1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1366     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1367     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR &&
1368         (Op0.getOperand(0).isUndef() ||
1369          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1370         Op0->hasOneUse()) {
1371       unsigned NumSubElts =
1372           Op0.getOperand(1).getValueType().getVectorNumElements();
1373       unsigned SubIdx = Op0.getConstantOperandVal(2);
1374       APInt DemandedSub =
1375           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1376       KnownBits KnownSubMask =
1377           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1378       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1379         SDValue NewAnd =
1380             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1381         SDValue NewInsert =
1382             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1383                             Op0.getOperand(1), Op0.getOperand(2));
1384         return TLO.CombineTo(Op, NewInsert);
1385       }
1386     }
1387 
1388     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1389                              Depth + 1))
1390       return true;
1391     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1392     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1393                              Known2, TLO, Depth + 1))
1394       return true;
1395     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1396 
1397     // Attempt to avoid multi-use ops if we don't need anything from them.
1398     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1399       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1400           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1401       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1402           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1403       if (DemandedOp0 || DemandedOp1) {
1404         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1405         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1406         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1407         return TLO.CombineTo(Op, NewOp);
1408       }
1409     }
1410 
1411     // If all of the demanded bits are known one on one side, return the other.
1412     // These bits cannot contribute to the result of the 'and'.
1413     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1414       return TLO.CombineTo(Op, Op0);
1415     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1416       return TLO.CombineTo(Op, Op1);
1417     // If all of the demanded bits in the inputs are known zeros, return zero.
1418     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1419       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1420     // If the RHS is a constant, see if we can simplify it.
1421     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1422                                TLO))
1423       return true;
1424     // If the operation can be done in a smaller type, do so.
1425     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1426       return true;
1427 
1428     Known &= Known2;
1429     break;
1430   }
1431   case ISD::OR: {
1432     SDValue Op0 = Op.getOperand(0);
1433     SDValue Op1 = Op.getOperand(1);
1434 
1435     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1436                              Depth + 1))
1437       return true;
1438     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1439     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1440                              Known2, TLO, Depth + 1))
1441       return true;
1442     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1443 
1444     // Attempt to avoid multi-use ops if we don't need anything from them.
1445     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1446       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1447           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1448       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1449           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1450       if (DemandedOp0 || DemandedOp1) {
1451         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1452         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1453         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1454         return TLO.CombineTo(Op, NewOp);
1455       }
1456     }
1457 
1458     // If all of the demanded bits are known zero on one side, return the other.
1459     // These bits cannot contribute to the result of the 'or'.
1460     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1461       return TLO.CombineTo(Op, Op0);
1462     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1463       return TLO.CombineTo(Op, Op1);
1464     // If the RHS is a constant, see if we can simplify it.
1465     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1466       return true;
1467     // If the operation can be done in a smaller type, do so.
1468     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1469       return true;
1470 
1471     Known |= Known2;
1472     break;
1473   }
1474   case ISD::XOR: {
1475     SDValue Op0 = Op.getOperand(0);
1476     SDValue Op1 = Op.getOperand(1);
1477 
1478     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1479                              Depth + 1))
1480       return true;
1481     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1482     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1483                              Depth + 1))
1484       return true;
1485     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1486 
1487     // Attempt to avoid multi-use ops if we don't need anything from them.
1488     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1489       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1490           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1491       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1492           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1493       if (DemandedOp0 || DemandedOp1) {
1494         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1495         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1496         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1497         return TLO.CombineTo(Op, NewOp);
1498       }
1499     }
1500 
1501     // If all of the demanded bits are known zero on one side, return the other.
1502     // These bits cannot contribute to the result of the 'xor'.
1503     if (DemandedBits.isSubsetOf(Known.Zero))
1504       return TLO.CombineTo(Op, Op0);
1505     if (DemandedBits.isSubsetOf(Known2.Zero))
1506       return TLO.CombineTo(Op, Op1);
1507     // If the operation can be done in a smaller type, do so.
1508     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1509       return true;
1510 
1511     // If all of the unknown bits are known to be zero on one side or the other
1512     // turn this into an *inclusive* or.
1513     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1514     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1515       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1516 
1517     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1518     if (C) {
1519       // If one side is a constant, and all of the set bits in the constant are
1520       // also known set on the other side, turn this into an AND, as we know
1521       // the bits will be cleared.
1522       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1523       // NB: it is okay if more bits are known than are requested
1524       if (C->getAPIntValue() == Known2.One) {
1525         SDValue ANDC =
1526             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1527         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1528       }
1529 
1530       // If the RHS is a constant, see if we can change it. Don't alter a -1
1531       // constant because that's a 'not' op, and that is better for combining
1532       // and codegen.
1533       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1534         // We're flipping all demanded bits. Flip the undemanded bits too.
1535         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1536         return TLO.CombineTo(Op, New);
1537       }
1538     }
1539 
1540     // If we can't turn this into a 'not', try to shrink the constant.
1541     if (!C || !C->isAllOnes())
1542       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1543         return true;
1544 
1545     Known ^= Known2;
1546     break;
1547   }
1548   case ISD::SELECT:
1549     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1550                              Depth + 1))
1551       return true;
1552     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1553                              Depth + 1))
1554       return true;
1555     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1556     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1557 
1558     // If the operands are constants, see if we can simplify them.
1559     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1560       return true;
1561 
1562     // Only known if known in both the LHS and RHS.
1563     Known = KnownBits::commonBits(Known, Known2);
1564     break;
1565   case ISD::VSELECT:
1566     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1567                              Known, TLO, Depth + 1))
1568       return true;
1569     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1570                              Known2, TLO, Depth + 1))
1571       return true;
1572     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1573     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1574 
1575     // Only known if known in both the LHS and RHS.
1576     Known = KnownBits::commonBits(Known, Known2);
1577     break;
1578   case ISD::SELECT_CC:
1579     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1580                              Depth + 1))
1581       return true;
1582     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1583                              Depth + 1))
1584       return true;
1585     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1586     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1587 
1588     // If the operands are constants, see if we can simplify them.
1589     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1590       return true;
1591 
1592     // Only known if known in both the LHS and RHS.
1593     Known = KnownBits::commonBits(Known, Known2);
1594     break;
1595   case ISD::SETCC: {
1596     SDValue Op0 = Op.getOperand(0);
1597     SDValue Op1 = Op.getOperand(1);
1598     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1599     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1600     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1601     // -1, we may be able to bypass the setcc.
1602     if (DemandedBits.isSignMask() &&
1603         Op0.getScalarValueSizeInBits() == BitWidth &&
1604         getBooleanContents(Op0.getValueType()) ==
1605             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1606       // If we're testing X < 0, then this compare isn't needed - just use X!
1607       // FIXME: We're limiting to integer types here, but this should also work
1608       // if we don't care about FP signed-zero. The use of SETLT with FP means
1609       // that we don't care about NaNs.
1610       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1611           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1612         return TLO.CombineTo(Op, Op0);
1613 
1614       // TODO: Should we check for other forms of sign-bit comparisons?
1615       // Examples: X <= -1, X >= 0
1616     }
1617     if (getBooleanContents(Op0.getValueType()) ==
1618             TargetLowering::ZeroOrOneBooleanContent &&
1619         BitWidth > 1)
1620       Known.Zero.setBitsFrom(1);
1621     break;
1622   }
1623   case ISD::SHL: {
1624     SDValue Op0 = Op.getOperand(0);
1625     SDValue Op1 = Op.getOperand(1);
1626     EVT ShiftVT = Op1.getValueType();
1627 
1628     if (const APInt *SA =
1629             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1630       unsigned ShAmt = SA->getZExtValue();
1631       if (ShAmt == 0)
1632         return TLO.CombineTo(Op, Op0);
1633 
1634       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1635       // single shift.  We can do this if the bottom bits (which are shifted
1636       // out) are never demanded.
1637       // TODO - support non-uniform vector amounts.
1638       if (Op0.getOpcode() == ISD::SRL) {
1639         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1640           if (const APInt *SA2 =
1641                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1642             unsigned C1 = SA2->getZExtValue();
1643             unsigned Opc = ISD::SHL;
1644             int Diff = ShAmt - C1;
1645             if (Diff < 0) {
1646               Diff = -Diff;
1647               Opc = ISD::SRL;
1648             }
1649             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1650             return TLO.CombineTo(
1651                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1652           }
1653         }
1654       }
1655 
1656       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1657       // are not demanded. This will likely allow the anyext to be folded away.
1658       // TODO - support non-uniform vector amounts.
1659       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1660         SDValue InnerOp = Op0.getOperand(0);
1661         EVT InnerVT = InnerOp.getValueType();
1662         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1663         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1664             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1665           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1666           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1667             ShTy = InnerVT;
1668           SDValue NarrowShl =
1669               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1670                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1671           return TLO.CombineTo(
1672               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1673         }
1674 
1675         // Repeat the SHL optimization above in cases where an extension
1676         // intervenes: (shl (anyext (shr x, c1)), c2) to
1677         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1678         // aren't demanded (as above) and that the shifted upper c1 bits of
1679         // x aren't demanded.
1680         // TODO - support non-uniform vector amounts.
1681         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1682             InnerOp.hasOneUse()) {
1683           if (const APInt *SA2 =
1684                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1685             unsigned InnerShAmt = SA2->getZExtValue();
1686             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1687                 DemandedBits.getActiveBits() <=
1688                     (InnerBits - InnerShAmt + ShAmt) &&
1689                 DemandedBits.countTrailingZeros() >= ShAmt) {
1690               SDValue NewSA =
1691                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1692               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1693                                                InnerOp.getOperand(0));
1694               return TLO.CombineTo(
1695                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1696             }
1697           }
1698         }
1699       }
1700 
1701       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1702       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1703                                Depth + 1))
1704         return true;
1705       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1706       Known.Zero <<= ShAmt;
1707       Known.One <<= ShAmt;
1708       // low bits known zero.
1709       Known.Zero.setLowBits(ShAmt);
1710 
1711       // Attempt to avoid multi-use ops if we don't need anything from them.
1712       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1713         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1714             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1715         if (DemandedOp0) {
1716           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1717           return TLO.CombineTo(Op, NewOp);
1718         }
1719       }
1720 
1721       // Try shrinking the operation as long as the shift amount will still be
1722       // in range.
1723       if ((ShAmt < DemandedBits.getActiveBits()) &&
1724           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1725         return true;
1726     }
1727 
1728     // If we are only demanding sign bits then we can use the shift source
1729     // directly.
1730     if (const APInt *MaxSA =
1731             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1732       unsigned ShAmt = MaxSA->getZExtValue();
1733       unsigned NumSignBits =
1734           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1735       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1736       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1737         return TLO.CombineTo(Op, Op0);
1738     }
1739     break;
1740   }
1741   case ISD::SRL: {
1742     SDValue Op0 = Op.getOperand(0);
1743     SDValue Op1 = Op.getOperand(1);
1744     EVT ShiftVT = Op1.getValueType();
1745 
1746     // Try to match AVG patterns.
1747     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1748                                         DemandedElts, Depth + 1))
1749       return TLO.CombineTo(Op, AVG);
1750 
1751     if (const APInt *SA =
1752             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1753       unsigned ShAmt = SA->getZExtValue();
1754       if (ShAmt == 0)
1755         return TLO.CombineTo(Op, Op0);
1756 
1757       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1758       // single shift.  We can do this if the top bits (which are shifted out)
1759       // are never demanded.
1760       // TODO - support non-uniform vector amounts.
1761       if (Op0.getOpcode() == ISD::SHL) {
1762         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1763           if (const APInt *SA2 =
1764                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1765             unsigned C1 = SA2->getZExtValue();
1766             unsigned Opc = ISD::SRL;
1767             int Diff = ShAmt - C1;
1768             if (Diff < 0) {
1769               Diff = -Diff;
1770               Opc = ISD::SHL;
1771             }
1772             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1773             return TLO.CombineTo(
1774                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1775           }
1776         }
1777       }
1778 
1779       APInt InDemandedMask = (DemandedBits << ShAmt);
1780 
1781       // If the shift is exact, then it does demand the low bits (and knows that
1782       // they are zero).
1783       if (Op->getFlags().hasExact())
1784         InDemandedMask.setLowBits(ShAmt);
1785 
1786       // Compute the new bits that are at the top now.
1787       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1788                                Depth + 1))
1789         return true;
1790       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1791       Known.Zero.lshrInPlace(ShAmt);
1792       Known.One.lshrInPlace(ShAmt);
1793       // High bits known zero.
1794       Known.Zero.setHighBits(ShAmt);
1795     }
1796     break;
1797   }
1798   case ISD::SRA: {
1799     SDValue Op0 = Op.getOperand(0);
1800     SDValue Op1 = Op.getOperand(1);
1801     EVT ShiftVT = Op1.getValueType();
1802 
1803     // If we only want bits that already match the signbit then we don't need
1804     // to shift.
1805     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1806     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1807         NumHiDemandedBits)
1808       return TLO.CombineTo(Op, Op0);
1809 
1810     // If this is an arithmetic shift right and only the low-bit is set, we can
1811     // always convert this into a logical shr, even if the shift amount is
1812     // variable.  The low bit of the shift cannot be an input sign bit unless
1813     // the shift amount is >= the size of the datatype, which is undefined.
1814     if (DemandedBits.isOne())
1815       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1816 
1817     // Try to match AVG patterns.
1818     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1819                                         DemandedElts, Depth + 1))
1820       return TLO.CombineTo(Op, AVG);
1821 
1822     if (const APInt *SA =
1823             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1824       unsigned ShAmt = SA->getZExtValue();
1825       if (ShAmt == 0)
1826         return TLO.CombineTo(Op, Op0);
1827 
1828       APInt InDemandedMask = (DemandedBits << ShAmt);
1829 
1830       // If the shift is exact, then it does demand the low bits (and knows that
1831       // they are zero).
1832       if (Op->getFlags().hasExact())
1833         InDemandedMask.setLowBits(ShAmt);
1834 
1835       // If any of the demanded bits are produced by the sign extension, we also
1836       // demand the input sign bit.
1837       if (DemandedBits.countLeadingZeros() < ShAmt)
1838         InDemandedMask.setSignBit();
1839 
1840       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1841                                Depth + 1))
1842         return true;
1843       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1844       Known.Zero.lshrInPlace(ShAmt);
1845       Known.One.lshrInPlace(ShAmt);
1846 
1847       // If the input sign bit is known to be zero, or if none of the top bits
1848       // are demanded, turn this into an unsigned shift right.
1849       if (Known.Zero[BitWidth - ShAmt - 1] ||
1850           DemandedBits.countLeadingZeros() >= ShAmt) {
1851         SDNodeFlags Flags;
1852         Flags.setExact(Op->getFlags().hasExact());
1853         return TLO.CombineTo(
1854             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1855       }
1856 
1857       int Log2 = DemandedBits.exactLogBase2();
1858       if (Log2 >= 0) {
1859         // The bit must come from the sign.
1860         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1861         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1862       }
1863 
1864       if (Known.One[BitWidth - ShAmt - 1])
1865         // New bits are known one.
1866         Known.One.setHighBits(ShAmt);
1867 
1868       // Attempt to avoid multi-use ops if we don't need anything from them.
1869       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1870         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1871             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1872         if (DemandedOp0) {
1873           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1874           return TLO.CombineTo(Op, NewOp);
1875         }
1876       }
1877     }
1878     break;
1879   }
1880   case ISD::FSHL:
1881   case ISD::FSHR: {
1882     SDValue Op0 = Op.getOperand(0);
1883     SDValue Op1 = Op.getOperand(1);
1884     SDValue Op2 = Op.getOperand(2);
1885     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1886 
1887     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1888       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1889 
1890       // For fshl, 0-shift returns the 1st arg.
1891       // For fshr, 0-shift returns the 2nd arg.
1892       if (Amt == 0) {
1893         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1894                                  Known, TLO, Depth + 1))
1895           return true;
1896         break;
1897       }
1898 
1899       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1900       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1901       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1902       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1903       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1904                                Depth + 1))
1905         return true;
1906       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1907                                Depth + 1))
1908         return true;
1909 
1910       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1911       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1912       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1913       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1914       Known.One |= Known2.One;
1915       Known.Zero |= Known2.Zero;
1916 
1917       // Attempt to avoid multi-use ops if we don't need anything from them.
1918       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1919           !DemandedElts.isAllOnes()) {
1920         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1921             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1922         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1923             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1924         if (DemandedOp0 || DemandedOp1) {
1925           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1926           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1927           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
1928                                           DemandedOp1, Op2);
1929           return TLO.CombineTo(Op, NewOp);
1930         }
1931       }
1932     }
1933 
1934     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1935     if (isPowerOf2_32(BitWidth)) {
1936       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1937       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1938                                Known2, TLO, Depth + 1))
1939         return true;
1940     }
1941     break;
1942   }
1943   case ISD::ROTL:
1944   case ISD::ROTR: {
1945     SDValue Op0 = Op.getOperand(0);
1946     SDValue Op1 = Op.getOperand(1);
1947     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1948 
1949     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1950     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1951       return TLO.CombineTo(Op, Op0);
1952 
1953     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1954       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1955       unsigned RevAmt = BitWidth - Amt;
1956 
1957       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1958       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1959       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1960       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1961                                Depth + 1))
1962         return true;
1963 
1964       // rot*(x, 0) --> x
1965       if (Amt == 0)
1966         return TLO.CombineTo(Op, Op0);
1967 
1968       // See if we don't demand either half of the rotated bits.
1969       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1970           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1971         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1972         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1973       }
1974       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1975           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1976         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1977         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1978       }
1979     }
1980 
1981     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1982     if (isPowerOf2_32(BitWidth)) {
1983       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1984       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1985                                Depth + 1))
1986         return true;
1987     }
1988     break;
1989   }
1990   case ISD::UMIN: {
1991     // Check if one arg is always less than (or equal) to the other arg.
1992     SDValue Op0 = Op.getOperand(0);
1993     SDValue Op1 = Op.getOperand(1);
1994     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1995     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1996     Known = KnownBits::umin(Known0, Known1);
1997     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1998       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1999     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2000       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
2001     break;
2002   }
2003   case ISD::UMAX: {
2004     // Check if one arg is always greater than (or equal) to the other arg.
2005     SDValue Op0 = Op.getOperand(0);
2006     SDValue Op1 = Op.getOperand(1);
2007     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2008     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2009     Known = KnownBits::umax(Known0, Known1);
2010     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2011       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
2012     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2013       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
2014     break;
2015   }
2016   case ISD::BITREVERSE: {
2017     SDValue Src = Op.getOperand(0);
2018     APInt DemandedSrcBits = DemandedBits.reverseBits();
2019     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2020                              Depth + 1))
2021       return true;
2022     Known.One = Known2.One.reverseBits();
2023     Known.Zero = Known2.Zero.reverseBits();
2024     break;
2025   }
2026   case ISD::BSWAP: {
2027     SDValue Src = Op.getOperand(0);
2028 
2029     // If the only bits demanded come from one byte of the bswap result,
2030     // just shift the input byte into position to eliminate the bswap.
2031     unsigned NLZ = DemandedBits.countLeadingZeros();
2032     unsigned NTZ = DemandedBits.countTrailingZeros();
2033 
2034     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2035     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2036     // have 14 leading zeros, round to 8.
2037     NLZ = alignDown(NLZ, 8);
2038     NTZ = alignDown(NTZ, 8);
2039     // If we need exactly one byte, we can do this transformation.
2040     if (BitWidth - NLZ - NTZ == 8) {
2041       // Replace this with either a left or right shift to get the byte into
2042       // the right place.
2043       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2044       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2045         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2046         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2047         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2048         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2049         return TLO.CombineTo(Op, NewOp);
2050       }
2051     }
2052 
2053     APInt DemandedSrcBits = DemandedBits.byteSwap();
2054     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2055                              Depth + 1))
2056       return true;
2057     Known.One = Known2.One.byteSwap();
2058     Known.Zero = Known2.Zero.byteSwap();
2059     break;
2060   }
2061   case ISD::CTPOP: {
2062     // If only 1 bit is demanded, replace with PARITY as long as we're before
2063     // op legalization.
2064     // FIXME: Limit to scalars for now.
2065     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2066       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2067                                                Op.getOperand(0)));
2068 
2069     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2070     break;
2071   }
2072   case ISD::SIGN_EXTEND_INREG: {
2073     SDValue Op0 = Op.getOperand(0);
2074     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2075     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2076 
2077     // If we only care about the highest bit, don't bother shifting right.
2078     if (DemandedBits.isSignMask()) {
2079       unsigned MinSignedBits =
2080           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2081       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2082       // However if the input is already sign extended we expect the sign
2083       // extension to be dropped altogether later and do not simplify.
2084       if (!AlreadySignExtended) {
2085         // Compute the correct shift amount type, which must be getShiftAmountTy
2086         // for scalar types after legalization.
2087         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2088                                                getShiftAmountTy(VT, DL));
2089         return TLO.CombineTo(Op,
2090                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2091       }
2092     }
2093 
2094     // If none of the extended bits are demanded, eliminate the sextinreg.
2095     if (DemandedBits.getActiveBits() <= ExVTBits)
2096       return TLO.CombineTo(Op, Op0);
2097 
2098     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2099 
2100     // Since the sign extended bits are demanded, we know that the sign
2101     // bit is demanded.
2102     InputDemandedBits.setBit(ExVTBits - 1);
2103 
2104     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2105                              Depth + 1))
2106       return true;
2107     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2108 
2109     // If the sign bit of the input is known set or clear, then we know the
2110     // top bits of the result.
2111 
2112     // If the input sign bit is known zero, convert this into a zero extension.
2113     if (Known.Zero[ExVTBits - 1])
2114       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2115 
2116     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2117     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2118       Known.One.setBitsFrom(ExVTBits);
2119       Known.Zero &= Mask;
2120     } else { // Input sign bit unknown
2121       Known.Zero &= Mask;
2122       Known.One &= Mask;
2123     }
2124     break;
2125   }
2126   case ISD::BUILD_PAIR: {
2127     EVT HalfVT = Op.getOperand(0).getValueType();
2128     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2129 
2130     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2131     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2132 
2133     KnownBits KnownLo, KnownHi;
2134 
2135     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2136       return true;
2137 
2138     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2139       return true;
2140 
2141     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2142                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2143 
2144     Known.One = KnownLo.One.zext(BitWidth) |
2145                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2146     break;
2147   }
2148   case ISD::ZERO_EXTEND:
2149   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2150     SDValue Src = Op.getOperand(0);
2151     EVT SrcVT = Src.getValueType();
2152     unsigned InBits = SrcVT.getScalarSizeInBits();
2153     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2154     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2155 
2156     // If none of the top bits are demanded, convert this into an any_extend.
2157     if (DemandedBits.getActiveBits() <= InBits) {
2158       // If we only need the non-extended bits of the bottom element
2159       // then we can just bitcast to the result.
2160       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2161           VT.getSizeInBits() == SrcVT.getSizeInBits())
2162         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2163 
2164       unsigned Opc =
2165           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2166       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2167         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2168     }
2169 
2170     APInt InDemandedBits = DemandedBits.trunc(InBits);
2171     APInt InDemandedElts = DemandedElts.zext(InElts);
2172     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2173                              Depth + 1))
2174       return true;
2175     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2176     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2177     Known = Known.zext(BitWidth);
2178 
2179     // Attempt to avoid multi-use ops if we don't need anything from them.
2180     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2181             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2182       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2183     break;
2184   }
2185   case ISD::SIGN_EXTEND:
2186   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2187     SDValue Src = Op.getOperand(0);
2188     EVT SrcVT = Src.getValueType();
2189     unsigned InBits = SrcVT.getScalarSizeInBits();
2190     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2191     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2192 
2193     // If none of the top bits are demanded, convert this into an any_extend.
2194     if (DemandedBits.getActiveBits() <= InBits) {
2195       // If we only need the non-extended bits of the bottom element
2196       // then we can just bitcast to the result.
2197       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2198           VT.getSizeInBits() == SrcVT.getSizeInBits())
2199         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2200 
2201       unsigned Opc =
2202           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2203       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2204         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2205     }
2206 
2207     APInt InDemandedBits = DemandedBits.trunc(InBits);
2208     APInt InDemandedElts = DemandedElts.zext(InElts);
2209 
2210     // Since some of the sign extended bits are demanded, we know that the sign
2211     // bit is demanded.
2212     InDemandedBits.setBit(InBits - 1);
2213 
2214     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2215                              Depth + 1))
2216       return true;
2217     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2218     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2219 
2220     // If the sign bit is known one, the top bits match.
2221     Known = Known.sext(BitWidth);
2222 
2223     // If the sign bit is known zero, convert this to a zero extend.
2224     if (Known.isNonNegative()) {
2225       unsigned Opc =
2226           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2227       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2228         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2229     }
2230 
2231     // Attempt to avoid multi-use ops if we don't need anything from them.
2232     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2233             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2234       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2235     break;
2236   }
2237   case ISD::ANY_EXTEND:
2238   case ISD::ANY_EXTEND_VECTOR_INREG: {
2239     SDValue Src = Op.getOperand(0);
2240     EVT SrcVT = Src.getValueType();
2241     unsigned InBits = SrcVT.getScalarSizeInBits();
2242     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2243     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2244 
2245     // If we only need the bottom element then we can just bitcast.
2246     // TODO: Handle ANY_EXTEND?
2247     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2248         VT.getSizeInBits() == SrcVT.getSizeInBits())
2249       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2250 
2251     APInt InDemandedBits = DemandedBits.trunc(InBits);
2252     APInt InDemandedElts = DemandedElts.zext(InElts);
2253     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2254                              Depth + 1))
2255       return true;
2256     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2257     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2258     Known = Known.anyext(BitWidth);
2259 
2260     // Attempt to avoid multi-use ops if we don't need anything from them.
2261     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2262             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2263       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2264     break;
2265   }
2266   case ISD::TRUNCATE: {
2267     SDValue Src = Op.getOperand(0);
2268 
2269     // Simplify the input, using demanded bit information, and compute the known
2270     // zero/one bits live out.
2271     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2272     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2273     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2274                              Depth + 1))
2275       return true;
2276     Known = Known.trunc(BitWidth);
2277 
2278     // Attempt to avoid multi-use ops if we don't need anything from them.
2279     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2280             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2281       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2282 
2283     // If the input is only used by this truncate, see if we can shrink it based
2284     // on the known demanded bits.
2285     if (Src.getNode()->hasOneUse()) {
2286       switch (Src.getOpcode()) {
2287       default:
2288         break;
2289       case ISD::SRL:
2290         // Shrink SRL by a constant if none of the high bits shifted in are
2291         // demanded.
2292         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2293           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2294           // undesirable.
2295           break;
2296 
2297         const APInt *ShAmtC =
2298             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2299         if (!ShAmtC || ShAmtC->uge(BitWidth))
2300           break;
2301         uint64_t ShVal = ShAmtC->getZExtValue();
2302 
2303         APInt HighBits =
2304             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2305         HighBits.lshrInPlace(ShVal);
2306         HighBits = HighBits.trunc(BitWidth);
2307 
2308         if (!(HighBits & DemandedBits)) {
2309           // None of the shifted in bits are needed.  Add a truncate of the
2310           // shift input, then shift it.
2311           SDValue NewShAmt = TLO.DAG.getConstant(
2312               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2313           SDValue NewTrunc =
2314               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2315           return TLO.CombineTo(
2316               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2317         }
2318         break;
2319       }
2320     }
2321 
2322     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2323     break;
2324   }
2325   case ISD::AssertZext: {
2326     // AssertZext demands all of the high bits, plus any of the low bits
2327     // demanded by its users.
2328     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2329     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2330     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2331                              TLO, Depth + 1))
2332       return true;
2333     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2334 
2335     Known.Zero |= ~InMask;
2336     break;
2337   }
2338   case ISD::EXTRACT_VECTOR_ELT: {
2339     SDValue Src = Op.getOperand(0);
2340     SDValue Idx = Op.getOperand(1);
2341     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2342     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2343 
2344     if (SrcEltCnt.isScalable())
2345       return false;
2346 
2347     // Demand the bits from every vector element without a constant index.
2348     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2349     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2350     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2351       if (CIdx->getAPIntValue().ult(NumSrcElts))
2352         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2353 
2354     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2355     // anything about the extended bits.
2356     APInt DemandedSrcBits = DemandedBits;
2357     if (BitWidth > EltBitWidth)
2358       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2359 
2360     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2361                              Depth + 1))
2362       return true;
2363 
2364     // Attempt to avoid multi-use ops if we don't need anything from them.
2365     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2366       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2367               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2368         SDValue NewOp =
2369             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2370         return TLO.CombineTo(Op, NewOp);
2371       }
2372     }
2373 
2374     Known = Known2;
2375     if (BitWidth > EltBitWidth)
2376       Known = Known.anyext(BitWidth);
2377     break;
2378   }
2379   case ISD::BITCAST: {
2380     SDValue Src = Op.getOperand(0);
2381     EVT SrcVT = Src.getValueType();
2382     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2383 
2384     // If this is an FP->Int bitcast and if the sign bit is the only
2385     // thing demanded, turn this into a FGETSIGN.
2386     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2387         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2388         SrcVT.isFloatingPoint()) {
2389       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2390       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2391       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2392           SrcVT != MVT::f128) {
2393         // Cannot eliminate/lower SHL for f128 yet.
2394         EVT Ty = OpVTLegal ? VT : MVT::i32;
2395         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2396         // place.  We expect the SHL to be eliminated by other optimizations.
2397         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2398         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2399         if (!OpVTLegal && OpVTSizeInBits > 32)
2400           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2401         unsigned ShVal = Op.getValueSizeInBits() - 1;
2402         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2403         return TLO.CombineTo(Op,
2404                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2405       }
2406     }
2407 
2408     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2409     // Demand the elt/bit if any of the original elts/bits are demanded.
