1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // Conservatively require the attributes of the call to match those of 56 // the return. Ignore NoAlias and NonNull because they don't affect the 57 // call sequence. 58 AttributeList CallerAttrs = F.getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .removeAttribute(Attribute::NonNull) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 Register Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 102 unsigned ArgIdx) { 103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = Call->getParamAlignment(ArgIdx); 114 ByValType = nullptr; 115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 116 ByValType = Call->getParamByValType(ArgIdx); 117 } 118 119 /// Generate a libcall taking the given operands as arguments and returning a 120 /// result of type RetVT. 121 std::pair<SDValue, SDValue> 122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 123 ArrayRef<SDValue> Ops, 124 MakeLibCallOptions CallOptions, 125 const SDLoc &dl) const { 126 TargetLowering::ArgListTy Args; 127 Args.reserve(Ops.size()); 128 129 TargetLowering::ArgListEntry Entry; 130 for (unsigned i = 0; i < Ops.size(); ++i) { 131 SDValue NewOp = Ops[i]; 132 Entry.Node = NewOp; 133 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 134 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 135 CallOptions.IsSExt); 136 Entry.IsZExt = !Entry.IsSExt; 137 138 if (CallOptions.IsSoften && 139 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 140 Entry.IsSExt = Entry.IsZExt = false; 141 } 142 Args.push_back(Entry); 143 } 144 145 if (LC == RTLIB::UNKNOWN_LIBCALL) 146 report_fatal_error("Unsupported library call operation!"); 147 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 148 getPointerTy(DAG.getDataLayout())); 149 150 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 151 TargetLowering::CallLoweringInfo CLI(DAG); 152 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 153 bool zeroExtend = !signExtend; 154 155 if (CallOptions.IsSoften && 156 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 157 signExtend = zeroExtend = false; 158 } 159 160 CLI.setDebugLoc(dl) 161 .setChain(DAG.getEntryNode()) 162 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 163 .setNoReturn(CallOptions.DoesNotReturn) 164 .setDiscardResult(!CallOptions.IsReturnValueUsed) 165 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 166 .setSExtResult(signExtend) 167 .setZExtResult(zeroExtend); 168 return LowerCallTo(CLI); 169 } 170 171 bool 172 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 173 unsigned Limit, uint64_t Size, 174 unsigned DstAlign, unsigned SrcAlign, 175 bool IsMemset, 176 bool ZeroMemset, 177 bool MemcpyStrSrc, 178 bool AllowOverlap, 179 unsigned DstAS, unsigned SrcAS, 180 const AttributeList &FuncAttributes) const { 181 // If 'SrcAlign' is zero, that means the memory operation does not need to 182 // load the value, i.e. memset or memcpy from constant string. Otherwise, 183 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 184 // is the specified alignment of the memory operation. If it is zero, that 185 // means it's possible to change the alignment of the destination. 186 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 187 // not need to be loaded. 188 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 189 return false; 190 191 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 192 IsMemset, ZeroMemset, MemcpyStrSrc, 193 FuncAttributes); 194 195 if (VT == MVT::Other) { 196 // Use the largest integer type whose alignment constraints are satisfied. 197 // We only need to check DstAlign here as SrcAlign is always greater or 198 // equal to DstAlign (or zero). 199 VT = MVT::i64; 200 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 201 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 202 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 203 assert(VT.isInteger()); 204 205 // Find the largest legal integer type. 206 MVT LVT = MVT::i64; 207 while (!isTypeLegal(LVT)) 208 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 209 assert(LVT.isInteger()); 210 211 // If the type we've chosen is larger than the largest legal integer type 212 // then use that instead. 213 if (VT.bitsGT(LVT)) 214 VT = LVT; 215 } 216 217 unsigned NumMemOps = 0; 218 while (Size != 0) { 219 unsigned VTSize = VT.getSizeInBits() / 8; 220 while (VTSize > Size) { 221 // For now, only use non-vector load / store's for the left-over pieces. 222 EVT NewVT = VT; 223 unsigned NewVTSize; 224 225 bool Found = false; 226 if (VT.isVector() || VT.isFloatingPoint()) { 227 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 228 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 229 isSafeMemOpType(NewVT.getSimpleVT())) 230 Found = true; 231 else if (NewVT == MVT::i64 && 232 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 233 isSafeMemOpType(MVT::f64)) { 234 // i64 is usually not legal on 32-bit targets, but f64 may be. 235 NewVT = MVT::f64; 236 Found = true; 237 } 238 } 239 240 if (!Found) { 241 do { 242 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 243 if (NewVT == MVT::i8) 244 break; 245 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 246 } 247 NewVTSize = NewVT.getSizeInBits() / 8; 248 249 // If the new VT cannot cover all of the remaining bits, then consider 250 // issuing a (or a pair of) unaligned and overlapping load / store. 251 bool Fast; 252 if (NumMemOps && AllowOverlap && NewVTSize < Size && 253 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 281 && "Unsupported setcc type!"); 282 283 // Expand into one or more soft-fp libcall(s). 284 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 285 bool ShouldInvertCC = false; 286 switch (CCCode) { 287 case ISD::SETEQ: 288 case ISD::SETOEQ: 289 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 290 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 291 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 292 break; 293 case ISD::SETNE: 294 case ISD::SETUNE: 295 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 296 (VT == MVT::f64) ? RTLIB::UNE_F64 : 297 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 298 break; 299 case ISD::SETGE: 300 case ISD::SETOGE: 301 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 302 (VT == MVT::f64) ? RTLIB::OGE_F64 : 303 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 304 break; 305 case ISD::SETLT: 306 case ISD::SETOLT: 307 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 308 (VT == MVT::f64) ? RTLIB::OLT_F64 : 309 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 310 break; 311 case ISD::SETLE: 312 case ISD::SETOLE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 314 (VT == MVT::f64) ? RTLIB::OLE_F64 : 315 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 316 break; 317 case ISD::SETGT: 318 case ISD::SETOGT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 320 (VT == MVT::f64) ? RTLIB::OGT_F64 : 321 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 322 break; 323 case ISD::SETUO: 324 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 325 (VT == MVT::f64) ? RTLIB::UO_F64 : 326 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 327 break; 328 case ISD::SETO: 329 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 330 (VT == MVT::f64) ? RTLIB::O_F64 : 331 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 332 break; 333 case ISD::SETONE: 334 // SETONE = SETOLT | SETOGT 335 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 336 (VT == MVT::f64) ? RTLIB::OLT_F64 : 337 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 338 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 339 (VT == MVT::f64) ? RTLIB::OGT_F64 : 340 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 341 break; 342 case ISD::SETUEQ: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 347 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 348 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 349 break; 350 default: 351 // Invert CC for unordered comparisons 352 ShouldInvertCC = true; 353 switch (CCCode) { 354 case ISD::SETULT: 355 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 356 (VT == MVT::f64) ? RTLIB::OGE_F64 : 357 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 358 break; 359 case ISD::SETULE: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 361 (VT == MVT::f64) ? RTLIB::OGT_F64 : 362 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 363 break; 364 case ISD::SETUGT: 365 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 366 (VT == MVT::f64) ? RTLIB::OLE_F64 : 367 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 368 break; 369 case ISD::SETUGE: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 371 (VT == MVT::f64) ? RTLIB::OLT_F64 : 372 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 373 break; 374 default: llvm_unreachable("Do not know how to soften this setcc!"); 375 } 376 } 377 378 // Use the target specific return value for comparions lib calls. 379 EVT RetVT = getCmpLibcallReturnType(); 380 SDValue Ops[2] = {NewLHS, NewRHS}; 381 TargetLowering::MakeLibCallOptions CallOptions; 382 EVT OpsVT[2] = { OldLHS.getValueType(), 383 OldRHS.getValueType() }; 384 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 385 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first; 386 NewRHS = DAG.getConstant(0, dl, RetVT); 387 388 CCCode = getCmpLibcallCC(LC1); 389 if (ShouldInvertCC) 390 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 391 392 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 393 SDValue Tmp = DAG.getNode( 394 ISD::SETCC, dl, 395 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 396 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 397 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first; 398 NewLHS = DAG.getNode( 399 ISD::SETCC, dl, 400 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 401 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 402 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 403 NewRHS = SDValue(); 404 } 405 } 406 407 /// Return the entry encoding for a jump table in the current function. The 408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 409 unsigned TargetLowering::getJumpTableEncoding() const { 410 // In non-pic modes, just use the address of a block. 