1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 } 116 117 /// Generate a libcall taking the given operands as arguments and returning a 118 /// result of type RetVT. 119 std::pair<SDValue, SDValue> 120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 121 ArrayRef<SDValue> Ops, bool isSigned, 122 const SDLoc &dl, bool doesNotReturn, 123 bool isReturnValueUsed, 124 bool isPostTypeLegalization) const { 125 TargetLowering::ArgListTy Args; 126 Args.reserve(Ops.size()); 127 128 TargetLowering::ArgListEntry Entry; 129 for (SDValue Op : Ops) { 130 Entry.Node = Op; 131 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 132 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 134 Args.push_back(Entry); 135 } 136 137 if (LC == RTLIB::UNKNOWN_LIBCALL) 138 report_fatal_error("Unsupported library call operation!"); 139 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 140 getPointerTy(DAG.getDataLayout())); 141 142 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 143 TargetLowering::CallLoweringInfo CLI(DAG); 144 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 145 CLI.setDebugLoc(dl) 146 .setChain(DAG.getEntryNode()) 147 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 148 .setNoReturn(doesNotReturn) 149 .setDiscardResult(!isReturnValueUsed) 150 .setIsPostTypeLegalization(isPostTypeLegalization) 151 .setSExtResult(signExtend) 152 .setZExtResult(!signExtend); 153 return LowerCallTo(CLI); 154 } 155 156 /// Soften the operands of a comparison. This code is shared among BR_CC, 157 /// SELECT_CC, and SETCC handlers. 158 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 159 SDValue &NewLHS, SDValue &NewRHS, 160 ISD::CondCode &CCCode, 161 const SDLoc &dl) const { 162 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 163 && "Unsupported setcc type!"); 164 165 // Expand into one or more soft-fp libcall(s). 166 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 167 bool ShouldInvertCC = false; 168 switch (CCCode) { 169 case ISD::SETEQ: 170 case ISD::SETOEQ: 171 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 172 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 173 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 174 break; 175 case ISD::SETNE: 176 case ISD::SETUNE: 177 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 178 (VT == MVT::f64) ? RTLIB::UNE_F64 : 179 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 180 break; 181 case ISD::SETGE: 182 case ISD::SETOGE: 183 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 184 (VT == MVT::f64) ? RTLIB::OGE_F64 : 185 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 186 break; 187 case ISD::SETLT: 188 case ISD::SETOLT: 189 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 190 (VT == MVT::f64) ? RTLIB::OLT_F64 : 191 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 192 break; 193 case ISD::SETLE: 194 case ISD::SETOLE: 195 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 196 (VT == MVT::f64) ? RTLIB::OLE_F64 : 197 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 198 break; 199 case ISD::SETGT: 200 case ISD::SETOGT: 201 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 202 (VT == MVT::f64) ? RTLIB::OGT_F64 : 203 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 204 break; 205 case ISD::SETUO: 206 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 207 (VT == MVT::f64) ? RTLIB::UO_F64 : 208 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 209 break; 210 case ISD::SETO: 211 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 212 (VT == MVT::f64) ? RTLIB::O_F64 : 213 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 214 break; 215 case ISD::SETONE: 216 // SETONE = SETOLT | SETOGT 217 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 218 (VT == MVT::f64) ? RTLIB::OLT_F64 : 219 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 221 (VT == MVT::f64) ? RTLIB::OGT_F64 : 222 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 223 break; 224 case ISD::SETUEQ: 225 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 226 (VT == MVT::f64) ? RTLIB::UO_F64 : 227 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 228 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 229 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 230 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 231 break; 232 default: 233 // Invert CC for unordered comparisons 234 ShouldInvertCC = true; 235 switch (CCCode) { 236 case ISD::SETULT: 237 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 238 (VT == MVT::f64) ? RTLIB::OGE_F64 : 239 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 240 break; 241 case ISD::SETULE: 242 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 243 (VT == MVT::f64) ? RTLIB::OGT_F64 : 244 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 245 break; 246 case ISD::SETUGT: 247 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 248 (VT == MVT::f64) ? RTLIB::OLE_F64 : 249 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 250 break; 251 case ISD::SETUGE: 252 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 253 (VT == MVT::f64) ? RTLIB::OLT_F64 : 254 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 255 break; 256 default: llvm_unreachable("Do not know how to soften this setcc!"); 257 } 258 } 259 260 // Use the target specific return value for comparions lib calls. 261 EVT RetVT = getCmpLibcallReturnType(); 262 SDValue Ops[2] = {NewLHS, NewRHS}; 263 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 264 dl).first; 265 NewRHS = DAG.getConstant(0, dl, RetVT); 266 267 CCCode = getCmpLibcallCC(LC1); 268 if (ShouldInvertCC) 269 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 270 271 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 272 SDValue Tmp = DAG.getNode( 273 ISD::SETCC, dl, 274 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 275 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 276 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 277 dl).first; 278 NewLHS = DAG.getNode( 279 ISD::SETCC, dl, 280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 281 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 282 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 283 NewRHS = SDValue(); 284 } 285 } 286 287 /// Return the entry encoding for a jump table in the current function. The 288 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 289 unsigned TargetLowering::getJumpTableEncoding() const { 290 // In non-pic modes, just use the address of a block. 291 if (!isPositionIndependent()) 292 return MachineJumpTableInfo::EK_BlockAddress; 293 294 // In PIC mode, if the target supports a GPRel32 directive, use it. 295 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 296 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 297 298 // Otherwise, use a label difference. 299 return MachineJumpTableInfo::EK_LabelDifference32; 300 } 301 302 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 303 SelectionDAG &DAG) const { 304 // If our PIC model is GP relative, use the global offset table as the base. 305 unsigned JTEncoding = getJumpTableEncoding(); 306 307 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 308 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 309 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 310 311 return Table; 312 } 313 314 /// This returns the relocation base for the given PIC jumptable, the same as 315 /// getPICJumpTableRelocBase, but as an MCExpr. 316 const MCExpr * 317 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 318 unsigned JTI,MCContext &Ctx) const{ 319 // The normal PIC reloc base is the label at the start of the jump table. 320 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 321 } 322 323 bool 324 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 325 const TargetMachine &TM = getTargetMachine(); 326 const GlobalValue *GV = GA->getGlobal(); 327 328 // If the address is not even local to this DSO we will have to load it from 329 // a got and then add the offset. 330 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 331 return false; 332 333 // If the code is position independent we will have to add a base register. 334 if (isPositionIndependent()) 335 return false; 336 337 // Otherwise we can do it. 338 return true; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Optimization Methods 343 //===----------------------------------------------------------------------===// 344 345 /// If the specified instruction has a constant integer operand and there are 346 /// bits set in that constant that are not demanded, then clear those bits and 347 /// return true. 348 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 349 TargetLoweringOpt &TLO) const { 350 SelectionDAG &DAG = TLO.DAG; 351 SDLoc DL(Op); 352 unsigned Opcode = Op.getOpcode(); 353 354 // Do target-specific constant optimization. 355 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 356 return TLO.New.getNode(); 357 358 // FIXME: ISD::SELECT, ISD::SELECT_CC 359 switch (Opcode) { 360 default: 361 break; 362 case ISD::XOR: 363 case ISD::AND: 364 case ISD::OR: { 365 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 366 if (!Op1C) 367 return false; 368 369 // If this is a 'not' op, don't touch it because that's a canonical form. 370 const APInt &C = Op1C->getAPIntValue(); 371 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 372 return false; 373 374 if (!C.isSubsetOf(Demanded)) { 375 EVT VT = Op.getValueType(); 376 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 377 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 378 return TLO.CombineTo(Op, NewOp); 379 } 380 381 break; 382 } 383 } 384 385 return false; 386 } 387 388 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 389 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 390 /// generalized for targets with other types of implicit widening casts. 391 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 392 const APInt &Demanded, 393 TargetLoweringOpt &TLO) const { 394 assert(Op.getNumOperands() == 2 && 395 "ShrinkDemandedOp only supports binary operators!"); 396 assert(Op.getNode()->getNumValues() == 1 && 397 "ShrinkDemandedOp only supports nodes with one result!"); 398 399 SelectionDAG &DAG = TLO.DAG; 400 SDLoc dl(Op); 401 402 // Early return, as this function cannot handle vector types. 403 if (Op.getValueType().isVector()) 404 return false; 405 406 // Don't do this if the node has another user, which may require the 407 // full value. 408 if (!Op.getNode()->hasOneUse()) 409 return false; 410 411 // Search for the smallest integer type with free casts to and from 412 // Op's type. For expedience, just check power-of-2 integer types. 413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 414 unsigned DemandedSize = Demanded.getActiveBits(); 415 unsigned SmallVTBits = DemandedSize; 416 if (!isPowerOf2_32(SmallVTBits)) 417 SmallVTBits = NextPowerOf2(SmallVTBits); 418 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 419 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 420 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 421 TLI.isZExtFree(SmallVT, Op.getValueType())) { 422 // We found a type with free casts. 423 SDValue X = DAG.getNode( 424 Op.getOpcode(), dl, SmallVT, 425 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 426 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 427 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 428 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 429 return TLO.CombineTo(Op, Z); 430 } 431 } 432 return false; 433 } 434 435 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 436 DAGCombinerInfo &DCI) const { 437 SelectionDAG &DAG = DCI.DAG; 438 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 439 !DCI.isBeforeLegalizeOps()); 440 KnownBits Known; 441 442 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 443 if (Simplified) { 444 DCI.AddToWorklist(Op.getNode()); 445 DCI.CommitTargetLoweringOpt(TLO); 446 } 447 return Simplified; 448 } 449 450 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 451 KnownBits &Known, 452 TargetLoweringOpt &TLO, 453 unsigned Depth, 454 bool AssumeSingleUse) const { 455 EVT VT = Op.getValueType(); 456 APInt DemandedElts = VT.isVector() 457 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 458 : APInt(1, 1); 459 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 460 AssumeSingleUse); 461 } 462 463 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 464 /// result of Op are ever used downstream. If we can use this information to 465 /// simplify Op, create a new simplified DAG node and return true, returning the 466 /// original and new nodes in Old and New. Otherwise, analyze the expression and 467 /// return a mask of Known bits for the expression (used to simplify the 468 /// caller). The Known bits may only be accurate for those bits in the 469 /// OriginalDemandedBits and OriginalDemandedElts. 470 bool TargetLowering::SimplifyDemandedBits( 471 SDValue Op, const APInt &OriginalDemandedBits, 472 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 473 unsigned Depth, bool AssumeSingleUse) const { 474 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 475 assert(Op.getScalarValueSizeInBits() == BitWidth && 476 "Mask size mismatches value type size!"); 477 478 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 479 assert((!Op.getValueType().isVector() || 480 NumElts == Op.getValueType().getVectorNumElements()) && 481 "Unexpected vector size"); 482 483 APInt DemandedBits = OriginalDemandedBits; 484 APInt DemandedElts = OriginalDemandedElts; 485 SDLoc dl(Op); 486 auto &DL = TLO.DAG.getDataLayout(); 487 488 // Don't know anything. 489 Known = KnownBits(BitWidth); 490 491 if (Op.getOpcode() == ISD::Constant) { 492 // We know all of the bits for a constant! 493 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 494 Known.Zero = ~Known.One; 495 return false; 496 } 497 498 // Other users may use these bits. 499 EVT VT = Op.getValueType(); 500 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 501 if (Depth != 0) { 502 // If not at the root, Just compute the Known bits to 503 // simplify things downstream. 504 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 505 return false; 506 } 507 // If this is the root being simplified, allow it to have multiple uses, 508 // just set the DemandedBits/Elts to all bits. 509 DemandedBits = APInt::getAllOnesValue(BitWidth); 510 DemandedElts = APInt::getAllOnesValue(NumElts); 511 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 512 // Not demanding any bits/elts from Op. 513 if (!Op.isUndef()) 514 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 515 return false; 516 } else if (Depth == 6) { // Limit search depth. 517 return false; 518 } 519 520 KnownBits Known2, KnownOut; 521 switch (Op.getOpcode()) { 522 case ISD::SCALAR_TO_VECTOR: { 523 if (!DemandedElts[0]) 524 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 525 526 KnownBits SrcKnown; 527 SDValue Src = Op.getOperand(0); 528 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 529 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 530 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 531 return true; 532 Known = SrcKnown.zextOrTrunc(BitWidth, false); 533 break; 534 } 535 case ISD::BUILD_VECTOR: 536 // Collect the known bits that are shared by every constant vector element. 537 Known.Zero.setAllBits(); Known.One.setAllBits(); 538 for (SDValue SrcOp : Op->ops()) { 539 if (!isa<ConstantSDNode>(SrcOp)) { 540 // We can only handle all constant values - bail out with no known bits. 541 Known = KnownBits(BitWidth); 542 return false; 543 } 544 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 545 Known2.Zero = ~Known2.One; 546 547 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 548 if (Known2.One.getBitWidth() != BitWidth) { 549 assert(Known2.getBitWidth() > BitWidth && 550 "Expected BUILD_VECTOR implicit truncation"); 551 Known2 = Known2.trunc(BitWidth); 552 } 553 554 // Known bits are the values that are shared by every element. 555 // TODO: support per-element known bits. 556 Known.One &= Known2.One; 557 Known.Zero &= Known2.Zero; 558 } 559 return false; // Don't fall through, will infinitely loop. 560 case ISD::INSERT_VECTOR_ELT: { 561 SDValue Vec = Op.getOperand(0); 562 SDValue Scl = Op.getOperand(1); 563 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 564 EVT VecVT = Vec.getValueType(); 565 566 // If index isn't constant, assume we need all vector elements AND the 567 // inserted element. 568 APInt DemandedVecElts(OriginalDemandedElts); 569 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 570 unsigned Idx = CIdx->getZExtValue(); 571 DemandedVecElts.clearBit(Idx); 572 573 // Inserted element is not required. 574 if (!OriginalDemandedElts[Idx]) 575 return TLO.CombineTo(Op, Vec); 576 } 577 578 KnownBits KnownScl; 579 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 580 APInt DemandedSclBits = OriginalDemandedBits.zextOrTrunc(NumSclBits); 581 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 582 return true; 583 584 Known = KnownScl.zextOrTrunc(BitWidth, false); 585 586 KnownBits KnownVec; 587 if (SimplifyDemandedBits(Vec, OriginalDemandedBits, DemandedVecElts, 588 KnownVec, TLO, Depth + 1)) 589 return true; 590 591 if (!!DemandedVecElts) { 592 Known.One &= KnownVec.One; 593 Known.Zero &= KnownVec.Zero; 594 } 595 596 return false; 597 } 598 case ISD::CONCAT_VECTORS: { 599 Known.Zero.setAllBits(); 600 Known.One.setAllBits(); 601 EVT SubVT = Op.getOperand(0).getValueType(); 602 unsigned NumSubVecs = Op.getNumOperands(); 603 unsigned NumSubElts = SubVT.getVectorNumElements(); 604 for (unsigned i = 0; i != NumSubVecs; ++i) { 605 APInt DemandedSubElts = 606 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 607 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 608 Known2, TLO, Depth + 1)) 609 return true; 610 // Known bits are shared by every demanded subvector element. 611 if (!!DemandedSubElts) { 612 Known.One &= Known2.One; 613 Known.Zero &= Known2.Zero; 614 } 615 } 616 break; 617 } 618 case ISD::VECTOR_SHUFFLE: { 619 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 620 621 // Collect demanded elements from shuffle operands.. 622 APInt DemandedLHS(NumElts, 0); 623 APInt DemandedRHS(NumElts, 0); 624 for (unsigned i = 0; i != NumElts; ++i) { 625 if (!DemandedElts[i]) 626 continue; 627 int M = ShuffleMask[i]; 628 if (M < 0) { 629 // For UNDEF elements, we don't know anything about the common state of 630 // the shuffle result. 631 DemandedLHS.clearAllBits(); 632 DemandedRHS.clearAllBits(); 633 break; 634 } 635 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 636 if (M < (int)NumElts) 637 DemandedLHS.setBit(M); 638 else 639 DemandedRHS.setBit(M - NumElts); 640 } 641 642 if (!!DemandedLHS || !!DemandedRHS) { 643 Known.Zero.setAllBits(); 644 Known.One.setAllBits(); 645 if (!!DemandedLHS) { 646 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 647 Known2, TLO, Depth + 1)) 648 return true; 649 Known.One &= Known2.One; 650 Known.Zero &= Known2.Zero; 651 } 652 if (!!DemandedRHS) { 653 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 654 Known2, TLO, Depth + 1)) 655 return true; 656 Known.One &= Known2.One; 657 Known.Zero &= Known2.Zero; 658 } 659 } 660 break; 661 } 662 case ISD::AND: { 663 SDValue Op0 = Op.getOperand(0); 664 SDValue Op1 = Op.getOperand(1); 665 666 // If the RHS is a constant, check to see if the LHS would be zero without 667 // using the bits from the RHS. Below, we use knowledge about the RHS to 668 // simplify the LHS, here we're using information from the LHS to simplify 669 // the RHS. 670 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 671 // Do not increment Depth here; that can cause an infinite loop. 672 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 673 // If the LHS already has zeros where RHSC does, this 'and' is dead. 674 if ((LHSKnown.Zero & DemandedBits) == 675 (~RHSC->getAPIntValue() & DemandedBits)) 676 return TLO.CombineTo(Op, Op0); 677 678 // If any of the set bits in the RHS are known zero on the LHS, shrink 679 // the constant. 680 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 681 return true; 682 683 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 684 // constant, but if this 'and' is only clearing bits that were just set by 685 // the xor, then this 'and' can be eliminated by shrinking the mask of 686 // the xor. For example, for a 32-bit X: 687 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 688 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 689 LHSKnown.One == ~RHSC->getAPIntValue()) { 690 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 691 return TLO.CombineTo(Op, Xor); 692 } 693 } 694 695 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 696 Depth + 1)) 697 return true; 698 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 699 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 700 Known2, TLO, Depth + 1)) 701 return true; 702 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 703 704 // If all of the demanded bits are known one on one side, return the other. 705 // These bits cannot contribute to the result of the 'and'. 706 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 707 return TLO.CombineTo(Op, Op0); 708 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 709 return TLO.CombineTo(Op, Op1); 710 // If all of the demanded bits in the inputs are known zeros, return zero. 711 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 712 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 713 // If the RHS is a constant, see if we can simplify it. 714 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 715 return true; 716 // If the operation can be done in a smaller type, do so. 717 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 718 return true; 719 720 // Output known-1 bits are only known if set in both the LHS & RHS. 721 Known.One &= Known2.One; 722 // Output known-0 are known to be clear if zero in either the LHS | RHS. 723 Known.Zero |= Known2.Zero; 724 break; 725 } 726 case ISD::OR: { 727 SDValue Op0 = Op.getOperand(0); 728 SDValue Op1 = Op.getOperand(1); 729 730 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 731 Depth + 1)) 732 return true; 733 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 734 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 735 Known2, TLO, Depth + 1)) 736 return true; 737 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 738 739 // If all of the demanded bits are known zero on one side, return the other. 740 // These bits cannot contribute to the result of the 'or'. 741 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 742 return TLO.CombineTo(Op, Op0); 743 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 744 return TLO.CombineTo(Op, Op1); 745 // If the RHS is a constant, see if we can simplify it. 746 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 747 return true; 748 // If the operation can be done in a smaller type, do so. 749 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 750 return true; 751 752 // Output known-0 bits are only known if clear in both the LHS & RHS. 753 Known.Zero &= Known2.Zero; 754 // Output known-1 are known to be set if set in either the LHS | RHS. 755 Known.One |= Known2.One; 756 break; 757 } 758 case ISD::XOR: { 759 SDValue Op0 = Op.getOperand(0); 760 SDValue Op1 = Op.getOperand(1); 761 762 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 763 Depth + 1)) 764 return true; 765 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 766 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 767 Depth + 1)) 768 return true; 769 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 770 771 // If all of the demanded bits are known zero on one side, return the other. 772 // These bits cannot contribute to the result of the 'xor'. 773 if (DemandedBits.isSubsetOf(Known.Zero)) 774 return TLO.CombineTo(Op, Op0); 775 if (DemandedBits.isSubsetOf(Known2.Zero)) 776 return TLO.CombineTo(Op, Op1); 777 // If the operation can be done in a smaller type, do so. 778 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 779 return true; 780 781 // If all of the unknown bits are known to be zero on one side or the other 782 // (but not both) turn this into an *inclusive* or. 783 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 784 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 785 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 786 787 // Output known-0 bits are known if clear or set in both the LHS & RHS. 788 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 789 // Output known-1 are known to be set if set in only one of the LHS, RHS. 790 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 791 792 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 793 // If one side is a constant, and all of the known set bits on the other 794 // side are also set in the constant, turn this into an AND, as we know 795 // the bits will be cleared. 796 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 797 // NB: it is okay if more bits are known than are requested 798 if (C->getAPIntValue() == Known2.One) { 799 SDValue ANDC = 800 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 801 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 802 } 803 804 // If the RHS is a constant, see if we can change it. Don't alter a -1 805 // constant because that's a 'not' op, and that is better for combining 806 // and codegen. 807 if (!C->isAllOnesValue()) { 808 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 809 // We're flipping all demanded bits. Flip the undemanded bits too. 810 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 811 return TLO.CombineTo(Op, New); 812 } 813 // If we can't turn this into a 'not', try to shrink the constant. 