2410     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2411       unsigned Scale = BitWidth / NumSrcEltBits;
2412       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2413       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2414       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2415       for (unsigned i = 0; i != Scale; ++i) {
2416         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2417         unsigned BitOffset = EltOffset * NumSrcEltBits;
2418         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2419         if (!Sub.isZero()) {
2420           DemandedSrcBits |= Sub;
2421           for (unsigned j = 0; j != NumElts; ++j)
2422             if (DemandedElts[j])
2423               DemandedSrcElts.setBit((j * Scale) + i);
2424         }
2425       }
2426 
2427       APInt KnownSrcUndef, KnownSrcZero;
2428       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2429                                      KnownSrcZero, TLO, Depth + 1))
2430         return true;
2431 
2432       KnownBits KnownSrcBits;
2433       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2434                                KnownSrcBits, TLO, Depth + 1))
2435         return true;
2436     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2437       // TODO - bigendian once we have test coverage.
2438       unsigned Scale = NumSrcEltBits / BitWidth;
2439       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2440       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2441       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2442       for (unsigned i = 0; i != NumElts; ++i)
2443         if (DemandedElts[i]) {
2444           unsigned Offset = (i % Scale) * BitWidth;
2445           DemandedSrcBits.insertBits(DemandedBits, Offset);
2446           DemandedSrcElts.setBit(i / Scale);
2447         }
2448 
2449       if (SrcVT.isVector()) {
2450         APInt KnownSrcUndef, KnownSrcZero;
2451         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2452                                        KnownSrcZero, TLO, Depth + 1))
2453           return true;
2454       }
2455 
2456       KnownBits KnownSrcBits;
2457       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2458                                KnownSrcBits, TLO, Depth + 1))
2459         return true;
2460     }
2461 
2462     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2463     // recursive call where Known may be useful to the caller.
2464     if (Depth > 0) {
2465       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2466       return false;
2467     }
2468     break;
2469   }
2470   case ISD::MUL:
2471     if (DemandedBits.isPowerOf2()) {
2472       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2473       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2474       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2475       unsigned CTZ = DemandedBits.countTrailingZeros();
2476       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2477       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2478         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2479         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2480         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2481         return TLO.CombineTo(Op, Shl);
2482       }
2483     }
2484     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2485     // X * X is odd iff X is odd.
2486     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2487     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2488       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2489       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2490       return TLO.CombineTo(Op, And1);
2491     }
2492     LLVM_FALLTHROUGH;
2493   case ISD::ADD:
2494   case ISD::SUB: {
2495     // Add, Sub, and Mul don't demand any bits in positions beyond that
2496     // of the highest bit demanded of them.
2497     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2498     SDNodeFlags Flags = Op.getNode()->getFlags();
2499     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2500     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2501     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2502                              Depth + 1) ||
2503         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2504                              Depth + 1) ||
2505         // See if the operation should be performed at a smaller bit width.
2506         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2507       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2508         // Disable the nsw and nuw flags. We can no longer guarantee that we
2509         // won't wrap after simplification.
2510         Flags.setNoSignedWrap(false);
2511         Flags.setNoUnsignedWrap(false);
2512         Op->setFlags(Flags);
2513       }
2514       return true;
2515     }
2516 
2517     // Attempt to avoid multi-use ops if we don't need anything from them.
2518     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2519       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2520           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2521       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2522           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2523       if (DemandedOp0 || DemandedOp1) {
2524         Flags.setNoSignedWrap(false);
2525         Flags.setNoUnsignedWrap(false);
2526         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2527         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2528         SDValue NewOp =
2529             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2530         return TLO.CombineTo(Op, NewOp);
2531       }
2532     }
2533 
2534     // If we have a constant operand, we may be able to turn it into -1 if we
2535     // do not demand the high bits. This can make the constant smaller to
2536     // encode, allow more general folding, or match specialized instruction
2537     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2538     // is probably not useful (and could be detrimental).
2539     ConstantSDNode *C = isConstOrConstSplat(Op1);
2540     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2541     if (C && !C->isAllOnes() && !C->isOne() &&
2542         (C->getAPIntValue() | HighMask).isAllOnes()) {
2543       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2544       // Disable the nsw and nuw flags. We can no longer guarantee that we
2545       // won't wrap after simplification.
2546       Flags.setNoSignedWrap(false);
2547       Flags.setNoUnsignedWrap(false);
2548       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2549       return TLO.CombineTo(Op, NewOp);
2550     }
2551 
2552     // Match a multiply with a disguised negated-power-of-2 and convert to a
2553     // an equivalent shift-left amount.
2554     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2555     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2556       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2557         return 0;
2558 
2559       // Don't touch opaque constants. Also, ignore zero and power-of-2
2560       // multiplies. Those will get folded later.
2561       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2562       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2563           !MulC->getAPIntValue().isPowerOf2()) {
2564         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2565         if (UnmaskedC.isNegatedPowerOf2())
2566           return (-UnmaskedC).logBase2();
2567       }
2568       return 0;
2569     };
2570 
2571     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2572       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2573       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2574       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2575       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2576       return TLO.CombineTo(Op, Res);
2577     };
2578 
2579     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2580       if (Op.getOpcode() == ISD::ADD) {
2581         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2582         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2583           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2584         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2585         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2586           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2587       }
2588       if (Op.getOpcode() == ISD::SUB) {
2589         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2590         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2591           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2592       }
2593     }
2594 
2595     LLVM_FALLTHROUGH;
2596   }
2597   default:
2598     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2599       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2600                                             Known, TLO, Depth))
2601         return true;
2602       break;
2603     }
2604 
2605     // Just use computeKnownBits to compute output bits.
2606     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2607     break;
2608   }
2609 
2610   // If we know the value of all of the demanded bits, return this as a
2611   // constant.
2612   if (!isTargetCanonicalConstantNode(Op) &&
2613       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2614     // Avoid folding to a constant if any OpaqueConstant is involved.
2615     const SDNode *N = Op.getNode();
2616     for (SDNode *Op :
2617          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2618       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2619         if (C->isOpaque())
2620           return false;
2621     }
2622     if (VT.isInteger())
2623       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2624     if (VT.isFloatingPoint())
2625       return TLO.CombineTo(
2626           Op,
2627           TLO.DAG.getConstantFP(
2628               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2629   }
2630 
2631   return false;
2632 }
2633 
2634 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2635                                                 const APInt &DemandedElts,
2636                                                 DAGCombinerInfo &DCI) const {
2637   SelectionDAG &DAG = DCI.DAG;
2638   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2639                         !DCI.isBeforeLegalizeOps());
2640 
2641   APInt KnownUndef, KnownZero;
2642   bool Simplified =
2643       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2644   if (Simplified) {
2645     DCI.AddToWorklist(Op.getNode());
2646     DCI.CommitTargetLoweringOpt(TLO);
2647   }
2648 
2649   return Simplified;
2650 }
2651 
2652 /// Given a vector binary operation and known undefined elements for each input
2653 /// operand, compute whether each element of the output is undefined.
2654 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2655                                          const APInt &UndefOp0,
2656                                          const APInt &UndefOp1) {
2657   EVT VT = BO.getValueType();
2658   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2659          "Vector binop only");
2660 
2661   EVT EltVT = VT.getVectorElementType();
2662   unsigned NumElts = VT.getVectorNumElements();
2663   assert(UndefOp0.getBitWidth() == NumElts &&
2664          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2665 
2666   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2667                                    const APInt &UndefVals) {
2668     if (UndefVals[Index])
2669       return DAG.getUNDEF(EltVT);
2670 
2671     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2672       // Try hard to make sure that the getNode() call is not creating temporary
2673       // nodes. Ignore opaque integers because they do not constant fold.
2674       SDValue Elt = BV->getOperand(Index);
2675       auto *C = dyn_cast<ConstantSDNode>(Elt);
2676       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2677         return Elt;
2678     }
2679 
2680     return SDValue();
2681   };
2682 
2683   APInt KnownUndef = APInt::getZero(NumElts);
2684   for (unsigned i = 0; i != NumElts; ++i) {
2685     // If both inputs for this element are either constant or undef and match
2686     // the element type, compute the constant/undef result for this element of
2687     // the vector.
2688     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2689     // not handle FP constants. The code within getNode() should be refactored
2690     // to avoid the danger of creating a bogus temporary node here.
2691     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2692     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2693     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2694       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2695         KnownUndef.setBit(i);
2696   }
2697   return KnownUndef;
2698 }
2699 
2700 bool TargetLowering::SimplifyDemandedVectorElts(
2701     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2702     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2703     bool AssumeSingleUse) const {
2704   EVT VT = Op.getValueType();
2705   unsigned Opcode = Op.getOpcode();
2706   APInt DemandedElts = OriginalDemandedElts;
2707   unsigned NumElts = DemandedElts.getBitWidth();
2708   assert(VT.isVector() && "Expected vector op");
2709 
2710   KnownUndef = KnownZero = APInt::getZero(NumElts);
2711 
2712   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2713   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2714     return false;
2715 
2716   // TODO: For now we assume we know nothing about scalable vectors.
2717   if (VT.isScalableVector())
2718     return false;
2719 
2720   assert(VT.getVectorNumElements() == NumElts &&
2721          "Mask size mismatches value type element count!");
2722 
2723   // Undef operand.
2724   if (Op.isUndef()) {
2725     KnownUndef.setAllBits();
2726     return false;
2727   }
2728 
2729   // If Op has other users, assume that all elements are needed.
2730   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2731     DemandedElts.setAllBits();
2732 
2733   // Not demanding any elements from Op.
2734   if (DemandedElts == 0) {
2735     KnownUndef.setAllBits();
2736     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2737   }
2738 
2739   // Limit search depth.
2740   if (Depth >= SelectionDAG::MaxRecursionDepth)
2741     return false;
2742 
2743   SDLoc DL(Op);
2744   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2745   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2746 
2747   // Helper for demanding the specified elements and all the bits of both binary
2748   // operands.
2749   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2750     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2751                                                            TLO.DAG, Depth + 1);
2752     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2753                                                            TLO.DAG, Depth + 1);
2754     if (NewOp0 || NewOp1) {
2755       SDValue NewOp = TLO.DAG.getNode(
2756           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2757       return TLO.CombineTo(Op, NewOp);
2758     }
2759     return false;
2760   };
2761 
2762   switch (Opcode) {
2763   case ISD::SCALAR_TO_VECTOR: {
2764     if (!DemandedElts[0]) {
2765       KnownUndef.setAllBits();
2766       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2767     }
2768     SDValue ScalarSrc = Op.getOperand(0);
2769     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2770       SDValue Src = ScalarSrc.getOperand(0);
2771       SDValue Idx = ScalarSrc.getOperand(1);
2772       EVT SrcVT = Src.getValueType();
2773 
2774       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2775 
2776       if (SrcEltCnt.isScalable())
2777         return false;
2778 
2779       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2780       if (isNullConstant(Idx)) {
2781         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2782         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2783         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2784         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2785                                        TLO, Depth + 1))
2786           return true;
2787       }
2788     }
2789     KnownUndef.setHighBits(NumElts - 1);
2790     break;
2791   }
2792   case ISD::BITCAST: {
2793     SDValue Src = Op.getOperand(0);
2794     EVT SrcVT = Src.getValueType();
2795 
2796     // We only handle vectors here.
2797     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2798     if (!SrcVT.isVector())
2799       break;
2800 
2801     // Fast handling of 'identity' bitcasts.
2802     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2803     if (NumSrcElts == NumElts)
2804       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2805                                         KnownZero, TLO, Depth + 1);
2806 
2807     APInt SrcDemandedElts, SrcZero, SrcUndef;
2808 
2809     // Bitcast from 'large element' src vector to 'small element' vector, we
2810     // must demand a source element if any DemandedElt maps to it.
2811     if ((NumElts % NumSrcElts) == 0) {
2812       unsigned Scale = NumElts / NumSrcElts;
2813       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2814       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2815                                      TLO, Depth + 1))
2816         return true;
2817 
2818       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2819       // of the large element.
2820       // TODO - bigendian once we have test coverage.
2821       if (IsLE) {
2822         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2823         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2824         for (unsigned i = 0; i != NumElts; ++i)
2825           if (DemandedElts[i]) {
2826             unsigned Ofs = (i % Scale) * EltSizeInBits;
2827             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2828           }
2829 
2830         KnownBits Known;
2831         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2832                                  TLO, Depth + 1))
2833           return true;
2834 
2835         // The bitcast has split each wide element into a number of
2836         // narrow subelements. We have just computed the Known bits
2837         // for wide elements. See if element splitting results in
2838         // some subelements being zero. Only for demanded elements!
2839         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2840           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2841                    .isAllOnes())
2842             continue;
2843           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2844             unsigned Elt = Scale * SrcElt + SubElt;
2845             if (DemandedElts[Elt])
2846               KnownZero.setBit(Elt);
2847           }
2848         }
2849       }
2850 
2851       // If the src element is zero/undef then all the output elements will be -
2852       // only demanded elements are guaranteed to be correct.
2853       for (unsigned i = 0; i != NumSrcElts; ++i) {
2854         if (SrcDemandedElts[i]) {
2855           if (SrcZero[i])
2856             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2857           if (SrcUndef[i])
2858             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2859         }
2860       }
2861     }
2862 
2863     // Bitcast from 'small element' src vector to 'large element' vector, we
2864     // demand all smaller source elements covered by the larger demanded element
2865     // of this vector.
2866     if ((NumSrcElts % NumElts) == 0) {
2867       unsigned Scale = NumSrcElts / NumElts;
2868       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2869       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2870                                      TLO, Depth + 1))
2871         return true;
2872 
2873       // If all the src elements covering an output element are zero/undef, then
2874       // the output element will be as well, assuming it was demanded.
2875       for (unsigned i = 0; i != NumElts; ++i) {
2876         if (DemandedElts[i]) {
2877           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2878             KnownZero.setBit(i);
2879           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2880             KnownUndef.setBit(i);
2881         }
2882       }
2883     }
2884     break;
2885   }
2886   case ISD::BUILD_VECTOR: {
2887     // Check all elements and simplify any unused elements with UNDEF.
2888     if (!DemandedElts.isAllOnes()) {
2889       // Don't simplify BROADCASTS.
2890       if (llvm::any_of(Op->op_values(),
2891                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2892         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2893         bool Updated = false;
2894         for (unsigned i = 0; i != NumElts; ++i) {
2895           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2896             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2897             KnownUndef.setBit(i);
2898             Updated = true;
2899           }
2900         }
2901         if (Updated)
2902           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2903       }
2904     }
2905     for (unsigned i = 0; i != NumElts; ++i) {
2906       SDValue SrcOp = Op.getOperand(i);
2907       if (SrcOp.isUndef()) {
2908         KnownUndef.setBit(i);
2909       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2910                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2911         KnownZero.setBit(i);
2912       }
2913     }
2914     break;
2915   }
2916   case ISD::CONCAT_VECTORS: {
2917     EVT SubVT = Op.getOperand(0).getValueType();
2918     unsigned NumSubVecs = Op.getNumOperands();
2919     unsigned NumSubElts = SubVT.getVectorNumElements();
2920     for (unsigned i = 0; i != NumSubVecs; ++i) {
2921       SDValue SubOp = Op.getOperand(i);
2922       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2923       APInt SubUndef, SubZero;
2924       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2925                                      Depth + 1))
2926         return true;
2927       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2928       KnownZero.insertBits(SubZero, i * NumSubElts);
2929     }
2930 
2931     // Attempt to avoid multi-use ops if we don't need anything from them.
2932     if (!DemandedElts.isAllOnes()) {
2933       bool FoundNewSub = false;
2934       SmallVector<SDValue, 2> DemandedSubOps;
2935       for (unsigned i = 0; i != NumSubVecs; ++i) {
2936         SDValue SubOp = Op.getOperand(i);
2937         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2938         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2939             SubOp, SubElts, TLO.DAG, Depth + 1);
2940         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2941         FoundNewSub = NewSubOp ? true : FoundNewSub;
2942       }
2943       if (FoundNewSub) {
2944         SDValue NewOp =
2945             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2946         return TLO.CombineTo(Op, NewOp);
2947       }
2948     }
2949     break;
2950   }
2951   case ISD::INSERT_SUBVECTOR: {
2952     // Demand any elements from the subvector and the remainder from the src its
2953     // inserted into.
2954     SDValue Src = Op.getOperand(0);
2955     SDValue Sub = Op.getOperand(1);
2956     uint64_t Idx = Op.getConstantOperandVal(2);
2957     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2958     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2959     APInt DemandedSrcElts = DemandedElts;
2960     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2961 
2962     APInt SubUndef, SubZero;
2963     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2964                                    Depth + 1))
2965       return true;
2966 
2967     // If none of the src operand elements are demanded, replace it with undef.
2968     if (!DemandedSrcElts && !Src.isUndef())
2969       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2970                                                TLO.DAG.getUNDEF(VT), Sub,
2971                                                Op.getOperand(2)));
2972 
2973     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2974                                    TLO, Depth + 1))
2975       return true;
2976     KnownUndef.insertBits(SubUndef, Idx);
2977     KnownZero.insertBits(SubZero, Idx);
2978 
2979     // Attempt to avoid multi-use ops if we don't need anything from them.
2980     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2981       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2982           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2983       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2984           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2985       if (NewSrc || NewSub) {
2986         NewSrc = NewSrc ? NewSrc : Src;
2987         NewSub = NewSub ? NewSub : Sub;
2988         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2989                                         NewSub, Op.getOperand(2));
2990         return TLO.CombineTo(Op, NewOp);
2991       }
2992     }
2993     break;
2994   }
2995   case ISD::EXTRACT_SUBVECTOR: {
2996     // Offset the demanded elts by the subvector index.
2997     SDValue Src = Op.getOperand(0);
2998     if (Src.getValueType().isScalableVector())
2999       break;
3000     uint64_t Idx = Op.getConstantOperandVal(1);
3001     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3002     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3003 
3004     APInt SrcUndef, SrcZero;
3005     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3006                                    Depth + 1))
3007       return true;
3008     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3009     KnownZero = SrcZero.extractBits(NumElts, Idx);
3010 
3011     // Attempt to avoid multi-use ops if we don't need anything from them.
3012     if (!DemandedElts.isAllOnes()) {
3013       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3014           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3015       if (NewSrc) {
3016         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3017                                         Op.getOperand(1));
3018         return TLO.CombineTo(Op, NewOp);
3019       }
3020     }
3021     break;
3022   }
3023   case ISD::INSERT_VECTOR_ELT: {
3024     SDValue Vec = Op.getOperand(0);
3025     SDValue Scl = Op.getOperand(1);
3026     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3027 
3028     // For a legal, constant insertion index, if we don't need this insertion
3029     // then strip it, else remove it from the demanded elts.
3030     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3031       unsigned Idx = CIdx->getZExtValue();
3032       if (!DemandedElts[Idx])
3033         return TLO.CombineTo(Op, Vec);
3034 
3035       APInt DemandedVecElts(DemandedElts);
3036       DemandedVecElts.clearBit(Idx);
3037       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3038                                      KnownZero, TLO, Depth + 1))
3039         return true;
3040 
3041       KnownUndef.setBitVal(Idx, Scl.isUndef());
3042 
3043       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3044       break;
3045     }
3046 
3047     APInt VecUndef, VecZero;
3048     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3049                                    Depth + 1))
3050       return true;
3051     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3052     break;
3053   }
3054   case ISD::VSELECT: {
3055     // Try to transform the select condition based on the current demanded
3056     // elements.
3057     // TODO: If a condition element is undef, we can choose from one arm of the
3058     //       select (and if one arm is undef, then we can propagate that to the
3059     //       result).
3060     // TODO - add support for constant vselect masks (see IR version of this).
3061     APInt UnusedUndef, UnusedZero;
3062     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
3063                                    UnusedZero, TLO, Depth + 1))
3064       return true;
3065 
3066     // See if we can simplify either vselect operand.
3067     APInt DemandedLHS(DemandedElts);
3068     APInt DemandedRHS(DemandedElts);
3069     APInt UndefLHS, ZeroLHS;
3070     APInt UndefRHS, ZeroRHS;
3071     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
3072                                    ZeroLHS, TLO, Depth + 1))
3073       return true;
3074     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
3075                                    ZeroRHS, TLO, Depth + 1))
3076       return true;
3077 
3078     KnownUndef = UndefLHS & UndefRHS;
3079     KnownZero = ZeroLHS & ZeroRHS;
3080     break;
3081   }
3082   case ISD::VECTOR_SHUFFLE: {
3083     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3084 
3085     // Collect demanded elements from shuffle operands..
3086     APInt DemandedLHS(NumElts, 0);
3087     APInt DemandedRHS(NumElts, 0);
3088     for (unsigned i = 0; i != NumElts; ++i) {
3089       int M = ShuffleMask[i];
3090       if (M < 0 || !DemandedElts[i])
3091         continue;
3092       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3093       if (M < (int)NumElts)
3094         DemandedLHS.setBit(M);
3095       else
3096         DemandedRHS.setBit(M - NumElts);
3097     }
3098 
3099     // See if we can simplify either shuffle operand.
3100     APInt UndefLHS, ZeroLHS;
3101     APInt UndefRHS, ZeroRHS;
3102     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3103                                    ZeroLHS, TLO, Depth + 1))
3104       return true;
3105     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3106                                    ZeroRHS, TLO, Depth + 1))
3107       return true;
3108 
3109     // Simplify mask using undef elements from LHS/RHS.
3110     bool Updated = false;
3111     bool IdentityLHS = true, IdentityRHS = true;
3112     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3113     for (unsigned i = 0; i != NumElts; ++i) {
3114       int &M = NewMask[i];
3115       if (M < 0)
3116         continue;
3117       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3118           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3119         Updated = true;
3120         M = -1;
3121       }
3122       IdentityLHS &= (M < 0) || (M == (int)i);
3123       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3124     }
3125 
3126     // Update legal shuffle masks based on demanded elements if it won't reduce
3127     // to Identity which can cause premature removal of the shuffle mask.
3128     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3129       SDValue LegalShuffle =
3130           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3131                                   NewMask, TLO.DAG);
3132       if (LegalShuffle)
3133         return TLO.CombineTo(Op, LegalShuffle);
3134     }
3135 
3136     // Propagate undef/zero elements from LHS/RHS.
3137     for (unsigned i = 0; i != NumElts; ++i) {
3138       int M = ShuffleMask[i];
3139       if (M < 0) {
3140         KnownUndef.setBit(i);
3141       } else if (M < (int)NumElts) {
3142         if (UndefLHS[M])
3143           KnownUndef.setBit(i);
3144         if (ZeroLHS[M])
3145           KnownZero.setBit(i);
3146       } else {
3147         if (UndefRHS[M - NumElts])
3148           KnownUndef.setBit(i);
3149         if (ZeroRHS[M - NumElts])
3150           KnownZero.setBit(i);
3151       }
3152     }
3153     break;
3154   }
3155   case ISD::ANY_EXTEND_VECTOR_INREG:
3156   case ISD::SIGN_EXTEND_VECTOR_INREG:
3157   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3158     APInt SrcUndef, SrcZero;
3159     SDValue Src = Op.getOperand(0);
3160     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3161     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3162     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3163                                    Depth + 1))
3164       return true;
3165     KnownZero = SrcZero.zextOrTrunc(NumElts);
3166     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3167 
3168     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3169         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3170         DemandedSrcElts == 1) {
3171       // aext - if we just need the bottom element then we can bitcast.
3172       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3173     }
3174 
3175     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3176       // zext(undef) upper bits are guaranteed to be zero.
3177       if (DemandedElts.isSubsetOf(KnownUndef))
3178         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3179       KnownUndef.clearAllBits();
3180 
3181       // zext - if we just need the bottom element then we can mask:
3182       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3183       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3184           Op->isOnlyUserOf(Src.getNode()) &&
3185           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3186         SDLoc DL(Op);
3187         EVT SrcVT = Src.getValueType();
3188         EVT SrcSVT = SrcVT.getScalarType();
3189         SmallVector<SDValue> MaskElts;
3190         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3191         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3192         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3193         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3194                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3195           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3196           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3197         }
3198       }
3199     }
3200     break;
3201   }
3202 
3203   // TODO: There are more binop opcodes that could be handled here - MIN,
3204   // MAX, saturated math, etc.
3205   case ISD::ADD: {
3206     SDValue Op0 = Op.getOperand(0);
3207     SDValue Op1 = Op.getOperand(1);
3208     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3209       APInt UndefLHS, ZeroLHS;
3210       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3211                                      Depth + 1, /*AssumeSingleUse*/ true))
3212         return true;
3213     }
3214     LLVM_FALLTHROUGH;
3215   }
3216   case ISD::OR:
3217   case ISD::XOR:
3218   case ISD::SUB:
3219   case ISD::FADD:
3220   case ISD::FSUB:
3221   case ISD::FMUL:
3222   case ISD::FDIV:
3223   case ISD::FREM: {
3224     SDValue Op0 = Op.getOperand(0);
3225     SDValue Op1 = Op.getOperand(1);
3226 
3227     APInt UndefRHS, ZeroRHS;
3228     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3229                                    Depth + 1))
3230       return true;
3231     APInt UndefLHS, ZeroLHS;
3232     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3233                                    Depth + 1))
3234       return true;
3235 
3236     KnownZero = ZeroLHS & ZeroRHS;
3237     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3238 
3239     // Attempt to avoid multi-use ops if we don't need anything from them.
3240     // TODO - use KnownUndef to relax the demandedelts?
3241     if (!DemandedElts.isAllOnes())
3242       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3243         return true;
3244     break;
3245   }
3246   case ISD::SHL:
3247   case ISD::SRL:
3248   case ISD::SRA:
3249   case ISD::ROTL:
3250   case ISD::ROTR: {
3251     SDValue Op0 = Op.getOperand(0);
3252     SDValue Op1 = Op.getOperand(1);
3253 
3254     APInt UndefRHS, ZeroRHS;
3255     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3256                                    Depth + 1))
3257       return true;
3258     APInt UndefLHS, ZeroLHS;
3259     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3260                                    Depth + 1))
3261       return true;
3262 
3263     KnownZero = ZeroLHS;
3264     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3265 
3266     // Attempt to avoid multi-use ops if we don't need anything from them.
3267     // TODO - use KnownUndef to relax the demandedelts?
3268     if (!DemandedElts.isAllOnes())
3269       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3270         return true;
3271     break;
3272   }
3273   case ISD::MUL:
3274   case ISD::AND: {
3275     SDValue Op0 = Op.getOperand(0);
3276     SDValue Op1 = Op.getOperand(1);
3277 
3278     APInt SrcUndef, SrcZero;
3279     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3280                                    Depth + 1))
3281       return true;
3282     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3283                                    TLO, Depth + 1))
3284       return true;
3285 
3286     // If either side has a zero element, then the result element is zero, even
3287     // if the other is an UNDEF.
3288     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3289     // and then handle 'and' nodes with the rest of the binop opcodes.
3290     KnownZero |= SrcZero;
3291     KnownUndef &= SrcUndef;
3292     KnownUndef &= ~KnownZero;
3293 
3294     // Attempt to avoid multi-use ops if we don't need anything from them.
3295     // TODO - use KnownUndef to relax the demandedelts?
3296     if (!DemandedElts.isAllOnes())
3297       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3298         return true;
3299     break;
3300   }
3301   case ISD::TRUNCATE:
3302   case ISD::SIGN_EXTEND:
3303   case ISD::ZERO_EXTEND:
3304     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3305                                    KnownZero, TLO, Depth + 1))
3306       return true;
3307 
3308     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3309       // zext(undef) upper bits are guaranteed to be zero.
3310       if (DemandedElts.isSubsetOf(KnownUndef))
3311         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3312       KnownUndef.clearAllBits();
3313     }
3314     break;
3315   default: {
3316     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3317       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3318                                                   KnownZero, TLO, Depth))
3319         return true;
3320     } else {
3321       KnownBits Known;
3322       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3323       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3324                                TLO, Depth, AssumeSingleUse))
3325         return true;
3326     }
3327     break;
3328   }
3329   }
3330   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3331 
3332   // Constant fold all undef cases.
3333   // TODO: Handle zero cases as well.
3334   if (DemandedElts.isSubsetOf(KnownUndef))
3335     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3336 
3337   return false;
3338 }
3339 
3340 /// Determine which of the bits specified in Mask are known to be either zero or
3341 /// one and return them in the Known.
3342 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3343                                                    KnownBits &Known,
3344                                                    const APInt &DemandedElts,
3345                                                    const SelectionDAG &DAG,
3346                                                    unsigned Depth) const {
3347   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3348           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3349           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3350           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3351          "Should use MaskedValueIsZero if you don't know whether Op"
3352          " is a target node!");
3353   Known.resetAll();
3354 }
3355 
3356 void TargetLowering::computeKnownBitsForTargetInstr(
3357     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3358     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3359     unsigned Depth) const {
3360   Known.resetAll();
3361 }
3362 
3363 void TargetLowering::computeKnownBitsForFrameIndex(
3364   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3365   // The low bits are known zero if the pointer is aligned.
3366   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3367 }
3368 
3369 Align TargetLowering::computeKnownAlignForTargetInstr(
3370   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3371   unsigned Depth) const {
3372   return Align(1);
3373 }
3374 
3375 /// This method can be implemented by targets that want to expose additional
3376 /// information about sign bits to the DAG Combiner.
