smaller source elements covered by the larger demanded element 1899 // of this vector. 1900 if ((NumSrcElts % NumElts) == 0) { 1901 unsigned Scale = NumSrcElts / NumElts; 1902 for (unsigned i = 0; i != NumElts; ++i) 1903 if (DemandedElts[i]) 1904 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1905 1906 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1907 TLO, Depth + 1)) 1908 return true; 1909 1910 // If all the src elements covering an output element are zero/undef, then 1911 // the output element will be as well, assuming it was demanded. 1912 for (unsigned i = 0; i != NumElts; ++i) { 1913 if (DemandedElts[i]) { 1914 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1915 KnownZero.setBit(i); 1916 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1917 KnownUndef.setBit(i); 1918 } 1919 } 1920 } 1921 break; 1922 } 1923 case ISD::BUILD_VECTOR: { 1924 // Check all elements and simplify any unused elements with UNDEF. 1925 if (!DemandedElts.isAllOnesValue()) { 1926 // Don't simplify BROADCASTS. 1927 if (llvm::any_of(Op->op_values(), 1928 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1929 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1930 bool Updated = false; 1931 for (unsigned i = 0; i != NumElts; ++i) { 1932 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1933 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1934 KnownUndef.setBit(i); 1935 Updated = true; 1936 } 1937 } 1938 if (Updated) 1939 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1940 } 1941 } 1942 for (unsigned i = 0; i != NumElts; ++i) { 1943 SDValue SrcOp = Op.getOperand(i); 1944 if (SrcOp.isUndef()) { 1945 KnownUndef.setBit(i); 1946 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1947 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1948 KnownZero.setBit(i); 1949 } 1950 } 1951 break; 1952 } 1953 case ISD::CONCAT_VECTORS: { 1954 EVT SubVT = Op.getOperand(0).getValueType(); 1955 unsigned NumSubVecs = Op.getNumOperands(); 1956 unsigned NumSubElts = SubVT.getVectorNumElements(); 1957 for (unsigned i = 0; i != NumSubVecs; ++i) { 1958 SDValue SubOp = Op.getOperand(i); 1959 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1960 APInt SubUndef, SubZero; 1961 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1962 Depth + 1)) 1963 return true; 1964 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1965 KnownZero.insertBits(SubZero, i * NumSubElts); 1966 } 1967 break; 1968 } 1969 case ISD::INSERT_SUBVECTOR: { 1970 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1971 break; 1972 SDValue Base = Op.getOperand(0); 1973 SDValue Sub = Op.getOperand(1); 1974 EVT SubVT = Sub.getValueType(); 1975 unsigned NumSubElts = SubVT.getVectorNumElements(); 1976 const APInt &Idx = Op.getConstantOperandAPInt(2); 1977 if (Idx.ugt(NumElts - NumSubElts)) 1978 break; 1979 unsigned SubIdx = Idx.getZExtValue(); 1980 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1981 APInt SubUndef, SubZero; 1982 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1983 Depth + 1)) 1984 return true; 1985 APInt BaseElts = DemandedElts; 1986 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1987 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1988 Depth + 1)) 1989 return true; 1990 KnownUndef.insertBits(SubUndef, SubIdx); 1991 KnownZero.insertBits(SubZero, SubIdx); 1992 break; 1993 } 1994 case ISD::EXTRACT_SUBVECTOR: { 1995 SDValue Src = Op.getOperand(0); 1996 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1997 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1998 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1999 // Offset the demanded elts by the subvector index. 2000 uint64_t Idx = SubIdx->getZExtValue(); 2001 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2002 APInt SrcUndef, SrcZero; 2003 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2004 Depth + 1)) 2005 return true; 2006 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2007 KnownZero = SrcZero.extractBits(NumElts, Idx); 2008 } 2009 break; 2010 } 2011 case ISD::INSERT_VECTOR_ELT: { 2012 SDValue Vec = Op.getOperand(0); 2013 SDValue Scl = Op.getOperand(1); 2014 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2015 2016 // For a legal, constant insertion index, if we don't need this insertion 2017 // then strip it, else remove it from the demanded elts. 2018 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2019 unsigned Idx = CIdx->getZExtValue(); 2020 if (!DemandedElts[Idx]) 2021 return TLO.CombineTo(Op, Vec); 2022 2023 APInt DemandedVecElts(DemandedElts); 2024 DemandedVecElts.clearBit(Idx); 2025 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2026 KnownZero, TLO, Depth + 1)) 2027 return true; 2028 2029 KnownUndef.clearBit(Idx); 2030 if (Scl.isUndef()) 2031 KnownUndef.setBit(Idx); 2032 2033 KnownZero.clearBit(Idx); 2034 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2035 KnownZero.setBit(Idx); 2036 break; 2037 } 2038 2039 APInt VecUndef, VecZero; 2040 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2041 Depth + 1)) 2042 return true; 2043 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2044 break; 2045 } 2046 case ISD::VSELECT: { 2047 // Try to transform the select condition based on the current demanded 2048 // elements. 2049 // TODO: If a condition element is undef, we can choose from one arm of the 2050 // select (and if one arm is undef, then we can propagate that to the 2051 // result). 2052 // TODO - add support for constant vselect masks (see IR version of this). 2053 APInt UnusedUndef, UnusedZero; 2054 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2055 UnusedZero, TLO, Depth + 1)) 2056 return true; 2057 2058 // See if we can simplify either vselect operand. 2059 APInt DemandedLHS(DemandedElts); 2060 APInt DemandedRHS(DemandedElts); 2061 APInt UndefLHS, ZeroLHS; 2062 APInt UndefRHS, ZeroRHS; 2063 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2064 ZeroLHS, TLO, Depth + 1)) 2065 return true; 2066 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2067 ZeroRHS, TLO, Depth + 1)) 2068 return true; 2069 2070 KnownUndef = UndefLHS & UndefRHS; 2071 KnownZero = ZeroLHS & ZeroRHS; 2072 break; 2073 } 2074 case ISD::VECTOR_SHUFFLE: { 2075 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2076 2077 // Collect demanded elements from shuffle operands.. 2078 APInt DemandedLHS(NumElts, 0); 2079 APInt DemandedRHS(NumElts, 0); 2080 for (unsigned i = 0; i != NumElts; ++i) { 2081 int M = ShuffleMask[i]; 2082 if (M < 0 || !DemandedElts[i]) 2083 continue; 2084 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2085 if (M < (int)NumElts) 2086 DemandedLHS.setBit(M); 2087 else 2088 DemandedRHS.setBit(M - NumElts); 2089 } 2090 2091 // See if we can simplify either shuffle operand. 2092 APInt UndefLHS, ZeroLHS; 2093 APInt UndefRHS, ZeroRHS; 2094 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2095 ZeroLHS, TLO, Depth + 1)) 2096 return true; 2097 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2098 ZeroRHS, TLO, Depth + 1)) 2099 return true; 2100 2101 // Simplify mask using undef elements from LHS/RHS. 2102 bool Updated = false; 2103 bool IdentityLHS = true, IdentityRHS = true; 2104 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2105 for (unsigned i = 0; i != NumElts; ++i) { 2106 int &M = NewMask[i]; 2107 if (M < 0) 2108 continue; 2109 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2110 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2111 Updated = true; 2112 M = -1; 2113 } 2114 IdentityLHS &= (M < 0) || (M == (int)i); 2115 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2116 } 2117 2118 // Update legal shuffle masks based on demanded elements if it won't reduce 2119 // to Identity which can cause premature removal of the shuffle mask. 2120 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 2121 isShuffleMaskLegal(NewMask, VT)) 2122 return TLO.CombineTo(Op, 2123 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 2124 Op.getOperand(1), NewMask)); 2125 2126 // Propagate undef/zero elements from LHS/RHS. 2127 for (unsigned i = 0; i != NumElts; ++i) { 2128 int M = ShuffleMask[i]; 2129 if (M < 0) { 2130 KnownUndef.setBit(i); 2131 } else if (M < (int)NumElts) { 2132 if (UndefLHS[M]) 2133 KnownUndef.setBit(i); 2134 if (ZeroLHS[M]) 2135 KnownZero.setBit(i); 2136 } else { 2137 if (UndefRHS[M - NumElts]) 2138 KnownUndef.setBit(i); 2139 if (ZeroRHS[M - NumElts]) 2140 KnownZero.setBit(i); 2141 } 2142 } 2143 break; 2144 } 2145 case ISD::SIGN_EXTEND_VECTOR_INREG: 2146 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2147 APInt SrcUndef, SrcZero; 2148 SDValue Src = Op.getOperand(0); 2149 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2150 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2151 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2152 Depth + 1)) 2153 return true; 2154 KnownZero = SrcZero.zextOrTrunc(NumElts); 2155 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2156 2157 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2158 // zext(undef) upper bits are guaranteed to be zero. 2159 if (DemandedElts.isSubsetOf(KnownUndef)) 2160 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2161 KnownUndef.clearAllBits(); 2162 } 2163 break; 2164 } 2165 2166 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2167 // MAX, saturated math, etc. 2168 case ISD::OR: 2169 case ISD::XOR: 2170 case ISD::ADD: 2171 case ISD::SUB: 2172 case ISD::FADD: 2173 case ISD::FSUB: 2174 case ISD::FMUL: 2175 case ISD::FDIV: 2176 case ISD::FREM: { 2177 APInt UndefRHS, ZeroRHS; 2178 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2179 ZeroRHS, TLO, Depth + 1)) 2180 return true; 2181 APInt UndefLHS, ZeroLHS; 2182 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2183 ZeroLHS, TLO, Depth + 1)) 2184 return true; 2185 2186 KnownZero = ZeroLHS & ZeroRHS; 2187 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2188 break; 2189 } 2190 case ISD::AND: { 2191 APInt SrcUndef, SrcZero; 2192 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2193 SrcZero, TLO, Depth + 1)) 2194 return true; 2195 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2196 KnownZero, TLO, Depth + 1)) 2197 return true; 2198 2199 // If either side has a zero element, then the result element is zero, even 2200 // if the other is an UNDEF. 2201 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2202 // and then handle 'and' nodes with the rest of the binop opcodes. 2203 KnownZero |= SrcZero; 2204 KnownUndef &= SrcUndef; 2205 KnownUndef &= ~KnownZero; 2206 break; 2207 } 2208 case ISD::TRUNCATE: 2209 case ISD::SIGN_EXTEND: 2210 case ISD::ZERO_EXTEND: 2211 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2212 KnownZero, TLO, Depth + 1)) 2213 return true; 2214 2215 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2216 // zext(undef) upper bits are guaranteed to be zero. 2217 if (DemandedElts.isSubsetOf(KnownUndef)) 2218 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2219 KnownUndef.clearAllBits(); 2220 } 2221 break; 2222 default: { 2223 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2224 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2225 KnownZero, TLO, Depth)) 2226 return true; 2227 } else { 2228 KnownBits Known; 2229 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2230 if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO, 2231 Depth, AssumeSingleUse)) 2232 return true; 2233 } 2234 break; 2235 } 2236 } 2237 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2238 2239 // Constant fold all undef cases. 2240 // TODO: Handle zero cases as well. 2241 if (DemandedElts.isSubsetOf(KnownUndef)) 2242 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2243 2244 return false; 2245 } 2246 2247 /// Determine which of the bits specified in Mask are known to be either zero or 2248 /// one and return them in the Known. 2249 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2250 KnownBits &Known, 2251 const APInt &DemandedElts, 2252 const SelectionDAG &DAG, 2253 unsigned Depth) const { 2254 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2255 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2256 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2257 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2258 "Should use MaskedValueIsZero if you don't know whether Op" 2259 " is a target node!"); 2260 Known.resetAll(); 2261 } 2262 2263 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2264 KnownBits &Known, 2265 const APInt &DemandedElts, 2266 const SelectionDAG &DAG, 2267 unsigned Depth) const { 2268 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2269 2270 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2271 // The low bits are known zero if the pointer is aligned. 2272 Known.Zero.setLowBits(Log2_32(Align)); 2273 } 2274 } 2275 2276 /// This method can be implemented by targets that want to expose additional 2277 /// information about sign bits to the DAG Combiner. 2278 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2279 const APInt &, 2280 const SelectionDAG &, 2281 unsigned Depth) const { 2282 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2283 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2284 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2285 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2286 "Should use ComputeNumSignBits if you don't know whether Op" 2287 " is a target node!"); 2288 return 1; 2289 } 2290 2291 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2292 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2293 TargetLoweringOpt &TLO, unsigned Depth) const { 2294 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2295 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2296 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2297 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2298 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2299 " is a target node!"); 2300 return false; 2301 } 2302 2303 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2304 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2305 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2306 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2307 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2308 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2309 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2310 "Should use SimplifyDemandedBits if you don't know whether Op" 2311 " is a target node!"); 2312 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2313 return false; 2314 } 2315 2316 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2317 const SelectionDAG &DAG, 2318 bool SNaN, 2319 unsigned Depth) const { 2320 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2321 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2322 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2323 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2324 "Should use isKnownNeverNaN if you don't know whether Op" 2325 " is a target node!"); 2326 return false; 2327 } 2328 2329 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2330 // work with truncating build vectors and vectors with elements of less than 2331 // 8 bits. 2332 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2333 if (!N) 2334 return false; 2335 2336 APInt CVal; 2337 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2338 CVal = CN->getAPIntValue(); 2339 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2340 auto *CN = BV->getConstantSplatNode(); 2341 if (!CN) 2342 return false; 2343 2344 // If this is a truncating build vector, truncate the splat value. 2345 // Otherwise, we may fail to match the expected values below. 2346 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2347 CVal = CN->getAPIntValue(); 2348 if (BVEltWidth < CVal.getBitWidth()) 2349 CVal = CVal.trunc(BVEltWidth); 2350 } else { 2351 return false; 2352 } 2353 2354 switch (getBooleanContents(N->getValueType(0))) { 2355 case UndefinedBooleanContent: 2356 return CVal[0]; 2357 case ZeroOrOneBooleanContent: 2358 return CVal.isOneValue(); 2359 case ZeroOrNegativeOneBooleanContent: 2360 return CVal.isAllOnesValue(); 2361 } 2362 2363 llvm_unreachable("Invalid boolean contents"); 2364 } 2365 2366 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2367 if (!N) 2368 return false; 2369 2370 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2371 if (!CN) { 2372 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2373 if (!BV) 2374 return false; 2375 2376 // Only interested in constant splats, we don't care about undef 2377 // elements in identifying boolean constants and getConstantSplatNode 2378 // returns NULL if all ops are undef; 2379 CN = BV->getConstantSplatNode(); 2380 if (!CN) 2381 return false; 2382 } 2383 2384 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2385 return !CN->getAPIntValue()[0]; 2386 2387 return CN->isNullValue(); 2388 } 2389 2390 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2391 bool SExt) const { 2392 if (VT == MVT::i1) 2393 return N->isOne(); 2394 2395 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2396 switch (Cnt) { 2397 case TargetLowering::ZeroOrOneBooleanContent: 2398 // An extended value of 1 is always true, unless its original type is i1, 2399 // in which case it will be sign extended to -1. 2400 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2401 case TargetLowering::UndefinedBooleanContent: 2402 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2403 return N->isAllOnesValue() && SExt; 2404 } 2405 llvm_unreachable("Unexpected enumeration."); 2406 } 2407 2408 /// This helper function of SimplifySetCC tries to optimize the comparison when 2409 /// either operand of the SetCC node is a bitwise-and instruction. 2410 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2411 ISD::CondCode Cond, const SDLoc &DL, 2412 DAGCombinerInfo &DCI) const { 2413 // Match these patterns in any of their permutations: 2414 // (X & Y) == Y 2415 // (X & Y) != Y 2416 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2417 std::swap(N0, N1); 2418 2419 EVT OpVT = N0.getValueType(); 2420 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2421 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2422 return SDValue(); 2423 2424 SDValue X, Y; 2425 if (N0.getOperand(0) == N1) { 2426 X = N0.getOperand(1); 2427 Y = N0.getOperand(0); 2428 } else if (N0.getOperand(1) == N1) { 2429 X = N0.getOperand(0); 2430 Y = N0.getOperand(1); 2431 } else { 2432 return SDValue(); 2433 } 2434 2435 SelectionDAG &DAG = DCI.DAG; 2436 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2437 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2438 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2439 // Note that where Y is variable and is known to have at most one bit set 2440 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2441 // equivalent when Y == 0. 2442 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2443 if (DCI.isBeforeLegalizeOps() || 2444 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2445 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2446 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2447 // If the target supports an 'and-not' or 'and-complement' logic operation, 2448 // try to use that to make a comparison operation more efficient. 2449 // But don't do this transform if the mask is a single bit because there are 2450 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2451 // 'rlwinm' on PPC). 