411 if (!isPositionIndependent()) 412 return MachineJumpTableInfo::EK_BlockAddress; 413 414 // In PIC mode, if the target supports a GPRel32 directive, use it. 415 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 416 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 417 418 // Otherwise, use a label difference. 419 return MachineJumpTableInfo::EK_LabelDifference32; 420 } 421 422 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 423 SelectionDAG &DAG) const { 424 // If our PIC model is GP relative, use the global offset table as the base. 425 unsigned JTEncoding = getJumpTableEncoding(); 426 427 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 428 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 429 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 430 431 return Table; 432 } 433 434 /// This returns the relocation base for the given PIC jumptable, the same as 435 /// getPICJumpTableRelocBase, but as an MCExpr. 436 const MCExpr * 437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 438 unsigned JTI,MCContext &Ctx) const{ 439 // The normal PIC reloc base is the label at the start of the jump table. 440 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 441 } 442 443 bool 444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 445 const TargetMachine &TM = getTargetMachine(); 446 const GlobalValue *GV = GA->getGlobal(); 447 448 // If the address is not even local to this DSO we will have to load it from 449 // a got and then add the offset. 450 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 451 return false; 452 453 // If the code is position independent we will have to add a base register. 454 if (isPositionIndependent()) 455 return false; 456 457 // Otherwise we can do it. 458 return true; 459 } 460 461 //===----------------------------------------------------------------------===// 462 // Optimization Methods 463 //===----------------------------------------------------------------------===// 464 465 /// If the specified instruction has a constant integer operand and there are 466 /// bits set in that constant that are not demanded, then clear those bits and 467 /// return true. 468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 469 TargetLoweringOpt &TLO) const { 470 SDLoc DL(Op); 471 unsigned Opcode = Op.getOpcode(); 472 473 // Do target-specific constant optimization. 474 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 475 return TLO.New.getNode(); 476 477 // FIXME: ISD::SELECT, ISD::SELECT_CC 478 switch (Opcode) { 479 default: 480 break; 481 case ISD::XOR: 482 case ISD::AND: 483 case ISD::OR: { 484 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 485 if (!Op1C) 486 return false; 487 488 // If this is a 'not' op, don't touch it because that's a canonical form. 489 const APInt &C = Op1C->getAPIntValue(); 490 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 491 return false; 492 493 if (!C.isSubsetOf(Demanded)) { 494 EVT VT = Op.getValueType(); 495 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 496 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 497 return TLO.CombineTo(Op, NewOp); 498 } 499 500 break; 501 } 502 } 503 504 return false; 505 } 506 507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 509 /// generalized for targets with other types of implicit widening casts. 510 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 511 const APInt &Demanded, 512 TargetLoweringOpt &TLO) const { 513 assert(Op.getNumOperands() == 2 && 514 "ShrinkDemandedOp only supports binary operators!"); 515 assert(Op.getNode()->getNumValues() == 1 && 516 "ShrinkDemandedOp only supports nodes with one result!"); 517 518 SelectionDAG &DAG = TLO.DAG; 519 SDLoc dl(Op); 520 521 // Early return, as this function cannot handle vector types. 522 if (Op.getValueType().isVector()) 523 return false; 524 525 // Don't do this if the node has another user, which may require the 526 // full value. 527 if (!Op.getNode()->hasOneUse()) 528 return false; 529 530 // Search for the smallest integer type with free casts to and from 531 // Op's type. For expedience, just check power-of-2 integer types. 532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 533 unsigned DemandedSize = Demanded.getActiveBits(); 534 unsigned SmallVTBits = DemandedSize; 535 if (!isPowerOf2_32(SmallVTBits)) 536 SmallVTBits = NextPowerOf2(SmallVTBits); 537 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 538 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 539 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 540 TLI.isZExtFree(SmallVT, Op.getValueType())) { 541 // We found a type with free casts. 542 SDValue X = DAG.getNode( 543 Op.getOpcode(), dl, SmallVT, 544 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 545 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 546 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 547 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 548 return TLO.CombineTo(Op, Z); 549 } 550 } 551 return false; 552 } 553 554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 555 DAGCombinerInfo &DCI) const { 556 SelectionDAG &DAG = DCI.DAG; 557 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 558 !DCI.isBeforeLegalizeOps()); 559 KnownBits Known; 560 561 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 562 if (Simplified) { 563 DCI.AddToWorklist(Op.getNode()); 564 DCI.CommitTargetLoweringOpt(TLO); 565 } 566 return Simplified; 567 } 568 569 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 570 KnownBits &Known, 571 TargetLoweringOpt &TLO, 572 unsigned Depth, 573 bool AssumeSingleUse) const { 574 EVT VT = Op.getValueType(); 575 APInt DemandedElts = VT.isVector() 576 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 577 : APInt(1, 1); 578 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 579 AssumeSingleUse); 580 } 581 582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 583 // TODO: Under what circumstances can we create nodes? Constant folding? 584 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 585 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 586 SelectionDAG &DAG, unsigned Depth) const { 587 // Limit search depth. 588 if (Depth >= SelectionDAG::MaxRecursionDepth) 589 return SDValue(); 590 591 // Ignore UNDEFs. 592 if (Op.isUndef()) 593 return SDValue(); 594 595 // Not demanding any bits/elts from Op. 596 if (DemandedBits == 0 || DemandedElts == 0) 597 return DAG.getUNDEF(Op.getValueType()); 598 599 unsigned NumElts = DemandedElts.getBitWidth(); 600 KnownBits LHSKnown, RHSKnown; 601 switch (Op.getOpcode()) { 602 case ISD::BITCAST: { 603 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 604 EVT SrcVT = Src.getValueType(); 605 EVT DstVT = Op.getValueType(); 606 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 607 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 608 609 if (NumSrcEltBits == NumDstEltBits) 610 if (SDValue V = SimplifyMultipleUseDemandedBits( 611 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 612 return DAG.getBitcast(DstVT, V); 613 614 // TODO - bigendian once we have test coverage. 615 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 616 DAG.getDataLayout().isLittleEndian()) { 617 unsigned Scale = NumDstEltBits / NumSrcEltBits; 618 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 619 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 620 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 621 for (unsigned i = 0; i != Scale; ++i) { 622 unsigned Offset = i * NumSrcEltBits; 623 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 624 if (!Sub.isNullValue()) { 625 DemandedSrcBits |= Sub; 626 for (unsigned j = 0; j != NumElts; ++j) 627 if (DemandedElts[j]) 628 DemandedSrcElts.setBit((j * Scale) + i); 629 } 630 } 631 632 if (SDValue V = SimplifyMultipleUseDemandedBits( 633 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 634 return DAG.getBitcast(DstVT, V); 635 } 636 637 // TODO - bigendian once we have test coverage. 638 if ((NumSrcEltBits % NumDstEltBits) == 0 && 639 DAG.getDataLayout().isLittleEndian()) { 640 unsigned Scale = NumSrcEltBits / NumDstEltBits; 641 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 642 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 643 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 644 for (unsigned i = 0; i != NumElts; ++i) 645 if (DemandedElts[i]) { 646 unsigned Offset = (i % Scale) * NumDstEltBits; 647 DemandedSrcBits.insertBits(DemandedBits, Offset); 648 DemandedSrcElts.setBit(i / Scale); 649 } 650 651 if (SDValue V = SimplifyMultipleUseDemandedBits( 652 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 653 return DAG.getBitcast(DstVT, V); 654 } 655 656 break; 657 } 658 case ISD::AND: { 659 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 660 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 661 662 // If all of the demanded bits are known 1 on one side, return the other. 663 // These bits cannot contribute to the result of the 'and' in this 664 // context. 665 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 666 return Op.getOperand(0); 667 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 668 return Op.getOperand(1); 669 break; 670 } 671 case ISD::OR: { 672 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 673 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 674 675 // If all of the demanded bits are known zero on one side, return the 676 // other. These bits cannot contribute to the result of the 'or' in this 677 // context. 678 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 679 return Op.getOperand(0); 680 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 681 return Op.getOperand(1); 682 break; 683 } 684 case ISD::XOR: { 685 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 686 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 687 688 // If all of the demanded bits are known zero on one side, return the 689 // other. 690 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 691 return Op.getOperand(0); 692 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 693 return Op.getOperand(1); 694 break; 695 } 696 case ISD::SIGN_EXTEND_INREG: { 697 // If none of the extended bits are demanded, eliminate the sextinreg. 698 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 699 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 700 return Op.getOperand(0); 701 break; 702 } 703 case ISD::INSERT_VECTOR_ELT: { 704 // If we don't demand the inserted element, return the base vector. 