3377 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3378                                                          const APInt &,
3379                                                          const SelectionDAG &,
3380                                                          unsigned Depth) const {
3381   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3382           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3383           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3384           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3385          "Should use ComputeNumSignBits if you don't know whether Op"
3386          " is a target node!");
3387   return 1;
3388 }
3389 
3390 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3391   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3392   const MachineRegisterInfo &MRI, unsigned Depth) const {
3393   return 1;
3394 }
3395 
3396 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3397     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3398     TargetLoweringOpt &TLO, unsigned Depth) const {
3399   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3400           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3401           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3402           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3403          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3404          " is a target node!");
3405   return false;
3406 }
3407 
3408 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3409     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3410     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3411   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3412           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3413           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3414           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3415          "Should use SimplifyDemandedBits if you don't know whether Op"
3416          " is a target node!");
3417   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3418   return false;
3419 }
3420 
3421 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3422     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3423     SelectionDAG &DAG, unsigned Depth) const {
3424   assert(
3425       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3426        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3427        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3428        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3429       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3430       " is a target node!");
3431   return SDValue();
3432 }
3433 
3434 SDValue
3435 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3436                                         SDValue N1, MutableArrayRef<int> Mask,
3437                                         SelectionDAG &DAG) const {
3438   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3439   if (!LegalMask) {
3440     std::swap(N0, N1);
3441     ShuffleVectorSDNode::commuteMask(Mask);
3442     LegalMask = isShuffleMaskLegal(Mask, VT);
3443   }
3444 
3445   if (!LegalMask)
3446     return SDValue();
3447 
3448   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3449 }
3450 
3451 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3452   return nullptr;
3453 }
3454 
3455 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3456     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3457     bool PoisonOnly, unsigned Depth) const {
3458   assert(
3459       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3460        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3461        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3462        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3463       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3464       " is a target node!");
3465   return false;
3466 }
3467 
3468 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3469                                                   const SelectionDAG &DAG,
3470                                                   bool SNaN,
3471                                                   unsigned Depth) const {
3472   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3473           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3474           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3475           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3476          "Should use isKnownNeverNaN if you don't know whether Op"
3477          " is a target node!");
3478   return false;
3479 }
3480 
3481 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3482                                                const APInt &DemandedElts,
3483                                                APInt &UndefElts,
3484                                                unsigned Depth) const {
3485   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3486           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3487           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3488           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3489          "Should use isSplatValue if you don't know whether Op"
3490          " is a target node!");
3491   return false;
3492 }
3493 
3494 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3495 // work with truncating build vectors and vectors with elements of less than
3496 // 8 bits.
3497 bool TargetLowering::isConstTrueVal(SDValue N) const {
3498   if (!N)
3499     return false;
3500 
3501   unsigned EltWidth;
3502   APInt CVal;
3503   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3504                                                /*AllowTruncation=*/true)) {
3505     CVal = CN->getAPIntValue();
3506     EltWidth = N.getValueType().getScalarSizeInBits();
3507   } else
3508     return false;
3509 
3510   // If this is a truncating splat, truncate the splat value.
3511   // Otherwise, we may fail to match the expected values below.
3512   if (EltWidth < CVal.getBitWidth())
3513     CVal = CVal.trunc(EltWidth);
3514 
3515   switch (getBooleanContents(N.getValueType())) {
3516   case UndefinedBooleanContent:
3517     return CVal[0];
3518   case ZeroOrOneBooleanContent:
3519     return CVal.isOne();
3520   case ZeroOrNegativeOneBooleanContent:
3521     return CVal.isAllOnes();
3522   }
3523 
3524   llvm_unreachable("Invalid boolean contents");
3525 }
3526 
3527 bool TargetLowering::isConstFalseVal(SDValue N) const {
3528   if (!N)
3529     return false;
3530 
3531   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3532   if (!CN) {
3533     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3534     if (!BV)
3535       return false;
3536 
3537     // Only interested in constant splats, we don't care about undef
3538     // elements in identifying boolean constants and getConstantSplatNode
3539     // returns NULL if all ops are undef;
3540     CN = BV->getConstantSplatNode();
3541     if (!CN)
3542       return false;
3543   }
3544 
3545   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3546     return !CN->getAPIntValue()[0];
3547 
3548   return CN->isZero();
3549 }
3550 
3551 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3552                                        bool SExt) const {
3553   if (VT == MVT::i1)
3554     return N->isOne();
3555 
3556   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3557   switch (Cnt) {
3558   case TargetLowering::ZeroOrOneBooleanContent:
3559     // An extended value of 1 is always true, unless its original type is i1,
3560     // in which case it will be sign extended to -1.
3561     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3562   case TargetLowering::UndefinedBooleanContent:
3563   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3564     return N->isAllOnes() && SExt;
3565   }
3566   llvm_unreachable("Unexpected enumeration.");
3567 }
3568 
3569 /// This helper function of SimplifySetCC tries to optimize the comparison when
3570 /// either operand of the SetCC node is a bitwise-and instruction.
3571 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3572                                          ISD::CondCode Cond, const SDLoc &DL,
3573                                          DAGCombinerInfo &DCI) const {
3574   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3575     std::swap(N0, N1);
3576 
3577   SelectionDAG &DAG = DCI.DAG;
3578   EVT OpVT = N0.getValueType();
3579   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3580       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3581     return SDValue();
3582 
3583   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3584   // iff everything but LSB is known zero:
3585   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3586       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3587        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3588     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3589     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3590     if (DAG.MaskedValueIsZero(N0, UpperBits))
3591       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3592   }
3593 
3594   // Match these patterns in any of their permutations:
3595   // (X & Y) == Y
3596   // (X & Y) != Y
3597   SDValue X, Y;
3598   if (N0.getOperand(0) == N1) {
3599     X = N0.getOperand(1);
3600     Y = N0.getOperand(0);
3601   } else if (N0.getOperand(1) == N1) {
3602     X = N0.getOperand(0);
3603     Y = N0.getOperand(1);
3604   } else {
3605     return SDValue();
3606   }
3607 
3608   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3609   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3610     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3611     // Note that where Y is variable and is known to have at most one bit set
3612     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3613     // equivalent when Y == 0.
3614     assert(OpVT.isInteger());
3615     Cond = ISD::getSetCCInverse(Cond, OpVT);
3616     if (DCI.isBeforeLegalizeOps() ||
3617         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3618       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3619   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3620     // If the target supports an 'and-not' or 'and-complement' logic operation,
3621     // try to use that to make a comparison operation more efficient.
3622     // But don't do this transform if the mask is a single bit because there are
3623     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3624     // 'rlwinm' on PPC).
3625 
3626     // Bail out if the compare operand that we want to turn into a zero is
3627     // already a zero (otherwise, infinite loop).
3628     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3629     if (YConst && YConst->isZero())
3630       return SDValue();
3631 
3632     // Transform this into: ~X & Y == 0.
3633     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3634     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3635     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3636   }
3637 
3638   return SDValue();
3639 }
3640 
3641 /// There are multiple IR patterns that could be checking whether certain
3642 /// truncation of a signed number would be lossy or not. The pattern which is
3643 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3644 /// We are looking for the following pattern: (KeptBits is a constant)
3645 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3646 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3647 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3648 /// We will unfold it into the natural trunc+sext pattern:
3649 ///   ((%x << C) a>> C) dstcond %x
3650 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3651 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3652     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3653     const SDLoc &DL) const {
3654   // We must be comparing with a constant.
3655   ConstantSDNode *C1;
3656   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3657     return SDValue();
3658 
3659   // N0 should be:  add %x, (1 << (KeptBits-1))
3660   if (N0->getOpcode() != ISD::ADD)
3661     return SDValue();
3662 
3663   // And we must be 'add'ing a constant.
3664   ConstantSDNode *C01;
3665   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3666     return SDValue();
3667 
3668   SDValue X = N0->getOperand(0);
3669   EVT XVT = X.getValueType();
3670 
3671   // Validate constants ...
3672 
3673   APInt I1 = C1->getAPIntValue();
3674 
3675   ISD::CondCode NewCond;
3676   if (Cond == ISD::CondCode::SETULT) {
3677     NewCond = ISD::CondCode::SETEQ;
3678   } else if (Cond == ISD::CondCode::SETULE) {
3679     NewCond = ISD::CondCode::SETEQ;
3680     // But need to 'canonicalize' the constant.
3681     I1 += 1;
3682   } else if (Cond == ISD::CondCode::SETUGT) {
3683     NewCond = ISD::CondCode::SETNE;
3684     // But need to 'canonicalize' the constant.
3685     I1 += 1;
3686   } else if (Cond == ISD::CondCode::SETUGE) {
3687     NewCond = ISD::CondCode::SETNE;
3688   } else
3689     return SDValue();
3690 
3691   APInt I01 = C01->getAPIntValue();
3692 
3693   auto checkConstants = [&I1, &I01]() -> bool {
3694     // Both of them must be power-of-two, and the constant from setcc is bigger.
3695     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3696   };
3697 
3698   if (checkConstants()) {
3699     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3700   } else {
3701     // What if we invert constants? (and the target predicate)
3702     I1.negate();
3703     I01.negate();
3704     assert(XVT.isInteger());
3705     NewCond = getSetCCInverse(NewCond, XVT);
3706     if (!checkConstants())
3707       return SDValue();
3708     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3709   }
3710 
3711   // They are power-of-two, so which bit is set?
3712   const unsigned KeptBits = I1.logBase2();
3713   const unsigned KeptBitsMinusOne = I01.logBase2();
3714 
3715   // Magic!
3716   if (KeptBits != (KeptBitsMinusOne + 1))
3717     return SDValue();
3718   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3719 
3720   // We don't want to do this in every single case.
3721   SelectionDAG &DAG = DCI.DAG;
3722   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3723           XVT, KeptBits))
3724     return SDValue();
3725 
3726   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3727   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3728 
3729   // Unfold into:  ((%x << C) a>> C) cond %x
3730   // Where 'cond' will be either 'eq' or 'ne'.
3731   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3732   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3733   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3734   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3735 
3736   return T2;
3737 }
3738 
3739 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3740 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3741     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3742     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3743   assert(isConstOrConstSplat(N1C) &&
3744          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3745          "Should be a comparison with 0.");
3746   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3747          "Valid only for [in]equality comparisons.");
3748 
3749   unsigned NewShiftOpcode;
3750   SDValue X, C, Y;
3751 
3752   SelectionDAG &DAG = DCI.DAG;
3753   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3754 
3755   // Look for '(C l>>/<< Y)'.
3756   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3757     // The shift should be one-use.
3758     if (!V.hasOneUse())
3759       return false;
3760     unsigned OldShiftOpcode = V.getOpcode();
3761     switch (OldShiftOpcode) {
3762     case ISD::SHL:
3763       NewShiftOpcode = ISD::SRL;
3764       break;
3765     case ISD::SRL:
3766       NewShiftOpcode = ISD::SHL;
3767       break;
3768     default:
3769       return false; // must be a logical shift.
3770     }
3771     // We should be shifting a constant.
3772     // FIXME: best to use isConstantOrConstantVector().
3773     C = V.getOperand(0);
3774     ConstantSDNode *CC =
3775         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3776     if (!CC)
3777       return false;
3778     Y = V.getOperand(1);
3779 
3780     ConstantSDNode *XC =
3781         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3782     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3783         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3784   };
3785 
3786   // LHS of comparison should be an one-use 'and'.
3787   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3788     return SDValue();
3789 
3790   X = N0.getOperand(0);
3791   SDValue Mask = N0.getOperand(1);
3792 
3793   // 'and' is commutative!
3794   if (!Match(Mask)) {
3795     std::swap(X, Mask);
3796     if (!Match(Mask))
3797       return SDValue();
3798   }
3799 
3800   EVT VT = X.getValueType();
3801 
3802   // Produce:
3803   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3804   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3805   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3806   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3807   return T2;
3808 }
3809 
3810 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3811 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3812 /// handle the commuted versions of these patterns.
3813 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3814                                            ISD::CondCode Cond, const SDLoc &DL,
3815                                            DAGCombinerInfo &DCI) const {
3816   unsigned BOpcode = N0.getOpcode();
3817   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3818          "Unexpected binop");
3819   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3820 
3821   // (X + Y) == X --> Y == 0
3822   // (X - Y) == X --> Y == 0
3823   // (X ^ Y) == X --> Y == 0
3824   SelectionDAG &DAG = DCI.DAG;
3825   EVT OpVT = N0.getValueType();
3826   SDValue X = N0.getOperand(0);
3827   SDValue Y = N0.getOperand(1);
3828   if (X == N1)
3829     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3830 
3831   if (Y != N1)
3832     return SDValue();
3833 
3834   // (X + Y) == Y --> X == 0
3835   // (X ^ Y) == Y --> X == 0
3836   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3837     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3838 
3839   // The shift would not be valid if the operands are boolean (i1).
3840   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3841     return SDValue();
3842 
3843   // (X - Y) == Y --> X == Y << 1
3844   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3845                                  !DCI.isBeforeLegalize());
3846   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3847   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3848   if (!DCI.isCalledByLegalizer())
3849     DCI.AddToWorklist(YShl1.getNode());
3850   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3851 }
3852 
3853 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3854                                       SDValue N0, const APInt &C1,
3855                                       ISD::CondCode Cond, const SDLoc &dl,
3856                                       SelectionDAG &DAG) {
3857   // Look through truncs that don't change the value of a ctpop.
3858   // FIXME: Add vector support? Need to be careful with setcc result type below.
3859   SDValue CTPOP = N0;
3860   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3861       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3862     CTPOP = N0.getOperand(0);
3863 
3864   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3865     return SDValue();
3866 
3867   EVT CTVT = CTPOP.getValueType();
3868   SDValue CTOp = CTPOP.getOperand(0);
3869 
3870   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3871   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3872   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3873     return SDValue();
3874 
3875   // (ctpop x) u< 2 -> (x & x-1) == 0
3876   // (ctpop x) u> 1 -> (x & x-1) != 0
3877   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3878     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3879     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3880       return SDValue();
3881     if (C1 == 0 && (Cond == ISD::SETULT))
3882       return SDValue(); // This is handled elsewhere.
3883 
3884     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3885 
3886     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3887     SDValue Result = CTOp;
3888     for (unsigned i = 0; i < Passes; i++) {
3889       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3890       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3891     }
3892     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3893     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3894   }
3895 
3896   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3897   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3898     // For scalars, keep CTPOP if it is legal or custom.
3899     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3900       return SDValue();
3901     // This is based on X86's custom lowering for CTPOP which produces more
3902     // instructions than the expansion here.
3903 
3904     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3905     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3906     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3907     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3908     assert(CTVT.isInteger());
3909     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3910     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3911     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3912     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3913     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3914     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3915     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3916   }
3917 
3918   return SDValue();
3919 }
3920 
3921 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3922                                    ISD::CondCode Cond, const SDLoc &dl,
3923                                    SelectionDAG &DAG) {
3924   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3925     return SDValue();
3926 
3927   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3928   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3929     return SDValue();
3930 
3931   auto getRotateSource = [](SDValue X) {
3932     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3933       return X.getOperand(0);
3934     return SDValue();
3935   };
3936 
3937   // Peek through a rotated value compared against 0 or -1:
3938   // (rot X, Y) == 0/-1 --> X == 0/-1
3939   // (rot X, Y) != 0/-1 --> X != 0/-1
3940   if (SDValue R = getRotateSource(N0))
3941     return DAG.getSetCC(dl, VT, R, N1, Cond);
3942 
3943   // Peek through an 'or' of a rotated value compared against 0:
3944   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3945   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3946   //
3947   // TODO: Add the 'and' with -1 sibling.
3948   // TODO: Recurse through a series of 'or' ops to find the rotate.
3949   EVT OpVT = N0.getValueType();
3950   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3951     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3952       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3953       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3954     }
3955     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3956       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3957       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3958     }
3959   }
3960 
3961   return SDValue();
3962 }
3963 
3964 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3965                                         ISD::CondCode Cond, const SDLoc &dl,
3966                                         SelectionDAG &DAG) {
3967   // If we are testing for all-bits-clear, we might be able to do that with
3968   // less shifting since bit-order does not matter.
3969   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3970     return SDValue();
3971 
3972   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3973   if (!C1 || !C1->isZero())
3974     return SDValue();
3975 
3976   if (!N0.hasOneUse() ||
3977       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3978     return SDValue();
3979 
3980   unsigned BitWidth = N0.getScalarValueSizeInBits();
3981   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3982   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3983     return SDValue();
3984 
3985   // Canonicalize fshr as fshl to reduce pattern-matching.
3986   unsigned ShAmt = ShAmtC->getZExtValue();
3987   if (N0.getOpcode() == ISD::FSHR)
3988     ShAmt = BitWidth - ShAmt;
3989 
3990   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3991   SDValue X, Y;
3992   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3993     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3994       return false;
3995     if (Or.getOperand(0) == Other) {
3996       X = Or.getOperand(0);
3997       Y = Or.getOperand(1);
3998       return true;
3999     }
4000     if (Or.getOperand(1) == Other) {
4001       X = Or.getOperand(1);
4002       Y = Or.getOperand(0);
4003       return true;
4004     }
4005     return false;
4006   };
4007 
4008   EVT OpVT = N0.getValueType();
4009   EVT ShAmtVT = N0.getOperand(2).getValueType();
4010   SDValue F0 = N0.getOperand(0);
4011   SDValue F1 = N0.getOperand(1);
4012   if (matchOr(F0, F1)) {
4013     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4014     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4015     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4016     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4017     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4018   }
4019   if (matchOr(F1, F0)) {
4020     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4021     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4022     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4023     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4024     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4025   }
4026 
4027   return SDValue();
4028 }
4029 
4030 /// Try to simplify a setcc built with the specified operands and cc. If it is
4031 /// unable to simplify it, return a null SDValue.
4032 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4033                                       ISD::CondCode Cond, bool foldBooleans,
4034                                       DAGCombinerInfo &DCI,
4035                                       const SDLoc &dl) const {
4036   SelectionDAG &DAG = DCI.DAG;
4037   const DataLayout &Layout = DAG.getDataLayout();
4038   EVT OpVT = N0.getValueType();
4039 
4040   // Constant fold or commute setcc.
4041   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4042     return Fold;
4043 
4044   bool N0ConstOrSplat =
4045       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4046   bool N1ConstOrSplat =
4047       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4048 
4049   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4050   // TODO: Handle non-splat vector constants. All undef causes trouble.
4051   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4052   // infinite loop here when we encounter one.
4053   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4054   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4055       (DCI.isBeforeLegalizeOps() ||
4056        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4057     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4058 
4059   // If we have a subtract with the same 2 non-constant operands as this setcc
4060   // -- but in reverse order -- then try to commute the operands of this setcc
4061   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4062   // instruction on some targets.
4063   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4064       (DCI.isBeforeLegalizeOps() ||
4065        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4066       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4067       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4068     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4069 
4070   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4071     return V;
4072 
4073   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4074     return V;
4075 
4076   if (auto *N1C = isConstOrConstSplat(N1)) {
4077     const APInt &C1 = N1C->getAPIntValue();
4078 
4079     // Optimize some CTPOP cases.
4080     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4081       return V;
4082 
4083     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4084     // equality comparison, then we're just comparing whether X itself is
4085     // zero.
4086     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4087         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4088         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4089       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4090         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4091             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4092           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4093             // (srl (ctlz x), 5) == 0  -> X != 0
4094             // (srl (ctlz x), 5) != 1  -> X != 0
4095             Cond = ISD::SETNE;
4096           } else {
4097             // (srl (ctlz x), 5) != 0  -> X == 0
4098             // (srl (ctlz x), 5) == 1  -> X == 0
4099             Cond = ISD::SETEQ;
4100           }
4101           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4102           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4103                               Cond);
4104         }
4105       }
4106     }
4107   }
4108 
4109   // FIXME: Support vectors.
4110   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4111     const APInt &C1 = N1C->getAPIntValue();
4112 
4113     // (zext x) == C --> x == (trunc C)
4114     // (sext x) == C --> x == (trunc C)
4115     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4116         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4117       unsigned MinBits = N0.getValueSizeInBits();
4118       SDValue PreExt;
4119       bool Signed = false;
4120       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4121         // ZExt
4122         MinBits = N0->getOperand(0).getValueSizeInBits();
4123         PreExt = N0->getOperand(0);
4124       } else if (N0->getOpcode() == ISD::AND) {
4125         // DAGCombine turns costly ZExts into ANDs
4126         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4127           if ((C->getAPIntValue()+1).isPowerOf2()) {
4128             MinBits = C->getAPIntValue().countTrailingOnes();
4129             PreExt = N0->getOperand(0);
4130           }
4131       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4132         // SExt
4133         MinBits = N0->getOperand(0).getValueSizeInBits();
4134         PreExt = N0->getOperand(0);
4135         Signed = true;
4136       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4137         // ZEXTLOAD / SEXTLOAD
4138         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4139           MinBits = LN0->getMemoryVT().getSizeInBits();
4140           PreExt = N0;
4141         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4142           Signed = true;
4143           MinBits = LN0->getMemoryVT().getSizeInBits();
4144           PreExt = N0;
4145         }
4146       }
4147 
4148       // Figure out how many bits we need to preserve this constant.
4149       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4150 
4151       // Make sure we're not losing bits from the constant.
4152       if (MinBits > 0 &&
4153           MinBits < C1.getBitWidth() &&
4154           MinBits >= ReqdBits) {
4155         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4156         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4157           // Will get folded away.
4158           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4159           if (MinBits == 1 && C1 == 1)
4160             // Invert the condition.
4161             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4162                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4163           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4164           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4165         }
4166 
4167         // If truncating the setcc operands is not desirable, we can still
4168         // simplify the expression in some cases:
4169         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4170         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4171         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4172         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4173         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4174         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4175         SDValue TopSetCC = N0->getOperand(0);
4176         unsigned N0Opc = N0->getOpcode();
4177         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4178         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4179             TopSetCC.getOpcode() == ISD::SETCC &&
4180             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4181             (isConstFalseVal(N1) ||
4182              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4183 
4184           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4185                          (!N1C->isZero() && Cond == ISD::SETNE);
4186 
4187           if (!Inverse)
4188             return TopSetCC;
4189 
4190           ISD::CondCode InvCond = ISD::getSetCCInverse(
4191               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4192               TopSetCC.getOperand(0).getValueType());
4193           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4194                                       TopSetCC.getOperand(1),
4195                                       InvCond);
4196         }
4197       }
4198     }
4199 
4200     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4201     // equality or unsigned, and all 1 bits of the const are in the same
4202     // partial word, see if we can shorten the load.
4203     if (DCI.isBeforeLegalize() &&
4204         !ISD::isSignedIntSetCC(Cond) &&
4205         N0.getOpcode() == ISD::AND && C1 == 0 &&
4206         N0.getNode()->hasOneUse() &&
4207         isa<LoadSDNode>(N0.getOperand(0)) &&
4208         N0.getOperand(0).getNode()->hasOneUse() &&
4209         isa<ConstantSDNode>(N0.getOperand(1))) {
4210       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4211       APInt bestMask;
4212       unsigned bestWidth = 0, bestOffset = 0;
4213       if (Lod->isSimple() && Lod->isUnindexed()) {
4214         unsigned origWidth = N0.getValueSizeInBits();
4215         unsigned maskWidth = origWidth;
4216         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4217         // 8 bits, but have to be careful...
4218         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4219           origWidth = Lod->getMemoryVT().getSizeInBits();
4220         const APInt &Mask = N0.getConstantOperandAPInt(1);
4221         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4222           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4223           for (unsigned offset=0; offset<origWidth/width; offset++) {
4224             if (Mask.isSubsetOf(newMask)) {
4225               if (Layout.isLittleEndian())
4226                 bestOffset = (uint64_t)offset * (width/8);
4227               else
4228                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4229               bestMask = Mask.lshr(offset * (width/8) * 8);
4230               bestWidth = width;
4231               break;
4232             }
4233             newMask <<= width;
4234           }
4235         }
4236       }
4237       if (bestWidth) {
4238         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4239         if (newVT.isRound() &&
4240             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4241           SDValue Ptr = Lod->getBasePtr();
4242           if (bestOffset != 0)
4243             Ptr =
4244                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4245           SDValue NewLoad =
4246               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4247                           Lod->getPointerInfo().getWithOffset(bestOffset),
4248                           Lod->getOriginalAlign());
4249           return DAG.getSetCC(dl, VT,
4250                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4251                                       DAG.getConstant(bestMask.trunc(bestWidth),
4252                                                       dl, newVT)),
4253                               DAG.getConstant(0LL, dl, newVT), Cond);
4254         }
4255       }
4256     }
4257 
4258     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4259     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4260       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4261 
4262       // If the comparison constant has bits in the upper part, the
4263       // zero-extended value could never match.
4264       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4265                                               C1.getBitWidth() - InSize))) {
4266         switch (Cond) {
4267         case ISD::SETUGT:
4268         case ISD::SETUGE:
4269         case ISD::SETEQ:
4270           return DAG.getConstant(0, dl, VT);
4271         case ISD::SETULT:
4272         case ISD::SETULE:
4273         case ISD::SETNE:
4274           return DAG.getConstant(1, dl, VT);
4275         case ISD::SETGT:
4276         case ISD::SETGE:
4277           // True if the sign bit of C1 is set.
4278           return DAG.getConstant(C1.isNegative(), dl, VT);
4279         case ISD::SETLT:
4280         case ISD::SETLE:
4281           // True if the sign bit of C1 isn't set.
4282           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4283         default:
4284           break;
4285         }
4286       }
4287 
4288       // Otherwise, we can perform the comparison with the low bits.
4289       switch (Cond) {
4290       case ISD::SETEQ:
4291       case ISD::SETNE:
4292       case ISD::SETUGT:
4293       case ISD::SETUGE:
4294       case ISD::SETULT:
4295       case ISD::SETULE: {
4296         EVT newVT = N0.getOperand(0).getValueType();
4297         if (DCI.isBeforeLegalizeOps() ||
4298             (isOperationLegal(ISD::SETCC, newVT) &&
4299              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4300           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4301           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4302 
4303           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4304                                           NewConst, Cond);
4305           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4306         }
4307         break;
4308       }
4309       default:
4310         break; // todo, be more careful with signed comparisons
4311       }
4312     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4313                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4314                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4315                                       OpVT)) {
4316       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4317       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4318       EVT ExtDstTy = N0.getValueType();
4319       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4320 
4321       // If the constant doesn't fit into the number of bits for the source of
4322       // the sign extension, it is impossible for both sides to be equal.
4323       if (C1.getMinSignedBits() > ExtSrcTyBits)
4324         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4325 
4326       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4327              ExtDstTy != ExtSrcTy && "Unexpected types!");
4328       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4329       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4330                                    DAG.getConstant(Imm, dl, ExtDstTy));
4331       if (!DCI.isCalledByLegalizer())
4332         DCI.AddToWorklist(ZextOp.getNode());
4333       // Otherwise, make this a use of a zext.
4334       return DAG.getSetCC(dl, VT, ZextOp,
4335                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4336     } else if ((N1C->isZero() || N1C->isOne()) &&
4337                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4338       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4339       if (N0.getOpcode() == ISD::SETCC &&
4340           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4341           (N0.getValueType() == MVT::i1 ||
4342            getBooleanContents(N0.getOperand(0).getValueType()) ==
4343                        ZeroOrOneBooleanContent)) {
4344         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4345         if (TrueWhenTrue)
4346           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4347         // Invert the condition.
4348         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4349         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4350         if (DCI.isBeforeLegalizeOps() ||
4351             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4352           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4353       }
4354 
4355       if ((N0.getOpcode() == ISD::XOR ||
4356            (N0.getOpcode() == ISD::AND &&
4357             N0.getOperand(0).getOpcode() == ISD::XOR &&
4358             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4359           isOneConstant(N0.getOperand(1))) {
4360         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4361         // can only do this if the top bits are known zero.
4362         unsigned BitWidth = N0.getValueSizeInBits();
4363         if (DAG.MaskedValueIsZero(N0,
4364                                   APInt::getHighBitsSet(BitWidth,
4365                                                         BitWidth-1))) {
4366           // Okay, get the un-inverted input value.
4367           SDValue Val;
4368           if (N0.getOpcode() == ISD::XOR) {
4369             Val = N0.getOperand(0);
4370           } else {
4371             assert(N0.getOpcode() == ISD::AND &&
4372                     N0.getOperand(0).getOpcode() == ISD::XOR);
4373             // ((X^1)&1)^1 -> X & 1
4374             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4375                               N0.getOperand(0).getOperand(0),
4376                               N0.getOperand(1));
4377           }
4378 
4379           return DAG.getSetCC(dl, VT, Val, N1,
4380                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4381         }
4382       } else if (N1C->isOne()) {
4383         SDValue Op0 = N0;
4384         if (Op0.getOpcode() == ISD::TRUNCATE)
4385           Op0 = Op0.getOperand(0);
4386 
4387         if ((Op0.getOpcode() == ISD::XOR) &&
4388             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4389             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4390           SDValue XorLHS = Op0.getOperand(0);
4391           SDValue XorRHS = Op0.getOperand(1);
4392           // Ensure that the input setccs return an i1 type or 0/1 value.
4393           if (Op0.getValueType() == MVT::i1 ||
4394               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4395                       ZeroOrOneBooleanContent &&
4396                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4397                         ZeroOrOneBooleanContent)) {
4398             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4399             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4400             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4401           }
4402         }
4403         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4404           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4405           if (Op0.getValueType().bitsGT(VT))
4406             Op0 = DAG.getNode(ISD::AND, dl, VT,
4407                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4408                           DAG.getConstant(1, dl, VT));
4409           else if (Op0.getValueType().bitsLT(VT))
4410             Op0 = DAG.getNode(ISD::AND, dl, VT,
4411                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4412                         DAG.getConstant(1, dl, VT));
4413 
4414           return DAG.getSetCC(dl, VT, Op0,
4415                               DAG.getConstant(0, dl, Op0.getValueType()),
4416                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4417         }
4418         if (Op0.getOpcode() == ISD::AssertZext &&
4419             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4420           return DAG.getSetCC(dl, VT, Op0,
4421                               DAG.getConstant(0, dl, Op0.getValueType()),
4422                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4423       }
4424     }
4425 
4426     // Given:
4427     //   icmp eq/ne (urem %x, %y), 0
4428     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4429     //   icmp eq/ne %x, 0
4430     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4431         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4432       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4433       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4434       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4435         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4436     }
4437 
4438     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4439     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4440     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4441         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4442         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4443         N1C && N1C->isAllOnes()) {
4444       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4445                           DAG.getConstant(0, dl, OpVT),
4446                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4447     }
4448 
4449     if (SDValue V =
4450             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4451       return V;
4452   }
4453 
4454   // These simplifications apply to splat vectors as well.
4455   // TODO: Handle more splat vector cases.
4456   if (auto *N1C = isConstOrConstSplat(N1)) {
4457     const APInt &C1 = N1C->getAPIntValue();
4458 
4459     APInt MinVal, MaxVal;
4460     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4461     if (ISD::isSignedIntSetCC(Cond)) {
4462       MinVal = APInt::getSignedMinValue(OperandBitSize);
4463       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4464     } else {
4465       MinVal = APInt::getMinValue(OperandBitSize);
4466       MaxVal = APInt::getMaxValue(OperandBitSize);
4467     }
4468 
4469     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4470     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4471       // X >= MIN --> true
4472       if (C1 == MinVal)
4473         return DAG.getBoolConstant(true, dl, VT, OpVT);
4474 
4475       if (!VT.isVector()) { // TODO: Support this for vectors.