2452 2453 // Bail out if the compare operand that we want to turn into a zero is 2454 // already a zero (otherwise, infinite loop). 2455 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2456 if (YConst && YConst->isNullValue()) 2457 return SDValue(); 2458 2459 // Transform this into: ~X & Y == 0. 2460 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2461 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2462 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2463 } 2464 2465 return SDValue(); 2466 } 2467 2468 /// There are multiple IR patterns that could be checking whether certain 2469 /// truncation of a signed number would be lossy or not. The pattern which is 2470 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2471 /// We are looking for the following pattern: (KeptBits is a constant) 2472 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2473 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2474 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2475 /// We will unfold it into the natural trunc+sext pattern: 2476 /// ((%x << C) a>> C) dstcond %x 2477 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2478 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2479 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2480 const SDLoc &DL) const { 2481 // We must be comparing with a constant. 2482 ConstantSDNode *C1; 2483 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2484 return SDValue(); 2485 2486 // N0 should be: add %x, (1 << (KeptBits-1)) 2487 if (N0->getOpcode() != ISD::ADD) 2488 return SDValue(); 2489 2490 // And we must be 'add'ing a constant. 2491 ConstantSDNode *C01; 2492 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2493 return SDValue(); 2494 2495 SDValue X = N0->getOperand(0); 2496 EVT XVT = X.getValueType(); 2497 2498 // Validate constants ... 2499 2500 APInt I1 = C1->getAPIntValue(); 2501 2502 ISD::CondCode NewCond; 2503 if (Cond == ISD::CondCode::SETULT) { 2504 NewCond = ISD::CondCode::SETEQ; 2505 } else if (Cond == ISD::CondCode::SETULE) { 2506 NewCond = ISD::CondCode::SETEQ; 2507 // But need to 'canonicalize' the constant. 2508 I1 += 1; 2509 } else if (Cond == ISD::CondCode::SETUGT) { 2510 NewCond = ISD::CondCode::SETNE; 2511 // But need to 'canonicalize' the constant. 2512 I1 += 1; 2513 } else if (Cond == ISD::CondCode::SETUGE) { 2514 NewCond = ISD::CondCode::SETNE; 2515 } else 2516 return SDValue(); 2517 2518 APInt I01 = C01->getAPIntValue(); 2519 2520 auto checkConstants = [&I1, &I01]() -> bool { 2521 // Both of them must be power-of-two, and the constant from setcc is bigger. 2522 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2523 }; 2524 2525 if (checkConstants()) { 2526 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2527 } else { 2528 // What if we invert constants? (and the target predicate) 2529 I1.negate(); 2530 I01.negate(); 2531 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2532 if (!checkConstants()) 2533 return SDValue(); 2534 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2535 } 2536 2537 // They are power-of-two, so which bit is set? 2538 const unsigned KeptBits = I1.logBase2(); 2539 const unsigned KeptBitsMinusOne = I01.logBase2(); 2540 2541 // Magic! 2542 if (KeptBits != (KeptBitsMinusOne + 1)) 2543 return SDValue(); 2544 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2545 2546 // We don't want to do this in every single case. 2547 SelectionDAG &DAG = DCI.DAG; 2548 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2549 XVT, KeptBits)) 2550 return SDValue(); 2551 2552 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2553 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2554 2555 // Unfold into: ((%x << C) a>> C) cond %x 2556 // Where 'cond' will be either 'eq' or 'ne'. 2557 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2558 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2559 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2560 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2561 2562 return T2; 2563 } 2564 2565 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2566 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2567 /// handle the commuted versions of these patterns. 2568 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2569 ISD::CondCode Cond, const SDLoc &DL, 2570 DAGCombinerInfo &DCI) const { 2571 unsigned BOpcode = N0.getOpcode(); 2572 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2573 "Unexpected binop"); 2574 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2575 2576 // (X + Y) == X --> Y == 0 2577 // (X - Y) == X --> Y == 0 2578 // (X ^ Y) == X --> Y == 0 2579 SelectionDAG &DAG = DCI.DAG; 2580 EVT OpVT = N0.getValueType(); 2581 SDValue X = N0.getOperand(0); 2582 SDValue Y = N0.getOperand(1); 2583 if (X == N1) 2584 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2585 2586 if (Y != N1) 2587 return SDValue(); 2588 2589 // (X + Y) == Y --> X == 0 2590 // (X ^ Y) == Y --> X == 0 2591 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2592 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2593 2594 // The shift would not be valid if the operands are boolean (i1). 2595 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2596 return SDValue(); 2597 2598 // (X - Y) == Y --> X == Y << 1 2599 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2600 !DCI.isBeforeLegalize()); 2601 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2602 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2603 if (!DCI.isCalledByLegalizer()) 2604 DCI.AddToWorklist(YShl1.getNode()); 2605 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2606 } 2607 2608 /// Try to simplify a setcc built with the specified operands and cc. If it is 2609 /// unable to simplify it, return a null SDValue. 2610 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2611 ISD::CondCode Cond, bool foldBooleans, 2612 DAGCombinerInfo &DCI, 2613 const SDLoc &dl) const { 2614 SelectionDAG &DAG = DCI.DAG; 2615 EVT OpVT = N0.getValueType(); 2616 2617 // Constant fold or commute setcc. 2618 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 2619 return Fold; 2620 2621 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2622 // TODO: Handle non-splat vector constants. All undef causes trouble. 2623 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2624 if (isConstOrConstSplat(N0) && 2625 (DCI.isBeforeLegalizeOps() || 2626 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2627 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2628 2629 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2630 const APInt &C1 = N1C->getAPIntValue(); 2631 2632 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2633 // equality comparison, then we're just comparing whether X itself is 2634 // zero. 2635 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2636 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2637 N0.getOperand(1).getOpcode() == ISD::Constant) { 2638 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 2639 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2640 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2641 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2642 // (srl (ctlz x), 5) == 0 -> X != 0 2643 // (srl (ctlz x), 5) != 1 -> X != 0 2644 Cond = ISD::SETNE; 2645 } else { 2646 // (srl (ctlz x), 5) != 0 -> X == 0 2647 // (srl (ctlz x), 5) == 1 -> X == 0 2648 Cond = ISD::SETEQ; 2649 } 2650 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2651 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2652 Zero, Cond); 2653 } 2654 } 2655 2656 SDValue CTPOP = N0; 2657 // Look through truncs that don't change the value of a ctpop. 2658 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2659 CTPOP = N0.getOperand(0); 2660 2661 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2662 (N0 == CTPOP || 2663 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2664 EVT CTVT = CTPOP.getValueType(); 2665 SDValue CTOp = CTPOP.getOperand(0); 2666 2667 // (ctpop x) u< 2 -> (x & x-1) == 0 2668 // (ctpop x) u> 1 -> (x & x-1) != 0 2669 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2670 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2671 DAG.getConstant(1, dl, CTVT)); 2672 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2673 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2674 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2675 } 2676 2677 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2678 } 2679 2680 // (zext x) == C --> x == (trunc C) 2681 // (sext x) == C --> x == (trunc C) 2682 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2683 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2684 unsigned MinBits = N0.getValueSizeInBits(); 2685 SDValue PreExt; 2686 bool Signed = false; 2687 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2688 // ZExt 2689 MinBits = N0->getOperand(0).getValueSizeInBits(); 2690 PreExt = N0->getOperand(0); 2691 } else if (N0->getOpcode() == ISD::AND) { 2692 // DAGCombine turns costly ZExts into ANDs 2693 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2694 if ((C->getAPIntValue()+1).isPowerOf2()) { 2695 MinBits = C->getAPIntValue().countTrailingOnes(); 2696 PreExt = N0->getOperand(0); 2697 } 2698 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2699 // SExt 2700 MinBits = N0->getOperand(0).getValueSizeInBits(); 2701 PreExt = N0->getOperand(0); 2702 Signed = true; 2703 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2704 // ZEXTLOAD / SEXTLOAD 2705 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2706 MinBits = LN0->getMemoryVT().getSizeInBits(); 2707 PreExt = N0; 2708 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2709 Signed = true; 2710 MinBits = LN0->getMemoryVT().getSizeInBits(); 2711 PreExt = N0; 2712 } 2713 } 2714 2715 // Figure out how many bits we need to preserve this constant. 2716 unsigned ReqdBits = Signed ? 2717 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2718 C1.getActiveBits(); 2719 2720 // Make sure we're not losing bits from the constant. 2721 if (MinBits > 0 && 2722 MinBits < C1.getBitWidth() && 2723 MinBits >= ReqdBits) { 2724 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2725 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2726 // Will get folded away. 2727 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2728 if (MinBits == 1 && C1 == 1) 2729 // Invert the condition. 2730 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2731 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2732 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2733 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2734 } 2735 2736 // If truncating the setcc operands is not desirable, we can still 2737 // simplify the expression in some cases: 2738 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2739 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2740 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2741 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2742 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2743 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2744 SDValue TopSetCC = N0->getOperand(0); 2745 unsigned N0Opc = N0->getOpcode(); 2746 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2747 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2748 TopSetCC.getOpcode() == ISD::SETCC && 2749 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2750 (isConstFalseVal(N1C) || 2751 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2752 2753 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2754 (!N1C->isNullValue() && Cond == ISD::SETNE); 2755 2756 if (!Inverse) 2757 return TopSetCC; 2758 2759 ISD::CondCode InvCond = ISD::getSetCCInverse( 2760 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2761 TopSetCC.getOperand(0).getValueType().isInteger()); 2762 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2763 TopSetCC.getOperand(1), 2764 InvCond); 2765 } 2766 } 2767 } 2768 2769 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2770 // equality or unsigned, and all 1 bits of the const are in the same 2771 // partial word, see if we can shorten the load. 2772 if (DCI.isBeforeLegalize() && 2773 !ISD::isSignedIntSetCC(Cond) && 2774 N0.getOpcode() == ISD::AND && C1 == 0 && 2775 N0.getNode()->hasOneUse() && 2776 isa<LoadSDNode>(N0.getOperand(0)) && 2777 N0.getOperand(0).getNode()->hasOneUse() && 2778 isa<ConstantSDNode>(N0.getOperand(1))) { 2779 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2780 APInt bestMask; 2781 unsigned bestWidth = 0, bestOffset = 0; 2782 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2783 unsigned origWidth = N0.getValueSizeInBits(); 2784 unsigned maskWidth = origWidth; 2785 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2786 // 8 bits, but have to be careful... 2787 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2788 origWidth = Lod->getMemoryVT().getSizeInBits(); 2789 const APInt &Mask = N0.getConstantOperandAPInt(1); 2790 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2791 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2792 for (unsigned offset=0; offset<origWidth/width; offset++) { 2793 if (Mask.isSubsetOf(newMask)) { 2794 if (DAG.getDataLayout().isLittleEndian()) 2795 bestOffset = (uint64_t)offset * (width/8); 2796 else 2797 bestOffset = (origWidth/width - offset - 1) * (width/8); 2798 bestMask = Mask.lshr(offset * (width/8) * 8); 2799 bestWidth = width; 2800 break; 2801 } 2802 newMask <<= width; 2803 } 2804 } 2805 } 2806 if (bestWidth) { 2807 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2808 if (newVT.isRound() && 2809 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2810 EVT PtrType = Lod->getOperand(1).getValueType(); 2811 SDValue Ptr = Lod->getBasePtr(); 2812 if (bestOffset != 0) 2813 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2814 DAG.getConstant(bestOffset, dl, PtrType)); 2815 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2816 SDValue NewLoad = DAG.getLoad( 2817 newVT, dl, Lod->getChain(), Ptr, 2818 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2819 return DAG.getSetCC(dl, VT, 2820 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2821 DAG.getConstant(bestMask.trunc(bestWidth), 2822 dl, newVT)), 2823 DAG.getConstant(0LL, dl, newVT), Cond); 2824 } 2825 } 2826 } 2827 2828 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2829 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2830 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2831 2832 // If the comparison constant has bits in the upper part, the 2833 // zero-extended value could never match. 2834 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2835 C1.getBitWidth() - InSize))) { 2836 switch (Cond) { 2837 case ISD::SETUGT: 2838 case ISD::SETUGE: 2839 case ISD::SETEQ: 2840 return DAG.getConstant(0, dl, VT); 2841 case ISD::SETULT: 2842 case ISD::SETULE: 2843 case ISD::SETNE: 2844 return DAG.getConstant(1, dl, VT); 2845 case ISD::SETGT: 2846 case ISD::SETGE: 2847 // True if the sign bit of C1 is set. 2848 return DAG.getConstant(C1.isNegative(), dl, VT); 2849 case ISD::SETLT: 2850 case ISD::SETLE: 2851 // True if the sign bit of C1 isn't set. 2852 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2853 default: 2854 break; 2855 } 2856 } 2857 2858 // Otherwise, we can perform the comparison with the low bits. 2859 switch (Cond) { 2860 case ISD::SETEQ: 2861 case ISD::SETNE: 2862 case ISD::SETUGT: 2863 case ISD::SETUGE: 2864 case ISD::SETULT: 2865 case ISD::SETULE: { 2866 EVT newVT = N0.getOperand(0).getValueType(); 2867 if (DCI.isBeforeLegalizeOps() || 2868 (isOperationLegal(ISD::SETCC, newVT) && 2869 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2870 EVT NewSetCCVT = 2871 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2872 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2873 2874 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2875 NewConst, Cond); 2876 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2877 } 2878 break; 2879 } 2880 default: 2881 break; // todo, be more careful with signed comparisons 2882 } 2883 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2884 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2885 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2886 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2887 EVT ExtDstTy = N0.getValueType(); 2888 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2889 2890 // If the constant doesn't fit into the number of bits for the source of 2891 // the sign extension, it is impossible for both sides to be equal. 2892 if (C1.getMinSignedBits() > ExtSrcTyBits) 2893 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2894 2895 SDValue ZextOp; 2896 EVT Op0Ty = N0.getOperand(0).getValueType(); 2897 if (Op0Ty == ExtSrcTy) { 2898 ZextOp = N0.getOperand(0); 2899 } else { 2900 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2901 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2902 DAG.getConstant(Imm, dl, Op0Ty)); 2903 } 2904 if (!DCI.isCalledByLegalizer()) 2905 DCI.AddToWorklist(ZextOp.getNode()); 2906 // Otherwise, make this a use of a zext. 2907 return DAG.getSetCC(dl, VT, ZextOp, 2908 DAG.getConstant(C1 & APInt::getLowBitsSet( 2909 ExtDstTyBits, 2910 ExtSrcTyBits), 2911 dl, ExtDstTy), 2912 Cond); 2913 } else if ((N1C->isNullValue() || N1C->isOne()) && 2914 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2915 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2916 if (N0.getOpcode() == ISD::SETCC && 2917 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2918 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2919 if (TrueWhenTrue) 2920 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2921 // Invert the condition. 2922 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2923 CC = ISD::getSetCCInverse(CC, 2924 N0.getOperand(0).getValueType().isInteger()); 2925 if (DCI.isBeforeLegalizeOps() || 2926 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2927 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2928 } 2929 2930 if ((N0.getOpcode() == ISD::XOR || 2931 (N0.getOpcode() == ISD::AND && 2932 N0.getOperand(0).getOpcode() == ISD::XOR && 2933 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2934 isa<ConstantSDNode>(N0.getOperand(1)) && 2935 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2936 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2937 // can only do this if the top bits are known zero. 2938 unsigned BitWidth = N0.getValueSizeInBits(); 2939 if (DAG.MaskedValueIsZero(N0, 2940 APInt::getHighBitsSet(BitWidth, 2941 BitWidth-1))) { 2942 // Okay, get the un-inverted input value. 