705 SDValue Vec = Op.getOperand(0); 706 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 707 EVT VecVT = Vec.getValueType(); 708 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 709 !DemandedElts[CIdx->getZExtValue()]) 710 return Vec; 711 break; 712 } 713 case ISD::VECTOR_SHUFFLE: { 714 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 715 716 // If all the demanded elts are from one operand and are inline, 717 // then we can use the operand directly. 718 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 719 for (unsigned i = 0; i != NumElts; ++i) { 720 int M = ShuffleMask[i]; 721 if (M < 0 || !DemandedElts[i]) 722 continue; 723 AllUndef = false; 724 IdentityLHS &= (M == (int)i); 725 IdentityRHS &= ((M - NumElts) == i); 726 } 727 728 if (AllUndef) 729 return DAG.getUNDEF(Op.getValueType()); 730 if (IdentityLHS) 731 return Op.getOperand(0); 732 if (IdentityRHS) 733 return Op.getOperand(1); 734 break; 735 } 736 default: 737 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 738 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 739 Op, DemandedBits, DemandedElts, DAG, Depth)) 740 return V; 741 break; 742 } 743 return SDValue(); 744 } 745 746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 747 /// result of Op are ever used downstream. If we can use this information to 748 /// simplify Op, create a new simplified DAG node and return true, returning the 749 /// original and new nodes in Old and New. Otherwise, analyze the expression and 750 /// return a mask of Known bits for the expression (used to simplify the 751 /// caller). The Known bits may only be accurate for those bits in the 752 /// OriginalDemandedBits and OriginalDemandedElts. 753 bool TargetLowering::SimplifyDemandedBits( 754 SDValue Op, const APInt &OriginalDemandedBits, 755 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 756 unsigned Depth, bool AssumeSingleUse) const { 757 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 758 assert(Op.getScalarValueSizeInBits() == BitWidth && 759 "Mask size mismatches value type size!"); 760 761 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 762 assert((!Op.getValueType().isVector() || 763 NumElts == Op.getValueType().getVectorNumElements()) && 764 "Unexpected vector size"); 765 766 APInt DemandedBits = OriginalDemandedBits; 767 APInt DemandedElts = OriginalDemandedElts; 768 SDLoc dl(Op); 769 auto &DL = TLO.DAG.getDataLayout(); 770 771 // Don't know anything. 772 Known = KnownBits(BitWidth); 773 774 // Undef operand. 775 if (Op.isUndef()) 776 return false; 777 778 if (Op.getOpcode() == ISD::Constant) { 779 // We know all of the bits for a constant! 780 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 781 Known.Zero = ~Known.One; 782 return false; 783 } 784 785 // Other users may use these bits. 786 EVT VT = Op.getValueType(); 787 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 788 if (Depth != 0) { 789 // If not at the root, Just compute the Known bits to 790 // simplify things downstream. 791 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 792 return false; 793 } 794 // If this is the root being simplified, allow it to have multiple uses, 795 // just set the DemandedBits/Elts to all bits. 796 DemandedBits = APInt::getAllOnesValue(BitWidth); 797 DemandedElts = APInt::getAllOnesValue(NumElts); 798 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 799 // Not demanding any bits/elts from Op. 800 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 801 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 802 // Limit search depth. 803 return false; 804 } 805 806 KnownBits Known2, KnownOut; 807 switch (Op.getOpcode()) { 808 case ISD::TargetConstant: 809 llvm_unreachable("Can't simplify this node"); 810 case ISD::SCALAR_TO_VECTOR: { 811 if (!DemandedElts[0]) 812 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 813 814 KnownBits SrcKnown; 815 SDValue Src = Op.getOperand(0); 816 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 817 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 818 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 819 return true; 820 Known = SrcKnown.zextOrTrunc(BitWidth, false); 821 break; 822 } 823 case ISD::BUILD_VECTOR: 824 // Collect the known bits that are shared by every demanded element. 825 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 826 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 827 return false; // Don't fall through, will infinitely loop. 828 case ISD::LOAD: { 829 LoadSDNode *LD = cast<LoadSDNode>(Op); 830 if (getTargetConstantFromLoad(LD)) { 831 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 832 return false; // Don't fall through, will infinitely loop. 833 } 834 break; 835 } 836 case ISD::INSERT_VECTOR_ELT: { 837 SDValue Vec = Op.getOperand(0); 838 SDValue Scl = Op.getOperand(1); 839 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 840 EVT VecVT = Vec.getValueType(); 841 842 // If index isn't constant, assume we need all vector elements AND the 843 // inserted element. 844 APInt DemandedVecElts(DemandedElts); 845 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 846 unsigned Idx = CIdx->getZExtValue(); 847 DemandedVecElts.clearBit(Idx); 848 849 // Inserted element is not required. 850 if (!DemandedElts[Idx]) 851 return TLO.CombineTo(Op, Vec); 852 } 853 854 KnownBits KnownScl; 855 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 856 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 857 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 858 return true; 859 860 Known = KnownScl.zextOrTrunc(BitWidth, false); 861 862 KnownBits KnownVec; 863 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 864 Depth + 1)) 865 return true; 866 867 if (!!DemandedVecElts) { 868 Known.One &= KnownVec.One; 869 Known.Zero &= KnownVec.Zero; 870 } 871 872 return false; 873 } 874 case ISD::INSERT_SUBVECTOR: { 875 SDValue Base = Op.getOperand(0); 876 SDValue Sub = Op.getOperand(1); 877 EVT SubVT = Sub.getValueType(); 878 unsigned NumSubElts = SubVT.getVectorNumElements(); 879 880 // If index isn't constant, assume we need the original demanded base 881 // elements and ALL the inserted subvector elements. 882 APInt BaseElts = DemandedElts; 883 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 884 if (isa<ConstantSDNode>(Op.getOperand(2))) { 885 const APInt &Idx = Op.getConstantOperandAPInt(2); 886 if (Idx.ule(NumElts - NumSubElts)) { 887 unsigned SubIdx = Idx.getZExtValue(); 888 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 889 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 890 } 891 } 892 893 KnownBits KnownSub, KnownBase; 894 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 895 Depth + 1)) 896 return true; 897 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 898 Depth + 1)) 899 return true; 900 901 Known.Zero.setAllBits(); 902 Known.One.setAllBits(); 903 if (!!SubElts) { 904 Known.One &= KnownSub.One; 905 Known.Zero &= KnownSub.Zero; 906 } 907 if (!!BaseElts) { 908 Known.One &= KnownBase.One; 909 Known.Zero &= KnownBase.Zero; 910 } 911 break; 912 } 913 case ISD::EXTRACT_SUBVECTOR: { 914 // If index isn't constant, assume we need all the source vector elements. 915 SDValue Src = Op.getOperand(0); 916 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 917 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 918 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 919 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 920 // Offset the demanded elts by the subvector index. 921 uint64_t Idx = SubIdx->getZExtValue(); 922 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 923 } 924 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 925 return true; 926 break; 927 } 928 case ISD::CONCAT_VECTORS: { 929 Known.Zero.setAllBits(); 930 Known.One.setAllBits(); 931 EVT SubVT = Op.getOperand(0).getValueType(); 932 unsigned NumSubVecs = Op.getNumOperands(); 933 unsigned NumSubElts = SubVT.getVectorNumElements(); 934 for (unsigned i = 0; i != NumSubVecs; ++i) { 935 APInt DemandedSubElts = 936 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 937 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 938 Known2, TLO, Depth + 1)) 939 return true; 940 // Known bits are shared by every demanded subvector element. 941 if (!!DemandedSubElts) { 942 Known.One &= Known2.One; 943 Known.Zero &= Known2.Zero; 944 } 945 } 946 break; 947 } 948 case ISD::VECTOR_SHUFFLE: { 949 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 950 951 // Collect demanded elements from shuffle operands.. 952 APInt DemandedLHS(NumElts, 0); 953 APInt DemandedRHS(NumElts, 0); 954 for (unsigned i = 0; i != NumElts; ++i) { 955 if (!DemandedElts[i]) 956 continue; 957 int M = ShuffleMask[i]; 958 if (M < 0) { 959 // For UNDEF elements, we don't know anything about the common state of 960 // the shuffle result. 961 DemandedLHS.clearAllBits(); 962 DemandedRHS.clearAllBits(); 963 break; 964 } 965 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 966 if (M < (int)NumElts) 967 DemandedLHS.setBit(M); 968 else 969 DemandedRHS.setBit(M - NumElts); 970 } 971 972 if (!!DemandedLHS || !!DemandedRHS) { 973 SDValue Op0 = Op.getOperand(0); 974 SDValue Op1 = Op.getOperand(1); 975 976 Known.Zero.setAllBits(); 977 Known.One.setAllBits(); 978 if (!!DemandedLHS) { 979 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 980 Depth + 1)) 981 return true; 982 Known.One &= Known2.One; 983 Known.Zero &= Known2.Zero; 984 } 985 if (!!DemandedRHS) { 986 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 987 Depth + 1)) 988 return true; 989 Known.One &= Known2.One; 990 Known.Zero &= Known2.Zero; 991 } 992 993 // Attempt to avoid multi-use ops if we don't need anything from them. 994 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 995 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 996 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 997 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 998 if (DemandedOp0 || DemandedOp1) { 999 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1000 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1001 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1002 return TLO.CombineTo(Op, NewOp); 1003 } 1004 } 1005 break; 1006 } 1007 case ISD::AND: { 1008 SDValue Op0 = Op.getOperand(0); 1009 SDValue Op1 = Op.getOperand(1); 1010 1011 // If the RHS is a constant, check to see if the LHS would be zero without 1012 // using the bits from the RHS. Below, we use knowledge about the RHS to 1013 // simplify the LHS, here we're using information from the LHS to simplify 1014 // the RHS. 1015 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1016 // Do not increment Depth here; that can cause an infinite loop. 1017 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1018 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1019 if ((LHSKnown.Zero & DemandedBits) == 1020 (~RHSC->getAPIntValue() & DemandedBits)) 1021 return TLO.CombineTo(Op, Op0); 1022 1023 // If any of the set bits in the RHS are known zero on the LHS, shrink 1024 // the constant. 