4476         // X >= C0 --> X > (C0 - 1)
4477         APInt C = C1 - 1;
4478         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4479         if ((DCI.isBeforeLegalizeOps() ||
4480              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4481             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4482                                   isLegalICmpImmediate(C.getSExtValue())))) {
4483           return DAG.getSetCC(dl, VT, N0,
4484                               DAG.getConstant(C, dl, N1.getValueType()),
4485                               NewCC);
4486         }
4487       }
4488     }
4489 
4490     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4491       // X <= MAX --> true
4492       if (C1 == MaxVal)
4493         return DAG.getBoolConstant(true, dl, VT, OpVT);
4494 
4495       // X <= C0 --> X < (C0 + 1)
4496       if (!VT.isVector()) { // TODO: Support this for vectors.
4497         APInt C = C1 + 1;
4498         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4499         if ((DCI.isBeforeLegalizeOps() ||
4500              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4501             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4502                                   isLegalICmpImmediate(C.getSExtValue())))) {
4503           return DAG.getSetCC(dl, VT, N0,
4504                               DAG.getConstant(C, dl, N1.getValueType()),
4505                               NewCC);
4506         }
4507       }
4508     }
4509 
4510     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4511       if (C1 == MinVal)
4512         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4513 
4514       // TODO: Support this for vectors after legalize ops.
4515       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4516         // Canonicalize setlt X, Max --> setne X, Max
4517         if (C1 == MaxVal)
4518           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4519 
4520         // If we have setult X, 1, turn it into seteq X, 0
4521         if (C1 == MinVal+1)
4522           return DAG.getSetCC(dl, VT, N0,
4523                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4524                               ISD::SETEQ);
4525       }
4526     }
4527 
4528     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4529       if (C1 == MaxVal)
4530         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4531 
4532       // TODO: Support this for vectors after legalize ops.
4533       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4534         // Canonicalize setgt X, Min --> setne X, Min
4535         if (C1 == MinVal)
4536           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4537 
4538         // If we have setugt X, Max-1, turn it into seteq X, Max
4539         if (C1 == MaxVal-1)
4540           return DAG.getSetCC(dl, VT, N0,
4541                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4542                               ISD::SETEQ);
4543       }
4544     }
4545 
4546     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4547       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4548       if (C1.isZero())
4549         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4550                 VT, N0, N1, Cond, DCI, dl))
4551           return CC;
4552 
4553       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4554       // For example, when high 32-bits of i64 X are known clear:
4555       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4556       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4557       bool CmpZero = N1C->getAPIntValue().isZero();
4558       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4559       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4560         // Match or(lo,shl(hi,bw/2)) pattern.
4561         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4562           unsigned EltBits = V.getScalarValueSizeInBits();
4563           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4564             return false;
4565           SDValue LHS = V.getOperand(0);
4566           SDValue RHS = V.getOperand(1);
4567           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4568           // Unshifted element must have zero upperbits.
4569           if (RHS.getOpcode() == ISD::SHL &&
4570               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4571               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4572               DAG.MaskedValueIsZero(LHS, HiBits)) {
4573             Lo = LHS;
4574             Hi = RHS.getOperand(0);
4575             return true;
4576           }
4577           if (LHS.getOpcode() == ISD::SHL &&
4578               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4579               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4580               DAG.MaskedValueIsZero(RHS, HiBits)) {
4581             Lo = RHS;
4582             Hi = LHS.getOperand(0);
4583             return true;
4584           }
4585           return false;
4586         };
4587 
4588         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4589           unsigned EltBits = N0.getScalarValueSizeInBits();
4590           unsigned HalfBits = EltBits / 2;
4591           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4592           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4593           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4594           SDValue NewN0 =
4595               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4596           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4597           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4598         };
4599 
4600         SDValue Lo, Hi;
4601         if (IsConcat(N0, Lo, Hi))
4602           return MergeConcat(Lo, Hi);
4603 
4604         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4605           SDValue Lo0, Lo1, Hi0, Hi1;
4606           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4607               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4608             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4609                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4610           }
4611         }
4612       }
4613     }
4614 
4615     // If we have "setcc X, C0", check to see if we can shrink the immediate
4616     // by changing cc.
4617     // TODO: Support this for vectors after legalize ops.
4618     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4619       // SETUGT X, SINTMAX  -> SETLT X, 0
4620       // SETUGE X, SINTMIN -> SETLT X, 0
4621       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4622           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4623         return DAG.getSetCC(dl, VT, N0,
4624                             DAG.getConstant(0, dl, N1.getValueType()),
4625                             ISD::SETLT);
4626 
4627       // SETULT X, SINTMIN  -> SETGT X, -1
4628       // SETULE X, SINTMAX  -> SETGT X, -1
4629       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4630           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4631         return DAG.getSetCC(dl, VT, N0,
4632                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4633                             ISD::SETGT);
4634     }
4635   }
4636 
4637   // Back to non-vector simplifications.
4638   // TODO: Can we do these for vector splats?
4639   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4640     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4641     const APInt &C1 = N1C->getAPIntValue();
4642     EVT ShValTy = N0.getValueType();
4643 
4644     // Fold bit comparisons when we can. This will result in an
4645     // incorrect value when boolean false is negative one, unless
4646     // the bitsize is 1 in which case the false value is the same
4647     // in practice regardless of the representation.
4648     if ((VT.getSizeInBits() == 1 ||
4649          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4650         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4651         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4652         N0.getOpcode() == ISD::AND) {
4653       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4654         EVT ShiftTy =
4655             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4656         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4657           // Perform the xform if the AND RHS is a single bit.
4658           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4659           if (AndRHS->getAPIntValue().isPowerOf2() &&
4660               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4661             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4662                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4663                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4664           }
4665         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4666           // (X & 8) == 8  -->  (X & 8) >> 3
4667           // Perform the xform if C1 is a single bit.
4668           unsigned ShCt = C1.logBase2();
4669           if (C1.isPowerOf2() &&
4670               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4671             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4672                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4673                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4674           }
4675         }
4676       }
4677     }
4678 
4679     if (C1.getMinSignedBits() <= 64 &&
4680         !isLegalICmpImmediate(C1.getSExtValue())) {
4681       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4682       // (X & -256) == 256 -> (X >> 8) == 1
4683       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4684           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4685         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4686           const APInt &AndRHSC = AndRHS->getAPIntValue();
4687           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4688             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4689             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4690               SDValue Shift =
4691                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4692                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4693               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4694               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4695             }
4696           }
4697         }
4698       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4699                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4700         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4701         // X <  0x100000000 -> (X >> 32) <  1
4702         // X >= 0x100000000 -> (X >> 32) >= 1
4703         // X <= 0x0ffffffff -> (X >> 32) <  1
4704         // X >  0x0ffffffff -> (X >> 32) >= 1
4705         unsigned ShiftBits;
4706         APInt NewC = C1;
4707         ISD::CondCode NewCond = Cond;
4708         if (AdjOne) {
4709           ShiftBits = C1.countTrailingOnes();
4710           NewC = NewC + 1;
4711           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4712         } else {
4713           ShiftBits = C1.countTrailingZeros();
4714         }
4715         NewC.lshrInPlace(ShiftBits);
4716         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4717             isLegalICmpImmediate(NewC.getSExtValue()) &&
4718             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4719           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4720                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4721           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4722           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4723         }
4724       }
4725     }
4726   }
4727 
4728   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4729     auto *CFP = cast<ConstantFPSDNode>(N1);
4730     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4731 
4732     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4733     // constant if knowing that the operand is non-nan is enough.  We prefer to
4734     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4735     // materialize 0.0.
4736     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4737       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4738 
4739     // setcc (fneg x), C -> setcc swap(pred) x, -C
4740     if (N0.getOpcode() == ISD::FNEG) {
4741       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4742       if (DCI.isBeforeLegalizeOps() ||
4743           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4744         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4745         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4746       }
4747     }
4748 
4749     // If the condition is not legal, see if we can find an equivalent one
4750     // which is legal.
4751     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4752       // If the comparison was an awkward floating-point == or != and one of
4753       // the comparison operands is infinity or negative infinity, convert the
4754       // condition to a less-awkward <= or >=.
4755       if (CFP->getValueAPF().isInfinity()) {
4756         bool IsNegInf = CFP->getValueAPF().isNegative();
4757         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4758         switch (Cond) {
4759         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4760         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4761         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4762         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4763         default: break;
4764         }
4765         if (NewCond != ISD::SETCC_INVALID &&
4766             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4767           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4768       }
4769     }
4770   }
4771 
4772   if (N0 == N1) {
4773     // The sext(setcc()) => setcc() optimization relies on the appropriate
4774     // constant being emitted.
4775     assert(!N0.getValueType().isInteger() &&
4776            "Integer types should be handled by FoldSetCC");
4777 
4778     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4779     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4780     if (UOF == 2) // FP operators that are undefined on NaNs.
4781       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4782     if (UOF == unsigned(EqTrue))
4783       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4784     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4785     // if it is not already.
4786     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4787     if (NewCond != Cond &&
4788         (DCI.isBeforeLegalizeOps() ||
4789                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4790       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4791   }
4792 
4793   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4794       N0.getValueType().isInteger()) {
4795     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4796         N0.getOpcode() == ISD::XOR) {
4797       // Simplify (X+Y) == (X+Z) -->  Y == Z
4798       if (N0.getOpcode() == N1.getOpcode()) {
4799         if (N0.getOperand(0) == N1.getOperand(0))
4800           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4801         if (N0.getOperand(1) == N1.getOperand(1))
4802           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4803         if (isCommutativeBinOp(N0.getOpcode())) {
4804           // If X op Y == Y op X, try other combinations.
4805           if (N0.getOperand(0) == N1.getOperand(1))
4806             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4807                                 Cond);
4808           if (N0.getOperand(1) == N1.getOperand(0))
4809             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4810                                 Cond);
4811         }
4812       }
4813 
4814       // If RHS is a legal immediate value for a compare instruction, we need
4815       // to be careful about increasing register pressure needlessly.
4816       bool LegalRHSImm = false;
4817 
4818       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4819         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4820           // Turn (X+C1) == C2 --> X == C2-C1
4821           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4822             return DAG.getSetCC(
4823                 dl, VT, N0.getOperand(0),
4824                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4825                                 dl, N0.getValueType()),
4826                 Cond);
4827 
4828           // Turn (X^C1) == C2 --> X == C1^C2
4829           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4830             return DAG.getSetCC(
4831                 dl, VT, N0.getOperand(0),
4832                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4833                                 dl, N0.getValueType()),
4834                 Cond);
4835         }
4836 
4837         // Turn (C1-X) == C2 --> X == C1-C2
4838         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4839           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4840             return DAG.getSetCC(
4841                 dl, VT, N0.getOperand(1),
4842                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4843                                 dl, N0.getValueType()),
4844                 Cond);
4845 
4846         // Could RHSC fold directly into a compare?
4847         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4848           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4849       }
4850 
4851       // (X+Y) == X --> Y == 0 and similar folds.
4852       // Don't do this if X is an immediate that can fold into a cmp
4853       // instruction and X+Y has other uses. It could be an induction variable
4854       // chain, and the transform would increase register pressure.
4855       if (!LegalRHSImm || N0.hasOneUse())
4856         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4857           return V;
4858     }
4859 
4860     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4861         N1.getOpcode() == ISD::XOR)
4862       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4863         return V;
4864 
4865     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4866       return V;
4867   }
4868 
4869   // Fold remainder of division by a constant.
4870   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4871       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4872     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4873 
4874     // When division is cheap or optimizing for minimum size,
4875     // fall through to DIVREM creation by skipping this fold.
4876     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4877       if (N0.getOpcode() == ISD::UREM) {
4878         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4879           return Folded;
4880       } else if (N0.getOpcode() == ISD::SREM) {
4881         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4882           return Folded;
4883       }
4884     }
4885   }
4886 
4887   // Fold away ALL boolean setcc's.
4888   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4889     SDValue Temp;
4890     switch (Cond) {
4891     default: llvm_unreachable("Unknown integer setcc!");
4892     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4893       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4894       N0 = DAG.getNOT(dl, Temp, OpVT);
4895       if (!DCI.isCalledByLegalizer())
4896         DCI.AddToWorklist(Temp.getNode());
4897       break;
4898     case ISD::SETNE:  // X != Y   -->  (X^Y)
4899       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4900       break;
4901     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4902     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4903       Temp = DAG.getNOT(dl, N0, OpVT);
4904       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4905       if (!DCI.isCalledByLegalizer())
4906         DCI.AddToWorklist(Temp.getNode());
4907       break;
4908     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4909     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4910       Temp = DAG.getNOT(dl, N1, OpVT);
4911       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4912       if (!DCI.isCalledByLegalizer())
4913         DCI.AddToWorklist(Temp.getNode());
4914       break;
4915     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4916     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4917       Temp = DAG.getNOT(dl, N0, OpVT);
4918       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4919       if (!DCI.isCalledByLegalizer())
4920         DCI.AddToWorklist(Temp.getNode());
4921       break;
4922     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4923     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4924       Temp = DAG.getNOT(dl, N1, OpVT);
4925       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4926       break;
4927     }
4928     if (VT.getScalarType() != MVT::i1) {
4929       if (!DCI.isCalledByLegalizer())
4930         DCI.AddToWorklist(N0.getNode());
4931       // FIXME: If running after legalize, we probably can't do this.
4932       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4933       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4934     }
4935     return N0;
4936   }
4937 
4938   // Could not fold it.
4939   return SDValue();
4940 }
4941 
4942 /// Returns true (and the GlobalValue and the offset) if the node is a
4943 /// GlobalAddress + offset.
4944 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4945                                     int64_t &Offset) const {
4946 
4947   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4948 
4949   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4950     GA = GASD->getGlobal();
4951     Offset += GASD->getOffset();
4952     return true;
4953   }
4954 
4955   if (N->getOpcode() == ISD::ADD) {
4956     SDValue N1 = N->getOperand(0);
4957     SDValue N2 = N->getOperand(1);
4958     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4959       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4960         Offset += V->getSExtValue();
4961         return true;
4962       }
4963     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4964       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4965         Offset += V->getSExtValue();
4966         return true;
4967       }
4968     }
4969   }
4970 
4971   return false;
4972 }
4973 
4974 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4975                                           DAGCombinerInfo &DCI) const {
4976   // Default implementation: no optimization.
4977   return SDValue();
4978 }
4979 
4980 //===----------------------------------------------------------------------===//
4981 //  Inline Assembler Implementation Methods
4982 //===----------------------------------------------------------------------===//
4983 
4984 TargetLowering::ConstraintType
4985 TargetLowering::getConstraintType(StringRef Constraint) const {
4986   unsigned S = Constraint.size();
4987 
4988   if (S == 1) {
4989     switch (Constraint[0]) {
4990     default: break;
4991     case 'r':
4992       return C_RegisterClass;
4993     case 'm': // memory
4994     case 'o': // offsetable
4995     case 'V': // not offsetable
4996       return C_Memory;
4997     case 'p': // Address.
4998       return C_Address;
4999     case 'n': // Simple Integer
5000     case 'E': // Floating Point Constant
5001     case 'F': // Floating Point Constant
5002       return C_Immediate;
5003     case 'i': // Simple Integer or Relocatable Constant
5004     case 's': // Relocatable Constant
5005     case 'X': // Allow ANY value.
5006     case 'I': // Target registers.
5007     case 'J':
5008     case 'K':
5009     case 'L':
5010     case 'M':
5011     case 'N':
5012     case 'O':
5013     case 'P':
5014     case '<':
5015     case '>':
5016       return C_Other;
5017     }
5018   }
5019 
5020   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5021     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5022       return C_Memory;
5023     return C_Register;
5024   }
5025   return C_Unknown;
5026 }
5027 
5028 /// Try to replace an X constraint, which matches anything, with another that
5029 /// has more specific requirements based on the type of the corresponding
5030 /// operand.
5031 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5032   if (ConstraintVT.isInteger())
5033     return "r";
5034   if (ConstraintVT.isFloatingPoint())
5035     return "f"; // works for many targets
5036   return nullptr;
5037 }
5038 
5039 SDValue TargetLowering::LowerAsmOutputForConstraint(
5040     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5041     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5042   return SDValue();
5043 }
5044 
5045 /// Lower the specified operand into the Ops vector.
5046 /// If it is invalid, don't add anything to Ops.
5047 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5048                                                   std::string &Constraint,
5049                                                   std::vector<SDValue> &Ops,
5050                                                   SelectionDAG &DAG) const {
5051 
5052   if (Constraint.length() > 1) return;
5053 
5054   char ConstraintLetter = Constraint[0];
5055   switch (ConstraintLetter) {
5056   default: break;
5057   case 'X':    // Allows any operand
5058   case 'i':    // Simple Integer or Relocatable Constant
5059   case 'n':    // Simple Integer
5060   case 's': {  // Relocatable Constant
5061 
5062     ConstantSDNode *C;
5063     uint64_t Offset = 0;
5064 
5065     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5066     // etc., since getelementpointer is variadic. We can't use
5067     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5068     // while in this case the GA may be furthest from the root node which is
5069     // likely an ISD::ADD.
5070     while (true) {
5071       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5072         // gcc prints these as sign extended.  Sign extend value to 64 bits
5073         // now; without this it would get ZExt'd later in
5074         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5075         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5076         BooleanContent BCont = getBooleanContents(MVT::i64);
5077         ISD::NodeType ExtOpc =
5078             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5079         int64_t ExtVal =
5080             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5081         Ops.push_back(
5082             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5083         return;
5084       }
5085       if (ConstraintLetter != 'n') {
5086         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5087           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5088                                                    GA->getValueType(0),
5089                                                    Offset + GA->getOffset()));
5090           return;
5091         }
5092         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5093           Ops.push_back(DAG.getTargetBlockAddress(
5094               BA->getBlockAddress(), BA->getValueType(0),
5095               Offset + BA->getOffset(), BA->getTargetFlags()));
5096           return;
5097         }
5098         if (isa<BasicBlockSDNode>(Op)) {
5099           Ops.push_back(Op);
5100           return;
5101         }
5102       }
5103       const unsigned OpCode = Op.getOpcode();
5104       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5105         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5106           Op = Op.getOperand(1);
5107         // Subtraction is not commutative.
5108         else if (OpCode == ISD::ADD &&
5109                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5110           Op = Op.getOperand(0);
5111         else
5112           return;
5113         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5114         continue;
5115       }
5116       return;
5117     }
5118     break;
5119   }
5120   }
5121 }
5122 
5123 std::pair<unsigned, const TargetRegisterClass *>
5124 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5125                                              StringRef Constraint,
5126                                              MVT VT) const {
5127   if (Constraint.empty() || Constraint[0] != '{')
5128     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5129   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5130 
5131   // Remove the braces from around the name.
5132   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5133 
5134   std::pair<unsigned, const TargetRegisterClass *> R =
5135       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5136 
5137   // Figure out which register class contains this reg.
5138   for (const TargetRegisterClass *RC : RI->regclasses()) {
5139     // If none of the value types for this register class are valid, we
5140     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5141     if (!isLegalRC(*RI, *RC))
5142       continue;
5143 
5144     for (const MCPhysReg &PR : *RC) {
5145       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5146         std::pair<unsigned, const TargetRegisterClass *> S =
5147             std::make_pair(PR, RC);
5148 
5149         // If this register class has the requested value type, return it,
5150         // otherwise keep searching and return the first class found
5151         // if no other is found which explicitly has the requested type.
5152         if (RI->isTypeLegalForClass(*RC, VT))
5153           return S;
5154         if (!R.second)
5155           R = S;
5156       }
5157     }
5158   }
5159 
5160   return R;
5161 }
5162 
5163 //===----------------------------------------------------------------------===//
5164 // Constraint Selection.
5165 
5166 /// Return true of this is an input operand that is a matching constraint like
5167 /// "4".
5168 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5169   assert(!ConstraintCode.empty() && "No known constraint!");
5170   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5171 }
5172 
5173 /// If this is an input matching constraint, this method returns the output
5174 /// operand it matches.
5175 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5176   assert(!ConstraintCode.empty() && "No known constraint!");
5177   return atoi(ConstraintCode.c_str());
5178 }
5179 
5180 /// Split up the constraint string from the inline assembly value into the
5181 /// specific constraints and their prefixes, and also tie in the associated
5182 /// operand values.
5183 /// If this returns an empty vector, and if the constraint string itself
5184 /// isn't empty, there was an error parsing.
5185 TargetLowering::AsmOperandInfoVector
5186 TargetLowering::ParseConstraints(const DataLayout &DL,
5187                                  const TargetRegisterInfo *TRI,
5188                                  const CallBase &Call) const {
5189   /// Information about all of the constraints.
5190   AsmOperandInfoVector ConstraintOperands;
5191   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5192   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5193 
5194   // Do a prepass over the constraints, canonicalizing them, and building up the
5195   // ConstraintOperands list.
5196   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5197   unsigned ResNo = 0; // ResNo - The result number of the next output.
5198 
5199   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5200     ConstraintOperands.emplace_back(std::move(CI));
5201     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5202 
5203     // Update multiple alternative constraint count.
5204     if (OpInfo.multipleAlternatives.size() > maCount)
5205       maCount = OpInfo.multipleAlternatives.size();
5206 
5207     OpInfo.ConstraintVT = MVT::Other;
5208 
5209     // Compute the value type for each operand.
5210     switch (OpInfo.Type) {
5211     case InlineAsm::isOutput:
5212       // Indirect outputs just consume an argument.
5213       if (OpInfo.isIndirect) {
5214         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5215         break;
5216       }
5217 
5218       // The return value of the call is this value.  As such, there is no
5219       // corresponding argument.
5220       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5221       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5222         OpInfo.ConstraintVT =
5223             getSimpleValueType(DL, STy->getElementType(ResNo));
5224       } else {
5225         assert(ResNo == 0 && "Asm only has one result!");
5226         OpInfo.ConstraintVT =
5227             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5228       }
5229       ++ResNo;
5230       break;
5231     case InlineAsm::isInput:
5232       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5233       break;
5234     case InlineAsm::isClobber:
5235       // Nothing to do.
5236       break;
5237     }
5238 
5239     if (OpInfo.CallOperandVal) {
5240       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5241       if (OpInfo.isIndirect) {
5242         OpTy = Call.getParamElementType(ArgNo);
5243         assert(OpTy && "Indirect operand must have elementtype attribute");
5244       }
5245 
5246       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5247       if (StructType *STy = dyn_cast<StructType>(OpTy))
5248         if (STy->getNumElements() == 1)
5249           OpTy = STy->getElementType(0);
5250 
5251       // If OpTy is not a single value, it may be a struct/union that we
5252       // can tile with integers.
5253       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5254         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5255         switch (BitSize) {
5256         default: break;
5257         case 1:
5258         case 8:
5259         case 16:
5260         case 32:
5261         case 64:
5262         case 128:
5263           OpInfo.ConstraintVT =
5264               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5265           break;
5266         }
5267       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5268         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5269         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5270       } else {
5271         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5272       }
5273 
5274       ArgNo++;
5275     }
5276   }
5277 
5278   // If we have multiple alternative constraints, select the best alternative.
5279   if (!ConstraintOperands.empty()) {
5280     if (maCount) {
5281       unsigned bestMAIndex = 0;
5282       int bestWeight = -1;
5283       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5284       int weight = -1;
5285       unsigned maIndex;
5286       // Compute the sums of the weights for each alternative, keeping track
5287       // of the best (highest weight) one so far.
5288       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5289         int weightSum = 0;
5290         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5291              cIndex != eIndex; ++cIndex) {
5292           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5293           if (OpInfo.Type == InlineAsm::isClobber)
5294             continue;
5295 
5296           // If this is an output operand with a matching input operand,
5297           // look up the matching input. If their types mismatch, e.g. one
5298           // is an integer, the other is floating point, or their sizes are
5299           // different, flag it as an maCantMatch.
5300           if (OpInfo.hasMatchingInput()) {
5301             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5302             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5303               if ((OpInfo.ConstraintVT.isInteger() !=
5304                    Input.ConstraintVT.isInteger()) ||
5305                   (OpInfo.ConstraintVT.getSizeInBits() !=
5306                    Input.ConstraintVT.getSizeInBits())) {
5307                 weightSum = -1; // Can't match.
5308                 break;
5309               }
5310             }
5311           }
5312           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5313           if (weight == -1) {
5314             weightSum = -1;
5315             break;
5316           }
5317           weightSum += weight;
5318         }
5319         // Update best.
5320         if (weightSum > bestWeight) {
5321           bestWeight = weightSum;
5322           bestMAIndex = maIndex;
5323         }
5324       }
5325 
5326       // Now select chosen alternative in each constraint.
5327       for (AsmOperandInfo &cInfo : ConstraintOperands)
5328         if (cInfo.Type != InlineAsm::isClobber)
5329           cInfo.selectAlternative(bestMAIndex);
5330     }
5331   }
5332 
5333   // Check and hook up tied operands, choose constraint code to use.
5334   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5335        cIndex != eIndex; ++cIndex) {
5336     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5337 
5338     // If this is an output operand with a matching input operand, look up the
5339     // matching input. If their types mismatch, e.g. one is an integer, the
5340     // other is floating point, or their sizes are different, flag it as an
5341     // error.
5342     if (OpInfo.hasMatchingInput()) {
5343       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5344 
5345       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5346         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5347             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5348                                          OpInfo.ConstraintVT);
5349         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5350             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5351                                          Input.ConstraintVT);
5352         if ((OpInfo.ConstraintVT.isInteger() !=
5353              Input.ConstraintVT.isInteger()) ||
5354             (MatchRC.second != InputRC.second)) {
5355           report_fatal_error("Unsupported asm: input constraint"
5356                              " with a matching output constraint of"
5357                              " incompatible type!");
5358         }
5359       }
5360     }
5361   }
5362 
5363   return ConstraintOperands;
5364 }
5365 
5366 /// Return an integer indicating how general CT is.
5367 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5368   switch (CT) {
5369   case TargetLowering::C_Immediate:
5370   case TargetLowering::C_Other:
5371   case TargetLowering::C_Unknown:
5372     return 0;
5373   case TargetLowering::C_Register:
5374     return 1;
5375   case TargetLowering::C_RegisterClass:
5376     return 2;
5377   case TargetLowering::C_Memory:
5378   case TargetLowering::C_Address:
5379     return 3;
5380   }
5381   llvm_unreachable("Invalid constraint type");
5382 }
5383 
5384 /// Examine constraint type and operand type and determine a weight value.
5385 /// This object must already have been set up with the operand type
5386 /// and the current alternative constraint selected.
5387 TargetLowering::ConstraintWeight
5388   TargetLowering::getMultipleConstraintMatchWeight(
5389     AsmOperandInfo &info, int maIndex) const {
5390   InlineAsm::ConstraintCodeVector *rCodes;
5391   if (maIndex >= (int)info.multipleAlternatives.size())
5392     rCodes = &info.Codes;
5393   else
5394     rCodes = &info.multipleAlternatives[maIndex].Codes;
5395   ConstraintWeight BestWeight = CW_Invalid;
5396 
5397   // Loop over the options, keeping track of the most general one.
5398   for (const std::string &rCode : *rCodes) {
5399     ConstraintWeight weight =
5400         getSingleConstraintMatchWeight(info, rCode.c_str());
5401     if (weight > BestWeight)
5402       BestWeight = weight;
5403   }
5404 
5405   return BestWeight;
5406 }
5407 
5408 /// Examine constraint type and operand type and determine a weight value.
5409 /// This object must already have been set up with the operand type
5410 /// and the current alternative constraint selected.
5411 TargetLowering::ConstraintWeight
5412   TargetLowering::getSingleConstraintMatchWeight(
5413     AsmOperandInfo &info, const char *constraint) const {
5414   ConstraintWeight weight = CW_Invalid;
5415   Value *CallOperandVal = info.CallOperandVal;
5416     // If we don't have a value, we can't do a match,
5417     // but allow it at the lowest weight.
5418   if (!CallOperandVal)
5419     return CW_Default;
5420   // Look at the constraint type.
5421   switch (*constraint) {
5422     case 'i': // immediate integer.
5423     case 'n': // immediate integer with a known value.
5424       if (isa<ConstantInt>(CallOperandVal))
5425         weight = CW_Constant;
5426       break;
5427     case 's': // non-explicit intregal immediate.
5428       if (isa<GlobalValue>(CallOperandVal))
5429         weight = CW_Constant;
5430       break;
5431     case 'E': // immediate float if host format.
5432     case 'F': // immediate float.
5433       if (isa<ConstantFP>(CallOperandVal))
5434         weight = CW_Constant;
5435       break;
5436     case '<': // memory operand with autodecrement.
5437     case '>': // memory operand with autoincrement.
5438     case 'm': // memory operand.
5439     case 'o': // offsettable memory operand
5440     case 'V': // non-offsettable memory operand
5441       weight = CW_Memory;
5442       break;
5443     case 'r': // general register.
5444     case 'g': // general register, memory operand or immediate integer.
5445               // note: Clang converts "g" to "imr".
5446       if (CallOperandVal->getType()->isIntegerTy())
5447         weight = CW_Register;
5448       break;
5449     case 'X': // any operand.
5450   default:
5451     weight = CW_Default;
5452     break;
5453   }
5454   return weight;
5455 }
5456 
5457 /// If there are multiple different constraints that we could pick for this
5458 /// operand (e.g. "imr") try to pick the 'best' one.
5459 /// This is somewhat tricky: constraints fall into four classes:
5460 ///    Other         -> immediates and magic values
5461 ///    Register      -> one specific register
5462 ///    RegisterClass -> a group of regs
5463 ///    Memory        -> memory
5464 /// Ideally, we would pick the most specific constraint possible: if we have
5465 /// something that fits into a register, we would pick it.  The problem here
5466 /// is that if we have something that could either be in a register or in
5467 /// memory that use of the register could cause selection of *other*
5468 /// operands to fail: they might only succeed if we pick memory.  Because of
5469 /// this the heuristic we use is:
5470 ///
5471 ///  1) If there is an 'other' constraint, and if the operand is valid for
5472 ///     that constraint, use it.  This makes us take advantage of 'i'
5473 ///     constraints when available.