814 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 815 return true; 816 } 817 } 818 819 Known = std::move(KnownOut); 820 break; 821 } 822 case ISD::SELECT: 823 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 824 Depth + 1)) 825 return true; 826 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 827 Depth + 1)) 828 return true; 829 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 830 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 831 832 // If the operands are constants, see if we can simplify them. 833 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 834 return true; 835 836 // Only known if known in both the LHS and RHS. 837 Known.One &= Known2.One; 838 Known.Zero &= Known2.Zero; 839 break; 840 case ISD::SELECT_CC: 841 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 842 Depth + 1)) 843 return true; 844 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 845 Depth + 1)) 846 return true; 847 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 848 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 849 850 // If the operands are constants, see if we can simplify them. 851 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 852 return true; 853 854 // Only known if known in both the LHS and RHS. 855 Known.One &= Known2.One; 856 Known.Zero &= Known2.Zero; 857 break; 858 case ISD::SETCC: { 859 SDValue Op0 = Op.getOperand(0); 860 SDValue Op1 = Op.getOperand(1); 861 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 862 // If (1) we only need the sign-bit, (2) the setcc operands are the same 863 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 864 // -1, we may be able to bypass the setcc. 865 if (DemandedBits.isSignMask() && 866 Op0.getScalarValueSizeInBits() == BitWidth && 867 getBooleanContents(VT) == 868 BooleanContent::ZeroOrNegativeOneBooleanContent) { 869 // If we're testing X < 0, then this compare isn't needed - just use X! 870 // FIXME: We're limiting to integer types here, but this should also work 871 // if we don't care about FP signed-zero. The use of SETLT with FP means 872 // that we don't care about NaNs. 873 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 874 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 875 return TLO.CombineTo(Op, Op0); 876 877 // TODO: Should we check for other forms of sign-bit comparisons? 878 // Examples: X <= -1, X >= 0 879 } 880 if (getBooleanContents(Op0.getValueType()) == 881 TargetLowering::ZeroOrOneBooleanContent && 882 BitWidth > 1) 883 Known.Zero.setBitsFrom(1); 884 break; 885 } 886 case ISD::SHL: { 887 SDValue Op0 = Op.getOperand(0); 888 SDValue Op1 = Op.getOperand(1); 889 890 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 891 // If the shift count is an invalid immediate, don't do anything. 892 if (SA->getAPIntValue().uge(BitWidth)) 893 break; 894 895 unsigned ShAmt = SA->getZExtValue(); 896 897 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 898 // single shift. We can do this if the bottom bits (which are shifted 899 // out) are never demanded. 900 if (Op0.getOpcode() == ISD::SRL) { 901 if (ShAmt && 902 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 903 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 904 if (SA2->getAPIntValue().ult(BitWidth)) { 905 unsigned C1 = SA2->getZExtValue(); 906 unsigned Opc = ISD::SHL; 907 int Diff = ShAmt - C1; 908 if (Diff < 0) { 909 Diff = -Diff; 910 Opc = ISD::SRL; 911 } 912 913 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 914 return TLO.CombineTo( 915 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 916 } 917 } 918 } 919 } 920 921 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 922 Known, TLO, Depth + 1)) 923 return true; 924 925 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 926 // are not demanded. This will likely allow the anyext to be folded away. 927 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 928 SDValue InnerOp = Op0.getOperand(0); 929 EVT InnerVT = InnerOp.getValueType(); 930 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 931 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 932 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 933 EVT ShTy = getShiftAmountTy(InnerVT, DL); 934 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 935 ShTy = InnerVT; 936 SDValue NarrowShl = 937 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 938 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 939 return TLO.CombineTo( 940 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 941 } 942 // Repeat the SHL optimization above in cases where an extension 943 // intervenes: (shl (anyext (shr x, c1)), c2) to 944 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 945 // aren't demanded (as above) and that the shifted upper c1 bits of 946 // x aren't demanded. 947 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 948 InnerOp.hasOneUse()) { 949 if (ConstantSDNode *SA2 = 950 isConstOrConstSplat(InnerOp.getOperand(1))) { 951 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 952 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 953 DemandedBits.getActiveBits() <= 954 (InnerBits - InnerShAmt + ShAmt) && 955 DemandedBits.countTrailingZeros() >= ShAmt) { 956 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 957 Op1.getValueType()); 958 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 959 InnerOp.getOperand(0)); 960 return TLO.CombineTo( 961 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 962 } 963 } 964 } 965 } 966 967 Known.Zero <<= ShAmt; 968 Known.One <<= ShAmt; 969 // low bits known zero. 970 Known.Zero.setLowBits(ShAmt); 971 } 972 break; 973 } 974 case ISD::SRL: { 975 SDValue Op0 = Op.getOperand(0); 976 SDValue Op1 = Op.getOperand(1); 977 978 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 979 // If the shift count is an invalid immediate, don't do anything. 980 if (SA->getAPIntValue().uge(BitWidth)) 981 break; 982 983 unsigned ShAmt = SA->getZExtValue(); 984 APInt InDemandedMask = (DemandedBits << ShAmt); 985 986 // If the shift is exact, then it does demand the low bits (and knows that 987 // they are zero). 988 if (Op->getFlags().hasExact()) 989 InDemandedMask.setLowBits(ShAmt); 990 991 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 992 // single shift. We can do this if the top bits (which are shifted out) 993 // are never demanded. 994 if (Op0.getOpcode() == ISD::SHL) { 995 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 996 if (ShAmt && 997 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 998 if (SA2->getAPIntValue().ult(BitWidth)) { 999 unsigned C1 = SA2->getZExtValue(); 1000 unsigned Opc = ISD::SRL; 1001 int Diff = ShAmt - C1; 1002 if (Diff < 0) { 1003 Diff = -Diff; 1004 Opc = ISD::SHL; 1005 } 1006 1007 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1008 return TLO.CombineTo( 1009 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1010 } 1011 } 1012 } 1013 } 1014 1015 // Compute the new bits that are at the top now. 1016 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1017 Depth + 1)) 1018 return true; 1019 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1020 Known.Zero.lshrInPlace(ShAmt); 1021 Known.One.lshrInPlace(ShAmt); 1022 1023 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1024 } 1025 break; 1026 } 1027 case ISD::SRA: { 1028 SDValue Op0 = Op.getOperand(0); 1029 SDValue Op1 = Op.getOperand(1); 1030 1031 // If this is an arithmetic shift right and only the low-bit is set, we can 1032 // always convert this into a logical shr, even if the shift amount is 1033 // variable. The low bit of the shift cannot be an input sign bit unless 1034 // the shift amount is >= the size of the datatype, which is undefined. 1035 if (DemandedBits.isOneValue()) 1036 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1037 1038 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1039 // If the shift count is an invalid immediate, don't do anything. 1040 if (SA->getAPIntValue().uge(BitWidth)) 1041 break; 1042 1043 unsigned ShAmt = SA->getZExtValue(); 1044 APInt InDemandedMask = (DemandedBits << ShAmt); 1045 1046 // If the shift is exact, then it does demand the low bits (and knows that 1047 // they are zero). 1048 if (Op->getFlags().hasExact()) 1049 InDemandedMask.setLowBits(ShAmt); 1050 1051 // If any of the demanded bits are produced by the sign extension, we also 1052 // demand the input sign bit. 1053 if (DemandedBits.countLeadingZeros() < ShAmt) 1054 InDemandedMask.setSignBit(); 1055 1056 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1057 Depth + 1)) 1058 return true; 1059 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1060 Known.Zero.lshrInPlace(ShAmt); 1061 Known.One.lshrInPlace(ShAmt); 1062 1063 // If the input sign bit is known to be zero, or if none of the top bits 1064 // are demanded, turn this into an unsigned shift right. 1065 if (Known.Zero[BitWidth - ShAmt - 1] || 1066 DemandedBits.countLeadingZeros() >= ShAmt) { 1067 SDNodeFlags Flags; 1068 Flags.setExact(Op->getFlags().hasExact()); 1069 return TLO.CombineTo( 1070 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1071 } 1072 1073 int Log2 = DemandedBits.exactLogBase2(); 1074 if (Log2 >= 0) { 1075 // The bit must come from the sign. 1076 SDValue NewSA = 1077 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1078 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1079 } 1080 1081 if (Known.One[BitWidth - ShAmt - 1]) 1082 // New bits are known one. 1083 Known.One.setHighBits(ShAmt); 1084 } 1085 break; 1086 } 1087 case ISD::FSHL: 1088 case ISD::FSHR: { 1089 SDValue Op0 = Op.getOperand(0); 1090 SDValue Op1 = Op.getOperand(1); 1091 SDValue Op2 = Op.getOperand(2); 1092 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1093 1094 if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) { 1095 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1096 1097 // For fshl, 0-shift returns the 1st arg. 1098 // For fshr, 0-shift returns the 2nd arg. 1099 if (Amt == 0) { 1100 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1101 Known, TLO, Depth + 1)) 1102 return true; 1103 break; 1104 } 1105 1106 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1107 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1108 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1109 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1110 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1111 Depth + 1)) 1112 return true; 1113 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1114 Depth + 1)) 1115 return true; 1116 1117 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1118 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1119 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1120 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1121 Known.One |= Known2.One; 1122 Known.Zero |= Known2.Zero; 1123 } 1124 break; 1125 } 1126 case ISD::SIGN_EXTEND_INREG: { 1127 SDValue Op0 = Op.getOperand(0); 1128 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1129 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1130 1131 // If we only care about the highest bit, don't bother shifting right. 1132 if (DemandedBits.isSignMask()) { 1133 bool AlreadySignExtended = 1134 TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1; 1135 // However if the input is already sign extended we expect the sign 1136 // extension to be dropped altogether later and do not simplify. 1137 if (!AlreadySignExtended) { 1138 // Compute the correct shift amount type, which must be getShiftAmountTy 1139 // for scalar types after legalization. 1140 EVT ShiftAmtTy = VT; 1141 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1142 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1143 1144 SDValue ShiftAmt = 1145 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1146 return TLO.CombineTo(Op, 1147 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1148 } 1149 } 1150 1151 // If none of the extended bits are demanded, eliminate the sextinreg. 1152 if (DemandedBits.getActiveBits() <= ExVTBits) 1153 return TLO.CombineTo(Op, Op0); 1154 1155 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1156 1157 // Since the sign extended bits are demanded, we know that the sign 1158 // bit is demanded. 1159 InputDemandedBits.setBit(ExVTBits - 1); 1160 1161 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1162 return true; 1163 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1164 1165 // If the sign bit of the input is known set or clear, then we know the 1166 // top bits of the result. 1167 1168 // If the input sign bit is known zero, convert this into a zero extension. 1169 if (Known.Zero[ExVTBits - 1]) 1170 return TLO.CombineTo( 1171 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1172 1173 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1174 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1175 Known.One.setBitsFrom(ExVTBits); 1176 Known.Zero &= Mask; 1177 } else { // Input sign bit unknown 1178 Known.Zero &= Mask; 1179 Known.One &= Mask; 1180 } 1181 break; 1182 } 1183 case ISD::BUILD_PAIR: { 1184 EVT HalfVT = Op.getOperand(0).getValueType(); 1185 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1186 1187 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1188 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1189 1190 KnownBits KnownLo, KnownHi; 1191 1192 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1193 return true; 1194 1195 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1196 return true; 1197 1198 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1199 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1200 1201 Known.One = KnownLo.One.zext(BitWidth) | 1202 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1203 break; 1204 } 1205 case ISD::ZERO_EXTEND: { 1206 SDValue Src = Op.getOperand(0); 1207 unsigned InBits = Src.getScalarValueSizeInBits(); 1208 1209 // If none of the top bits are demanded, convert this into an any_extend. 1210 if (DemandedBits.getActiveBits() <= InBits) 1211 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1212 1213 APInt InDemandedBits = DemandedBits.trunc(InBits); 1214 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1215 return true; 1216 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1217 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1218 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1219 break; 1220 } 1221 case ISD::SIGN_EXTEND: { 1222 SDValue Src = Op.getOperand(0); 1223 unsigned InBits = Src.getScalarValueSizeInBits(); 1224 1225 // If none of the top bits are demanded, convert this into an any_extend. 1226 if (DemandedBits.getActiveBits() <= InBits) 1227 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1228 1229 // Since some of the sign extended bits are demanded, we know that the sign 1230 // bit is demanded. 1231 APInt InDemandedBits = DemandedBits.trunc(InBits); 1232 InDemandedBits.setBit(InBits - 1); 1233 1234 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1235 return true; 1236 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1237 // If the sign bit is known one, the top bits match. 1238 Known = Known.sext(BitWidth); 1239 1240 // If the sign bit is known zero, convert this to a zero extend. 1241 if (Known.isNonNegative()) 1242 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1243 break; 1244 } 1245 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1246 // TODO - merge this with SIGN_EXTEND above? 1247 SDValue Src = Op.getOperand(0); 1248 unsigned InBits = Src.getScalarValueSizeInBits(); 1249 1250 APInt InDemandedBits = DemandedBits.trunc(InBits); 1251 1252 // If some of the sign extended bits are demanded, we know that the sign 1253 // bit is demanded. 1254 if (InBits < DemandedBits.getActiveBits()) 1255 InDemandedBits.setBit(InBits - 1); 1256 1257 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1258 return true; 1259 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1260 // If the sign bit is known one, the top bits match. 1261 Known = Known.sext(BitWidth); 1262 break; 1263 } 1264 case ISD::ANY_EXTEND: { 1265 SDValue Src = Op.getOperand(0); 1266 unsigned InBits = Src.getScalarValueSizeInBits(); 1267 APInt InDemandedBits = DemandedBits.trunc(InBits); 1268 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1269 return true; 1270 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1271 Known = Known.zext(BitWidth, false /* => any extend */); 1272 break; 1273 } 1274 case ISD::TRUNCATE: { 1275 SDValue Src = Op.getOperand(0); 1276 1277 // Simplify the input, using demanded bit information, and compute the known 1278 // zero/one bits live out. 1279 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1280 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1281 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1282 return true; 1283 Known = Known.trunc(BitWidth); 1284 1285 // If the input is only used by this truncate, see if we can shrink it based 1286 // on the known demanded bits. 1287 if (Src.getNode()->hasOneUse()) { 1288 switch (Src.getOpcode()) { 1289 default: 1290 break; 1291 case ISD::SRL: 1292 // Shrink SRL by a constant if none of the high bits shifted in are 1293 // demanded. 1294 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1295 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1296 // undesirable. 1297 break; 1298 1299 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1300 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1301 break; 1302 1303 SDValue Shift = Src.getOperand(1); 1304 uint64_t ShVal = ShAmt->getZExtValue(); 1305 1306 if (TLO.LegalTypes()) 1307 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1308 1309 APInt HighBits = 1310 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1311 HighBits.lshrInPlace(ShVal); 1312 HighBits = HighBits.trunc(BitWidth); 1313 1314 if (!(HighBits & DemandedBits)) { 1315 // None of the shifted in bits are needed. Add a truncate of the 1316 // shift input, then shift it. 1317 SDValue NewTrunc = 1318 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1319 return TLO.CombineTo( 1320 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1321 } 1322 break; 1323 } 1324 } 1325 1326 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1327 break; 1328 } 1329 case ISD::AssertZext: { 1330 // AssertZext demands all of the high bits, plus any of the low bits 1331 // demanded by its users. 1332 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1333 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1334 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1335 TLO, Depth + 1)) 1336 return true; 1337 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1338 1339 Known.Zero |= ~InMask; 1340 break; 1341 } 1342 case ISD::EXTRACT_VECTOR_ELT: { 1343 SDValue Src = Op.getOperand(0); 1344 SDValue Idx = Op.getOperand(1); 1345 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1346 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1347 1348 // Demand the bits from every vector element without a constant index. 1349 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1350 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1351 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1352 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1353 1354 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1355 // anything about the extended bits. 1356 APInt DemandedSrcBits = DemandedBits; 1357 if (BitWidth > EltBitWidth) 1358 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1359 1360 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1361 Depth + 1)) 1362 return true; 1363 1364 Known = Known2; 1365 if (BitWidth > EltBitWidth) 1366 Known = Known.zext(BitWidth, false /* => any extend */); 1367 break; 1368 } 1369 case ISD::BITCAST: { 1370 SDValue Src = Op.getOperand(0); 1371 EVT SrcVT = Src.getValueType(); 1372 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1373 1374 // If this is an FP->Int bitcast and if the sign bit is the only 1375 // thing demanded, turn this into a FGETSIGN. 1376 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1377 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1378 SrcVT.isFloatingPoint()) { 1379 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1380 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1381 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1382 SrcVT != MVT::f128) { 1383 // Cannot eliminate/lower SHL for f128 yet. 1384 EVT Ty = OpVTLegal ? VT : MVT::i32; 1385 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1386 // place. We expect the SHL to be eliminated by other optimizations. 1387 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1388 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1389 if (!OpVTLegal && OpVTSizeInBits > 32) 1390 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1391 unsigned ShVal = Op.getValueSizeInBits() - 1; 1392 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1393 return TLO.CombineTo(Op, 1394 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1395 } 1396 } 1397 // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by 1398 // demanding the element if any bits from it are demanded. 1399 // TODO - bigendian once we have test coverage. 1400 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1401 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1402 (BitWidth % NumSrcEltBits) == 0 && 1403 TLO.DAG.getDataLayout().isLittleEndian()) { 1404 unsigned Scale = BitWidth / NumSrcEltBits; 1405 auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool { 1406 DemandedSubElts = APInt::getNullValue(Scale); 1407 for (unsigned i = 0; i != Scale; ++i) { 1408 unsigned Offset = i * NumSrcEltBits; 1409 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1410 if (!Sub.isNullValue()) 1411 DemandedSubElts.setBit(i); 1412 } 1413 return true; 1414 }; 1415 1416 APInt DemandedSubElts; 1417 if (GetDemandedSubMask(DemandedSubElts)) { 1418 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1419 APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts); 1420 1421 APInt KnownUndef, KnownZero; 1422 if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero, 1423 TLO, Depth + 1)) 1424 return true; 1425 } 1426 } 1427 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1428 // recursive call where Known may be useful to the caller. 1429 if (Depth > 0) { 1430 Known = TLO.DAG.computeKnownBits(Op, Depth); 1431 return false; 1432 } 1433 break; 1434 } 1435 case ISD::ADD: 1436 case ISD::MUL: 1437 case ISD::SUB: { 1438 // Add, Sub, and Mul don't demand any bits in positions beyond that 1439 // of the highest bit demanded of them. 1440 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1441 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1442 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1443 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1444 Depth + 1) || 1445 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1446 Depth + 1) || 1447 // See if the operation should be performed at a smaller bit width. 1448 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1449 SDNodeFlags Flags = Op.getNode()->getFlags(); 1450 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1451 // Disable the nsw and nuw flags. We can no longer guarantee that we 1452 // won't wrap after simplification. 1453 Flags.setNoSignedWrap(false); 1454 Flags.setNoUnsignedWrap(false); 1455 SDValue NewOp = 1456 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1457 return TLO.CombineTo(Op, NewOp); 1458 } 1459 return true; 1460 } 1461 1462 // If we have a constant operand, we may be able to turn it into -1 if we 1463 // do not demand the high bits. This can make the constant smaller to 1464 // encode, allow more general folding, or match specialized instruction 1465 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1466 // is probably not useful (and could be detrimental). 1467 ConstantSDNode *C = isConstOrConstSplat(Op1); 1468 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1469 if (C && !C->isAllOnesValue() && !C->isOne() && 1470 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1471 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1472 // We can't guarantee that the new math op doesn't wrap, so explicitly 1473 // clear those flags to prevent folding with a potential existing node 1474 // that has those flags set. 1475 SDNodeFlags Flags; 1476 Flags.setNoSignedWrap(false); 1477 Flags.setNoUnsignedWrap(false); 1478 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1479 return TLO.CombineTo(Op, NewOp); 1480 } 1481 1482 LLVM_FALLTHROUGH; 1483 } 1484 default: 1485 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1486 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1487 Known, TLO, Depth)) 1488 return true; 1489 break; 1490 } 1491 1492 // Just use computeKnownBits to compute output bits. 1493 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1494 break; 1495 } 1496 1497 // If we know the value of all of the demanded bits, return this as a 1498 // constant. 1499 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1500 // Avoid folding to a constant if any OpaqueConstant is involved. 1501 const SDNode *N = Op.getNode(); 1502 for (SDNodeIterator I = SDNodeIterator::begin(N), 1503 E = SDNodeIterator::end(N); 1504 I != E; ++I) { 1505 SDNode *Op = *I; 1506 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1507 if (C->isOpaque()) 1508 return false; 1509 } 1510 // TODO: Handle float bits as well. 1511 if (VT.isInteger()) 1512 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1513 } 1514 1515 return false; 1516 } 1517 1518 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1519 const APInt &DemandedElts, 1520 APInt &KnownUndef, 1521 APInt &KnownZero, 1522 DAGCombinerInfo &DCI) const { 1523 SelectionDAG &DAG = DCI.DAG; 1524 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1525 !DCI.isBeforeLegalizeOps()); 1526 1527 bool Simplified = 1528 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1529 if (Simplified) { 1530 DCI.AddToWorklist(Op.getNode()); 1531 DCI.CommitTargetLoweringOpt(TLO); 1532 } 1533 return Simplified; 1534 } 1535 1536 /// Given a vector binary operation and known undefined elements for each input 1537 /// operand, compute whether each element of the output is undefined. 