1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // Conservatively require the attributes of the call to match those of
56   // the return. Ignore NoAlias and NonNull because they don't affect the
57   // call sequence.
58   AttributeList CallerAttrs = F.getAttributes();
59   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
60           .removeAttribute(Attribute::NoAlias)
61           .removeAttribute(Attribute::NonNull)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     Register Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
102                                                      unsigned ArgIdx) {
103   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment = Call->getParamAlignment(ArgIdx);
114   ByValType = nullptr;
115   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
116     ByValType = Call->getParamByValType(ArgIdx);
117 }
118 
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair<SDValue, SDValue>
122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
123                             ArrayRef<SDValue> Ops,
124                             MakeLibCallOptions CallOptions,
125                             const SDLoc &dl) const {
126   TargetLowering::ArgListTy Args;
127   Args.reserve(Ops.size());
128 
129   TargetLowering::ArgListEntry Entry;
130   for (unsigned i = 0; i < Ops.size(); ++i) {
131     SDValue NewOp = Ops[i];
132     Entry.Node = NewOp;
133     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
134     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
135                                                  CallOptions.IsSExt);
136     Entry.IsZExt = !Entry.IsSExt;
137 
138     if (CallOptions.IsSoften &&
139         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
140       Entry.IsSExt = Entry.IsZExt = false;
141     }
142     Args.push_back(Entry);
143   }
144 
145   if (LC == RTLIB::UNKNOWN_LIBCALL)
146     report_fatal_error("Unsupported library call operation!");
147   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
148                                          getPointerTy(DAG.getDataLayout()));
149 
150   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
151   TargetLowering::CallLoweringInfo CLI(DAG);
152   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
153   bool zeroExtend = !signExtend;
154 
155   if (CallOptions.IsSoften &&
156       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
157     signExtend = zeroExtend = false;
158   }
159 
160   CLI.setDebugLoc(dl)
161       .setChain(DAG.getEntryNode())
162       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
163       .setNoReturn(CallOptions.DoesNotReturn)
164       .setDiscardResult(!CallOptions.IsReturnValueUsed)
165       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
166       .setSExtResult(signExtend)
167       .setZExtResult(zeroExtend);
168   return LowerCallTo(CLI);
169 }
170 
171 bool
172 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
173                                          unsigned Limit, uint64_t Size,
174                                          unsigned DstAlign, unsigned SrcAlign,
175                                          bool IsMemset,
176                                          bool ZeroMemset,
177                                          bool MemcpyStrSrc,
178                                          bool AllowOverlap,
179                                          unsigned DstAS, unsigned SrcAS,
180                                          const AttributeList &FuncAttributes) const {
181   // If 'SrcAlign' is zero, that means the memory operation does not need to
182   // load the value, i.e. memset or memcpy from constant string. Otherwise,
183   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
184   // is the specified alignment of the memory operation. If it is zero, that
185   // means it's possible to change the alignment of the destination.
186   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
187   // not need to be loaded.
188   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
189     return false;
190 
191   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
192                                IsMemset, ZeroMemset, MemcpyStrSrc,
193                                FuncAttributes);
194 
195   if (VT == MVT::Other) {
196     // Use the largest integer type whose alignment constraints are satisfied.
197     // We only need to check DstAlign here as SrcAlign is always greater or
198     // equal to DstAlign (or zero).
199     VT = MVT::i64;
200     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
201            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
202       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
203     assert(VT.isInteger());
204 
205     // Find the largest legal integer type.
206     MVT LVT = MVT::i64;
207     while (!isTypeLegal(LVT))
208       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
209     assert(LVT.isInteger());
210 
211     // If the type we've chosen is larger than the largest legal integer type
212     // then use that instead.
213     if (VT.bitsGT(LVT))
214       VT = LVT;
215   }
216 
217   unsigned NumMemOps = 0;
218   while (Size != 0) {
219     unsigned VTSize = VT.getSizeInBits() / 8;
220     while (VTSize > Size) {
221       // For now, only use non-vector load / store's for the left-over pieces.
222       EVT NewVT = VT;
223       unsigned NewVTSize;
224 
225       bool Found = false;
226       if (VT.isVector() || VT.isFloatingPoint()) {
227         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
228         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
229             isSafeMemOpType(NewVT.getSimpleVT()))
230           Found = true;
231         else if (NewVT == MVT::i64 &&
232                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
233                  isSafeMemOpType(MVT::f64)) {
234           // i64 is usually not legal on 32-bit targets, but f64 may be.
235           NewVT = MVT::f64;
236           Found = true;
237         }
238       }
239 
240       if (!Found) {
241         do {
242           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
243           if (NewVT == MVT::i8)
244             break;
245         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
246       }
247       NewVTSize = NewVT.getSizeInBits() / 8;
248 
249       // If the new VT cannot cover all of the remaining bits, then consider
250       // issuing a (or a pair of) unaligned and overlapping load / store.
251       bool Fast;
252       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
253           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
254                                          MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
281          && "Unsupported setcc type!");
282 
283   // Expand into one or more soft-fp libcall(s).
284   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
285   bool ShouldInvertCC = false;
286   switch (CCCode) {
287   case ISD::SETEQ:
288   case ISD::SETOEQ:
289     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
290           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
291           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
292     break;
293   case ISD::SETNE:
294   case ISD::SETUNE:
295     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
296           (VT == MVT::f64) ? RTLIB::UNE_F64 :
297           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
298     break;
299   case ISD::SETGE:
300   case ISD::SETOGE:
301     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
302           (VT == MVT::f64) ? RTLIB::OGE_F64 :
303           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
304     break;
305   case ISD::SETLT:
306   case ISD::SETOLT:
307     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
308           (VT == MVT::f64) ? RTLIB::OLT_F64 :
309           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
310     break;
311   case ISD::SETLE:
312   case ISD::SETOLE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
314           (VT == MVT::f64) ? RTLIB::OLE_F64 :
315           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
316     break;
317   case ISD::SETGT:
318   case ISD::SETOGT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
320           (VT == MVT::f64) ? RTLIB::OGT_F64 :
321           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
322     break;
323   case ISD::SETUO:
324     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
325           (VT == MVT::f64) ? RTLIB::UO_F64 :
326           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
327     break;
328   case ISD::SETO:
329     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
330           (VT == MVT::f64) ? RTLIB::O_F64 :
331           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
332     break;
333   case ISD::SETONE:
334     // SETONE = SETOLT | SETOGT
335     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
336           (VT == MVT::f64) ? RTLIB::OLT_F64 :
337           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
338     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
339           (VT == MVT::f64) ? RTLIB::OGT_F64 :
340           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
341     break;
342   case ISD::SETUEQ:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
347           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
348           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
349     break;
350   default:
351     // Invert CC for unordered comparisons
352     ShouldInvertCC = true;
353     switch (CCCode) {
354     case ISD::SETULT:
355       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
356             (VT == MVT::f64) ? RTLIB::OGE_F64 :
357             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
358       break;
359     case ISD::SETULE:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
361             (VT == MVT::f64) ? RTLIB::OGT_F64 :
362             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
363       break;
364     case ISD::SETUGT:
365       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
366             (VT == MVT::f64) ? RTLIB::OLE_F64 :
367             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
368       break;
369     case ISD::SETUGE:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
371             (VT == MVT::f64) ? RTLIB::OLT_F64 :
372             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
373       break;
374     default: llvm_unreachable("Do not know how to soften this setcc!");
375     }
376   }
377 
378   // Use the target specific return value for comparions lib calls.
379   EVT RetVT = getCmpLibcallReturnType();
380   SDValue Ops[2] = {NewLHS, NewRHS};
381   TargetLowering::MakeLibCallOptions CallOptions;
382   EVT OpsVT[2] = { OldLHS.getValueType(),
383                    OldRHS.getValueType() };
384   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
385   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first;
386   NewRHS = DAG.getConstant(0, dl, RetVT);
387 
388   CCCode = getCmpLibcallCC(LC1);
389   if (ShouldInvertCC)
390     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
391 
392   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
393     SDValue Tmp = DAG.getNode(
394         ISD::SETCC, dl,
395         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
396         NewLHS, NewRHS, DAG.getCondCode(CCCode));
397     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first;
398     NewLHS = DAG.getNode(
399         ISD::SETCC, dl,
400         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
401         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
402     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
403     NewRHS = SDValue();
404   }
405 }
406 
407 /// Return the entry encoding for a jump table in the current function. The
408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
409 unsigned TargetLowering::getJumpTableEncoding() const {
410   // In non-pic modes, just use the address of a block.
411   if (!isPositionIndependent())
412     return MachineJumpTableInfo::EK_BlockAddress;
413 
414   // In PIC mode, if the target supports a GPRel32 directive, use it.
415   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
416     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
417 
418   // Otherwise, use a label difference.
419   return MachineJumpTableInfo::EK_LabelDifference32;
420 }
421 
422 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
423                                                  SelectionDAG &DAG) const {
424   // If our PIC model is GP relative, use the global offset table as the base.
425   unsigned JTEncoding = getJumpTableEncoding();
426 
427   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
428       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
429     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
430 
431   return Table;
432 }
433 
434 /// This returns the relocation base for the given PIC jumptable, the same as
435 /// getPICJumpTableRelocBase, but as an MCExpr.
436 const MCExpr *
437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
438                                              unsigned JTI,MCContext &Ctx) const{
439   // The normal PIC reloc base is the label at the start of the jump table.
440   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
441 }
442 
443 bool
444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
445   const TargetMachine &TM = getTargetMachine();
446   const GlobalValue *GV = GA->getGlobal();
447 
448   // If the address is not even local to this DSO we will have to load it from
449   // a got and then add the offset.
450   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
451     return false;
452 
453   // If the code is position independent we will have to add a base register.
454   if (isPositionIndependent())
455     return false;
456 
457   // Otherwise we can do it.
458   return true;
459 }
460 
461 //===----------------------------------------------------------------------===//
462 //  Optimization Methods
463 //===----------------------------------------------------------------------===//
464 
465 /// If the specified instruction has a constant integer operand and there are
466 /// bits set in that constant that are not demanded, then clear those bits and
467 /// return true.
468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
469                                             TargetLoweringOpt &TLO) const {
470   SDLoc DL(Op);
471   unsigned Opcode = Op.getOpcode();
472 
473   // Do target-specific constant optimization.
474   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
475     return TLO.New.getNode();
476 
477   // FIXME: ISD::SELECT, ISD::SELECT_CC
478   switch (Opcode) {
479   default:
480     break;
481   case ISD::XOR:
482   case ISD::AND:
483   case ISD::OR: {
484     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
485     if (!Op1C)
486       return false;
487 
488     // If this is a 'not' op, don't touch it because that's a canonical form.
489     const APInt &C = Op1C->getAPIntValue();
490     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
491       return false;
492 
493     if (!C.isSubsetOf(Demanded)) {
494       EVT VT = Op.getValueType();
495       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
496       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
497       return TLO.CombineTo(Op, NewOp);
498     }
499 
500     break;
501   }
502   }
503 
504   return false;
505 }
506 
507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
509 /// generalized for targets with other types of implicit widening casts.
510 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
511                                       const APInt &Demanded,
512                                       TargetLoweringOpt &TLO) const {
513   assert(Op.getNumOperands() == 2 &&
514          "ShrinkDemandedOp only supports binary operators!");
515   assert(Op.getNode()->getNumValues() == 1 &&
516          "ShrinkDemandedOp only supports nodes with one result!");
517 
518   SelectionDAG &DAG = TLO.DAG;
519   SDLoc dl(Op);
520 
521   // Early return, as this function cannot handle vector types.
522   if (Op.getValueType().isVector())
523     return false;
524 
525   // Don't do this if the node has another user, which may require the
526   // full value.
527   if (!Op.getNode()->hasOneUse())
528     return false;
529 
530   // Search for the smallest integer type with free casts to and from
531   // Op's type. For expedience, just check power-of-2 integer types.
532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
533   unsigned DemandedSize = Demanded.getActiveBits();
534   unsigned SmallVTBits = DemandedSize;
535   if (!isPowerOf2_32(SmallVTBits))
536     SmallVTBits = NextPowerOf2(SmallVTBits);
537   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
538     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
539     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
540         TLI.isZExtFree(SmallVT, Op.getValueType())) {
541       // We found a type with free casts.
542       SDValue X = DAG.getNode(
543           Op.getOpcode(), dl, SmallVT,
544           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
545           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
546       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
547       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
548       return TLO.CombineTo(Op, Z);
549     }
550   }
551   return false;
552 }
553 
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555                                           DAGCombinerInfo &DCI) const {
556   SelectionDAG &DAG = DCI.DAG;
557   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
558                         !DCI.isBeforeLegalizeOps());
559   KnownBits Known;
560 
561   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
562   if (Simplified) {
563     DCI.AddToWorklist(Op.getNode());
564     DCI.CommitTargetLoweringOpt(TLO);
565   }
566   return Simplified;
567 }
568 
569 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
570                                           KnownBits &Known,
571                                           TargetLoweringOpt &TLO,
572                                           unsigned Depth,
573                                           bool AssumeSingleUse) const {
574   EVT VT = Op.getValueType();
575   APInt DemandedElts = VT.isVector()
576                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
577                            : APInt(1, 1);
578   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
579                               AssumeSingleUse);
580 }
581 
582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
583 // TODO: Under what circumstances can we create nodes? Constant folding?
584 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
585     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
586     SelectionDAG &DAG, unsigned Depth) const {
587   // Limit search depth.
588   if (Depth >= SelectionDAG::MaxRecursionDepth)
589     return SDValue();
590 
591   // Ignore UNDEFs.
592   if (Op.isUndef())
593     return SDValue();
594 
595   // Not demanding any bits/elts from Op.
596   if (DemandedBits == 0 || DemandedElts == 0)
597     return DAG.getUNDEF(Op.getValueType());
598 
599   unsigned NumElts = DemandedElts.getBitWidth();
600   KnownBits LHSKnown, RHSKnown;
601   switch (Op.getOpcode()) {
602   case ISD::BITCAST: {
603     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
604     EVT SrcVT = Src.getValueType();
605     EVT DstVT = Op.getValueType();
606     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
607     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
608 
609     if (NumSrcEltBits == NumDstEltBits)
610       if (SDValue V = SimplifyMultipleUseDemandedBits(
611               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
612         return DAG.getBitcast(DstVT, V);
613 
614     // TODO - bigendian once we have test coverage.
615     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
616         DAG.getDataLayout().isLittleEndian()) {
617       unsigned Scale = NumDstEltBits / NumSrcEltBits;
618       unsigned NumSrcElts = SrcVT.getVectorNumElements();
619       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
620       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
621       for (unsigned i = 0; i != Scale; ++i) {
622         unsigned Offset = i * NumSrcEltBits;
623         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
624         if (!Sub.isNullValue()) {
625           DemandedSrcBits |= Sub;
626           for (unsigned j = 0; j != NumElts; ++j)
627             if (DemandedElts[j])
628               DemandedSrcElts.setBit((j * Scale) + i);
629         }
630       }
631 
632       if (SDValue V = SimplifyMultipleUseDemandedBits(
633               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
634         return DAG.getBitcast(DstVT, V);
635     }
636 
637     // TODO - bigendian once we have test coverage.
638     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
639         DAG.getDataLayout().isLittleEndian()) {
640       unsigned Scale = NumSrcEltBits / NumDstEltBits;
641       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
642       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
643       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
644       for (unsigned i = 0; i != NumElts; ++i)
645         if (DemandedElts[i]) {
646           unsigned Offset = (i % Scale) * NumDstEltBits;
647           DemandedSrcBits.insertBits(DemandedBits, Offset);
648           DemandedSrcElts.setBit(i / Scale);
649         }
650 
651       if (SDValue V = SimplifyMultipleUseDemandedBits(
652               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
653         return DAG.getBitcast(DstVT, V);
654     }
655 
656     break;
657   }
658   case ISD::AND: {
659     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
660     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
661 
662     // If all of the demanded bits are known 1 on one side, return the other.
663     // These bits cannot contribute to the result of the 'and' in this
664     // context.
665     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
666       return Op.getOperand(0);
667     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
668       return Op.getOperand(1);
669     break;
670   }
671   case ISD::OR: {
672     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
673     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
674 
675     // If all of the demanded bits are known zero on one side, return the
676     // other.  These bits cannot contribute to the result of the 'or' in this
677     // context.
678     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
679       return Op.getOperand(0);
680     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
681       return Op.getOperand(1);
682     break;
683   }
684   case ISD::XOR: {
685     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
687 
688     // If all of the demanded bits are known zero on one side, return the
689     // other.
690     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
691       return Op.getOperand(0);
692     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
693       return Op.getOperand(1);
694     break;
695   }
696   case ISD::SIGN_EXTEND_INREG: {
697     // If none of the extended bits are demanded, eliminate the sextinreg.
698     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
699     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
700       return Op.getOperand(0);
701     break;
702   }
703   case ISD::INSERT_VECTOR_ELT: {
704     // If we don't demand the inserted element, return the base vector.
705     SDValue Vec = Op.getOperand(0);
706     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
707     EVT VecVT = Vec.getValueType();
708     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
709         !DemandedElts[CIdx->getZExtValue()])
710       return Vec;
711     break;
712   }
713   case ISD::VECTOR_SHUFFLE: {
714     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
715 
716     // If all the demanded elts are from one operand and are inline,
717     // then we can use the operand directly.
718     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
719     for (unsigned i = 0; i != NumElts; ++i) {
720       int M = ShuffleMask[i];
721       if (M < 0 || !DemandedElts[i])
722         continue;
723       AllUndef = false;
724       IdentityLHS &= (M == (int)i);
725       IdentityRHS &= ((M - NumElts) == i);
726     }
727 
728     if (AllUndef)
729       return DAG.getUNDEF(Op.getValueType());
730     if (IdentityLHS)
731       return Op.getOperand(0);
732     if (IdentityRHS)
733       return Op.getOperand(1);
734     break;
735   }
736   default:
737     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
738       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
739               Op, DemandedBits, DemandedElts, DAG, Depth))
740         return V;
741     break;
742   }
743   return SDValue();
744 }
745 
746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
747 /// result of Op are ever used downstream. If we can use this information to
748 /// simplify Op, create a new simplified DAG node and return true, returning the
749 /// original and new nodes in Old and New. Otherwise, analyze the expression and
750 /// return a mask of Known bits for the expression (used to simplify the
751 /// caller).  The Known bits may only be accurate for those bits in the
752 /// OriginalDemandedBits and OriginalDemandedElts.
753 bool TargetLowering::SimplifyDemandedBits(
754     SDValue Op, const APInt &OriginalDemandedBits,
755     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
756     unsigned Depth, bool AssumeSingleUse) const {
757   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
758   assert(Op.getScalarValueSizeInBits() == BitWidth &&
759          "Mask size mismatches value type size!");
760 
761   unsigned NumElts = OriginalDemandedElts.getBitWidth();
762   assert((!Op.getValueType().isVector() ||
763           NumElts == Op.getValueType().getVectorNumElements()) &&
764          "Unexpected vector size");
765 
766   APInt DemandedBits = OriginalDemandedBits;
767   APInt DemandedElts = OriginalDemandedElts;
768   SDLoc dl(Op);
769   auto &DL = TLO.DAG.getDataLayout();
770 
771   // Don't know anything.
772   Known = KnownBits(BitWidth);
773 
774   // Undef operand.
775   if (Op.isUndef())
776     return false;
777 
778   if (Op.getOpcode() == ISD::Constant) {
779     // We know all of the bits for a constant!
780     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
781     Known.Zero = ~Known.One;
782     return false;
783   }
784 
785   // Other users may use these bits.
786   EVT VT = Op.getValueType();
787   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
788     if (Depth != 0) {
789       // If not at the root, Just compute the Known bits to
790       // simplify things downstream.
791       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
792       return false;
793     }
794     // If this is the root being simplified, allow it to have multiple uses,
795     // just set the DemandedBits/Elts to all bits.
796     DemandedBits = APInt::getAllOnesValue(BitWidth);
797     DemandedElts = APInt::getAllOnesValue(NumElts);
798   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
799     // Not demanding any bits/elts from Op.
800     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
801   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
802     // Limit search depth.
803     return false;
804   }
805 
806   KnownBits Known2, KnownOut;
807   switch (Op.getOpcode()) {
808   case ISD::TargetConstant:
809     llvm_unreachable("Can't simplify this node");
810   case ISD::SCALAR_TO_VECTOR: {
811     if (!DemandedElts[0])
812       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
813 
814     KnownBits SrcKnown;
815     SDValue Src = Op.getOperand(0);
816     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
817     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
818     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
819       return true;
820     Known = SrcKnown.zextOrTrunc(BitWidth, false);
821     break;
822   }
823   case ISD::BUILD_VECTOR:
824     // Collect the known bits that are shared by every demanded element.
825     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
826     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
827     return false; // Don't fall through, will infinitely loop.
828   case ISD::LOAD: {
829     LoadSDNode *LD = cast<LoadSDNode>(Op);
830     if (getTargetConstantFromLoad(LD)) {
831       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
832       return false; // Don't fall through, will infinitely loop.
833     }
834     break;
835   }
836   case ISD::INSERT_VECTOR_ELT: {
837     SDValue Vec = Op.getOperand(0);
838     SDValue Scl = Op.getOperand(1);
839     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
840     EVT VecVT = Vec.getValueType();
841 
842     // If index isn't constant, assume we need all vector elements AND the
843     // inserted element.
844     APInt DemandedVecElts(DemandedElts);
845     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
846       unsigned Idx = CIdx->getZExtValue();
847       DemandedVecElts.clearBit(Idx);
848 
849       // Inserted element is not required.
850       if (!DemandedElts[Idx])
851         return TLO.CombineTo(Op, Vec);
852     }
853 
854     KnownBits KnownScl;
855     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
856     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
857     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
858       return true;
859 
860     Known = KnownScl.zextOrTrunc(BitWidth, false);
861 
862     KnownBits KnownVec;
863     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
864                              Depth + 1))
865       return true;
866 
867     if (!!DemandedVecElts) {
868       Known.One &= KnownVec.One;
869       Known.Zero &= KnownVec.Zero;
870     }
871 
872     return false;
873   }
874   case ISD::INSERT_SUBVECTOR: {
875     SDValue Base = Op.getOperand(0);
876     SDValue Sub = Op.getOperand(1);
877     EVT SubVT = Sub.getValueType();
878     unsigned NumSubElts = SubVT.getVectorNumElements();
879 
880     // If index isn't constant, assume we need the original demanded base
881     // elements and ALL the inserted subvector elements.
882     APInt BaseElts = DemandedElts;
883     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
884     if (isa<ConstantSDNode>(Op.getOperand(2))) {
885       const APInt &Idx = Op.getConstantOperandAPInt(2);
886       if (Idx.ule(NumElts - NumSubElts)) {
887         unsigned SubIdx = Idx.getZExtValue();
888         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
889         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
890       }
891     }
892 
893     KnownBits KnownSub, KnownBase;
894     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
895                              Depth + 1))
896       return true;
897     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
898                              Depth + 1))
899       return true;
900 
901     Known.Zero.setAllBits();
902     Known.One.setAllBits();
903     if (!!SubElts) {
904         Known.One &= KnownSub.One;
905         Known.Zero &= KnownSub.Zero;
906     }
907     if (!!BaseElts) {
908         Known.One &= KnownBase.One;
909         Known.Zero &= KnownBase.Zero;
910     }
911     break;
912   }
913   case ISD::EXTRACT_SUBVECTOR: {
914     // If index isn't constant, assume we need all the source vector elements.
915     SDValue Src = Op.getOperand(0);
916     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
917     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
918     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
919     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
920       // Offset the demanded elts by the subvector index.
921       uint64_t Idx = SubIdx->getZExtValue();
922       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
923     }
924     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
925       return true;
926     break;
927   }
928   case ISD::CONCAT_VECTORS: {
929     Known.Zero.setAllBits();
930     Known.One.setAllBits();
931     EVT SubVT = Op.getOperand(0).getValueType();
932     unsigned NumSubVecs = Op.getNumOperands();
933     unsigned NumSubElts = SubVT.getVectorNumElements();
934     for (unsigned i = 0; i != NumSubVecs; ++i) {
935       APInt DemandedSubElts =
936           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
937       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
938                                Known2, TLO, Depth + 1))
939         return true;
940       // Known bits are shared by every demanded subvector element.
941       if (!!DemandedSubElts) {
942         Known.One &= Known2.One;
943         Known.Zero &= Known2.Zero;
944       }
945     }
946     break;
947   }
948   case ISD::VECTOR_SHUFFLE: {
949     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
950 
951     // Collect demanded elements from shuffle operands..
952     APInt DemandedLHS(NumElts, 0);
953     APInt DemandedRHS(NumElts, 0);
954     for (unsigned i = 0; i != NumElts; ++i) {
955       if (!DemandedElts[i])
956         continue;
957       int M = ShuffleMask[i];
958       if (M < 0) {
959         // For UNDEF elements, we don't know anything about the common state of
960         // the shuffle result.
961         DemandedLHS.clearAllBits();
962         DemandedRHS.clearAllBits();
963         break;
964       }
965       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
966       if (M < (int)NumElts)
967         DemandedLHS.setBit(M);
968       else
969         DemandedRHS.setBit(M - NumElts);
970     }
971 
972     if (!!DemandedLHS || !!DemandedRHS) {
973       SDValue Op0 = Op.getOperand(0);
974       SDValue Op1 = Op.getOperand(1);
975 
976       Known.Zero.setAllBits();
977       Known.One.setAllBits();
978       if (!!DemandedLHS) {
979         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
980                                  Depth + 1))
981           return true;
982         Known.One &= Known2.One;
983         Known.Zero &= Known2.Zero;
984       }
985       if (!!DemandedRHS) {
986         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
987                                  Depth + 1))
988           return true;
989         Known.One &= Known2.One;
990         Known.Zero &= Known2.Zero;
991       }
992 
993       // Attempt to avoid multi-use ops if we don't need anything from them.