1025 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1026 return true; 1027 1028 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1029 // constant, but if this 'and' is only clearing bits that were just set by 1030 // the xor, then this 'and' can be eliminated by shrinking the mask of 1031 // the xor. For example, for a 32-bit X: 1032 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1033 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1034 LHSKnown.One == ~RHSC->getAPIntValue()) { 1035 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1036 return TLO.CombineTo(Op, Xor); 1037 } 1038 } 1039 1040 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1041 Depth + 1)) 1042 return true; 1043 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1044 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1045 Known2, TLO, Depth + 1)) 1046 return true; 1047 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1048 1049 // Attempt to avoid multi-use ops if we don't need anything from them. 1050 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1051 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1052 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1053 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1054 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1055 if (DemandedOp0 || DemandedOp1) { 1056 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1057 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1058 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1059 return TLO.CombineTo(Op, NewOp); 1060 } 1061 } 1062 1063 // If all of the demanded bits are known one on one side, return the other. 1064 // These bits cannot contribute to the result of the 'and'. 1065 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1066 return TLO.CombineTo(Op, Op0); 1067 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1068 return TLO.CombineTo(Op, Op1); 1069 // If all of the demanded bits in the inputs are known zeros, return zero. 1070 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1071 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1072 // If the RHS is a constant, see if we can simplify it. 1073 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1074 return true; 1075 // If the operation can be done in a smaller type, do so. 1076 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1077 return true; 1078 1079 // Output known-1 bits are only known if set in both the LHS & RHS. 1080 Known.One &= Known2.One; 1081 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1082 Known.Zero |= Known2.Zero; 1083 break; 1084 } 1085 case ISD::OR: { 1086 SDValue Op0 = Op.getOperand(0); 1087 SDValue Op1 = Op.getOperand(1); 1088 1089 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1090 Depth + 1)) 1091 return true; 1092 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1093 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1094 Known2, TLO, Depth + 1)) 1095 return true; 1096 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1097 1098 // Attempt to avoid multi-use ops if we don't need anything from them. 1099 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1100 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1101 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1102 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1103 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1104 if (DemandedOp0 || DemandedOp1) { 1105 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1106 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1107 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1108 return TLO.CombineTo(Op, NewOp); 1109 } 1110 } 1111 1112 // If all of the demanded bits are known zero on one side, return the other. 1113 // These bits cannot contribute to the result of the 'or'. 1114 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1115 return TLO.CombineTo(Op, Op0); 1116 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1117 return TLO.CombineTo(Op, Op1); 1118 // If the RHS is a constant, see if we can simplify it. 1119 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1120 return true; 1121 // If the operation can be done in a smaller type, do so. 1122 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1123 return true; 1124 1125 // Output known-0 bits are only known if clear in both the LHS & RHS. 1126 Known.Zero &= Known2.Zero; 1127 // Output known-1 are known to be set if set in either the LHS | RHS. 1128 Known.One |= Known2.One; 1129 break; 1130 } 1131 case ISD::XOR: { 1132 SDValue Op0 = Op.getOperand(0); 1133 SDValue Op1 = Op.getOperand(1); 1134 1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1136 Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1140 Depth + 1)) 1141 return true; 1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1143 1144 // Attempt to avoid multi-use ops if we don't need anything from them. 1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 if (DemandedOp0 || DemandedOp1) { 1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1154 return TLO.CombineTo(Op, NewOp); 1155 } 1156 } 1157 1158 // If all of the demanded bits are known zero on one side, return the other. 1159 // These bits cannot contribute to the result of the 'xor'. 1160 if (DemandedBits.isSubsetOf(Known.Zero)) 1161 return TLO.CombineTo(Op, Op0); 1162 if (DemandedBits.isSubsetOf(Known2.Zero)) 1163 return TLO.CombineTo(Op, Op1); 1164 // If the operation can be done in a smaller type, do so. 1165 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1166 return true; 1167 1168 // If all of the unknown bits are known to be zero on one side or the other 1169 // (but not both) turn this into an *inclusive* or. 1170 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1171 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1172 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1173 1174 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1175 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1176 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1177 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1178 1179 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1180 // If one side is a constant, and all of the known set bits on the other 1181 // side are also set in the constant, turn this into an AND, as we know 1182 // the bits will be cleared. 1183 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1184 // NB: it is okay if more bits are known than are requested 1185 if (C->getAPIntValue() == Known2.One) { 1186 SDValue ANDC = 1187 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1188 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1189 } 1190 1191 // If the RHS is a constant, see if we can change it. Don't alter a -1 1192 // constant because that's a 'not' op, and that is better for combining 1193 // and codegen. 1194 if (!C->isAllOnesValue()) { 1195 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1196 // We're flipping all demanded bits. Flip the undemanded bits too. 1197 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1198 return TLO.CombineTo(Op, New); 1199 } 1200 // If we can't turn this into a 'not', try to shrink the constant. 1201 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1202 return true; 1203 } 1204 } 1205 1206 Known = std::move(KnownOut); 1207 break; 1208 } 1209 case ISD::SELECT: 1210 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1211 Depth + 1)) 1212 return true; 1213 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1214 Depth + 1)) 1215 return true; 1216 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1217 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1218 1219 // If the operands are constants, see if we can simplify them. 1220 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1221 return true; 1222 1223 // Only known if known in both the LHS and RHS. 1224 Known.One &= Known2.One; 1225 Known.Zero &= Known2.Zero; 1226 break; 1227 case ISD::SELECT_CC: 1228 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1229 Depth + 1)) 1230 return true; 1231 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1232 Depth + 1)) 1233 return true; 1234 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1235 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1236 1237 // If the operands are constants, see if we can simplify them. 1238 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1239 return true; 1240 1241 // Only known if known in both the LHS and RHS. 1242 Known.One &= Known2.One; 1243 Known.Zero &= Known2.Zero; 1244 break; 1245 case ISD::SETCC: { 1246 SDValue Op0 = Op.getOperand(0); 1247 SDValue Op1 = Op.getOperand(1); 1248 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1249 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1250 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1251 // -1, we may be able to bypass the setcc. 1252 if (DemandedBits.isSignMask() && 1253 Op0.getScalarValueSizeInBits() == BitWidth && 1254 getBooleanContents(VT) == 1255 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1256 // If we're testing X < 0, then this compare isn't needed - just use X! 1257 // FIXME: We're limiting to integer types here, but this should also work 1258 // if we don't care about FP signed-zero. The use of SETLT with FP means 1259 // that we don't care about NaNs. 1260 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1261 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1262 return TLO.CombineTo(Op, Op0); 1263 1264 // TODO: Should we check for other forms of sign-bit comparisons? 1265 // Examples: X <= -1, X >= 0 1266 } 1267 if (getBooleanContents(Op0.getValueType()) == 1268 TargetLowering::ZeroOrOneBooleanContent && 1269 BitWidth > 1) 1270 Known.Zero.setBitsFrom(1); 1271 break; 1272 } 1273 case ISD::SHL: { 1274 SDValue Op0 = Op.getOperand(0); 1275 SDValue Op1 = Op.getOperand(1); 1276 1277 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1278 // If the shift count is an invalid immediate, don't do anything. 