1538 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1539 const APInt &UndefOp0, 1540 const APInt &UndefOp1) { 1541 EVT VT = BO.getValueType(); 1542 assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only"); 1543 1544 EVT EltVT = VT.getVectorElementType(); 1545 unsigned NumElts = VT.getVectorNumElements(); 1546 assert(UndefOp0.getBitWidth() == NumElts && 1547 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1548 1549 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1550 const APInt &UndefVals) { 1551 if (UndefVals[Index]) 1552 return DAG.getUNDEF(EltVT); 1553 1554 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1555 // Try hard to make sure that the getNode() call is not creating temporary 1556 // nodes. Ignore opaque integers because they do not constant fold. 1557 SDValue Elt = BV->getOperand(Index); 1558 auto *C = dyn_cast<ConstantSDNode>(Elt); 1559 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1560 return Elt; 1561 } 1562 1563 return SDValue(); 1564 }; 1565 1566 APInt KnownUndef = APInt::getNullValue(NumElts); 1567 for (unsigned i = 0; i != NumElts; ++i) { 1568 // If both inputs for this element are either constant or undef and match 1569 // the element type, compute the constant/undef result for this element of 1570 // the vector. 1571 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1572 // not handle FP constants. The code within getNode() should be refactored 1573 // to avoid the danger of creating a bogus temporary node here. 1574 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1575 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1576 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1577 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1578 KnownUndef.setBit(i); 1579 } 1580 return KnownUndef; 1581 } 1582 1583 bool TargetLowering::SimplifyDemandedVectorElts( 1584 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1585 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1586 bool AssumeSingleUse) const { 1587 EVT VT = Op.getValueType(); 1588 APInt DemandedElts = DemandedEltMask; 1589 unsigned NumElts = DemandedElts.getBitWidth(); 1590 assert(VT.isVector() && "Expected vector op"); 1591 assert(VT.getVectorNumElements() == NumElts && 1592 "Mask size mismatches value type element count!"); 1593 1594 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1595 1596 // Undef operand. 1597 if (Op.isUndef()) { 1598 KnownUndef.setAllBits(); 1599 return false; 1600 } 1601 1602 // If Op has other users, assume that all elements are needed. 1603 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1604 DemandedElts.setAllBits(); 1605 1606 // Not demanding any elements from Op. 1607 if (DemandedElts == 0) { 1608 KnownUndef.setAllBits(); 1609 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1610 } 1611 1612 // Limit search depth. 1613 if (Depth >= 6) 1614 return false; 1615 1616 SDLoc DL(Op); 1617 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1618 1619 switch (Op.getOpcode()) { 1620 case ISD::SCALAR_TO_VECTOR: { 1621 if (!DemandedElts[0]) { 1622 KnownUndef.setAllBits(); 1623 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1624 } 1625 KnownUndef.setHighBits(NumElts - 1); 1626 break; 1627 } 1628 case ISD::BITCAST: { 1629 SDValue Src = Op.getOperand(0); 1630 EVT SrcVT = Src.getValueType(); 1631 1632 // We only handle vectors here. 1633 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1634 if (!SrcVT.isVector()) 1635 break; 1636 1637 // Fast handling of 'identity' bitcasts. 1638 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1639 if (NumSrcElts == NumElts) 1640 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1641 KnownZero, TLO, Depth + 1); 1642 1643 APInt SrcZero, SrcUndef; 1644 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1645 1646 // Bitcast from 'large element' src vector to 'small element' vector, we 1647 // must demand a source element if any DemandedElt maps to it. 1648 if ((NumElts % NumSrcElts) == 0) { 1649 unsigned Scale = NumElts / NumSrcElts; 1650 for (unsigned i = 0; i != NumElts; ++i) 1651 if (DemandedElts[i]) 1652 SrcDemandedElts.setBit(i / Scale); 1653 1654 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1655 TLO, Depth + 1)) 1656 return true; 1657 1658 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1659 // of the large element. 1660 // TODO - bigendian once we have test coverage. 1661 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1662 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1663 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1664 for (unsigned i = 0; i != NumElts; ++i) 1665 if (DemandedElts[i]) { 1666 unsigned Ofs = (i % Scale) * EltSizeInBits; 1667 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1668 } 1669 1670 KnownBits Known; 1671 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1672 return true; 1673 } 1674 1675 // If the src element is zero/undef then all the output elements will be - 1676 // only demanded elements are guaranteed to be correct. 1677 for (unsigned i = 0; i != NumSrcElts; ++i) { 1678 if (SrcDemandedElts[i]) { 1679 if (SrcZero[i]) 1680 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1681 if (SrcUndef[i]) 1682 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1683 } 1684 } 1685 } 1686 1687 // Bitcast from 'small element' src vector to 'large element' vector, we 1688 // demand all smaller source elements covered by the larger demanded element 1689 // of this vector. 1690 if ((NumSrcElts % NumElts) == 0) { 1691 unsigned Scale = NumSrcElts / NumElts; 1692 for (unsigned i = 0; i != NumElts; ++i) 1693 if (DemandedElts[i]) 1694 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1695 1696 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1697 TLO, Depth + 1)) 1698 return true; 1699 1700 // If all the src elements covering an output element are zero/undef, then 1701 // the output element will be as well, assuming it was demanded. 1702 for (unsigned i = 0; i != NumElts; ++i) { 1703 if (DemandedElts[i]) { 1704 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1705 KnownZero.setBit(i); 1706 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1707 KnownUndef.setBit(i); 1708 } 1709 } 1710 } 1711 break; 1712 } 1713 case ISD::BUILD_VECTOR: { 1714 // Check all elements and simplify any unused elements with UNDEF. 1715 if (!DemandedElts.isAllOnesValue()) { 1716 // Don't simplify BROADCASTS. 1717 if (llvm::any_of(Op->op_values(), 1718 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1719 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1720 bool Updated = false; 1721 for (unsigned i = 0; i != NumElts; ++i) { 1722 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1723 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1724 KnownUndef.setBit(i); 1725 Updated = true; 1726 } 1727 } 1728 if (Updated) 1729 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1730 } 1731 } 1732 for (unsigned i = 0; i != NumElts; ++i) { 1733 SDValue SrcOp = Op.getOperand(i); 1734 if (SrcOp.isUndef()) { 1735 KnownUndef.setBit(i); 1736 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1737 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1738 KnownZero.setBit(i); 1739 } 1740 } 1741 break; 1742 } 1743 case ISD::CONCAT_VECTORS: { 1744 EVT SubVT = Op.getOperand(0).getValueType(); 1745 unsigned NumSubVecs = Op.getNumOperands(); 1746 unsigned NumSubElts = SubVT.getVectorNumElements(); 1747 for (unsigned i = 0; i != NumSubVecs; ++i) { 1748 SDValue SubOp = Op.getOperand(i); 1749 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1750 APInt SubUndef, SubZero; 1751 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1752 Depth + 1)) 1753 return true; 1754 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1755 KnownZero.insertBits(SubZero, i * NumSubElts); 1756 } 1757 break; 1758 } 1759 case ISD::INSERT_SUBVECTOR: { 1760 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1761 break; 1762 SDValue Base = Op.getOperand(0); 1763 SDValue Sub = Op.getOperand(1); 1764 EVT SubVT = Sub.getValueType(); 1765 unsigned NumSubElts = SubVT.getVectorNumElements(); 1766 const APInt &Idx = Op.getConstantOperandAPInt(2); 1767 if (Idx.ugt(NumElts - NumSubElts)) 1768 break; 1769 unsigned SubIdx = Idx.getZExtValue(); 1770 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1771 APInt SubUndef, SubZero; 1772 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1773 Depth + 1)) 1774 return true; 1775 APInt BaseElts = DemandedElts; 1776 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1777 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1778 Depth + 1)) 1779 return true; 1780 KnownUndef.insertBits(SubUndef, SubIdx); 1781 KnownZero.insertBits(SubZero, SubIdx); 1782 break; 1783 } 1784 case ISD::EXTRACT_SUBVECTOR: { 1785 SDValue Src = Op.getOperand(0); 1786 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1787 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1788 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1789 // Offset the demanded elts by the subvector index. 1790 uint64_t Idx = SubIdx->getZExtValue(); 1791 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1792 APInt SrcUndef, SrcZero; 1793 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1794 Depth + 1)) 1795 return true; 1796 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1797 KnownZero = SrcZero.extractBits(NumElts, Idx); 1798 } 1799 break; 1800 } 1801 case ISD::INSERT_VECTOR_ELT: { 1802 SDValue Vec = Op.getOperand(0); 1803 SDValue Scl = Op.getOperand(1); 1804 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1805 1806 // For a legal, constant insertion index, if we don't need this insertion 1807 // then strip it, else remove it from the demanded elts. 1808 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1809 unsigned Idx = CIdx->getZExtValue(); 1810 if (!DemandedElts[Idx]) 1811 return TLO.CombineTo(Op, Vec); 1812 1813 APInt DemandedVecElts(DemandedElts); 1814 DemandedVecElts.clearBit(Idx); 1815 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 1816 KnownZero, TLO, Depth + 1)) 1817 return true; 1818 1819 KnownUndef.clearBit(Idx); 1820 if (Scl.isUndef()) 1821 KnownUndef.setBit(Idx); 1822 1823 KnownZero.clearBit(Idx); 1824 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1825 KnownZero.setBit(Idx); 1826 break; 1827 } 1828 1829 APInt VecUndef, VecZero; 1830 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1831 Depth + 1)) 1832 return true; 1833 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1834 break; 1835 } 1836 case ISD::VSELECT: { 1837 // Try to transform the select condition based on the current demanded 1838 // elements. 1839 // TODO: If a condition element is undef, we can choose from one arm of the 1840 // select (and if one arm is undef, then we can propagate that to the 1841 // result). 1842 // TODO - add support for constant vselect masks (see IR version of this). 1843 APInt UnusedUndef, UnusedZero; 1844 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1845 UnusedZero, TLO, Depth + 1)) 1846 return true; 1847 1848 // See if we can simplify either vselect operand. 1849 APInt DemandedLHS(DemandedElts); 1850 APInt DemandedRHS(DemandedElts); 1851 APInt UndefLHS, ZeroLHS; 1852 APInt UndefRHS, ZeroRHS; 1853 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1854 ZeroLHS, TLO, Depth + 1)) 1855 return true; 1856 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1857 ZeroRHS, TLO, Depth + 1)) 1858 return true; 1859 1860 KnownUndef = UndefLHS & UndefRHS; 1861 KnownZero = ZeroLHS & ZeroRHS; 1862 break; 1863 } 1864 case ISD::VECTOR_SHUFFLE: { 1865 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1866 1867 // Collect demanded elements from shuffle operands.. 1868 APInt DemandedLHS(NumElts, 0); 1869 APInt DemandedRHS(NumElts, 0); 1870 for (unsigned i = 0; i != NumElts; ++i) { 1871 int M = ShuffleMask[i]; 1872 if (M < 0 || !DemandedElts[i]) 1873 continue; 1874 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1875 if (M < (int)NumElts) 1876 DemandedLHS.setBit(M); 1877 else 1878 DemandedRHS.setBit(M - NumElts); 1879 } 1880 1881 // See if we can simplify either shuffle operand. 1882 APInt UndefLHS, ZeroLHS; 1883 APInt UndefRHS, ZeroRHS; 1884 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1885 ZeroLHS, TLO, Depth + 1)) 1886 return true; 1887 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1888 ZeroRHS, TLO, Depth + 1)) 1889 return true; 1890 1891 // Simplify mask using undef elements from LHS/RHS. 1892 bool Updated = false; 1893 bool IdentityLHS = true, IdentityRHS = true; 1894 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1895 for (unsigned i = 0; i != NumElts; ++i) { 1896 int &M = NewMask[i]; 1897 if (M < 0) 1898 continue; 1899 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1900 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1901 Updated = true; 1902 M = -1; 1903 } 1904 IdentityLHS &= (M < 0) || (M == (int)i); 1905 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1906 } 1907 1908 // Update legal shuffle masks based on demanded elements if it won't reduce 1909 // to Identity which can cause premature removal of the shuffle mask. 1910 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1911 isShuffleMaskLegal(NewMask, VT)) 1912 return TLO.CombineTo(Op, 1913 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1914 Op.getOperand(1), NewMask)); 1915 1916 // Propagate undef/zero elements from LHS/RHS. 1917 for (unsigned i = 0; i != NumElts; ++i) { 1918 int M = ShuffleMask[i]; 1919 if (M < 0) { 1920 KnownUndef.setBit(i); 1921 } else if (M < (int)NumElts) { 1922 if (UndefLHS[M]) 1923 KnownUndef.setBit(i); 1924 if (ZeroLHS[M]) 1925 KnownZero.setBit(i); 1926 } else { 1927 if (UndefRHS[M - NumElts]) 1928 KnownUndef.setBit(i); 1929 if (ZeroRHS[M - NumElts]) 1930 KnownZero.setBit(i); 1931 } 1932 } 1933 break; 1934 } 1935 case ISD::SIGN_EXTEND_VECTOR_INREG: 1936 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1937 APInt SrcUndef, SrcZero; 1938 SDValue Src = Op.getOperand(0); 1939 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1940 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 1941 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 1942 Depth + 1)) 1943 return true; 1944 KnownZero = SrcZero.zextOrTrunc(NumElts); 1945 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 1946 1947 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 1948 // zext(undef) upper bits are guaranteed to be zero. 1949 if (DemandedElts.isSubsetOf(KnownUndef)) 1950 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 1951 KnownUndef.clearAllBits(); 1952 } 1953 break; 1954 } 1955 1956 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 1957 // MAX, saturated math, etc. 1958 case ISD::OR: 1959 case ISD::XOR: 1960 case ISD::ADD: 1961 case ISD::SUB: 1962 case ISD::FADD: 1963 case ISD::FSUB: 1964 case ISD::FMUL: 1965 case ISD::FDIV: 1966 case ISD::FREM: { 1967 APInt UndefRHS, ZeroRHS; 1968 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 1969 ZeroRHS, TLO, Depth + 1)) 1970 return true; 1971 APInt UndefLHS, ZeroLHS; 1972 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 1973 ZeroLHS, TLO, Depth + 1)) 1974 return true; 1975 1976 KnownZero = ZeroLHS & ZeroRHS; 1977 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 1978 break; 1979 } 1980 case ISD::AND: { 1981 APInt SrcUndef, SrcZero; 1982 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1983 SrcZero, TLO, Depth + 1)) 1984 return true; 1985 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1986 KnownZero, TLO, Depth + 1)) 1987 return true; 1988 1989 // If either side has a zero element, then the result element is zero, even 1990 // if the other is an UNDEF. 1991 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 1992 // and then handle 'and' nodes with the rest of the binop opcodes. 1993 KnownZero |= SrcZero; 1994 KnownUndef &= SrcUndef; 1995 KnownUndef &= ~KnownZero; 1996 break; 1997 } 1998 case ISD::TRUNCATE: 1999 case ISD::SIGN_EXTEND: 2000 case ISD::ZERO_EXTEND: 2001 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2002 KnownZero, TLO, Depth + 1)) 2003 return true; 2004 2005 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2006 // zext(undef) upper bits are guaranteed to be zero. 2007 if (DemandedElts.isSubsetOf(KnownUndef)) 2008 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2009 KnownUndef.clearAllBits(); 2010 } 2011 break; 2012 default: { 2013 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2014 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2015 KnownZero, TLO, Depth)) 2016 return true; 2017 } else { 2018 KnownBits Known; 2019 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2020 if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO, 2021 Depth, AssumeSingleUse)) 2022 return true; 2023 } 2024 break; 2025 } 2026 } 2027 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2028 2029 // Constant fold all undef cases. 2030 // TODO: Handle zero cases as well. 2031 if (DemandedElts.isSubsetOf(KnownUndef)) 2032 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2033 2034 return false; 2035 } 2036 2037 /// Determine which of the bits specified in Mask are known to be either zero or 2038 /// one and return them in the Known. 2039 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2040 KnownBits &Known, 2041 const APInt &DemandedElts, 2042 const SelectionDAG &DAG, 2043 unsigned Depth) const { 2044 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2045 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2046 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2047 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2048 "Should use MaskedValueIsZero if you don't know whether Op" 2049 " is a target node!"); 2050 Known.resetAll(); 2051 } 2052 2053 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2054 KnownBits &Known, 2055 const APInt &DemandedElts, 2056 const SelectionDAG &DAG, 2057 unsigned Depth) const { 2058 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2059 2060 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2061 // The low bits are known zero if the pointer is aligned. 2062 Known.Zero.setLowBits(Log2_32(Align)); 2063 } 2064 } 2065 2066 /// This method can be implemented by targets that want to expose additional 2067 /// information about sign bits to the DAG Combiner. 2068 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2069 const APInt &, 2070 const SelectionDAG &, 2071 unsigned Depth) const { 2072 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2073 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2074 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2075 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2076 "Should use ComputeNumSignBits if you don't know whether Op" 2077 " is a target node!"); 2078 return 1; 2079 } 2080 2081 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2082 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2083 TargetLoweringOpt &TLO, unsigned Depth) const { 2084 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2085 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2086 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2087 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2088 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2089 " is a target node!"); 2090 return false; 2091 } 2092 2093 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2094 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2095 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2096 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2097 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2098 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2099 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2100 "Should use SimplifyDemandedBits if you don't know whether Op" 2101 " is a target node!"); 2102 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2103 return false; 2104 } 2105 2106 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2107 const SelectionDAG &DAG, 2108 bool SNaN, 2109 unsigned Depth) const { 2110 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2111 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2112 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2113 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2114 "Should use isKnownNeverNaN if you don't know whether Op" 2115 " is a target node!"); 2116 return false; 2117 } 2118 2119 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2120 // work with truncating build vectors and vectors with elements of less than 2121 // 8 bits. 2122 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2123 if (!N) 2124 return false; 2125 2126 APInt CVal; 2127 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2128 CVal = CN->getAPIntValue(); 2129 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2130 auto *CN = BV->getConstantSplatNode(); 2131 if (!CN) 2132 return false; 2133 2134 // If this is a truncating build vector, truncate the splat value. 2135 // Otherwise, we may fail to match the expected values below. 2136 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2137 CVal = CN->getAPIntValue(); 2138 if (BVEltWidth < CVal.getBitWidth()) 2139 CVal = CVal.trunc(BVEltWidth); 2140 } else { 2141 return false; 2142 } 2143 2144 switch (getBooleanContents(N->getValueType(0))) { 2145 case UndefinedBooleanContent: 2146 return CVal[0]; 2147 case ZeroOrOneBooleanContent: 2148 return CVal.isOneValue(); 2149 case ZeroOrNegativeOneBooleanContent: 2150 return CVal.isAllOnesValue(); 2151 } 2152 2153 llvm_unreachable("Invalid boolean contents"); 2154 } 2155 2156 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2157 if (!N) 2158 return false; 2159 2160 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2161 if (!CN) { 2162 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2163 if (!BV) 2164 return false; 2165 2166 // Only interested in constant splats, we don't care about undef 2167 // elements in identifying boolean constants and getConstantSplatNode 2168 // returns NULL if all ops are undef; 2169 CN = BV->getConstantSplatNode(); 2170 if (!CN) 2171 return false; 2172 } 2173 2174 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2175 return !CN->getAPIntValue()[0]; 2176 2177 return CN->isNullValue(); 2178 } 2179 2180 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2181 bool SExt) const { 2182 if (VT == MVT::i1) 2183 return N->isOne(); 2184 2185 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2186 switch (Cnt) { 2187 case TargetLowering::ZeroOrOneBooleanContent: 2188 // An extended value of 1 is always true, unless its original type is i1, 2189 // in which case it will be sign extended to -1. 2190 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2191 case TargetLowering::UndefinedBooleanContent: 2192 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2193 return N->isAllOnesValue() && SExt; 2194 } 2195 llvm_unreachable("Unexpected enumeration."); 2196 } 2197 2198 /// This helper function of SimplifySetCC tries to optimize the comparison when 2199 /// either operand of the SetCC node is a bitwise-and instruction. 2200 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2201 ISD::CondCode Cond, const SDLoc &DL, 2202 DAGCombinerInfo &DCI) const { 2203 // Match these patterns in any of their permutations: 2204 // (X & Y) == Y 2205 // (X & Y) != Y 2206 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2207 std::swap(N0, N1); 2208 2209 EVT OpVT = N0.getValueType(); 2210 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2211 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2212 return SDValue(); 2213 2214 SDValue X, Y; 2215 if (N0.getOperand(0) == N1) { 2216 X = N0.getOperand(1); 2217 Y = N0.getOperand(0); 2218 } else if (N0.getOperand(1) == N1) { 2219 X = N0.getOperand(0); 2220 Y = N0.getOperand(1); 2221 } else { 2222 return SDValue(); 2223 } 2224 2225 SelectionDAG &DAG = DCI.DAG; 2226 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2227 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2228 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2229 // Note that where Y is variable and is known to have at most one bit set 2230 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2231 // equivalent when Y == 0. 2232 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2233 if (DCI.isBeforeLegalizeOps() || 2234 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2235 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2236 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2237 // If the target supports an 'and-not' or 'and-complement' logic operation, 2238 // try to use that to make a comparison operation more efficient. 2239 // But don't do this transform if the mask is a single bit because there are 2240 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2241 // 'rlwinm' on PPC). 2242 2243 // Bail out if the compare operand that we want to turn into a zero is 2244 // already a zero (otherwise, infinite loop). 2245 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2246 if (YConst && YConst->isNullValue()) 2247 return SDValue(); 2248 2249 // Transform this into: ~X & Y == 0. 2250 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2251 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2252 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2253 } 2254 2255 return SDValue(); 2256 } 2257 2258 /// There are multiple IR patterns that could be checking whether certain 2259 /// truncation of a signed number would be lossy or not. The pattern which is 2260 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2261 /// We are looking for the following pattern: (KeptBits is a constant) 2262 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2263 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2264 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2265 /// We will unfold it into the natural trunc+sext pattern: 2266 /// ((%x << C) a>> C) dstcond %x 2267 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2268 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2269 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2270 const SDLoc &DL) const { 2271 // We must be comparing with a constant. 2272 ConstantSDNode *C1; 2273 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2274 return SDValue(); 2275 2276 // N0 should be: add %x, (1 << (KeptBits-1)) 2277 if (N0->getOpcode() != ISD::ADD) 2278 return SDValue(); 2279 2280 // And we must be 'add'ing a constant. 