994       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
995           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
996       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
997           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
998       if (DemandedOp0 || DemandedOp1) {
999         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1000         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1001         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1002         return TLO.CombineTo(Op, NewOp);
1003       }
1004     }
1005     break;
1006   }
1007   case ISD::AND: {
1008     SDValue Op0 = Op.getOperand(0);
1009     SDValue Op1 = Op.getOperand(1);
1010 
1011     // If the RHS is a constant, check to see if the LHS would be zero without
1012     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1013     // simplify the LHS, here we're using information from the LHS to simplify
1014     // the RHS.
1015     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1016       // Do not increment Depth here; that can cause an infinite loop.
1017       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1018       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1019       if ((LHSKnown.Zero & DemandedBits) ==
1020           (~RHSC->getAPIntValue() & DemandedBits))
1021         return TLO.CombineTo(Op, Op0);
1022 
1023       // If any of the set bits in the RHS are known zero on the LHS, shrink
1024       // the constant.
1025       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1026         return true;
1027 
1028       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1029       // constant, but if this 'and' is only clearing bits that were just set by
1030       // the xor, then this 'and' can be eliminated by shrinking the mask of
1031       // the xor. For example, for a 32-bit X:
1032       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1033       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1034           LHSKnown.One == ~RHSC->getAPIntValue()) {
1035         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1036         return TLO.CombineTo(Op, Xor);
1037       }
1038     }
1039 
1040     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1041                              Depth + 1))
1042       return true;
1043     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1044     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1045                              Known2, TLO, Depth + 1))
1046       return true;
1047     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1048 
1049     // Attempt to avoid multi-use ops if we don't need anything from them.
1050     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1051       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1052           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1053       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1054           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1055       if (DemandedOp0 || DemandedOp1) {
1056         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1057         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1058         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1059         return TLO.CombineTo(Op, NewOp);
1060       }
1061     }
1062 
1063     // If all of the demanded bits are known one on one side, return the other.
1064     // These bits cannot contribute to the result of the 'and'.
1065     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1066       return TLO.CombineTo(Op, Op0);
1067     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1068       return TLO.CombineTo(Op, Op1);
1069     // If all of the demanded bits in the inputs are known zeros, return zero.
1070     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1071       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1072     // If the RHS is a constant, see if we can simplify it.
1073     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1074       return true;
1075     // If the operation can be done in a smaller type, do so.
1076     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1077       return true;
1078 
1079     // Output known-1 bits are only known if set in both the LHS & RHS.
1080     Known.One &= Known2.One;
1081     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1082     Known.Zero |= Known2.Zero;
1083     break;
1084   }
1085   case ISD::OR: {
1086     SDValue Op0 = Op.getOperand(0);
1087     SDValue Op1 = Op.getOperand(1);
1088 
1089     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1090                              Depth + 1))
1091       return true;
1092     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1093     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1094                              Known2, TLO, Depth + 1))
1095       return true;
1096     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1097 
1098     // Attempt to avoid multi-use ops if we don't need anything from them.
1099     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1100       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1101           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1102       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1103           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1104       if (DemandedOp0 || DemandedOp1) {
1105         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1106         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1107         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1108         return TLO.CombineTo(Op, NewOp);
1109       }
1110     }
1111 
1112     // If all of the demanded bits are known zero on one side, return the other.
1113     // These bits cannot contribute to the result of the 'or'.
1114     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1115       return TLO.CombineTo(Op, Op0);
1116     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1117       return TLO.CombineTo(Op, Op1);
1118     // If the RHS is a constant, see if we can simplify it.
1119     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1120       return true;
1121     // If the operation can be done in a smaller type, do so.
1122     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1123       return true;
1124 
1125     // Output known-0 bits are only known if clear in both the LHS & RHS.
1126     Known.Zero &= Known2.Zero;
1127     // Output known-1 are known to be set if set in either the LHS | RHS.
1128     Known.One |= Known2.One;
1129     break;
1130   }
1131   case ISD::XOR: {
1132     SDValue Op0 = Op.getOperand(0);
1133     SDValue Op1 = Op.getOperand(1);
1134 
1135     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136                              Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1140                              Depth + 1))
1141       return true;
1142     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1143 
1144     // Attempt to avoid multi-use ops if we don't need anything from them.
1145     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       if (DemandedOp0 || DemandedOp1) {
1151         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154         return TLO.CombineTo(Op, NewOp);
1155       }
1156     }
1157 
1158     // If all of the demanded bits are known zero on one side, return the other.
1159     // These bits cannot contribute to the result of the 'xor'.
1160     if (DemandedBits.isSubsetOf(Known.Zero))
1161       return TLO.CombineTo(Op, Op0);
1162     if (DemandedBits.isSubsetOf(Known2.Zero))
1163       return TLO.CombineTo(Op, Op1);
1164     // If the operation can be done in a smaller type, do so.
1165     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1166       return true;
1167 
1168     // If all of the unknown bits are known to be zero on one side or the other
1169     // (but not both) turn this into an *inclusive* or.
1170     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1171     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1172       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1173 
1174     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1175     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1176     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1177     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1178 
1179     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1180       // If one side is a constant, and all of the known set bits on the other
1181       // side are also set in the constant, turn this into an AND, as we know
1182       // the bits will be cleared.
1183       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1184       // NB: it is okay if more bits are known than are requested
1185       if (C->getAPIntValue() == Known2.One) {
1186         SDValue ANDC =
1187             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1188         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1189       }
1190 
1191       // If the RHS is a constant, see if we can change it. Don't alter a -1
1192       // constant because that's a 'not' op, and that is better for combining
1193       // and codegen.
1194       if (!C->isAllOnesValue()) {
1195         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1196           // We're flipping all demanded bits. Flip the undemanded bits too.
1197           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1198           return TLO.CombineTo(Op, New);
1199         }
1200         // If we can't turn this into a 'not', try to shrink the constant.
1201         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1202           return true;
1203       }
1204     }
1205 
1206     Known = std::move(KnownOut);
1207     break;
1208   }
1209   case ISD::SELECT:
1210     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1211                              Depth + 1))
1212       return true;
1213     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1214                              Depth + 1))
1215       return true;
1216     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1217     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1218 
1219     // If the operands are constants, see if we can simplify them.
1220     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1221       return true;
1222 
1223     // Only known if known in both the LHS and RHS.
1224     Known.One &= Known2.One;
1225     Known.Zero &= Known2.Zero;
1226     break;
1227   case ISD::SELECT_CC:
1228     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1229                              Depth + 1))
1230       return true;
1231     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1232                              Depth + 1))
1233       return true;
1234     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1235     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1236 
1237     // If the operands are constants, see if we can simplify them.
1238     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1239       return true;
1240 
1241     // Only known if known in both the LHS and RHS.
1242     Known.One &= Known2.One;
1243     Known.Zero &= Known2.Zero;
1244     break;
1245   case ISD::SETCC: {
1246     SDValue Op0 = Op.getOperand(0);
1247     SDValue Op1 = Op.getOperand(1);
1248     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1249     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1250     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1251     // -1, we may be able to bypass the setcc.
1252     if (DemandedBits.isSignMask() &&
1253         Op0.getScalarValueSizeInBits() == BitWidth &&
1254         getBooleanContents(VT) ==
1255             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1256       // If we're testing X < 0, then this compare isn't needed - just use X!
1257       // FIXME: We're limiting to integer types here, but this should also work
1258       // if we don't care about FP signed-zero. The use of SETLT with FP means
1259       // that we don't care about NaNs.
1260       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1261           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1262         return TLO.CombineTo(Op, Op0);
1263 
1264       // TODO: Should we check for other forms of sign-bit comparisons?
1265       // Examples: X <= -1, X >= 0
1266     }
1267     if (getBooleanContents(Op0.getValueType()) ==
1268             TargetLowering::ZeroOrOneBooleanContent &&
1269         BitWidth > 1)
1270       Known.Zero.setBitsFrom(1);
1271     break;
1272   }
1273   case ISD::SHL: {
1274     SDValue Op0 = Op.getOperand(0);
1275     SDValue Op1 = Op.getOperand(1);
1276 
1277     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1278       // If the shift count is an invalid immediate, don't do anything.
1279       if (SA->getAPIntValue().uge(BitWidth))
1280         break;
1281 
1282       unsigned ShAmt = SA->getZExtValue();
1283       if (ShAmt == 0)
1284         return TLO.CombineTo(Op, Op0);
1285 
1286       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1287       // single shift.  We can do this if the bottom bits (which are shifted
1288       // out) are never demanded.
1289       // TODO - support non-uniform vector amounts.
1290       if (Op0.getOpcode() == ISD::SRL) {
1291         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1292           if (ConstantSDNode *SA2 =
1293                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1294             if (SA2->getAPIntValue().ult(BitWidth)) {
1295               unsigned C1 = SA2->getZExtValue();
1296               unsigned Opc = ISD::SHL;
1297               int Diff = ShAmt - C1;
1298               if (Diff < 0) {
1299                 Diff = -Diff;
1300                 Opc = ISD::SRL;
1301               }
1302 
1303               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1304               return TLO.CombineTo(
1305                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1306             }
1307           }
1308         }
1309       }
1310 
1311       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1312                                Known, TLO, Depth + 1))
1313         return true;
1314 
1315       // Try shrinking the operation as long as the shift amount will still be
1316       // in range.
1317       if ((ShAmt < DemandedBits.getActiveBits()) &&
1318           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1319         return true;
1320 
1321       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1322       // are not demanded. This will likely allow the anyext to be folded away.
1323       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1324         SDValue InnerOp = Op0.getOperand(0);
1325         EVT InnerVT = InnerOp.getValueType();
1326         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1327         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1328             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1329           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1330           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1331             ShTy = InnerVT;
1332           SDValue NarrowShl =
1333               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1334                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1335           return TLO.CombineTo(
1336               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1337         }
1338         // Repeat the SHL optimization above in cases where an extension
1339         // intervenes: (shl (anyext (shr x, c1)), c2) to
1340         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1341         // aren't demanded (as above) and that the shifted upper c1 bits of
1342         // x aren't demanded.
1343         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1344             InnerOp.hasOneUse()) {
1345           if (ConstantSDNode *SA2 =
1346                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1347             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1348             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1349                 DemandedBits.getActiveBits() <=
1350                     (InnerBits - InnerShAmt + ShAmt) &&
1351                 DemandedBits.countTrailingZeros() >= ShAmt) {
1352               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1353                                                   Op1.getValueType());
1354               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1355                                                InnerOp.getOperand(0));
1356               return TLO.CombineTo(
1357                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1358             }
1359           }
1360         }
1361       }
1362 
1363       Known.Zero <<= ShAmt;
1364       Known.One <<= ShAmt;
1365       // low bits known zero.
1366       Known.Zero.setLowBits(ShAmt);
1367     }
1368     break;
1369   }
1370   case ISD::SRL: {
1371     SDValue Op0 = Op.getOperand(0);
1372     SDValue Op1 = Op.getOperand(1);
1373 
1374     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1375       // If the shift count is an invalid immediate, don't do anything.
1376       if (SA->getAPIntValue().uge(BitWidth))
1377         break;
1378 
1379       unsigned ShAmt = SA->getZExtValue();
1380       if (ShAmt == 0)
1381         return TLO.CombineTo(Op, Op0);
1382 
1383       EVT ShiftVT = Op1.getValueType();
1384       APInt InDemandedMask = (DemandedBits << ShAmt);
1385 
1386       // If the shift is exact, then it does demand the low bits (and knows that
1387       // they are zero).
1388       if (Op->getFlags().hasExact())
1389         InDemandedMask.setLowBits(ShAmt);
1390 
1391       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1392       // single shift.  We can do this if the top bits (which are shifted out)
1393       // are never demanded.
1394       // TODO - support non-uniform vector amounts.
1395       if (Op0.getOpcode() == ISD::SHL) {
1396         if (ConstantSDNode *SA2 =
1397                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1398           if (!DemandedBits.intersects(
1399                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1400             if (SA2->getAPIntValue().ult(BitWidth)) {
1401               unsigned C1 = SA2->getZExtValue();
1402               unsigned Opc = ISD::SRL;
1403               int Diff = ShAmt - C1;
1404               if (Diff < 0) {
1405                 Diff = -Diff;
1406                 Opc = ISD::SHL;
1407               }
1408 
1409               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1410               return TLO.CombineTo(
1411                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1412             }
1413           }
1414         }
1415       }
1416 
1417       // Compute the new bits that are at the top now.
1418       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1419                                Depth + 1))
1420         return true;
1421       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1422       Known.Zero.lshrInPlace(ShAmt);
1423       Known.One.lshrInPlace(ShAmt);
1424 
1425       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1426     }
1427     break;
1428   }
1429   case ISD::SRA: {
1430     SDValue Op0 = Op.getOperand(0);
1431     SDValue Op1 = Op.getOperand(1);
1432 
1433     // If this is an arithmetic shift right and only the low-bit is set, we can
1434     // always convert this into a logical shr, even if the shift amount is
1435     // variable.  The low bit of the shift cannot be an input sign bit unless
1436     // the shift amount is >= the size of the datatype, which is undefined.
1437     if (DemandedBits.isOneValue())
1438       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1439 
1440     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1441       // If the shift count is an invalid immediate, don't do anything.
1442       if (SA->getAPIntValue().uge(BitWidth))
1443         break;
1444 
1445       unsigned ShAmt = SA->getZExtValue();
1446       if (ShAmt == 0)
1447         return TLO.CombineTo(Op, Op0);
1448 
1449       APInt InDemandedMask = (DemandedBits << ShAmt);
1450 
1451       // If the shift is exact, then it does demand the low bits (and knows that
1452       // they are zero).
1453       if (Op->getFlags().hasExact())
1454         InDemandedMask.setLowBits(ShAmt);
1455 
1456       // If any of the demanded bits are produced by the sign extension, we also
1457       // demand the input sign bit.
1458       if (DemandedBits.countLeadingZeros() < ShAmt)
1459         InDemandedMask.setSignBit();
1460 
1461       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1462                                Depth + 1))
1463         return true;
1464       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1465       Known.Zero.lshrInPlace(ShAmt);
1466       Known.One.lshrInPlace(ShAmt);
1467 
1468       // If the input sign bit is known to be zero, or if none of the top bits
1469       // are demanded, turn this into an unsigned shift right.
1470       if (Known.Zero[BitWidth - ShAmt - 1] ||
1471           DemandedBits.countLeadingZeros() >= ShAmt) {
1472         SDNodeFlags Flags;
1473         Flags.setExact(Op->getFlags().hasExact());
1474         return TLO.CombineTo(
1475             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1476       }
1477 
1478       int Log2 = DemandedBits.exactLogBase2();
1479       if (Log2 >= 0) {
1480         // The bit must come from the sign.
1481         SDValue NewSA =
1482             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1483         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1484       }
1485 
1486       if (Known.One[BitWidth - ShAmt - 1])
1487         // New bits are known one.
1488         Known.One.setHighBits(ShAmt);
1489     }
1490     break;
1491   }
1492   case ISD::FSHL:
1493   case ISD::FSHR: {
1494     SDValue Op0 = Op.getOperand(0);
1495     SDValue Op1 = Op.getOperand(1);
1496     SDValue Op2 = Op.getOperand(2);
1497     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1498 
1499     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1500       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1501 
1502       // For fshl, 0-shift returns the 1st arg.
1503       // For fshr, 0-shift returns the 2nd arg.
1504       if (Amt == 0) {
1505         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1506                                  Known, TLO, Depth + 1))
1507           return true;
1508         break;
1509       }
1510 
1511       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1512       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1513       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1514       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1515       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1516                                Depth + 1))
1517         return true;
1518       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1519                                Depth + 1))
1520         return true;
1521 
1522       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1523       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1524       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1525       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1526       Known.One |= Known2.One;
1527       Known.Zero |= Known2.Zero;
1528     }
1529     break;
1530   }
1531   case ISD::BITREVERSE: {
1532     SDValue Src = Op.getOperand(0);
1533     APInt DemandedSrcBits = DemandedBits.reverseBits();
1534     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1535                              Depth + 1))
1536       return true;
1537     Known.One = Known2.One.reverseBits();
1538     Known.Zero = Known2.Zero.reverseBits();
1539     break;
1540   }
1541   case ISD::SIGN_EXTEND_INREG: {
1542     SDValue Op0 = Op.getOperand(0);
1543     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1544     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1545 
1546     // If we only care about the highest bit, don't bother shifting right.
1547     if (DemandedBits.isSignMask()) {
1548       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1549       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1550       // However if the input is already sign extended we expect the sign
1551       // extension to be dropped altogether later and do not simplify.
1552       if (!AlreadySignExtended) {
1553         // Compute the correct shift amount type, which must be getShiftAmountTy
1554         // for scalar types after legalization.
1555         EVT ShiftAmtTy = VT;
1556         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1557           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1558 
1559         SDValue ShiftAmt =
1560             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1561         return TLO.CombineTo(Op,
1562                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1563       }
1564     }
1565 
1566     // If none of the extended bits are demanded, eliminate the sextinreg.
1567     if (DemandedBits.getActiveBits() <= ExVTBits)
1568       return TLO.CombineTo(Op, Op0);
1569 
1570     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1571 
1572     // Since the sign extended bits are demanded, we know that the sign
1573     // bit is demanded.
1574     InputDemandedBits.setBit(ExVTBits - 1);
1575 
1576     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1577       return true;
1578     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1579 
1580     // If the sign bit of the input is known set or clear, then we know the
1581     // top bits of the result.
1582 
1583     // If the input sign bit is known zero, convert this into a zero extension.
1584     if (Known.Zero[ExVTBits - 1])
1585       return TLO.CombineTo(
1586           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1587 
1588     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1589     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1590       Known.One.setBitsFrom(ExVTBits);
1591       Known.Zero &= Mask;
1592     } else { // Input sign bit unknown
1593       Known.Zero &= Mask;
1594       Known.One &= Mask;
1595     }
1596     break;
1597   }
1598   case ISD::BUILD_PAIR: {
1599     EVT HalfVT = Op.getOperand(0).getValueType();
1600     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1601 
1602     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1603     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1604 
1605     KnownBits KnownLo, KnownHi;
1606 
1607     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1608       return true;
1609 
1610     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1611       return true;
1612 
1613     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1614                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1615 
1616     Known.One = KnownLo.One.zext(BitWidth) |
1617                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1618     break;
1619   }
1620   case ISD::ZERO_EXTEND:
1621   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1622     SDValue Src = Op.getOperand(0);
1623     EVT SrcVT = Src.getValueType();
1624     unsigned InBits = SrcVT.getScalarSizeInBits();
1625     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1626     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1627 
1628     // If none of the top bits are demanded, convert this into an any_extend.
1629     if (DemandedBits.getActiveBits() <= InBits) {
1630       // If we only need the non-extended bits of the bottom element
1631       // then we can just bitcast to the result.
1632       if (IsVecInReg && DemandedElts == 1 &&
1633           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1634           TLO.DAG.getDataLayout().isLittleEndian())
1635         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1636 
1637       unsigned Opc =
1638           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1639       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1640         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1641     }
1642 
1643     APInt InDemandedBits = DemandedBits.trunc(InBits);
1644     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1645     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1646                              Depth + 1))
1647       return true;
1648     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1649     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1650     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1651     break;
1652   }
1653   case ISD::SIGN_EXTEND:
1654   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1655     SDValue Src = Op.getOperand(0);
1656     EVT SrcVT = Src.getValueType();
1657     unsigned InBits = SrcVT.getScalarSizeInBits();
1658     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1659     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1660 
1661     // If none of the top bits are demanded, convert this into an any_extend.
1662     if (DemandedBits.getActiveBits() <= InBits) {
1663       // If we only need the non-extended bits of the bottom element
1664       // then we can just bitcast to the result.
1665       if (IsVecInReg && DemandedElts == 1 &&
1666           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1667           TLO.DAG.getDataLayout().isLittleEndian())
1668         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1669 
1670       unsigned Opc =
1671           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1672       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1673         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1674     }
1675 
1676     APInt InDemandedBits = DemandedBits.trunc(InBits);
1677     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1678 
1679     // Since some of the sign extended bits are demanded, we know that the sign
1680     // bit is demanded.
1681     InDemandedBits.setBit(InBits - 1);
1682 
1683     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1684                              Depth + 1))
1685       return true;
1686     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1687     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1688 
1689     // If the sign bit is known one, the top bits match.
1690     Known = Known.sext(BitWidth);
1691 
1692     // If the sign bit is known zero, convert this to a zero extend.
1693     if (Known.isNonNegative()) {
1694       unsigned Opc =
1695           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1696       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1697         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1698     }
1699     break;
1700   }
1701   case ISD::ANY_EXTEND:
1702   case ISD::ANY_EXTEND_VECTOR_INREG: {
1703     SDValue Src = Op.getOperand(0);
1704     EVT SrcVT = Src.getValueType();
1705     unsigned InBits = SrcVT.getScalarSizeInBits();
1706     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1707     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1708 
1709     // If we only need the bottom element then we can just bitcast.
1710     // TODO: Handle ANY_EXTEND?
1711     if (IsVecInReg && DemandedElts == 1 &&
1712         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1713         TLO.DAG.getDataLayout().isLittleEndian())
1714       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1715 
1716     APInt InDemandedBits = DemandedBits.trunc(InBits);
1717     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1718     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1719                              Depth + 1))
1720       return true;
1721     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1722     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1723     Known = Known.zext(BitWidth, false /* => any extend */);
1724     break;
1725   }
1726   case ISD::TRUNCATE: {
1727     SDValue Src = Op.getOperand(0);
1728 
1729     // Simplify the input, using demanded bit information, and compute the known
1730     // zero/one bits live out.
1731     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1732     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1733     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1734       return true;
1735     Known = Known.trunc(BitWidth);
1736 
1737     // Attempt to avoid multi-use ops if we don't need anything from them.
1738     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1739             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1740       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1741 
1742     // If the input is only used by this truncate, see if we can shrink it based
1743     // on the known demanded bits.
1744     if (Src.getNode()->hasOneUse()) {
1745       switch (Src.getOpcode()) {
1746       default:
1747         break;
1748       case ISD::SRL:
1749         // Shrink SRL by a constant if none of the high bits shifted in are
1750         // demanded.
1751         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1752           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1753           // undesirable.
1754           break;
1755 
1756         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1757         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1758           break;
1759 
1760         SDValue Shift = Src.getOperand(1);
1761         uint64_t ShVal = ShAmt->getZExtValue();
1762 
1763         if (TLO.LegalTypes())
1764           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1765 
1766         APInt HighBits =
1767             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1768         HighBits.lshrInPlace(ShVal);
1769         HighBits = HighBits.trunc(BitWidth);
1770 
1771         if (!(HighBits & DemandedBits)) {
1772           // None of the shifted in bits are needed.  Add a truncate of the
1773           // shift input, then shift it.
1774           SDValue NewTrunc =
1775               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1776           return TLO.CombineTo(
1777               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1778         }
1779         break;
1780       }
1781     }
1782 
1783     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1784     break;
1785   }
1786   case ISD::AssertZext: {
1787     // AssertZext demands all of the high bits, plus any of the low bits
1788     // demanded by its users.
1789     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1790     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1791     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1792                              TLO, Depth + 1))
1793       return true;
1794     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1795 
1796     Known.Zero |= ~InMask;
1797     break;
1798   }
1799   case ISD::EXTRACT_VECTOR_ELT: {
1800     SDValue Src = Op.getOperand(0);
1801     SDValue Idx = Op.getOperand(1);
1802     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1803     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1804 
1805     // Demand the bits from every vector element without a constant index.
1806     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1807     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1808       if (CIdx->getAPIntValue().ult(NumSrcElts))
1809         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1810 
1811     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1812     // anything about the extended bits.
1813     APInt DemandedSrcBits = DemandedBits;
1814     if (BitWidth > EltBitWidth)
1815       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1816 
1817     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1818                              Depth + 1))
1819       return true;
1820 
1821     Known = Known2;
1822     if (BitWidth > EltBitWidth)
1823       Known = Known.zext(BitWidth, false /* => any extend */);
1824     break;
1825   }
1826   case ISD::BITCAST: {
1827     SDValue Src = Op.getOperand(0);
1828     EVT SrcVT = Src.getValueType();
1829     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1830 
1831     // If this is an FP->Int bitcast and if the sign bit is the only
1832     // thing demanded, turn this into a FGETSIGN.
1833     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1834         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1835         SrcVT.isFloatingPoint()) {
1836       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1837       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1838       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1839           SrcVT != MVT::f128) {
1840         // Cannot eliminate/lower SHL for f128 yet.
1841         EVT Ty = OpVTLegal ? VT : MVT::i32;
1842         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1843         // place.  We expect the SHL to be eliminated by other optimizations.
1844         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1845         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1846         if (!OpVTLegal && OpVTSizeInBits > 32)
1847           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1848         unsigned ShVal = Op.getValueSizeInBits() - 1;
1849         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1850         return TLO.CombineTo(Op,
1851                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1852       }
1853     }
1854 
1855     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1856     // Demand the elt/bit if any of the original elts/bits are demanded.
1857     // TODO - bigendian once we have test coverage.