1279 if (SA->getAPIntValue().uge(BitWidth)) 1280 break; 1281 1282 unsigned ShAmt = SA->getZExtValue(); 1283 if (ShAmt == 0) 1284 return TLO.CombineTo(Op, Op0); 1285 1286 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1287 // single shift. We can do this if the bottom bits (which are shifted 1288 // out) are never demanded. 1289 // TODO - support non-uniform vector amounts. 1290 if (Op0.getOpcode() == ISD::SRL) { 1291 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1292 if (ConstantSDNode *SA2 = 1293 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1294 if (SA2->getAPIntValue().ult(BitWidth)) { 1295 unsigned C1 = SA2->getZExtValue(); 1296 unsigned Opc = ISD::SHL; 1297 int Diff = ShAmt - C1; 1298 if (Diff < 0) { 1299 Diff = -Diff; 1300 Opc = ISD::SRL; 1301 } 1302 1303 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1304 return TLO.CombineTo( 1305 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1306 } 1307 } 1308 } 1309 } 1310 1311 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1312 Known, TLO, Depth + 1)) 1313 return true; 1314 1315 // Try shrinking the operation as long as the shift amount will still be 1316 // in range. 1317 if ((ShAmt < DemandedBits.getActiveBits()) && 1318 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1319 return true; 1320 1321 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1322 // are not demanded. This will likely allow the anyext to be folded away. 1323 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1324 SDValue InnerOp = Op0.getOperand(0); 1325 EVT InnerVT = InnerOp.getValueType(); 1326 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1327 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1328 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1329 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1330 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1331 ShTy = InnerVT; 1332 SDValue NarrowShl = 1333 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1334 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1335 return TLO.CombineTo( 1336 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1337 } 1338 // Repeat the SHL optimization above in cases where an extension 1339 // intervenes: (shl (anyext (shr x, c1)), c2) to 1340 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1341 // aren't demanded (as above) and that the shifted upper c1 bits of 1342 // x aren't demanded. 1343 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1344 InnerOp.hasOneUse()) { 1345 if (ConstantSDNode *SA2 = 1346 isConstOrConstSplat(InnerOp.getOperand(1))) { 1347 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1348 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1349 DemandedBits.getActiveBits() <= 1350 (InnerBits - InnerShAmt + ShAmt) && 1351 DemandedBits.countTrailingZeros() >= ShAmt) { 1352 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1353 Op1.getValueType()); 1354 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1355 InnerOp.getOperand(0)); 1356 return TLO.CombineTo( 1357 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1358 } 1359 } 1360 } 1361 } 1362 1363 Known.Zero <<= ShAmt; 1364 Known.One <<= ShAmt; 1365 // low bits known zero. 1366 Known.Zero.setLowBits(ShAmt); 1367 } 1368 break; 1369 } 1370 case ISD::SRL: { 1371 SDValue Op0 = Op.getOperand(0); 1372 SDValue Op1 = Op.getOperand(1); 1373 1374 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1375 // If the shift count is an invalid immediate, don't do anything. 1376 if (SA->getAPIntValue().uge(BitWidth)) 1377 break; 1378 1379 unsigned ShAmt = SA->getZExtValue(); 1380 if (ShAmt == 0) 1381 return TLO.CombineTo(Op, Op0); 1382 1383 EVT ShiftVT = Op1.getValueType(); 1384 APInt InDemandedMask = (DemandedBits << ShAmt); 1385 1386 // If the shift is exact, then it does demand the low bits (and knows that 1387 // they are zero). 1388 if (Op->getFlags().hasExact()) 1389 InDemandedMask.setLowBits(ShAmt); 1390 1391 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1392 // single shift. We can do this if the top bits (which are shifted out) 1393 // are never demanded. 1394 // TODO - support non-uniform vector amounts. 1395 if (Op0.getOpcode() == ISD::SHL) { 1396 if (ConstantSDNode *SA2 = 1397 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1398 if (!DemandedBits.intersects( 1399 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1400 if (SA2->getAPIntValue().ult(BitWidth)) { 1401 unsigned C1 = SA2->getZExtValue(); 1402 unsigned Opc = ISD::SRL; 1403 int Diff = ShAmt - C1; 1404 if (Diff < 0) { 1405 Diff = -Diff; 1406 Opc = ISD::SHL; 1407 } 1408 1409 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1410 return TLO.CombineTo( 1411 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1412 } 1413 } 1414 } 1415 } 1416 1417 // Compute the new bits that are at the top now. 1418 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1419 Depth + 1)) 1420 return true; 1421 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1422 Known.Zero.lshrInPlace(ShAmt); 1423 Known.One.lshrInPlace(ShAmt); 1424 1425 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1426 } 1427 break; 1428 } 1429 case ISD::SRA: { 1430 SDValue Op0 = Op.getOperand(0); 1431 SDValue Op1 = Op.getOperand(1); 1432 1433 // If this is an arithmetic shift right and only the low-bit is set, we can 1434 // always convert this into a logical shr, even if the shift amount is 1435 // variable. The low bit of the shift cannot be an input sign bit unless 1436 // the shift amount is >= the size of the datatype, which is undefined. 1437 if (DemandedBits.isOneValue()) 1438 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1439 1440 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1441 // If the shift count is an invalid immediate, don't do anything. 1442 if (SA->getAPIntValue().uge(BitWidth)) 1443 break; 1444 1445 unsigned ShAmt = SA->getZExtValue(); 1446 if (ShAmt == 0) 1447 return TLO.CombineTo(Op, Op0); 1448 1449 APInt InDemandedMask = (DemandedBits << ShAmt); 1450 1451 // If the shift is exact, then it does demand the low bits (and knows that 1452 // they are zero). 1453 if (Op->getFlags().hasExact()) 1454 InDemandedMask.setLowBits(ShAmt); 1455 1456 // If any of the demanded bits are produced by the sign extension, we also 1457 // demand the input sign bit. 1458 if (DemandedBits.countLeadingZeros() < ShAmt) 1459 InDemandedMask.setSignBit(); 1460 1461 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1462 Depth + 1)) 1463 return true; 1464 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1465 Known.Zero.lshrInPlace(ShAmt); 1466 Known.One.lshrInPlace(ShAmt); 1467 1468 // If the input sign bit is known to be zero, or if none of the top bits 1469 // are demanded, turn this into an unsigned shift right. 1470 if (Known.Zero[BitWidth - ShAmt - 1] || 1471 DemandedBits.countLeadingZeros() >= ShAmt) { 1472 SDNodeFlags Flags; 1473 Flags.setExact(Op->getFlags().hasExact()); 1474 return TLO.CombineTo( 1475 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1476 } 1477 1478 int Log2 = DemandedBits.exactLogBase2(); 1479 if (Log2 >= 0) { 1480 // The bit must come from the sign. 1481 SDValue NewSA = 1482 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1483 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1484 } 1485 1486 if (Known.One[BitWidth - ShAmt - 1]) 1487 // New bits are known one. 1488 Known.One.setHighBits(ShAmt); 1489 } 1490 break; 1491 } 1492 case ISD::FSHL: 1493 case ISD::FSHR: { 1494 SDValue Op0 = Op.getOperand(0); 1495 SDValue Op1 = Op.getOperand(1); 1496 SDValue Op2 = Op.getOperand(2); 1497 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1498 1499 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1500 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1501 1502 // For fshl, 0-shift returns the 1st arg. 1503 // For fshr, 0-shift returns the 2nd arg. 1504 if (Amt == 0) { 1505 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1506 Known, TLO, Depth + 1)) 1507 return true; 1508 break; 1509 } 1510 1511 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1512 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1513 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1514 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1515 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1516 Depth + 1)) 1517 return true; 1518 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1519 Depth + 1)) 1520 return true; 1521 1522 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1523 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1524 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1525 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1526 Known.One |= Known2.One; 1527 Known.Zero |= Known2.Zero; 1528 } 1529 break; 1530 } 1531 case ISD::BITREVERSE: { 1532 SDValue Src = Op.getOperand(0); 1533 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1534 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1535 Depth + 1)) 1536 return true; 1537 Known.One = Known2.One.reverseBits(); 1538 Known.Zero = Known2.Zero.reverseBits(); 1539 break; 1540 } 1541 case ISD::SIGN_EXTEND_INREG: { 1542 SDValue Op0 = Op.getOperand(0); 1543 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1544 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1545 1546 // If we only care about the highest bit, don't bother shifting right. 1547 if (DemandedBits.isSignMask()) { 1548 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1549 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1550 // However if the input is already sign extended we expect the sign 1551 // extension to be dropped altogether later and do not simplify. 1552 if (!AlreadySignExtended) { 1553 // Compute the correct shift amount type, which must be getShiftAmountTy 1554 // for scalar types after legalization. 1555 EVT ShiftAmtTy = VT; 1556 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1557 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1558 1559 SDValue ShiftAmt = 1560 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1561 return TLO.CombineTo(Op, 1562 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1563 } 1564 } 1565 1566 // If none of the extended bits are demanded, eliminate the sextinreg. 