2281 ConstantSDNode *C01; 2282 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2283 return SDValue(); 2284 2285 SDValue X = N0->getOperand(0); 2286 EVT XVT = X.getValueType(); 2287 2288 // Validate constants ... 2289 2290 APInt I1 = C1->getAPIntValue(); 2291 2292 ISD::CondCode NewCond; 2293 if (Cond == ISD::CondCode::SETULT) { 2294 NewCond = ISD::CondCode::SETEQ; 2295 } else if (Cond == ISD::CondCode::SETULE) { 2296 NewCond = ISD::CondCode::SETEQ; 2297 // But need to 'canonicalize' the constant. 2298 I1 += 1; 2299 } else if (Cond == ISD::CondCode::SETUGT) { 2300 NewCond = ISD::CondCode::SETNE; 2301 // But need to 'canonicalize' the constant. 2302 I1 += 1; 2303 } else if (Cond == ISD::CondCode::SETUGE) { 2304 NewCond = ISD::CondCode::SETNE; 2305 } else 2306 return SDValue(); 2307 2308 APInt I01 = C01->getAPIntValue(); 2309 2310 auto checkConstants = [&I1, &I01]() -> bool { 2311 // Both of them must be power-of-two, and the constant from setcc is bigger. 2312 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2313 }; 2314 2315 if (checkConstants()) { 2316 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2317 } else { 2318 // What if we invert constants? (and the target predicate) 2319 I1.negate(); 2320 I01.negate(); 2321 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2322 if (!checkConstants()) 2323 return SDValue(); 2324 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2325 } 2326 2327 // They are power-of-two, so which bit is set? 2328 const unsigned KeptBits = I1.logBase2(); 2329 const unsigned KeptBitsMinusOne = I01.logBase2(); 2330 2331 // Magic! 2332 if (KeptBits != (KeptBitsMinusOne + 1)) 2333 return SDValue(); 2334 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2335 2336 // We don't want to do this in every single case. 2337 SelectionDAG &DAG = DCI.DAG; 2338 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2339 XVT, KeptBits)) 2340 return SDValue(); 2341 2342 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2343 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2344 2345 // Unfold into: ((%x << C) a>> C) cond %x 2346 // Where 'cond' will be either 'eq' or 'ne'. 2347 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2348 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2349 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2350 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2351 2352 return T2; 2353 } 2354 2355 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2356 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2357 /// handle the commuted versions of these patterns. 2358 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2359 ISD::CondCode Cond, const SDLoc &DL, 2360 DAGCombinerInfo &DCI) const { 2361 unsigned BOpcode = N0.getOpcode(); 2362 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2363 "Unexpected binop"); 2364 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2365 2366 // (X + Y) == X --> Y == 0 2367 // (X - Y) == X --> Y == 0 2368 // (X ^ Y) == X --> Y == 0 2369 SelectionDAG &DAG = DCI.DAG; 2370 EVT OpVT = N0.getValueType(); 2371 SDValue X = N0.getOperand(0); 2372 SDValue Y = N0.getOperand(1); 2373 if (X == N1) 2374 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2375 2376 if (Y != N1) 2377 return SDValue(); 2378 2379 // (X + Y) == Y --> X == 0 2380 // (X ^ Y) == Y --> X == 0 2381 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2382 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2383 2384 // The shift would not be valid if the operands are boolean (i1). 2385 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2386 return SDValue(); 2387 2388 // (X - Y) == Y --> X == Y << 1 2389 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2390 !DCI.isBeforeLegalize()); 2391 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2392 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2393 if (!DCI.isCalledByLegalizer()) 2394 DCI.AddToWorklist(YShl1.getNode()); 2395 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2396 } 2397 2398 /// Try to simplify a setcc built with the specified operands and cc. If it is 2399 /// unable to simplify it, return a null SDValue. 2400 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2401 ISD::CondCode Cond, bool foldBooleans, 2402 DAGCombinerInfo &DCI, 2403 const SDLoc &dl) const { 2404 SelectionDAG &DAG = DCI.DAG; 2405 EVT OpVT = N0.getValueType(); 2406 2407 // Constant fold or commute setcc. 2408 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 2409 return Fold; 2410 2411 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2412 // TODO: Handle non-splat vector constants. All undef causes trouble. 2413 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2414 if (isConstOrConstSplat(N0) && 2415 (DCI.isBeforeLegalizeOps() || 2416 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2417 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2418 2419 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2420 const APInt &C1 = N1C->getAPIntValue(); 2421 2422 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2423 // equality comparison, then we're just comparing whether X itself is 2424 // zero. 2425 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2426 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2427 N0.getOperand(1).getOpcode() == ISD::Constant) { 2428 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 2429 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2430 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2431 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2432 // (srl (ctlz x), 5) == 0 -> X != 0 2433 // (srl (ctlz x), 5) != 1 -> X != 0 2434 Cond = ISD::SETNE; 2435 } else { 2436 // (srl (ctlz x), 5) != 0 -> X == 0 2437 // (srl (ctlz x), 5) == 1 -> X == 0 2438 Cond = ISD::SETEQ; 2439 } 2440 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2441 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2442 Zero, Cond); 2443 } 2444 } 2445 2446 SDValue CTPOP = N0; 2447 // Look through truncs that don't change the value of a ctpop. 2448 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2449 CTPOP = N0.getOperand(0); 2450 2451 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2452 (N0 == CTPOP || 2453 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2454 EVT CTVT = CTPOP.getValueType(); 2455 SDValue CTOp = CTPOP.getOperand(0); 2456 2457 // (ctpop x) u< 2 -> (x & x-1) == 0 2458 // (ctpop x) u> 1 -> (x & x-1) != 0 2459 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2460 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2461 DAG.getConstant(1, dl, CTVT)); 2462 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2463 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2464 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2465 } 2466 2467 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2468 } 2469 2470 // (zext x) == C --> x == (trunc C) 2471 // (sext x) == C --> x == (trunc C) 2472 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2473 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2474 unsigned MinBits = N0.getValueSizeInBits(); 2475 SDValue PreExt; 2476 bool Signed = false; 2477 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2478 // ZExt 2479 MinBits = N0->getOperand(0).getValueSizeInBits(); 2480 PreExt = N0->getOperand(0); 2481 } else if (N0->getOpcode() == ISD::AND) { 2482 // DAGCombine turns costly ZExts into ANDs 2483 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2484 if ((C->getAPIntValue()+1).isPowerOf2()) { 2485 MinBits = C->getAPIntValue().countTrailingOnes(); 2486 PreExt = N0->getOperand(0); 2487 } 2488 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2489 // SExt 2490 MinBits = N0->getOperand(0).getValueSizeInBits(); 2491 PreExt = N0->getOperand(0); 2492 Signed = true; 2493 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2494 // ZEXTLOAD / SEXTLOAD 2495 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2496 MinBits = LN0->getMemoryVT().getSizeInBits(); 2497 PreExt = N0; 2498 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2499 Signed = true; 2500 MinBits = LN0->getMemoryVT().getSizeInBits(); 2501 PreExt = N0; 2502 } 2503 } 2504 2505 // Figure out how many bits we need to preserve this constant. 2506 unsigned ReqdBits = Signed ? 2507 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2508 C1.getActiveBits(); 2509 2510 // Make sure we're not losing bits from the constant. 2511 if (MinBits > 0 && 2512 MinBits < C1.getBitWidth() && 2513 MinBits >= ReqdBits) { 2514 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2515 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2516 // Will get folded away. 2517 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2518 if (MinBits == 1 && C1 == 1) 2519 // Invert the condition. 2520 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2521 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2522 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2523 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2524 } 2525 2526 // If truncating the setcc operands is not desirable, we can still 2527 // simplify the expression in some cases: 2528 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2529 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2530 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2531 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2532 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2533 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2534 SDValue TopSetCC = N0->getOperand(0); 2535 unsigned N0Opc = N0->getOpcode(); 2536 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2537 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2538 TopSetCC.getOpcode() == ISD::SETCC && 2539 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2540 (isConstFalseVal(N1C) || 2541 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2542 2543 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2544 (!N1C->isNullValue() && Cond == ISD::SETNE); 2545 2546 if (!Inverse) 2547 return TopSetCC; 2548 2549 ISD::CondCode InvCond = ISD::getSetCCInverse( 2550 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2551 TopSetCC.getOperand(0).getValueType().isInteger()); 2552 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2553 TopSetCC.getOperand(1), 2554 InvCond); 2555 } 2556 } 2557 } 2558 2559 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2560 // equality or unsigned, and all 1 bits of the const are in the same 2561 // partial word, see if we can shorten the load. 2562 if (DCI.isBeforeLegalize() && 2563 !ISD::isSignedIntSetCC(Cond) && 2564 N0.getOpcode() == ISD::AND && C1 == 0 && 2565 N0.getNode()->hasOneUse() && 2566 isa<LoadSDNode>(N0.getOperand(0)) && 2567 N0.getOperand(0).getNode()->hasOneUse() && 2568 isa<ConstantSDNode>(N0.getOperand(1))) { 2569 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2570 APInt bestMask; 2571 unsigned bestWidth = 0, bestOffset = 0; 2572 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2573 unsigned origWidth = N0.getValueSizeInBits(); 2574 unsigned maskWidth = origWidth; 2575 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2576 // 8 bits, but have to be careful... 2577 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2578 origWidth = Lod->getMemoryVT().getSizeInBits(); 2579 const APInt &Mask = N0.getConstantOperandAPInt(1); 2580 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2581 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2582 for (unsigned offset=0; offset<origWidth/width; offset++) { 2583 if (Mask.isSubsetOf(newMask)) { 2584 if (DAG.getDataLayout().isLittleEndian()) 2585 bestOffset = (uint64_t)offset * (width/8); 2586 else 2587 bestOffset = (origWidth/width - offset - 1) * (width/8); 2588 bestMask = Mask.lshr(offset * (width/8) * 8); 2589 bestWidth = width; 2590 break; 2591 } 2592 newMask <<= width; 2593 } 2594 } 2595 } 2596 if (bestWidth) { 2597 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2598 if (newVT.isRound() && 2599 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2600 EVT PtrType = Lod->getOperand(1).getValueType(); 2601 SDValue Ptr = Lod->getBasePtr(); 2602 if (bestOffset != 0) 2603 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2604 DAG.getConstant(bestOffset, dl, PtrType)); 2605 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2606 SDValue NewLoad = DAG.getLoad( 2607 newVT, dl, Lod->getChain(), Ptr, 2608 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2609 return DAG.getSetCC(dl, VT, 2610 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2611 DAG.getConstant(bestMask.trunc(bestWidth), 2612 dl, newVT)), 2613 DAG.getConstant(0LL, dl, newVT), Cond); 2614 } 2615 } 2616 } 2617 2618 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2619 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2620 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2621 2622 // If the comparison constant has bits in the upper part, the 2623 // zero-extended value could never match. 2624 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2625 C1.getBitWidth() - InSize))) { 2626 switch (Cond) { 2627 case ISD::SETUGT: 2628 case ISD::SETUGE: 2629 case ISD::SETEQ: 2630 return DAG.getConstant(0, dl, VT); 2631 case ISD::SETULT: 2632 case ISD::SETULE: 2633 case ISD::SETNE: 2634 return DAG.getConstant(1, dl, VT); 2635 case ISD::SETGT: 2636 case ISD::SETGE: 2637 // True if the sign bit of C1 is set. 2638 return DAG.getConstant(C1.isNegative(), dl, VT); 2639 case ISD::SETLT: 2640 case ISD::SETLE: 2641 // True if the sign bit of C1 isn't set. 2642 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2643 default: 2644 break; 2645 } 2646 } 2647 2648 // Otherwise, we can perform the comparison with the low bits. 2649 switch (Cond) { 2650 case ISD::SETEQ: 2651 case ISD::SETNE: 2652 case ISD::SETUGT: 2653 case ISD::SETUGE: 2654 case ISD::SETULT: 2655 case ISD::SETULE: { 2656 EVT newVT = N0.getOperand(0).getValueType(); 2657 if (DCI.isBeforeLegalizeOps() || 2658 (isOperationLegal(ISD::SETCC, newVT) && 2659 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2660 EVT NewSetCCVT = 2661 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2662 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2663 2664 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2665 NewConst, Cond); 2666 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2667 } 2668 break; 2669 } 2670 default: 2671 break; // todo, be more careful with signed comparisons 2672 } 2673 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2674 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2675 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2676 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2677 EVT ExtDstTy = N0.getValueType(); 2678 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2679 2680 // If the constant doesn't fit into the number of bits for the source of 2681 // the sign extension, it is impossible for both sides to be equal. 2682 if (C1.getMinSignedBits() > ExtSrcTyBits) 2683 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2684 2685 SDValue ZextOp; 2686 EVT Op0Ty = N0.getOperand(0).getValueType(); 2687 if (Op0Ty == ExtSrcTy) { 2688 ZextOp = N0.getOperand(0); 2689 } else { 2690 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2691 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2692 DAG.getConstant(Imm, dl, Op0Ty)); 2693 } 2694 if (!DCI.isCalledByLegalizer()) 2695 DCI.AddToWorklist(ZextOp.getNode()); 2696 // Otherwise, make this a use of a zext. 2697 return DAG.getSetCC(dl, VT, ZextOp, 2698 DAG.getConstant(C1 & APInt::getLowBitsSet( 2699 ExtDstTyBits, 2700 ExtSrcTyBits), 2701 dl, ExtDstTy), 2702 Cond); 2703 } else if ((N1C->isNullValue() || N1C->isOne()) && 2704 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2705 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2706 if (N0.getOpcode() == ISD::SETCC && 2707 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2708 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2709 if (TrueWhenTrue) 2710 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2711 // Invert the condition. 2712 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2713 CC = ISD::getSetCCInverse(CC, 2714 N0.getOperand(0).getValueType().isInteger()); 2715 if (DCI.isBeforeLegalizeOps() || 2716 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2717 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2718 } 2719 2720 if ((N0.getOpcode() == ISD::XOR || 2721 (N0.getOpcode() == ISD::AND && 2722 N0.getOperand(0).getOpcode() == ISD::XOR && 2723 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2724 isa<ConstantSDNode>(N0.getOperand(1)) && 2725 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2726 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2727 // can only do this if the top bits are known zero. 2728 unsigned BitWidth = N0.getValueSizeInBits(); 2729 if (DAG.MaskedValueIsZero(N0, 2730 APInt::getHighBitsSet(BitWidth, 2731 BitWidth-1))) { 2732 // Okay, get the un-inverted input value. 2733 SDValue Val; 2734 if (N0.getOpcode() == ISD::XOR) { 2735 Val = N0.getOperand(0); 2736 } else { 2737 assert(N0.getOpcode() == ISD::AND && 2738 N0.getOperand(0).getOpcode() == ISD::XOR); 2739 // ((X^1)&1)^1 -> X & 1 2740 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2741 N0.getOperand(0).getOperand(0), 2742 N0.getOperand(1)); 2743 } 2744 2745 return DAG.getSetCC(dl, VT, Val, N1, 2746 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2747 } 2748 } else if (N1C->isOne() && 2749 (VT == MVT::i1 || 2750 getBooleanContents(N0->getValueType(0)) == 2751 ZeroOrOneBooleanContent)) { 2752 SDValue Op0 = N0; 2753 if (Op0.getOpcode() == ISD::TRUNCATE) 2754 Op0 = Op0.getOperand(0); 2755 2756 if ((Op0.getOpcode() == ISD::XOR) && 2757 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2758 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2759 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2760 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2761 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2762 Cond); 2763 } 2764 if (Op0.getOpcode() == ISD::AND && 2765 isa<ConstantSDNode>(Op0.getOperand(1)) && 2766 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2767 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2768 if (Op0.getValueType().bitsGT(VT)) 2769 Op0 = DAG.getNode(ISD::AND, dl, VT, 2770 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2771 DAG.getConstant(1, dl, VT)); 2772 else if (Op0.getValueType().bitsLT(VT)) 2773 Op0 = DAG.getNode(ISD::AND, dl, VT, 2774 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2775 DAG.getConstant(1, dl, VT)); 2776 2777 return DAG.getSetCC(dl, VT, Op0, 2778 DAG.getConstant(0, dl, Op0.getValueType()), 2779 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2780 } 2781 if (Op0.getOpcode() == ISD::AssertZext && 2782 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2783 return DAG.getSetCC(dl, VT, Op0, 2784 DAG.getConstant(0, dl, Op0.getValueType()), 2785 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2786 } 2787 } 2788 2789 if (SDValue V = 2790 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2791 return V; 2792 } 2793 2794 // These simplifications apply to splat vectors as well. 2795 // TODO: Handle more splat vector cases. 2796 if (auto *N1C = isConstOrConstSplat(N1)) { 2797 const APInt &C1 = N1C->getAPIntValue(); 2798 2799 APInt MinVal, MaxVal; 2800 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2801 if (ISD::isSignedIntSetCC(Cond)) { 2802 MinVal = APInt::getSignedMinValue(OperandBitSize); 2803 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2804 } else { 2805 MinVal = APInt::getMinValue(OperandBitSize); 2806 MaxVal = APInt::getMaxValue(OperandBitSize); 2807 } 2808 2809 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2810 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2811 // X >= MIN --> true 2812 if (C1 == MinVal) 2813 return DAG.getBoolConstant(true, dl, VT, OpVT); 2814 2815 if (!VT.isVector()) { // TODO: Support this for vectors. 2816 // X >= C0 --> X > (C0 - 1) 2817 APInt C = C1 - 1; 2818 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2819 if ((DCI.isBeforeLegalizeOps() || 2820 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2821 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2822 isLegalICmpImmediate(C.getSExtValue())))) { 2823 return DAG.getSetCC(dl, VT, N0, 2824 DAG.getConstant(C, dl, N1.getValueType()), 2825 NewCC); 2826 } 2827 } 2828 } 2829 2830 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2831 // X <= MAX --> true 2832 if (C1 == MaxVal) 2833 return DAG.getBoolConstant(true, dl, VT, OpVT); 2834 2835 // X <= C0 --> X < (C0 + 1) 2836 if (!VT.isVector()) { // TODO: Support this for vectors. 2837 APInt C = C1 + 1; 2838 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2839 if ((DCI.isBeforeLegalizeOps() || 2840 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2841 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2842 isLegalICmpImmediate(C.getSExtValue())))) { 2843 return DAG.getSetCC(dl, VT, N0, 2844 DAG.getConstant(C, dl, N1.getValueType()), 2845 NewCC); 2846 } 2847 } 2848 } 2849 2850 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2851 if (C1 == MinVal) 2852 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2853 2854 // TODO: Support this for vectors after legalize ops. 2855 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2856 // Canonicalize setlt X, Max --> setne X, Max 2857 if (C1 == MaxVal) 2858 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2859 2860 // If we have setult X, 1, turn it into seteq X, 0 2861 if (C1 == MinVal+1) 2862 return DAG.getSetCC(dl, VT, N0, 2863 DAG.getConstant(MinVal, dl, N0.getValueType()), 2864 ISD::SETEQ); 2865 } 2866 } 2867 2868 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2869 if (C1 == MaxVal) 2870 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2871 2872 // TODO: Support this for vectors after legalize ops. 2873 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2874 // Canonicalize setgt X, Min --> setne X, Min 2875 if (C1 == MinVal) 2876 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2877 2878 // If we have setugt X, Max-1, turn it into seteq X, Max 2879 if (C1 == MaxVal-1) 2880 return DAG.getSetCC(dl, VT, N0, 2881 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2882 ISD::SETEQ); 2883 } 2884 } 2885 2886 // If we have "setcc X, C0", check to see if we can shrink the immediate 2887 // by changing cc. 2888 // TODO: Support this for vectors after legalize ops. 2889 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2890 // SETUGT X, SINTMAX -> SETLT X, 0 2891 if (Cond == ISD::SETUGT && 2892 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2893 return DAG.getSetCC(dl, VT, N0, 2894 DAG.getConstant(0, dl, N1.getValueType()), 2895 ISD::SETLT); 2896 2897 // SETULT X, SINTMIN -> SETGT X, -1 2898 if (Cond == ISD::SETULT && 2899 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2900 SDValue ConstMinusOne = 2901 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2902 N1.getValueType()); 2903 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2904 } 2905 } 2906 } 2907 2908 // Back to non-vector simplifications. 2909 // TODO: Can we do these for vector splats? 2910 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2911 const APInt &C1 = N1C->getAPIntValue(); 2912 2913 // Fold bit comparisons when we can. 2914 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2915 (VT == N0.getValueType() || 2916 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2917 N0.getOpcode() == ISD::AND) { 2918 auto &DL = DAG.getDataLayout(); 2919 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2920 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2921 !DCI.isBeforeLegalize()); 2922 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2923 // Perform the xform if the AND RHS is a single bit. 2924 if (AndRHS->getAPIntValue().isPowerOf2()) { 2925 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2926 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2927 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2928 ShiftTy))); 2929 } 2930 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2931 // (X & 8) == 8 --> (X & 8) >> 3 2932 // Perform the xform if C1 is a single bit. 2933 if (C1.isPowerOf2()) { 2934 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2935 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2936 DAG.getConstant(C1.logBase2(), dl, 2937 ShiftTy))); 2938 } 2939 } 2940 } 2941 } 2942 2943 if (C1.getMinSignedBits() <= 64 && 2944 !isLegalICmpImmediate(C1.getSExtValue())) { 2945 // (X & -256) == 256 -> (X >> 8) == 1 2946 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2947 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2948 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2949 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2950 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2951 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2952 auto &DL = DAG.getDataLayout(); 2953 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2954 !DCI.isBeforeLegalize()); 2955 EVT CmpTy = N0.getValueType(); 2956 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2957 DAG.getConstant(ShiftBits, dl, 2958 ShiftTy)); 2959 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2960 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2961 } 2962 } 2963 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2964 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2965 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2966 // X < 0x100000000 -> (X >> 32) < 1 2967 // X >= 0x100000000 -> (X >> 32) >= 1 2968 // X <= 0x0ffffffff -> (X >> 32) < 1 2969 // X > 0x0ffffffff -> (X >> 32) >= 1 2970 unsigned ShiftBits; 2971 APInt NewC = C1; 2972 ISD::CondCode NewCond = Cond; 2973 if (AdjOne) { 2974 ShiftBits = C1.countTrailingOnes(); 2975 NewC = NewC + 1; 2976 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2977 } else { 2978 ShiftBits = C1.countTrailingZeros(); 2979 } 2980 NewC.lshrInPlace(ShiftBits); 2981 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2982 isLegalICmpImmediate(NewC.getSExtValue())) { 2983 auto &DL = DAG.getDataLayout(); 2984 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2985 !DCI.isBeforeLegalize()); 2986 EVT CmpTy = N0.getValueType(); 2987 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2988 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2989 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2990 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2991 } 2992 } 2993 } 2994 } 2995 2996 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 2997 auto *CFP = cast<ConstantFPSDNode>(N1); 2998 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 2999 3000 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3001 // constant if knowing that the operand is non-nan is enough. We prefer to 3002 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3003 // materialize 0.0. 