1858     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1859         TLO.DAG.getDataLayout().isLittleEndian()) {
1860       unsigned Scale = BitWidth / NumSrcEltBits;
1861       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1862       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1863       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1864       for (unsigned i = 0; i != Scale; ++i) {
1865         unsigned Offset = i * NumSrcEltBits;
1866         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1867         if (!Sub.isNullValue()) {
1868           DemandedSrcBits |= Sub;
1869           for (unsigned j = 0; j != NumElts; ++j)
1870             if (DemandedElts[j])
1871               DemandedSrcElts.setBit((j * Scale) + i);
1872         }
1873       }
1874 
1875       APInt KnownSrcUndef, KnownSrcZero;
1876       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1877                                      KnownSrcZero, TLO, Depth + 1))
1878         return true;
1879 
1880       KnownBits KnownSrcBits;
1881       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1882                                KnownSrcBits, TLO, Depth + 1))
1883         return true;
1884     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1885                TLO.DAG.getDataLayout().isLittleEndian()) {
1886       unsigned Scale = NumSrcEltBits / BitWidth;
1887       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1888       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1889       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1890       for (unsigned i = 0; i != NumElts; ++i)
1891         if (DemandedElts[i]) {
1892           unsigned Offset = (i % Scale) * BitWidth;
1893           DemandedSrcBits.insertBits(DemandedBits, Offset);
1894           DemandedSrcElts.setBit(i / Scale);
1895         }
1896 
1897       if (SrcVT.isVector()) {
1898         APInt KnownSrcUndef, KnownSrcZero;
1899         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1900                                        KnownSrcZero, TLO, Depth + 1))
1901           return true;
1902       }
1903 
1904       KnownBits KnownSrcBits;
1905       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1906                                KnownSrcBits, TLO, Depth + 1))
1907         return true;
1908     }
1909 
1910     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1911     // recursive call where Known may be useful to the caller.
1912     if (Depth > 0) {
1913       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1914       return false;
1915     }
1916     break;
1917   }
1918   case ISD::ADD:
1919   case ISD::MUL:
1920   case ISD::SUB: {
1921     // Add, Sub, and Mul don't demand any bits in positions beyond that
1922     // of the highest bit demanded of them.
1923     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1924     SDNodeFlags Flags = Op.getNode()->getFlags();
1925     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1926     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1927     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1928                              Depth + 1) ||
1929         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1930                              Depth + 1) ||
1931         // See if the operation should be performed at a smaller bit width.
1932         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1933       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1934         // Disable the nsw and nuw flags. We can no longer guarantee that we
1935         // won't wrap after simplification.
1936         Flags.setNoSignedWrap(false);
1937         Flags.setNoUnsignedWrap(false);
1938         SDValue NewOp =
1939             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1940         return TLO.CombineTo(Op, NewOp);
1941       }
1942       return true;
1943     }
1944 
1945     // Attempt to avoid multi-use ops if we don't need anything from them.
1946     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1947       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1948           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1949       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1950           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1951       if (DemandedOp0 || DemandedOp1) {
1952         Flags.setNoSignedWrap(false);
1953         Flags.setNoUnsignedWrap(false);
1954         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1955         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1956         SDValue NewOp =
1957             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1958         return TLO.CombineTo(Op, NewOp);
1959       }
1960     }
1961 
1962     // If we have a constant operand, we may be able to turn it into -1 if we
1963     // do not demand the high bits. This can make the constant smaller to
1964     // encode, allow more general folding, or match specialized instruction
1965     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1966     // is probably not useful (and could be detrimental).
1967     ConstantSDNode *C = isConstOrConstSplat(Op1);
1968     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1969     if (C && !C->isAllOnesValue() && !C->isOne() &&
1970         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1971       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1972       // Disable the nsw and nuw flags. We can no longer guarantee that we
1973       // won't wrap after simplification.
1974       Flags.setNoSignedWrap(false);
1975       Flags.setNoUnsignedWrap(false);
1976       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1977       return TLO.CombineTo(Op, NewOp);
1978     }
1979 
1980     LLVM_FALLTHROUGH;
1981   }
1982   default:
1983     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1984       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1985                                             Known, TLO, Depth))
1986         return true;
1987       break;
1988     }
1989 
1990     // Just use computeKnownBits to compute output bits.
1991     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1992     break;
1993   }
1994 
1995   // If we know the value of all of the demanded bits, return this as a
1996   // constant.
1997   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1998     // Avoid folding to a constant if any OpaqueConstant is involved.
1999     const SDNode *N = Op.getNode();
2000     for (SDNodeIterator I = SDNodeIterator::begin(N),
2001                         E = SDNodeIterator::end(N);
2002          I != E; ++I) {
2003       SDNode *Op = *I;
2004       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2005         if (C->isOpaque())
2006           return false;
2007     }
2008     // TODO: Handle float bits as well.
2009     if (VT.isInteger())
2010       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2011   }
2012 
2013   return false;
2014 }
2015 
2016 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2017                                                 const APInt &DemandedElts,
2018                                                 APInt &KnownUndef,
2019                                                 APInt &KnownZero,
2020                                                 DAGCombinerInfo &DCI) const {
2021   SelectionDAG &DAG = DCI.DAG;
2022   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2023                         !DCI.isBeforeLegalizeOps());
2024 
2025   bool Simplified =
2026       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2027   if (Simplified) {
2028     DCI.AddToWorklist(Op.getNode());
2029     DCI.CommitTargetLoweringOpt(TLO);
2030   }
2031 
2032   return Simplified;
2033 }
2034 
2035 /// Given a vector binary operation and known undefined elements for each input
2036 /// operand, compute whether each element of the output is undefined.
2037 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2038                                          const APInt &UndefOp0,
2039                                          const APInt &UndefOp1) {
2040   EVT VT = BO.getValueType();
2041   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2042          "Vector binop only");
2043 
2044   EVT EltVT = VT.getVectorElementType();
2045   unsigned NumElts = VT.getVectorNumElements();
2046   assert(UndefOp0.getBitWidth() == NumElts &&
2047          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2048 
2049   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2050                                    const APInt &UndefVals) {
2051     if (UndefVals[Index])
2052       return DAG.getUNDEF(EltVT);
2053 
2054     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2055       // Try hard to make sure that the getNode() call is not creating temporary
2056       // nodes. Ignore opaque integers because they do not constant fold.
2057       SDValue Elt = BV->getOperand(Index);
2058       auto *C = dyn_cast<ConstantSDNode>(Elt);
2059       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2060         return Elt;
2061     }
2062 
2063     return SDValue();
2064   };
2065 
2066   APInt KnownUndef = APInt::getNullValue(NumElts);
2067   for (unsigned i = 0; i != NumElts; ++i) {
2068     // If both inputs for this element are either constant or undef and match
2069     // the element type, compute the constant/undef result for this element of
2070     // the vector.
2071     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2072     // not handle FP constants. The code within getNode() should be refactored
2073     // to avoid the danger of creating a bogus temporary node here.
2074     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2075     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2076     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2077       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2078         KnownUndef.setBit(i);
2079   }
2080   return KnownUndef;
2081 }
2082 
2083 bool TargetLowering::SimplifyDemandedVectorElts(
2084     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2085     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2086     bool AssumeSingleUse) const {
2087   EVT VT = Op.getValueType();
2088   APInt DemandedElts = OriginalDemandedElts;
2089   unsigned NumElts = DemandedElts.getBitWidth();
2090   assert(VT.isVector() && "Expected vector op");
2091   assert(VT.getVectorNumElements() == NumElts &&
2092          "Mask size mismatches value type element count!");
2093 
2094   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2095 
2096   // Undef operand.
2097   if (Op.isUndef()) {
2098     KnownUndef.setAllBits();
2099     return false;
2100   }
2101 
2102   // If Op has other users, assume that all elements are needed.
2103   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2104     DemandedElts.setAllBits();
2105 
2106   // Not demanding any elements from Op.
2107   if (DemandedElts == 0) {
2108     KnownUndef.setAllBits();
2109     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2110   }
2111 
2112   // Limit search depth.
2113   if (Depth >= SelectionDAG::MaxRecursionDepth)
2114     return false;
2115 
2116   SDLoc DL(Op);
2117   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2118 
2119   switch (Op.getOpcode()) {
2120   case ISD::SCALAR_TO_VECTOR: {
2121     if (!DemandedElts[0]) {
2122       KnownUndef.setAllBits();
2123       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2124     }
2125     KnownUndef.setHighBits(NumElts - 1);
2126     break;
2127   }
2128   case ISD::BITCAST: {
2129     SDValue Src = Op.getOperand(0);
2130     EVT SrcVT = Src.getValueType();
2131 
2132     // We only handle vectors here.
2133     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2134     if (!SrcVT.isVector())
2135       break;
2136 
2137     // Fast handling of 'identity' bitcasts.
2138     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2139     if (NumSrcElts == NumElts)
2140       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2141                                         KnownZero, TLO, Depth + 1);
2142 
2143     APInt SrcZero, SrcUndef;
2144     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2145 
2146     // Bitcast from 'large element' src vector to 'small element' vector, we
2147     // must demand a source element if any DemandedElt maps to it.
2148     if ((NumElts % NumSrcElts) == 0) {
2149       unsigned Scale = NumElts / NumSrcElts;
2150       for (unsigned i = 0; i != NumElts; ++i)
2151         if (DemandedElts[i])
2152           SrcDemandedElts.setBit(i / Scale);
2153 
2154       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2155                                      TLO, Depth + 1))
2156         return true;
2157 
2158       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2159       // of the large element.
2160       // TODO - bigendian once we have test coverage.
2161       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2162         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2163         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2164         for (unsigned i = 0; i != NumElts; ++i)
2165           if (DemandedElts[i]) {
2166             unsigned Ofs = (i % Scale) * EltSizeInBits;
2167             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2168           }
2169 
2170         KnownBits Known;
2171         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2172           return true;
2173       }
2174 
2175       // If the src element is zero/undef then all the output elements will be -
2176       // only demanded elements are guaranteed to be correct.
2177       for (unsigned i = 0; i != NumSrcElts; ++i) {
2178         if (SrcDemandedElts[i]) {
2179           if (SrcZero[i])
2180             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2181           if (SrcUndef[i])
2182             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2183         }
2184       }
2185     }
2186 
2187     // Bitcast from 'small element' src vector to 'large element' vector, we
2188     // demand all smaller source elements covered by the larger demanded element
2189     // of this vector.
2190     if ((NumSrcElts % NumElts) == 0) {
2191       unsigned Scale = NumSrcElts / NumElts;
2192       for (unsigned i = 0; i != NumElts; ++i)
2193         if (DemandedElts[i])
2194           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2195 
2196       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2197                                      TLO, Depth + 1))
2198         return true;
2199 
2200       // If all the src elements covering an output element are zero/undef, then
2201       // the output element will be as well, assuming it was demanded.
2202       for (unsigned i = 0; i != NumElts; ++i) {
2203         if (DemandedElts[i]) {
2204           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2205             KnownZero.setBit(i);
2206           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2207             KnownUndef.setBit(i);
2208         }
2209       }
2210     }
2211     break;
2212   }
2213   case ISD::BUILD_VECTOR: {
2214     // Check all elements and simplify any unused elements with UNDEF.
2215     if (!DemandedElts.isAllOnesValue()) {
2216       // Don't simplify BROADCASTS.
2217       if (llvm::any_of(Op->op_values(),
2218                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2219         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2220         bool Updated = false;
2221         for (unsigned i = 0; i != NumElts; ++i) {
2222           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2223             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2224             KnownUndef.setBit(i);
2225             Updated = true;
2226           }
2227         }
2228         if (Updated)
2229           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2230       }
2231     }
2232     for (unsigned i = 0; i != NumElts; ++i) {
2233       SDValue SrcOp = Op.getOperand(i);
2234       if (SrcOp.isUndef()) {
2235         KnownUndef.setBit(i);
2236       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2237                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2238         KnownZero.setBit(i);
2239       }
2240     }
2241     break;
2242   }
2243   case ISD::CONCAT_VECTORS: {
2244     EVT SubVT = Op.getOperand(0).getValueType();
2245     unsigned NumSubVecs = Op.getNumOperands();
2246     unsigned NumSubElts = SubVT.getVectorNumElements();
2247     for (unsigned i = 0; i != NumSubVecs; ++i) {
2248       SDValue SubOp = Op.getOperand(i);
2249       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2250       APInt SubUndef, SubZero;
2251       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2252                                      Depth + 1))
2253         return true;
2254       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2255       KnownZero.insertBits(SubZero, i * NumSubElts);
2256     }
2257     break;
2258   }
2259   case ISD::INSERT_SUBVECTOR: {
2260     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2261       break;
2262     SDValue Base = Op.getOperand(0);
2263     SDValue Sub = Op.getOperand(1);
2264     EVT SubVT = Sub.getValueType();
2265     unsigned NumSubElts = SubVT.getVectorNumElements();
2266     const APInt &Idx = Op.getConstantOperandAPInt(2);
2267     if (Idx.ugt(NumElts - NumSubElts))
2268       break;
2269     unsigned SubIdx = Idx.getZExtValue();
2270     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2271     APInt SubUndef, SubZero;
2272     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2273                                    Depth + 1))
2274       return true;
2275     APInt BaseElts = DemandedElts;
2276     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2277 
2278     // If none of the base operand elements are demanded, replace it with undef.
2279     if (!BaseElts && !Base.isUndef())
2280       return TLO.CombineTo(Op,
2281                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2282                                            TLO.DAG.getUNDEF(VT),
2283                                            Op.getOperand(1),
2284                                            Op.getOperand(2)));
2285 
2286     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2287                                    Depth + 1))
2288       return true;
2289     KnownUndef.insertBits(SubUndef, SubIdx);
2290     KnownZero.insertBits(SubZero, SubIdx);
2291     break;
2292   }
2293   case ISD::EXTRACT_SUBVECTOR: {
2294     SDValue Src = Op.getOperand(0);
2295     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2296     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2297     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2298       // Offset the demanded elts by the subvector index.
2299       uint64_t Idx = SubIdx->getZExtValue();
2300       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2301       APInt SrcUndef, SrcZero;
2302       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2303                                      Depth + 1))
2304         return true;
2305       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2306       KnownZero = SrcZero.extractBits(NumElts, Idx);
2307     }
2308     break;
2309   }
2310   case ISD::INSERT_VECTOR_ELT: {
2311     SDValue Vec = Op.getOperand(0);
2312     SDValue Scl = Op.getOperand(1);
2313     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2314 
2315     // For a legal, constant insertion index, if we don't need this insertion
2316     // then strip it, else remove it from the demanded elts.
2317     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2318       unsigned Idx = CIdx->getZExtValue();
2319       if (!DemandedElts[Idx])
2320         return TLO.CombineTo(Op, Vec);
2321 
2322       APInt DemandedVecElts(DemandedElts);
2323       DemandedVecElts.clearBit(Idx);
2324       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2325                                      KnownZero, TLO, Depth + 1))
2326         return true;
2327 
2328       KnownUndef.clearBit(Idx);
2329       if (Scl.isUndef())
2330         KnownUndef.setBit(Idx);
2331 
2332       KnownZero.clearBit(Idx);
2333       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2334         KnownZero.setBit(Idx);
2335       break;
2336     }
2337 
2338     APInt VecUndef, VecZero;
2339     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2340                                    Depth + 1))
2341       return true;
2342     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2343     break;
2344   }
2345   case ISD::VSELECT: {
2346     // Try to transform the select condition based on the current demanded
2347     // elements.
2348     // TODO: If a condition element is undef, we can choose from one arm of the
2349     //       select (and if one arm is undef, then we can propagate that to the
2350     //       result).
2351     // TODO - add support for constant vselect masks (see IR version of this).
2352     APInt UnusedUndef, UnusedZero;
2353     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2354                                    UnusedZero, TLO, Depth + 1))
2355       return true;
2356 
2357     // See if we can simplify either vselect operand.
2358     APInt DemandedLHS(DemandedElts);
2359     APInt DemandedRHS(DemandedElts);
2360     APInt UndefLHS, ZeroLHS;
2361     APInt UndefRHS, ZeroRHS;
2362     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2363                                    ZeroLHS, TLO, Depth + 1))
2364       return true;
2365     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2366                                    ZeroRHS, TLO, Depth + 1))
2367       return true;
2368 
2369     KnownUndef = UndefLHS & UndefRHS;
2370     KnownZero = ZeroLHS & ZeroRHS;
2371     break;
2372   }
2373   case ISD::VECTOR_SHUFFLE: {
2374     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2375 
2376     // Collect demanded elements from shuffle operands..
2377     APInt DemandedLHS(NumElts, 0);
2378     APInt DemandedRHS(NumElts, 0);
2379     for (unsigned i = 0; i != NumElts; ++i) {
2380       int M = ShuffleMask[i];
2381       if (M < 0 || !DemandedElts[i])
2382         continue;
2383       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2384       if (M < (int)NumElts)
2385         DemandedLHS.setBit(M);
2386       else
2387         DemandedRHS.setBit(M - NumElts);
2388     }
2389 
2390     // See if we can simplify either shuffle operand.
2391     APInt UndefLHS, ZeroLHS;
2392     APInt UndefRHS, ZeroRHS;
2393     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2394                                    ZeroLHS, TLO, Depth + 1))
2395       return true;
2396     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2397                                    ZeroRHS, TLO, Depth + 1))
2398       return true;
2399 
2400     // Simplify mask using undef elements from LHS/RHS.
2401     bool Updated = false;
2402     bool IdentityLHS = true, IdentityRHS = true;
2403     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2404     for (unsigned i = 0; i != NumElts; ++i) {
2405       int &M = NewMask[i];
2406       if (M < 0)
2407         continue;
2408       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2409           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2410         Updated = true;
2411         M = -1;
2412       }
2413       IdentityLHS &= (M < 0) || (M == (int)i);
2414       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2415     }
2416 
2417     // Update legal shuffle masks based on demanded elements if it won't reduce
2418     // to Identity which can cause premature removal of the shuffle mask.
2419     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2420       SDValue LegalShuffle =
2421           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2422                                   NewMask, TLO.DAG);
2423       if (LegalShuffle)
2424         return TLO.CombineTo(Op, LegalShuffle);
2425     }
2426 
2427     // Propagate undef/zero elements from LHS/RHS.
2428     for (unsigned i = 0; i != NumElts; ++i) {
2429       int M = ShuffleMask[i];
2430       if (M < 0) {
2431         KnownUndef.setBit(i);
2432       } else if (M < (int)NumElts) {
2433         if (UndefLHS[M])
2434           KnownUndef.setBit(i);
2435         if (ZeroLHS[M])
2436           KnownZero.setBit(i);
2437       } else {
2438         if (UndefRHS[M - NumElts])
2439           KnownUndef.setBit(i);
2440         if (ZeroRHS[M - NumElts])
2441           KnownZero.setBit(i);
2442       }
2443     }
2444     break;
2445   }
2446   case ISD::ANY_EXTEND_VECTOR_INREG:
2447   case ISD::SIGN_EXTEND_VECTOR_INREG:
2448   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2449     APInt SrcUndef, SrcZero;
2450     SDValue Src = Op.getOperand(0);
2451     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2452     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2453     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2454                                    Depth + 1))
2455       return true;
2456     KnownZero = SrcZero.zextOrTrunc(NumElts);
2457     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2458 
2459     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2460         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2461         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2462       // aext - if we just need the bottom element then we can bitcast.
2463       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2464     }
2465 
2466     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2467       // zext(undef) upper bits are guaranteed to be zero.
2468       if (DemandedElts.isSubsetOf(KnownUndef))
2469         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2470       KnownUndef.clearAllBits();
2471     }
2472     break;
2473   }
2474 
2475   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2476   // MAX, saturated math, etc.
2477   case ISD::OR:
2478   case ISD::XOR:
2479   case ISD::ADD:
2480   case ISD::SUB:
2481   case ISD::FADD:
2482   case ISD::FSUB:
2483   case ISD::FMUL:
2484   case ISD::FDIV:
2485   case ISD::FREM: {
2486     APInt UndefRHS, ZeroRHS;
2487     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2488                                    ZeroRHS, TLO, Depth + 1))
2489       return true;
2490     APInt UndefLHS, ZeroLHS;
2491     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2492                                    ZeroLHS, TLO, Depth + 1))
2493       return true;
2494 
2495     KnownZero = ZeroLHS & ZeroRHS;
2496     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2497     break;
2498   }
2499   case ISD::SHL:
2500   case ISD::SRL:
2501   case ISD::SRA:
2502   case ISD::ROTL:
2503   case ISD::ROTR: {
2504     APInt UndefRHS, ZeroRHS;
2505     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2506                                    ZeroRHS, TLO, Depth + 1))
2507       return true;
2508     APInt UndefLHS, ZeroLHS;
2509     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2510                                    ZeroLHS, TLO, Depth + 1))
2511       return true;
2512 
2513     KnownZero = ZeroLHS;
2514     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2515     break;
2516   }
2517   case ISD::MUL:
2518   case ISD::AND: {
2519     APInt SrcUndef, SrcZero;
2520     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2521                                    SrcZero, TLO, Depth + 1))
2522       return true;
2523     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2524                                    KnownZero, TLO, Depth + 1))
2525       return true;
2526 
2527     // If either side has a zero element, then the result element is zero, even
2528     // if the other is an UNDEF.
2529     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2530     // and then handle 'and' nodes with the rest of the binop opcodes.
2531     KnownZero |= SrcZero;
2532     KnownUndef &= SrcUndef;
2533     KnownUndef &= ~KnownZero;
2534     break;
2535   }
2536   case ISD::TRUNCATE:
2537   case ISD::SIGN_EXTEND:
2538   case ISD::ZERO_EXTEND:
2539     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2540                                    KnownZero, TLO, Depth + 1))
2541       return true;
2542 
2543     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2544       // zext(undef) upper bits are guaranteed to be zero.
2545       if (DemandedElts.isSubsetOf(KnownUndef))
2546         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2547       KnownUndef.clearAllBits();
2548     }
2549     break;
2550   default: {
2551     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2552       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2553                                                   KnownZero, TLO, Depth))
2554         return true;
2555     } else {
2556       KnownBits Known;
2557       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2558       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2559                                TLO, Depth, AssumeSingleUse))
2560         return true;
2561     }
2562     break;
2563   }
2564   }
2565   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2566 
2567   // Constant fold all undef cases.
2568   // TODO: Handle zero cases as well.
2569   if (DemandedElts.isSubsetOf(KnownUndef))
2570     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2571 
2572   return false;
2573 }
2574 
2575 /// Determine which of the bits specified in Mask are known to be either zero or
2576 /// one and return them in the Known.
2577 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2578                                                    KnownBits &Known,
2579                                                    const APInt &DemandedElts,
2580                                                    const SelectionDAG &DAG,
2581                                                    unsigned Depth) const {
2582   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2583           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2584           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2585           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2586          "Should use MaskedValueIsZero if you don't know whether Op"
2587          " is a target node!");
2588   Known.resetAll();
2589 }
2590 
2591 void TargetLowering::computeKnownBitsForTargetInstr(
2592     Register R, KnownBits &Known, const APInt &DemandedElts,
2593     const MachineRegisterInfo &MRI, unsigned Depth) const {
2594   Known.resetAll();
2595 }
2596 
2597 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2598                                                    KnownBits &Known,
2599                                                    const APInt &DemandedElts,
2600                                                    const SelectionDAG &DAG,
2601                                                    unsigned Depth) const {
2602   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2603 
2604   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2605     // The low bits are known zero if the pointer is aligned.
2606     Known.Zero.setLowBits(Log2_32(Align));
2607   }
2608 }
2609 
2610 /// This method can be implemented by targets that want to expose additional
2611 /// information about sign bits to the DAG Combiner.
2612 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2613                                                          const APInt &,
2614                                                          const SelectionDAG &,
2615                                                          unsigned Depth) const {
2616   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2617           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2618           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2619           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2620          "Should use ComputeNumSignBits if you don't know whether Op"
2621          " is a target node!");
2622   return 1;
2623 }
2624 
2625 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2626     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2627     TargetLoweringOpt &TLO, unsigned Depth) const {
2628   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2629           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2630           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2631           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2632          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2633          " is a target node!");
2634   return false;
2635 }
2636 
2637 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2638     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2639     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2640   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2641           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2642           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2643           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2644          "Should use SimplifyDemandedBits if you don't know whether Op"
2645          " is a target node!");
2646   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2647   return false;
2648 }
2649 
2650 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2651     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2652     SelectionDAG &DAG, unsigned Depth) const {
2653   assert(
2654       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2655        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2656        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2657        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2658       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2659       " is a target node!");
2660   return SDValue();
2661 }
2662 
2663 SDValue
2664 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2665                                         SDValue N1, MutableArrayRef<int> Mask,
2666                                         SelectionDAG &DAG) const {
2667   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2668   if (!LegalMask) {
2669     std::swap(N0, N1);
2670     ShuffleVectorSDNode::commuteMask(Mask);
2671     LegalMask = isShuffleMaskLegal(Mask, VT);
2672   }
2673 
2674   if (!LegalMask)
2675     return SDValue();
2676 
2677   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2678 }
2679 
2680 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2681   return nullptr;
2682 }
2683 
2684 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2685                                                   const SelectionDAG &DAG,
2686                                                   bool SNaN,
2687                                                   unsigned Depth) const {
2688   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2689           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2690           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2691           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2692          "Should use isKnownNeverNaN if you don't know whether Op"
2693          " is a target node!");
2694   return false;
2695 }
2696 
2697 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2698 // work with truncating build vectors and vectors with elements of less than
2699 // 8 bits.
2700 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2701   if (!N)
2702     return false;
2703 
2704   APInt CVal;
2705   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2706     CVal = CN->getAPIntValue();
2707   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2708     auto *CN = BV->getConstantSplatNode();
2709     if (!CN)
2710       return false;
2711 
2712     // If this is a truncating build vector, truncate the splat value.
2713     // Otherwise, we may fail to match the expected values below.
2714     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2715     CVal = CN->getAPIntValue();
2716     if (BVEltWidth < CVal.getBitWidth())
2717       CVal = CVal.trunc(BVEltWidth);
2718   } else {
2719     return false;
2720   }
2721 
2722   switch (getBooleanContents(N->getValueType(0))) {
2723   case UndefinedBooleanContent:
2724     return CVal[0];
2725   case ZeroOrOneBooleanContent:
2726     return CVal.isOneValue();
2727   case ZeroOrNegativeOneBooleanContent:
2728     return CVal.isAllOnesValue();
2729   }
2730 
2731   llvm_unreachable("Invalid boolean contents");
2732 }
2733 
2734 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2735   if (!N)
2736     return false;
2737 
2738   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2739   if (!CN) {
2740     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2741     if (!BV)
2742       return false;
2743 
2744     // Only interested in constant splats, we don't care about undef
2745     // elements in identifying boolean constants and getConstantSplatNode
2746     // returns NULL if all ops are undef;
2747     CN = BV->getConstantSplatNode();
2748     if (!CN)
2749       return false;
2750   }
2751 
2752   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2753     return !CN->getAPIntValue()[0];
2754 
2755   return CN->isNullValue();
2756 }
2757 
2758 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2759                                        bool SExt) const {
2760   if (VT == MVT::i1)
2761     return N->isOne();
2762 
2763   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2764   switch (Cnt) {
2765   case TargetLowering::ZeroOrOneBooleanContent:
2766     // An extended value of 1 is always true, unless its original type is i1,
2767     // in which case it will be sign extended to -1.