1567 if (DemandedBits.getActiveBits() <= ExVTBits) 1568 return TLO.CombineTo(Op, Op0); 1569 1570 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1571 1572 // Since the sign extended bits are demanded, we know that the sign 1573 // bit is demanded. 1574 InputDemandedBits.setBit(ExVTBits - 1); 1575 1576 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1577 return true; 1578 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1579 1580 // If the sign bit of the input is known set or clear, then we know the 1581 // top bits of the result. 1582 1583 // If the input sign bit is known zero, convert this into a zero extension. 1584 if (Known.Zero[ExVTBits - 1]) 1585 return TLO.CombineTo( 1586 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1587 1588 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1589 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1590 Known.One.setBitsFrom(ExVTBits); 1591 Known.Zero &= Mask; 1592 } else { // Input sign bit unknown 1593 Known.Zero &= Mask; 1594 Known.One &= Mask; 1595 } 1596 break; 1597 } 1598 case ISD::BUILD_PAIR: { 1599 EVT HalfVT = Op.getOperand(0).getValueType(); 1600 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1601 1602 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1603 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1604 1605 KnownBits KnownLo, KnownHi; 1606 1607 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1608 return true; 1609 1610 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1611 return true; 1612 1613 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1614 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1615 1616 Known.One = KnownLo.One.zext(BitWidth) | 1617 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1618 break; 1619 } 1620 case ISD::ZERO_EXTEND: 1621 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1622 SDValue Src = Op.getOperand(0); 1623 EVT SrcVT = Src.getValueType(); 1624 unsigned InBits = SrcVT.getScalarSizeInBits(); 1625 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1626 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1627 1628 // If none of the top bits are demanded, convert this into an any_extend. 1629 if (DemandedBits.getActiveBits() <= InBits) { 1630 // If we only need the non-extended bits of the bottom element 1631 // then we can just bitcast to the result. 1632 if (IsVecInReg && DemandedElts == 1 && 1633 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1634 TLO.DAG.getDataLayout().isLittleEndian()) 1635 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1636 1637 unsigned Opc = 1638 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1639 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1640 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1641 } 1642 1643 APInt InDemandedBits = DemandedBits.trunc(InBits); 1644 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1645 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1646 Depth + 1)) 1647 return true; 1648 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1649 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1650 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1651 break; 1652 } 1653 case ISD::SIGN_EXTEND: 1654 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1655 SDValue Src = Op.getOperand(0); 1656 EVT SrcVT = Src.getValueType(); 1657 unsigned InBits = SrcVT.getScalarSizeInBits(); 1658 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1659 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1660 1661 // If none of the top bits are demanded, convert this into an any_extend. 1662 if (DemandedBits.getActiveBits() <= InBits) { 1663 // If we only need the non-extended bits of the bottom element 1664 // then we can just bitcast to the result. 1665 if (IsVecInReg && DemandedElts == 1 && 1666 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1667 TLO.DAG.getDataLayout().isLittleEndian()) 1668 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1669 1670 unsigned Opc = 1671 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1672 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1673 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1674 } 1675 1676 APInt InDemandedBits = DemandedBits.trunc(InBits); 1677 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1678 1679 // Since some of the sign extended bits are demanded, we know that the sign 1680 // bit is demanded. 1681 InDemandedBits.setBit(InBits - 1); 1682 1683 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1684 Depth + 1)) 1685 return true; 1686 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1687 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1688 1689 // If the sign bit is known one, the top bits match. 1690 Known = Known.sext(BitWidth); 1691 1692 // If the sign bit is known zero, convert this to a zero extend. 1693 if (Known.isNonNegative()) { 1694 unsigned Opc = 1695 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1696 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1697 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1698 } 1699 break; 1700 } 1701 case ISD::ANY_EXTEND: 1702 case ISD::ANY_EXTEND_VECTOR_INREG: { 1703 SDValue Src = Op.getOperand(0); 1704 EVT SrcVT = Src.getValueType(); 1705 unsigned InBits = SrcVT.getScalarSizeInBits(); 1706 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1707 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1708 1709 // If we only need the bottom element then we can just bitcast. 1710 // TODO: Handle ANY_EXTEND? 1711 if (IsVecInReg && DemandedElts == 1 && 1712 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1713 TLO.DAG.getDataLayout().isLittleEndian()) 1714 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1715 1716 APInt InDemandedBits = DemandedBits.trunc(InBits); 1717 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1718 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1719 Depth + 1)) 1720 return true; 1721 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1722 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1723 Known = Known.zext(BitWidth, false /* => any extend */); 1724 break; 1725 } 1726 case ISD::TRUNCATE: { 1727 SDValue Src = Op.getOperand(0); 1728 1729 // Simplify the input, using demanded bit information, and compute the known 1730 // zero/one bits live out. 1731 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1732 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1733 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1734 return true; 1735 Known = Known.trunc(BitWidth); 1736 1737 // Attempt to avoid multi-use ops if we don't need anything from them. 1738 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1739 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1740 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1741 1742 // If the input is only used by this truncate, see if we can shrink it based 1743 // on the known demanded bits. 1744 if (Src.getNode()->hasOneUse()) { 1745 switch (Src.getOpcode()) { 1746 default: 1747 break; 1748 case ISD::SRL: 1749 // Shrink SRL by a constant if none of the high bits shifted in are 1750 // demanded. 1751 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1752 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1753 // undesirable. 1754 break; 1755 1756 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1757 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1758 break; 1759 1760 SDValue Shift = Src.getOperand(1); 1761 uint64_t ShVal = ShAmt->getZExtValue(); 1762 1763 if (TLO.LegalTypes()) 1764 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1765 1766 APInt HighBits = 1767 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1768 HighBits.lshrInPlace(ShVal); 1769 HighBits = HighBits.trunc(BitWidth); 1770 1771 if (!(HighBits & DemandedBits)) { 1772 // None of the shifted in bits are needed. Add a truncate of the 1773 // shift input, then shift it. 1774 SDValue NewTrunc = 1775 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1776 return TLO.CombineTo( 1777 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1778 } 1779 break; 1780 } 1781 } 1782 1783 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1784 break; 1785 } 1786 case ISD::AssertZext: { 1787 // AssertZext demands all of the high bits, plus any of the low bits 1788 // demanded by its users. 1789 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1790 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1791 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1792 TLO, Depth + 1)) 1793 return true; 1794 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1795 1796 Known.Zero |= ~InMask; 1797 break; 1798 } 1799 case ISD::EXTRACT_VECTOR_ELT: { 1800 SDValue Src = Op.getOperand(0); 1801 SDValue Idx = Op.getOperand(1); 1802 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1803 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1804 1805 // Demand the bits from every vector element without a constant index. 1806 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1807 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1808 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1809 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1810 1811 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1812 // anything about the extended bits. 1813 APInt DemandedSrcBits = DemandedBits; 1814 if (BitWidth > EltBitWidth) 1815 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1816 1817 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1818 Depth + 1)) 1819 return true; 1820 1821 Known = Known2; 1822 if (BitWidth > EltBitWidth) 1823 Known = Known.zext(BitWidth, false /* => any extend */); 1824 break; 1825 } 1826 case ISD::BITCAST: { 1827 SDValue Src = Op.getOperand(0); 1828 EVT SrcVT = Src.getValueType(); 1829 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1830 1831 // If this is an FP->Int bitcast and if the sign bit is the only 1832 // thing demanded, turn this into a FGETSIGN. 1833 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1834 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1835 SrcVT.isFloatingPoint()) { 1836 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1837 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1838 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1839 SrcVT != MVT::f128) { 1840 // Cannot eliminate/lower SHL for f128 yet. 1841 EVT Ty = OpVTLegal ? VT : MVT::i32; 1842 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1843 // place. We expect the SHL to be eliminated by other optimizations. 