2943 SDValue Val; 2944 if (N0.getOpcode() == ISD::XOR) { 2945 Val = N0.getOperand(0); 2946 } else { 2947 assert(N0.getOpcode() == ISD::AND && 2948 N0.getOperand(0).getOpcode() == ISD::XOR); 2949 // ((X^1)&1)^1 -> X & 1 2950 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2951 N0.getOperand(0).getOperand(0), 2952 N0.getOperand(1)); 2953 } 2954 2955 return DAG.getSetCC(dl, VT, Val, N1, 2956 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2957 } 2958 } else if (N1C->isOne() && 2959 (VT == MVT::i1 || 2960 getBooleanContents(N0->getValueType(0)) == 2961 ZeroOrOneBooleanContent)) { 2962 SDValue Op0 = N0; 2963 if (Op0.getOpcode() == ISD::TRUNCATE) 2964 Op0 = Op0.getOperand(0); 2965 2966 if ((Op0.getOpcode() == ISD::XOR) && 2967 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2968 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2969 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2970 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2971 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2972 Cond); 2973 } 2974 if (Op0.getOpcode() == ISD::AND && 2975 isa<ConstantSDNode>(Op0.getOperand(1)) && 2976 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2977 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2978 if (Op0.getValueType().bitsGT(VT)) 2979 Op0 = DAG.getNode(ISD::AND, dl, VT, 2980 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2981 DAG.getConstant(1, dl, VT)); 2982 else if (Op0.getValueType().bitsLT(VT)) 2983 Op0 = DAG.getNode(ISD::AND, dl, VT, 2984 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2985 DAG.getConstant(1, dl, VT)); 2986 2987 return DAG.getSetCC(dl, VT, Op0, 2988 DAG.getConstant(0, dl, Op0.getValueType()), 2989 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2990 } 2991 if (Op0.getOpcode() == ISD::AssertZext && 2992 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2993 return DAG.getSetCC(dl, VT, Op0, 2994 DAG.getConstant(0, dl, Op0.getValueType()), 2995 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2996 } 2997 } 2998 2999 if (SDValue V = 3000 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3001 return V; 3002 } 3003 3004 // These simplifications apply to splat vectors as well. 3005 // TODO: Handle more splat vector cases. 3006 if (auto *N1C = isConstOrConstSplat(N1)) { 3007 const APInt &C1 = N1C->getAPIntValue(); 3008 3009 APInt MinVal, MaxVal; 3010 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3011 if (ISD::isSignedIntSetCC(Cond)) { 3012 MinVal = APInt::getSignedMinValue(OperandBitSize); 3013 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3014 } else { 3015 MinVal = APInt::getMinValue(OperandBitSize); 3016 MaxVal = APInt::getMaxValue(OperandBitSize); 3017 } 3018 3019 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3020 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3021 // X >= MIN --> true 3022 if (C1 == MinVal) 3023 return DAG.getBoolConstant(true, dl, VT, OpVT); 3024 3025 if (!VT.isVector()) { // TODO: Support this for vectors. 3026 // X >= C0 --> X > (C0 - 1) 3027 APInt C = C1 - 1; 3028 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3029 if ((DCI.isBeforeLegalizeOps() || 3030 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3031 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3032 isLegalICmpImmediate(C.getSExtValue())))) { 3033 return DAG.getSetCC(dl, VT, N0, 3034 DAG.getConstant(C, dl, N1.getValueType()), 3035 NewCC); 3036 } 3037 } 3038 } 3039 3040 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3041 // X <= MAX --> true 3042 if (C1 == MaxVal) 3043 return DAG.getBoolConstant(true, dl, VT, OpVT); 3044 3045 // X <= C0 --> X < (C0 + 1) 3046 if (!VT.isVector()) { // TODO: Support this for vectors. 3047 APInt C = C1 + 1; 3048 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3049 if ((DCI.isBeforeLegalizeOps() || 3050 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3051 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3052 isLegalICmpImmediate(C.getSExtValue())))) { 3053 return DAG.getSetCC(dl, VT, N0, 3054 DAG.getConstant(C, dl, N1.getValueType()), 3055 NewCC); 3056 } 3057 } 3058 } 3059 3060 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3061 if (C1 == MinVal) 3062 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3063 3064 // TODO: Support this for vectors after legalize ops. 3065 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3066 // Canonicalize setlt X, Max --> setne X, Max 3067 if (C1 == MaxVal) 3068 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3069 3070 // If we have setult X, 1, turn it into seteq X, 0 3071 if (C1 == MinVal+1) 3072 return DAG.getSetCC(dl, VT, N0, 3073 DAG.getConstant(MinVal, dl, N0.getValueType()), 3074 ISD::SETEQ); 3075 } 3076 } 3077 3078 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3079 if (C1 == MaxVal) 3080 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3081 3082 // TODO: Support this for vectors after legalize ops. 3083 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3084 // Canonicalize setgt X, Min --> setne X, Min 3085 if (C1 == MinVal) 3086 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3087 3088 // If we have setugt X, Max-1, turn it into seteq X, Max 3089 if (C1 == MaxVal-1) 3090 return DAG.getSetCC(dl, VT, N0, 3091 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3092 ISD::SETEQ); 3093 } 3094 } 3095 3096 // If we have "setcc X, C0", check to see if we can shrink the immediate 3097 // by changing cc. 3098 // TODO: Support this for vectors after legalize ops. 3099 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3100 // SETUGT X, SINTMAX -> SETLT X, 0 3101 if (Cond == ISD::SETUGT && 3102 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3103 return DAG.getSetCC(dl, VT, N0, 3104 DAG.getConstant(0, dl, N1.getValueType()), 3105 ISD::SETLT); 3106 3107 // SETULT X, SINTMIN -> SETGT X, -1 3108 if (Cond == ISD::SETULT && 3109 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3110 SDValue ConstMinusOne = 3111 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3112 N1.getValueType()); 3113 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3114 } 3115 } 3116 } 3117 3118 // Back to non-vector simplifications. 3119 // TODO: Can we do these for vector splats? 3120 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3121 const APInt &C1 = N1C->getAPIntValue(); 3122 3123 // Fold bit comparisons when we can. 3124 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3125 (VT == N0.getValueType() || 3126 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 3127 N0.getOpcode() == ISD::AND) { 3128 auto &DL = DAG.getDataLayout(); 3129 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3130 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3131 !DCI.isBeforeLegalize()); 3132 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3133 // Perform the xform if the AND RHS is a single bit. 3134 if (AndRHS->getAPIntValue().isPowerOf2()) { 3135 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3136 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3137 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 3138 ShiftTy))); 3139 } 3140 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3141 // (X & 8) == 8 --> (X & 8) >> 3 3142 // Perform the xform if C1 is a single bit. 3143 if (C1.isPowerOf2()) { 3144 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3145 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3146 DAG.getConstant(C1.logBase2(), dl, 3147 ShiftTy))); 3148 } 3149 } 3150 } 3151 } 3152 3153 if (C1.getMinSignedBits() <= 64 && 3154 !isLegalICmpImmediate(C1.getSExtValue())) { 3155 // (X & -256) == 256 -> (X >> 8) == 1 3156 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3157 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3158 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3159 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3160 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3161 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3162 auto &DL = DAG.getDataLayout(); 3163 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3164 !DCI.isBeforeLegalize()); 3165 EVT CmpTy = N0.getValueType(); 3166 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 3167 DAG.getConstant(ShiftBits, dl, 3168 ShiftTy)); 3169 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 3170 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3171 } 3172 } 3173 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3174 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3175 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3176 // X < 0x100000000 -> (X >> 32) < 1 3177 // X >= 0x100000000 -> (X >> 32) >= 1 3178 // X <= 0x0ffffffff -> (X >> 32) < 1 3179 // X > 0x0ffffffff -> (X >> 32) >= 1 3180 unsigned ShiftBits; 3181 APInt NewC = C1; 3182 ISD::CondCode NewCond = Cond; 3183 if (AdjOne) { 3184 ShiftBits = C1.countTrailingOnes(); 3185 NewC = NewC + 1; 3186 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3187 } else { 3188 ShiftBits = C1.countTrailingZeros(); 3189 } 3190 NewC.lshrInPlace(ShiftBits); 3191 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3192 isLegalICmpImmediate(NewC.getSExtValue())) { 3193 auto &DL = DAG.getDataLayout(); 3194 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3195 !DCI.isBeforeLegalize()); 3196 EVT CmpTy = N0.getValueType(); 3197 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 3198 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3199 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 3200 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3201 } 3202 } 3203 } 3204 } 3205 3206 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3207 auto *CFP = cast<ConstantFPSDNode>(N1); 3208 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3209 3210 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3211 // constant if knowing that the operand is non-nan is enough. We prefer to 3212 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3213 // materialize 0.0. 3214 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3215 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3216 3217 // setcc (fneg x), C -> setcc swap(pred) x, -C 3218 if (N0.getOpcode() == ISD::FNEG) { 3219 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3220 if (DCI.isBeforeLegalizeOps() || 3221 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3222 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3223 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3224 } 3225 } 3226 3227 // If the condition is not legal, see if we can find an equivalent one 3228 // which is legal. 3229 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3230 // If the comparison was an awkward floating-point == or != and one of 3231 // the comparison operands is infinity or negative infinity, convert the 3232 // condition to a less-awkward <= or >=. 3233 if (CFP->getValueAPF().isInfinity()) { 3234 if (CFP->getValueAPF().isNegative()) { 3235 if (Cond == ISD::SETOEQ && 3236 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3237 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3238 if (Cond == ISD::SETUEQ && 3239 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3240 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3241 if (Cond == ISD::SETUNE && 3242 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3243 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3244 if (Cond == ISD::SETONE && 3245 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3246 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3247 } else { 3248 if (Cond == ISD::SETOEQ && 3249 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3250 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3251 if (Cond == ISD::SETUEQ && 3252 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3253 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3254 if (Cond == ISD::SETUNE && 3255 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3256 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3257 if (Cond == ISD::SETONE && 3258 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3259 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3260 } 3261 } 3262 } 3263 } 3264 3265 if (N0 == N1) { 3266 // The sext(setcc()) => setcc() optimization relies on the appropriate 3267 // constant being emitted. 3268 assert(!N0.getValueType().isInteger() && 3269 "Integer types should be handled by FoldSetCC"); 3270 3271 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3272 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3273 if (UOF == 2) // FP operators that are undefined on NaNs. 3274 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3275 if (UOF == unsigned(EqTrue)) 3276 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3277 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3278 // if it is not already. 3279 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3280 if (NewCond != Cond && 3281 (DCI.isBeforeLegalizeOps() || 3282 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3283 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3284 } 3285 3286 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3287 N0.getValueType().isInteger()) { 3288 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3289 N0.getOpcode() == ISD::XOR) { 3290 // Simplify (X+Y) == (X+Z) --> Y == Z 3291 if (N0.getOpcode() == N1.getOpcode()) { 3292 if (N0.getOperand(0) == N1.getOperand(0)) 3293 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3294 if (N0.getOperand(1) == N1.getOperand(1)) 3295 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3296 if (isCommutativeBinOp(N0.getOpcode())) { 3297 // If X op Y == Y op X, try other combinations. 3298 if (N0.getOperand(0) == N1.getOperand(1)) 3299 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3300 Cond); 3301 if (N0.getOperand(1) == N1.getOperand(0)) 3302 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3303 Cond); 3304 } 3305 } 3306 3307 // If RHS is a legal immediate value for a compare instruction, we need 3308 // to be careful about increasing register pressure needlessly. 3309 bool LegalRHSImm = false; 3310 3311 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3312 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3313 // Turn (X+C1) == C2 --> X == C2-C1 3314 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3315 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3316 DAG.getConstant(RHSC->getAPIntValue()- 3317 LHSR->getAPIntValue(), 3318 dl, N0.getValueType()), Cond); 3319 } 3320 3321 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3322 if (N0.getOpcode() == ISD::XOR) 3323 // If we know that all of the inverted bits are zero, don't bother 3324 // performing the inversion. 3325 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3326 return 3327 DAG.getSetCC(dl, VT, N0.getOperand(0), 3328 DAG.getConstant(LHSR->getAPIntValue() ^ 3329 RHSC->getAPIntValue(), 3330 dl, N0.getValueType()), 3331 Cond); 3332 } 3333 3334 // Turn (C1-X) == C2 --> X == C1-C2 3335 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3336 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3337 return 3338 DAG.getSetCC(dl, VT, N0.getOperand(1), 3339 DAG.getConstant(SUBC->getAPIntValue() - 3340 RHSC->getAPIntValue(), 3341 dl, N0.getValueType()), 3342 Cond); 3343 } 3344 } 3345 3346 // Could RHSC fold directly into a compare? 3347 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3348 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3349 } 3350 3351 // (X+Y) == X --> Y == 0 and similar folds. 3352 // Don't do this if X is an immediate that can fold into a cmp 3353 // instruction and X+Y has other uses. It could be an induction variable 3354 // chain, and the transform would increase register pressure. 3355 if (!LegalRHSImm || N0.hasOneUse()) 3356 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3357 return V; 3358 } 3359 3360 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3361 N1.getOpcode() == ISD::XOR) 3362 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3363 return V; 3364 3365 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3366 return V; 3367 } 3368 3369 // Fold away ALL boolean setcc's. 3370 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3371 SDValue Temp; 3372 switch (Cond) { 3373 default: llvm_unreachable("Unknown integer setcc!"); 3374 case ISD::SETEQ: // X == Y -> ~(X^Y) 3375 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3376 N0 = DAG.getNOT(dl, Temp, OpVT); 3377 if (!DCI.isCalledByLegalizer()) 3378 DCI.AddToWorklist(Temp.getNode()); 3379 break; 3380 case ISD::SETNE: // X != Y --> (X^Y) 3381 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3382 break; 3383 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3384 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3385 Temp = DAG.getNOT(dl, N0, OpVT); 3386 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3387 if (!DCI.isCalledByLegalizer()) 3388 DCI.AddToWorklist(Temp.getNode()); 3389 break; 3390 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3391 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3392 Temp = DAG.getNOT(dl, N1, OpVT); 3393 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3394 if (!DCI.isCalledByLegalizer()) 3395 DCI.AddToWorklist(Temp.getNode()); 3396 break; 3397 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3398 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3399 Temp = DAG.getNOT(dl, N0, OpVT); 3400 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3401 if (!DCI.isCalledByLegalizer()) 3402 DCI.AddToWorklist(Temp.getNode()); 3403 break; 3404 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3405 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3406 Temp = DAG.getNOT(dl, N1, OpVT); 3407 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3408 break; 3409 } 3410 if (VT.getScalarType() != MVT::i1) { 3411 if (!DCI.isCalledByLegalizer()) 3412 DCI.AddToWorklist(N0.getNode()); 3413 // FIXME: If running after legalize, we probably can't do this. 3414 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3415 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3416 } 3417 return N0; 3418 } 3419 3420 // Could not fold it. 3421 return SDValue(); 3422 } 3423 3424 /// Returns true (and the GlobalValue and the offset) if the node is a 3425 /// GlobalAddress + offset. 3426 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3427 int64_t &Offset) const { 3428 3429 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3430 3431 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3432 GA = GASD->getGlobal(); 3433 Offset += GASD->getOffset(); 3434 return true; 3435 } 3436 3437 if (N->getOpcode() == ISD::ADD) { 3438 SDValue N1 = N->getOperand(0); 3439 SDValue N2 = N->getOperand(1); 3440 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3441 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3442 Offset += V->getSExtValue(); 3443 return true; 3444 } 3445 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3446 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3447 Offset += V->getSExtValue(); 3448 return true; 3449 } 3450 } 3451 } 3452 3453 return false; 3454 } 3455 3456 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3457 DAGCombinerInfo &DCI) const { 3458 // Default implementation: no optimization. 3459 return SDValue(); 3460 } 3461 3462 //===----------------------------------------------------------------------===// 3463 // Inline Assembler Implementation Methods 3464 //===----------------------------------------------------------------------===// 3465 3466 TargetLowering::ConstraintType 3467 TargetLowering::getConstraintType(StringRef Constraint) const { 3468 unsigned S = Constraint.size(); 3469 3470 if (S == 1) { 3471 switch (Constraint[0]) { 3472 default: break; 3473 case 'r': return C_RegisterClass; 3474 case 'm': // memory 3475 case 'o': // offsetable 3476 case 'V': // not offsetable 3477 return C_Memory; 3478 case 'i': // Simple Integer or Relocatable Constant 3479 case 'n': // Simple Integer 3480 case 'E': // Floating Point Constant 3481 case 'F': // Floating Point Constant 3482 case 's': // Relocatable Constant 3483 case 'p': // Address. 3484 case 'X': // Allow ANY value. 3485 case 'I': // Target registers. 