3004 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3005 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3006 3007 // setcc (fneg x), C -> setcc swap(pred) x, -C 3008 if (N0.getOpcode() == ISD::FNEG) { 3009 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3010 if (DCI.isBeforeLegalizeOps() || 3011 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3012 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3013 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3014 } 3015 } 3016 3017 // If the condition is not legal, see if we can find an equivalent one 3018 // which is legal. 3019 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3020 // If the comparison was an awkward floating-point == or != and one of 3021 // the comparison operands is infinity or negative infinity, convert the 3022 // condition to a less-awkward <= or >=. 3023 if (CFP->getValueAPF().isInfinity()) { 3024 if (CFP->getValueAPF().isNegative()) { 3025 if (Cond == ISD::SETOEQ && 3026 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3027 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3028 if (Cond == ISD::SETUEQ && 3029 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3030 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3031 if (Cond == ISD::SETUNE && 3032 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3033 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3034 if (Cond == ISD::SETONE && 3035 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3036 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3037 } else { 3038 if (Cond == ISD::SETOEQ && 3039 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3040 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3041 if (Cond == ISD::SETUEQ && 3042 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3043 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3044 if (Cond == ISD::SETUNE && 3045 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3046 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3047 if (Cond == ISD::SETONE && 3048 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3049 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3050 } 3051 } 3052 } 3053 } 3054 3055 if (N0 == N1) { 3056 // The sext(setcc()) => setcc() optimization relies on the appropriate 3057 // constant being emitted. 3058 assert(!N0.getValueType().isInteger() && 3059 "Integer types should be handled by FoldSetCC"); 3060 3061 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3062 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3063 if (UOF == 2) // FP operators that are undefined on NaNs. 3064 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3065 if (UOF == unsigned(EqTrue)) 3066 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3067 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3068 // if it is not already. 3069 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3070 if (NewCond != Cond && 3071 (DCI.isBeforeLegalizeOps() || 3072 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3073 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3074 } 3075 3076 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3077 N0.getValueType().isInteger()) { 3078 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3079 N0.getOpcode() == ISD::XOR) { 3080 // Simplify (X+Y) == (X+Z) --> Y == Z 3081 if (N0.getOpcode() == N1.getOpcode()) { 3082 if (N0.getOperand(0) == N1.getOperand(0)) 3083 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3084 if (N0.getOperand(1) == N1.getOperand(1)) 3085 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3086 if (isCommutativeBinOp(N0.getOpcode())) { 3087 // If X op Y == Y op X, try other combinations. 3088 if (N0.getOperand(0) == N1.getOperand(1)) 3089 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3090 Cond); 3091 if (N0.getOperand(1) == N1.getOperand(0)) 3092 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3093 Cond); 3094 } 3095 } 3096 3097 // If RHS is a legal immediate value for a compare instruction, we need 3098 // to be careful about increasing register pressure needlessly. 3099 bool LegalRHSImm = false; 3100 3101 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3102 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3103 // Turn (X+C1) == C2 --> X == C2-C1 3104 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3105 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3106 DAG.getConstant(RHSC->getAPIntValue()- 3107 LHSR->getAPIntValue(), 3108 dl, N0.getValueType()), Cond); 3109 } 3110 3111 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3112 if (N0.getOpcode() == ISD::XOR) 3113 // If we know that all of the inverted bits are zero, don't bother 3114 // performing the inversion. 3115 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3116 return 3117 DAG.getSetCC(dl, VT, N0.getOperand(0), 3118 DAG.getConstant(LHSR->getAPIntValue() ^ 3119 RHSC->getAPIntValue(), 3120 dl, N0.getValueType()), 3121 Cond); 3122 } 3123 3124 // Turn (C1-X) == C2 --> X == C1-C2 3125 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3126 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3127 return 3128 DAG.getSetCC(dl, VT, N0.getOperand(1), 3129 DAG.getConstant(SUBC->getAPIntValue() - 3130 RHSC->getAPIntValue(), 3131 dl, N0.getValueType()), 3132 Cond); 3133 } 3134 } 3135 3136 // Could RHSC fold directly into a compare? 3137 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3138 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3139 } 3140 3141 // (X+Y) == X --> Y == 0 and similar folds. 3142 // Don't do this if X is an immediate that can fold into a cmp 3143 // instruction and X+Y has other uses. It could be an induction variable 3144 // chain, and the transform would increase register pressure. 3145 if (!LegalRHSImm || N0.hasOneUse()) 3146 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3147 return V; 3148 } 3149 3150 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3151 N1.getOpcode() == ISD::XOR) 3152 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3153 return V; 3154 3155 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3156 return V; 3157 } 3158 3159 // Fold away ALL boolean setcc's. 3160 SDValue Temp; 3161 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3162 EVT OpVT = N0.getValueType(); 3163 switch (Cond) { 3164 default: llvm_unreachable("Unknown integer setcc!"); 3165 case ISD::SETEQ: // X == Y -> ~(X^Y) 3166 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3167 N0 = DAG.getNOT(dl, Temp, OpVT); 3168 if (!DCI.isCalledByLegalizer()) 3169 DCI.AddToWorklist(Temp.getNode()); 3170 break; 3171 case ISD::SETNE: // X != Y --> (X^Y) 3172 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3173 break; 3174 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3175 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3176 Temp = DAG.getNOT(dl, N0, OpVT); 3177 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3178 if (!DCI.isCalledByLegalizer()) 3179 DCI.AddToWorklist(Temp.getNode()); 3180 break; 3181 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3182 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3183 Temp = DAG.getNOT(dl, N1, OpVT); 3184 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3185 if (!DCI.isCalledByLegalizer()) 3186 DCI.AddToWorklist(Temp.getNode()); 3187 break; 3188 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3189 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3190 Temp = DAG.getNOT(dl, N0, OpVT); 3191 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3192 if (!DCI.isCalledByLegalizer()) 3193 DCI.AddToWorklist(Temp.getNode()); 3194 break; 3195 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3196 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3197 Temp = DAG.getNOT(dl, N1, OpVT); 3198 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3199 break; 3200 } 3201 if (VT.getScalarType() != MVT::i1) { 3202 if (!DCI.isCalledByLegalizer()) 3203 DCI.AddToWorklist(N0.getNode()); 3204 // FIXME: If running after legalize, we probably can't do this. 3205 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3206 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3207 } 3208 return N0; 3209 } 3210 3211 // Could not fold it. 3212 return SDValue(); 3213 } 3214 3215 /// Returns true (and the GlobalValue and the offset) if the node is a 3216 /// GlobalAddress + offset. 3217 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3218 int64_t &Offset) const { 3219 3220 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3221 3222 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3223 GA = GASD->getGlobal(); 3224 Offset += GASD->getOffset(); 3225 return true; 3226 } 3227 3228 if (N->getOpcode() == ISD::ADD) { 3229 SDValue N1 = N->getOperand(0); 3230 SDValue N2 = N->getOperand(1); 3231 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3232 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3233 Offset += V->getSExtValue(); 3234 return true; 3235 } 3236 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3237 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3238 Offset += V->getSExtValue(); 3239 return true; 3240 } 3241 } 3242 } 3243 3244 return false; 3245 } 3246 3247 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3248 DAGCombinerInfo &DCI) const { 3249 // Default implementation: no optimization. 3250 return SDValue(); 3251 } 3252 3253 //===----------------------------------------------------------------------===// 3254 // Inline Assembler Implementation Methods 3255 //===----------------------------------------------------------------------===// 3256 3257 TargetLowering::ConstraintType 3258 TargetLowering::getConstraintType(StringRef Constraint) const { 3259 unsigned S = Constraint.size(); 3260 3261 if (S == 1) { 3262 switch (Constraint[0]) { 3263 default: break; 3264 case 'r': return C_RegisterClass; 3265 case 'm': // memory 3266 case 'o': // offsetable 3267 case 'V': // not offsetable 3268 return C_Memory; 3269 case 'i': // Simple Integer or Relocatable Constant 3270 case 'n': // Simple Integer 3271 case 'E': // Floating Point Constant 3272 case 'F': // Floating Point Constant 3273 case 's': // Relocatable Constant 3274 case 'p': // Address. 3275 case 'X': // Allow ANY value. 3276 case 'I': // Target registers. 3277 case 'J': 3278 case 'K': 3279 case 'L': 3280 case 'M': 3281 case 'N': 3282 case 'O': 3283 case 'P': 3284 case '<': 3285 case '>': 3286 return C_Other; 3287 } 3288 } 3289 3290 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3291 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3292 return C_Memory; 3293 return C_Register; 3294 } 3295 return C_Unknown; 3296 } 3297 3298 /// Try to replace an X constraint, which matches anything, with another that 3299 /// has more specific requirements based on the type of the corresponding 3300 /// operand. 3301 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3302 if (ConstraintVT.isInteger()) 3303 return "r"; 3304 if (ConstraintVT.isFloatingPoint()) 3305 return "f"; // works for many targets 3306 return nullptr; 3307 } 3308 3309 SDValue TargetLowering::LowerAsmOutputForConstraint( 3310 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3311 SelectionDAG &DAG) const { 3312 return SDValue(); 3313 } 3314 3315 /// Lower the specified operand into the Ops vector. 3316 /// If it is invalid, don't add anything to Ops. 3317 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3318 std::string &Constraint, 3319 std::vector<SDValue> &Ops, 3320 SelectionDAG &DAG) const { 3321 3322 if (Constraint.length() > 1) return; 3323 3324 char ConstraintLetter = Constraint[0]; 3325 switch (ConstraintLetter) { 3326 default: break; 3327 case 'X': // Allows any operand; labels (basic block) use this. 3328 if (Op.getOpcode() == ISD::BasicBlock || 3329 Op.getOpcode() == ISD::TargetBlockAddress) { 3330 Ops.push_back(Op); 3331 return; 3332 } 3333 LLVM_FALLTHROUGH; 3334 case 'i': // Simple Integer or Relocatable Constant 3335 case 'n': // Simple Integer 3336 case 's': { // Relocatable Constant 3337 // These operands are interested in values of the form (GV+C), where C may 3338 // be folded in as an offset of GV, or it may be explicitly added. Also, it 3339 // is possible and fine if either GV or C are missing. 3340 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3341 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 3342 3343 // If we have "(add GV, C)", pull out GV/C 3344 if (Op.getOpcode() == ISD::ADD) { 3345 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3346 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 3347 if (!C || !GA) { 3348 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 3349 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 3350 } 3351 if (!C || !GA) { 3352 C = nullptr; 3353 GA = nullptr; 3354 } 3355 } 3356 3357 // If we find a valid operand, map to the TargetXXX version so that the 3358 // value itself doesn't get selected. 3359 if (GA) { // Either &GV or &GV+C 3360 if (ConstraintLetter != 'n') { 3361 int64_t Offs = GA->getOffset(); 3362 if (C) Offs += C->getZExtValue(); 3363 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 3364 C ? SDLoc(C) : SDLoc(), 3365 Op.getValueType(), Offs)); 3366 } 3367 return; 3368 } 3369 if (C) { // just C, no GV. 3370 // Simple constants are not allowed for 's'. 3371 if (ConstraintLetter != 's') { 3372 // gcc prints these as sign extended. Sign extend value to 64 bits 3373 // now; without this it would get ZExt'd later in 3374 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3375 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3376 SDLoc(C), MVT::i64)); 3377 } 3378 return; 3379 } 3380 break; 3381 } 3382 } 3383 } 3384 3385 std::pair<unsigned, const TargetRegisterClass *> 3386 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3387 StringRef Constraint, 3388 MVT VT) const { 3389 if (Constraint.empty() || Constraint[0] != '{') 3390 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3391 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3392 3393 // Remove the braces from around the name. 3394 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3395 3396 std::pair<unsigned, const TargetRegisterClass *> R = 3397 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3398 3399 // Figure out which register class contains this reg. 3400 for (const TargetRegisterClass *RC : RI->regclasses()) { 3401 // If none of the value types for this register class are valid, we 3402 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3403 if (!isLegalRC(*RI, *RC)) 3404 continue; 3405 3406 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3407 I != E; ++I) { 3408 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3409 std::pair<unsigned, const TargetRegisterClass *> S = 3410 std::make_pair(*I, RC); 3411 3412 // If this register class has the requested value type, return it, 3413 // otherwise keep searching and return the first class found 3414 // if no other is found which explicitly has the requested type. 3415 if (RI->isTypeLegalForClass(*RC, VT)) 3416 return S; 3417 if (!R.second) 3418 R = S; 3419 } 3420 } 3421 } 3422 3423 return R; 3424 } 3425 3426 //===----------------------------------------------------------------------===// 3427 // Constraint Selection. 3428 3429 /// Return true of this is an input operand that is a matching constraint like 3430 /// "4". 3431 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3432 assert(!ConstraintCode.empty() && "No known constraint!"); 3433 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3434 } 3435 3436 /// If this is an input matching constraint, this method returns the output 3437 /// operand it matches. 3438 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3439 assert(!ConstraintCode.empty() && "No known constraint!"); 3440 return atoi(ConstraintCode.c_str()); 3441 } 3442 3443 /// Split up the constraint string from the inline assembly value into the 3444 /// specific constraints and their prefixes, and also tie in the associated 3445 /// operand values. 3446 /// If this returns an empty vector, and if the constraint string itself 3447 /// isn't empty, there was an error parsing. 3448 TargetLowering::AsmOperandInfoVector 3449 TargetLowering::ParseConstraints(const DataLayout &DL, 3450 const TargetRegisterInfo *TRI, 3451 ImmutableCallSite CS) const { 3452 /// Information about all of the constraints. 3453 AsmOperandInfoVector ConstraintOperands; 3454 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3455 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3456 3457 // Do a prepass over the constraints, canonicalizing them, and building up the 3458 // ConstraintOperands list. 3459 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3460 unsigned ResNo = 0; // ResNo - The result number of the next output. 3461 3462 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3463 ConstraintOperands.emplace_back(std::move(CI)); 3464 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3465 3466 // Update multiple alternative constraint count. 3467 if (OpInfo.multipleAlternatives.size() > maCount) 3468 maCount = OpInfo.multipleAlternatives.size(); 3469 3470 OpInfo.ConstraintVT = MVT::Other; 3471 3472 // Compute the value type for each operand. 3473 switch (OpInfo.Type) { 3474 case InlineAsm::isOutput: 3475 // Indirect outputs just consume an argument. 3476 if (OpInfo.isIndirect) { 3477 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3478 break; 3479 } 3480 3481 // The return value of the call is this value. As such, there is no 3482 // corresponding argument. 3483 assert(!CS.getType()->isVoidTy() && 3484 "Bad inline asm!"); 3485 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3486 OpInfo.ConstraintVT = 3487 getSimpleValueType(DL, STy->getElementType(ResNo)); 3488 } else { 3489 assert(ResNo == 0 && "Asm only has one result!"); 3490 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3491 } 3492 ++ResNo; 3493 break; 3494 case InlineAsm::isInput: 3495 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3496 break; 3497 case InlineAsm::isClobber: 3498 // Nothing to do. 3499 break; 3500 } 3501 3502 if (OpInfo.CallOperandVal) { 3503 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3504 if (OpInfo.isIndirect) { 3505 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3506 if (!PtrTy) 3507 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3508 OpTy = PtrTy->getElementType(); 3509 } 3510 3511 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3512 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3513 if (STy->getNumElements() == 1) 3514 OpTy = STy->getElementType(0); 3515 3516 // If OpTy is not a single value, it may be a struct/union that we 3517 // can tile with integers. 3518 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3519 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3520 switch (BitSize) { 3521 default: break; 3522 case 1: 3523 case 8: 3524 case 16: 3525 case 32: 3526 case 64: 3527 case 128: 3528 OpInfo.ConstraintVT = 3529 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3530 break; 3531 } 3532 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3533 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3534 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3535 } else { 3536 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3537 } 3538 } 3539 } 3540 3541 // If we have multiple alternative constraints, select the best alternative. 3542 if (!ConstraintOperands.empty()) { 3543 if (maCount) { 3544 unsigned bestMAIndex = 0; 3545 int bestWeight = -1; 3546 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3547 int weight = -1; 3548 unsigned maIndex; 3549 // Compute the sums of the weights for each alternative, keeping track 3550 // of the best (highest weight) one so far. 3551 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3552 int weightSum = 0; 3553 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3554 cIndex != eIndex; ++cIndex) { 3555 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3556 if (OpInfo.Type == InlineAsm::isClobber) 3557 continue; 3558 3559 // If this is an output operand with a matching input operand, 3560 // look up the matching input. If their types mismatch, e.g. one 3561 // is an integer, the other is floating point, or their sizes are 3562 // different, flag it as an maCantMatch. 3563 if (OpInfo.hasMatchingInput()) { 3564 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3565 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3566 if ((OpInfo.ConstraintVT.isInteger() != 3567 Input.ConstraintVT.isInteger()) || 3568 (OpInfo.ConstraintVT.getSizeInBits() != 3569 Input.ConstraintVT.getSizeInBits())) { 3570 weightSum = -1; // Can't match. 3571 break; 3572 } 3573 } 3574 } 3575 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3576 if (weight == -1) { 3577 weightSum = -1; 3578 break; 3579 } 3580 weightSum += weight; 3581 } 3582 // Update best. 3583 if (weightSum > bestWeight) { 3584 bestWeight = weightSum; 3585 bestMAIndex = maIndex; 3586 } 3587 } 3588 3589 // Now select chosen alternative in each constraint. 3590 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3591 cIndex != eIndex; ++cIndex) { 3592 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3593 if (cInfo.Type == InlineAsm::isClobber) 3594 continue; 3595 cInfo.selectAlternative(bestMAIndex); 3596 } 3597 } 3598 } 3599 3600 // Check and hook up tied operands, choose constraint code to use. 3601 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3602 cIndex != eIndex; ++cIndex) { 3603 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3604 3605 // If this is an output operand with a matching input operand, look up the 3606 // matching input. If their types mismatch, e.g. one is an integer, the 3607 // other is floating point, or their sizes are different, flag it as an 3608 // error. 3609 if (OpInfo.hasMatchingInput()) { 3610 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3611 3612 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3613 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3614 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3615 OpInfo.ConstraintVT); 3616 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3617 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3618 Input.ConstraintVT); 3619 if ((OpInfo.ConstraintVT.isInteger() != 3620 Input.ConstraintVT.isInteger()) || 3621 (MatchRC.second != InputRC.second)) { 3622 report_fatal_error("Unsupported asm: input constraint" 3623 " with a matching output constraint of" 3624 " incompatible type!"); 3625 } 3626 } 3627 } 3628 } 3629 3630 return ConstraintOperands; 3631 } 3632 3633 /// Return an integer indicating how general CT is. 3634 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3635 switch (CT) { 3636 case TargetLowering::C_Other: 3637 case TargetLowering::C_Unknown: 3638 return 0; 3639 case TargetLowering::C_Register: 3640 return 1; 3641 case TargetLowering::C_RegisterClass: 3642 return 2; 3643 case TargetLowering::C_Memory: 3644 return 3; 3645 } 3646 llvm_unreachable("Invalid constraint type"); 3647 } 3648 3649 /// Examine constraint type and operand type and determine a weight value. 3650 /// This object must already have been set up with the operand type 3651 /// and the current alternative constraint selected. 3652 TargetLowering::ConstraintWeight 3653 TargetLowering::getMultipleConstraintMatchWeight( 3654 AsmOperandInfo &info, int maIndex) const { 3655 InlineAsm::ConstraintCodeVector *rCodes; 3656 if (maIndex >= (int)info.multipleAlternatives.size()) 3657 rCodes = &info.Codes; 3658 else 3659 rCodes = &info.multipleAlternatives[maIndex].Codes; 3660 ConstraintWeight BestWeight = CW_Invalid; 3661 3662 // Loop over the options, keeping track of the most general one. 3663 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3664 ConstraintWeight weight = 3665 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3666 if (weight > BestWeight) 3667 BestWeight = weight; 3668 } 3669 3670 return BestWeight; 3671 } 3672 3673 /// Examine constraint type and operand type and determine a weight value. 3674 /// This object must already have been set up with the operand type 3675 /// and the current alternative constraint selected. 3676 TargetLowering::ConstraintWeight 3677 TargetLowering::getSingleConstraintMatchWeight( 3678 AsmOperandInfo &info, const char *constraint) const { 3679 ConstraintWeight weight = CW_Invalid; 3680 Value *CallOperandVal = info.CallOperandVal; 3681 // If we don't have a value, we can't do a match, 3682 // but allow it at the lowest weight. 3683 if (!CallOperandVal) 3684 return CW_Default; 3685 // Look at the constraint type. 3686 switch (*constraint) { 3687 case 'i': // immediate integer. 3688 case 'n': // immediate integer with a known value. 3689 if (isa<ConstantInt>(CallOperandVal)) 3690 weight = CW_Constant; 3691 break; 3692 case 's': // non-explicit intregal immediate. 3693 if (isa<GlobalValue>(CallOperandVal)) 3694 weight = CW_Constant; 3695 break; 3696 case 'E': // immediate float if host format. 3697 case 'F': // immediate float. 3698 if (isa<ConstantFP>(CallOperandVal)) 3699 weight = CW_Constant; 3700 break; 3701 case '<': // memory operand with autodecrement. 3702 case '>': // memory operand with autoincrement. 3703 case 'm': // memory operand. 3704 case 'o': // offsettable memory operand 3705 case 'V': // non-offsettable memory operand 3706 weight = CW_Memory; 3707 break; 3708 case 'r': // general register. 3709 case 'g': // general register, memory operand or immediate integer. 