2768     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2769   case TargetLowering::UndefinedBooleanContent:
2770   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2771     return N->isAllOnesValue() && SExt;
2772   }
2773   llvm_unreachable("Unexpected enumeration.");
2774 }
2775 
2776 /// This helper function of SimplifySetCC tries to optimize the comparison when
2777 /// either operand of the SetCC node is a bitwise-and instruction.
2778 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2779                                          ISD::CondCode Cond, const SDLoc &DL,
2780                                          DAGCombinerInfo &DCI) const {
2781   // Match these patterns in any of their permutations:
2782   // (X & Y) == Y
2783   // (X & Y) != Y
2784   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2785     std::swap(N0, N1);
2786 
2787   EVT OpVT = N0.getValueType();
2788   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2789       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2790     return SDValue();
2791 
2792   SDValue X, Y;
2793   if (N0.getOperand(0) == N1) {
2794     X = N0.getOperand(1);
2795     Y = N0.getOperand(0);
2796   } else if (N0.getOperand(1) == N1) {
2797     X = N0.getOperand(0);
2798     Y = N0.getOperand(1);
2799   } else {
2800     return SDValue();
2801   }
2802 
2803   SelectionDAG &DAG = DCI.DAG;
2804   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2805   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2806     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2807     // Note that where Y is variable and is known to have at most one bit set
2808     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2809     // equivalent when Y == 0.
2810     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2811     if (DCI.isBeforeLegalizeOps() ||
2812         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2813       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2814   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2815     // If the target supports an 'and-not' or 'and-complement' logic operation,
2816     // try to use that to make a comparison operation more efficient.
2817     // But don't do this transform if the mask is a single bit because there are
2818     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2819     // 'rlwinm' on PPC).
2820 
2821     // Bail out if the compare operand that we want to turn into a zero is
2822     // already a zero (otherwise, infinite loop).
2823     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2824     if (YConst && YConst->isNullValue())
2825       return SDValue();
2826 
2827     // Transform this into: ~X & Y == 0.
2828     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2829     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2830     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2831   }
2832 
2833   return SDValue();
2834 }
2835 
2836 /// There are multiple IR patterns that could be checking whether certain
2837 /// truncation of a signed number would be lossy or not. The pattern which is
2838 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2839 /// We are looking for the following pattern: (KeptBits is a constant)
2840 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2841 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2842 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2843 /// We will unfold it into the natural trunc+sext pattern:
2844 ///   ((%x << C) a>> C) dstcond %x
2845 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2846 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2847     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2848     const SDLoc &DL) const {
2849   // We must be comparing with a constant.
2850   ConstantSDNode *C1;
2851   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2852     return SDValue();
2853 
2854   // N0 should be:  add %x, (1 << (KeptBits-1))
2855   if (N0->getOpcode() != ISD::ADD)
2856     return SDValue();
2857 
2858   // And we must be 'add'ing a constant.
2859   ConstantSDNode *C01;
2860   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2861     return SDValue();
2862 
2863   SDValue X = N0->getOperand(0);
2864   EVT XVT = X.getValueType();
2865 
2866   // Validate constants ...
2867 
2868   APInt I1 = C1->getAPIntValue();
2869 
2870   ISD::CondCode NewCond;
2871   if (Cond == ISD::CondCode::SETULT) {
2872     NewCond = ISD::CondCode::SETEQ;
2873   } else if (Cond == ISD::CondCode::SETULE) {
2874     NewCond = ISD::CondCode::SETEQ;
2875     // But need to 'canonicalize' the constant.
2876     I1 += 1;
2877   } else if (Cond == ISD::CondCode::SETUGT) {
2878     NewCond = ISD::CondCode::SETNE;
2879     // But need to 'canonicalize' the constant.
2880     I1 += 1;
2881   } else if (Cond == ISD::CondCode::SETUGE) {
2882     NewCond = ISD::CondCode::SETNE;
2883   } else
2884     return SDValue();
2885 
2886   APInt I01 = C01->getAPIntValue();
2887 
2888   auto checkConstants = [&I1, &I01]() -> bool {
2889     // Both of them must be power-of-two, and the constant from setcc is bigger.
2890     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2891   };
2892 
2893   if (checkConstants()) {
2894     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2895   } else {
2896     // What if we invert constants? (and the target predicate)
2897     I1.negate();
2898     I01.negate();
2899     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2900     if (!checkConstants())
2901       return SDValue();
2902     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2903   }
2904 
2905   // They are power-of-two, so which bit is set?
2906   const unsigned KeptBits = I1.logBase2();
2907   const unsigned KeptBitsMinusOne = I01.logBase2();
2908 
2909   // Magic!
2910   if (KeptBits != (KeptBitsMinusOne + 1))
2911     return SDValue();
2912   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2913 
2914   // We don't want to do this in every single case.
2915   SelectionDAG &DAG = DCI.DAG;
2916   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2917           XVT, KeptBits))
2918     return SDValue();
2919 
2920   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2921   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2922 
2923   // Unfold into:  ((%x << C) a>> C) cond %x
2924   // Where 'cond' will be either 'eq' or 'ne'.
2925   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2926   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2927   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2928   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2929 
2930   return T2;
2931 }
2932 
2933 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
2934 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2935     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2936     DAGCombinerInfo &DCI, const SDLoc &DL) const {
2937   assert(isConstOrConstSplat(N1C) &&
2938          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2939          "Should be a comparison with 0.");
2940   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2941          "Valid only for [in]equality comparisons.");
2942 
2943   unsigned NewShiftOpcode;
2944   SDValue X, C, Y;
2945 
2946   SelectionDAG &DAG = DCI.DAG;
2947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2948 
2949   // Look for '(C l>>/<< Y)'.
2950   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2951     // The shift should be one-use.
2952     if (!V.hasOneUse())
2953       return false;
2954     unsigned OldShiftOpcode = V.getOpcode();
2955     switch (OldShiftOpcode) {
2956     case ISD::SHL:
2957       NewShiftOpcode = ISD::SRL;
2958       break;
2959     case ISD::SRL:
2960       NewShiftOpcode = ISD::SHL;
2961       break;
2962     default:
2963       return false; // must be a logical shift.
2964     }
2965     // We should be shifting a constant.
2966     // FIXME: best to use isConstantOrConstantVector().
2967     C = V.getOperand(0);
2968     ConstantSDNode *CC =
2969         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2970     if (!CC)
2971       return false;
2972     Y = V.getOperand(1);
2973 
2974     ConstantSDNode *XC =
2975         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2976     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2977         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2978   };
2979 
2980   // LHS of comparison should be an one-use 'and'.
2981   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2982     return SDValue();
2983 
2984   X = N0.getOperand(0);
2985   SDValue Mask = N0.getOperand(1);
2986 
2987   // 'and' is commutative!
2988   if (!Match(Mask)) {
2989     std::swap(X, Mask);
2990     if (!Match(Mask))
2991       return SDValue();
2992   }
2993 
2994   EVT VT = X.getValueType();
2995 
2996   // Produce:
2997   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2998   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
2999   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3000   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3001   return T2;
3002 }
3003 
3004 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3005 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3006 /// handle the commuted versions of these patterns.
3007 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3008                                            ISD::CondCode Cond, const SDLoc &DL,
3009                                            DAGCombinerInfo &DCI) const {
3010   unsigned BOpcode = N0.getOpcode();
3011   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3012          "Unexpected binop");
3013   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3014 
3015   // (X + Y) == X --> Y == 0
3016   // (X - Y) == X --> Y == 0
3017   // (X ^ Y) == X --> Y == 0
3018   SelectionDAG &DAG = DCI.DAG;
3019   EVT OpVT = N0.getValueType();
3020   SDValue X = N0.getOperand(0);
3021   SDValue Y = N0.getOperand(1);
3022   if (X == N1)
3023     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3024 
3025   if (Y != N1)
3026     return SDValue();
3027 
3028   // (X + Y) == Y --> X == 0
3029   // (X ^ Y) == Y --> X == 0
3030   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3031     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3032 
3033   // The shift would not be valid if the operands are boolean (i1).
3034   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3035     return SDValue();
3036 
3037   // (X - Y) == Y --> X == Y << 1
3038   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3039                                  !DCI.isBeforeLegalize());
3040   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3041   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3042   if (!DCI.isCalledByLegalizer())
3043     DCI.AddToWorklist(YShl1.getNode());
3044   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3045 }
3046 
3047 /// Try to simplify a setcc built with the specified operands and cc. If it is
3048 /// unable to simplify it, return a null SDValue.
3049 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3050                                       ISD::CondCode Cond, bool foldBooleans,
3051                                       DAGCombinerInfo &DCI,
3052                                       const SDLoc &dl) const {
3053   SelectionDAG &DAG = DCI.DAG;
3054   EVT OpVT = N0.getValueType();
3055 
3056   // Constant fold or commute setcc.
3057   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3058     return Fold;
3059 
3060   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3061   // TODO: Handle non-splat vector constants. All undef causes trouble.
3062   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3063   if (isConstOrConstSplat(N0) &&
3064       (DCI.isBeforeLegalizeOps() ||
3065        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3066     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3067 
3068   // If we have a subtract with the same 2 non-constant operands as this setcc
3069   // -- but in reverse order -- then try to commute the operands of this setcc
3070   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3071   // instruction on some targets.
3072   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3073       (DCI.isBeforeLegalizeOps() ||
3074        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3075       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3076       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3077     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3078 
3079   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3080     const APInt &C1 = N1C->getAPIntValue();
3081 
3082     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3083     // equality comparison, then we're just comparing whether X itself is
3084     // zero.
3085     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3086         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3087         N0.getOperand(1).getOpcode() == ISD::Constant) {
3088       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3089       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3090           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3091         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3092           // (srl (ctlz x), 5) == 0  -> X != 0
3093           // (srl (ctlz x), 5) != 1  -> X != 0
3094           Cond = ISD::SETNE;
3095         } else {
3096           // (srl (ctlz x), 5) != 0  -> X == 0
3097           // (srl (ctlz x), 5) == 1  -> X == 0
3098           Cond = ISD::SETEQ;
3099         }
3100         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3101         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3102                             Zero, Cond);
3103       }
3104     }
3105 
3106     SDValue CTPOP = N0;
3107     // Look through truncs that don't change the value of a ctpop.
3108     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3109       CTPOP = N0.getOperand(0);
3110 
3111     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3112         (N0 == CTPOP ||
3113          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3114       EVT CTVT = CTPOP.getValueType();
3115       SDValue CTOp = CTPOP.getOperand(0);
3116 
3117       // (ctpop x) u< 2 -> (x & x-1) == 0
3118       // (ctpop x) u> 1 -> (x & x-1) != 0
3119       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3120         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3121         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3122         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3123         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3124         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3125       }
3126 
3127       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3128       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3129           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3130         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3131         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3132         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3133         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3134         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3135         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3136         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3137         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3138         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3139         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3140         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3141       }
3142     }
3143 
3144     // (zext x) == C --> x == (trunc C)
3145     // (sext x) == C --> x == (trunc C)
3146     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3147         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3148       unsigned MinBits = N0.getValueSizeInBits();
3149       SDValue PreExt;
3150       bool Signed = false;
3151       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3152         // ZExt
3153         MinBits = N0->getOperand(0).getValueSizeInBits();
3154         PreExt = N0->getOperand(0);
3155       } else if (N0->getOpcode() == ISD::AND) {
3156         // DAGCombine turns costly ZExts into ANDs
3157         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3158           if ((C->getAPIntValue()+1).isPowerOf2()) {
3159             MinBits = C->getAPIntValue().countTrailingOnes();
3160             PreExt = N0->getOperand(0);
3161           }
3162       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3163         // SExt
3164         MinBits = N0->getOperand(0).getValueSizeInBits();
3165         PreExt = N0->getOperand(0);
3166         Signed = true;
3167       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3168         // ZEXTLOAD / SEXTLOAD
3169         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3170           MinBits = LN0->getMemoryVT().getSizeInBits();
3171           PreExt = N0;
3172         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3173           Signed = true;
3174           MinBits = LN0->getMemoryVT().getSizeInBits();
3175           PreExt = N0;
3176         }
3177       }
3178 
3179       // Figure out how many bits we need to preserve this constant.
3180       unsigned ReqdBits = Signed ?
3181         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3182         C1.getActiveBits();
3183 
3184       // Make sure we're not losing bits from the constant.
3185       if (MinBits > 0 &&
3186           MinBits < C1.getBitWidth() &&
3187           MinBits >= ReqdBits) {
3188         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3189         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3190           // Will get folded away.
3191           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3192           if (MinBits == 1 && C1 == 1)
3193             // Invert the condition.
3194             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3195                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3196           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3197           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3198         }
3199 
3200         // If truncating the setcc operands is not desirable, we can still
3201         // simplify the expression in some cases:
3202         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3203         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3204         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3205         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3206         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3207         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3208         SDValue TopSetCC = N0->getOperand(0);
3209         unsigned N0Opc = N0->getOpcode();
3210         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3211         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3212             TopSetCC.getOpcode() == ISD::SETCC &&
3213             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3214             (isConstFalseVal(N1C) ||
3215              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3216 
3217           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3218                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3219 
3220           if (!Inverse)
3221             return TopSetCC;
3222 
3223           ISD::CondCode InvCond = ISD::getSetCCInverse(
3224               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3225               TopSetCC.getOperand(0).getValueType().isInteger());
3226           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3227                                       TopSetCC.getOperand(1),
3228                                       InvCond);
3229         }
3230       }
3231     }
3232 
3233     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3234     // equality or unsigned, and all 1 bits of the const are in the same
3235     // partial word, see if we can shorten the load.
3236     if (DCI.isBeforeLegalize() &&
3237         !ISD::isSignedIntSetCC(Cond) &&
3238         N0.getOpcode() == ISD::AND && C1 == 0 &&
3239         N0.getNode()->hasOneUse() &&
3240         isa<LoadSDNode>(N0.getOperand(0)) &&
3241         N0.getOperand(0).getNode()->hasOneUse() &&
3242         isa<ConstantSDNode>(N0.getOperand(1))) {
3243       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3244       APInt bestMask;
3245       unsigned bestWidth = 0, bestOffset = 0;
3246       if (Lod->isSimple() && Lod->isUnindexed()) {
3247         unsigned origWidth = N0.getValueSizeInBits();
3248         unsigned maskWidth = origWidth;
3249         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3250         // 8 bits, but have to be careful...
3251         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3252           origWidth = Lod->getMemoryVT().getSizeInBits();
3253         const APInt &Mask = N0.getConstantOperandAPInt(1);
3254         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3255           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3256           for (unsigned offset=0; offset<origWidth/width; offset++) {
3257             if (Mask.isSubsetOf(newMask)) {
3258               if (DAG.getDataLayout().isLittleEndian())
3259                 bestOffset = (uint64_t)offset * (width/8);
3260               else
3261                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3262               bestMask = Mask.lshr(offset * (width/8) * 8);
3263               bestWidth = width;
3264               break;
3265             }
3266             newMask <<= width;
3267           }
3268         }
3269       }
3270       if (bestWidth) {
3271         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3272         if (newVT.isRound() &&
3273             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3274           EVT PtrType = Lod->getOperand(1).getValueType();
3275           SDValue Ptr = Lod->getBasePtr();
3276           if (bestOffset != 0)
3277             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3278                               DAG.getConstant(bestOffset, dl, PtrType));
3279           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3280           SDValue NewLoad = DAG.getLoad(
3281               newVT, dl, Lod->getChain(), Ptr,
3282               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3283           return DAG.getSetCC(dl, VT,
3284                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3285                                       DAG.getConstant(bestMask.trunc(bestWidth),
3286                                                       dl, newVT)),
3287                               DAG.getConstant(0LL, dl, newVT), Cond);
3288         }
3289       }
3290     }
3291 
3292     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3293     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3294       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3295 
3296       // If the comparison constant has bits in the upper part, the
3297       // zero-extended value could never match.
3298       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3299                                               C1.getBitWidth() - InSize))) {
3300         switch (Cond) {
3301         case ISD::SETUGT:
3302         case ISD::SETUGE:
3303         case ISD::SETEQ:
3304           return DAG.getConstant(0, dl, VT);
3305         case ISD::SETULT:
3306         case ISD::SETULE:
3307         case ISD::SETNE:
3308           return DAG.getConstant(1, dl, VT);
3309         case ISD::SETGT:
3310         case ISD::SETGE:
3311           // True if the sign bit of C1 is set.
3312           return DAG.getConstant(C1.isNegative(), dl, VT);
3313         case ISD::SETLT:
3314         case ISD::SETLE:
3315           // True if the sign bit of C1 isn't set.
3316           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3317         default:
3318           break;
3319         }
3320       }
3321 
3322       // Otherwise, we can perform the comparison with the low bits.
3323       switch (Cond) {
3324       case ISD::SETEQ:
3325       case ISD::SETNE:
3326       case ISD::SETUGT:
3327       case ISD::SETUGE:
3328       case ISD::SETULT:
3329       case ISD::SETULE: {
3330         EVT newVT = N0.getOperand(0).getValueType();
3331         if (DCI.isBeforeLegalizeOps() ||
3332             (isOperationLegal(ISD::SETCC, newVT) &&
3333              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3334           EVT NewSetCCVT =
3335               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3336           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3337 
3338           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3339                                           NewConst, Cond);
3340           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3341         }
3342         break;
3343       }
3344       default:
3345         break; // todo, be more careful with signed comparisons
3346       }
3347     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3348                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3349       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3350       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3351       EVT ExtDstTy = N0.getValueType();
3352       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3353 
3354       // If the constant doesn't fit into the number of bits for the source of
3355       // the sign extension, it is impossible for both sides to be equal.
3356       if (C1.getMinSignedBits() > ExtSrcTyBits)
3357         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3358 
3359       SDValue ZextOp;
3360       EVT Op0Ty = N0.getOperand(0).getValueType();
3361       if (Op0Ty == ExtSrcTy) {
3362         ZextOp = N0.getOperand(0);
3363       } else {
3364         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3365         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3366                              DAG.getConstant(Imm, dl, Op0Ty));
3367       }
3368       if (!DCI.isCalledByLegalizer())
3369         DCI.AddToWorklist(ZextOp.getNode());
3370       // Otherwise, make this a use of a zext.
3371       return DAG.getSetCC(dl, VT, ZextOp,
3372                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3373                                                               ExtDstTyBits,
3374                                                               ExtSrcTyBits),
3375                                           dl, ExtDstTy),
3376                           Cond);
3377     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3378                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3379       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3380       if (N0.getOpcode() == ISD::SETCC &&
3381           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
3382         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3383         if (TrueWhenTrue)
3384           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3385         // Invert the condition.
3386         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3387         CC = ISD::getSetCCInverse(CC,
3388                                   N0.getOperand(0).getValueType().isInteger());
3389         if (DCI.isBeforeLegalizeOps() ||
3390             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3391           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3392       }
3393 
3394       if ((N0.getOpcode() == ISD::XOR ||
3395            (N0.getOpcode() == ISD::AND &&
3396             N0.getOperand(0).getOpcode() == ISD::XOR &&
3397             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3398           isa<ConstantSDNode>(N0.getOperand(1)) &&
3399           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3400         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3401         // can only do this if the top bits are known zero.
3402         unsigned BitWidth = N0.getValueSizeInBits();
3403         if (DAG.MaskedValueIsZero(N0,
3404                                   APInt::getHighBitsSet(BitWidth,
3405                                                         BitWidth-1))) {
3406           // Okay, get the un-inverted input value.
3407           SDValue Val;
3408           if (N0.getOpcode() == ISD::XOR) {
3409             Val = N0.getOperand(0);
3410           } else {
3411             assert(N0.getOpcode() == ISD::AND &&
3412                     N0.getOperand(0).getOpcode() == ISD::XOR);
3413             // ((X^1)&1)^1 -> X & 1
3414             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3415                               N0.getOperand(0).getOperand(0),
3416                               N0.getOperand(1));
3417           }
3418 
3419           return DAG.getSetCC(dl, VT, Val, N1,
3420                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3421         }
3422       } else if (N1C->isOne() &&
3423                  (VT == MVT::i1 ||
3424                   getBooleanContents(N0->getValueType(0)) ==
3425                       ZeroOrOneBooleanContent)) {
3426         SDValue Op0 = N0;
3427         if (Op0.getOpcode() == ISD::TRUNCATE)
3428           Op0 = Op0.getOperand(0);
3429 
3430         if ((Op0.getOpcode() == ISD::XOR) &&
3431             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3432             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3433           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3434           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3435           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3436                               Cond);
3437         }
3438         if (Op0.getOpcode() == ISD::AND &&
3439             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3440             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3441           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3442           if (Op0.getValueType().bitsGT(VT))
3443             Op0 = DAG.getNode(ISD::AND, dl, VT,
3444                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3445                           DAG.getConstant(1, dl, VT));
3446           else if (Op0.getValueType().bitsLT(VT))
3447             Op0 = DAG.getNode(ISD::AND, dl, VT,
3448                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3449                         DAG.getConstant(1, dl, VT));
3450 
3451           return DAG.getSetCC(dl, VT, Op0,
3452                               DAG.getConstant(0, dl, Op0.getValueType()),
3453                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3454         }
3455         if (Op0.getOpcode() == ISD::AssertZext &&
3456             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3457           return DAG.getSetCC(dl, VT, Op0,
3458                               DAG.getConstant(0, dl, Op0.getValueType()),
3459                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3460       }
3461     }
3462 
3463     // Given:
3464     //   icmp eq/ne (urem %x, %y), 0
3465     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3466     //   icmp eq/ne %x, 0
3467     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3468         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3469       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3470       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3471       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3472         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3473     }
3474 
3475     if (SDValue V =
3476             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3477       return V;
3478   }
3479 
3480   // These simplifications apply to splat vectors as well.
3481   // TODO: Handle more splat vector cases.
3482   if (auto *N1C = isConstOrConstSplat(N1)) {
3483     const APInt &C1 = N1C->getAPIntValue();
3484 
3485     APInt MinVal, MaxVal;
3486     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3487     if (ISD::isSignedIntSetCC(Cond)) {
3488       MinVal = APInt::getSignedMinValue(OperandBitSize);
3489       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3490     } else {
3491       MinVal = APInt::getMinValue(OperandBitSize);
3492       MaxVal = APInt::getMaxValue(OperandBitSize);
3493     }
3494 
3495     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3496     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3497       // X >= MIN --> true
3498       if (C1 == MinVal)
3499         return DAG.getBoolConstant(true, dl, VT, OpVT);
3500 
3501       if (!VT.isVector()) { // TODO: Support this for vectors.
3502         // X >= C0 --> X > (C0 - 1)
3503         APInt C = C1 - 1;
3504         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3505         if ((DCI.isBeforeLegalizeOps() ||
3506              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3507             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3508                                   isLegalICmpImmediate(C.getSExtValue())))) {
3509           return DAG.getSetCC(dl, VT, N0,
3510                               DAG.getConstant(C, dl, N1.getValueType()),
3511                               NewCC);
3512         }
3513       }
3514     }
3515 
3516     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3517       // X <= MAX --> true
3518       if (C1 == MaxVal)
3519         return DAG.getBoolConstant(true, dl, VT, OpVT);
3520 
3521       // X <= C0 --> X < (C0 + 1)
3522       if (!VT.isVector()) { // TODO: Support this for vectors.
3523         APInt C = C1 + 1;
3524         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3525         if ((DCI.isBeforeLegalizeOps() ||
3526              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3527             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3528                                   isLegalICmpImmediate(C.getSExtValue())))) {
3529           return DAG.getSetCC(dl, VT, N0,
3530                               DAG.getConstant(C, dl, N1.getValueType()),
3531                               NewCC);
3532         }
3533       }
3534     }
3535 
3536     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3537       if (C1 == MinVal)
3538         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3539 
3540       // TODO: Support this for vectors after legalize ops.
3541       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3542         // Canonicalize setlt X, Max --> setne X, Max
3543         if (C1 == MaxVal)
3544           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3545 
3546         // If we have setult X, 1, turn it into seteq X, 0
3547         if (C1 == MinVal+1)
3548           return DAG.getSetCC(dl, VT, N0,
3549                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3550                               ISD::SETEQ);
3551       }
3552     }
3553 
3554     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3555       if (C1 == MaxVal)
3556         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3557 
3558       // TODO: Support this for vectors after legalize ops.
3559       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3560         // Canonicalize setgt X, Min --> setne X, Min
3561         if (C1 == MinVal)
3562           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3563 
3564         // If we have setugt X, Max-1, turn it into seteq X, Max
3565         if (C1 == MaxVal-1)
3566           return DAG.getSetCC(dl, VT, N0,
3567                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3568                               ISD::SETEQ);
3569       }
3570     }
3571 
3572     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3573       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3574       if (C1.isNullValue())
3575         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3576                 VT, N0, N1, Cond, DCI, dl))
3577           return CC;
3578     }
3579 
3580     // If we have "setcc X, C0", check to see if we can shrink the immediate
3581     // by changing cc.
3582     // TODO: Support this for vectors after legalize ops.
3583     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3584       // SETUGT X, SINTMAX  -> SETLT X, 0
3585       if (Cond == ISD::SETUGT &&
3586           C1 == APInt::getSignedMaxValue(OperandBitSize))
3587         return DAG.getSetCC(dl, VT, N0,
3588                             DAG.getConstant(0, dl, N1.getValueType()),
3589                             ISD::SETLT);
3590 
3591       // SETULT X, SINTMIN  -> SETGT X, -1
3592       if (Cond == ISD::SETULT &&
3593           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3594         SDValue ConstMinusOne =
3595             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3596                             N1.getValueType());
3597         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3598       }
3599     }
3600   }
3601 
3602   // Back to non-vector simplifications.