3486 case 'J': 3487 case 'K': 3488 case 'L': 3489 case 'M': 3490 case 'N': 3491 case 'O': 3492 case 'P': 3493 case '<': 3494 case '>': 3495 return C_Other; 3496 } 3497 } 3498 3499 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3500 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3501 return C_Memory; 3502 return C_Register; 3503 } 3504 return C_Unknown; 3505 } 3506 3507 /// Try to replace an X constraint, which matches anything, with another that 3508 /// has more specific requirements based on the type of the corresponding 3509 /// operand. 3510 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3511 if (ConstraintVT.isInteger()) 3512 return "r"; 3513 if (ConstraintVT.isFloatingPoint()) 3514 return "f"; // works for many targets 3515 return nullptr; 3516 } 3517 3518 SDValue TargetLowering::LowerAsmOutputForConstraint( 3519 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3520 SelectionDAG &DAG) const { 3521 return SDValue(); 3522 } 3523 3524 /// Lower the specified operand into the Ops vector. 3525 /// If it is invalid, don't add anything to Ops. 3526 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3527 std::string &Constraint, 3528 std::vector<SDValue> &Ops, 3529 SelectionDAG &DAG) const { 3530 3531 if (Constraint.length() > 1) return; 3532 3533 char ConstraintLetter = Constraint[0]; 3534 switch (ConstraintLetter) { 3535 default: break; 3536 case 'X': // Allows any operand; labels (basic block) use this. 3537 if (Op.getOpcode() == ISD::BasicBlock || 3538 Op.getOpcode() == ISD::TargetBlockAddress) { 3539 Ops.push_back(Op); 3540 return; 3541 } 3542 LLVM_FALLTHROUGH; 3543 case 'i': // Simple Integer or Relocatable Constant 3544 case 'n': // Simple Integer 3545 case 's': { // Relocatable Constant 3546 3547 GlobalAddressSDNode *GA; 3548 ConstantSDNode *C; 3549 uint64_t Offset = 0; 3550 3551 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 3552 // etc., since getelementpointer is variadic. We can't use 3553 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 3554 // while in this case the GA may be furthest from the root node which is 3555 // likely an ISD::ADD. 3556 while (1) { 3557 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 3558 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 3559 GA->getValueType(0), 3560 Offset + GA->getOffset())); 3561 return; 3562 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 3563 ConstraintLetter != 's') { 3564 Ops.push_back(DAG.getTargetConstant(Offset + C->getSExtValue(), 3565 SDLoc(C), MVT::i64)); 3566 return; 3567 } else { 3568 const unsigned OpCode = Op.getOpcode(); 3569 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 3570 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 3571 Op = Op.getOperand(1); 3572 // Subtraction is not commutative. 3573 else if (OpCode == ISD::ADD && 3574 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 3575 Op = Op.getOperand(0); 3576 else 3577 return; 3578 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 3579 continue; 3580 } 3581 } 3582 return; 3583 } 3584 break; 3585 } 3586 } 3587 } 3588 3589 std::pair<unsigned, const TargetRegisterClass *> 3590 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3591 StringRef Constraint, 3592 MVT VT) const { 3593 if (Constraint.empty() || Constraint[0] != '{') 3594 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3595 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3596 3597 // Remove the braces from around the name. 3598 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3599 3600 std::pair<unsigned, const TargetRegisterClass *> R = 3601 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3602 3603 // Figure out which register class contains this reg. 3604 for (const TargetRegisterClass *RC : RI->regclasses()) { 3605 // If none of the value types for this register class are valid, we 3606 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3607 if (!isLegalRC(*RI, *RC)) 3608 continue; 3609 3610 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3611 I != E; ++I) { 3612 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3613 std::pair<unsigned, const TargetRegisterClass *> S = 3614 std::make_pair(*I, RC); 3615 3616 // If this register class has the requested value type, return it, 3617 // otherwise keep searching and return the first class found 3618 // if no other is found which explicitly has the requested type. 3619 if (RI->isTypeLegalForClass(*RC, VT)) 3620 return S; 3621 if (!R.second) 3622 R = S; 3623 } 3624 } 3625 } 3626 3627 return R; 3628 } 3629 3630 //===----------------------------------------------------------------------===// 3631 // Constraint Selection. 3632 3633 /// Return true of this is an input operand that is a matching constraint like 3634 /// "4". 3635 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3636 assert(!ConstraintCode.empty() && "No known constraint!"); 3637 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3638 } 3639 3640 /// If this is an input matching constraint, this method returns the output 3641 /// operand it matches. 3642 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3643 assert(!ConstraintCode.empty() && "No known constraint!"); 3644 return atoi(ConstraintCode.c_str()); 3645 } 3646 3647 /// Split up the constraint string from the inline assembly value into the 3648 /// specific constraints and their prefixes, and also tie in the associated 3649 /// operand values. 3650 /// If this returns an empty vector, and if the constraint string itself 3651 /// isn't empty, there was an error parsing. 3652 TargetLowering::AsmOperandInfoVector 3653 TargetLowering::ParseConstraints(const DataLayout &DL, 3654 const TargetRegisterInfo *TRI, 3655 ImmutableCallSite CS) const { 3656 /// Information about all of the constraints. 3657 AsmOperandInfoVector ConstraintOperands; 3658 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3659 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3660 3661 // Do a prepass over the constraints, canonicalizing them, and building up the 3662 // ConstraintOperands list. 3663 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3664 unsigned ResNo = 0; // ResNo - The result number of the next output. 3665 3666 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3667 ConstraintOperands.emplace_back(std::move(CI)); 3668 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3669 3670 // Update multiple alternative constraint count. 3671 if (OpInfo.multipleAlternatives.size() > maCount) 3672 maCount = OpInfo.multipleAlternatives.size(); 3673 3674 OpInfo.ConstraintVT = MVT::Other; 3675 3676 // Compute the value type for each operand. 3677 switch (OpInfo.Type) { 3678 case InlineAsm::isOutput: 3679 // Indirect outputs just consume an argument. 3680 if (OpInfo.isIndirect) { 3681 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3682 break; 3683 } 3684 3685 // The return value of the call is this value. As such, there is no 3686 // corresponding argument. 3687 assert(!CS.getType()->isVoidTy() && 3688 "Bad inline asm!"); 3689 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3690 OpInfo.ConstraintVT = 3691 getSimpleValueType(DL, STy->getElementType(ResNo)); 3692 } else { 3693 assert(ResNo == 0 && "Asm only has one result!"); 3694 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3695 } 3696 ++ResNo; 3697 break; 3698 case InlineAsm::isInput: 3699 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3700 break; 3701 case InlineAsm::isClobber: 3702 // Nothing to do. 3703 break; 3704 } 3705 3706 if (OpInfo.CallOperandVal) { 3707 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3708 if (OpInfo.isIndirect) { 3709 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3710 if (!PtrTy) 3711 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3712 OpTy = PtrTy->getElementType(); 3713 } 3714 3715 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3716 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3717 if (STy->getNumElements() == 1) 3718 OpTy = STy->getElementType(0); 3719 3720 // If OpTy is not a single value, it may be a struct/union that we 3721 // can tile with integers. 3722 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3723 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3724 switch (BitSize) { 3725 default: break; 3726 case 1: 3727 case 8: 3728 case 16: 3729 case 32: 3730 case 64: 3731 case 128: 3732 OpInfo.ConstraintVT = 3733 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3734 break; 3735 } 3736 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3737 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3738 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3739 } else { 3740 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3741 } 3742 } 3743 } 3744 3745 // If we have multiple alternative constraints, select the best alternative. 3746 if (!ConstraintOperands.empty()) { 3747 if (maCount) { 3748 unsigned bestMAIndex = 0; 3749 int bestWeight = -1; 3750 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3751 int weight = -1; 3752 unsigned maIndex; 3753 // Compute the sums of the weights for each alternative, keeping track 3754 // of the best (highest weight) one so far. 3755 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3756 int weightSum = 0; 3757 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3758 cIndex != eIndex; ++cIndex) { 3759 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3760 if (OpInfo.Type == InlineAsm::isClobber) 3761 continue; 3762 3763 // If this is an output operand with a matching input operand, 3764 // look up the matching input. If their types mismatch, e.g. one 3765 // is an integer, the other is floating point, or their sizes are 3766 // different, flag it as an maCantMatch. 3767 if (OpInfo.hasMatchingInput()) { 3768 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3769 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3770 if ((OpInfo.ConstraintVT.isInteger() != 3771 Input.ConstraintVT.isInteger()) || 3772 (OpInfo.ConstraintVT.getSizeInBits() != 3773 Input.ConstraintVT.getSizeInBits())) { 3774 weightSum = -1; // Can't match. 3775 break; 3776 } 3777 } 3778 } 3779 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3780 if (weight == -1) { 3781 weightSum = -1; 3782 break; 3783 } 3784 weightSum += weight; 3785 } 3786 // Update best. 3787 if (weightSum > bestWeight) { 3788 bestWeight = weightSum; 3789 bestMAIndex = maIndex; 3790 } 3791 } 3792 3793 // Now select chosen alternative in each constraint. 3794 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3795 cIndex != eIndex; ++cIndex) { 3796 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3797 if (cInfo.Type == InlineAsm::isClobber) 3798 continue; 3799 cInfo.selectAlternative(bestMAIndex); 3800 } 3801 } 3802 } 3803 3804 // Check and hook up tied operands, choose constraint code to use. 3805 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3806 cIndex != eIndex; ++cIndex) { 3807 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3808 3809 // If this is an output operand with a matching input operand, look up the 3810 // matching input. If their types mismatch, e.g. one is an integer, the 3811 // other is floating point, or their sizes are different, flag it as an 3812 // error. 3813 if (OpInfo.hasMatchingInput()) { 3814 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3815 3816 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3817 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3818 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3819 OpInfo.ConstraintVT); 3820 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3821 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3822 Input.ConstraintVT); 3823 if ((OpInfo.ConstraintVT.isInteger() != 3824 Input.ConstraintVT.isInteger()) || 3825 (MatchRC.second != InputRC.second)) { 3826 report_fatal_error("Unsupported asm: input constraint" 3827 " with a matching output constraint of" 3828 " incompatible type!"); 3829 } 3830 } 3831 } 3832 } 3833 3834 return ConstraintOperands; 3835 } 3836 3837 /// Return an integer indicating how general CT is. 3838 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3839 switch (CT) { 3840 case TargetLowering::C_Other: 3841 case TargetLowering::C_Unknown: 3842 return 0; 3843 case TargetLowering::C_Register: 3844 return 1; 3845 case TargetLowering::C_RegisterClass: 3846 return 2; 3847 case TargetLowering::C_Memory: 3848 return 3; 3849 } 3850 llvm_unreachable("Invalid constraint type"); 3851 } 3852 3853 /// Examine constraint type and operand type and determine a weight value. 3854 /// This object must already have been set up with the operand type 3855 /// and the current alternative constraint selected. 3856 TargetLowering::ConstraintWeight 3857 TargetLowering::getMultipleConstraintMatchWeight( 3858 AsmOperandInfo &info, int maIndex) const { 3859 InlineAsm::ConstraintCodeVector *rCodes; 3860 if (maIndex >= (int)info.multipleAlternatives.size()) 3861 rCodes = &info.Codes; 3862 else 3863 rCodes = &info.multipleAlternatives[maIndex].Codes; 3864 ConstraintWeight BestWeight = CW_Invalid; 3865 3866 // Loop over the options, keeping track of the most general one. 3867 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3868 ConstraintWeight weight = 3869 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3870 if (weight > BestWeight) 3871 BestWeight = weight; 3872 } 3873 3874 return BestWeight; 3875 } 3876 3877 /// Examine constraint type and operand type and determine a weight value. 3878 /// This object must already have been set up with the operand type 3879 /// and the current alternative constraint selected. 3880 TargetLowering::ConstraintWeight 3881 TargetLowering::getSingleConstraintMatchWeight( 3882 AsmOperandInfo &info, const char *constraint) const { 3883 ConstraintWeight weight = CW_Invalid; 3884 Value *CallOperandVal = info.CallOperandVal; 3885 // If we don't have a value, we can't do a match, 3886 // but allow it at the lowest weight. 3887 if (!CallOperandVal) 3888 return CW_Default; 3889 // Look at the constraint type. 3890 switch (*constraint) { 3891 case 'i': // immediate integer. 3892 case 'n': // immediate integer with a known value. 3893 if (isa<ConstantInt>(CallOperandVal)) 3894 weight = CW_Constant; 3895 break; 3896 case 's': // non-explicit intregal immediate. 3897 if (isa<GlobalValue>(CallOperandVal)) 3898 weight = CW_Constant; 3899 break; 3900 case 'E': // immediate float if host format. 3901 case 'F': // immediate float. 3902 if (isa<ConstantFP>(CallOperandVal)) 3903 weight = CW_Constant; 3904 break; 3905 case '<': // memory operand with autodecrement. 3906 case '>': // memory operand with autoincrement. 3907 case 'm': // memory operand. 3908 case 'o': // offsettable memory operand 3909 case 'V': // non-offsettable memory operand 3910 weight = CW_Memory; 3911 break; 3912 case 'r': // general register. 3913 case 'g': // general register, memory operand or immediate integer. 3914 // note: Clang converts "g" to "imr". 3915 if (CallOperandVal->getType()->isIntegerTy()) 3916 weight = CW_Register; 3917 break; 3918 case 'X': // any operand. 3919 default: 3920 weight = CW_Default; 3921 break; 3922 } 3923 return weight; 3924 } 3925 3926 /// If there are multiple different constraints that we could pick for this 3927 /// operand (e.g. "imr") try to pick the 'best' one. 3928 /// This is somewhat tricky: constraints fall into four classes: 3929 /// Other -> immediates and magic values 3930 /// Register -> one specific register 3931 /// RegisterClass -> a group of regs 3932 /// Memory -> memory 3933 /// Ideally, we would pick the most specific constraint possible: if we have 3934 /// something that fits into a register, we would pick it. The problem here 3935 /// is that if we have something that could either be in a register or in 3936 /// memory that use of the register could cause selection of *other* 3937 /// operands to fail: they might only succeed if we pick memory. Because of 3938 /// this the heuristic we use is: 3939 /// 3940 /// 1) If there is an 'other' constraint, and if the operand is valid for 3941 /// that constraint, use it. This makes us take advantage of 'i' 3942 /// constraints when available. 3943 /// 2) Otherwise, pick the most general constraint present. This prefers 3944 /// 'm' over 'r', for example. 3945 /// 3946 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3947 const TargetLowering &TLI, 3948 SDValue Op, SelectionDAG *DAG) { 3949 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3950 unsigned BestIdx = 0; 3951 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3952 int BestGenerality = -1; 3953 3954 // Loop over the options, keeping track of the most general one. 3955 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3956 TargetLowering::ConstraintType CType = 3957 TLI.getConstraintType(OpInfo.Codes[i]); 3958 3959 // If this is an 'other' constraint, see if the operand is valid for it. 3960 // For example, on X86 we might have an 'rI' constraint. If the operand 3961 // is an integer in the range [0..31] we want to use I (saving a load 3962 // of a register), otherwise we must use 'r'. 3963 if (CType == TargetLowering::C_Other && Op.getNode()) { 3964 assert(OpInfo.Codes[i].size() == 1 && 3965 "Unhandled multi-letter 'other' constraint"); 3966 std::vector<SDValue> ResultOps; 3967 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3968 ResultOps, *DAG); 3969 if (!ResultOps.empty()) { 3970 BestType = CType; 3971 BestIdx = i; 3972 break; 3973 } 3974 } 3975 3976 // Things with matching constraints can only be registers, per gcc 3977 // documentation. This mainly affects "g" constraints. 3978 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3979 continue; 3980 3981 // This constraint letter is more general than the previous one, use it. 3982 int Generality = getConstraintGenerality(CType); 3983 if (Generality > BestGenerality) { 3984 BestType = CType; 3985 BestIdx = i; 3986 BestGenerality = Generality; 3987 } 3988 } 3989 3990 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3991 OpInfo.ConstraintType = BestType; 3992 } 3993 3994 /// Determines the constraint code and constraint type to use for the specific 3995 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3996 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3997 SDValue Op, 3998 SelectionDAG *DAG) const { 3999 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4000 4001 // Single-letter constraints ('r') are very common. 4002 if (OpInfo.Codes.size() == 1) { 4003 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4004 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4005 } else { 4006 ChooseConstraint(OpInfo, *this, Op, DAG); 4007 } 4008 4009 // 'X' matches anything. 4010 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4011 // Labels and constants are handled elsewhere ('X' is the only thing 4012 // that matches labels). For Functions, the type here is the type of 4013 // the result, which is not what we want to look at; leave them alone. 4014 Value *v = OpInfo.CallOperandVal; 4015 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4016 OpInfo.CallOperandVal = v; 4017 return; 4018 } 4019 4020 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4021 return; 4022 4023 // Otherwise, try to resolve it to something we know about by looking at 4024 // the actual operand type. 4025 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4026 OpInfo.ConstraintCode = Repl; 4027 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4028 } 4029 } 4030 } 4031 4032 /// Given an exact SDIV by a constant, create a multiplication 4033 /// with the multiplicative inverse of the constant. 