3710 // note: Clang converts "g" to "imr". 3711 if (CallOperandVal->getType()->isIntegerTy()) 3712 weight = CW_Register; 3713 break; 3714 case 'X': // any operand. 3715 default: 3716 weight = CW_Default; 3717 break; 3718 } 3719 return weight; 3720 } 3721 3722 /// If there are multiple different constraints that we could pick for this 3723 /// operand (e.g. "imr") try to pick the 'best' one. 3724 /// This is somewhat tricky: constraints fall into four classes: 3725 /// Other -> immediates and magic values 3726 /// Register -> one specific register 3727 /// RegisterClass -> a group of regs 3728 /// Memory -> memory 3729 /// Ideally, we would pick the most specific constraint possible: if we have 3730 /// something that fits into a register, we would pick it. The problem here 3731 /// is that if we have something that could either be in a register or in 3732 /// memory that use of the register could cause selection of *other* 3733 /// operands to fail: they might only succeed if we pick memory. Because of 3734 /// this the heuristic we use is: 3735 /// 3736 /// 1) If there is an 'other' constraint, and if the operand is valid for 3737 /// that constraint, use it. This makes us take advantage of 'i' 3738 /// constraints when available. 3739 /// 2) Otherwise, pick the most general constraint present. This prefers 3740 /// 'm' over 'r', for example. 3741 /// 3742 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3743 const TargetLowering &TLI, 3744 SDValue Op, SelectionDAG *DAG) { 3745 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3746 unsigned BestIdx = 0; 3747 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3748 int BestGenerality = -1; 3749 3750 // Loop over the options, keeping track of the most general one. 3751 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3752 TargetLowering::ConstraintType CType = 3753 TLI.getConstraintType(OpInfo.Codes[i]); 3754 3755 // If this is an 'other' constraint, see if the operand is valid for it. 3756 // For example, on X86 we might have an 'rI' constraint. If the operand 3757 // is an integer in the range [0..31] we want to use I (saving a load 3758 // of a register), otherwise we must use 'r'. 3759 if (CType == TargetLowering::C_Other && Op.getNode()) { 3760 assert(OpInfo.Codes[i].size() == 1 && 3761 "Unhandled multi-letter 'other' constraint"); 3762 std::vector<SDValue> ResultOps; 3763 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3764 ResultOps, *DAG); 3765 if (!ResultOps.empty()) { 3766 BestType = CType; 3767 BestIdx = i; 3768 break; 3769 } 3770 } 3771 3772 // Things with matching constraints can only be registers, per gcc 3773 // documentation. This mainly affects "g" constraints. 3774 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3775 continue; 3776 3777 // This constraint letter is more general than the previous one, use it. 3778 int Generality = getConstraintGenerality(CType); 3779 if (Generality > BestGenerality) { 3780 BestType = CType; 3781 BestIdx = i; 3782 BestGenerality = Generality; 3783 } 3784 } 3785 3786 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3787 OpInfo.ConstraintType = BestType; 3788 } 3789 3790 /// Determines the constraint code and constraint type to use for the specific 3791 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3792 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3793 SDValue Op, 3794 SelectionDAG *DAG) const { 3795 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3796 3797 // Single-letter constraints ('r') are very common. 3798 if (OpInfo.Codes.size() == 1) { 3799 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3800 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3801 } else { 3802 ChooseConstraint(OpInfo, *this, Op, DAG); 3803 } 3804 3805 // 'X' matches anything. 3806 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3807 // Labels and constants are handled elsewhere ('X' is the only thing 3808 // that matches labels). For Functions, the type here is the type of 3809 // the result, which is not what we want to look at; leave them alone. 3810 Value *v = OpInfo.CallOperandVal; 3811 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3812 OpInfo.CallOperandVal = v; 3813 return; 3814 } 3815 3816 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 3817 return; 3818 3819 // Otherwise, try to resolve it to something we know about by looking at 3820 // the actual operand type. 3821 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3822 OpInfo.ConstraintCode = Repl; 3823 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3824 } 3825 } 3826 } 3827 3828 /// Given an exact SDIV by a constant, create a multiplication 3829 /// with the multiplicative inverse of the constant. 3830 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3831 const SDLoc &dl, SelectionDAG &DAG, 3832 SmallVectorImpl<SDNode *> &Created) { 3833 SDValue Op0 = N->getOperand(0); 3834 SDValue Op1 = N->getOperand(1); 3835 EVT VT = N->getValueType(0); 3836 EVT SVT = VT.getScalarType(); 3837 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3838 EVT ShSVT = ShVT.getScalarType(); 3839 3840 bool UseSRA = false; 3841 SmallVector<SDValue, 16> Shifts, Factors; 3842 3843 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3844 if (C->isNullValue()) 3845 return false; 3846 APInt Divisor = C->getAPIntValue(); 3847 unsigned Shift = Divisor.countTrailingZeros(); 3848 if (Shift) { 3849 Divisor.ashrInPlace(Shift); 3850 UseSRA = true; 3851 } 3852 // Calculate the multiplicative inverse, using Newton's method. 3853 APInt t; 3854 APInt Factor = Divisor; 3855 while ((t = Divisor * Factor) != 1) 3856 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3857 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3858 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3859 return true; 3860 }; 3861 3862 // Collect all magic values from the build vector. 3863 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3864 return SDValue(); 3865 3866 SDValue Shift, Factor; 3867 if (VT.isVector()) { 3868 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3869 Factor = DAG.getBuildVector(VT, dl, Factors); 3870 } else { 3871 Shift = Shifts[0]; 3872 Factor = Factors[0]; 3873 } 3874 3875 SDValue Res = Op0; 3876 3877 // Shift the value upfront if it is even, so the LSB is one. 3878 if (UseSRA) { 3879 // TODO: For UDIV use SRL instead of SRA. 3880 SDNodeFlags Flags; 3881 Flags.setExact(true); 3882 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3883 Created.push_back(Res.getNode()); 3884 } 3885 3886 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3887 } 3888 3889 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3890 SelectionDAG &DAG, 3891 SmallVectorImpl<SDNode *> &Created) const { 3892 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3894 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3895 return SDValue(N, 0); // Lower SDIV as SDIV 3896 return SDValue(); 3897 } 3898 3899 /// Given an ISD::SDIV node expressing a divide by constant, 3900 /// return a DAG expression to select that will generate the same value by 3901 /// multiplying by a magic number. 3902 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3903 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3904 bool IsAfterLegalization, 3905 SmallVectorImpl<SDNode *> &Created) const { 3906 SDLoc dl(N); 3907 EVT VT = N->getValueType(0); 3908 EVT SVT = VT.getScalarType(); 3909 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3910 EVT ShSVT = ShVT.getScalarType(); 3911 unsigned EltBits = VT.getScalarSizeInBits(); 3912 3913 // Check to see if we can do this. 3914 // FIXME: We should be more aggressive here. 3915 if (!isTypeLegal(VT)) 3916 return SDValue(); 3917 3918 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3919 if (N->getFlags().hasExact()) 3920 return BuildExactSDIV(*this, N, dl, DAG, Created); 3921 3922 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3923 3924 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3925 if (C->isNullValue()) 3926 return false; 3927 3928 const APInt &Divisor = C->getAPIntValue(); 3929 APInt::ms magics = Divisor.magic(); 3930 int NumeratorFactor = 0; 3931 int ShiftMask = -1; 3932 3933 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 3934 // If d is +1/-1, we just multiply the numerator by +1/-1. 3935 NumeratorFactor = Divisor.getSExtValue(); 3936 magics.m = 0; 3937 magics.s = 0; 3938 ShiftMask = 0; 3939 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3940 // If d > 0 and m < 0, add the numerator. 3941 NumeratorFactor = 1; 3942 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3943 // If d < 0 and m > 0, subtract the numerator. 3944 NumeratorFactor = -1; 3945 } 3946 3947 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 3948 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 3949 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 3950 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 3951 return true; 3952 }; 3953 3954 SDValue N0 = N->getOperand(0); 3955 SDValue N1 = N->getOperand(1); 3956 3957 // Collect the shifts / magic values from each element. 3958 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 3959 return SDValue(); 3960 3961 SDValue MagicFactor, Factor, Shift, ShiftMask; 3962 if (VT.isVector()) { 3963 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3964 Factor = DAG.getBuildVector(VT, dl, Factors); 3965 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3966 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 3967 } else { 3968 MagicFactor = MagicFactors[0]; 3969 Factor = Factors[0]; 3970 Shift = Shifts[0]; 3971 ShiftMask = ShiftMasks[0]; 3972 } 3973 3974 // Multiply the numerator (operand 0) by the magic value. 3975 // FIXME: We should support doing a MUL in a wider type. 3976 SDValue Q; 3977 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 3978 : isOperationLegalOrCustom(ISD::MULHS, VT)) 3979 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 3980 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 3981 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3982 SDValue LoHi = 3983 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 3984 Q = SDValue(LoHi.getNode(), 1); 3985 } else 3986 return SDValue(); // No mulhs or equivalent. 3987 Created.push_back(Q.getNode()); 3988 3989 // (Optionally) Add/subtract the numerator using Factor. 3990 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 3991 Created.push_back(Factor.getNode()); 3992 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 3993 Created.push_back(Q.getNode()); 3994 3995 // Shift right algebraic by shift value. 3996 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 3997 Created.push_back(Q.getNode()); 3998 3999 // Extract the sign bit, mask it and add it to the quotient. 4000 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4001 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4002 Created.push_back(T.getNode()); 4003 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4004 Created.push_back(T.getNode()); 4005 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4006 } 4007 4008 /// Given an ISD::UDIV node expressing a divide by constant, 4009 /// return a DAG expression to select that will generate the same value by 4010 /// multiplying by a magic number. 4011 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4012 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4013 bool IsAfterLegalization, 4014 SmallVectorImpl<SDNode *> &Created) const { 4015 SDLoc dl(N); 4016 EVT VT = N->getValueType(0); 4017 EVT SVT = VT.getScalarType(); 4018 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4019 EVT ShSVT = ShVT.getScalarType(); 4020 unsigned EltBits = VT.getScalarSizeInBits(); 4021 4022 // Check to see if we can do this. 4023 // FIXME: We should be more aggressive here. 4024 if (!isTypeLegal(VT)) 4025 return SDValue(); 4026 4027 bool UseNPQ = false; 4028 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4029 4030 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4031 if (C->isNullValue()) 4032 return false; 4033 // FIXME: We should use a narrower constant when the upper 4034 // bits are known to be zero. 4035 APInt Divisor = C->getAPIntValue(); 4036 APInt::mu magics = Divisor.magicu(); 4037 unsigned PreShift = 0, PostShift = 0; 4038 4039 // If the divisor is even, we can avoid using the expensive fixup by 4040 // shifting the divided value upfront. 4041 if (magics.a != 0 && !Divisor[0]) { 4042 PreShift = Divisor.countTrailingZeros(); 4043 // Get magic number for the shifted divisor. 4044 magics = Divisor.lshr(PreShift).magicu(PreShift); 4045 assert(magics.a == 0 && "Should use cheap fixup now"); 4046 } 4047 4048 APInt Magic = magics.m; 4049 4050 unsigned SelNPQ; 4051 if (magics.a == 0 || Divisor.isOneValue()) { 4052 assert(magics.s < Divisor.getBitWidth() && 4053 "We shouldn't generate an undefined shift!"); 4054 PostShift = magics.s; 4055 SelNPQ = false; 4056 } else { 4057 PostShift = magics.s - 1; 4058 SelNPQ = true; 4059 } 4060 4061 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4062 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4063 NPQFactors.push_back( 4064 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4065 : APInt::getNullValue(EltBits), 4066 dl, SVT)); 4067 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4068 UseNPQ |= SelNPQ; 4069 return true; 4070 }; 4071 4072 SDValue N0 = N->getOperand(0); 4073 SDValue N1 = N->getOperand(1); 4074 4075 // Collect the shifts/magic values from each element. 4076 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4077 return SDValue(); 4078 4079 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4080 if (VT.isVector()) { 4081 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4082 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4083 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4084 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4085 } else { 4086 PreShift = PreShifts[0]; 4087 MagicFactor = MagicFactors[0]; 4088 PostShift = PostShifts[0]; 4089 } 4090 4091 SDValue Q = N0; 4092 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4093 Created.push_back(Q.getNode()); 4094 4095 // FIXME: We should support doing a MUL in a wider type. 4096 auto GetMULHU = [&](SDValue X, SDValue Y) { 4097 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4098 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4099 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4100 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4101 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4102 SDValue LoHi = 4103 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4104 return SDValue(LoHi.getNode(), 1); 4105 } 4106 return SDValue(); // No mulhu or equivalent 4107 }; 4108 4109 // Multiply the numerator (operand 0) by the magic value. 4110 Q = GetMULHU(Q, MagicFactor); 4111 if (!Q) 4112 return SDValue(); 4113 4114 Created.push_back(Q.getNode()); 4115 4116 if (UseNPQ) { 4117 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4118 Created.push_back(NPQ.getNode()); 4119 4120 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4121 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4122 if (VT.isVector()) 4123 NPQ = GetMULHU(NPQ, NPQFactor); 4124 else 4125 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4126 4127 Created.push_back(NPQ.getNode()); 4128 4129 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4130 Created.push_back(Q.getNode()); 4131 } 4132 4133 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4134 Created.push_back(Q.getNode()); 4135 4136 SDValue One = DAG.getConstant(1, dl, VT); 4137 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4138 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4139 } 4140 4141 bool TargetLowering:: 4142 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4143 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4144 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4145 "be a constant integer"); 4146 return true; 4147 } 4148 4149 return false; 4150 } 4151 4152 //===----------------------------------------------------------------------===// 4153 // Legalization Utilities 4154 //===----------------------------------------------------------------------===// 4155 4156 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4157 SDValue LHS, SDValue RHS, 4158 SmallVectorImpl<SDValue> &Result, 4159 EVT HiLoVT, SelectionDAG &DAG, 4160 MulExpansionKind Kind, SDValue LL, 4161 SDValue LH, SDValue RL, SDValue RH) const { 4162 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4163 Opcode == ISD::SMUL_LOHI); 4164 4165 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4166 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4167 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4168 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4169 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4170 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4171 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4172 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4173 4174 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4175 return false; 4176 4177 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4178 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4179 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4180 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4181 4182 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4183 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4184 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4185 4186 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4187 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4188 bool Signed) -> bool { 4189 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4190 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4191 Hi = SDValue(Lo.getNode(), 1); 4192 return true; 4193 } 4194 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4195 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4196 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4197 return true; 4198 } 4199 return false; 4200 }; 4201 4202 SDValue Lo, Hi; 4203 4204 if (!LL.getNode() && !RL.getNode() && 4205 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4206 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4207 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4208 } 4209 4210 if (!LL.getNode()) 4211 return false; 4212 4213 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4214 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4215 DAG.MaskedValueIsZero(RHS, HighMask)) { 4216 // The inputs are both zero-extended. 4217 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4218 Result.push_back(Lo); 4219 Result.push_back(Hi); 4220 if (Opcode != ISD::MUL) { 4221 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4222 Result.push_back(Zero); 4223 Result.push_back(Zero); 4224 } 4225 return true; 4226 } 4227 } 4228 4229 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4230 RHSSB > InnerBitSize) { 4231 // The input values are both sign-extended. 4232 // TODO non-MUL case? 4233 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4234 Result.push_back(Lo); 4235 Result.push_back(Hi); 4236 return true; 4237 } 4238 } 4239 4240 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4241 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4242 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4243 // FIXME getShiftAmountTy does not always return a sensible result when VT 4244 // is an illegal type, and so the type may be too small to fit the shift 4245 // amount. Override it with i32. The shift will have to be legalized. 4246 ShiftAmountTy = MVT::i32; 4247 } 4248 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4249 4250 if (!LH.getNode() && !RH.getNode() && 4251 isOperationLegalOrCustom(ISD::SRL, VT) && 4252 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4253 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4254 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4255 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4256 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4257 } 4258 4259 if (!LH.getNode()) 4260 return false; 4261 4262 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4263 return false; 4264 4265 Result.push_back(Lo); 4266 4267 if (Opcode == ISD::MUL) { 4268 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4269 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4270 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4271 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4272 Result.push_back(Hi); 4273 return true; 4274 } 4275 4276 // Compute the full width result. 4277 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4278 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4279 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4280 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4281 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4282 }; 4283 4284 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4285 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4286 return false; 4287 4288 // This is effectively the add part of a multiply-add of half-sized operands, 4289 // so it cannot overflow. 4290 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4291 4292 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4293 return false; 4294 4295 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4296 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4297 4298 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4299 isOperationLegalOrCustom(ISD::ADDE, VT)); 4300 if (UseGlue) 4301 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4302 Merge(Lo, Hi)); 4303 else 4304 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4305 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4306 4307 SDValue Carry = Next.getValue(1); 4308 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4309 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4310 4311 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4312 return false; 4313 4314 if (UseGlue) 4315 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4316 Carry); 4317 else 4318 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4319 Zero, Carry); 4320 4321 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4322 4323 if (Opcode == ISD::SMUL_LOHI) { 4324 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4325 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4326 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4327 4328 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4329 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4330 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4331 } 4332 4333 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4334 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4335 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4336 return true; 4337 } 4338 4339 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4340 SelectionDAG &DAG, MulExpansionKind Kind, 4341 SDValue LL, SDValue LH, SDValue RL, 4342 SDValue RH) const { 4343 SmallVector<SDValue, 2> Result; 4344 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4345 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4346 DAG, Kind, LL, LH, RL, RH); 4347 if (Ok) { 4348 assert(Result.size() == 2); 4349 Lo = Result[0]; 4350 Hi = Result[1]; 4351 } 4352 return Ok; 4353 } 4354 4355 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4356 SelectionDAG &DAG) const { 4357 EVT VT = Node->getValueType(0); 4358 4359 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4360 !isOperationLegalOrCustom(ISD::SRL, VT) || 4361 !isOperationLegalOrCustom(ISD::SUB, VT) || 4362 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4363 return false; 4364 4365 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4366 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4367 SDValue X = Node->getOperand(0); 4368 SDValue Y = Node->getOperand(1); 4369 SDValue Z = Node->getOperand(2); 4370 4371 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4372 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4373 SDLoc DL(SDValue(Node, 0)); 4374 4375 EVT ShVT = Z.getValueType(); 4376 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4377 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4378 4379 SDValue ShAmt; 4380 if (isPowerOf2_32(EltSizeInBits)) { 4381 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4382 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4383 } else { 4384 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4385 } 4386 4387 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4388 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4389 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4390 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4391 4392 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4393 // and that is undefined. We must compare and select to avoid UB. 4394 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4395 4396 // For fshl, 0-shift returns the 1st arg (X). 4397 // For fshr, 0-shift returns the 2nd arg (Y). 4398 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4399 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4400 return true; 4401 } 4402 4403 // TODO: Merge with expandFunnelShift. 