3603   // TODO: Can we do these for vector splats?
3604   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3605     const APInt &C1 = N1C->getAPIntValue();
3606 
3607     // Fold bit comparisons when we can.
3608     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3609         (VT == N0.getValueType() ||
3610          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3611         N0.getOpcode() == ISD::AND) {
3612       auto &DL = DAG.getDataLayout();
3613       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3614         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3615                                        !DCI.isBeforeLegalize());
3616         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3617           // Perform the xform if the AND RHS is a single bit.
3618           if (AndRHS->getAPIntValue().isPowerOf2()) {
3619             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3620                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3621                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3622                                    ShiftTy)));
3623           }
3624         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3625           // (X & 8) == 8  -->  (X & 8) >> 3
3626           // Perform the xform if C1 is a single bit.
3627           if (C1.isPowerOf2()) {
3628             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3629                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3630                                       DAG.getConstant(C1.logBase2(), dl,
3631                                                       ShiftTy)));
3632           }
3633         }
3634       }
3635     }
3636 
3637     if (C1.getMinSignedBits() <= 64 &&
3638         !isLegalICmpImmediate(C1.getSExtValue())) {
3639       // (X & -256) == 256 -> (X >> 8) == 1
3640       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3641           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3642         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3643           const APInt &AndRHSC = AndRHS->getAPIntValue();
3644           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3645             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3646             auto &DL = DAG.getDataLayout();
3647             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3648                                            !DCI.isBeforeLegalize());
3649             EVT CmpTy = N0.getValueType();
3650             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3651                                         DAG.getConstant(ShiftBits, dl,
3652                                                         ShiftTy));
3653             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3654             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3655           }
3656         }
3657       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3658                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3659         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3660         // X <  0x100000000 -> (X >> 32) <  1
3661         // X >= 0x100000000 -> (X >> 32) >= 1
3662         // X <= 0x0ffffffff -> (X >> 32) <  1
3663         // X >  0x0ffffffff -> (X >> 32) >= 1
3664         unsigned ShiftBits;
3665         APInt NewC = C1;
3666         ISD::CondCode NewCond = Cond;
3667         if (AdjOne) {
3668           ShiftBits = C1.countTrailingOnes();
3669           NewC = NewC + 1;
3670           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3671         } else {
3672           ShiftBits = C1.countTrailingZeros();
3673         }
3674         NewC.lshrInPlace(ShiftBits);
3675         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3676           isLegalICmpImmediate(NewC.getSExtValue())) {
3677           auto &DL = DAG.getDataLayout();
3678           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3679                                          !DCI.isBeforeLegalize());
3680           EVT CmpTy = N0.getValueType();
3681           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3682                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3683           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3684           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3685         }
3686       }
3687     }
3688   }
3689 
3690   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3691     auto *CFP = cast<ConstantFPSDNode>(N1);
3692     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3693 
3694     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3695     // constant if knowing that the operand is non-nan is enough.  We prefer to
3696     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3697     // materialize 0.0.
3698     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3699       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3700 
3701     // setcc (fneg x), C -> setcc swap(pred) x, -C
3702     if (N0.getOpcode() == ISD::FNEG) {
3703       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3704       if (DCI.isBeforeLegalizeOps() ||
3705           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3706         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3707         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3708       }
3709     }
3710 
3711     // If the condition is not legal, see if we can find an equivalent one
3712     // which is legal.
3713     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3714       // If the comparison was an awkward floating-point == or != and one of
3715       // the comparison operands is infinity or negative infinity, convert the
3716       // condition to a less-awkward <= or >=.
3717       if (CFP->getValueAPF().isInfinity()) {
3718         if (CFP->getValueAPF().isNegative()) {
3719           if (Cond == ISD::SETOEQ &&
3720               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3721             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3722           if (Cond == ISD::SETUEQ &&
3723               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3724             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3725           if (Cond == ISD::SETUNE &&
3726               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3727             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3728           if (Cond == ISD::SETONE &&
3729               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3730             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3731         } else {
3732           if (Cond == ISD::SETOEQ &&
3733               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3734             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3735           if (Cond == ISD::SETUEQ &&
3736               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3737             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3738           if (Cond == ISD::SETUNE &&
3739               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3740             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3741           if (Cond == ISD::SETONE &&
3742               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3743             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3744         }
3745       }
3746     }
3747   }
3748 
3749   if (N0 == N1) {
3750     // The sext(setcc()) => setcc() optimization relies on the appropriate
3751     // constant being emitted.
3752     assert(!N0.getValueType().isInteger() &&
3753            "Integer types should be handled by FoldSetCC");
3754 
3755     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3756     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3757     if (UOF == 2) // FP operators that are undefined on NaNs.
3758       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3759     if (UOF == unsigned(EqTrue))
3760       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3761     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3762     // if it is not already.
3763     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3764     if (NewCond != Cond &&
3765         (DCI.isBeforeLegalizeOps() ||
3766                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3767       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3768   }
3769 
3770   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3771       N0.getValueType().isInteger()) {
3772     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3773         N0.getOpcode() == ISD::XOR) {
3774       // Simplify (X+Y) == (X+Z) -->  Y == Z
3775       if (N0.getOpcode() == N1.getOpcode()) {
3776         if (N0.getOperand(0) == N1.getOperand(0))
3777           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3778         if (N0.getOperand(1) == N1.getOperand(1))
3779           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3780         if (isCommutativeBinOp(N0.getOpcode())) {
3781           // If X op Y == Y op X, try other combinations.
3782           if (N0.getOperand(0) == N1.getOperand(1))
3783             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3784                                 Cond);
3785           if (N0.getOperand(1) == N1.getOperand(0))
3786             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3787                                 Cond);
3788         }
3789       }
3790 
3791       // If RHS is a legal immediate value for a compare instruction, we need
3792       // to be careful about increasing register pressure needlessly.
3793       bool LegalRHSImm = false;
3794 
3795       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3796         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3797           // Turn (X+C1) == C2 --> X == C2-C1
3798           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3799             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3800                                 DAG.getConstant(RHSC->getAPIntValue()-
3801                                                 LHSR->getAPIntValue(),
3802                                 dl, N0.getValueType()), Cond);
3803           }
3804 
3805           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3806           if (N0.getOpcode() == ISD::XOR)
3807             // If we know that all of the inverted bits are zero, don't bother
3808             // performing the inversion.
3809             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3810               return
3811                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3812                              DAG.getConstant(LHSR->getAPIntValue() ^
3813                                                RHSC->getAPIntValue(),
3814                                              dl, N0.getValueType()),
3815                              Cond);
3816         }
3817 
3818         // Turn (C1-X) == C2 --> X == C1-C2
3819         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3820           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3821             return
3822               DAG.getSetCC(dl, VT, N0.getOperand(1),
3823                            DAG.getConstant(SUBC->getAPIntValue() -
3824                                              RHSC->getAPIntValue(),
3825                                            dl, N0.getValueType()),
3826                            Cond);
3827           }
3828         }
3829 
3830         // Could RHSC fold directly into a compare?
3831         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3832           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3833       }
3834 
3835       // (X+Y) == X --> Y == 0 and similar folds.
3836       // Don't do this if X is an immediate that can fold into a cmp
3837       // instruction and X+Y has other uses. It could be an induction variable
3838       // chain, and the transform would increase register pressure.
3839       if (!LegalRHSImm || N0.hasOneUse())
3840         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3841           return V;
3842     }
3843 
3844     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3845         N1.getOpcode() == ISD::XOR)
3846       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3847         return V;
3848 
3849     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3850       return V;
3851   }
3852 
3853   // Fold remainder of division by a constant.
3854   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3855       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3856     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3857 
3858     // When division is cheap or optimizing for minimum size,
3859     // fall through to DIVREM creation by skipping this fold.
3860     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3861       if (N0.getOpcode() == ISD::UREM) {
3862         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3863           return Folded;
3864       } else if (N0.getOpcode() == ISD::SREM) {
3865         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3866           return Folded;
3867       }
3868     }
3869   }
3870 
3871   // Fold away ALL boolean setcc's.
3872   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3873     SDValue Temp;
3874     switch (Cond) {
3875     default: llvm_unreachable("Unknown integer setcc!");
3876     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3877       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3878       N0 = DAG.getNOT(dl, Temp, OpVT);
3879       if (!DCI.isCalledByLegalizer())
3880         DCI.AddToWorklist(Temp.getNode());
3881       break;
3882     case ISD::SETNE:  // X != Y   -->  (X^Y)
3883       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3884       break;
3885     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3886     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3887       Temp = DAG.getNOT(dl, N0, OpVT);
3888       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3889       if (!DCI.isCalledByLegalizer())
3890         DCI.AddToWorklist(Temp.getNode());
3891       break;
3892     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3893     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3894       Temp = DAG.getNOT(dl, N1, OpVT);
3895       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3896       if (!DCI.isCalledByLegalizer())
3897         DCI.AddToWorklist(Temp.getNode());
3898       break;
3899     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3900     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3901       Temp = DAG.getNOT(dl, N0, OpVT);
3902       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3903       if (!DCI.isCalledByLegalizer())
3904         DCI.AddToWorklist(Temp.getNode());
3905       break;
3906     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3907     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3908       Temp = DAG.getNOT(dl, N1, OpVT);
3909       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3910       break;
3911     }
3912     if (VT.getScalarType() != MVT::i1) {
3913       if (!DCI.isCalledByLegalizer())
3914         DCI.AddToWorklist(N0.getNode());
3915       // FIXME: If running after legalize, we probably can't do this.
3916       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3917       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3918     }
3919     return N0;
3920   }
3921 
3922   // Could not fold it.
3923   return SDValue();
3924 }
3925 
3926 /// Returns true (and the GlobalValue and the offset) if the node is a
3927 /// GlobalAddress + offset.
3928 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3929                                     int64_t &Offset) const {
3930 
3931   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3932 
3933   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3934     GA = GASD->getGlobal();
3935     Offset += GASD->getOffset();
3936     return true;
3937   }
3938 
3939   if (N->getOpcode() == ISD::ADD) {
3940     SDValue N1 = N->getOperand(0);
3941     SDValue N2 = N->getOperand(1);
3942     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3943       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3944         Offset += V->getSExtValue();
3945         return true;
3946       }
3947     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3948       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3949         Offset += V->getSExtValue();
3950         return true;
3951       }
3952     }
3953   }
3954 
3955   return false;
3956 }
3957 
3958 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3959                                           DAGCombinerInfo &DCI) const {
3960   // Default implementation: no optimization.
3961   return SDValue();
3962 }
3963 
3964 //===----------------------------------------------------------------------===//
3965 //  Inline Assembler Implementation Methods
3966 //===----------------------------------------------------------------------===//
3967 
3968 TargetLowering::ConstraintType
3969 TargetLowering::getConstraintType(StringRef Constraint) const {
3970   unsigned S = Constraint.size();
3971 
3972   if (S == 1) {
3973     switch (Constraint[0]) {
3974     default: break;
3975     case 'r':
3976       return C_RegisterClass;
3977     case 'm': // memory
3978     case 'o': // offsetable
3979     case 'V': // not offsetable
3980       return C_Memory;
3981     case 'n': // Simple Integer
3982     case 'E': // Floating Point Constant
3983     case 'F': // Floating Point Constant
3984       return C_Immediate;
3985     case 'i': // Simple Integer or Relocatable Constant
3986     case 's': // Relocatable Constant
3987     case 'p': // Address.
3988     case 'X': // Allow ANY value.
3989     case 'I': // Target registers.
3990     case 'J':
3991     case 'K':
3992     case 'L':
3993     case 'M':
3994     case 'N':
3995     case 'O':
3996     case 'P':
3997     case '<':
3998     case '>':
3999       return C_Other;
4000     }
4001   }
4002 
4003   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4004     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4005       return C_Memory;
4006     return C_Register;
4007   }
4008   return C_Unknown;
4009 }
4010 
4011 /// Try to replace an X constraint, which matches anything, with another that
4012 /// has more specific requirements based on the type of the corresponding
4013 /// operand.
4014 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4015   if (ConstraintVT.isInteger())
4016     return "r";
4017   if (ConstraintVT.isFloatingPoint())
4018     return "f"; // works for many targets
4019   return nullptr;
4020 }
4021 
4022 SDValue TargetLowering::LowerAsmOutputForConstraint(
4023     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4024     SelectionDAG &DAG) const {
4025   return SDValue();
4026 }
4027 
4028 /// Lower the specified operand into the Ops vector.
4029 /// If it is invalid, don't add anything to Ops.
4030 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4031                                                   std::string &Constraint,
4032                                                   std::vector<SDValue> &Ops,
4033                                                   SelectionDAG &DAG) const {
4034 
4035   if (Constraint.length() > 1) return;
4036 
4037   char ConstraintLetter = Constraint[0];
4038   switch (ConstraintLetter) {
4039   default: break;
4040   case 'X':     // Allows any operand; labels (basic block) use this.
4041     if (Op.getOpcode() == ISD::BasicBlock ||
4042         Op.getOpcode() == ISD::TargetBlockAddress) {
4043       Ops.push_back(Op);
4044       return;
4045     }
4046     LLVM_FALLTHROUGH;
4047   case 'i':    // Simple Integer or Relocatable Constant
4048   case 'n':    // Simple Integer
4049   case 's': {  // Relocatable Constant
4050 
4051     GlobalAddressSDNode *GA;
4052     ConstantSDNode *C;
4053     BlockAddressSDNode *BA;
4054     uint64_t Offset = 0;
4055 
4056     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4057     // etc., since getelementpointer is variadic. We can't use
4058     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4059     // while in this case the GA may be furthest from the root node which is
4060     // likely an ISD::ADD.
4061     while (1) {
4062       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4063         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4064                                                  GA->getValueType(0),
4065                                                  Offset + GA->getOffset()));
4066         return;
4067       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4068                  ConstraintLetter != 's') {
4069         // gcc prints these as sign extended.  Sign extend value to 64 bits
4070         // now; without this it would get ZExt'd later in
4071         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4072         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4073         BooleanContent BCont = getBooleanContents(MVT::i64);
4074         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4075                                       : ISD::SIGN_EXTEND;
4076         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4077                                                     : C->getSExtValue();
4078         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4079                                             SDLoc(C), MVT::i64));
4080         return;
4081       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4082                  ConstraintLetter != 'n') {
4083         Ops.push_back(DAG.getTargetBlockAddress(
4084             BA->getBlockAddress(), BA->getValueType(0),
4085             Offset + BA->getOffset(), BA->getTargetFlags()));
4086         return;
4087       } else {
4088         const unsigned OpCode = Op.getOpcode();
4089         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4090           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4091             Op = Op.getOperand(1);
4092           // Subtraction is not commutative.
4093           else if (OpCode == ISD::ADD &&
4094                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4095             Op = Op.getOperand(0);
4096           else
4097             return;
4098           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4099           continue;
4100         }
4101       }
4102       return;
4103     }
4104     break;
4105   }
4106   }
4107 }
4108 
4109 std::pair<unsigned, const TargetRegisterClass *>
4110 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4111                                              StringRef Constraint,
4112                                              MVT VT) const {
4113   if (Constraint.empty() || Constraint[0] != '{')
4114     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4115   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4116 
4117   // Remove the braces from around the name.
4118   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4119 
4120   std::pair<unsigned, const TargetRegisterClass *> R =
4121       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4122 
4123   // Figure out which register class contains this reg.
4124   for (const TargetRegisterClass *RC : RI->regclasses()) {
4125     // If none of the value types for this register class are valid, we
4126     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4127     if (!isLegalRC(*RI, *RC))
4128       continue;
4129 
4130     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4131          I != E; ++I) {
4132       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4133         std::pair<unsigned, const TargetRegisterClass *> S =
4134             std::make_pair(*I, RC);
4135 
4136         // If this register class has the requested value type, return it,
4137         // otherwise keep searching and return the first class found
4138         // if no other is found which explicitly has the requested type.
4139         if (RI->isTypeLegalForClass(*RC, VT))
4140           return S;
4141         if (!R.second)
4142           R = S;
4143       }
4144     }
4145   }
4146 
4147   return R;
4148 }
4149 
4150 //===----------------------------------------------------------------------===//
4151 // Constraint Selection.
4152 
4153 /// Return true of this is an input operand that is a matching constraint like
4154 /// "4".
4155 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4156   assert(!ConstraintCode.empty() && "No known constraint!");
4157   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4158 }
4159 
4160 /// If this is an input matching constraint, this method returns the output
4161 /// operand it matches.
4162 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4163   assert(!ConstraintCode.empty() && "No known constraint!");
4164   return atoi(ConstraintCode.c_str());
4165 }
4166 
4167 /// Split up the constraint string from the inline assembly value into the
4168 /// specific constraints and their prefixes, and also tie in the associated
4169 /// operand values.
4170 /// If this returns an empty vector, and if the constraint string itself
4171 /// isn't empty, there was an error parsing.
4172 TargetLowering::AsmOperandInfoVector
4173 TargetLowering::ParseConstraints(const DataLayout &DL,
4174                                  const TargetRegisterInfo *TRI,
4175                                  ImmutableCallSite CS) const {
4176   /// Information about all of the constraints.
4177   AsmOperandInfoVector ConstraintOperands;
4178   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4179   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4180 
4181   // Do a prepass over the constraints, canonicalizing them, and building up the
4182   // ConstraintOperands list.
4183   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4184   unsigned ResNo = 0; // ResNo - The result number of the next output.
4185 
4186   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4187     ConstraintOperands.emplace_back(std::move(CI));
4188     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4189 
4190     // Update multiple alternative constraint count.
4191     if (OpInfo.multipleAlternatives.size() > maCount)
4192       maCount = OpInfo.multipleAlternatives.size();
4193 
4194     OpInfo.ConstraintVT = MVT::Other;
4195 
4196     // Compute the value type for each operand.
4197     switch (OpInfo.Type) {
4198     case InlineAsm::isOutput:
4199       // Indirect outputs just consume an argument.
4200       if (OpInfo.isIndirect) {
4201         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4202         break;
4203       }
4204 
4205       // The return value of the call is this value.  As such, there is no
4206       // corresponding argument.
4207       assert(!CS.getType()->isVoidTy() &&
4208              "Bad inline asm!");
4209       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4210         OpInfo.ConstraintVT =
4211             getSimpleValueType(DL, STy->getElementType(ResNo));
4212       } else {
4213         assert(ResNo == 0 && "Asm only has one result!");
4214         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4215       }
4216       ++ResNo;
4217       break;
4218     case InlineAsm::isInput:
4219       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4220       break;
4221     case InlineAsm::isClobber:
4222       // Nothing to do.
4223       break;
4224     }
4225 
4226     if (OpInfo.CallOperandVal) {
4227       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4228       if (OpInfo.isIndirect) {
4229         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4230         if (!PtrTy)
4231           report_fatal_error("Indirect operand for inline asm not a pointer!");
4232         OpTy = PtrTy->getElementType();
4233       }
4234 
4235       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4236       if (StructType *STy = dyn_cast<StructType>(OpTy))
4237         if (STy->getNumElements() == 1)
4238           OpTy = STy->getElementType(0);
4239 
4240       // If OpTy is not a single value, it may be a struct/union that we
4241       // can tile with integers.
4242       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4243         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4244         switch (BitSize) {
4245         default: break;
4246         case 1:
4247         case 8:
4248         case 16:
4249         case 32:
4250         case 64:
4251         case 128:
4252           OpInfo.ConstraintVT =
4253               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4254           break;
4255         }
4256       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4257         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4258         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4259       } else {
4260         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4261       }
4262     }
4263   }
4264 
4265   // If we have multiple alternative constraints, select the best alternative.
4266   if (!ConstraintOperands.empty()) {
4267     if (maCount) {
4268       unsigned bestMAIndex = 0;
4269       int bestWeight = -1;
4270       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4271       int weight = -1;
4272       unsigned maIndex;
4273       // Compute the sums of the weights for each alternative, keeping track
4274       // of the best (highest weight) one so far.
4275       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4276         int weightSum = 0;
4277         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4278              cIndex != eIndex; ++cIndex) {
4279           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4280           if (OpInfo.Type == InlineAsm::isClobber)
4281             continue;
4282 
4283           // If this is an output operand with a matching input operand,
4284           // look up the matching input. If their types mismatch, e.g. one
4285           // is an integer, the other is floating point, or their sizes are
4286           // different, flag it as an maCantMatch.
4287           if (OpInfo.hasMatchingInput()) {
4288             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4289             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4290               if ((OpInfo.ConstraintVT.isInteger() !=
4291                    Input.ConstraintVT.isInteger()) ||
4292                   (OpInfo.ConstraintVT.getSizeInBits() !=
4293                    Input.ConstraintVT.getSizeInBits())) {
4294                 weightSum = -1; // Can't match.
4295                 break;
4296               }
4297             }
4298           }
4299           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4300           if (weight == -1) {
4301             weightSum = -1;
4302             break;
4303           }
4304           weightSum += weight;
4305         }
4306         // Update best.
4307         if (weightSum > bestWeight) {
4308           bestWeight = weightSum;
4309           bestMAIndex = maIndex;
4310         }
4311       }
4312 
4313       // Now select chosen alternative in each constraint.
4314       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4315            cIndex != eIndex; ++cIndex) {
4316         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4317         if (cInfo.Type == InlineAsm::isClobber)
4318           continue;
4319         cInfo.selectAlternative(bestMAIndex);
4320       }
4321     }
4322   }
4323 
4324   // Check and hook up tied operands, choose constraint code to use.
4325   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4326        cIndex != eIndex; ++cIndex) {
4327     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4328 
4329     // If this is an output operand with a matching input operand, look up the
4330     // matching input. If their types mismatch, e.g. one is an integer, the
4331     // other is floating point, or their sizes are different, flag it as an
4332     // error.
4333     if (OpInfo.hasMatchingInput()) {
4334       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4335 
4336       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4337         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4338             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4339                                          OpInfo.ConstraintVT);
4340         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4341             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4342                                          Input.ConstraintVT);
4343         if ((OpInfo.ConstraintVT.isInteger() !=
4344              Input.ConstraintVT.isInteger()) ||
4345             (MatchRC.second != InputRC.second)) {
4346           report_fatal_error("Unsupported asm: input constraint"
4347                              " with a matching output constraint of"
4348                              " incompatible type!");
4349         }
4350       }
4351     }
4352   }
4353 
4354   return ConstraintOperands;
4355 }
4356 
4357 /// Return an integer indicating how general CT is.
4358 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4359   switch (CT) {
4360   case TargetLowering::C_Immediate:
4361   case TargetLowering::C_Other:
4362   case TargetLowering::C_Unknown:
4363     return 0;
4364   case TargetLowering::C_Register:
4365     return 1;
4366   case TargetLowering::C_RegisterClass:
4367     return 2;
4368   case TargetLowering::C_Memory:
4369     return 3;
4370   }
4371   llvm_unreachable("Invalid constraint type");
4372 }
4373 
4374 /// Examine constraint type and operand type and determine a weight value.
4375 /// This object must already have been set up with the operand type
4376 /// and the current alternative constraint selected.
4377 TargetLowering::ConstraintWeight
4378   TargetLowering::getMultipleConstraintMatchWeight(
4379     AsmOperandInfo &info, int maIndex) const {
4380   InlineAsm::ConstraintCodeVector *rCodes;
4381   if (maIndex >= (int)info.multipleAlternatives.size())
4382     rCodes = &info.Codes;
4383   else
4384     rCodes = &info.multipleAlternatives[maIndex].Codes;
4385   ConstraintWeight BestWeight = CW_Invalid;
4386 
4387   // Loop over the options, keeping track of the most general one.
4388   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4389     ConstraintWeight weight =
4390       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4391     if (weight > BestWeight)
4392       BestWeight = weight;
4393   }
4394 
4395   return BestWeight;
4396 }
4397 
4398 /// Examine constraint type and operand type and determine a weight value.
4399 /// This object must already have been set up with the operand type
4400 /// and the current alternative constraint selected.
4401 TargetLowering::ConstraintWeight
4402   TargetLowering::getSingleConstraintMatchWeight(
4403     AsmOperandInfo &info, const char *constraint) const {
4404   ConstraintWeight weight = CW_Invalid;
4405   Value *CallOperandVal = info.CallOperandVal;
4406     // If we don't have a value, we can't do a match,
4407     // but allow it at the lowest weight.
4408   if (!CallOperandVal)
4409     return CW_Default;
4410   // Look at the constraint type.
4411   switch (*constraint) {
4412     case 'i': // immediate integer.
4413     case 'n': // immediate integer with a known value.
4414       if (isa<ConstantInt>(CallOperandVal))
4415         weight = CW_Constant;
4416       break;
4417     case 's': // non-explicit intregal immediate.
4418       if (isa<GlobalValue>(CallOperandVal))
4419         weight = CW_Constant;
4420       break;
4421     case 'E': // immediate float if host format.
4422     case 'F': // immediate float.
4423       if (isa<ConstantFP>(CallOperandVal))
4424         weight = CW_Constant;
4425       break;
4426     case '<': // memory operand with autodecrement.
4427     case '>': // memory operand with autoincrement.
4428     case 'm': // memory operand.
4429     case 'o': // offsettable memory operand
4430     case 'V': // non-offsettable memory operand
4431       weight = CW_Memory;
4432       break;
4433     case 'r': // general register.
4434     case 'g': // general register, memory operand or immediate integer.
4435               // note: Clang converts "g" to "imr".
4436       if (CallOperandVal->getType()->isIntegerTy())
4437         weight = CW_Register;
4438       break;
4439     case 'X': // any operand.
4440   default:
4441     weight = CW_Default;
4442     break;
4443   }
4444   return weight;
4445 }
4446 
4447 /// If there are multiple different constraints that we could pick for this
4448 /// operand (e.g. "imr") try to pick the 'best' one.