5474 ///  2) Otherwise, pick the most general constraint present.  This prefers
5475 ///     'm' over 'r', for example.
5476 ///
5477 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5478                              const TargetLowering &TLI,
5479                              SDValue Op, SelectionDAG *DAG) {
5480   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5481   unsigned BestIdx = 0;
5482   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5483   int BestGenerality = -1;
5484 
5485   // Loop over the options, keeping track of the most general one.
5486   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5487     TargetLowering::ConstraintType CType =
5488       TLI.getConstraintType(OpInfo.Codes[i]);
5489 
5490     // Indirect 'other' or 'immediate' constraints are not allowed.
5491     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5492                                CType == TargetLowering::C_Register ||
5493                                CType == TargetLowering::C_RegisterClass))
5494       continue;
5495 
5496     // If this is an 'other' or 'immediate' constraint, see if the operand is
5497     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5498     // the operand is an integer in the range [0..31] we want to use I (saving a
5499     // load of a register), otherwise we must use 'r'.
5500     if ((CType == TargetLowering::C_Other ||
5501          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5502       assert(OpInfo.Codes[i].size() == 1 &&
5503              "Unhandled multi-letter 'other' constraint");
5504       std::vector<SDValue> ResultOps;
5505       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5506                                        ResultOps, *DAG);
5507       if (!ResultOps.empty()) {
5508         BestType = CType;
5509         BestIdx = i;
5510         break;
5511       }
5512     }
5513 
5514     // Things with matching constraints can only be registers, per gcc
5515     // documentation.  This mainly affects "g" constraints.
5516     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5517       continue;
5518 
5519     // This constraint letter is more general than the previous one, use it.
5520     int Generality = getConstraintGenerality(CType);
5521     if (Generality > BestGenerality) {
5522       BestType = CType;
5523       BestIdx = i;
5524       BestGenerality = Generality;
5525     }
5526   }
5527 
5528   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5529   OpInfo.ConstraintType = BestType;
5530 }
5531 
5532 /// Determines the constraint code and constraint type to use for the specific
5533 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5534 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5535                                             SDValue Op,
5536                                             SelectionDAG *DAG) const {
5537   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5538 
5539   // Single-letter constraints ('r') are very common.
5540   if (OpInfo.Codes.size() == 1) {
5541     OpInfo.ConstraintCode = OpInfo.Codes[0];
5542     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5543   } else {
5544     ChooseConstraint(OpInfo, *this, Op, DAG);
5545   }
5546 
5547   // 'X' matches anything.
5548   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5549     // Constants are handled elsewhere.  For Functions, the type here is the
5550     // type of the result, which is not what we want to look at; leave them
5551     // alone.
5552     Value *v = OpInfo.CallOperandVal;
5553     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5554       return;
5555     }
5556 
5557     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5558       OpInfo.ConstraintCode = "i";
5559       return;
5560     }
5561 
5562     // Otherwise, try to resolve it to something we know about by looking at
5563     // the actual operand type.
5564     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5565       OpInfo.ConstraintCode = Repl;
5566       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5567     }
5568   }
5569 }
5570 
5571 /// Given an exact SDIV by a constant, create a multiplication
5572 /// with the multiplicative inverse of the constant.
5573 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5574                               const SDLoc &dl, SelectionDAG &DAG,
5575                               SmallVectorImpl<SDNode *> &Created) {
5576   SDValue Op0 = N->getOperand(0);
5577   SDValue Op1 = N->getOperand(1);
5578   EVT VT = N->getValueType(0);
5579   EVT SVT = VT.getScalarType();
5580   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5581   EVT ShSVT = ShVT.getScalarType();
5582 
5583   bool UseSRA = false;
5584   SmallVector<SDValue, 16> Shifts, Factors;
5585 
5586   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5587     if (C->isZero())
5588       return false;
5589     APInt Divisor = C->getAPIntValue();
5590     unsigned Shift = Divisor.countTrailingZeros();
5591     if (Shift) {
5592       Divisor.ashrInPlace(Shift);
5593       UseSRA = true;
5594     }
5595     // Calculate the multiplicative inverse, using Newton's method.
5596     APInt t;
5597     APInt Factor = Divisor;
5598     while ((t = Divisor * Factor) != 1)
5599       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5600     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5601     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5602     return true;
5603   };
5604 
5605   // Collect all magic values from the build vector.
5606   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5607     return SDValue();
5608 
5609   SDValue Shift, Factor;
5610   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5611     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5612     Factor = DAG.getBuildVector(VT, dl, Factors);
5613   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5614     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5615            "Expected matchUnaryPredicate to return one element for scalable "
5616            "vectors");
5617     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5618     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5619   } else {
5620     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5621     Shift = Shifts[0];
5622     Factor = Factors[0];
5623   }
5624 
5625   SDValue Res = Op0;
5626 
5627   // Shift the value upfront if it is even, so the LSB is one.
5628   if (UseSRA) {
5629     // TODO: For UDIV use SRL instead of SRA.
5630     SDNodeFlags Flags;
5631     Flags.setExact(true);
5632     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5633     Created.push_back(Res.getNode());
5634   }
5635 
5636   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5637 }
5638 
5639 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5640                               SelectionDAG &DAG,
5641                               SmallVectorImpl<SDNode *> &Created) const {
5642   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5643   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5644   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5645     return SDValue(N, 0); // Lower SDIV as SDIV
5646   return SDValue();
5647 }
5648 
5649 SDValue
5650 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5651                               SelectionDAG &DAG,
5652                               SmallVectorImpl<SDNode *> &Created) const {
5653   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5655   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5656     return SDValue(N, 0); // Lower SREM as SREM
5657   return SDValue();
5658 }
5659 
5660 /// Given an ISD::SDIV node expressing a divide by constant,
5661 /// return a DAG expression to select that will generate the same value by
5662 /// multiplying by a magic number.
5663 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5664 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5665                                   bool IsAfterLegalization,
5666                                   SmallVectorImpl<SDNode *> &Created) const {
5667   SDLoc dl(N);
5668   EVT VT = N->getValueType(0);
5669   EVT SVT = VT.getScalarType();
5670   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5671   EVT ShSVT = ShVT.getScalarType();
5672   unsigned EltBits = VT.getScalarSizeInBits();
5673   EVT MulVT;
5674 
5675   // Check to see if we can do this.
5676   // FIXME: We should be more aggressive here.
5677   if (!isTypeLegal(VT)) {
5678     // Limit this to simple scalars for now.
5679     if (VT.isVector() || !VT.isSimple())
5680       return SDValue();
5681 
5682     // If this type will be promoted to a large enough type with a legal
5683     // multiply operation, we can go ahead and do this transform.
5684     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5685       return SDValue();
5686 
5687     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5688     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5689         !isOperationLegal(ISD::MUL, MulVT))
5690       return SDValue();
5691   }
5692 
5693   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5694   if (N->getFlags().hasExact())
5695     return BuildExactSDIV(*this, N, dl, DAG, Created);
5696 
5697   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5698 
5699   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5700     if (C->isZero())
5701       return false;
5702 
5703     const APInt &Divisor = C->getAPIntValue();
5704     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5705     int NumeratorFactor = 0;
5706     int ShiftMask = -1;
5707 
5708     if (Divisor.isOne() || Divisor.isAllOnes()) {
5709       // If d is +1/-1, we just multiply the numerator by +1/-1.
5710       NumeratorFactor = Divisor.getSExtValue();
5711       magics.Magic = 0;
5712       magics.ShiftAmount = 0;
5713       ShiftMask = 0;
5714     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5715       // If d > 0 and m < 0, add the numerator.
5716       NumeratorFactor = 1;
5717     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5718       // If d < 0 and m > 0, subtract the numerator.
5719       NumeratorFactor = -1;
5720     }
5721 
5722     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5723     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5724     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5725     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5726     return true;
5727   };
5728 
5729   SDValue N0 = N->getOperand(0);
5730   SDValue N1 = N->getOperand(1);
5731 
5732   // Collect the shifts / magic values from each element.
5733   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5734     return SDValue();
5735 
5736   SDValue MagicFactor, Factor, Shift, ShiftMask;
5737   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5738     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5739     Factor = DAG.getBuildVector(VT, dl, Factors);
5740     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5741     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5742   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5743     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5744            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5745            "Expected matchUnaryPredicate to return one element for scalable "
5746            "vectors");
5747     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5748     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5749     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5750     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5751   } else {
5752     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5753     MagicFactor = MagicFactors[0];
5754     Factor = Factors[0];
5755     Shift = Shifts[0];
5756     ShiftMask = ShiftMasks[0];
5757   }
5758 
5759   // Multiply the numerator (operand 0) by the magic value.
5760   // FIXME: We should support doing a MUL in a wider type.
5761   auto GetMULHS = [&](SDValue X, SDValue Y) {
5762     // If the type isn't legal, use a wider mul of the the type calculated
5763     // earlier.
5764     if (!isTypeLegal(VT)) {
5765       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5766       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5767       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5768       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5769                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5770       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5771     }
5772 
5773     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5774       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5775     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5776       SDValue LoHi =
5777           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5778       return SDValue(LoHi.getNode(), 1);
5779     }
5780     return SDValue();
5781   };
5782 
5783   SDValue Q = GetMULHS(N0, MagicFactor);
5784   if (!Q)
5785     return SDValue();
5786 
5787   Created.push_back(Q.getNode());
5788 
5789   // (Optionally) Add/subtract the numerator using Factor.
5790   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5791   Created.push_back(Factor.getNode());
5792   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5793   Created.push_back(Q.getNode());
5794 
5795   // Shift right algebraic by shift value.
5796   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5797   Created.push_back(Q.getNode());
5798 
5799   // Extract the sign bit, mask it and add it to the quotient.
5800   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5801   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5802   Created.push_back(T.getNode());
5803   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5804   Created.push_back(T.getNode());
5805   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5806 }
5807 
5808 /// Given an ISD::UDIV node expressing a divide by constant,
5809 /// return a DAG expression to select that will generate the same value by
5810 /// multiplying by a magic number.
5811 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5812 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5813                                   bool IsAfterLegalization,
5814                                   SmallVectorImpl<SDNode *> &Created) const {
5815   SDLoc dl(N);
5816   EVT VT = N->getValueType(0);
5817   EVT SVT = VT.getScalarType();
5818   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5819   EVT ShSVT = ShVT.getScalarType();
5820   unsigned EltBits = VT.getScalarSizeInBits();
5821   EVT MulVT;
5822 
5823   // Check to see if we can do this.
5824   // FIXME: We should be more aggressive here.
5825   if (!isTypeLegal(VT)) {
5826     // Limit this to simple scalars for now.
5827     if (VT.isVector() || !VT.isSimple())
5828       return SDValue();
5829 
5830     // If this type will be promoted to a large enough type with a legal
5831     // multiply operation, we can go ahead and do this transform.
5832     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5833       return SDValue();
5834 
5835     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5836     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5837         !isOperationLegal(ISD::MUL, MulVT))
5838       return SDValue();
5839   }
5840 
5841   bool UseNPQ = false;
5842   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5843 
5844   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5845     if (C->isZero())
5846       return false;
5847     // FIXME: We should use a narrower constant when the upper
5848     // bits are known to be zero.
5849     const APInt& Divisor = C->getAPIntValue();
5850     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5851     unsigned PreShift = 0, PostShift = 0;
5852 
5853     // If the divisor is even, we can avoid using the expensive fixup by
5854     // shifting the divided value upfront.
5855     if (magics.IsAdd != 0 && !Divisor[0]) {
5856       PreShift = Divisor.countTrailingZeros();
5857       // Get magic number for the shifted divisor.
5858       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5859       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5860     }
5861 
5862     APInt Magic = magics.Magic;
5863 
5864     unsigned SelNPQ;
5865     if (magics.IsAdd == 0 || Divisor.isOne()) {
5866       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5867              "We shouldn't generate an undefined shift!");
5868       PostShift = magics.ShiftAmount;
5869       SelNPQ = false;
5870     } else {
5871       PostShift = magics.ShiftAmount - 1;
5872       SelNPQ = true;
5873     }
5874 
5875     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5876     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5877     NPQFactors.push_back(
5878         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5879                                : APInt::getZero(EltBits),
5880                         dl, SVT));
5881     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5882     UseNPQ |= SelNPQ;
5883     return true;
5884   };
5885 
5886   SDValue N0 = N->getOperand(0);
5887   SDValue N1 = N->getOperand(1);
5888 
5889   // Collect the shifts/magic values from each element.
5890   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5891     return SDValue();
5892 
5893   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5894   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5895     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5896     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5897     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5898     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5899   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5900     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5901            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5902            "Expected matchUnaryPredicate to return one for scalable vectors");
5903     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5904     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5905     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5906     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5907   } else {
5908     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5909     PreShift = PreShifts[0];
5910     MagicFactor = MagicFactors[0];
5911     PostShift = PostShifts[0];
5912   }
5913 
5914   SDValue Q = N0;
5915   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5916   Created.push_back(Q.getNode());
5917 
5918   // FIXME: We should support doing a MUL in a wider type.
5919   auto GetMULHU = [&](SDValue X, SDValue Y) {
5920     // If the type isn't legal, use a wider mul of the the type calculated
5921     // earlier.
5922     if (!isTypeLegal(VT)) {
5923       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5924       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5925       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5926       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5927                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5928       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5929     }
5930 
5931     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5932       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5933     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5934       SDValue LoHi =
5935           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5936       return SDValue(LoHi.getNode(), 1);
5937     }
5938     return SDValue(); // No mulhu or equivalent
5939   };
5940 
5941   // Multiply the numerator (operand 0) by the magic value.
5942   Q = GetMULHU(Q, MagicFactor);
5943   if (!Q)
5944     return SDValue();
5945 
5946   Created.push_back(Q.getNode());
5947 
5948   if (UseNPQ) {
5949     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5950     Created.push_back(NPQ.getNode());
5951 
5952     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5953     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5954     if (VT.isVector())
5955       NPQ = GetMULHU(NPQ, NPQFactor);
5956     else
5957       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5958 
5959     Created.push_back(NPQ.getNode());
5960 
5961     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5962     Created.push_back(Q.getNode());
5963   }
5964 
5965   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5966   Created.push_back(Q.getNode());
5967 
5968   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5969 
5970   SDValue One = DAG.getConstant(1, dl, VT);
5971   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5972   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5973 }
5974 
5975 /// If all values in Values that *don't* match the predicate are same 'splat'
5976 /// value, then replace all values with that splat value.
5977 /// Else, if AlternativeReplacement was provided, then replace all values that
5978 /// do match predicate with AlternativeReplacement value.
5979 static void
5980 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5981                           std::function<bool(SDValue)> Predicate,
5982                           SDValue AlternativeReplacement = SDValue()) {
5983   SDValue Replacement;
5984   // Is there a value for which the Predicate does *NOT* match? What is it?
5985   auto SplatValue = llvm::find_if_not(Values, Predicate);
5986   if (SplatValue != Values.end()) {
5987     // Does Values consist only of SplatValue's and values matching Predicate?
5988     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5989           return Value == *SplatValue || Predicate(Value);
5990         })) // Then we shall replace values matching predicate with SplatValue.
5991       Replacement = *SplatValue;
5992   }
5993   if (!Replacement) {
5994     // Oops, we did not find the "baseline" splat value.
5995     if (!AlternativeReplacement)
5996       return; // Nothing to do.
5997     // Let's replace with provided value then.
5998     Replacement = AlternativeReplacement;
5999   }
6000   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6001 }
6002 
6003 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6004 /// where the divisor is constant and the comparison target is zero,
6005 /// return a DAG expression that will generate the same comparison result
6006 /// using only multiplications, additions and shifts/rotations.
6007 /// Ref: "Hacker's Delight" 10-17.
6008 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6009                                         SDValue CompTargetNode,
6010                                         ISD::CondCode Cond,
6011                                         DAGCombinerInfo &DCI,
6012                                         const SDLoc &DL) const {
6013   SmallVector<SDNode *, 5> Built;
6014   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6015                                          DCI, DL, Built)) {
6016     for (SDNode *N : Built)
6017       DCI.AddToWorklist(N);
6018     return Folded;
6019   }
6020 
6021   return SDValue();
6022 }
6023 
6024 SDValue
6025 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6026                                   SDValue CompTargetNode, ISD::CondCode Cond,
6027                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6028                                   SmallVectorImpl<SDNode *> &Created) const {
6029   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6030   // - D must be constant, with D = D0 * 2^K where D0 is odd
6031   // - P is the multiplicative inverse of D0 modulo 2^W
6032   // - Q = floor(((2^W) - 1) / D)
6033   // where W is the width of the common type of N and D.
6034   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6035          "Only applicable for (in)equality comparisons.");
6036 
6037   SelectionDAG &DAG = DCI.DAG;
6038 
6039   EVT VT = REMNode.getValueType();
6040   EVT SVT = VT.getScalarType();
6041   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6042   EVT ShSVT = ShVT.getScalarType();
6043 
6044   // If MUL is unavailable, we cannot proceed in any case.
6045   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6046     return SDValue();
6047 
6048   bool ComparingWithAllZeros = true;
6049   bool AllComparisonsWithNonZerosAreTautological = true;
6050   bool HadTautologicalLanes = false;
6051   bool AllLanesAreTautological = true;
6052   bool HadEvenDivisor = false;
6053   bool AllDivisorsArePowerOfTwo = true;
6054   bool HadTautologicalInvertedLanes = false;
6055   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6056 
6057   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6058     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6059     if (CDiv->isZero())
6060       return false;
6061 
6062     const APInt &D = CDiv->getAPIntValue();
6063     const APInt &Cmp = CCmp->getAPIntValue();
6064 
6065     ComparingWithAllZeros &= Cmp.isZero();
6066 
6067     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6068     // if C2 is not less than C1, the comparison is always false.
6069     // But we will only be able to produce the comparison that will give the
6070     // opposive tautological answer. So this lane would need to be fixed up.
6071     bool TautologicalInvertedLane = D.ule(Cmp);
6072     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6073 
6074     // If all lanes are tautological (either all divisors are ones, or divisor
6075     // is not greater than the constant we are comparing with),
6076     // we will prefer to avoid the fold.
6077     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6078     HadTautologicalLanes |= TautologicalLane;
6079     AllLanesAreTautological &= TautologicalLane;
6080 
6081     // If we are comparing with non-zero, we need'll need  to subtract said
6082     // comparison value from the LHS. But there is no point in doing that if
6083     // every lane where we are comparing with non-zero is tautological..
6084     if (!Cmp.isZero())
6085       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6086 
6087     // Decompose D into D0 * 2^K
6088     unsigned K = D.countTrailingZeros();
6089     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6090     APInt D0 = D.lshr(K);
6091 
6092     // D is even if it has trailing zeros.
6093     HadEvenDivisor |= (K != 0);
6094     // D is a power-of-two if D0 is one.
6095     // If all divisors are power-of-two, we will prefer to avoid the fold.
6096     AllDivisorsArePowerOfTwo &= D0.isOne();
6097 
6098     // P = inv(D0, 2^W)
6099     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6100     unsigned W = D.getBitWidth();
6101     APInt P = D0.zext(W + 1)
6102                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6103                   .trunc(W);
6104     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6105     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6106 
6107     // Q = floor((2^W - 1) u/ D)
6108     // R = ((2^W - 1) u% D)
6109     APInt Q, R;
6110     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6111 
6112     // If we are comparing with zero, then that comparison constant is okay,
6113     // else it may need to be one less than that.
6114     if (Cmp.ugt(R))
6115       Q -= 1;
6116 
6117     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6118            "We are expecting that K is always less than all-ones for ShSVT");
6119 
6120     // If the lane is tautological the result can be constant-folded.
6121     if (TautologicalLane) {
6122       // Set P and K amount to a bogus values so we can try to splat them.
6123       P = 0;
6124       K = -1;
6125       // And ensure that comparison constant is tautological,
6126       // it will always compare true/false.
6127       Q = -1;
6128     }
6129 
6130     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6131     KAmts.push_back(
6132         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6133     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6134     return true;
6135   };
6136 
6137   SDValue N = REMNode.getOperand(0);
6138   SDValue D = REMNode.getOperand(1);
6139 
6140   // Collect the values from each element.
6141   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6142     return SDValue();
6143 
6144   // If all lanes are tautological, the result can be constant-folded.
6145   if (AllLanesAreTautological)
6146     return SDValue();
6147 
6148   // If this is a urem by a powers-of-two, avoid the fold since it can be
6149   // best implemented as a bit test.
6150   if (AllDivisorsArePowerOfTwo)
6151     return SDValue();
6152 
6153   SDValue PVal, KVal, QVal;
6154   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6155     if (HadTautologicalLanes) {
6156       // Try to turn PAmts into a splat, since we don't care about the values
6157       // that are currently '0'. If we can't, just keep '0'`s.
6158       turnVectorIntoSplatVector(PAmts, isNullConstant);
6159       // Try to turn KAmts into a splat, since we don't care about the values
6160       // that are currently '-1'. If we can't, change them to '0'`s.
6161       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6162                                 DAG.getConstant(0, DL, ShSVT));
6163     }
6164 
6165     PVal = DAG.getBuildVector(VT, DL, PAmts);
6166     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6167     QVal = DAG.getBuildVector(VT, DL, QAmts);
6168   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6169     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6170            "Expected matchBinaryPredicate to return one element for "
6171            "SPLAT_VECTORs");
6172     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6173     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6174     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6175   } else {
6176     PVal = PAmts[0];
6177     KVal = KAmts[0];
6178     QVal = QAmts[0];
6179   }
6180 
6181   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6182     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6183       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6184     assert(CompTargetNode.getValueType() == N.getValueType() &&
6185            "Expecting that the types on LHS and RHS of comparisons match.");
6186     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6187   }
6188 
6189   // (mul N, P)
6190   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6191   Created.push_back(Op0.getNode());
6192 
6193   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6194   // divisors as a performance improvement, since rotating by 0 is a no-op.
6195   if (HadEvenDivisor) {
6196     // We need ROTR to do this.
6197     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6198       return SDValue();
6199     // UREM: (rotr (mul N, P), K)
6200     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6201     Created.push_back(Op0.getNode());
6202   }
6203 
6204   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6205   SDValue NewCC =
6206       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6207                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6208   if (!HadTautologicalInvertedLanes)
6209     return NewCC;
6210 
6211   // If any lanes previously compared always-false, the NewCC will give
6212   // always-true result for them, so we need to fixup those lanes.
6213   // Or the other way around for inequality predicate.
6214   assert(VT.isVector() && "Can/should only get here for vectors.");
6215   Created.push_back(NewCC.getNode());
6216 
6217   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6218   // if C2 is not less than C1, the comparison is always false.
6219   // But we have produced the comparison that will give the
6220   // opposive tautological answer. So these lanes would need to be fixed up.
6221   SDValue TautologicalInvertedChannels =
6222       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6223   Created.push_back(TautologicalInvertedChannels.getNode());
6224 
6225   // NOTE: we avoid letting illegal types through even if we're before legalize
6226   // ops – legalization has a hard time producing good code for this.
6227   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6228     // If we have a vector select, let's replace the comparison results in the
6229     // affected lanes with the correct tautological result.
6230     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6231                                               DL, SETCCVT, SETCCVT);
6232     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6233                        Replacement, NewCC);
6234   }
6235 
6236   // Else, we can just invert the comparison result in the appropriate lanes.
6237   //
6238   // NOTE: see the note above VSELECT above.
6239   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6240     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6241                        TautologicalInvertedChannels);
6242 
6243   return SDValue(); // Don't know how to lower.
6244 }
6245 
6246 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6247 /// where the divisor is constant and the comparison target is zero,
6248 /// return a DAG expression that will generate the same comparison result
6249 /// using only multiplications, additions and shifts/rotations.
6250 /// Ref: "Hacker's Delight" 10-17.
6251 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6252                                         SDValue CompTargetNode,
6253                                         ISD::CondCode Cond,
6254                                         DAGCombinerInfo &DCI,
6255                                         const SDLoc &DL) const {
6256   SmallVector<SDNode *, 7> Built;
6257   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6258                                          DCI, DL, Built)) {
6259     assert(Built.size() <= 7 && "Max size prediction failed.");
6260     for (SDNode *N : Built)
6261       DCI.AddToWorklist(N);
6262     return Folded;
6263   }
6264 
6265   return SDValue();
6266 }
6267 
6268 SDValue
6269 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6270                                   SDValue CompTargetNode, ISD::CondCode Cond,
6271                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6272                                   SmallVectorImpl<SDNode *> &Created) const {
6273   // Fold:
6274   //   (seteq/ne (srem N, D), 0)
6275   // To:
6276   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6277   //
6278   // - D must be constant, with D = D0 * 2^K where D0 is odd
6279   // - P is the multiplicative inverse of D0 modulo 2^W
6280   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6281   // - Q = floor((2 * A) / (2^K))
6282   // where W is the width of the common type of N and D.
6283   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6284          "Only applicable for (in)equality comparisons.");
6285 
6286   SelectionDAG &DAG = DCI.DAG;
6287 
6288   EVT VT = REMNode.getValueType();
6289   EVT SVT = VT.getScalarType();
6290   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6291   EVT ShSVT = ShVT.getScalarType();
6292 
6293   // If we are after ops legalization, and MUL is unavailable, we can not
6294   // proceed.
6295   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6296     return SDValue();
6297 
6298   // TODO: Could support comparing with non-zero too.
6299   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6300   if (!CompTarget || !CompTarget->isZero())
6301     return SDValue();
6302 
6303   bool HadIntMinDivisor = false;
6304   bool HadOneDivisor = false;
6305   bool AllDivisorsAreOnes = true;
6306   bool HadEvenDivisor = false;
6307   bool NeedToApplyOffset = false;
6308   bool AllDivisorsArePowerOfTwo = true;
6309   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6310 
6311   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6312     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6313     if (C->isZero())
6314       return false;
6315 
6316     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6317 
6318     // WARNING: this fold is only valid for positive divisors!
6319     APInt D = C->getAPIntValue();
6320     if (D.isNegative())
6321       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6322 
6323     HadIntMinDivisor |= D.isMinSignedValue();
6324 
6325     // If all divisors are ones, we will prefer to avoid the fold.
6326     HadOneDivisor |= D.isOne();
6327     AllDivisorsAreOnes &= D.isOne();
6328 
6329     // Decompose D into D0 * 2^K
6330     unsigned K = D.countTrailingZeros();
6331     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6332     APInt D0 = D.lshr(K);
6333 
6334     if (!D.isMinSignedValue()) {
6335       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6336       // we don't care about this lane in this fold, we'll special-handle it.
6337       HadEvenDivisor |= (K != 0);
6338     }
6339 
6340     // D is a power-of-two if D0 is one. This includes INT_MIN.
6341     // If all divisors are power-of-two, we will prefer to avoid the fold.
6342     AllDivisorsArePowerOfTwo &= D0.isOne();
6343 
6344     // P = inv(D0, 2^W)
6345     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6346     unsigned W = D.getBitWidth();
6347     APInt P = D0.zext(W + 1)
6348                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6349                   .trunc(W);
6350     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6351     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6352 
6353     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6354     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6355     A.clearLowBits(K);
6356 
6357     if (!D.isMinSignedValue()) {
6358       // If divisor INT_MIN, then we don't care about this lane in this fold,
6359       // we'll special-handle it.
6360       NeedToApplyOffset |= A != 0;
6361     }
6362 
6363     // Q = floor((2 * A) / (2^K))
6364     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6365 
6366     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6367            "We are expecting that A is always less than all-ones for SVT");
6368     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6369            "We are expecting that K is always less than all-ones for ShSVT");
6370 
6371     // If the divisor is 1 the result can be constant-folded. Likewise, we
6372     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6373     if (D.isOne()) {
6374       // Set P, A and K to a bogus values so we can try to splat them.
6375       P = 0;
6376       A = -1;
6377       K = -1;
6378 
6379       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6380       Q = -1;
6381     }
6382 
6383     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6384     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6385     KAmts.push_back(
6386         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6387     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6388     return true;
6389   };
6390 
6391   SDValue N = REMNode.getOperand(0);
6392   SDValue D = REMNode.getOperand(1);
6393 
6394   // Collect the values from each element.
6395   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6396     return SDValue();
6397 
6398   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6399   if (AllDivisorsAreOnes)
6400     return SDValue();
6401 
6402   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6403   // since it can be best implemented as a bit test.
6404   if (AllDivisorsArePowerOfTwo)
6405     return SDValue();
6406 
6407   SDValue PVal, AVal, KVal, QVal;
6408   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6409     if (HadOneDivisor) {
6410       // Try to turn PAmts into a splat, since we don't care about the values
6411       // that are currently '0'. If we can't, just keep '0'`s.
6412       turnVectorIntoSplatVector(PAmts, isNullConstant);
6413       // Try to turn AAmts into a splat, since we don't care about the
6414       // values that are currently '-1'. If we can't, change them to '0'`s.
6415       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6416                                 DAG.getConstant(0, DL, SVT));
6417       // Try to turn KAmts into a splat, since we don't care about the values
6418       // that are currently '-1'. If we can't, change them to '0'`s.
6419       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6420                                 DAG.getConstant(0, DL, ShSVT));
6421     }
6422 
6423     PVal = DAG.getBuildVector(VT, DL, PAmts);
6424     AVal = DAG.getBuildVector(VT, DL, AAmts);
6425     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6426     QVal = DAG.getBuildVector(VT, DL, QAmts);
6427   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6428     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6429            QAmts.size() == 1 &&
6430            "Expected matchUnaryPredicate to return one element for scalable "
6431            "vectors");
6432     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6433     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6434     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6435     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6436   } else {
6437     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6438     PVal = PAmts[0];
6439     AVal = AAmts[0];
6440     KVal = KAmts[0];
6441     QVal = QAmts[0];
6442   }
6443 
6444   // (mul N, P)
6445   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6446   Created.push_back(Op0.getNode());
6447 
6448   if (NeedToApplyOffset) {
6449     // We need ADD to do this.