4404 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4405 SelectionDAG &DAG) const { 4406 EVT VT = Node->getValueType(0); 4407 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4408 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4409 SDValue Op0 = Node->getOperand(0); 4410 SDValue Op1 = Node->getOperand(1); 4411 SDLoc DL(SDValue(Node, 0)); 4412 4413 EVT ShVT = Op1.getValueType(); 4414 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4415 4416 // If a rotate in the other direction is legal, use it. 4417 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4418 if (isOperationLegal(RevRot, VT)) { 4419 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4420 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4421 return true; 4422 } 4423 4424 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4425 !isOperationLegalOrCustom(ISD::SRL, VT) || 4426 !isOperationLegalOrCustom(ISD::SUB, VT) || 4427 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4428 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4429 return false; 4430 4431 // Otherwise, 4432 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4433 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4434 // 4435 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4436 "Expecting the type bitwidth to be a power of 2"); 4437 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4438 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4439 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4440 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4441 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4442 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4443 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4444 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4445 return true; 4446 } 4447 4448 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4449 SelectionDAG &DAG) const { 4450 SDValue Src = Node->getOperand(0); 4451 EVT SrcVT = Src.getValueType(); 4452 EVT DstVT = Node->getValueType(0); 4453 SDLoc dl(SDValue(Node, 0)); 4454 4455 // FIXME: Only f32 to i64 conversions are supported. 4456 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4457 return false; 4458 4459 // Expand f32 -> i64 conversion 4460 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4461 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4462 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4463 EVT IntVT = SrcVT.changeTypeToInteger(); 4464 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4465 4466 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4467 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4468 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4469 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4470 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4471 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4472 4473 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4474 4475 SDValue ExponentBits = DAG.getNode( 4476 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4477 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4478 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4479 4480 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4481 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4482 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4483 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4484 4485 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4486 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4487 DAG.getConstant(0x00800000, dl, IntVT)); 4488 4489 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4490 4491 R = DAG.getSelectCC( 4492 dl, Exponent, ExponentLoBit, 4493 DAG.getNode(ISD::SHL, dl, DstVT, R, 4494 DAG.getZExtOrTrunc( 4495 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4496 dl, IntShVT)), 4497 DAG.getNode(ISD::SRL, dl, DstVT, R, 4498 DAG.getZExtOrTrunc( 4499 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4500 dl, IntShVT)), 4501 ISD::SETGT); 4502 4503 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4504 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4505 4506 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4507 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4508 return true; 4509 } 4510 4511 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4512 SelectionDAG &DAG) const { 4513 SDLoc dl(SDValue(Node, 0)); 4514 SDValue Src = Node->getOperand(0); 4515 4516 EVT SrcVT = Src.getValueType(); 4517 EVT DstVT = Node->getValueType(0); 4518 EVT SetCCVT = 4519 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4520 4521 // Only expand vector types if we have the appropriate vector bit operations. 4522 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4523 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4524 return false; 4525 4526 // If the maximum float value is smaller then the signed integer range, 4527 // the destination signmask can't be represented by the float, so we can 4528 // just use FP_TO_SINT directly. 4529 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4530 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4531 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4532 if (APFloat::opOverflow & 4533 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4534 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4535 return true; 4536 } 4537 4538 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4539 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4540 4541 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4542 if (Strict) { 4543 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4544 // signmask then offset (the result of which should be fully representable). 4545 // Sel = Src < 0x8000000000000000 4546 // Val = select Sel, Src, Src - 0x8000000000000000 4547 // Ofs = select Sel, 0, 0x8000000000000000 4548 // Result = fp_to_sint(Val) ^ Ofs 4549 4550 // TODO: Should any fast-math-flags be set for the FSUB? 4551 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4552 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4553 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4554 DAG.getConstant(SignMask, dl, DstVT)); 4555 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4556 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4557 } else { 4558 // Expand based on maximum range of FP_TO_SINT: 4559 // True = fp_to_sint(Src) 4560 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4561 // Result = select (Src < 0x8000000000000000), True, False 4562 4563 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4564 // TODO: Should any fast-math-flags be set for the FSUB? 4565 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4566 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4567 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4568 DAG.getConstant(SignMask, dl, DstVT)); 4569 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4570 } 4571 return true; 4572 } 4573 4574 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4575 SelectionDAG &DAG) const { 4576 SDValue Src = Node->getOperand(0); 4577 EVT SrcVT = Src.getValueType(); 4578 EVT DstVT = Node->getValueType(0); 4579 4580 if (SrcVT.getScalarType() != MVT::i64) 4581 return false; 4582 4583 SDLoc dl(SDValue(Node, 0)); 4584 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4585 4586 if (DstVT.getScalarType() == MVT::f32) { 4587 // Only expand vector types if we have the appropriate vector bit 4588 // operations. 4589 if (SrcVT.isVector() && 4590 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4591 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4592 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4593 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4594 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4595 return false; 4596 4597 // For unsigned conversions, convert them to signed conversions using the 4598 // algorithm from the x86_64 __floatundidf in compiler_rt. 4599 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4600 4601 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4602 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4603 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4604 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4605 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4606 4607 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4608 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4609 4610 // TODO: This really should be implemented using a branch rather than a 4611 // select. We happen to get lucky and machinesink does the right 4612 // thing most of the time. This would be a good candidate for a 4613 // pseudo-op, or, even better, for whole-function isel. 4614 EVT SetCCVT = 4615 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4616 4617 SDValue SignBitTest = DAG.getSetCC( 4618 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4619 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4620 return true; 4621 } 4622 4623 if (DstVT.getScalarType() == MVT::f64) { 4624 // Only expand vector types if we have the appropriate vector bit 4625 // operations. 4626 if (SrcVT.isVector() && 4627 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4628 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4629 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4630 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4631 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4632 return false; 4633 4634 // Implementation of unsigned i64 to f64 following the algorithm in 4635 // __floatundidf in compiler_rt. This implementation has the advantage 4636 // of performing rounding correctly, both in the default rounding mode 4637 // and in all alternate rounding modes. 4638 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4639 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4640 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4641 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4642 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4643 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4644 4645 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4646 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4647 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4648 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4649 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4650 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4651 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4652 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4653 return true; 4654 } 4655 4656 return false; 4657 } 4658 4659 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4660 SelectionDAG &DAG) const { 4661 SDLoc dl(Node); 4662 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4663 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4664 EVT VT = Node->getValueType(0); 4665 if (isOperationLegalOrCustom(NewOp, VT)) { 4666 SDValue Quiet0 = Node->getOperand(0); 4667 SDValue Quiet1 = Node->getOperand(1); 4668 4669 if (!Node->getFlags().hasNoNaNs()) { 4670 // Insert canonicalizes if it's possible we need to quiet to get correct 4671 // sNaN behavior. 4672 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4673 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4674 Node->getFlags()); 4675 } 4676 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4677 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4678 Node->getFlags()); 4679 } 4680 } 4681 4682 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4683 } 4684 4685 return SDValue(); 4686 } 4687 4688 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4689 SelectionDAG &DAG) const { 4690 SDLoc dl(Node); 4691 EVT VT = Node->getValueType(0); 4692 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4693 SDValue Op = Node->getOperand(0); 4694 unsigned Len = VT.getScalarSizeInBits(); 4695 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4696 4697 // TODO: Add support for irregular type lengths. 4698 if (!(Len <= 128 && Len % 8 == 0)) 4699 return false; 4700 4701 // Only expand vector types if we have the appropriate vector bit operations. 4702 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4703 !isOperationLegalOrCustom(ISD::SUB, VT) || 4704 !isOperationLegalOrCustom(ISD::SRL, VT) || 4705 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4706 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4707 return false; 4708 4709 // This is the "best" algorithm from 4710 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4711 SDValue Mask55 = 4712 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4713 SDValue Mask33 = 4714 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4715 SDValue Mask0F = 4716 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4717 SDValue Mask01 = 4718 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4719 4720 // v = v - ((v >> 1) & 0x55555555...) 4721 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4722 DAG.getNode(ISD::AND, dl, VT, 4723 DAG.getNode(ISD::SRL, dl, VT, Op, 4724 DAG.getConstant(1, dl, ShVT)), 4725 Mask55)); 4726 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4727 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4728 DAG.getNode(ISD::AND, dl, VT, 4729 DAG.getNode(ISD::SRL, dl, VT, Op, 4730 DAG.getConstant(2, dl, ShVT)), 4731 Mask33)); 4732 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4733 Op = DAG.getNode(ISD::AND, dl, VT, 4734 DAG.getNode(ISD::ADD, dl, VT, Op, 4735 DAG.getNode(ISD::SRL, dl, VT, Op, 4736 DAG.getConstant(4, dl, ShVT))), 4737 Mask0F); 4738 // v = (v * 0x01010101...) >> (Len - 8) 4739 if (Len > 8) 4740 Op = 4741 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4742 DAG.getConstant(Len - 8, dl, ShVT)); 4743 4744 Result = Op; 4745 return true; 4746 } 4747 4748 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4749 SelectionDAG &DAG) const { 4750 SDLoc dl(Node); 4751 EVT VT = Node->getValueType(0); 4752 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4753 SDValue Op = Node->getOperand(0); 4754 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4755 4756 // If the non-ZERO_UNDEF version is supported we can use that instead. 4757 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4758 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4759 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4760 return true; 4761 } 4762 4763 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4764 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4765 EVT SetCCVT = 4766 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4767 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4768 SDValue Zero = DAG.getConstant(0, dl, VT); 4769 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4770 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4771 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4772 return true; 4773 } 4774 4775 // Only expand vector types if we have the appropriate vector bit operations. 4776 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4777 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4778 !isOperationLegalOrCustom(ISD::SRL, VT) || 4779 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4780 return false; 4781 4782 // for now, we do this: 4783 // x = x | (x >> 1); 4784 // x = x | (x >> 2); 4785 // ... 4786 // x = x | (x >>16); 4787 // x = x | (x >>32); // for 64-bit input 4788 // return popcount(~x); 4789 // 4790 // Ref: "Hacker's Delight" by Henry Warren 4791 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4792 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4793 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4794 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4795 } 4796 Op = DAG.getNOT(dl, Op, VT); 4797 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 4798 return true; 4799 } 4800 4801 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 4802 SelectionDAG &DAG) const { 4803 SDLoc dl(Node); 4804 EVT VT = Node->getValueType(0); 4805 SDValue Op = Node->getOperand(0); 4806 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4807 4808 // If the non-ZERO_UNDEF version is supported we can use that instead. 4809 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 4810 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 4811 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 4812 return true; 4813 } 4814 4815 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4816 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 4817 EVT SetCCVT = 4818 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4819 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 4820 SDValue Zero = DAG.getConstant(0, dl, VT); 4821 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4822 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4823 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 4824 return true; 4825 } 4826 4827 // Only expand vector types if we have the appropriate vector bit operations. 4828 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4829 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 4830 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 4831 !isOperationLegalOrCustom(ISD::SUB, VT) || 4832 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 4833 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4834 return false; 4835 4836 // for now, we use: { return popcount(~x & (x - 1)); } 4837 // unless the target has ctlz but not ctpop, in which case we use: 4838 // { return 32 - nlz(~x & (x-1)); } 4839 // Ref: "Hacker's Delight" by Henry Warren 4840 SDValue Tmp = DAG.getNode( 4841 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 4842 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 4843 4844 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4845 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 4846 Result = 4847 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 4848 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 4849 return true; 4850 } 4851 4852 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 4853 return true; 4854 } 4855 4856 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 4857 SelectionDAG &DAG) const { 4858 SDLoc dl(N); 4859 EVT VT = N->getValueType(0); 4860 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4861 SDValue Op = N->getOperand(0); 4862 4863 // Only expand vector types if we have the appropriate vector operations. 4864 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 4865 !isOperationLegalOrCustom(ISD::ADD, VT) || 4866 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4867 return false; 4868 4869 SDValue Shift = 4870 DAG.getNode(ISD::SRA, dl, VT, Op, 4871 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 4872 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 4873 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 4874 return true; 4875 } 4876 4877 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4878 SelectionDAG &DAG) const { 4879 SDLoc SL(LD); 4880 SDValue Chain = LD->getChain(); 4881 SDValue BasePTR = LD->getBasePtr(); 4882 EVT SrcVT = LD->getMemoryVT(); 4883 ISD::LoadExtType ExtType = LD->getExtensionType(); 4884 4885 unsigned NumElem = SrcVT.getVectorNumElements(); 4886 4887 EVT SrcEltVT = SrcVT.getScalarType(); 4888 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4889 4890 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4891 assert(SrcEltVT.isByteSized()); 4892 4893 SmallVector<SDValue, 8> Vals; 4894 SmallVector<SDValue, 8> LoadChains; 4895 4896 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4897 SDValue ScalarLoad = 4898 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4899 LD->getPointerInfo().getWithOffset(Idx * Stride), 4900 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4901 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4902 4903 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4904 4905 Vals.push_back(ScalarLoad.getValue(0)); 4906 LoadChains.push_back(ScalarLoad.getValue(1)); 4907 } 4908 4909 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4910 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4911 4912 return DAG.getMergeValues({Value, NewChain}, SL); 4913 } 4914 4915 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4916 SelectionDAG &DAG) const { 4917 SDLoc SL(ST); 4918 4919 SDValue Chain = ST->getChain(); 4920 SDValue BasePtr = ST->getBasePtr(); 4921 SDValue Value = ST->getValue(); 4922 EVT StVT = ST->getMemoryVT(); 4923 4924 // The type of the data we want to save 4925 EVT RegVT = Value.getValueType(); 4926 EVT RegSclVT = RegVT.getScalarType(); 4927 4928 // The type of data as saved in memory. 4929 EVT MemSclVT = StVT.getScalarType(); 4930 4931 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 4932 unsigned NumElem = StVT.getVectorNumElements(); 4933 4934 // A vector must always be stored in memory as-is, i.e. without any padding 4935 // between the elements, since various code depend on it, e.g. in the 4936 // handling of a bitcast of a vector type to int, which may be done with a 4937 // vector store followed by an integer load. A vector that does not have 4938 // elements that are byte-sized must therefore be stored as an integer 4939 // built out of the extracted vector elements. 4940 if (!MemSclVT.isByteSized()) { 4941 unsigned NumBits = StVT.getSizeInBits(); 4942 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 4943 4944 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 4945 4946 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4947 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4948 DAG.getConstant(Idx, SL, IdxVT)); 4949 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 4950 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 4951 unsigned ShiftIntoIdx = 4952 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 4953 SDValue ShiftAmount = 4954 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 4955 SDValue ShiftedElt = 4956 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 4957 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 4958 } 4959 4960 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 4961 ST->getAlignment(), ST->getMemOperand()->getFlags(), 4962 ST->getAAInfo()); 4963 } 4964 4965 // Store Stride in bytes 4966 unsigned Stride = MemSclVT.getSizeInBits() / 8; 4967 assert(Stride && "Zero stride!"); 4968 // Extract each of the elements from the original vector and save them into 4969 // memory individually. 4970 SmallVector<SDValue, 8> Stores; 4971 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4972 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4973 DAG.getConstant(Idx, SL, IdxVT)); 4974 4975 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 4976 4977 // This scalar TruncStore may be illegal, but we legalize it later. 4978 SDValue Store = DAG.getTruncStore( 4979 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 4980 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 4981 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4982 4983 Stores.push_back(Store); 4984 } 4985 4986 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 4987 } 4988 4989 std::pair<SDValue, SDValue> 4990 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 4991 assert(LD->getAddressingMode() == ISD::UNINDEXED && 4992 "unaligned indexed loads not implemented!"); 4993 SDValue Chain = LD->getChain(); 4994 SDValue Ptr = LD->getBasePtr(); 4995 EVT VT = LD->getValueType(0); 4996 EVT LoadedVT = LD->getMemoryVT(); 4997 SDLoc dl(LD); 4998 auto &MF = DAG.getMachineFunction(); 4999 5000 if (VT.isFloatingPoint() || VT.isVector()) { 5001 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 5002 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 5003 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 5004 LoadedVT.isVector()) { 5005 // Scalarize the load and let the individual components be handled. 5006 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 5007 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 5008 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 5009 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 5010 } 5011 5012 // Expand to a (misaligned) integer load of the same size, 5013 // then bitconvert to floating point or vector. 5014 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 5015 LD->getMemOperand()); 5016 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 5017 if (LoadedVT != VT) 5018 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 5019 ISD::ANY_EXTEND, dl, VT, Result); 5020 5021 return std::make_pair(Result, newLoad.getValue(1)); 5022 } 5023 5024 // Copy the value to a (aligned) stack slot using (unaligned) integer 5025 // loads and stores, then do a (aligned) load from the stack slot. 5026 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 5027 unsigned LoadedBytes = LoadedVT.getStoreSize(); 5028 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5029 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 5030 5031 // Make sure the stack slot is also aligned for the register type. 5032 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 5033 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 5034 SmallVector<SDValue, 8> Stores; 5035 SDValue StackPtr = StackBase; 5036 unsigned Offset = 0; 5037 5038 EVT PtrVT = Ptr.getValueType(); 5039 EVT StackPtrVT = StackPtr.getValueType(); 5040 5041 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5042 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5043 5044 // Do all but one copies using the full register width. 5045 for (unsigned i = 1; i < NumRegs; i++) { 5046 // Load one integer register's worth from the original location. 5047 SDValue Load = DAG.getLoad( 5048 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5049 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5050 LD->getAAInfo()); 5051 // Follow the load with a store to the stack slot. Remember the store. 5052 Stores.push_back(DAG.getStore( 5053 Load.getValue(1), dl, Load, StackPtr, 5054 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5055 // Increment the pointers. 5056 Offset += RegBytes; 5057 5058 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5059 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5060 } 5061 5062 // The last copy may be partial. Do an extending load. 5063 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5064 8 * (LoadedBytes - Offset)); 5065 SDValue Load = 5066 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5067 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5068 MinAlign(LD->getAlignment(), Offset), 5069 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5070 // Follow the load with a store to the stack slot. Remember the store. 5071 // On big-endian machines this requires a truncating store to ensure 5072 // that the bits end up in the right place. 5073 Stores.push_back(DAG.getTruncStore( 5074 Load.getValue(1), dl, Load, StackPtr, 5075 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5076 5077 // The order of the stores doesn't matter - say it with a TokenFactor. 