4449 /// This is somewhat tricky: constraints fall into four classes:
4450 ///    Other         -> immediates and magic values
4451 ///    Register      -> one specific register
4452 ///    RegisterClass -> a group of regs
4453 ///    Memory        -> memory
4454 /// Ideally, we would pick the most specific constraint possible: if we have
4455 /// something that fits into a register, we would pick it.  The problem here
4456 /// is that if we have something that could either be in a register or in
4457 /// memory that use of the register could cause selection of *other*
4458 /// operands to fail: they might only succeed if we pick memory.  Because of
4459 /// this the heuristic we use is:
4460 ///
4461 ///  1) If there is an 'other' constraint, and if the operand is valid for
4462 ///     that constraint, use it.  This makes us take advantage of 'i'
4463 ///     constraints when available.
4464 ///  2) Otherwise, pick the most general constraint present.  This prefers
4465 ///     'm' over 'r', for example.
4466 ///
4467 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4468                              const TargetLowering &TLI,
4469                              SDValue Op, SelectionDAG *DAG) {
4470   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4471   unsigned BestIdx = 0;
4472   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4473   int BestGenerality = -1;
4474 
4475   // Loop over the options, keeping track of the most general one.
4476   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4477     TargetLowering::ConstraintType CType =
4478       TLI.getConstraintType(OpInfo.Codes[i]);
4479 
4480     // If this is an 'other' or 'immediate' constraint, see if the operand is
4481     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4482     // the operand is an integer in the range [0..31] we want to use I (saving a
4483     // load of a register), otherwise we must use 'r'.
4484     if ((CType == TargetLowering::C_Other ||
4485          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4486       assert(OpInfo.Codes[i].size() == 1 &&
4487              "Unhandled multi-letter 'other' constraint");
4488       std::vector<SDValue> ResultOps;
4489       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4490                                        ResultOps, *DAG);
4491       if (!ResultOps.empty()) {
4492         BestType = CType;
4493         BestIdx = i;
4494         break;
4495       }
4496     }
4497 
4498     // Things with matching constraints can only be registers, per gcc
4499     // documentation.  This mainly affects "g" constraints.
4500     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4501       continue;
4502 
4503     // This constraint letter is more general than the previous one, use it.
4504     int Generality = getConstraintGenerality(CType);
4505     if (Generality > BestGenerality) {
4506       BestType = CType;
4507       BestIdx = i;
4508       BestGenerality = Generality;
4509     }
4510   }
4511 
4512   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4513   OpInfo.ConstraintType = BestType;
4514 }
4515 
4516 /// Determines the constraint code and constraint type to use for the specific
4517 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4518 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4519                                             SDValue Op,
4520                                             SelectionDAG *DAG) const {
4521   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4522 
4523   // Single-letter constraints ('r') are very common.
4524   if (OpInfo.Codes.size() == 1) {
4525     OpInfo.ConstraintCode = OpInfo.Codes[0];
4526     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4527   } else {
4528     ChooseConstraint(OpInfo, *this, Op, DAG);
4529   }
4530 
4531   // 'X' matches anything.
4532   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4533     // Labels and constants are handled elsewhere ('X' is the only thing
4534     // that matches labels).  For Functions, the type here is the type of
4535     // the result, which is not what we want to look at; leave them alone.
4536     Value *v = OpInfo.CallOperandVal;
4537     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4538       OpInfo.CallOperandVal = v;
4539       return;
4540     }
4541 
4542     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4543       return;
4544 
4545     // Otherwise, try to resolve it to something we know about by looking at
4546     // the actual operand type.
4547     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4548       OpInfo.ConstraintCode = Repl;
4549       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4550     }
4551   }
4552 }
4553 
4554 /// Given an exact SDIV by a constant, create a multiplication
4555 /// with the multiplicative inverse of the constant.
4556 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4557                               const SDLoc &dl, SelectionDAG &DAG,
4558                               SmallVectorImpl<SDNode *> &Created) {
4559   SDValue Op0 = N->getOperand(0);
4560   SDValue Op1 = N->getOperand(1);
4561   EVT VT = N->getValueType(0);
4562   EVT SVT = VT.getScalarType();
4563   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4564   EVT ShSVT = ShVT.getScalarType();
4565 
4566   bool UseSRA = false;
4567   SmallVector<SDValue, 16> Shifts, Factors;
4568 
4569   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4570     if (C->isNullValue())
4571       return false;
4572     APInt Divisor = C->getAPIntValue();
4573     unsigned Shift = Divisor.countTrailingZeros();
4574     if (Shift) {
4575       Divisor.ashrInPlace(Shift);
4576       UseSRA = true;
4577     }
4578     // Calculate the multiplicative inverse, using Newton's method.
4579     APInt t;
4580     APInt Factor = Divisor;
4581     while ((t = Divisor * Factor) != 1)
4582       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4583     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4584     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4585     return true;
4586   };
4587 
4588   // Collect all magic values from the build vector.
4589   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4590     return SDValue();
4591 
4592   SDValue Shift, Factor;
4593   if (VT.isVector()) {
4594     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4595     Factor = DAG.getBuildVector(VT, dl, Factors);
4596   } else {
4597     Shift = Shifts[0];
4598     Factor = Factors[0];
4599   }
4600 
4601   SDValue Res = Op0;
4602 
4603   // Shift the value upfront if it is even, so the LSB is one.
4604   if (UseSRA) {
4605     // TODO: For UDIV use SRL instead of SRA.
4606     SDNodeFlags Flags;
4607     Flags.setExact(true);
4608     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4609     Created.push_back(Res.getNode());
4610   }
4611 
4612   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4613 }
4614 
4615 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4616                               SelectionDAG &DAG,
4617                               SmallVectorImpl<SDNode *> &Created) const {
4618   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4619   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4620   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4621     return SDValue(N, 0); // Lower SDIV as SDIV
4622   return SDValue();
4623 }
4624 
4625 /// Given an ISD::SDIV node expressing a divide by constant,
4626 /// return a DAG expression to select that will generate the same value by
4627 /// multiplying by a magic number.
4628 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4629 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4630                                   bool IsAfterLegalization,
4631                                   SmallVectorImpl<SDNode *> &Created) const {
4632   SDLoc dl(N);
4633   EVT VT = N->getValueType(0);
4634   EVT SVT = VT.getScalarType();
4635   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4636   EVT ShSVT = ShVT.getScalarType();
4637   unsigned EltBits = VT.getScalarSizeInBits();
4638 
4639   // Check to see if we can do this.
4640   // FIXME: We should be more aggressive here.
4641   if (!isTypeLegal(VT))
4642     return SDValue();
4643 
4644   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4645   if (N->getFlags().hasExact())
4646     return BuildExactSDIV(*this, N, dl, DAG, Created);
4647 
4648   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4649 
4650   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4651     if (C->isNullValue())
4652       return false;
4653 
4654     const APInt &Divisor = C->getAPIntValue();
4655     APInt::ms magics = Divisor.magic();
4656     int NumeratorFactor = 0;
4657     int ShiftMask = -1;
4658 
4659     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4660       // If d is +1/-1, we just multiply the numerator by +1/-1.
4661       NumeratorFactor = Divisor.getSExtValue();
4662       magics.m = 0;
4663       magics.s = 0;
4664       ShiftMask = 0;
4665     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4666       // If d > 0 and m < 0, add the numerator.
4667       NumeratorFactor = 1;
4668     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4669       // If d < 0 and m > 0, subtract the numerator.
4670       NumeratorFactor = -1;
4671     }
4672 
4673     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4674     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4675     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4676     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4677     return true;
4678   };
4679 
4680   SDValue N0 = N->getOperand(0);
4681   SDValue N1 = N->getOperand(1);
4682 
4683   // Collect the shifts / magic values from each element.
4684   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4685     return SDValue();
4686 
4687   SDValue MagicFactor, Factor, Shift, ShiftMask;
4688   if (VT.isVector()) {
4689     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4690     Factor = DAG.getBuildVector(VT, dl, Factors);
4691     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4692     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4693   } else {
4694     MagicFactor = MagicFactors[0];
4695     Factor = Factors[0];
4696     Shift = Shifts[0];
4697     ShiftMask = ShiftMasks[0];
4698   }
4699 
4700   // Multiply the numerator (operand 0) by the magic value.
4701   // FIXME: We should support doing a MUL in a wider type.
4702   SDValue Q;
4703   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4704                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4705     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4706   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4707                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4708     SDValue LoHi =
4709         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4710     Q = SDValue(LoHi.getNode(), 1);
4711   } else
4712     return SDValue(); // No mulhs or equivalent.
4713   Created.push_back(Q.getNode());
4714 
4715   // (Optionally) Add/subtract the numerator using Factor.
4716   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4717   Created.push_back(Factor.getNode());
4718   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4719   Created.push_back(Q.getNode());
4720 
4721   // Shift right algebraic by shift value.
4722   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4723   Created.push_back(Q.getNode());
4724 
4725   // Extract the sign bit, mask it and add it to the quotient.
4726   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4727   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4728   Created.push_back(T.getNode());
4729   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4730   Created.push_back(T.getNode());
4731   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4732 }
4733 
4734 /// Given an ISD::UDIV node expressing a divide by constant,
4735 /// return a DAG expression to select that will generate the same value by
4736 /// multiplying by a magic number.
4737 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4738 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4739                                   bool IsAfterLegalization,
4740                                   SmallVectorImpl<SDNode *> &Created) const {
4741   SDLoc dl(N);
4742   EVT VT = N->getValueType(0);
4743   EVT SVT = VT.getScalarType();
4744   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4745   EVT ShSVT = ShVT.getScalarType();
4746   unsigned EltBits = VT.getScalarSizeInBits();
4747 
4748   // Check to see if we can do this.
4749   // FIXME: We should be more aggressive here.
4750   if (!isTypeLegal(VT))
4751     return SDValue();
4752 
4753   bool UseNPQ = false;
4754   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4755 
4756   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4757     if (C->isNullValue())
4758       return false;
4759     // FIXME: We should use a narrower constant when the upper
4760     // bits are known to be zero.
4761     APInt Divisor = C->getAPIntValue();
4762     APInt::mu magics = Divisor.magicu();
4763     unsigned PreShift = 0, PostShift = 0;
4764 
4765     // If the divisor is even, we can avoid using the expensive fixup by
4766     // shifting the divided value upfront.
4767     if (magics.a != 0 && !Divisor[0]) {
4768       PreShift = Divisor.countTrailingZeros();
4769       // Get magic number for the shifted divisor.
4770       magics = Divisor.lshr(PreShift).magicu(PreShift);
4771       assert(magics.a == 0 && "Should use cheap fixup now");
4772     }
4773 
4774     APInt Magic = magics.m;
4775 
4776     unsigned SelNPQ;
4777     if (magics.a == 0 || Divisor.isOneValue()) {
4778       assert(magics.s < Divisor.getBitWidth() &&
4779              "We shouldn't generate an undefined shift!");
4780       PostShift = magics.s;
4781       SelNPQ = false;
4782     } else {
4783       PostShift = magics.s - 1;
4784       SelNPQ = true;
4785     }
4786 
4787     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4788     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4789     NPQFactors.push_back(
4790         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4791                                : APInt::getNullValue(EltBits),
4792                         dl, SVT));
4793     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4794     UseNPQ |= SelNPQ;
4795     return true;
4796   };
4797 
4798   SDValue N0 = N->getOperand(0);
4799   SDValue N1 = N->getOperand(1);
4800 
4801   // Collect the shifts/magic values from each element.
4802   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4803     return SDValue();
4804 
4805   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4806   if (VT.isVector()) {
4807     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4808     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4809     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4810     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4811   } else {
4812     PreShift = PreShifts[0];
4813     MagicFactor = MagicFactors[0];
4814     PostShift = PostShifts[0];
4815   }
4816 
4817   SDValue Q = N0;
4818   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4819   Created.push_back(Q.getNode());
4820 
4821   // FIXME: We should support doing a MUL in a wider type.
4822   auto GetMULHU = [&](SDValue X, SDValue Y) {
4823     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4824                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4825       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4826     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4827                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4828       SDValue LoHi =
4829           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4830       return SDValue(LoHi.getNode(), 1);
4831     }
4832     return SDValue(); // No mulhu or equivalent
4833   };
4834 
4835   // Multiply the numerator (operand 0) by the magic value.
4836   Q = GetMULHU(Q, MagicFactor);
4837   if (!Q)
4838     return SDValue();
4839 
4840   Created.push_back(Q.getNode());
4841 
4842   if (UseNPQ) {
4843     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4844     Created.push_back(NPQ.getNode());
4845 
4846     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4847     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4848     if (VT.isVector())
4849       NPQ = GetMULHU(NPQ, NPQFactor);
4850     else
4851       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4852 
4853     Created.push_back(NPQ.getNode());
4854 
4855     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4856     Created.push_back(Q.getNode());
4857   }
4858 
4859   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4860   Created.push_back(Q.getNode());
4861 
4862   SDValue One = DAG.getConstant(1, dl, VT);
4863   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4864   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4865 }
4866 
4867 /// If all values in Values that *don't* match the predicate are same 'splat'
4868 /// value, then replace all values with that splat value.
4869 /// Else, if AlternativeReplacement was provided, then replace all values that
4870 /// do match predicate with AlternativeReplacement value.
4871 static void
4872 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4873                           std::function<bool(SDValue)> Predicate,
4874                           SDValue AlternativeReplacement = SDValue()) {
4875   SDValue Replacement;
4876   // Is there a value for which the Predicate does *NOT* match? What is it?
4877   auto SplatValue = llvm::find_if_not(Values, Predicate);
4878   if (SplatValue != Values.end()) {
4879     // Does Values consist only of SplatValue's and values matching Predicate?
4880     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4881           return Value == *SplatValue || Predicate(Value);
4882         })) // Then we shall replace values matching predicate with SplatValue.
4883       Replacement = *SplatValue;
4884   }
4885   if (!Replacement) {
4886     // Oops, we did not find the "baseline" splat value.
4887     if (!AlternativeReplacement)
4888       return; // Nothing to do.
4889     // Let's replace with provided value then.
4890     Replacement = AlternativeReplacement;
4891   }
4892   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4893 }
4894 
4895 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4896 /// where the divisor is constant and the comparison target is zero,
4897 /// return a DAG expression that will generate the same comparison result
4898 /// using only multiplications, additions and shifts/rotations.
4899 /// Ref: "Hacker's Delight" 10-17.
4900 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4901                                         SDValue CompTargetNode,
4902                                         ISD::CondCode Cond,
4903                                         DAGCombinerInfo &DCI,
4904                                         const SDLoc &DL) const {
4905   SmallVector<SDNode *, 2> Built;
4906   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4907                                          DCI, DL, Built)) {
4908     for (SDNode *N : Built)
4909       DCI.AddToWorklist(N);
4910     return Folded;
4911   }
4912 
4913   return SDValue();
4914 }
4915 
4916 SDValue
4917 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4918                                   SDValue CompTargetNode, ISD::CondCode Cond,
4919                                   DAGCombinerInfo &DCI, const SDLoc &DL,
4920                                   SmallVectorImpl<SDNode *> &Created) const {
4921   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4922   // - D must be constant, with D = D0 * 2^K where D0 is odd
4923   // - P is the multiplicative inverse of D0 modulo 2^W
4924   // - Q = floor(((2^W) - 1) / D)
4925   // where W is the width of the common type of N and D.
4926   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4927          "Only applicable for (in)equality comparisons.");
4928 
4929   SelectionDAG &DAG = DCI.DAG;
4930 
4931   EVT VT = REMNode.getValueType();
4932   EVT SVT = VT.getScalarType();
4933   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4934   EVT ShSVT = ShVT.getScalarType();
4935 
4936   // If MUL is unavailable, we cannot proceed in any case.
4937   if (!isOperationLegalOrCustom(ISD::MUL, VT))
4938     return SDValue();
4939 
4940   // TODO: Could support comparing with non-zero too.
4941   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4942   if (!CompTarget || !CompTarget->isNullValue())
4943     return SDValue();
4944 
4945   bool HadOneDivisor = false;
4946   bool AllDivisorsAreOnes = true;
4947   bool HadEvenDivisor = false;
4948   bool AllDivisorsArePowerOfTwo = true;
4949   SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4950 
4951   auto BuildUREMPattern = [&](ConstantSDNode *C) {
4952     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4953     if (C->isNullValue())
4954       return false;
4955 
4956     const APInt &D = C->getAPIntValue();
4957     // If all divisors are ones, we will prefer to avoid the fold.
4958     HadOneDivisor |= D.isOneValue();
4959     AllDivisorsAreOnes &= D.isOneValue();
4960 
4961     // Decompose D into D0 * 2^K
4962     unsigned K = D.countTrailingZeros();
4963     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4964     APInt D0 = D.lshr(K);
4965 
4966     // D is even if it has trailing zeros.
4967     HadEvenDivisor |= (K != 0);
4968     // D is a power-of-two if D0 is one.
4969     // If all divisors are power-of-two, we will prefer to avoid the fold.
4970     AllDivisorsArePowerOfTwo &= D0.isOneValue();
4971 
4972     // P = inv(D0, 2^W)
4973     // 2^W requires W + 1 bits, so we have to extend and then truncate.
4974     unsigned W = D.getBitWidth();
4975     APInt P = D0.zext(W + 1)
4976                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4977                   .trunc(W);
4978     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4979     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4980 
4981     // Q = floor((2^W - 1) / D)
4982     APInt Q = APInt::getAllOnesValue(W).udiv(D);
4983 
4984     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4985            "We are expecting that K is always less than all-ones for ShSVT");
4986 
4987     // If the divisor is 1 the result can be constant-folded.
4988     if (D.isOneValue()) {
4989       // Set P and K amount to a bogus values so we can try to splat them.
4990       P = 0;
4991       K = -1;
4992       assert(Q.isAllOnesValue() &&
4993              "Expecting all-ones comparison for one divisor");
4994     }
4995 
4996     PAmts.push_back(DAG.getConstant(P, DL, SVT));
4997     KAmts.push_back(
4998         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
4999     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5000     return true;
5001   };
5002 
5003   SDValue N = REMNode.getOperand(0);
5004   SDValue D = REMNode.getOperand(1);
5005 
5006   // Collect the values from each element.
5007   if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
5008     return SDValue();
5009 
5010   // If this is a urem by a one, avoid the fold since it can be constant-folded.
5011   if (AllDivisorsAreOnes)
5012     return SDValue();
5013 
5014   // If this is a urem by a powers-of-two, avoid the fold since it can be
5015   // best implemented as a bit test.
5016   if (AllDivisorsArePowerOfTwo)
5017     return SDValue();
5018 
5019   SDValue PVal, KVal, QVal;
5020   if (VT.isVector()) {
5021     if (HadOneDivisor) {
5022       // Try to turn PAmts into a splat, since we don't care about the values
5023       // that are currently '0'. If we can't, just keep '0'`s.
5024       turnVectorIntoSplatVector(PAmts, isNullConstant);
5025       // Try to turn KAmts into a splat, since we don't care about the values
5026       // that are currently '-1'. If we can't, change them to '0'`s.
5027       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5028                                 DAG.getConstant(0, DL, ShSVT));
5029     }
5030 
5031     PVal = DAG.getBuildVector(VT, DL, PAmts);
5032     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5033     QVal = DAG.getBuildVector(VT, DL, QAmts);
5034   } else {
5035     PVal = PAmts[0];
5036     KVal = KAmts[0];
5037     QVal = QAmts[0];
5038   }
5039 
5040   // (mul N, P)
5041   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5042   Created.push_back(Op0.getNode());
5043 
5044   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5045   // divisors as a performance improvement, since rotating by 0 is a no-op.
5046   if (HadEvenDivisor) {
5047     // We need ROTR to do this.
5048     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5049       return SDValue();
5050     SDNodeFlags Flags;
5051     Flags.setExact(true);
5052     // UREM: (rotr (mul N, P), K)
5053     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5054     Created.push_back(Op0.getNode());
5055   }
5056 
5057   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5058   return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5059                       ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5060 }
5061 
5062 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5063 /// where the divisor is constant and the comparison target is zero,
5064 /// return a DAG expression that will generate the same comparison result
5065 /// using only multiplications, additions and shifts/rotations.
5066 /// Ref: "Hacker's Delight" 10-17.
5067 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5068                                         SDValue CompTargetNode,
5069                                         ISD::CondCode Cond,
5070                                         DAGCombinerInfo &DCI,
5071                                         const SDLoc &DL) const {
5072   SmallVector<SDNode *, 7> Built;
5073   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5074                                          DCI, DL, Built)) {
5075     assert(Built.size() <= 7 && "Max size prediction failed.");
5076     for (SDNode *N : Built)
5077       DCI.AddToWorklist(N);
5078     return Folded;
5079   }
5080 
5081   return SDValue();
5082 }
5083 
5084 SDValue
5085 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5086                                   SDValue CompTargetNode, ISD::CondCode Cond,
5087                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5088                                   SmallVectorImpl<SDNode *> &Created) const {
5089   // Fold:
5090   //   (seteq/ne (srem N, D), 0)
5091   // To:
5092   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5093   //
5094   // - D must be constant, with D = D0 * 2^K where D0 is odd
5095   // - P is the multiplicative inverse of D0 modulo 2^W
5096   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5097   // - Q = floor((2 * A) / (2^K))
5098   // where W is the width of the common type of N and D.
5099   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5100          "Only applicable for (in)equality comparisons.");
5101 
5102   SelectionDAG &DAG = DCI.DAG;
5103 
5104   EVT VT = REMNode.getValueType();
5105   EVT SVT = VT.getScalarType();
5106   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5107   EVT ShSVT = ShVT.getScalarType();
5108 
5109   // If MUL is unavailable, we cannot proceed in any case.
5110   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5111     return SDValue();
5112 
5113   // TODO: Could support comparing with non-zero too.
5114   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5115   if (!CompTarget || !CompTarget->isNullValue())
5116     return SDValue();
5117 
5118   bool HadIntMinDivisor = false;
5119   bool HadOneDivisor = false;
5120   bool AllDivisorsAreOnes = true;
5121   bool HadEvenDivisor = false;
5122   bool NeedToApplyOffset = false;
5123   bool AllDivisorsArePowerOfTwo = true;
5124   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5125 
5126   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5127     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5128     if (C->isNullValue())
5129       return false;
5130 
5131     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5132 
5133     // WARNING: this fold is only valid for positive divisors!
5134     APInt D = C->getAPIntValue();
5135     if (D.isNegative())
5136       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5137 
5138     HadIntMinDivisor |= D.isMinSignedValue();
5139 
5140     // If all divisors are ones, we will prefer to avoid the fold.
5141     HadOneDivisor |= D.isOneValue();
5142     AllDivisorsAreOnes &= D.isOneValue();
5143 
5144     // Decompose D into D0 * 2^K
5145     unsigned K = D.countTrailingZeros();
5146     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5147     APInt D0 = D.lshr(K);
5148 
5149     if (!D.isMinSignedValue()) {
5150       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5151       // we don't care about this lane in this fold, we'll special-handle it.
5152       HadEvenDivisor |= (K != 0);
5153     }
5154 
5155     // D is a power-of-two if D0 is one. This includes INT_MIN.
5156     // If all divisors are power-of-two, we will prefer to avoid the fold.
5157     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5158 
5159     // P = inv(D0, 2^W)
5160     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5161     unsigned W = D.getBitWidth();
5162     APInt P = D0.zext(W + 1)
5163                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5164                   .trunc(W);
5165     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5166     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5167 
5168     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5169     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5170     A.clearLowBits(K);
5171 
5172     if (!D.isMinSignedValue()) {
5173       // If divisor INT_MIN, then we don't care about this lane in this fold,
5174       // we'll special-handle it.
5175       NeedToApplyOffset |= A != 0;
5176     }
5177 
5178     // Q = floor((2 * A) / (2^K))
5179     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5180 
5181     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5182            "We are expecting that A is always less than all-ones for SVT");
5183     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5184            "We are expecting that K is always less than all-ones for ShSVT");
5185 
5186     // If the divisor is 1 the result can be constant-folded. Likewise, we
5187     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5188     if (D.isOneValue()) {
5189       // Set P, A and K to a bogus values so we can try to splat them.
5190       P = 0;
5191       A = -1;
5192       K = -1;
5193 
5194       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5195       Q = -1;
5196     }
5197 
5198     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5199     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5200     KAmts.push_back(
5201         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5202     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5203     return true;
5204   };
5205 
5206   SDValue N = REMNode.getOperand(0);
5207   SDValue D = REMNode.getOperand(1);
5208 
5209   // Collect the values from each element.
5210   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5211     return SDValue();
5212 
5213   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5214   if (AllDivisorsAreOnes)
5215     return SDValue();
5216 
5217   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5218   // since it can be best implemented as a bit test.
5219   if (AllDivisorsArePowerOfTwo)
5220     return SDValue();
5221 
5222   SDValue PVal, AVal, KVal, QVal;
5223   if (VT.isVector()) {
5224     if (HadOneDivisor) {
5225       // Try to turn PAmts into a splat, since we don't care about the values
5226       // that are currently '0'. If we can't, just keep '0'`s.
5227       turnVectorIntoSplatVector(PAmts, isNullConstant);
5228       // Try to turn AAmts into a splat, since we don't care about the
5229       // values that are currently '-1'. If we can't, change them to '0'`s.
5230       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5231                                 DAG.getConstant(0, DL, SVT));
5232       // Try to turn KAmts into a splat, since we don't care about the values
5233       // that are currently '-1'. If we can't, change them to '0'`s.
5234       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5235                                 DAG.getConstant(0, DL, ShSVT));
5236     }
5237 
5238     PVal = DAG.getBuildVector(VT, DL, PAmts);
5239     AVal = DAG.getBuildVector(VT, DL, AAmts);
5240     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5241     QVal = DAG.getBuildVector(VT, DL, QAmts);
5242   } else {
5243     PVal = PAmts[0];
5244     AVal = AAmts[0];
5245     KVal = KAmts[0];
5246     QVal = QAmts[0];
5247   }
5248 
5249   // (mul N, P)
5250   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5251   Created.push_back(Op0.getNode());
5252 
5253   if (NeedToApplyOffset) {
5254     // We need ADD to do this.