4034 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4035 const SDLoc &dl, SelectionDAG &DAG, 4036 SmallVectorImpl<SDNode *> &Created) { 4037 SDValue Op0 = N->getOperand(0); 4038 SDValue Op1 = N->getOperand(1); 4039 EVT VT = N->getValueType(0); 4040 EVT SVT = VT.getScalarType(); 4041 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4042 EVT ShSVT = ShVT.getScalarType(); 4043 4044 bool UseSRA = false; 4045 SmallVector<SDValue, 16> Shifts, Factors; 4046 4047 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4048 if (C->isNullValue()) 4049 return false; 4050 APInt Divisor = C->getAPIntValue(); 4051 unsigned Shift = Divisor.countTrailingZeros(); 4052 if (Shift) { 4053 Divisor.ashrInPlace(Shift); 4054 UseSRA = true; 4055 } 4056 // Calculate the multiplicative inverse, using Newton's method. 4057 APInt t; 4058 APInt Factor = Divisor; 4059 while ((t = Divisor * Factor) != 1) 4060 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4061 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4062 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4063 return true; 4064 }; 4065 4066 // Collect all magic values from the build vector. 4067 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4068 return SDValue(); 4069 4070 SDValue Shift, Factor; 4071 if (VT.isVector()) { 4072 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4073 Factor = DAG.getBuildVector(VT, dl, Factors); 4074 } else { 4075 Shift = Shifts[0]; 4076 Factor = Factors[0]; 4077 } 4078 4079 SDValue Res = Op0; 4080 4081 // Shift the value upfront if it is even, so the LSB is one. 4082 if (UseSRA) { 4083 // TODO: For UDIV use SRL instead of SRA. 4084 SDNodeFlags Flags; 4085 Flags.setExact(true); 4086 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4087 Created.push_back(Res.getNode()); 4088 } 4089 4090 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4091 } 4092 4093 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4094 SelectionDAG &DAG, 4095 SmallVectorImpl<SDNode *> &Created) const { 4096 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4097 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4098 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4099 return SDValue(N, 0); // Lower SDIV as SDIV 4100 return SDValue(); 4101 } 4102 4103 /// Given an ISD::SDIV node expressing a divide by constant, 4104 /// return a DAG expression to select that will generate the same value by 4105 /// multiplying by a magic number. 4106 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4107 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4108 bool IsAfterLegalization, 4109 SmallVectorImpl<SDNode *> &Created) const { 4110 SDLoc dl(N); 4111 EVT VT = N->getValueType(0); 4112 EVT SVT = VT.getScalarType(); 4113 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4114 EVT ShSVT = ShVT.getScalarType(); 4115 unsigned EltBits = VT.getScalarSizeInBits(); 4116 4117 // Check to see if we can do this. 4118 // FIXME: We should be more aggressive here. 4119 if (!isTypeLegal(VT)) 4120 return SDValue(); 4121 4122 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4123 if (N->getFlags().hasExact()) 4124 return BuildExactSDIV(*this, N, dl, DAG, Created); 4125 4126 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4127 4128 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4129 if (C->isNullValue()) 4130 return false; 4131 4132 const APInt &Divisor = C->getAPIntValue(); 4133 APInt::ms magics = Divisor.magic(); 4134 int NumeratorFactor = 0; 4135 int ShiftMask = -1; 4136 4137 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4138 // If d is +1/-1, we just multiply the numerator by +1/-1. 4139 NumeratorFactor = Divisor.getSExtValue(); 4140 magics.m = 0; 4141 magics.s = 0; 4142 ShiftMask = 0; 4143 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4144 // If d > 0 and m < 0, add the numerator. 4145 NumeratorFactor = 1; 4146 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4147 // If d < 0 and m > 0, subtract the numerator. 4148 NumeratorFactor = -1; 4149 } 4150 4151 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4152 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4153 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4154 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4155 return true; 4156 }; 4157 4158 SDValue N0 = N->getOperand(0); 4159 SDValue N1 = N->getOperand(1); 4160 4161 // Collect the shifts / magic values from each element. 4162 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4163 return SDValue(); 4164 4165 SDValue MagicFactor, Factor, Shift, ShiftMask; 4166 if (VT.isVector()) { 4167 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4168 Factor = DAG.getBuildVector(VT, dl, Factors); 4169 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4170 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4171 } else { 4172 MagicFactor = MagicFactors[0]; 4173 Factor = Factors[0]; 4174 Shift = Shifts[0]; 4175 ShiftMask = ShiftMasks[0]; 4176 } 4177 4178 // Multiply the numerator (operand 0) by the magic value. 4179 // FIXME: We should support doing a MUL in a wider type. 4180 SDValue Q; 4181 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4182 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4183 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4184 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4185 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4186 SDValue LoHi = 4187 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4188 Q = SDValue(LoHi.getNode(), 1); 4189 } else 4190 return SDValue(); // No mulhs or equivalent. 4191 Created.push_back(Q.getNode()); 4192 4193 // (Optionally) Add/subtract the numerator using Factor. 4194 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4195 Created.push_back(Factor.getNode()); 4196 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4197 Created.push_back(Q.getNode()); 4198 4199 // Shift right algebraic by shift value. 4200 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4201 Created.push_back(Q.getNode()); 4202 4203 // Extract the sign bit, mask it and add it to the quotient. 4204 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4205 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4206 Created.push_back(T.getNode()); 4207 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4208 Created.push_back(T.getNode()); 4209 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4210 } 4211 4212 /// Given an ISD::UDIV node expressing a divide by constant, 4213 /// return a DAG expression to select that will generate the same value by 4214 /// multiplying by a magic number. 4215 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4216 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4217 bool IsAfterLegalization, 4218 SmallVectorImpl<SDNode *> &Created) const { 4219 SDLoc dl(N); 4220 EVT VT = N->getValueType(0); 4221 EVT SVT = VT.getScalarType(); 4222 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4223 EVT ShSVT = ShVT.getScalarType(); 4224 unsigned EltBits = VT.getScalarSizeInBits(); 4225 4226 // Check to see if we can do this. 4227 // FIXME: We should be more aggressive here. 4228 if (!isTypeLegal(VT)) 4229 return SDValue(); 4230 4231 bool UseNPQ = false; 4232 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4233 4234 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4235 if (C->isNullValue()) 4236 return false; 4237 // FIXME: We should use a narrower constant when the upper 4238 // bits are known to be zero. 4239 APInt Divisor = C->getAPIntValue(); 4240 APInt::mu magics = Divisor.magicu(); 4241 unsigned PreShift = 0, PostShift = 0; 4242 4243 // If the divisor is even, we can avoid using the expensive fixup by 4244 // shifting the divided value upfront. 4245 if (magics.a != 0 && !Divisor[0]) { 4246 PreShift = Divisor.countTrailingZeros(); 4247 // Get magic number for the shifted divisor. 4248 magics = Divisor.lshr(PreShift).magicu(PreShift); 4249 assert(magics.a == 0 && "Should use cheap fixup now"); 4250 } 4251 4252 APInt Magic = magics.m; 4253 4254 unsigned SelNPQ; 4255 if (magics.a == 0 || Divisor.isOneValue()) { 4256 assert(magics.s < Divisor.getBitWidth() && 4257 "We shouldn't generate an undefined shift!"); 4258 PostShift = magics.s; 4259 SelNPQ = false; 4260 } else { 4261 PostShift = magics.s - 1; 4262 SelNPQ = true; 4263 } 4264 4265 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4266 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4267 NPQFactors.push_back( 4268 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4269 : APInt::getNullValue(EltBits), 4270 dl, SVT)); 4271 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4272 UseNPQ |= SelNPQ; 4273 return true; 4274 }; 4275 4276 SDValue N0 = N->getOperand(0); 4277 SDValue N1 = N->getOperand(1); 4278 4279 // Collect the shifts/magic values from each element. 4280 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4281 return SDValue(); 4282 4283 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4284 if (VT.isVector()) { 4285 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4286 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4287 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4288 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4289 } else { 4290 PreShift = PreShifts[0]; 4291 MagicFactor = MagicFactors[0]; 4292 PostShift = PostShifts[0]; 4293 } 4294 4295 SDValue Q = N0; 4296 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4297 Created.push_back(Q.getNode()); 4298 4299 // FIXME: We should support doing a MUL in a wider type. 4300 auto GetMULHU = [&](SDValue X, SDValue Y) { 4301 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4302 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4303 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4304 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4305 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4306 SDValue LoHi = 4307 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4308 return SDValue(LoHi.getNode(), 1); 4309 } 4310 return SDValue(); // No mulhu or equivalent 4311 }; 4312 4313 // Multiply the numerator (operand 0) by the magic value. 4314 Q = GetMULHU(Q, MagicFactor); 4315 if (!Q) 4316 return SDValue(); 4317 4318 Created.push_back(Q.getNode()); 4319 4320 if (UseNPQ) { 4321 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4322 Created.push_back(NPQ.getNode()); 4323 4324 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4325 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4326 if (VT.isVector()) 4327 NPQ = GetMULHU(NPQ, NPQFactor); 4328 else 4329 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4330 4331 Created.push_back(NPQ.getNode()); 4332 4333 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4334 Created.push_back(Q.getNode()); 4335 } 4336 4337 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4338 Created.push_back(Q.getNode()); 4339 4340 SDValue One = DAG.getConstant(1, dl, VT); 4341 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4342 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4343 } 4344 4345 bool TargetLowering:: 4346 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4347 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4348 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4349 "be a constant integer"); 4350 return true; 4351 } 4352 4353 return false; 4354 } 4355 4356 //===----------------------------------------------------------------------===// 4357 // Legalization Utilities 4358 //===----------------------------------------------------------------------===// 4359 4360 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4361 SDValue LHS, SDValue RHS, 4362 SmallVectorImpl<SDValue> &Result, 4363 EVT HiLoVT, SelectionDAG &DAG, 4364 MulExpansionKind Kind, SDValue LL, 4365 SDValue LH, SDValue RL, SDValue RH) const { 4366 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4367 Opcode == ISD::SMUL_LOHI); 4368 4369 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4370 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4371 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4372 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4373 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4374 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4375 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4376 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4377 4378 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4379 return false; 4380 4381 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4382 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4383 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4384 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4385 4386 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4387 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4388 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4389 4390 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4391 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4392 bool Signed) -> bool { 4393 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4394 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4395 Hi = SDValue(Lo.getNode(), 1); 4396 return true; 4397 } 4398 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4399 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4400 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4401 return true; 4402 } 4403 return false; 4404 }; 4405 4406 SDValue Lo, Hi; 4407 4408 if (!LL.getNode() && !RL.getNode() && 4409 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4410 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4411 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4412 } 4413 4414 if (!LL.getNode()) 4415 return false; 4416 4417 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4418 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4419 DAG.MaskedValueIsZero(RHS, HighMask)) { 4420 // The inputs are both zero-extended. 4421 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4422 Result.push_back(Lo); 4423 Result.push_back(Hi); 4424 if (Opcode != ISD::MUL) { 4425 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4426 Result.push_back(Zero); 4427 Result.push_back(Zero); 4428 } 4429 return true; 4430 } 4431 } 4432 4433 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4434 RHSSB > InnerBitSize) { 4435 // The input values are both sign-extended. 4436 // TODO non-MUL case? 4437 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4438 Result.push_back(Lo); 4439 Result.push_back(Hi); 4440 return true; 4441 } 4442 } 4443 4444 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4445 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4446 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4447 // FIXME getShiftAmountTy does not always return a sensible result when VT 4448 // is an illegal type, and so the type may be too small to fit the shift 4449 // amount. Override it with i32. The shift will have to be legalized. 4450 ShiftAmountTy = MVT::i32; 4451 } 4452 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4453 4454 if (!LH.getNode() && !RH.getNode() && 4455 isOperationLegalOrCustom(ISD::SRL, VT) && 4456 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4457 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4458 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4459 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4460 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4461 } 4462 4463 if (!LH.getNode()) 4464 return false; 4465 4466 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4467 return false; 4468 4469 Result.push_back(Lo); 4470 4471 if (Opcode == ISD::MUL) { 4472 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4473 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4474 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4475 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4476 Result.push_back(Hi); 4477 return true; 4478 } 4479 4480 // Compute the full width result. 4481 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4482 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4483 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4484 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4485 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4486 }; 4487 4488 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4489 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4490 return false; 4491 4492 // This is effectively the add part of a multiply-add of half-sized operands, 4493 // so it cannot overflow. 4494 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4495 4496 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4497 return false; 4498 4499 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4500 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4501 4502 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4503 isOperationLegalOrCustom(ISD::ADDE, VT)); 4504 if (UseGlue) 4505 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4506 Merge(Lo, Hi)); 4507 else 4508 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4509 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4510 4511 SDValue Carry = Next.getValue(1); 4512 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4513 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4514 4515 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4516 return false; 4517 4518 if (UseGlue) 4519 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4520 Carry); 4521 else 4522 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4523 Zero, Carry); 4524 4525 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4526 4527 if (Opcode == ISD::SMUL_LOHI) { 4528 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4529 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4530 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4531 4532 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4533 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4534 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4535 } 4536 4537 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4538 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4539 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4540 return true; 4541 } 4542 4543 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4544 SelectionDAG &DAG, MulExpansionKind Kind, 4545 SDValue LL, SDValue LH, SDValue RL, 4546 SDValue RH) const { 4547 SmallVector<SDValue, 2> Result; 4548 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4549 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4550 DAG, Kind, LL, LH, RL, RH); 4551 if (Ok) { 4552 assert(Result.size() == 2); 4553 Lo = Result[0]; 4554 Hi = Result[1]; 4555 } 4556 return Ok; 4557 } 4558 4559 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4560 SelectionDAG &DAG) const { 4561 EVT VT = Node->getValueType(0); 4562 4563 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4564 !isOperationLegalOrCustom(ISD::SRL, VT) || 4565 !isOperationLegalOrCustom(ISD::SUB, VT) || 4566 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4567 return false; 4568 4569 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4570 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4571 SDValue X = Node->getOperand(0); 4572 SDValue Y = Node->getOperand(1); 4573 SDValue Z = Node->getOperand(2); 4574 4575 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4576 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4577 SDLoc DL(SDValue(Node, 0)); 4578 4579 EVT ShVT = Z.getValueType(); 4580 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4581 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4582 4583 SDValue ShAmt; 4584 if (isPowerOf2_32(EltSizeInBits)) { 4585 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4586 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4587 } else { 4588 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4589 } 4590 4591 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4592 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4593 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4594 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4595 4596 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4597 // and that is undefined. We must compare and select to avoid UB. 4598 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4599 4600 // For fshl, 0-shift returns the 1st arg (X). 