1844 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1845 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1846 if (!OpVTLegal && OpVTSizeInBits > 32) 1847 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1848 unsigned ShVal = Op.getValueSizeInBits() - 1; 1849 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1850 return TLO.CombineTo(Op, 1851 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1852 } 1853 } 1854 1855 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1856 // Demand the elt/bit if any of the original elts/bits are demanded. 1857 // TODO - bigendian once we have test coverage. 1858 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1859 TLO.DAG.getDataLayout().isLittleEndian()) { 1860 unsigned Scale = BitWidth / NumSrcEltBits; 1861 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1862 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1863 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1864 for (unsigned i = 0; i != Scale; ++i) { 1865 unsigned Offset = i * NumSrcEltBits; 1866 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1867 if (!Sub.isNullValue()) { 1868 DemandedSrcBits |= Sub; 1869 for (unsigned j = 0; j != NumElts; ++j) 1870 if (DemandedElts[j]) 1871 DemandedSrcElts.setBit((j * Scale) + i); 1872 } 1873 } 1874 1875 APInt KnownSrcUndef, KnownSrcZero; 1876 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1877 KnownSrcZero, TLO, Depth + 1)) 1878 return true; 1879 1880 KnownBits KnownSrcBits; 1881 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1882 KnownSrcBits, TLO, Depth + 1)) 1883 return true; 1884 } else if ((NumSrcEltBits % BitWidth) == 0 && 1885 TLO.DAG.getDataLayout().isLittleEndian()) { 1886 unsigned Scale = NumSrcEltBits / BitWidth; 1887 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1888 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1889 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1890 for (unsigned i = 0; i != NumElts; ++i) 1891 if (DemandedElts[i]) { 1892 unsigned Offset = (i % Scale) * BitWidth; 1893 DemandedSrcBits.insertBits(DemandedBits, Offset); 1894 DemandedSrcElts.setBit(i / Scale); 1895 } 1896 1897 if (SrcVT.isVector()) { 1898 APInt KnownSrcUndef, KnownSrcZero; 1899 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1900 KnownSrcZero, TLO, Depth + 1)) 1901 return true; 1902 } 1903 1904 KnownBits KnownSrcBits; 1905 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1906 KnownSrcBits, TLO, Depth + 1)) 1907 return true; 1908 } 1909 1910 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1911 // recursive call where Known may be useful to the caller. 1912 if (Depth > 0) { 1913 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1914 return false; 1915 } 1916 break; 1917 } 1918 case ISD::ADD: 1919 case ISD::MUL: 1920 case ISD::SUB: { 1921 // Add, Sub, and Mul don't demand any bits in positions beyond that 1922 // of the highest bit demanded of them. 1923 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1924 SDNodeFlags Flags = Op.getNode()->getFlags(); 1925 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1926 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1927 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1928 Depth + 1) || 1929 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1930 Depth + 1) || 1931 // See if the operation should be performed at a smaller bit width. 1932 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1933 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1934 // Disable the nsw and nuw flags. We can no longer guarantee that we 1935 // won't wrap after simplification. 1936 Flags.setNoSignedWrap(false); 1937 Flags.setNoUnsignedWrap(false); 1938 SDValue NewOp = 1939 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1940 return TLO.CombineTo(Op, NewOp); 1941 } 1942 return true; 1943 } 1944 1945 // Attempt to avoid multi-use ops if we don't need anything from them. 1946 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1947 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1948 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1949 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1950 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1951 if (DemandedOp0 || DemandedOp1) { 1952 Flags.setNoSignedWrap(false); 1953 Flags.setNoUnsignedWrap(false); 1954 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1955 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1956 SDValue NewOp = 1957 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1958 return TLO.CombineTo(Op, NewOp); 1959 } 1960 } 1961 1962 // If we have a constant operand, we may be able to turn it into -1 if we 1963 // do not demand the high bits. This can make the constant smaller to 1964 // encode, allow more general folding, or match specialized instruction 1965 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1966 // is probably not useful (and could be detrimental). 1967 ConstantSDNode *C = isConstOrConstSplat(Op1); 1968 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1969 if (C && !C->isAllOnesValue() && !C->isOne() && 1970 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1971 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1972 // Disable the nsw and nuw flags. We can no longer guarantee that we 1973 // won't wrap after simplification. 1974 Flags.setNoSignedWrap(false); 1975 Flags.setNoUnsignedWrap(false); 1976 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1977 return TLO.CombineTo(Op, NewOp); 1978 } 1979 1980 LLVM_FALLTHROUGH; 1981 } 1982 default: 1983 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1984 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1985 Known, TLO, Depth)) 1986 return true; 1987 break; 1988 } 1989 1990 // Just use computeKnownBits to compute output bits. 1991 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1992 break; 1993 } 1994 1995 // If we know the value of all of the demanded bits, return this as a 1996 // constant. 1997 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1998 // Avoid folding to a constant if any OpaqueConstant is involved. 1999 const SDNode *N = Op.getNode(); 2000 for (SDNodeIterator I = SDNodeIterator::begin(N), 2001 E = SDNodeIterator::end(N); 2002 I != E; ++I) { 2003 SDNode *Op = *I; 2004 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2005 if (C->isOpaque()) 2006 return false; 2007 } 2008 // TODO: Handle float bits as well. 2009 if (VT.isInteger()) 2010 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2011 } 2012 2013 return false; 2014 } 2015 2016 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2017 const APInt &DemandedElts, 2018 APInt &KnownUndef, 2019 APInt &KnownZero, 2020 DAGCombinerInfo &DCI) const { 2021 SelectionDAG &DAG = DCI.DAG; 2022 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2023 !DCI.isBeforeLegalizeOps()); 2024 2025 bool Simplified = 2026 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2027 if (Simplified) { 2028 DCI.AddToWorklist(Op.getNode()); 2029 DCI.CommitTargetLoweringOpt(TLO); 2030 } 2031 2032 return Simplified; 2033 } 2034 2035 /// Given a vector binary operation and known undefined elements for each input 2036 /// operand, compute whether each element of the output is undefined. 2037 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2038 const APInt &UndefOp0, 2039 const APInt &UndefOp1) { 2040 EVT VT = BO.getValueType(); 2041 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2042 "Vector binop only"); 2043 2044 EVT EltVT = VT.getVectorElementType(); 2045 unsigned NumElts = VT.getVectorNumElements(); 2046 assert(UndefOp0.getBitWidth() == NumElts && 2047 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2048 2049 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2050 const APInt &UndefVals) { 2051 if (UndefVals[Index]) 2052 return DAG.getUNDEF(EltVT); 2053 2054 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2055 // Try hard to make sure that the getNode() call is not creating temporary 2056 // nodes. Ignore opaque integers because they do not constant fold. 2057 SDValue Elt = BV->getOperand(Index); 2058 auto *C = dyn_cast<ConstantSDNode>(Elt); 2059 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2060 return Elt; 2061 } 2062 2063 return SDValue(); 2064 }; 2065 2066 APInt KnownUndef = APInt::getNullValue(NumElts); 2067 for (unsigned i = 0; i != NumElts; ++i) { 2068 // If both inputs for this element are either constant or undef and match 2069 // the element type, compute the constant/undef result for this element of 2070 // the vector. 2071 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2072 // not handle FP constants. The code within getNode() should be refactored 2073 // to avoid the danger of creating a bogus temporary node here. 2074 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2075 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2076 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2077 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2078 KnownUndef.setBit(i); 2079 } 2080 return KnownUndef; 2081 } 2082 2083 bool TargetLowering::SimplifyDemandedVectorElts( 2084 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2085 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2086 bool AssumeSingleUse) const { 2087 EVT VT = Op.getValueType(); 2088 APInt DemandedElts = OriginalDemandedElts; 2089 unsigned NumElts = DemandedElts.getBitWidth(); 2090 assert(VT.isVector() && "Expected vector op"); 2091 assert(VT.getVectorNumElements() == NumElts && 2092 "Mask size mismatches value type element count!"); 2093 2094 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2095 2096 // Undef operand. 2097 if (Op.isUndef()) { 2098 KnownUndef.setAllBits(); 2099 return false; 2100 } 2101 2102 // If Op has other users, assume that all elements are needed. 2103 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2104 DemandedElts.setAllBits(); 2105 2106 // Not demanding any elements from Op. 2107 if (DemandedElts == 0) { 2108 KnownUndef.setAllBits(); 2109 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2110 } 2111 2112 // Limit search depth. 