5255     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5256       return SDValue();
5257 
5258     // (add (mul N, P), A)
5259     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5260     Created.push_back(Op0.getNode());
5261   }
5262 
5263   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5264   // divisors as a performance improvement, since rotating by 0 is a no-op.
5265   if (HadEvenDivisor) {
5266     // We need ROTR to do this.
5267     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5268       return SDValue();
5269     SDNodeFlags Flags;
5270     Flags.setExact(true);
5271     // SREM: (rotr (add (mul N, P), A), K)
5272     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5273     Created.push_back(Op0.getNode());
5274   }
5275 
5276   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5277   SDValue Fold =
5278       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5279                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5280 
5281   // If we didn't have lanes with INT_MIN divisor, then we're done.
5282   if (!HadIntMinDivisor)
5283     return Fold;
5284 
5285   // That fold is only valid for positive divisors. Which effectively means,
5286   // it is invalid for INT_MIN divisors. So if we have such a lane,
5287   // we must fix-up results for said lanes.
5288   assert(VT.isVector() && "Can/should only get here for vectors.");
5289 
5290   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5291       !isOperationLegalOrCustom(ISD::AND, VT) ||
5292       !isOperationLegalOrCustom(Cond, VT) ||
5293       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5294     return SDValue();
5295 
5296   Created.push_back(Fold.getNode());
5297 
5298   SDValue IntMin = DAG.getConstant(
5299       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5300   SDValue IntMax = DAG.getConstant(
5301       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5302   SDValue Zero =
5303       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5304 
5305   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5306   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5307   Created.push_back(DivisorIsIntMin.getNode());
5308 
5309   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5310   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5311   Created.push_back(Masked.getNode());
5312   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5313   Created.push_back(MaskedIsZero.getNode());
5314 
5315   // To produce final result we need to blend 2 vectors: 'SetCC' and
5316   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5317   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5318   // constant-folded, select can get lowered to a shuffle with constant mask.
5319   SDValue Blended =
5320       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5321 
5322   return Blended;
5323 }
5324 
5325 bool TargetLowering::
5326 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5327   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5328     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5329                                 "be a constant integer");
5330     return true;
5331   }
5332 
5333   return false;
5334 }
5335 
5336 //===----------------------------------------------------------------------===//
5337 // Legalization Utilities
5338 //===----------------------------------------------------------------------===//
5339 
5340 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5341                                     SDValue LHS, SDValue RHS,
5342                                     SmallVectorImpl<SDValue> &Result,
5343                                     EVT HiLoVT, SelectionDAG &DAG,
5344                                     MulExpansionKind Kind, SDValue LL,
5345                                     SDValue LH, SDValue RL, SDValue RH) const {
5346   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5347          Opcode == ISD::SMUL_LOHI);
5348 
5349   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5350                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5351   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5352                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5353   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5354                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5355   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5356                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5357 
5358   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5359     return false;
5360 
5361   unsigned OuterBitSize = VT.getScalarSizeInBits();
5362   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5363   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5364   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5365 
5366   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5367   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5368          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5369 
5370   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5371   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5372                           bool Signed) -> bool {
5373     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5374       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5375       Hi = SDValue(Lo.getNode(), 1);
5376       return true;
5377     }
5378     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5379       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5380       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5381       return true;
5382     }
5383     return false;
5384   };
5385 
5386   SDValue Lo, Hi;
5387 
5388   if (!LL.getNode() && !RL.getNode() &&
5389       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5390     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5391     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5392   }
5393 
5394   if (!LL.getNode())
5395     return false;
5396 
5397   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5398   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5399       DAG.MaskedValueIsZero(RHS, HighMask)) {
5400     // The inputs are both zero-extended.
5401     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5402       Result.push_back(Lo);
5403       Result.push_back(Hi);
5404       if (Opcode != ISD::MUL) {
5405         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5406         Result.push_back(Zero);
5407         Result.push_back(Zero);
5408       }
5409       return true;
5410     }
5411   }
5412 
5413   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5414       RHSSB > InnerBitSize) {
5415     // The input values are both sign-extended.
5416     // TODO non-MUL case?
5417     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5418       Result.push_back(Lo);
5419       Result.push_back(Hi);
5420       return true;
5421     }
5422   }
5423 
5424   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5425   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5426   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5427     // FIXME getShiftAmountTy does not always return a sensible result when VT
5428     // is an illegal type, and so the type may be too small to fit the shift
5429     // amount. Override it with i32. The shift will have to be legalized.
5430     ShiftAmountTy = MVT::i32;
5431   }
5432   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5433 
5434   if (!LH.getNode() && !RH.getNode() &&
5435       isOperationLegalOrCustom(ISD::SRL, VT) &&
5436       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5437     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5438     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5439     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5440     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5441   }
5442 
5443   if (!LH.getNode())
5444     return false;
5445 
5446   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5447     return false;
5448 
5449   Result.push_back(Lo);
5450 
5451   if (Opcode == ISD::MUL) {
5452     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5453     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5454     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5455     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5456     Result.push_back(Hi);
5457     return true;
5458   }
5459 
5460   // Compute the full width result.
5461   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5462     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5463     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5464     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5465     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5466   };
5467 
5468   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5469   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5470     return false;
5471 
5472   // This is effectively the add part of a multiply-add of half-sized operands,
5473   // so it cannot overflow.
5474   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5475 
5476   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5477     return false;
5478 
5479   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5480   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5481 
5482   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5483                   isOperationLegalOrCustom(ISD::ADDE, VT));
5484   if (UseGlue)
5485     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5486                        Merge(Lo, Hi));
5487   else
5488     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5489                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5490 
5491   SDValue Carry = Next.getValue(1);
5492   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5493   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5494 
5495   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5496     return false;
5497 
5498   if (UseGlue)
5499     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5500                      Carry);
5501   else
5502     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5503                      Zero, Carry);
5504 
5505   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5506 
5507   if (Opcode == ISD::SMUL_LOHI) {
5508     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5509                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5510     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5511 
5512     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5513                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5514     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5515   }
5516 
5517   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5518   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5519   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5520   return true;
5521 }
5522 
5523 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5524                                SelectionDAG &DAG, MulExpansionKind Kind,
5525                                SDValue LL, SDValue LH, SDValue RL,
5526                                SDValue RH) const {
5527   SmallVector<SDValue, 2> Result;
5528   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5529                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5530                            DAG, Kind, LL, LH, RL, RH);
5531   if (Ok) {
5532     assert(Result.size() == 2);
5533     Lo = Result[0];
5534     Hi = Result[1];
5535   }
5536   return Ok;
5537 }
5538 
5539 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5540                                        SelectionDAG &DAG) const {
5541   EVT VT = Node->getValueType(0);
5542 
5543   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5544                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5545                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5546                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5547     return false;
5548 
5549   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5550   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5551   SDValue X = Node->getOperand(0);
5552   SDValue Y = Node->getOperand(1);
5553   SDValue Z = Node->getOperand(2);
5554 
5555   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5556   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5557   SDLoc DL(SDValue(Node, 0));
5558 
5559   EVT ShVT = Z.getValueType();
5560   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5561   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5562 
5563   SDValue ShAmt;
5564   if (isPowerOf2_32(EltSizeInBits)) {
5565     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5566     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5567   } else {
5568     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5569   }
5570 
5571   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5572   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5573   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5574   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5575 
5576   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5577   // and that is undefined. We must compare and select to avoid UB.
5578   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5579 
5580   // For fshl, 0-shift returns the 1st arg (X).
5581   // For fshr, 0-shift returns the 2nd arg (Y).
5582   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5583   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5584   return true;
5585 }
5586 
5587 // TODO: Merge with expandFunnelShift.
5588 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5589                                SelectionDAG &DAG) const {
5590   EVT VT = Node->getValueType(0);
5591   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5592   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5593   SDValue Op0 = Node->getOperand(0);
5594   SDValue Op1 = Node->getOperand(1);
5595   SDLoc DL(SDValue(Node, 0));
5596 
5597   EVT ShVT = Op1.getValueType();
5598   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5599 
5600   // If a rotate in the other direction is legal, use it.
5601   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5602   if (isOperationLegal(RevRot, VT)) {
5603     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5604     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5605     return true;
5606   }
5607 
5608   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5609                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5610                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5611                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5612                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5613     return false;
5614 
5615   // Otherwise,
5616   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5617   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5618   //
5619   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5620          "Expecting the type bitwidth to be a power of 2");
5621   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5622   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5623   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5624   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5625   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5626   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5627   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5628                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
5629   return true;
5630 }
5631 
5632 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5633                                       SelectionDAG &DAG) const {
5634   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5635   SDValue Src = Node->getOperand(OpNo);
5636   EVT SrcVT = Src.getValueType();
5637   EVT DstVT = Node->getValueType(0);
5638   SDLoc dl(SDValue(Node, 0));
5639 
5640   // FIXME: Only f32 to i64 conversions are supported.
5641   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5642     return false;
5643 
5644   if (Node->isStrictFPOpcode())
5645     // When a NaN is converted to an integer a trap is allowed. We can't
5646     // use this expansion here because it would eliminate that trap. Other
5647     // traps are also allowed and cannot be eliminated. See
5648     // IEEE 754-2008 sec 5.8.
5649     return false;
5650 
5651   // Expand f32 -> i64 conversion
5652   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5653   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5654   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5655   EVT IntVT = SrcVT.changeTypeToInteger();
5656   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5657 
5658   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5659   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5660   SDValue Bias = DAG.getConstant(127, dl, IntVT);
5661   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5662   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5663   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5664 
5665   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5666 
5667   SDValue ExponentBits = DAG.getNode(
5668       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5669       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5670   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5671 
5672   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5673                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5674                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5675   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5676 
5677   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5678                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5679                           DAG.getConstant(0x00800000, dl, IntVT));
5680 
5681   R = DAG.getZExtOrTrunc(R, dl, DstVT);
5682 
5683   R = DAG.getSelectCC(
5684       dl, Exponent, ExponentLoBit,
5685       DAG.getNode(ISD::SHL, dl, DstVT, R,
5686                   DAG.getZExtOrTrunc(
5687                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5688                       dl, IntShVT)),
5689       DAG.getNode(ISD::SRL, dl, DstVT, R,
5690                   DAG.getZExtOrTrunc(
5691                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5692                       dl, IntShVT)),
5693       ISD::SETGT);
5694 
5695   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5696                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5697 
5698   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5699                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5700   return true;
5701 }
5702 
5703 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5704                                       SDValue &Chain,
5705                                       SelectionDAG &DAG) const {
5706   SDLoc dl(SDValue(Node, 0));
5707   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5708   SDValue Src = Node->getOperand(OpNo);
5709 
5710   EVT SrcVT = Src.getValueType();
5711   EVT DstVT = Node->getValueType(0);
5712   EVT SetCCVT =
5713       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5714 
5715   // Only expand vector types if we have the appropriate vector bit operations.
5716   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
5717                                                    ISD::FP_TO_SINT;
5718   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
5719                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5720     return false;
5721 
5722   // If the maximum float value is smaller then the signed integer range,
5723   // the destination signmask can't be represented by the float, so we can
5724   // just use FP_TO_SINT directly.
5725   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5726   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5727   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5728   if (APFloat::opOverflow &
5729       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5730     if (Node->isStrictFPOpcode()) {
5731       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
5732                            { Node->getOperand(0), Src });
5733       Chain = Result.getValue(1);
5734     } else
5735       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5736     return true;
5737   }
5738 
5739   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5740   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5741 
5742   bool Strict = Node->isStrictFPOpcode() ||
5743                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5744 
5745   if (Strict) {
5746     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5747     // signmask then offset (the result of which should be fully representable).
5748     // Sel = Src < 0x8000000000000000
5749     // Val = select Sel, Src, Src - 0x8000000000000000
5750     // Ofs = select Sel, 0, 0x8000000000000000
5751     // Result = fp_to_sint(Val) ^ Ofs
5752 
5753     // TODO: Should any fast-math-flags be set for the FSUB?
5754     SDValue SrcBiased;
5755     if (Node->isStrictFPOpcode())
5756       SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
5757                               { Node->getOperand(0), Src, Cst });
5758     else
5759       SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst);
5760     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased);
5761     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
5762                                 DAG.getConstant(SignMask, dl, DstVT));
5763     SDValue SInt;
5764     if (Node->isStrictFPOpcode()) {
5765       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
5766                          { SrcBiased.getValue(1), Val });
5767       Chain = SInt.getValue(1);
5768     } else
5769       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
5770     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs);
5771   } else {
5772     // Expand based on maximum range of FP_TO_SINT:
5773     // True = fp_to_sint(Src)
5774     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5775     // Result = select (Src < 0x8000000000000000), True, False
5776 
5777     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5778     // TODO: Should any fast-math-flags be set for the FSUB?
5779     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
5780                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5781     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
5782                         DAG.getConstant(SignMask, dl, DstVT));
5783     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
5784   }
5785   return true;
5786 }
5787 
5788 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
5789                                       SelectionDAG &DAG) const {
5790   SDValue Src = Node->getOperand(0);
5791   EVT SrcVT = Src.getValueType();
5792   EVT DstVT = Node->getValueType(0);
5793 
5794   if (SrcVT.getScalarType() != MVT::i64)
5795     return false;
5796 
5797   SDLoc dl(SDValue(Node, 0));
5798   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
5799 
5800   if (DstVT.getScalarType() == MVT::f32) {
5801     // Only expand vector types if we have the appropriate vector bit
5802     // operations.
5803     if (SrcVT.isVector() &&
5804         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5805          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5806          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
5807          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5808          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5809       return false;
5810 
5811     // For unsigned conversions, convert them to signed conversions using the
5812     // algorithm from the x86_64 __floatundidf in compiler_rt.
5813     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
5814 
5815     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
5816     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
5817     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
5818     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
5819     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
5820 
5821     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
5822     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
5823 
5824     // TODO: This really should be implemented using a branch rather than a
5825     // select.  We happen to get lucky and machinesink does the right
5826     // thing most of the time.  This would be a good candidate for a
5827     // pseudo-op, or, even better, for whole-function isel.
5828     EVT SetCCVT =
5829         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5830 
5831     SDValue SignBitTest = DAG.getSetCC(
5832         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
5833     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
5834     return true;
5835   }
5836 
5837   if (DstVT.getScalarType() == MVT::f64) {
5838     // Only expand vector types if we have the appropriate vector bit
5839     // operations.
5840     if (SrcVT.isVector() &&
5841         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5842          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5843          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
5844          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5845          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5846       return false;
5847 
5848     // Implementation of unsigned i64 to f64 following the algorithm in
5849     // __floatundidf in compiler_rt. This implementation has the advantage
5850     // of performing rounding correctly, both in the default rounding mode
5851     // and in all alternate rounding modes.
5852     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
5853     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
5854         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
5855     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
5856     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
5857     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
5858 
5859     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
5860     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
5861     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
5862     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
5863     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
5864     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
5865     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
5866     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
5867     return true;
5868   }
5869 
5870   return false;
5871 }
5872 
5873 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
5874                                               SelectionDAG &DAG) const {
5875   SDLoc dl(Node);
5876   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
5877     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
5878   EVT VT = Node->getValueType(0);
5879   if (isOperationLegalOrCustom(NewOp, VT)) {
5880     SDValue Quiet0 = Node->getOperand(0);
5881     SDValue Quiet1 = Node->getOperand(1);
5882 
5883     if (!Node->getFlags().hasNoNaNs()) {
5884       // Insert canonicalizes if it's possible we need to quiet to get correct
5885       // sNaN behavior.
5886       if (!DAG.isKnownNeverSNaN(Quiet0)) {
5887         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
5888                              Node->getFlags());
5889       }
5890       if (!DAG.isKnownNeverSNaN(Quiet1)) {
5891         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
5892                              Node->getFlags());
5893       }
5894     }
5895 
5896     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
5897   }
5898 
5899   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5900   // instead if there are no NaNs.
5901   if (Node->getFlags().hasNoNaNs()) {
5902     unsigned IEEE2018Op =
5903         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
5904     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
5905       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
5906                          Node->getOperand(1), Node->getFlags());
5907     }
5908   }
5909 
5910   return SDValue();
5911 }
5912 
5913 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
5914                                  SelectionDAG &DAG) const {
5915   SDLoc dl(Node);
5916   EVT VT = Node->getValueType(0);
5917   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5918   SDValue Op = Node->getOperand(0);
5919   unsigned Len = VT.getScalarSizeInBits();
5920   assert(VT.isInteger() && "CTPOP not implemented for this type.");
5921 
5922   // TODO: Add support for irregular type lengths.
5923   if (!(Len <= 128 && Len % 8 == 0))
5924     return false;
5925 
5926   // Only expand vector types if we have the appropriate vector bit operations.
5927   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
5928                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5929                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5930                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
5931                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5932     return false;
5933 
5934   // This is the "best" algorithm from
5935   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5936   SDValue Mask55 =
5937       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
5938   SDValue Mask33 =
5939       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
5940   SDValue Mask0F =
5941       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
5942   SDValue Mask01 =
5943       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
5944 
5945   // v = v - ((v >> 1) & 0x55555555...)
5946   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
5947                    DAG.getNode(ISD::AND, dl, VT,
5948                                DAG.getNode(ISD::SRL, dl, VT, Op,
5949                                            DAG.getConstant(1, dl, ShVT)),
5950                                Mask55));
5951   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5952   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
5953                    DAG.getNode(ISD::AND, dl, VT,
5954                                DAG.getNode(ISD::SRL, dl, VT, Op,
5955                                            DAG.getConstant(2, dl, ShVT)),
5956                                Mask33));
5957   // v = (v + (v >> 4)) & 0x0F0F0F0F...
5958   Op = DAG.getNode(ISD::AND, dl, VT,
5959                    DAG.getNode(ISD::ADD, dl, VT, Op,
5960                                DAG.getNode(ISD::SRL, dl, VT, Op,
5961                                            DAG.getConstant(4, dl, ShVT))),
5962                    Mask0F);
5963   // v = (v * 0x01010101...) >> (Len - 8)
5964   if (Len > 8)
5965     Op =
5966         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
5967                     DAG.getConstant(Len - 8, dl, ShVT));
5968 
5969   Result = Op;
5970   return true;
5971 }
5972 
5973 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
5974                                 SelectionDAG &DAG) const {
5975   SDLoc dl(Node);
5976   EVT VT = Node->getValueType(0);
5977   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5978   SDValue Op = Node->getOperand(0);
5979   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5980 
5981   // If the non-ZERO_UNDEF version is supported we can use that instead.
5982   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
5983       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
5984     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
5985     return true;
5986   }
5987 
5988   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5989   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
5990     EVT SetCCVT =
5991         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5992     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
5993     SDValue Zero = DAG.getConstant(0, dl, VT);
5994     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5995     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5996                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
5997     return true;
5998   }
5999 
6000   // Only expand vector types if we have the appropriate vector bit operations.
6001   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6002                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6003                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6004                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6005     return false;
6006 
6007   // for now, we do this:
6008   // x = x | (x >> 1);
6009   // x = x | (x >> 2);
6010   // ...
6011   // x = x | (x >>16);
6012   // x = x | (x >>32); // for 64-bit input
6013   // return popcount(~x);
6014   //
6015   // Ref: "Hacker's Delight" by Henry Warren
6016   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6017     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6018     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6019                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6020   }
6021   Op = DAG.getNOT(dl, Op, VT);
6022   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6023   return true;
6024 }
6025 
6026 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6027                                 SelectionDAG &DAG) const {
6028   SDLoc dl(Node);
6029   EVT VT = Node->getValueType(0);
6030   SDValue Op = Node->getOperand(0);
6031   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6032 
6033   // If the non-ZERO_UNDEF version is supported we can use that instead.
6034   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6035       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6036     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6037     return true;
6038   }
6039 
6040   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6041   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6042     EVT SetCCVT =
6043         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6044     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6045     SDValue Zero = DAG.getConstant(0, dl, VT);
6046     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6047     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6048                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6049     return true;
6050   }
6051 
6052   // Only expand vector types if we have the appropriate vector bit operations.
6053   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6054                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6055                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6056                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6057                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6058                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6059     return false;
6060 
6061   // for now, we use: { return popcount(~x & (x - 1)); }
6062   // unless the target has ctlz but not ctpop, in which case we use:
6063   // { return 32 - nlz(~x & (x-1)); }
6064   // Ref: "Hacker's Delight" by Henry Warren
6065   SDValue Tmp = DAG.getNode(
6066       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6067       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6068 
6069   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6070   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6071     Result =
6072         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6073                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6074     return true;
6075   }
6076 
6077   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6078   return true;
6079 }
6080 
6081 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6082                                SelectionDAG &DAG) const {
6083   SDLoc dl(N);
6084   EVT VT = N->getValueType(0);
6085   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6086   SDValue Op = N->getOperand(0);
6087 
6088   // Only expand vector types if we have the appropriate vector operations.
6089   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6090                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6091                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6092     return false;
6093 
6094   SDValue Shift =
6095       DAG.getNode(ISD::SRA, dl, VT, Op,
6096                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6097   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6098   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6099   return true;
6100 }
6101 
6102 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6103                                             SelectionDAG &DAG) const {
6104   SDLoc SL(LD);
6105   SDValue Chain = LD->getChain();
6106   SDValue BasePTR = LD->getBasePtr();
6107   EVT SrcVT = LD->getMemoryVT();
6108   ISD::LoadExtType ExtType = LD->getExtensionType();
6109 
6110   unsigned NumElem = SrcVT.getVectorNumElements();
6111 
6112   EVT SrcEltVT = SrcVT.getScalarType();
6113   EVT DstEltVT = LD->getValueType(0).getScalarType();
6114 
6115   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6116   assert(SrcEltVT.isByteSized());
6117 
6118   SmallVector<SDValue, 8> Vals;
6119   SmallVector<SDValue, 8> LoadChains;
6120 
6121   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6122     SDValue ScalarLoad =
6123         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6124                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6125                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6126                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6127 
6128     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6129 
6130     Vals.push_back(ScalarLoad.getValue(0));
6131     LoadChains.push_back(ScalarLoad.getValue(1));
6132   }
6133 
6134   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6135   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6136 
6137   return DAG.getMergeValues({Value, NewChain}, SL);
6138 }
6139 
6140 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6141                                              SelectionDAG &DAG) const {
6142   SDLoc SL(ST);
6143 
6144   SDValue Chain = ST->getChain();
6145   SDValue BasePtr = ST->getBasePtr();
6146   SDValue Value = ST->getValue();
6147   EVT StVT = ST->getMemoryVT();
6148 
6149   // The type of the data we want to save
6150   EVT RegVT = Value.getValueType();
6151   EVT RegSclVT = RegVT.getScalarType();
6152 
6153   // The type of data as saved in memory.
6154   EVT MemSclVT = StVT.getScalarType();
6155 
6156   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6157   unsigned NumElem = StVT.getVectorNumElements();
6158 
6159   // A vector must always be stored in memory as-is, i.e. without any padding
6160   // between the elements, since various code depend on it, e.g. in the
6161   // handling of a bitcast of a vector type to int, which may be done with a
6162   // vector store followed by an integer load. A vector that does not have
6163   // elements that are byte-sized must therefore be stored as an integer
6164   // built out of the extracted vector elements.
6165   if (!MemSclVT.isByteSized()) {
6166     unsigned NumBits = StVT.getSizeInBits();
6167     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6168 
6169     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6170 
6171     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6172       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6173                                 DAG.getConstant(Idx, SL, IdxVT));
6174       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6175       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6176       unsigned ShiftIntoIdx =
6177           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6178       SDValue ShiftAmount =
6179           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6180       SDValue ShiftedElt =
6181           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6182       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6183     }
6184 
6185     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6186                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6187                         ST->getAAInfo());
6188   }
6189 
6190   // Store Stride in bytes
6191   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6192   assert(Stride && "Zero stride!");
6193   // Extract each of the elements from the original vector and save them into
6194   // memory individually.
6195   SmallVector<SDValue, 8> Stores;
6196   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6197     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6198                               DAG.getConstant(Idx, SL, IdxVT));
6199 
6200     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6201 
6202     // This scalar TruncStore may be illegal, but we legalize it later.
6203     SDValue Store = DAG.getTruncStore(
6204         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6205         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6206         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6207 
6208     Stores.push_back(Store);
6209   }
6210 
6211   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6212 }
6213 
6214 std::pair<SDValue, SDValue>
6215 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6216   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6217          "unaligned indexed loads not implemented!");
6218   SDValue Chain = LD->getChain();
6219   SDValue Ptr = LD->getBasePtr();
6220   EVT VT = LD->getValueType(0);
6221   EVT LoadedVT = LD->getMemoryVT();
6222   SDLoc dl(LD);
6223   auto &MF = DAG.getMachineFunction();
6224 
6225   if (VT.isFloatingPoint() || VT.isVector()) {
6226     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6227     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6228       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6229           LoadedVT.isVector()) {
6230         // Scalarize the load and let the individual components be handled.
6231         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
6232         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
6233           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
6234         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
6235       }
6236 
6237       // Expand to a (misaligned) integer load of the same size,
6238       // then bitconvert to floating point or vector.
6239       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6240                                     LD->getMemOperand());
6241       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6242       if (LoadedVT != VT)
6243         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6244                              ISD::ANY_EXTEND, dl, VT, Result);
6245 
6246       return std::make_pair(Result, newLoad.getValue(1));
6247     }
6248 
6249     // Copy the value to a (aligned) stack slot using (unaligned) integer
6250     // loads and stores, then do a (aligned) load from the stack slot.
6251     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6252     unsigned LoadedBytes = LoadedVT.getStoreSize();
6253     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6254     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6255 
6256     // Make sure the stack slot is also aligned for the register type.