4601 // For fshr, 0-shift returns the 2nd arg (Y). 4602 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4603 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4604 return true; 4605 } 4606 4607 // TODO: Merge with expandFunnelShift. 4608 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4609 SelectionDAG &DAG) const { 4610 EVT VT = Node->getValueType(0); 4611 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4612 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4613 SDValue Op0 = Node->getOperand(0); 4614 SDValue Op1 = Node->getOperand(1); 4615 SDLoc DL(SDValue(Node, 0)); 4616 4617 EVT ShVT = Op1.getValueType(); 4618 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4619 4620 // If a rotate in the other direction is legal, use it. 4621 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4622 if (isOperationLegal(RevRot, VT)) { 4623 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4624 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4625 return true; 4626 } 4627 4628 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4629 !isOperationLegalOrCustom(ISD::SRL, VT) || 4630 !isOperationLegalOrCustom(ISD::SUB, VT) || 4631 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4632 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4633 return false; 4634 4635 // Otherwise, 4636 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4637 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4638 // 4639 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4640 "Expecting the type bitwidth to be a power of 2"); 4641 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4642 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4643 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4644 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4645 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4646 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4647 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4648 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4649 return true; 4650 } 4651 4652 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4653 SelectionDAG &DAG) const { 4654 SDValue Src = Node->getOperand(0); 4655 EVT SrcVT = Src.getValueType(); 4656 EVT DstVT = Node->getValueType(0); 4657 SDLoc dl(SDValue(Node, 0)); 4658 4659 // FIXME: Only f32 to i64 conversions are supported. 4660 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4661 return false; 4662 4663 // Expand f32 -> i64 conversion 4664 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4665 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4666 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4667 EVT IntVT = SrcVT.changeTypeToInteger(); 4668 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4669 4670 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4671 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4672 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4673 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4674 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4675 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4676 4677 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4678 4679 SDValue ExponentBits = DAG.getNode( 4680 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4681 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4682 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4683 4684 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4685 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4686 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4687 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4688 4689 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4690 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4691 DAG.getConstant(0x00800000, dl, IntVT)); 4692 4693 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4694 4695 R = DAG.getSelectCC( 4696 dl, Exponent, ExponentLoBit, 4697 DAG.getNode(ISD::SHL, dl, DstVT, R, 4698 DAG.getZExtOrTrunc( 4699 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4700 dl, IntShVT)), 4701 DAG.getNode(ISD::SRL, dl, DstVT, R, 4702 DAG.getZExtOrTrunc( 4703 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4704 dl, IntShVT)), 4705 ISD::SETGT); 4706 4707 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4708 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4709 4710 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4711 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4712 return true; 4713 } 4714 4715 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4716 SelectionDAG &DAG) const { 4717 SDLoc dl(SDValue(Node, 0)); 4718 SDValue Src = Node->getOperand(0); 4719 4720 EVT SrcVT = Src.getValueType(); 4721 EVT DstVT = Node->getValueType(0); 4722 EVT SetCCVT = 4723 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4724 4725 // Only expand vector types if we have the appropriate vector bit operations. 4726 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4727 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4728 return false; 4729 4730 // If the maximum float value is smaller then the signed integer range, 4731 // the destination signmask can't be represented by the float, so we can 4732 // just use FP_TO_SINT directly. 4733 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4734 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4735 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4736 if (APFloat::opOverflow & 4737 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4738 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4739 return true; 4740 } 4741 4742 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4743 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4744 4745 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4746 if (Strict) { 4747 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4748 // signmask then offset (the result of which should be fully representable). 4749 // Sel = Src < 0x8000000000000000 4750 // Val = select Sel, Src, Src - 0x8000000000000000 4751 // Ofs = select Sel, 0, 0x8000000000000000 4752 // Result = fp_to_sint(Val) ^ Ofs 4753 4754 // TODO: Should any fast-math-flags be set for the FSUB? 4755 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4756 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4757 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4758 DAG.getConstant(SignMask, dl, DstVT)); 4759 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4760 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4761 } else { 4762 // Expand based on maximum range of FP_TO_SINT: 4763 // True = fp_to_sint(Src) 4764 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4765 // Result = select (Src < 0x8000000000000000), True, False 4766 4767 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4768 // TODO: Should any fast-math-flags be set for the FSUB? 4769 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4770 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4771 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4772 DAG.getConstant(SignMask, dl, DstVT)); 4773 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4774 } 4775 return true; 4776 } 4777 4778 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4779 SelectionDAG &DAG) const { 4780 SDValue Src = Node->getOperand(0); 4781 EVT SrcVT = Src.getValueType(); 4782 EVT DstVT = Node->getValueType(0); 4783 4784 if (SrcVT.getScalarType() != MVT::i64) 4785 return false; 4786 4787 SDLoc dl(SDValue(Node, 0)); 4788 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4789 4790 if (DstVT.getScalarType() == MVT::f32) { 4791 // Only expand vector types if we have the appropriate vector bit 4792 // operations. 4793 if (SrcVT.isVector() && 4794 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4795 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4796 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4797 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4798 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4799 return false; 4800 4801 // For unsigned conversions, convert them to signed conversions using the 4802 // algorithm from the x86_64 __floatundidf in compiler_rt. 4803 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4804 4805 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4806 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4807 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4808 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4809 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4810 4811 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4812 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4813 4814 // TODO: This really should be implemented using a branch rather than a 4815 // select. We happen to get lucky and machinesink does the right 4816 // thing most of the time. This would be a good candidate for a 4817 // pseudo-op, or, even better, for whole-function isel. 4818 EVT SetCCVT = 4819 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4820 4821 SDValue SignBitTest = DAG.getSetCC( 4822 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4823 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4824 return true; 4825 } 4826 4827 if (DstVT.getScalarType() == MVT::f64) { 4828 // Only expand vector types if we have the appropriate vector bit 4829 // operations. 4830 if (SrcVT.isVector() && 4831 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4832 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4833 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4834 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4835 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4836 return false; 4837 4838 // Implementation of unsigned i64 to f64 following the algorithm in 4839 // __floatundidf in compiler_rt. This implementation has the advantage 4840 // of performing rounding correctly, both in the default rounding mode 4841 // and in all alternate rounding modes. 4842 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4843 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4844 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4845 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4846 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4847 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4848 4849 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4850 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4851 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4852 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4853 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4854 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4855 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4856 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4857 return true; 4858 } 4859 4860 return false; 4861 } 4862 4863 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4864 SelectionDAG &DAG) const { 4865 SDLoc dl(Node); 4866 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4867 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4868 EVT VT = Node->getValueType(0); 4869 if (isOperationLegalOrCustom(NewOp, VT)) { 4870 SDValue Quiet0 = Node->getOperand(0); 4871 SDValue Quiet1 = Node->getOperand(1); 4872 4873 if (!Node->getFlags().hasNoNaNs()) { 4874 // Insert canonicalizes if it's possible we need to quiet to get correct 4875 // sNaN behavior. 4876 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4877 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4878 Node->getFlags()); 4879 } 4880 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4881 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4882 Node->getFlags()); 4883 } 4884 } 4885 4886 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4887 } 4888 4889 return SDValue(); 4890 } 4891 4892 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4893 SelectionDAG &DAG) const { 4894 SDLoc dl(Node); 4895 EVT VT = Node->getValueType(0); 4896 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4897 SDValue Op = Node->getOperand(0); 4898 unsigned Len = VT.getScalarSizeInBits(); 4899 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4900 4901 // TODO: Add support for irregular type lengths. 4902 if (!(Len <= 128 && Len % 8 == 0)) 4903 return false; 4904 4905 // Only expand vector types if we have the appropriate vector bit operations. 4906 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4907 !isOperationLegalOrCustom(ISD::SUB, VT) || 4908 !isOperationLegalOrCustom(ISD::SRL, VT) || 4909 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4910 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4911 return false; 4912 4913 // This is the "best" algorithm from 4914 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4915 SDValue Mask55 = 4916 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4917 SDValue Mask33 = 4918 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4919 SDValue Mask0F = 4920 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4921 SDValue Mask01 = 4922 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4923 4924 // v = v - ((v >> 1) & 0x55555555...) 4925 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4926 DAG.getNode(ISD::AND, dl, VT, 4927 DAG.getNode(ISD::SRL, dl, VT, Op, 4928 DAG.getConstant(1, dl, ShVT)), 4929 Mask55)); 4930 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4931 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4932 DAG.getNode(ISD::AND, dl, VT, 4933 DAG.getNode(ISD::SRL, dl, VT, Op, 4934 DAG.getConstant(2, dl, ShVT)), 4935 Mask33)); 4936 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4937 Op = DAG.getNode(ISD::AND, dl, VT, 4938 DAG.getNode(ISD::ADD, dl, VT, Op, 4939 DAG.getNode(ISD::SRL, dl, VT, Op, 4940 DAG.getConstant(4, dl, ShVT))), 4941 Mask0F); 4942 // v = (v * 0x01010101...) >> (Len - 8) 4943 if (Len > 8) 4944 Op = 4945 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4946 DAG.getConstant(Len - 8, dl, ShVT)); 4947 4948 Result = Op; 4949 return true; 4950 } 4951 4952 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4953 SelectionDAG &DAG) const { 4954 SDLoc dl(Node); 4955 EVT VT = Node->getValueType(0); 4956 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4957 SDValue Op = Node->getOperand(0); 4958 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4959 4960 // If the non-ZERO_UNDEF version is supported we can use that instead. 4961 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4962 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4963 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4964 return true; 4965 } 4966 4967 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4968 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4969 EVT SetCCVT = 4970 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4971 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4972 SDValue Zero = DAG.getConstant(0, dl, VT); 4973 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4974 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4975 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4976 return true; 4977 } 4978 4979 // Only expand vector types if we have the appropriate vector bit operations. 4980 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4981 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4982 !isOperationLegalOrCustom(ISD::SRL, VT) || 4983 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4984 return false; 4985 4986 // for now, we do this: 4987 // x = x | (x >> 1); 4988 // x = x | (x >> 2); 4989 // ... 4990 // x = x | (x >>16); 4991 // x = x | (x >>32); // for 64-bit input 4992 // return popcount(~x); 4993 // 4994 // Ref: "Hacker's Delight" by Henry Warren 4995 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4996 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4997 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4998 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4999 } 5000 Op = DAG.getNOT(dl, Op, VT); 5001 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 5002 return true; 5003 } 5004 5005 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 5006 SelectionDAG &DAG) const { 5007 SDLoc dl(Node); 5008 EVT VT = Node->getValueType(0); 5009 SDValue Op = Node->getOperand(0); 5010 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5011 5012 // If the non-ZERO_UNDEF version is supported we can use that instead. 5013 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 5014 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 5015 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 5016 return true; 5017 } 5018 5019 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5020 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 5021 EVT SetCCVT = 5022 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5023 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 5024 SDValue Zero = DAG.getConstant(0, dl, VT); 5025 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5026 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5027 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 5028 return true; 5029 } 5030 5031 // Only expand vector types if we have the appropriate vector bit operations. 5032 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5033 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 5034 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 5035 !isOperationLegalOrCustom(ISD::SUB, VT) || 5036 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 5037 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 5038 return false; 5039 5040 // for now, we use: { return popcount(~x & (x - 1)); } 5041 // unless the target has ctlz but not ctpop, in which case we use: 5042 // { return 32 - nlz(~x & (x-1)); } 5043 // Ref: "Hacker's Delight" by Henry Warren 5044 SDValue Tmp = DAG.getNode( 5045 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 5046 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 5047 5048 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5049 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 5050 Result = 5051 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 5052 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 5053 return true; 5054 } 5055 5056 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 5057 return true; 5058 } 5059 5060 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 5061 SelectionDAG &DAG) const { 5062 SDLoc dl(N); 5063 EVT VT = N->getValueType(0); 5064 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5065 SDValue Op = N->getOperand(0); 5066 5067 // Only expand vector types if we have the appropriate vector operations. 