6450     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6451       return SDValue();
6452 
6453     // (add (mul N, P), A)
6454     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6455     Created.push_back(Op0.getNode());
6456   }
6457 
6458   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6459   // divisors as a performance improvement, since rotating by 0 is a no-op.
6460   if (HadEvenDivisor) {
6461     // We need ROTR to do this.
6462     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6463       return SDValue();
6464     // SREM: (rotr (add (mul N, P), A), K)
6465     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6466     Created.push_back(Op0.getNode());
6467   }
6468 
6469   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6470   SDValue Fold =
6471       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6472                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6473 
6474   // If we didn't have lanes with INT_MIN divisor, then we're done.
6475   if (!HadIntMinDivisor)
6476     return Fold;
6477 
6478   // That fold is only valid for positive divisors. Which effectively means,
6479   // it is invalid for INT_MIN divisors. So if we have such a lane,
6480   // we must fix-up results for said lanes.
6481   assert(VT.isVector() && "Can/should only get here for vectors.");
6482 
6483   // NOTE: we avoid letting illegal types through even if we're before legalize
6484   // ops – legalization has a hard time producing good code for the code that
6485   // follows.
6486   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6487       !isOperationLegalOrCustom(ISD::AND, VT) ||
6488       !isOperationLegalOrCustom(Cond, VT) ||
6489       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6490     return SDValue();
6491 
6492   Created.push_back(Fold.getNode());
6493 
6494   SDValue IntMin = DAG.getConstant(
6495       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6496   SDValue IntMax = DAG.getConstant(
6497       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6498   SDValue Zero =
6499       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6500 
6501   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6502   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6503   Created.push_back(DivisorIsIntMin.getNode());
6504 
6505   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6506   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6507   Created.push_back(Masked.getNode());
6508   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6509   Created.push_back(MaskedIsZero.getNode());
6510 
6511   // To produce final result we need to blend 2 vectors: 'SetCC' and
6512   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6513   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6514   // constant-folded, select can get lowered to a shuffle with constant mask.
6515   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6516                                 MaskedIsZero, Fold);
6517 
6518   return Blended;
6519 }
6520 
6521 bool TargetLowering::
6522 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6523   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6524     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6525                                 "be a constant integer");
6526     return true;
6527   }
6528 
6529   return false;
6530 }
6531 
6532 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6533                                          const DenormalMode &Mode) const {
6534   SDLoc DL(Op);
6535   EVT VT = Op.getValueType();
6536   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6537   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6538   // Testing it with denormal inputs to avoid wrong estimate.
6539   if (Mode.Input == DenormalMode::IEEE) {
6540     // This is specifically a check for the handling of denormal inputs,
6541     // not the result.
6542 
6543     // Test = fabs(X) < SmallestNormal
6544     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6545     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6546     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6547     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6548     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6549   }
6550   // Test = X == 0.0
6551   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6552 }
6553 
6554 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6555                                              bool LegalOps, bool OptForSize,
6556                                              NegatibleCost &Cost,
6557                                              unsigned Depth) const {
6558   // fneg is removable even if it has multiple uses.
6559   if (Op.getOpcode() == ISD::FNEG) {
6560     Cost = NegatibleCost::Cheaper;
6561     return Op.getOperand(0);
6562   }
6563 
6564   // Don't recurse exponentially.
6565   if (Depth > SelectionDAG::MaxRecursionDepth)
6566     return SDValue();
6567 
6568   // Pre-increment recursion depth for use in recursive calls.
6569   ++Depth;
6570   const SDNodeFlags Flags = Op->getFlags();
6571   const TargetOptions &Options = DAG.getTarget().Options;
6572   EVT VT = Op.getValueType();
6573   unsigned Opcode = Op.getOpcode();
6574 
6575   // Don't allow anything with multiple uses unless we know it is free.
6576   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6577     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6578                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6579     if (!IsFreeExtend)
6580       return SDValue();
6581   }
6582 
6583   auto RemoveDeadNode = [&](SDValue N) {
6584     if (N && N.getNode()->use_empty())
6585       DAG.RemoveDeadNode(N.getNode());
6586   };
6587 
6588   SDLoc DL(Op);
6589 
6590   // Because getNegatedExpression can delete nodes we need a handle to keep
6591   // temporary nodes alive in case the recursion manages to create an identical
6592   // node.
6593   std::list<HandleSDNode> Handles;
6594 
6595   switch (Opcode) {
6596   case ISD::ConstantFP: {
6597     // Don't invert constant FP values after legalization unless the target says
6598     // the negated constant is legal.
6599     bool IsOpLegal =
6600         isOperationLegal(ISD::ConstantFP, VT) ||
6601         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6602                      OptForSize);
6603 
6604     if (LegalOps && !IsOpLegal)
6605       break;
6606 
6607     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6608     V.changeSign();
6609     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6610 
6611     // If we already have the use of the negated floating constant, it is free
6612     // to negate it even it has multiple uses.
6613     if (!Op.hasOneUse() && CFP.use_empty())
6614       break;
6615     Cost = NegatibleCost::Neutral;
6616     return CFP;
6617   }
6618   case ISD::BUILD_VECTOR: {
6619     // Only permit BUILD_VECTOR of constants.
6620     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6621           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6622         }))
6623       break;
6624 
6625     bool IsOpLegal =
6626         (isOperationLegal(ISD::ConstantFP, VT) &&
6627          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6628         llvm::all_of(Op->op_values(), [&](SDValue N) {
6629           return N.isUndef() ||
6630                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6631                               OptForSize);
6632         });
6633 
6634     if (LegalOps && !IsOpLegal)
6635       break;
6636 
6637     SmallVector<SDValue, 4> Ops;
6638     for (SDValue C : Op->op_values()) {
6639       if (C.isUndef()) {
6640         Ops.push_back(C);
6641         continue;
6642       }
6643       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6644       V.changeSign();
6645       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6646     }
6647     Cost = NegatibleCost::Neutral;
6648     return DAG.getBuildVector(VT, DL, Ops);
6649   }
6650   case ISD::FADD: {
6651     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6652       break;
6653 
6654     // After operation legalization, it might not be legal to create new FSUBs.
6655     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6656       break;
6657     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6658 
6659     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6660     NegatibleCost CostX = NegatibleCost::Expensive;
6661     SDValue NegX =
6662         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6663     // Prevent this node from being deleted by the next call.
6664     if (NegX)
6665       Handles.emplace_back(NegX);
6666 
6667     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6668     NegatibleCost CostY = NegatibleCost::Expensive;
6669     SDValue NegY =
6670         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6671 
6672     // We're done with the handles.
6673     Handles.clear();
6674 
6675     // Negate the X if its cost is less or equal than Y.
6676     if (NegX && (CostX <= CostY)) {
6677       Cost = CostX;
6678       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6679       if (NegY != N)
6680         RemoveDeadNode(NegY);
6681       return N;
6682     }
6683 
6684     // Negate the Y if it is not expensive.
6685     if (NegY) {
6686       Cost = CostY;
6687       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6688       if (NegX != N)
6689         RemoveDeadNode(NegX);
6690       return N;
6691     }
6692     break;
6693   }
6694   case ISD::FSUB: {
6695     // We can't turn -(A-B) into B-A when we honor signed zeros.
6696     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6697       break;
6698 
6699     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6700     // fold (fneg (fsub 0, Y)) -> Y
6701     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6702       if (C->isZero()) {
6703         Cost = NegatibleCost::Cheaper;
6704         return Y;
6705       }
6706 
6707     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6708     Cost = NegatibleCost::Neutral;
6709     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6710   }
6711   case ISD::FMUL:
6712   case ISD::FDIV: {
6713     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6714 
6715     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6716     NegatibleCost CostX = NegatibleCost::Expensive;
6717     SDValue NegX =
6718         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6719     // Prevent this node from being deleted by the next call.
6720     if (NegX)
6721       Handles.emplace_back(NegX);
6722 
6723     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6724     NegatibleCost CostY = NegatibleCost::Expensive;
6725     SDValue NegY =
6726         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6727 
6728     // We're done with the handles.
6729     Handles.clear();
6730 
6731     // Negate the X if its cost is less or equal than Y.
6732     if (NegX && (CostX <= CostY)) {
6733       Cost = CostX;
6734       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6735       if (NegY != N)
6736         RemoveDeadNode(NegY);
6737       return N;
6738     }
6739 
6740     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6741     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6742       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6743         break;
6744 
6745     // Negate the Y if it is not expensive.
6746     if (NegY) {
6747       Cost = CostY;
6748       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6749       if (NegX != N)
6750         RemoveDeadNode(NegX);
6751       return N;
6752     }
6753     break;
6754   }
6755   case ISD::FMA:
6756   case ISD::FMAD: {
6757     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6758       break;
6759 
6760     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6761     NegatibleCost CostZ = NegatibleCost::Expensive;
6762     SDValue NegZ =
6763         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6764     // Give up if fail to negate the Z.
6765     if (!NegZ)
6766       break;
6767 
6768     // Prevent this node from being deleted by the next two calls.
6769     Handles.emplace_back(NegZ);
6770 
6771     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6772     NegatibleCost CostX = NegatibleCost::Expensive;
6773     SDValue NegX =
6774         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6775     // Prevent this node from being deleted by the next call.
6776     if (NegX)
6777       Handles.emplace_back(NegX);
6778 
6779     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6780     NegatibleCost CostY = NegatibleCost::Expensive;
6781     SDValue NegY =
6782         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6783 
6784     // We're done with the handles.
6785     Handles.clear();
6786 
6787     // Negate the X if its cost is less or equal than Y.
6788     if (NegX && (CostX <= CostY)) {
6789       Cost = std::min(CostX, CostZ);
6790       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6791       if (NegY != N)
6792         RemoveDeadNode(NegY);
6793       return N;
6794     }
6795 
6796     // Negate the Y if it is not expensive.
6797     if (NegY) {
6798       Cost = std::min(CostY, CostZ);
6799       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6800       if (NegX != N)
6801         RemoveDeadNode(NegX);
6802       return N;
6803     }
6804     break;
6805   }
6806 
6807   case ISD::FP_EXTEND:
6808   case ISD::FSIN:
6809     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6810                                             OptForSize, Cost, Depth))
6811       return DAG.getNode(Opcode, DL, VT, NegV);
6812     break;
6813   case ISD::FP_ROUND:
6814     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6815                                             OptForSize, Cost, Depth))
6816       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6817     break;
6818   }
6819 
6820   return SDValue();
6821 }
6822 
6823 //===----------------------------------------------------------------------===//
6824 // Legalization Utilities
6825 //===----------------------------------------------------------------------===//
6826 
6827 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6828                                     SDValue LHS, SDValue RHS,
6829                                     SmallVectorImpl<SDValue> &Result,
6830                                     EVT HiLoVT, SelectionDAG &DAG,
6831                                     MulExpansionKind Kind, SDValue LL,
6832                                     SDValue LH, SDValue RL, SDValue RH) const {
6833   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6834          Opcode == ISD::SMUL_LOHI);
6835 
6836   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6837                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6838   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6839                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6840   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6841                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6842   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6843                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6844 
6845   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6846     return false;
6847 
6848   unsigned OuterBitSize = VT.getScalarSizeInBits();
6849   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6850 
6851   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6852   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6853          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6854 
6855   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6856   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6857                           bool Signed) -> bool {
6858     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6859       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6860       Hi = SDValue(Lo.getNode(), 1);
6861       return true;
6862     }
6863     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6864       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6865       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6866       return true;
6867     }
6868     return false;
6869   };
6870 
6871   SDValue Lo, Hi;
6872 
6873   if (!LL.getNode() && !RL.getNode() &&
6874       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6875     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6876     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6877   }
6878 
6879   if (!LL.getNode())
6880     return false;
6881 
6882   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6883   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6884       DAG.MaskedValueIsZero(RHS, HighMask)) {
6885     // The inputs are both zero-extended.
6886     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6887       Result.push_back(Lo);
6888       Result.push_back(Hi);
6889       if (Opcode != ISD::MUL) {
6890         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6891         Result.push_back(Zero);
6892         Result.push_back(Zero);
6893       }
6894       return true;
6895     }
6896   }
6897 
6898   if (!VT.isVector() && Opcode == ISD::MUL &&
6899       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6900       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6901     // The input values are both sign-extended.
6902     // TODO non-MUL case?
6903     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6904       Result.push_back(Lo);
6905       Result.push_back(Hi);
6906       return true;
6907     }
6908   }
6909 
6910   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6911   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6912   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6913 
6914   if (!LH.getNode() && !RH.getNode() &&
6915       isOperationLegalOrCustom(ISD::SRL, VT) &&
6916       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6917     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6918     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6919     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6920     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6921   }
6922 
6923   if (!LH.getNode())
6924     return false;
6925 
6926   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6927     return false;
6928 
6929   Result.push_back(Lo);
6930 
6931   if (Opcode == ISD::MUL) {
6932     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6933     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6934     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6935     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6936     Result.push_back(Hi);
6937     return true;
6938   }
6939 
6940   // Compute the full width result.
6941   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6942     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6943     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6944     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6945     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6946   };
6947 
6948   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6949   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6950     return false;
6951 
6952   // This is effectively the add part of a multiply-add of half-sized operands,
6953   // so it cannot overflow.
6954   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6955 
6956   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6957     return false;
6958 
6959   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6960   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6961 
6962   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6963                   isOperationLegalOrCustom(ISD::ADDE, VT));
6964   if (UseGlue)
6965     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6966                        Merge(Lo, Hi));
6967   else
6968     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6969                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6970 
6971   SDValue Carry = Next.getValue(1);
6972   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6973   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6974 
6975   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6976     return false;
6977 
6978   if (UseGlue)
6979     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6980                      Carry);
6981   else
6982     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6983                      Zero, Carry);
6984 
6985   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6986 
6987   if (Opcode == ISD::SMUL_LOHI) {
6988     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6989                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6990     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6991 
6992     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6993                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6994     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6995   }
6996 
6997   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6998   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6999   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7000   return true;
7001 }
7002 
7003 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7004                                SelectionDAG &DAG, MulExpansionKind Kind,
7005                                SDValue LL, SDValue LH, SDValue RL,
7006                                SDValue RH) const {
7007   SmallVector<SDValue, 2> Result;
7008   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7009                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7010                            DAG, Kind, LL, LH, RL, RH);
7011   if (Ok) {
7012     assert(Result.size() == 2);
7013     Lo = Result[0];
7014     Hi = Result[1];
7015   }
7016   return Ok;
7017 }
7018 
7019 // Check that (every element of) Z is undef or not an exact multiple of BW.
7020 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7021   return ISD::matchUnaryPredicate(
7022       Z,
7023       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7024       true);
7025 }
7026 
7027 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7028                                           SelectionDAG &DAG) const {
7029   EVT VT = Node->getValueType(0);
7030 
7031   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7032                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7033                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7034                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7035     return SDValue();
7036 
7037   SDValue X = Node->getOperand(0);
7038   SDValue Y = Node->getOperand(1);
7039   SDValue Z = Node->getOperand(2);
7040 
7041   unsigned BW = VT.getScalarSizeInBits();
7042   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7043   SDLoc DL(SDValue(Node, 0));
7044 
7045   EVT ShVT = Z.getValueType();
7046 
7047   // If a funnel shift in the other direction is more supported, use it.
7048   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7049   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7050       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7051     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7052       // fshl X, Y, Z -> fshr X, Y, -Z
7053       // fshr X, Y, Z -> fshl X, Y, -Z
7054       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7055       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7056     } else {
7057       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7058       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7059       SDValue One = DAG.getConstant(1, DL, ShVT);
7060       if (IsFSHL) {
7061         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7062         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7063       } else {
7064         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7065         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7066       }
7067       Z = DAG.getNOT(DL, Z, ShVT);
7068     }
7069     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7070   }
7071 
7072   SDValue ShX, ShY;
7073   SDValue ShAmt, InvShAmt;
7074   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7075     // fshl: X << C | Y >> (BW - C)
7076     // fshr: X << (BW - C) | Y >> C
7077     // where C = Z % BW is not zero
7078     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7079     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7080     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7081     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7082     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7083   } else {
7084     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7085     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7086     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7087     if (isPowerOf2_32(BW)) {
7088       // Z % BW -> Z & (BW - 1)
7089       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7090       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7091       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7092     } else {
7093       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7094       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7095       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7096     }
7097 
7098     SDValue One = DAG.getConstant(1, DL, ShVT);
7099     if (IsFSHL) {
7100       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7101       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7102       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7103     } else {
7104       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7105       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7106       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7107     }
7108   }
7109   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7110 }
7111 
7112 // TODO: Merge with expandFunnelShift.
7113 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7114                                   SelectionDAG &DAG) const {
7115   EVT VT = Node->getValueType(0);
7116   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7117   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7118   SDValue Op0 = Node->getOperand(0);
7119   SDValue Op1 = Node->getOperand(1);
7120   SDLoc DL(SDValue(Node, 0));
7121 
7122   EVT ShVT = Op1.getValueType();
7123   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7124 
7125   // If a rotate in the other direction is more supported, use it.
7126   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7127   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7128       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7129     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7130     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7131   }
7132 
7133   if (!AllowVectorOps && VT.isVector() &&
7134       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7135        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7136        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7137        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7138        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7139     return SDValue();
7140 
7141   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7142   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7143   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7144   SDValue ShVal;
7145   SDValue HsVal;
7146   if (isPowerOf2_32(EltSizeInBits)) {
7147     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7148     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7149     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7150     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7151     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7152     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7153     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7154   } else {
7155     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7156     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7157     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7158     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7159     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7160     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7161     SDValue One = DAG.getConstant(1, DL, ShVT);
7162     HsVal =
7163         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7164   }
7165   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7166 }
7167 
7168 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7169                                       SelectionDAG &DAG) const {
7170   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7171   EVT VT = Node->getValueType(0);
7172   unsigned VTBits = VT.getScalarSizeInBits();
7173   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7174 
7175   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7176   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7177   SDValue ShOpLo = Node->getOperand(0);
7178   SDValue ShOpHi = Node->getOperand(1);
7179   SDValue ShAmt = Node->getOperand(2);
7180   EVT ShAmtVT = ShAmt.getValueType();
7181   EVT ShAmtCCVT =
7182       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7183   SDLoc dl(Node);
7184 
7185   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7186   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7187   // away during isel.
7188   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7189                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7190   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7191                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7192                        : DAG.getConstant(0, dl, VT);
7193 
7194   SDValue Tmp2, Tmp3;
7195   if (IsSHL) {
7196     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7197     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7198   } else {
7199     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7200     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7201   }
7202 
7203   // If the shift amount is larger or equal than the width of a part we don't
7204   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7205   // values for large shift amounts.
7206   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7207                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7208   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7209                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7210 
7211   if (IsSHL) {
7212     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7213     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7214   } else {
7215     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7216     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7217   }
7218 }
7219 
7220 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7221                                       SelectionDAG &DAG) const {
7222   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7223   SDValue Src = Node->getOperand(OpNo);
7224   EVT SrcVT = Src.getValueType();
7225   EVT DstVT = Node->getValueType(0);
7226   SDLoc dl(SDValue(Node, 0));
7227 
7228   // FIXME: Only f32 to i64 conversions are supported.
7229   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7230     return false;
7231 
7232   if (Node->isStrictFPOpcode())
7233     // When a NaN is converted to an integer a trap is allowed. We can't
7234     // use this expansion here because it would eliminate that trap. Other
7235     // traps are also allowed and cannot be eliminated. See
7236     // IEEE 754-2008 sec 5.8.
7237     return false;
7238 
7239   // Expand f32 -> i64 conversion
7240   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7241   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7242   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7243   EVT IntVT = SrcVT.changeTypeToInteger();
7244   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7245 
7246   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7247   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7248   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7249   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7250   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7251   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7252 
7253   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7254 
7255   SDValue ExponentBits = DAG.getNode(
7256       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7257       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7258   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7259 
7260   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7261                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7262                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7263   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7264 
7265   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7266                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7267                           DAG.getConstant(0x00800000, dl, IntVT));
7268 
7269   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7270 
7271   R = DAG.getSelectCC(
7272       dl, Exponent, ExponentLoBit,
7273       DAG.getNode(ISD::SHL, dl, DstVT, R,
7274                   DAG.getZExtOrTrunc(
7275                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7276                       dl, IntShVT)),
7277       DAG.getNode(ISD::SRL, dl, DstVT, R,
7278                   DAG.getZExtOrTrunc(
7279                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7280                       dl, IntShVT)),
7281       ISD::SETGT);
7282 
7283   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7284                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7285 
7286   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7287                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7288   return true;
7289 }
7290 
7291 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7292                                       SDValue &Chain,
7293                                       SelectionDAG &DAG) const {
7294   SDLoc dl(SDValue(Node, 0));
7295   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7296   SDValue Src = Node->getOperand(OpNo);
7297 
7298   EVT SrcVT = Src.getValueType();
7299   EVT DstVT = Node->getValueType(0);
7300   EVT SetCCVT =
7301       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7302   EVT DstSetCCVT =
7303       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7304 
7305   // Only expand vector types if we have the appropriate vector bit operations.
7306   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7307                                                    ISD::FP_TO_SINT;
7308   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7309                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7310     return false;
7311 
7312   // If the maximum float value is smaller then the signed integer range,
7313   // the destination signmask can't be represented by the float, so we can
7314   // just use FP_TO_SINT directly.
7315   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7316   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7317   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7318   if (APFloat::opOverflow &
7319       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7320     if (Node->isStrictFPOpcode()) {
7321       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7322                            { Node->getOperand(0), Src });
7323       Chain = Result.getValue(1);
7324     } else
7325       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7326     return true;
7327   }
7328 
7329   // Don't expand it if there isn't cheap fsub instruction.
7330   if (!isOperationLegalOrCustom(
7331           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7332     return false;
7333 
7334   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7335   SDValue Sel;
7336 
7337   if (Node->isStrictFPOpcode()) {
7338     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7339                        Node->getOperand(0), /*IsSignaling*/ true);
7340     Chain = Sel.getValue(1);
7341   } else {
7342     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7343   }
7344 
7345   bool Strict = Node->isStrictFPOpcode() ||
7346                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7347 
7348   if (Strict) {
7349     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7350     // signmask then offset (the result of which should be fully representable).
7351     // Sel = Src < 0x8000000000000000
7352     // FltOfs = select Sel, 0, 0x8000000000000000
7353     // IntOfs = select Sel, 0, 0x8000000000000000
7354     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7355 
7356     // TODO: Should any fast-math-flags be set for the FSUB?
7357     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7358                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7359     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7360     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7361                                    DAG.getConstant(0, dl, DstVT),
7362                                    DAG.getConstant(SignMask, dl, DstVT));
7363     SDValue SInt;
7364     if (Node->isStrictFPOpcode()) {
7365       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7366                                 { Chain, Src, FltOfs });
7367       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7368                          { Val.getValue(1), Val });
7369       Chain = SInt.getValue(1);
7370     } else {
7371       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7372       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7373     }
7374     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7375   } else {
7376     // Expand based on maximum range of FP_TO_SINT:
7377     // True = fp_to_sint(Src)
7378     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7379     // Result = select (Src < 0x8000000000000000), True, False
7380 
7381     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7382     // TODO: Should any fast-math-flags be set for the FSUB?
7383     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7384                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7385     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7386                         DAG.getConstant(SignMask, dl, DstVT));
7387     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7388     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7389   }
7390   return true;
7391 }
7392 
7393 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7394                                       SDValue &Chain,
7395                                       SelectionDAG &DAG) const {
7396   // This transform is not correct for converting 0 when rounding mode is set
7397   // to round toward negative infinity which will produce -0.0. So disable under
7398   // strictfp.
7399   if (Node->isStrictFPOpcode())
7400     return false;
7401 
7402   SDValue Src = Node->getOperand(0);
7403   EVT SrcVT = Src.getValueType();
7404   EVT DstVT = Node->getValueType(0);
7405 
7406   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7407     return false;
7408 
7409   // Only expand vector types if we have the appropriate vector bit operations.
7410   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7411                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7412                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7413                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7414                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7415     return false;
7416 
7417   SDLoc dl(SDValue(Node, 0));
7418   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7419 
7420   // Implementation of unsigned i64 to f64 following the algorithm in
7421   // __floatundidf in compiler_rt.  This implementation performs rounding
7422   // correctly in all rounding modes with the exception of converting 0
7423   // when rounding toward negative infinity. In that case the fsub will produce
7424   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7425   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7426   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7427       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7428   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7429   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7430   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7431 
7432   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7433   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7434   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7435   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7436   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7437   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7438   SDValue HiSub =
7439       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7440   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7441   return true;
7442 }
7443 
7444 SDValue
7445 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7446                                                SelectionDAG &DAG) const {
7447   unsigned Opcode = Node->getOpcode();
7448   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7449           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7450          "Wrong opcode");
7451 
7452   if (Node->getFlags().hasNoNaNs()) {
7453     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7454     SDValue Op1 = Node->getOperand(0);
7455     SDValue Op2 = Node->getOperand(1);
7456     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7457     // Copy FMF flags, but always set the no-signed-zeros flag
7458     // as this is implied by the FMINNUM/FMAXNUM semantics.
7459     SDNodeFlags Flags = Node->getFlags();
7460     Flags.setNoSignedZeros(true);
7461     SelCC->setFlags(Flags);
7462     return SelCC;
7463   }
7464 
7465   return SDValue();
7466 }
7467 
7468 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7469                                               SelectionDAG &DAG) const {
7470   SDLoc dl(Node);
7471   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7472     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7473   EVT VT = Node->getValueType(0);
7474 
7475   if (VT.isScalableVector())
7476     report_fatal_error(
7477         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7478 
7479   if (isOperationLegalOrCustom(NewOp, VT)) {
7480     SDValue Quiet0 = Node->getOperand(0);
7481     SDValue Quiet1 = Node->getOperand(1);
7482 
7483     if (!Node->getFlags().hasNoNaNs()) {
7484       // Insert canonicalizes if it's possible we need to quiet to get correct
7485       // sNaN behavior.
7486       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7487         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7488                              Node->getFlags());
7489       }
7490       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7491         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7492                              Node->getFlags());
7493       }
7494     }
7495 
7496     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7497   }
7498 
7499   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7500   // instead if there are no NaNs.
7501   if (Node->getFlags().hasNoNaNs()) {
7502     unsigned IEEE2018Op =
7503         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7504     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7505       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7506                          Node->getOperand(1), Node->getFlags());
7507     }
7508   }
7509 
7510   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7511     return SelCC;
7512 
7513   return SDValue();
7514 }
7515 
7516 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7517                                          unsigned Test, SDNodeFlags Flags,
7518                                          const SDLoc &DL,
7519                                          SelectionDAG &DAG) const {
7520   EVT OperandVT = Op.getValueType();
7521   assert(OperandVT.isFloatingPoint());
7522 
7523   // Degenerated cases.
7524   if (Test == 0)
7525     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7526   if ((Test & fcAllFlags) == fcAllFlags)
7527     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7528 
7529   // PPC double double is a pair of doubles, of which the higher part determines
7530   // the value class.
7531   if (OperandVT == MVT::ppcf128) {
7532     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7533                      DAG.getConstant(1, DL, MVT::i32));
7534     OperandVT = MVT::f64;
7535   }
7536 
7537   // Some checks may be represented as inversion of simpler check, for example
7538   // "inf|normal|subnormal|zero" => !"nan".
7539   bool IsInverted = false;
7540   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7541     IsInverted = true;
7542     Test = InvertedCheck;
7543   }
7544 
7545   // Floating-point type properties.
7546   EVT ScalarFloatVT = OperandVT.getScalarType();
7547   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7548   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7549   bool IsF80 = (ScalarFloatVT == MVT::f80);
7550 
7551   // Some checks can be implemented using float comparisons, if floating point
7552   // exceptions are ignored.
7553   if (Flags.hasNoFPExcept() &&
7554       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7555     if (Test == fcZero)
7556       return DAG.getSetCC(DL, ResultVT, Op,
7557                           DAG.getConstantFP(0.0, DL, OperandVT),
7558                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7559     if (Test == fcNan)
7560       return DAG.getSetCC(DL, ResultVT, Op, Op,
7561                           IsInverted ? ISD::SETO : ISD::SETUO);
7562   }
7563 
7564   // In the general case use integer operations.
7565   unsigned BitSize = OperandVT.getScalarSizeInBits();
7566   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7567   if (OperandVT.isVector())
7568     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7569                              OperandVT.getVectorElementCount());
7570   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7571 
7572   // Various masks.
7573   APInt SignBit = APInt::getSignMask(BitSize);
7574   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7575   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7576   const unsigned ExplicitIntBitInF80 = 63;
7577   APInt ExpMask = Inf;
7578   if (IsF80)
7579     ExpMask.clearBit(ExplicitIntBitInF80);
7580   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7581   APInt QNaNBitMask =
7582       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7583   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7584 
7585   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7586   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7587   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7588   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7589   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7590   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7591 
7592   SDValue Res;
7593   const auto appendResult = [&](SDValue PartialRes) {
7594     if (PartialRes) {
7595       if (Res)
7596         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7597       else
7598         Res = PartialRes;
7599     }
7600   };
7601 
7602   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7603   const auto getIntBitIsSet = [&]() -> SDValue {
7604     if (!IntBitIsSetV) {
7605       APInt IntBitMask(BitSize, 0);
7606       IntBitMask.setBit(ExplicitIntBitInF80);
7607       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7608       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7609       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7610     }
7611     return IntBitIsSetV;
7612   };
7613 
7614   // Split the value into sign bit and absolute value.
7615   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7616   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7617                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7618 
7619   // Tests that involve more than one class should be processed first.
7620   SDValue PartialRes;
7621 
7622   if (IsF80)
7623     ; // Detect finite numbers of f80 by checking individual classes because
7624       // they have different settings of the explicit integer bit.
7625   else if ((Test & fcFinite) == fcFinite) {
7626     // finite(V) ==> abs(V) < exp_mask
7627     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7628     Test &= ~fcFinite;
7629   } else if ((Test & fcFinite) == fcPosFinite) {
7630     // finite(V) && V > 0 ==> V < exp_mask
7631     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7632     Test &= ~fcPosFinite;
7633   } else if ((Test & fcFinite) == fcNegFinite) {
7634     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7635     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7636     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7637     Test &= ~fcNegFinite;
7638   }
7639   appendResult(PartialRes);
7640 
7641   // Check for individual classes.