5078 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5079 5080 // Finally, perform the original load only redirected to the stack slot. 5081 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5082 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5083 LoadedVT); 5084 5085 // Callers expect a MERGE_VALUES node. 5086 return std::make_pair(Load, TF); 5087 } 5088 5089 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5090 "Unaligned load of unsupported type."); 5091 5092 // Compute the new VT that is half the size of the old one. This is an 5093 // integer MVT. 5094 unsigned NumBits = LoadedVT.getSizeInBits(); 5095 EVT NewLoadedVT; 5096 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5097 NumBits >>= 1; 5098 5099 unsigned Alignment = LD->getAlignment(); 5100 unsigned IncrementSize = NumBits / 8; 5101 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5102 5103 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5104 if (HiExtType == ISD::NON_EXTLOAD) 5105 HiExtType = ISD::ZEXTLOAD; 5106 5107 // Load the value in two parts 5108 SDValue Lo, Hi; 5109 if (DAG.getDataLayout().isLittleEndian()) { 5110 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5111 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5112 LD->getAAInfo()); 5113 5114 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5115 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5116 LD->getPointerInfo().getWithOffset(IncrementSize), 5117 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5118 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5119 } else { 5120 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5121 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5122 LD->getAAInfo()); 5123 5124 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5125 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5126 LD->getPointerInfo().getWithOffset(IncrementSize), 5127 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5128 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5129 } 5130 5131 // aggregate the two parts 5132 SDValue ShiftAmount = 5133 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5134 DAG.getDataLayout())); 5135 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5136 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5137 5138 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5139 Hi.getValue(1)); 5140 5141 return std::make_pair(Result, TF); 5142 } 5143 5144 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5145 SelectionDAG &DAG) const { 5146 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5147 "unaligned indexed stores not implemented!"); 5148 SDValue Chain = ST->getChain(); 5149 SDValue Ptr = ST->getBasePtr(); 5150 SDValue Val = ST->getValue(); 5151 EVT VT = Val.getValueType(); 5152 int Alignment = ST->getAlignment(); 5153 auto &MF = DAG.getMachineFunction(); 5154 EVT MemVT = ST->getMemoryVT(); 5155 5156 SDLoc dl(ST); 5157 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 5158 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5159 if (isTypeLegal(intVT)) { 5160 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5161 MemVT.isVector()) { 5162 // Scalarize the store and let the individual components be handled. 5163 SDValue Result = scalarizeVectorStore(ST, DAG); 5164 5165 return Result; 5166 } 5167 // Expand to a bitconvert of the value to the integer type of the 5168 // same size, then a (misaligned) int store. 5169 // FIXME: Does not handle truncating floating point stores! 5170 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5171 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5172 Alignment, ST->getMemOperand()->getFlags()); 5173 return Result; 5174 } 5175 // Do a (aligned) store to a stack slot, then copy from the stack slot 5176 // to the final destination using (unaligned) integer loads and stores. 5177 EVT StoredVT = ST->getMemoryVT(); 5178 MVT RegVT = 5179 getRegisterType(*DAG.getContext(), 5180 EVT::getIntegerVT(*DAG.getContext(), 5181 StoredVT.getSizeInBits())); 5182 EVT PtrVT = Ptr.getValueType(); 5183 unsigned StoredBytes = StoredVT.getStoreSize(); 5184 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5185 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5186 5187 // Make sure the stack slot is also aligned for the register type. 5188 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 5189 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5190 5191 // Perform the original store, only redirected to the stack slot. 5192 SDValue Store = DAG.getTruncStore( 5193 Chain, dl, Val, StackPtr, 5194 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 5195 5196 EVT StackPtrVT = StackPtr.getValueType(); 5197 5198 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5199 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5200 SmallVector<SDValue, 8> Stores; 5201 unsigned Offset = 0; 5202 5203 // Do all but one copies using the full register width. 5204 for (unsigned i = 1; i < NumRegs; i++) { 5205 // Load one integer register's worth from the stack slot. 5206 SDValue Load = DAG.getLoad( 5207 RegVT, dl, Store, StackPtr, 5208 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5209 // Store it to the final location. Remember the store. 5210 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5211 ST->getPointerInfo().getWithOffset(Offset), 5212 MinAlign(ST->getAlignment(), Offset), 5213 ST->getMemOperand()->getFlags())); 5214 // Increment the pointers. 5215 Offset += RegBytes; 5216 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5217 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5218 } 5219 5220 // The last store may be partial. Do a truncating store. On big-endian 5221 // machines this requires an extending load from the stack slot to ensure 5222 // that the bits are in the right place. 5223 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5224 8 * (StoredBytes - Offset)); 5225 5226 // Load from the stack slot. 5227 SDValue Load = DAG.getExtLoad( 5228 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5229 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 5230 5231 Stores.push_back( 5232 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5233 ST->getPointerInfo().getWithOffset(Offset), MemVT, 5234 MinAlign(ST->getAlignment(), Offset), 5235 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5236 // The order of the stores doesn't matter - say it with a TokenFactor. 5237 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5238 return Result; 5239 } 5240 5241 assert(ST->getMemoryVT().isInteger() && 5242 !ST->getMemoryVT().isVector() && 5243 "Unaligned store of unknown type."); 5244 // Get the half-size VT 5245 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 5246 int NumBits = NewStoredVT.getSizeInBits(); 5247 int IncrementSize = NumBits / 8; 5248 5249 // Divide the stored value in two parts. 5250 SDValue ShiftAmount = 5251 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 5252 DAG.getDataLayout())); 5253 SDValue Lo = Val; 5254 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5255 5256 // Store the two parts 5257 SDValue Store1, Store2; 5258 Store1 = DAG.getTruncStore(Chain, dl, 5259 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5260 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5261 ST->getMemOperand()->getFlags()); 5262 5263 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5264 Alignment = MinAlign(Alignment, IncrementSize); 5265 Store2 = DAG.getTruncStore( 5266 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5267 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5268 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5269 5270 SDValue Result = 5271 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5272 return Result; 5273 } 5274 5275 SDValue 5276 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5277 const SDLoc &DL, EVT DataVT, 5278 SelectionDAG &DAG, 5279 bool IsCompressedMemory) const { 5280 SDValue Increment; 5281 EVT AddrVT = Addr.getValueType(); 5282 EVT MaskVT = Mask.getValueType(); 5283 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5284 "Incompatible types of Data and Mask"); 5285 if (IsCompressedMemory) { 5286 // Incrementing the pointer according to number of '1's in the mask. 5287 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5288 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5289 if (MaskIntVT.getSizeInBits() < 32) { 5290 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5291 MaskIntVT = MVT::i32; 5292 } 5293 5294 // Count '1's with POPCNT. 5295 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5296 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5297 // Scale is an element size in bytes. 5298 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5299 AddrVT); 5300 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5301 } else 5302 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5303 5304 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5305 } 5306 5307 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5308 SDValue Idx, 5309 EVT VecVT, 5310 const SDLoc &dl) { 5311 if (isa<ConstantSDNode>(Idx)) 5312 return Idx; 5313 5314 EVT IdxVT = Idx.getValueType(); 5315 unsigned NElts = VecVT.getVectorNumElements(); 5316 if (isPowerOf2_32(NElts)) { 5317 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5318 Log2_32(NElts)); 5319 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5320 DAG.getConstant(Imm, dl, IdxVT)); 5321 } 5322 5323 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5324 DAG.getConstant(NElts - 1, dl, IdxVT)); 5325 } 5326 5327 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5328 SDValue VecPtr, EVT VecVT, 5329 SDValue Index) const { 5330 SDLoc dl(Index); 5331 // Make sure the index type is big enough to compute in. 5332 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5333 5334 EVT EltVT = VecVT.getVectorElementType(); 5335 5336 // Calculate the element offset and add it to the pointer. 5337 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5338 assert(EltSize * 8 == EltVT.getSizeInBits() && 5339 "Converting bits to bytes lost precision"); 5340 5341 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5342 5343 EVT IdxVT = Index.getValueType(); 5344 5345 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5346 DAG.getConstant(EltSize, dl, IdxVT)); 5347 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5348 } 5349 5350 //===----------------------------------------------------------------------===// 5351 // Implementation of Emulated TLS Model 5352 //===----------------------------------------------------------------------===// 5353 5354 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5355 SelectionDAG &DAG) const { 5356 // Access to address of TLS varialbe xyz is lowered to a function call: 5357 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5358 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5359 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5360 SDLoc dl(GA); 5361 5362 ArgListTy Args; 5363 ArgListEntry Entry; 5364 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5365 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5366 StringRef EmuTlsVarName(NameString); 5367 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5368 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5369 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5370 Entry.Ty = VoidPtrType; 5371 Args.push_back(Entry); 5372 5373 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5374 5375 TargetLowering::CallLoweringInfo CLI(DAG); 5376 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5377 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5378 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5379 5380 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5381 // At last for X86 targets, maybe good for other targets too? 5382 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5383 MFI.setAdjustsStack(true); // Is this only for X86 target? 5384 MFI.setHasCalls(true); 5385 5386 assert((GA->getOffset() == 0) && 5387 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5388 return CallResult.first; 5389 } 5390 5391 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5392 SelectionDAG &DAG) const { 5393 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5394 if (!isCtlzFast()) 5395 return SDValue(); 5396 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5397 SDLoc dl(Op); 5398 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5399 if (C->isNullValue() && CC == ISD::SETEQ) { 5400 EVT VT = Op.getOperand(0).getValueType(); 5401 SDValue Zext = Op.getOperand(0); 5402 if (VT.bitsLT(MVT::i32)) { 5403 VT = MVT::i32; 5404 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5405 } 5406 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5407 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5408 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5409 DAG.getConstant(Log2b, dl, MVT::i32)); 5410 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5411 } 5412 } 5413 return SDValue(); 5414 } 5415 5416 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5417 unsigned Opcode = Node->getOpcode(); 5418 SDValue LHS = Node->getOperand(0); 5419 SDValue RHS = Node->getOperand(1); 5420 EVT VT = LHS.getValueType(); 5421 SDLoc dl(Node); 5422 5423 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 5424 assert(VT.isInteger() && "Expected operands to be integers"); 5425 5426 // usub.sat(a, b) -> umax(a, b) - b 5427 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5428 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5429 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5430 } 5431 5432 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5433 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5434 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5435 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5436 } 5437 5438 unsigned OverflowOp; 5439 switch (Opcode) { 5440 case ISD::SADDSAT: 5441 OverflowOp = ISD::SADDO; 5442 break; 5443 case ISD::UADDSAT: 5444 OverflowOp = ISD::UADDO; 5445 break; 5446 case ISD::SSUBSAT: 5447 OverflowOp = ISD::SSUBO; 5448 break; 5449 case ISD::USUBSAT: 5450 OverflowOp = ISD::USUBO; 5451 break; 5452 default: 5453 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5454 "addition or subtraction node."); 5455 } 5456 5457 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5458 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5459 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 5460 LHS, RHS); 5461 SDValue SumDiff = Result.getValue(0); 5462 SDValue Overflow = Result.getValue(1); 5463 SDValue Zero = DAG.getConstant(0, dl, VT); 5464 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 5465 5466 if (Opcode == ISD::UADDSAT) { 5467 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5468 // (LHS + RHS) | OverflowMask 5469 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5470 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 5471 } 5472 // Overflow ? 0xffff.... : (LHS + RHS) 5473 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 5474 } else if (Opcode == ISD::USUBSAT) { 5475 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5476 // (LHS - RHS) & ~OverflowMask 5477 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5478 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 5479 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 5480 } 5481 // Overflow ? 0 : (LHS - RHS) 5482 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 5483 } else { 5484 // SatMax -> Overflow && SumDiff < 0 5485 // SatMin -> Overflow && SumDiff >= 0 5486 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5487 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5488 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5489 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5490 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5491 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 5492 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 5493 } 5494 } 5495 5496 SDValue 5497 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5498 assert((Node->getOpcode() == ISD::SMULFIX || 5499 Node->getOpcode() == ISD::UMULFIX) && 5500 "Expected opcode to be SMULFIX or UMULFIX."); 5501 5502 SDLoc dl(Node); 5503 SDValue LHS = Node->getOperand(0); 5504 SDValue RHS = Node->getOperand(1); 5505 EVT VT = LHS.getValueType(); 5506 unsigned Scale = Node->getConstantOperandVal(2); 5507 5508 // [us]mul.fix(a, b, 0) -> mul(a, b) 5509 if (!Scale) { 5510 if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5511 return SDValue(); 5512 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5513 } 5514 5515 unsigned VTSize = VT.getScalarSizeInBits(); 5516 bool Signed = Node->getOpcode() == ISD::SMULFIX; 5517 5518 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5519 "Expected scale to be less than the number of bits if signed or at " 5520 "most the number of bits if unsigned."); 5521 assert(LHS.getValueType() == RHS.getValueType() && 5522 "Expected both operands to be the same type"); 5523 5524 // Get the upper and lower bits of the result. 5525 SDValue Lo, Hi; 5526 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5527 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5528 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5529 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5530 Lo = Result.getValue(0); 5531 Hi = Result.getValue(1); 5532 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5533 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5534 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5535 } else if (VT.isVector()) { 5536 return SDValue(); 5537 } else { 5538 report_fatal_error("Unable to expand fixed point multiplication."); 5539 } 5540 5541 if (Scale == VTSize) 5542 // Result is just the top half since we'd be shifting by the width of the 5543 // operand. 5544 return Hi; 5545 5546 // The result will need to be shifted right by the scale since both operands 5547 // are scaled. The result is given to us in 2 halves, so we only want part of 5548 // both in the result. 5549 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5550 return DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5551 DAG.getConstant(Scale, dl, ShiftTy)); 5552 } 5553 5554 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 5555 SDValue &Overflow, SelectionDAG &DAG) const { 5556 SDLoc dl(Node); 5557 EVT VT = Node->getValueType(0); 5558 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5559 SDValue LHS = Node->getOperand(0); 5560 SDValue RHS = Node->getOperand(1); 5561 bool isSigned = Node->getOpcode() == ISD::SMULO; 5562 5563 // For power-of-two multiplications we can use a simpler shift expansion. 5564 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5565 const APInt &C = RHSC->getAPIntValue(); 5566 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5567 if (C.isPowerOf2()) { 5568 // smulo(x, signed_min) is same as umulo(x, signed_min). 5569 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5570 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5571 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 5572 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 5573 Overflow = DAG.getSetCC(dl, SetCCVT, 5574 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5575 dl, VT, Result, ShiftAmt), 5576 LHS, ISD::SETNE); 5577 return true; 5578 } 5579 } 5580 5581 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 5582 if (VT.isVector()) 5583 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 5584 VT.getVectorNumElements()); 5585 5586 SDValue BottomHalf; 5587 SDValue TopHalf; 5588 static const unsigned Ops[2][3] = 5589 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 5590 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 5591 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 5592 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5593 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 5594 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 5595 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 5596 RHS); 5597 TopHalf = BottomHalf.getValue(1); 5598 } else if (isTypeLegal(WideVT)) { 5599 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 5600 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 5601 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 5602 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 5603 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 5604 getShiftAmountTy(WideVT, DAG.getDataLayout())); 5605 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 5606 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 5607 } else { 5608 if (VT.isVector()) 5609 return false; 5610 5611 // We can fall back to a libcall with an illegal type for the MUL if we 5612 // have a libcall big enough. 5613 // Also, we can fall back to a division in some cases, but that's a big 5614 // performance hit in the general case. 5615 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5616 if (WideVT == MVT::i16) 5617 LC = RTLIB::MUL_I16; 5618 else if (WideVT == MVT::i32) 5619 LC = RTLIB::MUL_I32; 5620 else if (WideVT == MVT::i64) 5621 LC = RTLIB::MUL_I64; 5622 else if (WideVT == MVT::i128) 5623 LC = RTLIB::MUL_I128; 5624 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 5625 5626 SDValue HiLHS; 5627 SDValue HiRHS; 5628 if (isSigned) { 5629 // The high part is obtained by SRA'ing all but one of the bits of low 5630 // part. 5631 unsigned LoSize = VT.getSizeInBits(); 5632 HiLHS = 5633 DAG.getNode(ISD::SRA, dl, VT, LHS, 5634 DAG.getConstant(LoSize - 1, dl, 5635 getPointerTy(DAG.getDataLayout()))); 5636 HiRHS = 5637 DAG.getNode(ISD::SRA, dl, VT, RHS, 5638 DAG.getConstant(LoSize - 1, dl, 5639 getPointerTy(DAG.getDataLayout()))); 5640 } else { 5641 HiLHS = DAG.getConstant(0, dl, VT); 5642 HiRHS = DAG.getConstant(0, dl, VT); 5643 } 5644 5645 // Here we're passing the 2 arguments explicitly as 4 arguments that are 5646 // pre-lowered to the correct types. This all depends upon WideVT not 5647 // being a legal type for the architecture and thus has to be split to 5648 // two arguments. 5649 SDValue Ret; 5650 if (DAG.getDataLayout().isLittleEndian()) { 5651 // Halves of WideVT are packed into registers in different order 5652 // depending on platform endianness. This is usually handled by 5653 // the C calling convention, but we can't defer to it in 5654 // the legalizer. 5655 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 5656 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5657 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5658 /* isPostTypeLegalization */ true).first; 5659 } else { 5660 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 5661 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5662 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5663 /* isPostTypeLegalization */ true).first; 5664 } 5665 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 5666 "Ret value is a collection of constituent nodes holding result."); 5667 if (DAG.getDataLayout().isLittleEndian()) { 5668 // Same as above. 5669 BottomHalf = Ret.getOperand(0); 5670 TopHalf = Ret.getOperand(1); 5671 } else { 5672 BottomHalf = Ret.getOperand(1); 5673 TopHalf = Ret.getOperand(0); 5674 } 5675 } 5676 5677 Result = BottomHalf; 5678 if (isSigned) { 5679 SDValue ShiftAmt = DAG.getConstant( 5680 VT.getScalarSizeInBits() - 1, dl, 5681 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 5682 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 5683 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 5684 } else { 5685 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 5686 DAG.getConstant(0, dl, VT), ISD::SETNE); 5687 } 5688 5689 // Truncate the result if SetCC returns a larger type than needed. 5690 EVT RType = Node->getValueType(1); 5691 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 5692 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 5693 5694 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 5695 "Unexpected result type for S/UMULO legalization"); 5696 return true; 5697 } 5698 5699 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 5700 SDLoc dl(Node); 5701 bool NoNaN = Node->getFlags().hasNoNaNs(); 5702 unsigned BaseOpcode = 0; 5703 switch (Node->getOpcode()) { 5704 default: llvm_unreachable("Expected VECREDUCE opcode"); 5705 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 5706 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 5707 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 5708 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 5709 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 5710 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 5711 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 5712 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 5713 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 5714 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 5715 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 5716 case ISD::VECREDUCE_FMAX: 5717 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 5718 break; 5719 case ISD::VECREDUCE_FMIN: 5720 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 5721 break; 5722 } 5723 5724 SDValue Op = Node->getOperand(0); 5725 EVT VT = Op.getValueType(); 5726 5727 // Try to use a shuffle reduction for power of two vectors. 5728 if (VT.isPow2VectorType()) { 5729 while (VT.getVectorNumElements() > 1) { 5730 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 5731 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 5732 break; 5733 5734 SDValue Lo, Hi; 5735 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 5736 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 5737 VT = HalfVT; 5738 } 5739 } 5740 5741 EVT EltVT = VT.getVectorElementType(); 5742 unsigned NumElts = VT.getVectorNumElements(); 5743 5744 SmallVector<SDValue, 8> Ops; 5745 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 5746 5747 SDValue Res = Ops[0]; 5748 for (unsigned i = 1; i < NumElts; i++) 5749 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 5750 5751 // Result type may be wider than element type. 5752 if (EltVT != Node->getValueType(0)) 5753 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 5754 return Res; 5755 } 5756