5068 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 5069 !isOperationLegalOrCustom(ISD::ADD, VT) || 5070 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 5071 return false; 5072 5073 SDValue Shift = 5074 DAG.getNode(ISD::SRA, dl, VT, Op, 5075 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 5076 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 5077 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 5078 return true; 5079 } 5080 5081 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 5082 SelectionDAG &DAG) const { 5083 SDLoc SL(LD); 5084 SDValue Chain = LD->getChain(); 5085 SDValue BasePTR = LD->getBasePtr(); 5086 EVT SrcVT = LD->getMemoryVT(); 5087 ISD::LoadExtType ExtType = LD->getExtensionType(); 5088 5089 unsigned NumElem = SrcVT.getVectorNumElements(); 5090 5091 EVT SrcEltVT = SrcVT.getScalarType(); 5092 EVT DstEltVT = LD->getValueType(0).getScalarType(); 5093 5094 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 5095 assert(SrcEltVT.isByteSized()); 5096 5097 SmallVector<SDValue, 8> Vals; 5098 SmallVector<SDValue, 8> LoadChains; 5099 5100 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5101 SDValue ScalarLoad = 5102 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 5103 LD->getPointerInfo().getWithOffset(Idx * Stride), 5104 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 5105 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5106 5107 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 5108 5109 Vals.push_back(ScalarLoad.getValue(0)); 5110 LoadChains.push_back(ScalarLoad.getValue(1)); 5111 } 5112 5113 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 5114 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 5115 5116 return DAG.getMergeValues({Value, NewChain}, SL); 5117 } 5118 5119 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 5120 SelectionDAG &DAG) const { 5121 SDLoc SL(ST); 5122 5123 SDValue Chain = ST->getChain(); 5124 SDValue BasePtr = ST->getBasePtr(); 5125 SDValue Value = ST->getValue(); 5126 EVT StVT = ST->getMemoryVT(); 5127 5128 // The type of the data we want to save 5129 EVT RegVT = Value.getValueType(); 5130 EVT RegSclVT = RegVT.getScalarType(); 5131 5132 // The type of data as saved in memory. 5133 EVT MemSclVT = StVT.getScalarType(); 5134 5135 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 5136 unsigned NumElem = StVT.getVectorNumElements(); 5137 5138 // A vector must always be stored in memory as-is, i.e. without any padding 5139 // between the elements, since various code depend on it, e.g. in the 5140 // handling of a bitcast of a vector type to int, which may be done with a 5141 // vector store followed by an integer load. A vector that does not have 5142 // elements that are byte-sized must therefore be stored as an integer 5143 // built out of the extracted vector elements. 5144 if (!MemSclVT.isByteSized()) { 5145 unsigned NumBits = StVT.getSizeInBits(); 5146 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 5147 5148 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 5149 5150 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5151 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5152 DAG.getConstant(Idx, SL, IdxVT)); 5153 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 5154 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 5155 unsigned ShiftIntoIdx = 5156 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 5157 SDValue ShiftAmount = 5158 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 5159 SDValue ShiftedElt = 5160 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 5161 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 5162 } 5163 5164 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 5165 ST->getAlignment(), ST->getMemOperand()->getFlags(), 5166 ST->getAAInfo()); 5167 } 5168 5169 // Store Stride in bytes 5170 unsigned Stride = MemSclVT.getSizeInBits() / 8; 5171 assert(Stride && "Zero stride!"); 5172 // Extract each of the elements from the original vector and save them into 5173 // memory individually. 5174 SmallVector<SDValue, 8> Stores; 5175 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5176 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5177 DAG.getConstant(Idx, SL, IdxVT)); 5178 5179 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 5180 5181 // This scalar TruncStore may be illegal, but we legalize it later. 5182 SDValue Store = DAG.getTruncStore( 5183 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 5184 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 5185 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5186 5187 Stores.push_back(Store); 5188 } 5189 5190 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 5191 } 5192 5193 std::pair<SDValue, SDValue> 5194 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 5195 assert(LD->getAddressingMode() == ISD::UNINDEXED && 5196 "unaligned indexed loads not implemented!"); 5197 SDValue Chain = LD->getChain(); 5198 SDValue Ptr = LD->getBasePtr(); 5199 EVT VT = LD->getValueType(0); 5200 EVT LoadedVT = LD->getMemoryVT(); 5201 SDLoc dl(LD); 5202 auto &MF = DAG.getMachineFunction(); 5203 5204 if (VT.isFloatingPoint() || VT.isVector()) { 5205 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 5206 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 5207 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 5208 LoadedVT.isVector()) { 5209 // Scalarize the load and let the individual components be handled. 5210 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 5211 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 5212 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 5213 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 5214 } 5215 5216 // Expand to a (misaligned) integer load of the same size, 5217 // then bitconvert to floating point or vector. 5218 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 5219 LD->getMemOperand()); 5220 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 5221 if (LoadedVT != VT) 5222 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 5223 ISD::ANY_EXTEND, dl, VT, Result); 5224 5225 return std::make_pair(Result, newLoad.getValue(1)); 5226 } 5227 5228 // Copy the value to a (aligned) stack slot using (unaligned) integer 5229 // loads and stores, then do a (aligned) load from the stack slot. 5230 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 5231 unsigned LoadedBytes = LoadedVT.getStoreSize(); 5232 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5233 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 5234 5235 // Make sure the stack slot is also aligned for the register type. 5236 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 5237 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 5238 SmallVector<SDValue, 8> Stores; 5239 SDValue StackPtr = StackBase; 5240 unsigned Offset = 0; 5241 5242 EVT PtrVT = Ptr.getValueType(); 5243 EVT StackPtrVT = StackPtr.getValueType(); 5244 5245 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5246 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5247 5248 // Do all but one copies using the full register width. 5249 for (unsigned i = 1; i < NumRegs; i++) { 5250 // Load one integer register's worth from the original location. 5251 SDValue Load = DAG.getLoad( 5252 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5253 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5254 LD->getAAInfo()); 5255 // Follow the load with a store to the stack slot. Remember the store. 5256 Stores.push_back(DAG.getStore( 5257 Load.getValue(1), dl, Load, StackPtr, 5258 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5259 // Increment the pointers. 5260 Offset += RegBytes; 5261 5262 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5263 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5264 } 5265 5266 // The last copy may be partial. Do an extending load. 5267 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5268 8 * (LoadedBytes - Offset)); 5269 SDValue Load = 5270 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5271 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5272 MinAlign(LD->getAlignment(), Offset), 5273 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5274 // Follow the load with a store to the stack slot. Remember the store. 5275 // On big-endian machines this requires a truncating store to ensure 5276 // that the bits end up in the right place. 5277 Stores.push_back(DAG.getTruncStore( 5278 Load.getValue(1), dl, Load, StackPtr, 5279 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5280 5281 // The order of the stores doesn't matter - say it with a TokenFactor. 5282 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5283 5284 // Finally, perform the original load only redirected to the stack slot. 5285 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5286 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5287 LoadedVT); 5288 5289 // Callers expect a MERGE_VALUES node. 5290 return std::make_pair(Load, TF); 5291 } 5292 5293 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5294 "Unaligned load of unsupported type."); 5295 5296 // Compute the new VT that is half the size of the old one. This is an 5297 // integer MVT. 5298 unsigned NumBits = LoadedVT.getSizeInBits(); 5299 EVT NewLoadedVT; 5300 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5301 NumBits >>= 1; 5302 5303 unsigned Alignment = LD->getAlignment(); 5304 unsigned IncrementSize = NumBits / 8; 5305 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5306 5307 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5308 if (HiExtType == ISD::NON_EXTLOAD) 5309 HiExtType = ISD::ZEXTLOAD; 5310 5311 // Load the value in two parts 5312 SDValue Lo, Hi; 5313 if (DAG.getDataLayout().isLittleEndian()) { 5314 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5315 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5316 LD->getAAInfo()); 5317 5318 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5319 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5320 LD->getPointerInfo().getWithOffset(IncrementSize), 5321 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5322 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5323 } else { 5324 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5325 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5326 LD->getAAInfo()); 5327 5328 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5329 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5330 LD->getPointerInfo().getWithOffset(IncrementSize), 5331 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5332 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5333 } 5334 5335 // aggregate the two parts 5336 SDValue ShiftAmount = 5337 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5338 DAG.getDataLayout())); 5339 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5340 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5341 5342 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5343 Hi.getValue(1)); 5344 5345 return std::make_pair(Result, TF); 5346 } 5347 5348 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5349 SelectionDAG &DAG) const { 5350 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5351 "unaligned indexed stores not implemented!"); 5352 SDValue Chain = ST->getChain(); 5353 SDValue Ptr = ST->getBasePtr(); 5354 SDValue Val = ST->getValue(); 5355 EVT VT = Val.getValueType(); 5356 int Alignment = ST->getAlignment(); 5357 auto &MF = DAG.getMachineFunction(); 5358 EVT StoreMemVT = ST->getMemoryVT(); 5359 5360 SDLoc dl(ST); 5361 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 5362 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5363 if (isTypeLegal(intVT)) { 5364 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5365 StoreMemVT.isVector()) { 5366 // Scalarize the store and let the individual components be handled. 5367 SDValue Result = scalarizeVectorStore(ST, DAG); 5368 return Result; 5369 } 5370 // Expand to a bitconvert of the value to the integer type of the 5371 // same size, then a (misaligned) int store. 5372 // FIXME: Does not handle truncating floating point stores! 5373 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5374 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5375 Alignment, ST->getMemOperand()->getFlags()); 5376 return Result; 5377 } 5378 // Do a (aligned) store to a stack slot, then copy from the stack slot 5379 // to the final destination using (unaligned) integer loads and stores. 5380 MVT RegVT = getRegisterType( 5381 *DAG.getContext(), 5382 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 5383 EVT PtrVT = Ptr.getValueType(); 5384 unsigned StoredBytes = StoreMemVT.getStoreSize(); 5385 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5386 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5387 5388 // Make sure the stack slot is also aligned for the register type. 5389 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 5390 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5391 5392 // Perform the original store, only redirected to the stack slot. 5393 SDValue Store = DAG.getTruncStore( 5394 Chain, dl, Val, StackPtr, 5395 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 5396 5397 EVT StackPtrVT = StackPtr.getValueType(); 5398 5399 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5400 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5401 SmallVector<SDValue, 8> Stores; 5402 unsigned Offset = 0; 5403 5404 // Do all but one copies using the full register width. 5405 for (unsigned i = 1; i < NumRegs; i++) { 5406 // Load one integer register's worth from the stack slot. 5407 SDValue Load = DAG.getLoad( 5408 RegVT, dl, Store, StackPtr, 5409 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5410 // Store it to the final location. Remember the store. 5411 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5412 ST->getPointerInfo().getWithOffset(Offset), 5413 MinAlign(ST->getAlignment(), Offset), 5414 ST->getMemOperand()->getFlags())); 5415 // Increment the pointers. 5416 Offset += RegBytes; 5417 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5418 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5419 } 5420 5421 // The last store may be partial. Do a truncating store. On big-endian 5422 // machines this requires an extending load from the stack slot to ensure 5423 // that the bits are in the right place. 5424 EVT LoadMemVT = 5425 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 5426 5427 // Load from the stack slot. 5428 SDValue Load = DAG.getExtLoad( 5429 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5430 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 5431 5432 Stores.push_back( 5433 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5434 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 5435 MinAlign(ST->getAlignment(), Offset), 5436 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5437 // The order of the stores doesn't matter - say it with a TokenFactor. 5438 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5439 return Result; 5440 } 5441 5442 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 5443 "Unaligned store of unknown type."); 5444 // Get the half-size VT 5445 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 5446 int NumBits = NewStoredVT.getSizeInBits(); 5447 int IncrementSize = NumBits / 8; 5448 5449 // Divide the stored value in two parts. 5450 SDValue ShiftAmount = DAG.getConstant( 5451 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 5452 SDValue Lo = Val; 5453 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5454 5455 // Store the two parts 5456 SDValue Store1, Store2; 5457 Store1 = DAG.getTruncStore(Chain, dl, 5458 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5459 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5460 ST->getMemOperand()->getFlags()); 5461 5462 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5463 Alignment = MinAlign(Alignment, IncrementSize); 5464 Store2 = DAG.getTruncStore( 5465 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5466 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5467 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5468 5469 SDValue Result = 5470 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5471 return Result; 5472 } 5473 5474 SDValue 5475 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5476 const SDLoc &DL, EVT DataVT, 5477 SelectionDAG &DAG, 5478 bool IsCompressedMemory) const { 5479 SDValue Increment; 5480 EVT AddrVT = Addr.getValueType(); 5481 EVT MaskVT = Mask.getValueType(); 5482 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5483 "Incompatible types of Data and Mask"); 5484 if (IsCompressedMemory) { 5485 // Incrementing the pointer according to number of '1's in the mask. 5486 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5487 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5488 if (MaskIntVT.getSizeInBits() < 32) { 5489 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5490 MaskIntVT = MVT::i32; 5491 } 5492 5493 // Count '1's with POPCNT. 5494 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5495 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5496 // Scale is an element size in bytes. 5497 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5498 AddrVT); 5499 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5500 } else 5501 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5502 5503 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5504 } 5505 5506 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5507 SDValue Idx, 5508 EVT VecVT, 5509 const SDLoc &dl) { 5510 if (isa<ConstantSDNode>(Idx)) 5511 return Idx; 5512 5513 EVT IdxVT = Idx.getValueType(); 5514 unsigned NElts = VecVT.getVectorNumElements(); 5515 if (isPowerOf2_32(NElts)) { 5516 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5517 Log2_32(NElts)); 5518 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5519 DAG.getConstant(Imm, dl, IdxVT)); 5520 } 5521 5522 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5523 DAG.getConstant(NElts - 1, dl, IdxVT)); 5524 } 5525 5526 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5527 SDValue VecPtr, EVT VecVT, 5528 SDValue Index) const { 5529 SDLoc dl(Index); 5530 // Make sure the index type is big enough to compute in. 5531 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5532 5533 EVT EltVT = VecVT.getVectorElementType(); 5534 5535 // Calculate the element offset and add it to the pointer. 5536 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5537 assert(EltSize * 8 == EltVT.getSizeInBits() && 5538 "Converting bits to bytes lost precision"); 5539 5540 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5541 5542 EVT IdxVT = Index.getValueType(); 5543 5544 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5545 DAG.getConstant(EltSize, dl, IdxVT)); 5546 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5547 } 5548 5549 //===----------------------------------------------------------------------===// 5550 // Implementation of Emulated TLS Model 5551 //===----------------------------------------------------------------------===// 5552 5553 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5554 SelectionDAG &DAG) const { 5555 // Access to address of TLS varialbe xyz is lowered to a function call: 5556 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5557 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5558 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5559 SDLoc dl(GA); 5560 5561 ArgListTy Args; 5562 ArgListEntry Entry; 5563 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5564 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5565 StringRef EmuTlsVarName(NameString); 5566 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5567 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5568 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5569 Entry.Ty = VoidPtrType; 5570 Args.push_back(Entry); 5571 5572 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5573 5574 TargetLowering::CallLoweringInfo CLI(DAG); 5575 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5576 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5577 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5578 5579 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5580 // At last for X86 targets, maybe good for other targets too? 5581 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5582 MFI.setAdjustsStack(true); // Is this only for X86 target? 