7642 
7643   if (unsigned PartialCheck = Test & fcZero) {
7644     if (PartialCheck == fcPosZero)
7645       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7646     else if (PartialCheck == fcZero)
7647       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7648     else // ISD::fcNegZero
7649       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7650     appendResult(PartialRes);
7651   }
7652 
7653   if (unsigned PartialCheck = Test & fcInf) {
7654     if (PartialCheck == fcPosInf)
7655       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7656     else if (PartialCheck == fcInf)
7657       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7658     else { // ISD::fcNegInf
7659       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7660       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7661       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7662     }
7663     appendResult(PartialRes);
7664   }
7665 
7666   if (unsigned PartialCheck = Test & fcNan) {
7667     APInt InfWithQnanBit = Inf | QNaNBitMask;
7668     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7669     if (PartialCheck == fcNan) {
7670       // isnan(V) ==> abs(V) > int(inf)
7671       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7672       if (IsF80) {
7673         // Recognize unsupported values as NaNs for compatibility with glibc.
7674         // In them (exp(V)==0) == int_bit.
7675         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7676         SDValue ExpIsZero =
7677             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7678         SDValue IsPseudo =
7679             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7680         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7681       }
7682     } else if (PartialCheck == fcQNan) {
7683       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7684       PartialRes =
7685           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7686     } else { // ISD::fcSNan
7687       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7688       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7689       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7690       SDValue IsNotQnan =
7691           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7692       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7693     }
7694     appendResult(PartialRes);
7695   }
7696 
7697   if (unsigned PartialCheck = Test & fcSubnormal) {
7698     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7699     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7700     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7701     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7702     SDValue VMinusOneV =
7703         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7704     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7705     if (PartialCheck == fcNegSubnormal)
7706       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7707     appendResult(PartialRes);
7708   }
7709 
7710   if (unsigned PartialCheck = Test & fcNormal) {
7711     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7712     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7713     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7714     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7715     APInt ExpLimit = ExpMask - ExpLSB;
7716     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7717     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7718     if (PartialCheck == fcNegNormal)
7719       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7720     else if (PartialCheck == fcPosNormal) {
7721       SDValue PosSignV =
7722           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7723       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7724     }
7725     if (IsF80)
7726       PartialRes =
7727           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7728     appendResult(PartialRes);
7729   }
7730 
7731   if (!Res)
7732     return DAG.getConstant(IsInverted, DL, ResultVT);
7733   if (IsInverted)
7734     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7735   return Res;
7736 }
7737 
7738 // Only expand vector types if we have the appropriate vector bit operations.
7739 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7740   assert(VT.isVector() && "Expected vector type");
7741   unsigned Len = VT.getScalarSizeInBits();
7742   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7743          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7744          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7745          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7746          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7747 }
7748 
7749 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7750   SDLoc dl(Node);
7751   EVT VT = Node->getValueType(0);
7752   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7753   SDValue Op = Node->getOperand(0);
7754   unsigned Len = VT.getScalarSizeInBits();
7755   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7756 
7757   // TODO: Add support for irregular type lengths.
7758   if (!(Len <= 128 && Len % 8 == 0))
7759     return SDValue();
7760 
7761   // Only expand vector types if we have the appropriate vector bit operations.
7762   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7763     return SDValue();
7764 
7765   // This is the "best" algorithm from
7766   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7767   SDValue Mask55 =
7768       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7769   SDValue Mask33 =
7770       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7771   SDValue Mask0F =
7772       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7773 
7774   // v = v - ((v >> 1) & 0x55555555...)
7775   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7776                    DAG.getNode(ISD::AND, dl, VT,
7777                                DAG.getNode(ISD::SRL, dl, VT, Op,
7778                                            DAG.getConstant(1, dl, ShVT)),
7779                                Mask55));
7780   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7781   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7782                    DAG.getNode(ISD::AND, dl, VT,
7783                                DAG.getNode(ISD::SRL, dl, VT, Op,
7784                                            DAG.getConstant(2, dl, ShVT)),
7785                                Mask33));
7786   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7787   Op = DAG.getNode(ISD::AND, dl, VT,
7788                    DAG.getNode(ISD::ADD, dl, VT, Op,
7789                                DAG.getNode(ISD::SRL, dl, VT, Op,
7790                                            DAG.getConstant(4, dl, ShVT))),
7791                    Mask0F);
7792 
7793   if (Len <= 8)
7794     return Op;
7795 
7796   // Avoid the multiply if we only have 2 bytes to add.
7797   // TODO: Only doing this for scalars because vectors weren't as obviously
7798   // improved.
7799   if (Len == 16 && !VT.isVector()) {
7800     // v = (v + (v >> 8)) & 0x00FF;
7801     return DAG.getNode(ISD::AND, dl, VT,
7802                      DAG.getNode(ISD::ADD, dl, VT, Op,
7803                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7804                                              DAG.getConstant(8, dl, ShVT))),
7805                      DAG.getConstant(0xFF, dl, VT));
7806   }
7807 
7808   // v = (v * 0x01010101...) >> (Len - 8)
7809   SDValue Mask01 =
7810       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7811   return DAG.getNode(ISD::SRL, dl, VT,
7812                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7813                      DAG.getConstant(Len - 8, dl, ShVT));
7814 }
7815 
7816 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7817   SDLoc dl(Node);
7818   EVT VT = Node->getValueType(0);
7819   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7820   SDValue Op = Node->getOperand(0);
7821   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7822 
7823   // If the non-ZERO_UNDEF version is supported we can use that instead.
7824   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7825       isOperationLegalOrCustom(ISD::CTLZ, VT))
7826     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7827 
7828   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7829   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7830     EVT SetCCVT =
7831         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7832     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7833     SDValue Zero = DAG.getConstant(0, dl, VT);
7834     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7835     return DAG.getSelect(dl, VT, SrcIsZero,
7836                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7837   }
7838 
7839   // Only expand vector types if we have the appropriate vector bit operations.
7840   // This includes the operations needed to expand CTPOP if it isn't supported.
7841   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7842                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7843                          !canExpandVectorCTPOP(*this, VT)) ||
7844                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7845                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7846     return SDValue();
7847 
7848   // for now, we do this:
7849   // x = x | (x >> 1);
7850   // x = x | (x >> 2);
7851   // ...
7852   // x = x | (x >>16);
7853   // x = x | (x >>32); // for 64-bit input
7854   // return popcount(~x);
7855   //
7856   // Ref: "Hacker's Delight" by Henry Warren
7857   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7858     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7859     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7860                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7861   }
7862   Op = DAG.getNOT(dl, Op, VT);
7863   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7864 }
7865 
7866 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7867   SDLoc dl(Node);
7868   EVT VT = Node->getValueType(0);
7869   SDValue Op = Node->getOperand(0);
7870   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7871 
7872   // If the non-ZERO_UNDEF version is supported we can use that instead.
7873   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7874       isOperationLegalOrCustom(ISD::CTTZ, VT))
7875     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7876 
7877   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7878   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7879     EVT SetCCVT =
7880         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7881     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7882     SDValue Zero = DAG.getConstant(0, dl, VT);
7883     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7884     return DAG.getSelect(dl, VT, SrcIsZero,
7885                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7886   }
7887 
7888   // Only expand vector types if we have the appropriate vector bit operations.
7889   // This includes the operations needed to expand CTPOP if it isn't supported.
7890   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7891                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7892                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7893                          !canExpandVectorCTPOP(*this, VT)) ||
7894                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7895                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7896                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7897     return SDValue();
7898 
7899   // for now, we use: { return popcount(~x & (x - 1)); }
7900   // unless the target has ctlz but not ctpop, in which case we use:
7901   // { return 32 - nlz(~x & (x-1)); }
7902   // Ref: "Hacker's Delight" by Henry Warren
7903   SDValue Tmp = DAG.getNode(
7904       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7905       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7906 
7907   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7908   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7909     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7910                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7911   }
7912 
7913   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7914 }
7915 
7916 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7917                                   bool IsNegative) const {
7918   SDLoc dl(N);
7919   EVT VT = N->getValueType(0);
7920   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7921   SDValue Op = N->getOperand(0);
7922 
7923   // abs(x) -> smax(x,sub(0,x))
7924   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7925       isOperationLegal(ISD::SMAX, VT)) {
7926     SDValue Zero = DAG.getConstant(0, dl, VT);
7927     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7928                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7929   }
7930 
7931   // abs(x) -> umin(x,sub(0,x))
7932   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7933       isOperationLegal(ISD::UMIN, VT)) {
7934     SDValue Zero = DAG.getConstant(0, dl, VT);
7935     Op = DAG.getFreeze(Op);
7936     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7937                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7938   }
7939 
7940   // 0 - abs(x) -> smin(x, sub(0,x))
7941   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7942       isOperationLegal(ISD::SMIN, VT)) {
7943     Op = DAG.getFreeze(Op);
7944     SDValue Zero = DAG.getConstant(0, dl, VT);
7945     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7946                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7947   }
7948 
7949   // Only expand vector types if we have the appropriate vector operations.
7950   if (VT.isVector() &&
7951       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7952        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7953        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7954        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7955     return SDValue();
7956 
7957   Op = DAG.getFreeze(Op);
7958   SDValue Shift =
7959       DAG.getNode(ISD::SRA, dl, VT, Op,
7960                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7961   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7962 
7963   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7964   if (!IsNegative)
7965     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7966 
7967   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7968   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7969 }
7970 
7971 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7972   SDLoc dl(N);
7973   EVT VT = N->getValueType(0);
7974   SDValue Op = N->getOperand(0);
7975 
7976   if (!VT.isSimple())
7977     return SDValue();
7978 
7979   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7980   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7981   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7982   default:
7983     return SDValue();
7984   case MVT::i16:
7985     // Use a rotate by 8. This can be further expanded if necessary.
7986     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7987   case MVT::i32:
7988     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7989     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7990     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7991     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7992     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7993                        DAG.getConstant(0xFF0000, dl, VT));
7994     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7995     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7996     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7997     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7998   case MVT::i64:
7999     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8000     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8001     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8002     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8003     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8004     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8005     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8006     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8007     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
8008                        DAG.getConstant(255ULL<<48, dl, VT));
8009     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
8010                        DAG.getConstant(255ULL<<40, dl, VT));
8011     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
8012                        DAG.getConstant(255ULL<<32, dl, VT));
8013     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8014                        DAG.getConstant(255ULL<<24, dl, VT));
8015     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8016                        DAG.getConstant(255ULL<<16, dl, VT));
8017     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8018                        DAG.getConstant(255ULL<<8 , dl, VT));
8019     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8020     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8021     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8022     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8023     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8024     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8025     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8026   }
8027 }
8028 
8029 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8030   SDLoc dl(N);
8031   EVT VT = N->getValueType(0);
8032   SDValue Op = N->getOperand(0);
8033   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8034   unsigned Sz = VT.getScalarSizeInBits();
8035 
8036   SDValue Tmp, Tmp2, Tmp3;
8037 
8038   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8039   // and finally the i1 pairs.
8040   // TODO: We can easily support i4/i2 legal types if any target ever does.
8041   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8042     // Create the masks - repeating the pattern every byte.
8043     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8044     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8045     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8046 
8047     // BSWAP if the type is wider than a single byte.
8048     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8049 
8050     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8051     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8052     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8053     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8054     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8055     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8056 
8057     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8058     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8059     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8060     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8061     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8062     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8063 
8064     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8065     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8066     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8067     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8068     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8069     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8070     return Tmp;
8071   }
8072 
8073   Tmp = DAG.getConstant(0, dl, VT);
8074   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8075     if (I < J)
8076       Tmp2 =
8077           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8078     else
8079       Tmp2 =
8080           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8081 
8082     APInt Shift(Sz, 1);
8083     Shift <<= J;
8084     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8085     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8086   }
8087 
8088   return Tmp;
8089 }
8090 
8091 std::pair<SDValue, SDValue>
8092 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8093                                     SelectionDAG &DAG) const {
8094   SDLoc SL(LD);
8095   SDValue Chain = LD->getChain();
8096   SDValue BasePTR = LD->getBasePtr();
8097   EVT SrcVT = LD->getMemoryVT();
8098   EVT DstVT = LD->getValueType(0);
8099   ISD::LoadExtType ExtType = LD->getExtensionType();
8100 
8101   if (SrcVT.isScalableVector())
8102     report_fatal_error("Cannot scalarize scalable vector loads");
8103 
8104   unsigned NumElem = SrcVT.getVectorNumElements();
8105 
8106   EVT SrcEltVT = SrcVT.getScalarType();
8107   EVT DstEltVT = DstVT.getScalarType();
8108 
8109   // A vector must always be stored in memory as-is, i.e. without any padding
8110   // between the elements, since various code depend on it, e.g. in the
8111   // handling of a bitcast of a vector type to int, which may be done with a
8112   // vector store followed by an integer load. A vector that does not have
8113   // elements that are byte-sized must therefore be stored as an integer
8114   // built out of the extracted vector elements.
8115   if (!SrcEltVT.isByteSized()) {
8116     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8117     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8118 
8119     unsigned NumSrcBits = SrcVT.getSizeInBits();
8120     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8121 
8122     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8123     SDValue SrcEltBitMask = DAG.getConstant(
8124         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8125 
8126     // Load the whole vector and avoid masking off the top bits as it makes
8127     // the codegen worse.
8128     SDValue Load =
8129         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8130                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8131                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8132 
8133     SmallVector<SDValue, 8> Vals;
8134     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8135       unsigned ShiftIntoIdx =
8136           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8137       SDValue ShiftAmount =
8138           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8139                                      LoadVT, SL, /*LegalTypes=*/false);
8140       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8141       SDValue Elt =
8142           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8143       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8144 
8145       if (ExtType != ISD::NON_EXTLOAD) {
8146         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8147         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8148       }
8149 
8150       Vals.push_back(Scalar);
8151     }
8152 
8153     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8154     return std::make_pair(Value, Load.getValue(1));
8155   }
8156 
8157   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8158   assert(SrcEltVT.isByteSized());
8159 
8160   SmallVector<SDValue, 8> Vals;
8161   SmallVector<SDValue, 8> LoadChains;
8162 
8163   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8164     SDValue ScalarLoad =
8165         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8166                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8167                        SrcEltVT, LD->getOriginalAlign(),
8168                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8169 
8170     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8171 
8172     Vals.push_back(ScalarLoad.getValue(0));
8173     LoadChains.push_back(ScalarLoad.getValue(1));
8174   }
8175 
8176   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8177   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8178 
8179   return std::make_pair(Value, NewChain);
8180 }
8181 
8182 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8183                                              SelectionDAG &DAG) const {
8184   SDLoc SL(ST);
8185 
8186   SDValue Chain = ST->getChain();
8187   SDValue BasePtr = ST->getBasePtr();
8188   SDValue Value = ST->getValue();
8189   EVT StVT = ST->getMemoryVT();
8190 
8191   if (StVT.isScalableVector())
8192     report_fatal_error("Cannot scalarize scalable vector stores");
8193 
8194   // The type of the data we want to save
8195   EVT RegVT = Value.getValueType();
8196   EVT RegSclVT = RegVT.getScalarType();
8197 
8198   // The type of data as saved in memory.
8199   EVT MemSclVT = StVT.getScalarType();
8200 
8201   unsigned NumElem = StVT.getVectorNumElements();
8202 
8203   // A vector must always be stored in memory as-is, i.e. without any padding
8204   // between the elements, since various code depend on it, e.g. in the
8205   // handling of a bitcast of a vector type to int, which may be done with a
8206   // vector store followed by an integer load. A vector that does not have
8207   // elements that are byte-sized must therefore be stored as an integer
8208   // built out of the extracted vector elements.
8209   if (!MemSclVT.isByteSized()) {
8210     unsigned NumBits = StVT.getSizeInBits();
8211     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8212 
8213     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8214 
8215     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8216       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8217                                 DAG.getVectorIdxConstant(Idx, SL));
8218       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8219       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8220       unsigned ShiftIntoIdx =
8221           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8222       SDValue ShiftAmount =
8223           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8224       SDValue ShiftedElt =
8225           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8226       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8227     }
8228 
8229     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8230                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8231                         ST->getAAInfo());
8232   }
8233 
8234   // Store Stride in bytes
8235   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8236   assert(Stride && "Zero stride!");
8237   // Extract each of the elements from the original vector and save them into
8238   // memory individually.
8239   SmallVector<SDValue, 8> Stores;
8240   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8241     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8242                               DAG.getVectorIdxConstant(Idx, SL));
8243 
8244     SDValue Ptr =
8245         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8246 
8247     // This scalar TruncStore may be illegal, but we legalize it later.
8248     SDValue Store = DAG.getTruncStore(
8249         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8250         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8251         ST->getAAInfo());
8252 
8253     Stores.push_back(Store);
8254   }
8255 
8256   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8257 }
8258 
8259 std::pair<SDValue, SDValue>
8260 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8261   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8262          "unaligned indexed loads not implemented!");
8263   SDValue Chain = LD->getChain();
8264   SDValue Ptr = LD->getBasePtr();
8265   EVT VT = LD->getValueType(0);
8266   EVT LoadedVT = LD->getMemoryVT();
8267   SDLoc dl(LD);
8268   auto &MF = DAG.getMachineFunction();
8269 
8270   if (VT.isFloatingPoint() || VT.isVector()) {
8271     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8272     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8273       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8274           LoadedVT.isVector()) {
8275         // Scalarize the load and let the individual components be handled.
8276         return scalarizeVectorLoad(LD, DAG);
8277       }
8278 
8279       // Expand to a (misaligned) integer load of the same size,
8280       // then bitconvert to floating point or vector.
8281       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8282                                     LD->getMemOperand());
8283       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8284       if (LoadedVT != VT)
8285         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8286                              ISD::ANY_EXTEND, dl, VT, Result);
8287 
8288       return std::make_pair(Result, newLoad.getValue(1));
8289     }
8290 
8291     // Copy the value to a (aligned) stack slot using (unaligned) integer
8292     // loads and stores, then do a (aligned) load from the stack slot.
8293     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8294     unsigned LoadedBytes = LoadedVT.getStoreSize();
8295     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8296     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8297 
8298     // Make sure the stack slot is also aligned for the register type.
8299     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8300     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8301     SmallVector<SDValue, 8> Stores;
8302     SDValue StackPtr = StackBase;
8303     unsigned Offset = 0;
8304 
8305     EVT PtrVT = Ptr.getValueType();
8306     EVT StackPtrVT = StackPtr.getValueType();
8307 
8308     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8309     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8310 
8311     // Do all but one copies using the full register width.
8312     for (unsigned i = 1; i < NumRegs; i++) {
8313       // Load one integer register's worth from the original location.
8314       SDValue Load = DAG.getLoad(
8315           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8316           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8317           LD->getAAInfo());
8318       // Follow the load with a store to the stack slot.  Remember the store.
8319       Stores.push_back(DAG.getStore(
8320           Load.getValue(1), dl, Load, StackPtr,
8321           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8322       // Increment the pointers.
8323       Offset += RegBytes;
8324 
8325       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8326       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8327     }
8328 
8329     // The last copy may be partial.  Do an extending load.
8330     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8331                                   8 * (LoadedBytes - Offset));
8332     SDValue Load =
8333         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8334                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8335                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8336                        LD->getAAInfo());
8337     // Follow the load with a store to the stack slot.  Remember the store.
8338     // On big-endian machines this requires a truncating store to ensure
8339     // that the bits end up in the right place.
8340     Stores.push_back(DAG.getTruncStore(
8341         Load.getValue(1), dl, Load, StackPtr,
8342         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8343 
8344     // The order of the stores doesn't matter - say it with a TokenFactor.
8345     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8346 
8347     // Finally, perform the original load only redirected to the stack slot.
8348     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8349                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8350                           LoadedVT);
8351 
8352     // Callers expect a MERGE_VALUES node.
8353     return std::make_pair(Load, TF);
8354   }
8355 
8356   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8357          "Unaligned load of unsupported type.");
8358 
8359   // Compute the new VT that is half the size of the old one.  This is an
8360   // integer MVT.
8361   unsigned NumBits = LoadedVT.getSizeInBits();
8362   EVT NewLoadedVT;
8363   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8364   NumBits >>= 1;
8365 
8366   Align Alignment = LD->getOriginalAlign();
8367   unsigned IncrementSize = NumBits / 8;
8368   ISD::LoadExtType HiExtType = LD->getExtensionType();
8369 
8370   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8371   if (HiExtType == ISD::NON_EXTLOAD)
8372     HiExtType = ISD::ZEXTLOAD;
8373 
8374   // Load the value in two parts
8375   SDValue Lo, Hi;
8376   if (DAG.getDataLayout().isLittleEndian()) {
8377     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8378                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8379                         LD->getAAInfo());
8380 
8381     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8382     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8383                         LD->getPointerInfo().getWithOffset(IncrementSize),
8384                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8385                         LD->getAAInfo());
8386   } else {
8387     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8388                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8389                         LD->getAAInfo());
8390 
8391     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8392     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8393                         LD->getPointerInfo().getWithOffset(IncrementSize),
8394                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8395                         LD->getAAInfo());
8396   }
8397 
8398   // aggregate the two parts
8399   SDValue ShiftAmount =
8400       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8401                                                     DAG.getDataLayout()));
8402   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8403   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8404 
8405   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8406                              Hi.getValue(1));
8407 
8408   return std::make_pair(Result, TF);
8409 }
8410 
8411 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8412                                              SelectionDAG &DAG) const {
8413   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8414          "unaligned indexed stores not implemented!");
8415   SDValue Chain = ST->getChain();
8416   SDValue Ptr = ST->getBasePtr();
8417   SDValue Val = ST->getValue();
8418   EVT VT = Val.getValueType();
8419   Align Alignment = ST->getOriginalAlign();
8420   auto &MF = DAG.getMachineFunction();
8421   EVT StoreMemVT = ST->getMemoryVT();
8422 
8423   SDLoc dl(ST);
8424   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8425     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8426     if (isTypeLegal(intVT)) {
8427       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8428           StoreMemVT.isVector()) {
8429         // Scalarize the store and let the individual components be handled.
8430         SDValue Result = scalarizeVectorStore(ST, DAG);
8431         return Result;
8432       }
8433       // Expand to a bitconvert of the value to the integer type of the
8434       // same size, then a (misaligned) int store.
8435       // FIXME: Does not handle truncating floating point stores!
8436       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8437       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8438                             Alignment, ST->getMemOperand()->getFlags());
8439       return Result;
8440     }
8441     // Do a (aligned) store to a stack slot, then copy from the stack slot
8442     // to the final destination using (unaligned) integer loads and stores.
8443     MVT RegVT = getRegisterType(
8444         *DAG.getContext(),
8445         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8446     EVT PtrVT = Ptr.getValueType();
8447     unsigned StoredBytes = StoreMemVT.getStoreSize();
8448     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8449     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8450 
8451     // Make sure the stack slot is also aligned for the register type.
8452     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8453     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8454 
8455     // Perform the original store, only redirected to the stack slot.
8456     SDValue Store = DAG.getTruncStore(
8457         Chain, dl, Val, StackPtr,
8458         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8459 
8460     EVT StackPtrVT = StackPtr.getValueType();
8461 
8462     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8463     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8464     SmallVector<SDValue, 8> Stores;
8465     unsigned Offset = 0;
8466 
8467     // Do all but one copies using the full register width.
8468     for (unsigned i = 1; i < NumRegs; i++) {
8469       // Load one integer register's worth from the stack slot.
8470       SDValue Load = DAG.getLoad(
8471           RegVT, dl, Store, StackPtr,
8472           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8473       // Store it to the final location.  Remember the store.
8474       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8475                                     ST->getPointerInfo().getWithOffset(Offset),
8476                                     ST->getOriginalAlign(),
8477                                     ST->getMemOperand()->getFlags()));
8478       // Increment the pointers.
8479       Offset += RegBytes;
8480       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8481       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8482     }
8483 
8484     // The last store may be partial.  Do a truncating store.  On big-endian
8485     // machines this requires an extending load from the stack slot to ensure
8486     // that the bits are in the right place.
8487     EVT LoadMemVT =
8488         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8489 
8490     // Load from the stack slot.
8491     SDValue Load = DAG.getExtLoad(
8492         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8493         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8494 
8495     Stores.push_back(
8496         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8497                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8498                           ST->getOriginalAlign(),
8499                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8500     // The order of the stores doesn't matter - say it with a TokenFactor.
8501     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8502     return Result;
8503   }
8504 
8505   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8506          "Unaligned store of unknown type.");
8507   // Get the half-size VT
8508   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8509   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8510   unsigned IncrementSize = NumBits / 8;
8511 
8512   // Divide the stored value in two parts.
8513   SDValue ShiftAmount = DAG.getConstant(
8514       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8515   SDValue Lo = Val;
8516   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8517 
8518   // Store the two parts
8519   SDValue Store1, Store2;
8520   Store1 = DAG.getTruncStore(Chain, dl,
8521                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8522                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8523                              ST->getMemOperand()->getFlags());
8524 
8525   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8526   Store2 = DAG.getTruncStore(
8527       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8528       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8529       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8530 
8531   SDValue Result =
8532       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8533   return Result;
8534 }
8535 
8536 SDValue
8537 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8538                                        const SDLoc &DL, EVT DataVT,
8539                                        SelectionDAG &DAG,
8540                                        bool IsCompressedMemory) const {
8541   SDValue Increment;
8542   EVT AddrVT = Addr.getValueType();
8543   EVT MaskVT = Mask.getValueType();
8544   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8545          "Incompatible types of Data and Mask");
8546   if (IsCompressedMemory) {
8547     if (DataVT.isScalableVector())
8548       report_fatal_error(
8549           "Cannot currently handle compressed memory with scalable vectors");
8550     // Incrementing the pointer according to number of '1's in the mask.
8551     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8552     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8553     if (MaskIntVT.getSizeInBits() < 32) {
8554       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8555       MaskIntVT = MVT::i32;
8556     }
8557 
8558     // Count '1's with POPCNT.
8559     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8560     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8561     // Scale is an element size in bytes.
8562     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8563                                     AddrVT);
8564     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8565   } else if (DataVT.isScalableVector()) {
8566     Increment = DAG.getVScale(DL, AddrVT,
8567                               APInt(AddrVT.getFixedSizeInBits(),
8568                                     DataVT.getStoreSize().getKnownMinSize()));
8569   } else
8570     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8571 
8572   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8573 }
8574 
8575 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8576                                        EVT VecVT, const SDLoc &dl,
8577                                        ElementCount SubEC) {
8578   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8579          "Cannot index a scalable vector within a fixed-width vector");
8580 
8581   unsigned NElts = VecVT.getVectorMinNumElements();
8582   unsigned NumSubElts = SubEC.getKnownMinValue();
8583   EVT IdxVT = Idx.getValueType();
8584 
8585   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8586     // If this is a constant index and we know the value plus the number of the
8587     // elements in the subvector minus one is less than the minimum number of
8588     // elements then it's safe to return Idx.
8589     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8590       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8591         return Idx;
8592     SDValue VS =
8593         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8594     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8595     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8596                               DAG.getConstant(NumSubElts, dl, IdxVT));
8597     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8598   }
8599   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8600     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8601     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8602                        DAG.getConstant(Imm, dl, IdxVT));
8603   }
8604   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8605   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8606                      DAG.getConstant(MaxIndex, dl, IdxVT));
8607 }
8608 
8609 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8610                                                 SDValue VecPtr, EVT VecVT,
8611                                                 SDValue Index) const {
8612   return getVectorSubVecPointer(
8613       DAG, VecPtr, VecVT,
8614       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8615       Index);
8616 }
8617 
8618 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8619                                                SDValue VecPtr, EVT VecVT,
8620                                                EVT SubVecVT,
8621                                                SDValue Index) const {
8622   SDLoc dl(Index);
8623   // Make sure the index type is big enough to compute in.
8624   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8625 
8626   EVT EltVT = VecVT.getVectorElementType();
8627 
8628   // Calculate the element offset and add it to the pointer.
8629   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8630   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8631          "Converting bits to bytes lost precision");
8632   assert(SubVecVT.getVectorElementType() == EltVT &&
8633          "Sub-vector must be a vector with matching element type");
8634   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8635                                   SubVecVT.getVectorElementCount());
8636 
8637   EVT IdxVT = Index.getValueType();
8638   if (SubVecVT.isScalableVector())
8639     Index =
8640         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8641                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8642 
8643   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8644                       DAG.getConstant(EltSize, dl, IdxVT));
8645   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8646 }
8647 
8648 //===----------------------------------------------------------------------===//
8649 // Implementation of Emulated TLS Model
8650 //===----------------------------------------------------------------------===//
8651 
8652 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8653                                                 SelectionDAG &DAG) const {
8654   // Access to address of TLS varialbe xyz is lowered to a function call:
8655   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8656   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8657   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8658   SDLoc dl(GA);
8659 
8660   ArgListTy Args;
8661   ArgListEntry Entry;
8662   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8663   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8664   StringRef EmuTlsVarName(NameString);
8665   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8666   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8667   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8668   Entry.Ty = VoidPtrType;
8669   Args.push_back(Entry);
8670 
8671   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8672 
8673   TargetLowering::CallLoweringInfo CLI(DAG);
8674   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8675   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8676   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8677 
8678   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8679   // At last for X86 targets, maybe good for other targets too?
8680   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8681   MFI.setAdjustsStack(true); // Is this only for X86 target?