6257     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6258     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6259     SmallVector<SDValue, 8> Stores;
6260     SDValue StackPtr = StackBase;
6261     unsigned Offset = 0;
6262 
6263     EVT PtrVT = Ptr.getValueType();
6264     EVT StackPtrVT = StackPtr.getValueType();
6265 
6266     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6267     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6268 
6269     // Do all but one copies using the full register width.
6270     for (unsigned i = 1; i < NumRegs; i++) {
6271       // Load one integer register's worth from the original location.
6272       SDValue Load = DAG.getLoad(
6273           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6274           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6275           LD->getAAInfo());
6276       // Follow the load with a store to the stack slot.  Remember the store.
6277       Stores.push_back(DAG.getStore(
6278           Load.getValue(1), dl, Load, StackPtr,
6279           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6280       // Increment the pointers.
6281       Offset += RegBytes;
6282 
6283       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6284       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6285     }
6286 
6287     // The last copy may be partial.  Do an extending load.
6288     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6289                                   8 * (LoadedBytes - Offset));
6290     SDValue Load =
6291         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6292                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6293                        MinAlign(LD->getAlignment(), Offset),
6294                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6295     // Follow the load with a store to the stack slot.  Remember the store.
6296     // On big-endian machines this requires a truncating store to ensure
6297     // that the bits end up in the right place.
6298     Stores.push_back(DAG.getTruncStore(
6299         Load.getValue(1), dl, Load, StackPtr,
6300         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6301 
6302     // The order of the stores doesn't matter - say it with a TokenFactor.
6303     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6304 
6305     // Finally, perform the original load only redirected to the stack slot.
6306     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6307                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6308                           LoadedVT);
6309 
6310     // Callers expect a MERGE_VALUES node.
6311     return std::make_pair(Load, TF);
6312   }
6313 
6314   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6315          "Unaligned load of unsupported type.");
6316 
6317   // Compute the new VT that is half the size of the old one.  This is an
6318   // integer MVT.
6319   unsigned NumBits = LoadedVT.getSizeInBits();
6320   EVT NewLoadedVT;
6321   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6322   NumBits >>= 1;
6323 
6324   unsigned Alignment = LD->getAlignment();
6325   unsigned IncrementSize = NumBits / 8;
6326   ISD::LoadExtType HiExtType = LD->getExtensionType();
6327 
6328   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6329   if (HiExtType == ISD::NON_EXTLOAD)
6330     HiExtType = ISD::ZEXTLOAD;
6331 
6332   // Load the value in two parts
6333   SDValue Lo, Hi;
6334   if (DAG.getDataLayout().isLittleEndian()) {
6335     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6336                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6337                         LD->getAAInfo());
6338 
6339     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6340     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6341                         LD->getPointerInfo().getWithOffset(IncrementSize),
6342                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6343                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6344   } else {
6345     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6346                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6347                         LD->getAAInfo());
6348 
6349     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6350     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6351                         LD->getPointerInfo().getWithOffset(IncrementSize),
6352                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6353                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6354   }
6355 
6356   // aggregate the two parts
6357   SDValue ShiftAmount =
6358       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6359                                                     DAG.getDataLayout()));
6360   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6361   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6362 
6363   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6364                              Hi.getValue(1));
6365 
6366   return std::make_pair(Result, TF);
6367 }
6368 
6369 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6370                                              SelectionDAG &DAG) const {
6371   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6372          "unaligned indexed stores not implemented!");
6373   SDValue Chain = ST->getChain();
6374   SDValue Ptr = ST->getBasePtr();
6375   SDValue Val = ST->getValue();
6376   EVT VT = Val.getValueType();
6377   int Alignment = ST->getAlignment();
6378   auto &MF = DAG.getMachineFunction();
6379   EVT StoreMemVT = ST->getMemoryVT();
6380 
6381   SDLoc dl(ST);
6382   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6383     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6384     if (isTypeLegal(intVT)) {
6385       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6386           StoreMemVT.isVector()) {
6387         // Scalarize the store and let the individual components be handled.
6388         SDValue Result = scalarizeVectorStore(ST, DAG);
6389         return Result;
6390       }
6391       // Expand to a bitconvert of the value to the integer type of the
6392       // same size, then a (misaligned) int store.
6393       // FIXME: Does not handle truncating floating point stores!
6394       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6395       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6396                             Alignment, ST->getMemOperand()->getFlags());
6397       return Result;
6398     }
6399     // Do a (aligned) store to a stack slot, then copy from the stack slot
6400     // to the final destination using (unaligned) integer loads and stores.
6401     MVT RegVT = getRegisterType(
6402         *DAG.getContext(),
6403         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6404     EVT PtrVT = Ptr.getValueType();
6405     unsigned StoredBytes = StoreMemVT.getStoreSize();
6406     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6407     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6408 
6409     // Make sure the stack slot is also aligned for the register type.
6410     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6411     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6412 
6413     // Perform the original store, only redirected to the stack slot.
6414     SDValue Store = DAG.getTruncStore(
6415         Chain, dl, Val, StackPtr,
6416         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6417 
6418     EVT StackPtrVT = StackPtr.getValueType();
6419 
6420     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6421     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6422     SmallVector<SDValue, 8> Stores;
6423     unsigned Offset = 0;
6424 
6425     // Do all but one copies using the full register width.
6426     for (unsigned i = 1; i < NumRegs; i++) {
6427       // Load one integer register's worth from the stack slot.
6428       SDValue Load = DAG.getLoad(
6429           RegVT, dl, Store, StackPtr,
6430           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6431       // Store it to the final location.  Remember the store.
6432       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6433                                     ST->getPointerInfo().getWithOffset(Offset),
6434                                     MinAlign(ST->getAlignment(), Offset),
6435                                     ST->getMemOperand()->getFlags()));
6436       // Increment the pointers.
6437       Offset += RegBytes;
6438       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6439       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6440     }
6441 
6442     // The last store may be partial.  Do a truncating store.  On big-endian
6443     // machines this requires an extending load from the stack slot to ensure
6444     // that the bits are in the right place.
6445     EVT LoadMemVT =
6446         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6447 
6448     // Load from the stack slot.
6449     SDValue Load = DAG.getExtLoad(
6450         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6451         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6452 
6453     Stores.push_back(
6454         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6455                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6456                           MinAlign(ST->getAlignment(), Offset),
6457                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6458     // The order of the stores doesn't matter - say it with a TokenFactor.
6459     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6460     return Result;
6461   }
6462 
6463   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6464          "Unaligned store of unknown type.");
6465   // Get the half-size VT
6466   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6467   int NumBits = NewStoredVT.getSizeInBits();
6468   int IncrementSize = NumBits / 8;
6469 
6470   // Divide the stored value in two parts.
6471   SDValue ShiftAmount = DAG.getConstant(
6472       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6473   SDValue Lo = Val;
6474   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6475 
6476   // Store the two parts
6477   SDValue Store1, Store2;
6478   Store1 = DAG.getTruncStore(Chain, dl,
6479                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6480                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6481                              ST->getMemOperand()->getFlags());
6482 
6483   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6484   Alignment = MinAlign(Alignment, IncrementSize);
6485   Store2 = DAG.getTruncStore(
6486       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6487       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6488       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6489 
6490   SDValue Result =
6491       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6492   return Result;
6493 }
6494 
6495 SDValue
6496 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6497                                        const SDLoc &DL, EVT DataVT,
6498                                        SelectionDAG &DAG,
6499                                        bool IsCompressedMemory) const {
6500   SDValue Increment;
6501   EVT AddrVT = Addr.getValueType();
6502   EVT MaskVT = Mask.getValueType();
6503   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6504          "Incompatible types of Data and Mask");
6505   if (IsCompressedMemory) {
6506     // Incrementing the pointer according to number of '1's in the mask.
6507     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6508     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6509     if (MaskIntVT.getSizeInBits() < 32) {
6510       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6511       MaskIntVT = MVT::i32;
6512     }
6513 
6514     // Count '1's with POPCNT.
6515     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6516     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6517     // Scale is an element size in bytes.
6518     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6519                                     AddrVT);
6520     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6521   } else
6522     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6523 
6524   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6525 }
6526 
6527 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6528                                        SDValue Idx,
6529                                        EVT VecVT,
6530                                        const SDLoc &dl) {
6531   if (isa<ConstantSDNode>(Idx))
6532     return Idx;
6533 
6534   EVT IdxVT = Idx.getValueType();
6535   unsigned NElts = VecVT.getVectorNumElements();
6536   if (isPowerOf2_32(NElts)) {
6537     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6538                                      Log2_32(NElts));
6539     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6540                        DAG.getConstant(Imm, dl, IdxVT));
6541   }
6542 
6543   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6544                      DAG.getConstant(NElts - 1, dl, IdxVT));
6545 }
6546 
6547 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6548                                                 SDValue VecPtr, EVT VecVT,
6549                                                 SDValue Index) const {
6550   SDLoc dl(Index);
6551   // Make sure the index type is big enough to compute in.
6552   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6553 
6554   EVT EltVT = VecVT.getVectorElementType();
6555 
6556   // Calculate the element offset and add it to the pointer.
6557   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6558   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6559          "Converting bits to bytes lost precision");
6560 
6561   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6562 
6563   EVT IdxVT = Index.getValueType();
6564 
6565   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6566                       DAG.getConstant(EltSize, dl, IdxVT));
6567   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6568 }
6569 
6570 //===----------------------------------------------------------------------===//
6571 // Implementation of Emulated TLS Model
6572 //===----------------------------------------------------------------------===//
6573 
6574 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6575                                                 SelectionDAG &DAG) const {
6576   // Access to address of TLS varialbe xyz is lowered to a function call:
6577   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6578   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6579   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6580   SDLoc dl(GA);
6581 
6582   ArgListTy Args;
6583   ArgListEntry Entry;
6584   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6585   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6586   StringRef EmuTlsVarName(NameString);
6587   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6588   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6589   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6590   Entry.Ty = VoidPtrType;
6591   Args.push_back(Entry);
6592 
6593   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6594 
6595   TargetLowering::CallLoweringInfo CLI(DAG);
6596   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6597   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6598   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6599 
6600   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6601   // At last for X86 targets, maybe good for other targets too?
6602   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6603   MFI.setAdjustsStack(true); // Is this only for X86 target?
6604   MFI.setHasCalls(true);
6605 
6606   assert((GA->getOffset() == 0) &&
6607          "Emulated TLS must have zero offset in GlobalAddressSDNode");
6608   return CallResult.first;
6609 }
6610 
6611 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6612                                                 SelectionDAG &DAG) const {
6613   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6614   if (!isCtlzFast())
6615     return SDValue();
6616   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6617   SDLoc dl(Op);
6618   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6619     if (C->isNullValue() && CC == ISD::SETEQ) {
6620       EVT VT = Op.getOperand(0).getValueType();
6621       SDValue Zext = Op.getOperand(0);
6622       if (VT.bitsLT(MVT::i32)) {
6623         VT = MVT::i32;
6624         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6625       }
6626       unsigned Log2b = Log2_32(VT.getSizeInBits());
6627       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6628       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6629                                 DAG.getConstant(Log2b, dl, MVT::i32));
6630       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6631     }
6632   }
6633   return SDValue();
6634 }
6635 
6636 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6637   unsigned Opcode = Node->getOpcode();
6638   SDValue LHS = Node->getOperand(0);
6639   SDValue RHS = Node->getOperand(1);
6640   EVT VT = LHS.getValueType();
6641   SDLoc dl(Node);
6642 
6643   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6644   assert(VT.isInteger() && "Expected operands to be integers");
6645 
6646   // usub.sat(a, b) -> umax(a, b) - b
6647   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6648     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6649     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6650   }
6651 
6652   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6653     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6654     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6655     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6656   }
6657 
6658   unsigned OverflowOp;
6659   switch (Opcode) {
6660   case ISD::SADDSAT:
6661     OverflowOp = ISD::SADDO;
6662     break;
6663   case ISD::UADDSAT:
6664     OverflowOp = ISD::UADDO;
6665     break;
6666   case ISD::SSUBSAT:
6667     OverflowOp = ISD::SSUBO;
6668     break;
6669   case ISD::USUBSAT:
6670     OverflowOp = ISD::USUBO;
6671     break;
6672   default:
6673     llvm_unreachable("Expected method to receive signed or unsigned saturation "
6674                      "addition or subtraction node.");
6675   }
6676 
6677   unsigned BitWidth = LHS.getScalarValueSizeInBits();
6678   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6679   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6680                                LHS, RHS);
6681   SDValue SumDiff = Result.getValue(0);
6682   SDValue Overflow = Result.getValue(1);
6683   SDValue Zero = DAG.getConstant(0, dl, VT);
6684   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6685 
6686   if (Opcode == ISD::UADDSAT) {
6687     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6688       // (LHS + RHS) | OverflowMask
6689       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6690       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6691     }
6692     // Overflow ? 0xffff.... : (LHS + RHS)
6693     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6694   } else if (Opcode == ISD::USUBSAT) {
6695     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6696       // (LHS - RHS) & ~OverflowMask
6697       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6698       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6699       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6700     }
6701     // Overflow ? 0 : (LHS - RHS)
6702     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6703   } else {
6704     // SatMax -> Overflow && SumDiff < 0
6705     // SatMin -> Overflow && SumDiff >= 0
6706     APInt MinVal = APInt::getSignedMinValue(BitWidth);
6707     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6708     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6709     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6710     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6711     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6712     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6713   }
6714 }
6715 
6716 SDValue
6717 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6718   assert((Node->getOpcode() == ISD::SMULFIX ||
6719           Node->getOpcode() == ISD::UMULFIX ||
6720           Node->getOpcode() == ISD::SMULFIXSAT ||
6721           Node->getOpcode() == ISD::UMULFIXSAT) &&
6722          "Expected a fixed point multiplication opcode");
6723 
6724   SDLoc dl(Node);
6725   SDValue LHS = Node->getOperand(0);
6726   SDValue RHS = Node->getOperand(1);
6727   EVT VT = LHS.getValueType();
6728   unsigned Scale = Node->getConstantOperandVal(2);
6729   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
6730                      Node->getOpcode() == ISD::UMULFIXSAT);
6731   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
6732                  Node->getOpcode() == ISD::SMULFIXSAT);
6733   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6734   unsigned VTSize = VT.getScalarSizeInBits();
6735 
6736   if (!Scale) {
6737     // [us]mul.fix(a, b, 0) -> mul(a, b)
6738     if (!Saturating) {
6739       if (isOperationLegalOrCustom(ISD::MUL, VT))
6740         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6741     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6742       SDValue Result =
6743           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6744       SDValue Product = Result.getValue(0);
6745       SDValue Overflow = Result.getValue(1);
6746       SDValue Zero = DAG.getConstant(0, dl, VT);
6747 
6748       APInt MinVal = APInt::getSignedMinValue(VTSize);
6749       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6750       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6751       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6752       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6753       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6754       return DAG.getSelect(dl, VT, Overflow, Result, Product);
6755     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
6756       SDValue Result =
6757           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6758       SDValue Product = Result.getValue(0);
6759       SDValue Overflow = Result.getValue(1);
6760 
6761       APInt MaxVal = APInt::getMaxValue(VTSize);
6762       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6763       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
6764     }
6765   }
6766 
6767   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
6768          "Expected scale to be less than the number of bits if signed or at "
6769          "most the number of bits if unsigned.");
6770   assert(LHS.getValueType() == RHS.getValueType() &&
6771          "Expected both operands to be the same type");
6772 
6773   // Get the upper and lower bits of the result.
6774   SDValue Lo, Hi;
6775   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
6776   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
6777   if (isOperationLegalOrCustom(LoHiOp, VT)) {
6778     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
6779     Lo = Result.getValue(0);
6780     Hi = Result.getValue(1);
6781   } else if (isOperationLegalOrCustom(HiOp, VT)) {
6782     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6783     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
6784   } else if (VT.isVector()) {
6785     return SDValue();
6786   } else {
6787     report_fatal_error("Unable to expand fixed point multiplication.");
6788   }
6789 
6790   if (Scale == VTSize)
6791     // Result is just the top half since we'd be shifting by the width of the
6792     // operand. Overflow impossible so this works for both UMULFIX and
6793     // UMULFIXSAT.
6794     return Hi;
6795 
6796   // The result will need to be shifted right by the scale since both operands
6797   // are scaled. The result is given to us in 2 halves, so we only want part of
6798   // both in the result.
6799   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
6800   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
6801                                DAG.getConstant(Scale, dl, ShiftTy));
6802   if (!Saturating)
6803     return Result;
6804 
6805   if (!Signed) {
6806     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
6807     // widened multiplication) aren't all zeroes.
6808 
6809     // Saturate to max if ((Hi >> Scale) != 0),
6810     // which is the same as if (Hi > ((1 << Scale) - 1))
6811     APInt MaxVal = APInt::getMaxValue(VTSize);
6812     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
6813                                       dl, VT);
6814     Result = DAG.getSelectCC(dl, Hi, LowMask,
6815                              DAG.getConstant(MaxVal, dl, VT), Result,
6816                              ISD::SETUGT);
6817 
6818     return Result;
6819   }
6820 
6821   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
6822   // widened multiplication) aren't all ones or all zeroes.
6823 
6824   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
6825   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
6826 
6827   if (Scale == 0) {
6828     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
6829                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
6830     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
6831     // Saturated to SatMin if wide product is negative, and SatMax if wide
6832     // product is positive ...
6833     SDValue Zero = DAG.getConstant(0, dl, VT);
6834     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
6835                                                ISD::SETLT);
6836     // ... but only if we overflowed.
6837     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
6838   }
6839 
6840   //  We handled Scale==0 above so all the bits to examine is in Hi.
6841 
6842   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
6843   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
6844   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
6845                                     dl, VT);
6846   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
6847   // Saturate to min if (Hi >> (Scale - 1)) < -1),
6848   // which is the same as if (HI < (-1 << (Scale - 1))
6849   SDValue HighMask =
6850       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
6851                       dl, VT);
6852   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
6853   return Result;
6854 }
6855 
6856 void TargetLowering::expandUADDSUBO(
6857     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6858   SDLoc dl(Node);
6859   SDValue LHS = Node->getOperand(0);
6860   SDValue RHS = Node->getOperand(1);
6861   bool IsAdd = Node->getOpcode() == ISD::UADDO;
6862 
6863   // If ADD/SUBCARRY is legal, use that instead.
6864   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
6865   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
6866     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
6867     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
6868                                     { LHS, RHS, CarryIn });
6869     Result = SDValue(NodeCarry.getNode(), 0);
6870     Overflow = SDValue(NodeCarry.getNode(), 1);
6871     return;
6872   }
6873 
6874   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6875                             LHS.getValueType(), LHS, RHS);
6876 
6877   EVT ResultType = Node->getValueType(1);
6878   EVT SetCCType = getSetCCResultType(
6879       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6880   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
6881   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
6882   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6883 }
6884 
6885 void TargetLowering::expandSADDSUBO(
6886     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6887   SDLoc dl(Node);
6888   SDValue LHS = Node->getOperand(0);
6889   SDValue RHS = Node->getOperand(1);
6890   bool IsAdd = Node->getOpcode() == ISD::SADDO;
6891 
6892   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6893                             LHS.getValueType(), LHS, RHS);
6894 
6895   EVT ResultType = Node->getValueType(1);
6896   EVT OType = getSetCCResultType(
6897       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6898 
6899   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6900   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
6901   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
6902     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
6903     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
6904     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6905     return;
6906   }
6907 
6908   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
6909 
6910   //   LHSSign -> LHS >= 0
6911   //   RHSSign -> RHS >= 0
6912   //   SumSign -> Result >= 0
6913   //
6914   //   Add:
6915   //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6916   //   Sub:
6917   //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6918   SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
6919   SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
6920   SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
6921                                     IsAdd ? ISD::SETEQ : ISD::SETNE);
6922 
6923   SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
6924   SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
6925 
6926   SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
6927   Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
6928 }
6929 
6930 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
6931                                 SDValue &Overflow, SelectionDAG &DAG) const {
6932   SDLoc dl(Node);
6933   EVT VT = Node->getValueType(0);
6934   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6935   SDValue LHS = Node->getOperand(0);
6936   SDValue RHS = Node->getOperand(1);
6937   bool isSigned = Node->getOpcode() == ISD::SMULO;
6938 
6939   // For power-of-two multiplications we can use a simpler shift expansion.
6940   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6941     const APInt &C = RHSC->getAPIntValue();
6942     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6943     if (C.isPowerOf2()) {
6944       // smulo(x, signed_min) is same as umulo(x, signed_min).
6945       bool UseArithShift = isSigned && !C.isMinSignedValue();
6946       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
6947       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
6948       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
6949       Overflow = DAG.getSetCC(dl, SetCCVT,
6950           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6951                       dl, VT, Result, ShiftAmt),
6952           LHS, ISD::SETNE);
6953       return true;
6954     }
6955   }
6956 
6957   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
6958   if (VT.isVector())
6959     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6960                               VT.getVectorNumElements());
6961 
6962   SDValue BottomHalf;
6963   SDValue TopHalf;
6964   static const unsigned Ops[2][3] =
6965       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
6966         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
6967   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
6968     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6969     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
6970   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
6971     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
6972                              RHS);
6973     TopHalf = BottomHalf.getValue(1);
6974   } else if (isTypeLegal(WideVT)) {
6975     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
6976     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
6977     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
6978     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
6979     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
6980         getShiftAmountTy(WideVT, DAG.getDataLayout()));
6981     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
6982                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
6983   } else {
6984     if (VT.isVector())
6985       return false;
6986 
6987     // We can fall back to a libcall with an illegal type for the MUL if we
6988     // have a libcall big enough.
6989     // Also, we can fall back to a division in some cases, but that's a big
6990     // performance hit in the general case.
6991     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
6992     if (WideVT == MVT::i16)
6993       LC = RTLIB::MUL_I16;
6994     else if (WideVT == MVT::i32)
6995       LC = RTLIB::MUL_I32;
6996     else if (WideVT == MVT::i64)
6997       LC = RTLIB::MUL_I64;
6998     else if (WideVT == MVT::i128)
6999       LC = RTLIB::MUL_I128;
7000     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7001 
7002     SDValue HiLHS;
7003     SDValue HiRHS;
7004     if (isSigned) {
7005       // The high part is obtained by SRA'ing all but one of the bits of low
7006       // part.
7007       unsigned LoSize = VT.getSizeInBits();
7008       HiLHS =
7009           DAG.getNode(ISD::SRA, dl, VT, LHS,
7010                       DAG.getConstant(LoSize - 1, dl,
7011                                       getPointerTy(DAG.getDataLayout())));
7012       HiRHS =
7013           DAG.getNode(ISD::SRA, dl, VT, RHS,
7014                       DAG.getConstant(LoSize - 1, dl,
7015                                       getPointerTy(DAG.getDataLayout())));
7016     } else {
7017         HiLHS = DAG.getConstant(0, dl, VT);
7018         HiRHS = DAG.getConstant(0, dl, VT);
7019     }
7020 
7021     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7022     // pre-lowered to the correct types. This all depends upon WideVT not
7023     // being a legal type for the architecture and thus has to be split to
7024     // two arguments.
7025     SDValue Ret;
7026     TargetLowering::MakeLibCallOptions CallOptions;
7027     CallOptions.setSExt(isSigned);
7028     CallOptions.setIsPostTypeLegalization(true);
7029     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7030       // Halves of WideVT are packed into registers in different order
7031       // depending on platform endianness. This is usually handled by
7032       // the C calling convention, but we can't defer to it in
7033       // the legalizer.
7034       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7035       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7036     } else {
7037       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7038       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7039     }
7040     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7041            "Ret value is a collection of constituent nodes holding result.");
7042     if (DAG.getDataLayout().isLittleEndian()) {
7043       // Same as above.
7044       BottomHalf = Ret.getOperand(0);
7045       TopHalf = Ret.getOperand(1);
7046     } else {
7047       BottomHalf = Ret.getOperand(1);
7048       TopHalf = Ret.getOperand(0);
7049     }
7050   }
7051 
7052   Result = BottomHalf;
7053   if (isSigned) {
7054     SDValue ShiftAmt = DAG.getConstant(
7055         VT.getScalarSizeInBits() - 1, dl,
7056         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7057     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7058     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7059   } else {
7060     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7061                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7062   }
7063 
7064   // Truncate the result if SetCC returns a larger type than needed.
7065   EVT RType = Node->getValueType(1);
7066   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7067     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7068 
7069   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7070          "Unexpected result type for S/UMULO legalization");
7071   return true;
7072 }
7073 
7074 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7075   SDLoc dl(Node);
7076   bool NoNaN = Node->getFlags().hasNoNaNs();
7077   unsigned BaseOpcode = 0;
7078   switch (Node->getOpcode()) {
7079   default: llvm_unreachable("Expected VECREDUCE opcode");
7080   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7081   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7082   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7083   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7084   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7085   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7086   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7087   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7088   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7089   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7090   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7091   case ISD::VECREDUCE_FMAX:
7092     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7093     break;
7094   case ISD::VECREDUCE_FMIN:
7095     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7096     break;
7097   }
7098 
7099   SDValue Op = Node->getOperand(0);
7100   EVT VT = Op.getValueType();
7101 
7102   // Try to use a shuffle reduction for power of two vectors.
7103   if (VT.isPow2VectorType()) {
7104     while (VT.getVectorNumElements() > 1) {
7105       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7106       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7107         break;
7108 
7109       SDValue Lo, Hi;
7110       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7111       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7112       VT = HalfVT;
7113     }
7114   }
7115 
7116   EVT EltVT = VT.getVectorElementType();
7117   unsigned NumElts = VT.getVectorNumElements();
7118 
7119   SmallVector<SDValue, 8> Ops;
7120   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7121 
7122   SDValue Res = Ops[0];
7123   for (unsigned i = 1; i < NumElts; i++)
7124     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7125 
7126   // Result type may be wider than element type.
7127   if (EltVT != Node->getValueType(0))
7128     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7129   return Res;
7130 }
7131