5583 MFI.setHasCalls(true); 5584 5585 assert((GA->getOffset() == 0) && 5586 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5587 return CallResult.first; 5588 } 5589 5590 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5591 SelectionDAG &DAG) const { 5592 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5593 if (!isCtlzFast()) 5594 return SDValue(); 5595 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5596 SDLoc dl(Op); 5597 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5598 if (C->isNullValue() && CC == ISD::SETEQ) { 5599 EVT VT = Op.getOperand(0).getValueType(); 5600 SDValue Zext = Op.getOperand(0); 5601 if (VT.bitsLT(MVT::i32)) { 5602 VT = MVT::i32; 5603 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5604 } 5605 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5606 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5607 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5608 DAG.getConstant(Log2b, dl, MVT::i32)); 5609 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5610 } 5611 } 5612 return SDValue(); 5613 } 5614 5615 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5616 unsigned Opcode = Node->getOpcode(); 5617 SDValue LHS = Node->getOperand(0); 5618 SDValue RHS = Node->getOperand(1); 5619 EVT VT = LHS.getValueType(); 5620 SDLoc dl(Node); 5621 5622 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 5623 assert(VT.isInteger() && "Expected operands to be integers"); 5624 5625 // usub.sat(a, b) -> umax(a, b) - b 5626 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5627 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5628 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5629 } 5630 5631 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5632 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5633 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5634 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5635 } 5636 5637 unsigned OverflowOp; 5638 switch (Opcode) { 5639 case ISD::SADDSAT: 5640 OverflowOp = ISD::SADDO; 5641 break; 5642 case ISD::UADDSAT: 5643 OverflowOp = ISD::UADDO; 5644 break; 5645 case ISD::SSUBSAT: 5646 OverflowOp = ISD::SSUBO; 5647 break; 5648 case ISD::USUBSAT: 5649 OverflowOp = ISD::USUBO; 5650 break; 5651 default: 5652 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5653 "addition or subtraction node."); 5654 } 5655 5656 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5657 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5658 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 5659 LHS, RHS); 5660 SDValue SumDiff = Result.getValue(0); 5661 SDValue Overflow = Result.getValue(1); 5662 SDValue Zero = DAG.getConstant(0, dl, VT); 5663 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 5664 5665 if (Opcode == ISD::UADDSAT) { 5666 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5667 // (LHS + RHS) | OverflowMask 5668 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5669 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 5670 } 5671 // Overflow ? 0xffff.... : (LHS + RHS) 5672 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 5673 } else if (Opcode == ISD::USUBSAT) { 5674 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5675 // (LHS - RHS) & ~OverflowMask 5676 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5677 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 5678 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 5679 } 5680 // Overflow ? 0 : (LHS - RHS) 5681 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 5682 } else { 5683 // SatMax -> Overflow && SumDiff < 0 5684 // SatMin -> Overflow && SumDiff >= 0 5685 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5686 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5687 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5688 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5689 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5690 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 5691 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 5692 } 5693 } 5694 5695 SDValue 5696 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5697 assert((Node->getOpcode() == ISD::SMULFIX || 5698 Node->getOpcode() == ISD::UMULFIX || 5699 Node->getOpcode() == ISD::SMULFIXSAT) && 5700 "Expected a fixed point multiplication opcode"); 5701 5702 SDLoc dl(Node); 5703 SDValue LHS = Node->getOperand(0); 5704 SDValue RHS = Node->getOperand(1); 5705 EVT VT = LHS.getValueType(); 5706 unsigned Scale = Node->getConstantOperandVal(2); 5707 bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT; 5708 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5709 unsigned VTSize = VT.getScalarSizeInBits(); 5710 5711 if (!Scale) { 5712 // [us]mul.fix(a, b, 0) -> mul(a, b) 5713 if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) { 5714 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5715 } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) { 5716 SDValue Result = 5717 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 5718 SDValue Product = Result.getValue(0); 5719 SDValue Overflow = Result.getValue(1); 5720 SDValue Zero = DAG.getConstant(0, dl, VT); 5721 5722 APInt MinVal = APInt::getSignedMinValue(VTSize); 5723 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 5724 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5725 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5726 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 5727 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 5728 return DAG.getSelect(dl, VT, Overflow, Result, Product); 5729 } 5730 } 5731 5732 bool Signed = 5733 Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT; 5734 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5735 "Expected scale to be less than the number of bits if signed or at " 5736 "most the number of bits if unsigned."); 5737 assert(LHS.getValueType() == RHS.getValueType() && 5738 "Expected both operands to be the same type"); 5739 5740 // Get the upper and lower bits of the result. 5741 SDValue Lo, Hi; 5742 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5743 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5744 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5745 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5746 Lo = Result.getValue(0); 5747 Hi = Result.getValue(1); 5748 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5749 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5750 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5751 } else if (VT.isVector()) { 5752 return SDValue(); 5753 } else { 5754 report_fatal_error("Unable to expand fixed point multiplication."); 5755 } 5756 5757 if (Scale == VTSize) 5758 // Result is just the top half since we'd be shifting by the width of the 5759 // operand. 5760 return Hi; 5761 5762 // The result will need to be shifted right by the scale since both operands 5763 // are scaled. The result is given to us in 2 halves, so we only want part of 5764 // both in the result. 5765 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5766 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5767 DAG.getConstant(Scale, dl, ShiftTy)); 5768 if (!Saturating) 5769 return Result; 5770 5771 unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign 5772 SDValue HiMask = 5773 DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT); 5774 SDValue LoMask = DAG.getConstant( 5775 APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT); 5776 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 5777 APInt MinVal = APInt::getSignedMinValue(VTSize); 5778 5779 Result = DAG.getSelectCC(dl, Hi, LoMask, 5780 DAG.getConstant(MaxVal, dl, VT), Result, 5781 ISD::SETGT); 5782 return DAG.getSelectCC(dl, Hi, HiMask, 5783 DAG.getConstant(MinVal, dl, VT), Result, 5784 ISD::SETLT); 5785 } 5786 5787 void TargetLowering::expandUADDSUBO( 5788 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 5789 SDLoc dl(Node); 5790 SDValue LHS = Node->getOperand(0); 5791 SDValue RHS = Node->getOperand(1); 5792 bool IsAdd = Node->getOpcode() == ISD::UADDO; 5793 5794 // If ADD/SUBCARRY is legal, use that instead. 5795 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 5796 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 5797 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 5798 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 5799 { LHS, RHS, CarryIn }); 5800 Result = SDValue(NodeCarry.getNode(), 0); 5801 Overflow = SDValue(NodeCarry.getNode(), 1); 5802 return; 5803 } 5804 5805 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 5806 LHS.getValueType(), LHS, RHS); 5807 5808 EVT ResultType = Node->getValueType(1); 5809 EVT SetCCType = getSetCCResultType( 5810 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 5811 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 5812 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 5813 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 5814 } 5815 5816 void TargetLowering::expandSADDSUBO( 5817 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 5818 SDLoc dl(Node); 5819 SDValue LHS = Node->getOperand(0); 5820 SDValue RHS = Node->getOperand(1); 5821 bool IsAdd = Node->getOpcode() == ISD::SADDO; 5822 5823 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 5824 LHS.getValueType(), LHS, RHS); 5825 5826 EVT ResultType = Node->getValueType(1); 5827 EVT OType = getSetCCResultType( 5828 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 5829 5830 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5831 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 5832 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 5833 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 5834 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 5835 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 5836 return; 5837 } 5838 5839 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 5840 5841 // LHSSign -> LHS >= 0 5842 // RHSSign -> RHS >= 0 5843 // SumSign -> Result >= 0 5844 // 5845 // Add: 5846 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 5847 // Sub: 5848 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 5849 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 5850 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 5851 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 5852 IsAdd ? ISD::SETEQ : ISD::SETNE); 5853 5854 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE); 5855 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 5856 5857 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 5858 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType); 5859 } 5860 5861 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 5862 SDValue &Overflow, SelectionDAG &DAG) const { 5863 SDLoc dl(Node); 5864 EVT VT = Node->getValueType(0); 5865 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5866 SDValue LHS = Node->getOperand(0); 5867 SDValue RHS = Node->getOperand(1); 5868 bool isSigned = Node->getOpcode() == ISD::SMULO; 5869 5870 // For power-of-two multiplications we can use a simpler shift expansion. 5871 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5872 const APInt &C = RHSC->getAPIntValue(); 5873 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5874 if (C.isPowerOf2()) { 5875 // smulo(x, signed_min) is same as umulo(x, signed_min). 5876 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5877 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5878 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 5879 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 5880 Overflow = DAG.getSetCC(dl, SetCCVT, 5881 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5882 dl, VT, Result, ShiftAmt), 5883 LHS, ISD::SETNE); 5884 return true; 5885 } 5886 } 5887 5888 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 5889 if (VT.isVector()) 5890 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 5891 VT.getVectorNumElements()); 5892 5893 SDValue BottomHalf; 5894 SDValue TopHalf; 5895 static const unsigned Ops[2][3] = 5896 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 5897 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 5898 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 5899 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5900 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 5901 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 5902 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 5903 RHS); 5904 TopHalf = BottomHalf.getValue(1); 5905 } else if (isTypeLegal(WideVT)) { 5906 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 5907 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 5908 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 5909 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 5910 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 5911 getShiftAmountTy(WideVT, DAG.getDataLayout())); 5912 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 5913 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 5914 } else { 5915 if (VT.isVector()) 5916 return false; 5917 5918 // We can fall back to a libcall with an illegal type for the MUL if we 5919 // have a libcall big enough. 5920 // Also, we can fall back to a division in some cases, but that's a big 5921 // performance hit in the general case. 5922 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5923 if (WideVT == MVT::i16) 5924 LC = RTLIB::MUL_I16; 5925 else if (WideVT == MVT::i32) 5926 LC = RTLIB::MUL_I32; 5927 else if (WideVT == MVT::i64) 5928 LC = RTLIB::MUL_I64; 5929 else if (WideVT == MVT::i128) 5930 LC = RTLIB::MUL_I128; 5931 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 5932 5933 SDValue HiLHS; 5934 SDValue HiRHS; 5935 if (isSigned) { 5936 // The high part is obtained by SRA'ing all but one of the bits of low 5937 // part. 5938 unsigned LoSize = VT.getSizeInBits(); 5939 HiLHS = 5940 DAG.getNode(ISD::SRA, dl, VT, LHS, 5941 DAG.getConstant(LoSize - 1, dl, 5942 getPointerTy(DAG.getDataLayout()))); 5943 HiRHS = 5944 DAG.getNode(ISD::SRA, dl, VT, RHS, 5945 DAG.getConstant(LoSize - 1, dl, 5946 getPointerTy(DAG.getDataLayout()))); 5947 } else { 5948 HiLHS = DAG.getConstant(0, dl, VT); 5949 HiRHS = DAG.getConstant(0, dl, VT); 5950 } 5951 5952 // Here we're passing the 2 arguments explicitly as 4 arguments that are 5953 // pre-lowered to the correct types. This all depends upon WideVT not 5954 // being a legal type for the architecture and thus has to be split to 5955 // two arguments. 5956 SDValue Ret; 5957 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 5958 // Halves of WideVT are packed into registers in different order 5959 // depending on platform endianness. This is usually handled by 5960 // the C calling convention, but we can't defer to it in 5961 // the legalizer. 5962 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 5963 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5964 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5965 /* isPostTypeLegalization */ true).first; 5966 } else { 5967 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 5968 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5969 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5970 /* isPostTypeLegalization */ true).first; 5971 } 5972 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 5973 "Ret value is a collection of constituent nodes holding result."); 5974 if (DAG.getDataLayout().isLittleEndian()) { 5975 // Same as above. 5976 BottomHalf = Ret.getOperand(0); 5977 TopHalf = Ret.getOperand(1); 5978 } else { 5979 BottomHalf = Ret.getOperand(1); 5980 TopHalf = Ret.getOperand(0); 5981 } 5982 } 5983 5984 Result = BottomHalf; 5985 if (isSigned) { 5986 SDValue ShiftAmt = DAG.getConstant( 5987 VT.getScalarSizeInBits() - 1, dl, 5988 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 5989 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 5990 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 5991 } else { 5992 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 5993 DAG.getConstant(0, dl, VT), ISD::SETNE); 5994 } 5995 5996 // Truncate the result if SetCC returns a larger type than needed. 5997 EVT RType = Node->getValueType(1); 5998 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 5999 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 6000 6001 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 6002 "Unexpected result type for S/UMULO legalization"); 6003 return true; 6004 } 6005 6006 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 6007 SDLoc dl(Node); 6008 bool NoNaN = Node->getFlags().hasNoNaNs(); 6009 unsigned BaseOpcode = 0; 6010 switch (Node->getOpcode()) { 6011 default: llvm_unreachable("Expected VECREDUCE opcode"); 6012 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 6013 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 6014 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 6015 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 6016 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 6017 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 6018 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 6019 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 6020 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 6021 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 6022 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 6023 case ISD::VECREDUCE_FMAX: 6024 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 6025 break; 6026 case ISD::VECREDUCE_FMIN: 6027 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 6028 break; 6029 } 6030 6031 SDValue Op = Node->getOperand(0); 6032 EVT VT = Op.getValueType(); 6033 6034 // Try to use a shuffle reduction for power of two vectors. 6035 if (VT.isPow2VectorType()) { 6036 while (VT.getVectorNumElements() > 1) { 6037 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 6038 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 6039 break; 6040 6041 SDValue Lo, Hi; 6042 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 6043 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 6044 VT = HalfVT; 6045 } 6046 } 6047 6048 EVT EltVT = VT.getVectorElementType(); 6049 unsigned NumElts = VT.getVectorNumElements(); 6050 6051 SmallVector<SDValue, 8> Ops; 6052 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 6053 6054 SDValue Res = Ops[0]; 6055 for (unsigned i = 1; i < NumElts; i++) 6056 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 6057 6058 // Result type may be wider than element type. 6059 if (EltVT != Node->getValueType(0)) 6060 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 6061 return Res; 6062 } 6063