8682   MFI.setHasCalls(true);
8683 
8684   assert((GA->getOffset() == 0) &&
8685          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8686   return CallResult.first;
8687 }
8688 
8689 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8690                                                 SelectionDAG &DAG) const {
8691   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8692   if (!isCtlzFast())
8693     return SDValue();
8694   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8695   SDLoc dl(Op);
8696   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8697     if (C->isZero() && CC == ISD::SETEQ) {
8698       EVT VT = Op.getOperand(0).getValueType();
8699       SDValue Zext = Op.getOperand(0);
8700       if (VT.bitsLT(MVT::i32)) {
8701         VT = MVT::i32;
8702         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8703       }
8704       unsigned Log2b = Log2_32(VT.getSizeInBits());
8705       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8706       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8707                                 DAG.getConstant(Log2b, dl, MVT::i32));
8708       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8709     }
8710   }
8711   return SDValue();
8712 }
8713 
8714 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8715   SDValue Op0 = Node->getOperand(0);
8716   SDValue Op1 = Node->getOperand(1);
8717   EVT VT = Op0.getValueType();
8718   unsigned Opcode = Node->getOpcode();
8719   SDLoc DL(Node);
8720 
8721   // umin(x,y) -> sub(x,usubsat(x,y))
8722   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8723       isOperationLegal(ISD::USUBSAT, VT)) {
8724     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8725                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8726   }
8727 
8728   // umax(x,y) -> add(x,usubsat(y,x))
8729   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8730       isOperationLegal(ISD::USUBSAT, VT)) {
8731     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8732                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8733   }
8734 
8735   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8736   ISD::CondCode CC;
8737   switch (Opcode) {
8738   default: llvm_unreachable("How did we get here?");
8739   case ISD::SMAX: CC = ISD::SETGT; break;
8740   case ISD::SMIN: CC = ISD::SETLT; break;
8741   case ISD::UMAX: CC = ISD::SETUGT; break;
8742   case ISD::UMIN: CC = ISD::SETULT; break;
8743   }
8744 
8745   // FIXME: Should really try to split the vector in case it's legal on a
8746   // subvector.
8747   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8748     return DAG.UnrollVectorOp(Node);
8749 
8750   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8751   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8752   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8753 }
8754 
8755 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8756   unsigned Opcode = Node->getOpcode();
8757   SDValue LHS = Node->getOperand(0);
8758   SDValue RHS = Node->getOperand(1);
8759   EVT VT = LHS.getValueType();
8760   SDLoc dl(Node);
8761 
8762   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8763   assert(VT.isInteger() && "Expected operands to be integers");
8764 
8765   // usub.sat(a, b) -> umax(a, b) - b
8766   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8767     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8768     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8769   }
8770 
8771   // uadd.sat(a, b) -> umin(a, ~b) + b
8772   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8773     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8774     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8775     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8776   }
8777 
8778   unsigned OverflowOp;
8779   switch (Opcode) {
8780   case ISD::SADDSAT:
8781     OverflowOp = ISD::SADDO;
8782     break;
8783   case ISD::UADDSAT:
8784     OverflowOp = ISD::UADDO;
8785     break;
8786   case ISD::SSUBSAT:
8787     OverflowOp = ISD::SSUBO;
8788     break;
8789   case ISD::USUBSAT:
8790     OverflowOp = ISD::USUBO;
8791     break;
8792   default:
8793     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8794                      "addition or subtraction node.");
8795   }
8796 
8797   // FIXME: Should really try to split the vector in case it's legal on a
8798   // subvector.
8799   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8800     return DAG.UnrollVectorOp(Node);
8801 
8802   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8803   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8804   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8805   SDValue SumDiff = Result.getValue(0);
8806   SDValue Overflow = Result.getValue(1);
8807   SDValue Zero = DAG.getConstant(0, dl, VT);
8808   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8809 
8810   if (Opcode == ISD::UADDSAT) {
8811     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8812       // (LHS + RHS) | OverflowMask
8813       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8814       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8815     }
8816     // Overflow ? 0xffff.... : (LHS + RHS)
8817     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8818   }
8819 
8820   if (Opcode == ISD::USUBSAT) {
8821     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8822       // (LHS - RHS) & ~OverflowMask
8823       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8824       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8825       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8826     }
8827     // Overflow ? 0 : (LHS - RHS)
8828     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8829   }
8830 
8831   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8832   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8833   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8834   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8835                               DAG.getConstant(BitWidth - 1, dl, VT));
8836   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8837   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8838 }
8839 
8840 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8841   unsigned Opcode = Node->getOpcode();
8842   bool IsSigned = Opcode == ISD::SSHLSAT;
8843   SDValue LHS = Node->getOperand(0);
8844   SDValue RHS = Node->getOperand(1);
8845   EVT VT = LHS.getValueType();
8846   SDLoc dl(Node);
8847 
8848   assert((Node->getOpcode() == ISD::SSHLSAT ||
8849           Node->getOpcode() == ISD::USHLSAT) &&
8850           "Expected a SHLSAT opcode");
8851   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8852   assert(VT.isInteger() && "Expected operands to be integers");
8853 
8854   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8855 
8856   unsigned BW = VT.getScalarSizeInBits();
8857   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8858   SDValue Orig =
8859       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8860 
8861   SDValue SatVal;
8862   if (IsSigned) {
8863     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8864     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8865     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8866                              SatMin, SatMax, ISD::SETLT);
8867   } else {
8868     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8869   }
8870   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8871 
8872   return Result;
8873 }
8874 
8875 SDValue
8876 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8877   assert((Node->getOpcode() == ISD::SMULFIX ||
8878           Node->getOpcode() == ISD::UMULFIX ||
8879           Node->getOpcode() == ISD::SMULFIXSAT ||
8880           Node->getOpcode() == ISD::UMULFIXSAT) &&
8881          "Expected a fixed point multiplication opcode");
8882 
8883   SDLoc dl(Node);
8884   SDValue LHS = Node->getOperand(0);
8885   SDValue RHS = Node->getOperand(1);
8886   EVT VT = LHS.getValueType();
8887   unsigned Scale = Node->getConstantOperandVal(2);
8888   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8889                      Node->getOpcode() == ISD::UMULFIXSAT);
8890   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8891                  Node->getOpcode() == ISD::SMULFIXSAT);
8892   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8893   unsigned VTSize = VT.getScalarSizeInBits();
8894 
8895   if (!Scale) {
8896     // [us]mul.fix(a, b, 0) -> mul(a, b)
8897     if (!Saturating) {
8898       if (isOperationLegalOrCustom(ISD::MUL, VT))
8899         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8900     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8901       SDValue Result =
8902           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8903       SDValue Product = Result.getValue(0);
8904       SDValue Overflow = Result.getValue(1);
8905       SDValue Zero = DAG.getConstant(0, dl, VT);
8906 
8907       APInt MinVal = APInt::getSignedMinValue(VTSize);
8908       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8909       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8910       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8911       // Xor the inputs, if resulting sign bit is 0 the product will be
8912       // positive, else negative.
8913       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8914       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8915       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8916       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8917     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8918       SDValue Result =
8919           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8920       SDValue Product = Result.getValue(0);
8921       SDValue Overflow = Result.getValue(1);
8922 
8923       APInt MaxVal = APInt::getMaxValue(VTSize);
8924       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8925       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8926     }
8927   }
8928 
8929   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8930          "Expected scale to be less than the number of bits if signed or at "
8931          "most the number of bits if unsigned.");
8932   assert(LHS.getValueType() == RHS.getValueType() &&
8933          "Expected both operands to be the same type");
8934 
8935   // Get the upper and lower bits of the result.
8936   SDValue Lo, Hi;
8937   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8938   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8939   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8940     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8941     Lo = Result.getValue(0);
8942     Hi = Result.getValue(1);
8943   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8944     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8945     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8946   } else if (VT.isVector()) {
8947     return SDValue();
8948   } else {
8949     report_fatal_error("Unable to expand fixed point multiplication.");
8950   }
8951 
8952   if (Scale == VTSize)
8953     // Result is just the top half since we'd be shifting by the width of the
8954     // operand. Overflow impossible so this works for both UMULFIX and
8955     // UMULFIXSAT.
8956     return Hi;
8957 
8958   // The result will need to be shifted right by the scale since both operands
8959   // are scaled. The result is given to us in 2 halves, so we only want part of
8960   // both in the result.
8961   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8962   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8963                                DAG.getConstant(Scale, dl, ShiftTy));
8964   if (!Saturating)
8965     return Result;
8966 
8967   if (!Signed) {
8968     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8969     // widened multiplication) aren't all zeroes.
8970 
8971     // Saturate to max if ((Hi >> Scale) != 0),
8972     // which is the same as if (Hi > ((1 << Scale) - 1))
8973     APInt MaxVal = APInt::getMaxValue(VTSize);
8974     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8975                                       dl, VT);
8976     Result = DAG.getSelectCC(dl, Hi, LowMask,
8977                              DAG.getConstant(MaxVal, dl, VT), Result,
8978                              ISD::SETUGT);
8979 
8980     return Result;
8981   }
8982 
8983   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8984   // widened multiplication) aren't all ones or all zeroes.
8985 
8986   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8987   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8988 
8989   if (Scale == 0) {
8990     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8991                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8992     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8993     // Saturated to SatMin if wide product is negative, and SatMax if wide
8994     // product is positive ...
8995     SDValue Zero = DAG.getConstant(0, dl, VT);
8996     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8997                                                ISD::SETLT);
8998     // ... but only if we overflowed.
8999     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
9000   }
9001 
9002   //  We handled Scale==0 above so all the bits to examine is in Hi.
9003 
9004   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9005   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9006   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9007                                     dl, VT);
9008   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9009   // Saturate to min if (Hi >> (Scale - 1)) < -1),
9010   // which is the same as if (HI < (-1 << (Scale - 1))
9011   SDValue HighMask =
9012       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9013                       dl, VT);
9014   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9015   return Result;
9016 }
9017 
9018 SDValue
9019 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9020                                     SDValue LHS, SDValue RHS,
9021                                     unsigned Scale, SelectionDAG &DAG) const {
9022   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9023           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9024          "Expected a fixed point division opcode");
9025 
9026   EVT VT = LHS.getValueType();
9027   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9028   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9029   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9030 
9031   // If there is enough room in the type to upscale the LHS or downscale the
9032   // RHS before the division, we can perform it in this type without having to
9033   // resize. For signed operations, the LHS headroom is the number of
9034   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9035   // The headroom for the RHS is the number of trailing zeroes.
9036   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9037                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9038   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9039 
9040   // For signed saturating operations, we need to be able to detect true integer
9041   // division overflow; that is, when you have MIN / -EPS. However, this
9042   // is undefined behavior and if we emit divisions that could take such
9043   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9044   // example).
9045   // Avoid this by requiring an extra bit so that we never get this case.
9046   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9047   // signed saturating division, we need to emit a whopping 32-bit division.
9048   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9049     return SDValue();
9050 
9051   unsigned LHSShift = std::min(LHSLead, Scale);
9052   unsigned RHSShift = Scale - LHSShift;
9053 
9054   // At this point, we know that if we shift the LHS up by LHSShift and the
9055   // RHS down by RHSShift, we can emit a regular division with a final scaling
9056   // factor of Scale.
9057 
9058   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9059   if (LHSShift)
9060     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9061                       DAG.getConstant(LHSShift, dl, ShiftTy));
9062   if (RHSShift)
9063     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9064                       DAG.getConstant(RHSShift, dl, ShiftTy));
9065 
9066   SDValue Quot;
9067   if (Signed) {
9068     // For signed operations, if the resulting quotient is negative and the
9069     // remainder is nonzero, subtract 1 from the quotient to round towards
9070     // negative infinity.
9071     SDValue Rem;
9072     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9073     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9074     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9075     if (isTypeLegal(VT) &&
9076         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9077       Quot = DAG.getNode(ISD::SDIVREM, dl,
9078                          DAG.getVTList(VT, VT),
9079                          LHS, RHS);
9080       Rem = Quot.getValue(1);
9081       Quot = Quot.getValue(0);
9082     } else {
9083       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9084                          LHS, RHS);
9085       Rem = DAG.getNode(ISD::SREM, dl, VT,
9086                         LHS, RHS);
9087     }
9088     SDValue Zero = DAG.getConstant(0, dl, VT);
9089     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9090     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9091     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9092     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9093     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9094                                DAG.getConstant(1, dl, VT));
9095     Quot = DAG.getSelect(dl, VT,
9096                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9097                          Sub1, Quot);
9098   } else
9099     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9100                        LHS, RHS);
9101 
9102   return Quot;
9103 }
9104 
9105 void TargetLowering::expandUADDSUBO(
9106     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9107   SDLoc dl(Node);
9108   SDValue LHS = Node->getOperand(0);
9109   SDValue RHS = Node->getOperand(1);
9110   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9111 
9112   // If ADD/SUBCARRY is legal, use that instead.
9113   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9114   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9115     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9116     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9117                                     { LHS, RHS, CarryIn });
9118     Result = SDValue(NodeCarry.getNode(), 0);
9119     Overflow = SDValue(NodeCarry.getNode(), 1);
9120     return;
9121   }
9122 
9123   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9124                             LHS.getValueType(), LHS, RHS);
9125 
9126   EVT ResultType = Node->getValueType(1);
9127   EVT SetCCType = getSetCCResultType(
9128       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9129   SDValue SetCC;
9130   if (IsAdd && isOneConstant(RHS)) {
9131     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9132     // the live range of X. We assume comparing with 0 is cheap.
9133     // The general case (X + C) < C is not necessarily beneficial. Although we
9134     // reduce the live range of X, we may introduce the materialization of
9135     // constant C.
9136     SetCC =
9137         DAG.getSetCC(dl, SetCCType, Result,
9138                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9139   } else {
9140     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9141     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9142   }
9143   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9144 }
9145 
9146 void TargetLowering::expandSADDSUBO(
9147     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9148   SDLoc dl(Node);
9149   SDValue LHS = Node->getOperand(0);
9150   SDValue RHS = Node->getOperand(1);
9151   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9152 
9153   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9154                             LHS.getValueType(), LHS, RHS);
9155 
9156   EVT ResultType = Node->getValueType(1);
9157   EVT OType = getSetCCResultType(
9158       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9159 
9160   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9161   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9162   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9163     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9164     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9165     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9166     return;
9167   }
9168 
9169   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9170 
9171   // For an addition, the result should be less than one of the operands (LHS)
9172   // if and only if the other operand (RHS) is negative, otherwise there will
9173   // be overflow.
9174   // For a subtraction, the result should be less than one of the operands
9175   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9176   // otherwise there will be overflow.
9177   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9178   SDValue ConditionRHS =
9179       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9180 
9181   Overflow = DAG.getBoolExtOrTrunc(
9182       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9183       ResultType, ResultType);
9184 }
9185 
9186 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9187                                 SDValue &Overflow, SelectionDAG &DAG) const {
9188   SDLoc dl(Node);
9189   EVT VT = Node->getValueType(0);
9190   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9191   SDValue LHS = Node->getOperand(0);
9192   SDValue RHS = Node->getOperand(1);
9193   bool isSigned = Node->getOpcode() == ISD::SMULO;
9194 
9195   // For power-of-two multiplications we can use a simpler shift expansion.
9196   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9197     const APInt &C = RHSC->getAPIntValue();
9198     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9199     if (C.isPowerOf2()) {
9200       // smulo(x, signed_min) is same as umulo(x, signed_min).
9201       bool UseArithShift = isSigned && !C.isMinSignedValue();
9202       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9203       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9204       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9205       Overflow = DAG.getSetCC(dl, SetCCVT,
9206           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9207                       dl, VT, Result, ShiftAmt),
9208           LHS, ISD::SETNE);
9209       return true;
9210     }
9211   }
9212 
9213   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9214   if (VT.isVector())
9215     WideVT =
9216         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9217 
9218   SDValue BottomHalf;
9219   SDValue TopHalf;
9220   static const unsigned Ops[2][3] =
9221       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9222         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9223   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9224     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9225     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9226   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9227     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9228                              RHS);
9229     TopHalf = BottomHalf.getValue(1);
9230   } else if (isTypeLegal(WideVT)) {
9231     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9232     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9233     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9234     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9235     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9236         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9237     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9238                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9239   } else {
9240     if (VT.isVector())
9241       return false;
9242 
9243     // We can fall back to a libcall with an illegal type for the MUL if we
9244     // have a libcall big enough.
9245     // Also, we can fall back to a division in some cases, but that's a big
9246     // performance hit in the general case.
9247     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9248     if (WideVT == MVT::i16)
9249       LC = RTLIB::MUL_I16;
9250     else if (WideVT == MVT::i32)
9251       LC = RTLIB::MUL_I32;
9252     else if (WideVT == MVT::i64)
9253       LC = RTLIB::MUL_I64;
9254     else if (WideVT == MVT::i128)
9255       LC = RTLIB::MUL_I128;
9256     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9257 
9258     SDValue HiLHS;
9259     SDValue HiRHS;
9260     if (isSigned) {
9261       // The high part is obtained by SRA'ing all but one of the bits of low
9262       // part.
9263       unsigned LoSize = VT.getFixedSizeInBits();
9264       HiLHS =
9265           DAG.getNode(ISD::SRA, dl, VT, LHS,
9266                       DAG.getConstant(LoSize - 1, dl,
9267                                       getPointerTy(DAG.getDataLayout())));
9268       HiRHS =
9269           DAG.getNode(ISD::SRA, dl, VT, RHS,
9270                       DAG.getConstant(LoSize - 1, dl,
9271                                       getPointerTy(DAG.getDataLayout())));
9272     } else {
9273         HiLHS = DAG.getConstant(0, dl, VT);
9274         HiRHS = DAG.getConstant(0, dl, VT);
9275     }
9276 
9277     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9278     // pre-lowered to the correct types. This all depends upon WideVT not
9279     // being a legal type for the architecture and thus has to be split to
9280     // two arguments.
9281     SDValue Ret;
9282     TargetLowering::MakeLibCallOptions CallOptions;
9283     CallOptions.setSExt(isSigned);
9284     CallOptions.setIsPostTypeLegalization(true);
9285     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9286       // Halves of WideVT are packed into registers in different order
9287       // depending on platform endianness. This is usually handled by
9288       // the C calling convention, but we can't defer to it in
9289       // the legalizer.
9290       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9291       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9292     } else {
9293       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9294       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9295     }
9296     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9297            "Ret value is a collection of constituent nodes holding result.");
9298     if (DAG.getDataLayout().isLittleEndian()) {
9299       // Same as above.
9300       BottomHalf = Ret.getOperand(0);
9301       TopHalf = Ret.getOperand(1);
9302     } else {
9303       BottomHalf = Ret.getOperand(1);
9304       TopHalf = Ret.getOperand(0);
9305     }
9306   }
9307 
9308   Result = BottomHalf;
9309   if (isSigned) {
9310     SDValue ShiftAmt = DAG.getConstant(
9311         VT.getScalarSizeInBits() - 1, dl,
9312         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9313     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9314     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9315   } else {
9316     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9317                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9318   }
9319 
9320   // Truncate the result if SetCC returns a larger type than needed.
9321   EVT RType = Node->getValueType(1);
9322   if (RType.bitsLT(Overflow.getValueType()))
9323     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9324 
9325   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9326          "Unexpected result type for S/UMULO legalization");
9327   return true;
9328 }
9329 
9330 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9331   SDLoc dl(Node);
9332   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9333   SDValue Op = Node->getOperand(0);
9334   EVT VT = Op.getValueType();
9335 
9336   if (VT.isScalableVector())
9337     report_fatal_error(
9338         "Expanding reductions for scalable vectors is undefined.");
9339 
9340   // Try to use a shuffle reduction for power of two vectors.
9341   if (VT.isPow2VectorType()) {
9342     while (VT.getVectorNumElements() > 1) {
9343       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9344       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9345         break;
9346 
9347       SDValue Lo, Hi;
9348       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9349       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9350       VT = HalfVT;
9351     }
9352   }
9353 
9354   EVT EltVT = VT.getVectorElementType();
9355   unsigned NumElts = VT.getVectorNumElements();
9356 
9357   SmallVector<SDValue, 8> Ops;
9358   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9359 
9360   SDValue Res = Ops[0];
9361   for (unsigned i = 1; i < NumElts; i++)
9362     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9363 
9364   // Result type may be wider than element type.
9365   if (EltVT != Node->getValueType(0))
9366     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9367   return Res;
9368 }
9369 
9370 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9371   SDLoc dl(Node);
9372   SDValue AccOp = Node->getOperand(0);
9373   SDValue VecOp = Node->getOperand(1);
9374   SDNodeFlags Flags = Node->getFlags();
9375 
9376   EVT VT = VecOp.getValueType();
9377   EVT EltVT = VT.getVectorElementType();
9378 
9379   if (VT.isScalableVector())
9380     report_fatal_error(
9381         "Expanding reductions for scalable vectors is undefined.");
9382 
9383   unsigned NumElts = VT.getVectorNumElements();
9384 
9385   SmallVector<SDValue, 8> Ops;
9386   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9387 
9388   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9389 
9390   SDValue Res = AccOp;
9391   for (unsigned i = 0; i < NumElts; i++)
9392     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9393 
9394   return Res;
9395 }
9396 
9397 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9398                                SelectionDAG &DAG) const {
9399   EVT VT = Node->getValueType(0);
9400   SDLoc dl(Node);
9401   bool isSigned = Node->getOpcode() == ISD::SREM;
9402   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9403   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9404   SDValue Dividend = Node->getOperand(0);
9405   SDValue Divisor = Node->getOperand(1);
9406   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9407     SDVTList VTs = DAG.getVTList(VT, VT);
9408     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9409     return true;
9410   }
9411   if (isOperationLegalOrCustom(DivOpc, VT)) {
9412     // X % Y -> X-X/Y*Y
9413     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9414     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9415     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9416     return true;
9417   }
9418   return false;
9419 }
9420 
9421 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9422                                             SelectionDAG &DAG) const {
9423   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9424   SDLoc dl(SDValue(Node, 0));
9425   SDValue Src = Node->getOperand(0);
9426 
9427   // DstVT is the result type, while SatVT is the size to which we saturate
9428   EVT SrcVT = Src.getValueType();
9429   EVT DstVT = Node->getValueType(0);
9430 
9431   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9432   unsigned SatWidth = SatVT.getScalarSizeInBits();
9433   unsigned DstWidth = DstVT.getScalarSizeInBits();
9434   assert(SatWidth <= DstWidth &&
9435          "Expected saturation width smaller than result width");
9436 
9437   // Determine minimum and maximum integer values and their corresponding
9438   // floating-point values.
9439   APInt MinInt, MaxInt;
9440   if (IsSigned) {
9441     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9442     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9443   } else {
9444     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9445     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9446   }
9447 
9448   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9449   // libcall emission cannot handle this. Large result types will fail.
9450   if (SrcVT == MVT::f16) {
9451     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9452     SrcVT = Src.getValueType();
9453   }
9454 
9455   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9456   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9457 
9458   APFloat::opStatus MinStatus =
9459       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9460   APFloat::opStatus MaxStatus =
9461       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9462   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9463                              !(MaxStatus & APFloat::opStatus::opInexact);
9464 
9465   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9466   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9467 
9468   // If the integer bounds are exactly representable as floats and min/max are
9469   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9470   // of comparisons and selects.
9471   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9472                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9473   if (AreExactFloatBounds && MinMaxLegal) {
9474     SDValue Clamped = Src;
9475 
9476     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9477     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9478     // Clamp by MaxFloat from above. NaN cannot occur.
9479     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9480     // Convert clamped value to integer.
9481     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9482                                   dl, DstVT, Clamped);
9483 
9484     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9485     // which will cast to zero.
9486     if (!IsSigned)
9487       return FpToInt;
9488 
9489     // Otherwise, select 0 if Src is NaN.
9490     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9491     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9492                            ISD::CondCode::SETUO);
9493   }
9494 
9495   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9496   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9497 
9498   // Result of direct conversion. The assumption here is that the operation is
9499   // non-trapping and it's fine to apply it to an out-of-range value if we
9500   // select it away later.
9501   SDValue FpToInt =
9502       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9503 
9504   SDValue Select = FpToInt;
9505 
9506   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9507   // MinInt if Src is NaN.
9508   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9509                            ISD::CondCode::SETULT);
9510   // If Src OGT MaxFloat, select MaxInt.
9511   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9512                            ISD::CondCode::SETOGT);
9513 
9514   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9515   // is already zero.
9516   if (!IsSigned)
9517     return Select;
9518 
9519   // Otherwise, select 0 if Src is NaN.
9520   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9521   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9522 }
9523 
9524 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9525                                            SelectionDAG &DAG) const {
9526   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9527   assert(Node->getValueType(0).isScalableVector() &&
9528          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9529 
9530   EVT VT = Node->getValueType(0);
9531   SDValue V1 = Node->getOperand(0);
9532   SDValue V2 = Node->getOperand(1);
9533   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9534   SDLoc DL(Node);
9535 
9536   // Expand through memory thusly:
9537   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9538   //  Store V1, Ptr
9539   //  Store V2, Ptr + sizeof(V1)
9540   //  If (Imm < 0)
9541   //    TrailingElts = -Imm
9542   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9543   //  else
9544   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9545   //  Res = Load Ptr
9546 
9547   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9548 
9549   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9550                                VT.getVectorElementCount() * 2);
9551   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9552   EVT PtrVT = StackPtr.getValueType();
9553   auto &MF = DAG.getMachineFunction();
9554   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9555   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9556 
9557   // Store the lo part of CONCAT_VECTORS(V1, V2)
9558   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9559   // Store the hi part of CONCAT_VECTORS(V1, V2)
9560   SDValue OffsetToV2 = DAG.getVScale(
9561       DL, PtrVT,
9562       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9563   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9564   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9565 
9566   if (Imm >= 0) {
9567     // Load back the required element. getVectorElementPointer takes care of
9568     // clamping the index if it's out-of-bounds.
9569     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9570     // Load the spliced result
9571     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9572                        MachinePointerInfo::getUnknownStack(MF));
9573   }
9574 
9575   uint64_t TrailingElts = -Imm;
9576 
9577   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9578   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9579   SDValue TrailingBytes =
9580       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9581 
9582   if (TrailingElts > VT.getVectorMinNumElements()) {
9583     SDValue VLBytes = DAG.getVScale(
9584         DL, PtrVT,
9585         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9586     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9587   }
9588 
9589   // Calculate the start address of the spliced result.
9590   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9591 
9592   // Load the spliced result
9593   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9594                      MachinePointerInfo::getUnknownStack(MF));
9595 }
9596 
9597 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9598                                            SDValue &LHS, SDValue &RHS,
9599                                            SDValue &CC, SDValue Mask,
9600                                            SDValue EVL, bool &NeedInvert,
9601                                            const SDLoc &dl, SDValue &Chain,
9602                                            bool IsSignaling) const {
9603   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9604   MVT OpVT = LHS.getSimpleValueType();
9605   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9606   NeedInvert = false;
9607   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9608   bool IsNonVP = !EVL;
9609   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9610   default:
9611     llvm_unreachable("Unknown condition code action!");
9612   case TargetLowering::Legal:
9613     // Nothing to do.
9614     break;
9615   case TargetLowering::Expand: {
9616     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9617     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9618       std::swap(LHS, RHS);
9619       CC = DAG.getCondCode(InvCC);
9620       return true;
9621     }
9622     // Swapping operands didn't work. Try inverting the condition.
9623     bool NeedSwap = false;
9624     InvCC = getSetCCInverse(CCCode, OpVT);
9625     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9626       // If inverting the condition is not enough, try swapping operands
9627       // on top of it.
9628       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9629       NeedSwap = true;
9630     }
9631     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9632       CC = DAG.getCondCode(InvCC);
9633       NeedInvert = true;
9634       if (NeedSwap)
9635         std::swap(LHS, RHS);
9636       return true;
9637     }
9638 
9639     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9640     unsigned Opc = 0;
9641     switch (CCCode) {
9642     default:
9643       llvm_unreachable("Don't know how to expand this condition!");
9644     case ISD::SETUO:
9645       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9646         CC1 = ISD::SETUNE;
9647         CC2 = ISD::SETUNE;
9648         Opc = ISD::OR;
9649         break;
9650       }
9651       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9652              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9653       NeedInvert = true;
9654       LLVM_FALLTHROUGH;
9655     case ISD::SETO:
9656       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9657              "If SETO is expanded, SETOEQ must be legal!");
9658       CC1 = ISD::SETOEQ;
9659       CC2 = ISD::SETOEQ;
9660       Opc = ISD::AND;
9661       break;
9662     case ISD::SETONE:
9663     case ISD::SETUEQ:
9664       // If the SETUO or SETO CC isn't legal, we might be able to use
9665       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9666       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9667       // the operands.
9668       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9669       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9670           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9671            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9672         CC1 = ISD::SETOGT;
9673         CC2 = ISD::SETOLT;
9674         Opc = ISD::OR;
9675         NeedInvert = ((unsigned)CCCode & 0x8U);
9676         break;
9677       }
9678       LLVM_FALLTHROUGH;
9679     case ISD::SETOEQ:
9680     case ISD::SETOGT:
9681     case ISD::SETOGE:
9682     case ISD::SETOLT:
9683     case ISD::SETOLE:
9684     case ISD::SETUNE:
9685     case ISD::SETUGT:
9686     case ISD::SETUGE:
9687     case ISD::SETULT:
9688     case ISD::SETULE:
9689       // If we are floating point, assign and break, otherwise fall through.
9690       if (!OpVT.isInteger()) {
9691         // We can use the 4th bit to tell if we are the unordered
9692         // or ordered version of the opcode.
9693         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9694         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9695         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9696         break;
9697       }
9698       // Fallthrough if we are unsigned integer.
9699       LLVM_FALLTHROUGH;
9700     case ISD::SETLE:
9701     case ISD::SETGT:
9702     case ISD::SETGE:
9703     case ISD::SETLT:
9704     case ISD::SETNE:
9705     case ISD::SETEQ:
9706       // If all combinations of inverting the condition and swapping operands
9707       // didn't work then we have no means to expand the condition.
9708       llvm_unreachable("Don't know how to expand this condition!");
9709     }
9710 
9711     SDValue SetCC1, SetCC2;
9712     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9713       // If we aren't the ordered or unorder operation,
9714       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9715       if (IsNonVP) {
9716         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9717         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9718       } else {
9719         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9720         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9721       }
9722     } else {
9723       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9724       if (IsNonVP) {
9725         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9726         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9727       } else {
9728         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9729         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9730       }
9731     }
9732     if (Chain)
9733       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9734                           SetCC2.getValue(1));
9735     if (IsNonVP)
9736       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9737     else {
9738       // Transform the binary opcode to the VP equivalent.
9739       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9740       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9741       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9742     }
9743     RHS = SDValue();
9744     CC = SDValue();
9745     return true;
9746   }
9747   }
9748   return false;
9749 }
9750