2113 if (Depth >= SelectionDAG::MaxRecursionDepth) 2114 return false; 2115 2116 SDLoc DL(Op); 2117 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2118 2119 switch (Op.getOpcode()) { 2120 case ISD::SCALAR_TO_VECTOR: { 2121 if (!DemandedElts[0]) { 2122 KnownUndef.setAllBits(); 2123 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2124 } 2125 KnownUndef.setHighBits(NumElts - 1); 2126 break; 2127 } 2128 case ISD::BITCAST: { 2129 SDValue Src = Op.getOperand(0); 2130 EVT SrcVT = Src.getValueType(); 2131 2132 // We only handle vectors here. 2133 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2134 if (!SrcVT.isVector()) 2135 break; 2136 2137 // Fast handling of 'identity' bitcasts. 2138 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2139 if (NumSrcElts == NumElts) 2140 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2141 KnownZero, TLO, Depth + 1); 2142 2143 APInt SrcZero, SrcUndef; 2144 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2145 2146 // Bitcast from 'large element' src vector to 'small element' vector, we 2147 // must demand a source element if any DemandedElt maps to it. 2148 if ((NumElts % NumSrcElts) == 0) { 2149 unsigned Scale = NumElts / NumSrcElts; 2150 for (unsigned i = 0; i != NumElts; ++i) 2151 if (DemandedElts[i]) 2152 SrcDemandedElts.setBit(i / Scale); 2153 2154 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2155 TLO, Depth + 1)) 2156 return true; 2157 2158 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2159 // of the large element. 2160 // TODO - bigendian once we have test coverage. 2161 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2162 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2163 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2164 for (unsigned i = 0; i != NumElts; ++i) 2165 if (DemandedElts[i]) { 2166 unsigned Ofs = (i % Scale) * EltSizeInBits; 2167 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2168 } 2169 2170 KnownBits Known; 2171 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2172 return true; 2173 } 2174 2175 // If the src element is zero/undef then all the output elements will be - 2176 // only demanded elements are guaranteed to be correct. 2177 for (unsigned i = 0; i != NumSrcElts; ++i) { 2178 if (SrcDemandedElts[i]) { 2179 if (SrcZero[i]) 2180 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2181 if (SrcUndef[i]) 2182 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2183 } 2184 } 2185 } 2186 2187 // Bitcast from 'small element' src vector to 'large element' vector, we 2188 // demand all smaller source elements covered by the larger demanded element 2189 // of this vector. 2190 if ((NumSrcElts % NumElts) == 0) { 2191 unsigned Scale = NumSrcElts / NumElts; 2192 for (unsigned i = 0; i != NumElts; ++i) 2193 if (DemandedElts[i]) 2194 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2195 2196 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2197 TLO, Depth + 1)) 2198 return true; 2199 2200 // If all the src elements covering an output element are zero/undef, then 2201 // the output element will be as well, assuming it was demanded. 2202 for (unsigned i = 0; i != NumElts; ++i) { 2203 if (DemandedElts[i]) { 2204 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2205 KnownZero.setBit(i); 2206 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2207 KnownUndef.setBit(i); 2208 } 2209 } 2210 } 2211 break; 2212 } 2213 case ISD::BUILD_VECTOR: { 2214 // Check all elements and simplify any unused elements with UNDEF. 2215 if (!DemandedElts.isAllOnesValue()) { 2216 // Don't simplify BROADCASTS. 2217 if (llvm::any_of(Op->op_values(), 2218 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2219 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2220 bool Updated = false; 2221 for (unsigned i = 0; i != NumElts; ++i) { 2222 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2223 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2224 KnownUndef.setBit(i); 2225 Updated = true; 2226 } 2227 } 2228 if (Updated) 2229 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2230 } 2231 } 2232 for (unsigned i = 0; i != NumElts; ++i) { 2233 SDValue SrcOp = Op.getOperand(i); 2234 if (SrcOp.isUndef()) { 2235 KnownUndef.setBit(i); 2236 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2237 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2238 KnownZero.setBit(i); 2239 } 2240 } 2241 break; 2242 } 2243 case ISD::CONCAT_VECTORS: { 2244 EVT SubVT = Op.getOperand(0).getValueType(); 2245 unsigned NumSubVecs = Op.getNumOperands(); 2246 unsigned NumSubElts = SubVT.getVectorNumElements(); 2247 for (unsigned i = 0; i != NumSubVecs; ++i) { 2248 SDValue SubOp = Op.getOperand(i); 2249 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2250 APInt SubUndef, SubZero; 2251 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2252 Depth + 1)) 2253 return true; 2254 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2255 KnownZero.insertBits(SubZero, i * NumSubElts); 2256 } 2257 break; 2258 } 2259 case ISD::INSERT_SUBVECTOR: { 2260 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2261 break; 2262 SDValue Base = Op.getOperand(0); 2263 SDValue Sub = Op.getOperand(1); 2264 EVT SubVT = Sub.getValueType(); 2265 unsigned NumSubElts = SubVT.getVectorNumElements(); 2266 const APInt &Idx = Op.getConstantOperandAPInt(2); 2267 if (Idx.ugt(NumElts - NumSubElts)) 2268 break; 2269 unsigned SubIdx = Idx.getZExtValue(); 2270 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2271 APInt SubUndef, SubZero; 2272 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2273 Depth + 1)) 2274 return true; 2275 APInt BaseElts = DemandedElts; 2276 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2277 2278 // If none of the base operand elements are demanded, replace it with undef. 2279 if (!BaseElts && !Base.isUndef()) 2280 return TLO.CombineTo(Op, 2281 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2282 TLO.DAG.getUNDEF(VT), 2283 Op.getOperand(1), 2284 Op.getOperand(2))); 2285 2286 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2287 Depth + 1)) 2288 return true; 2289 KnownUndef.insertBits(SubUndef, SubIdx); 2290 KnownZero.insertBits(SubZero, SubIdx); 2291 break; 2292 } 2293 case ISD::EXTRACT_SUBVECTOR: { 2294 SDValue Src = Op.getOperand(0); 2295 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2296 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2297 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2298 // Offset the demanded elts by the subvector index. 2299 uint64_t Idx = SubIdx->getZExtValue(); 2300 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2301 APInt SrcUndef, SrcZero; 2302 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2303 Depth + 1)) 2304 return true; 2305 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2306 KnownZero = SrcZero.extractBits(NumElts, Idx); 2307 } 2308 break; 2309 } 2310 case ISD::INSERT_VECTOR_ELT: { 2311 SDValue Vec = Op.getOperand(0); 2312 SDValue Scl = Op.getOperand(1); 2313 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2314 2315 // For a legal, constant insertion index, if we don't need this insertion 2316 // then strip it, else remove it from the demanded elts. 2317 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2318 unsigned Idx = CIdx->getZExtValue(); 2319 if (!DemandedElts[Idx]) 2320 return TLO.CombineTo(Op, Vec); 2321 2322 APInt DemandedVecElts(DemandedElts); 2323 DemandedVecElts.clearBit(Idx); 2324 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2325 KnownZero, TLO, Depth + 1)) 2326 return true; 2327 2328 KnownUndef.clearBit(Idx); 2329 if (Scl.isUndef()) 2330 KnownUndef.setBit(Idx); 2331 2332 KnownZero.clearBit(Idx); 2333 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2334 KnownZero.setBit(Idx); 2335 break; 2336 } 2337 2338 APInt VecUndef, VecZero; 2339 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2340 Depth + 1)) 2341 return true; 2342 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2343 break; 2344 } 2345 case ISD::VSELECT: { 2346 // Try to transform the select condition based on the current demanded 2347 // elements. 2348 // TODO: If a condition element is undef, we can choose from one arm of the 2349 // select (and if one arm is undef, then we can propagate that to the 2350 // result). 2351 // TODO - add support for constant vselect masks (see IR version of this). 2352 APInt UnusedUndef, UnusedZero; 2353 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2354 UnusedZero, TLO, Depth + 1)) 2355 return true; 2356 2357 // See if we can simplify either vselect operand. 2358 APInt DemandedLHS(DemandedElts); 2359 APInt DemandedRHS(DemandedElts); 2360 APInt UndefLHS, ZeroLHS; 2361 APInt UndefRHS, ZeroRHS; 2362 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2363 ZeroLHS, TLO, Depth + 1)) 2364 return true; 2365 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2366 ZeroRHS, TLO, Depth + 1)) 2367 return true; 2368 2369 KnownUndef = UndefLHS & UndefRHS; 2370 KnownZero = ZeroLHS & ZeroRHS; 2371 break; 2372 } 2373 case ISD::VECTOR_SHUFFLE: { 2374 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2375 2376 // Collect demanded elements from shuffle operands.. 2377 APInt DemandedLHS(NumElts, 0); 2378 APInt DemandedRHS(NumElts, 0); 2379 for (unsigned i = 0; i != NumElts; ++i) { 2380 int M = ShuffleMask[i]; 2381 if (M < 0 || !DemandedElts[i]) 2382 continue; 2383 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2384 if (M < (int)NumElts) 2385 DemandedLHS.setBit(M); 2386 else 2387 DemandedRHS.setBit(M - NumElts); 2388 } 2389 2390 // See if we can simplify either shuffle operand. 2391 APInt UndefLHS, ZeroLHS; 2392 APInt UndefRHS, ZeroRHS; 2393 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2394 ZeroLHS, TLO, Depth + 1)) 2395 return true; 2396 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2397 ZeroRHS, TLO, Depth + 1)) 2398 return true; 2399 2400 // Simplify mask using undef elements from LHS/RHS. 2401 bool Updated = false; 2402 bool IdentityLHS = true, IdentityRHS = true; 2403 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2404 for (unsigned i = 0; i != NumElts; ++i) { 2405 int &M = NewMask[i]; 2406 if (M < 0) 2407 continue; 2408 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2409 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2410 Updated = true; 2411 M = -1; 2412 } 2413 IdentityLHS &= (M < 0) || (M == (int)i); 2414 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2415 } 2416 2417 // Update legal shuffle masks based on demanded elements if it won't reduce 2418 // to Identity which can cause premature removal of the shuffle mask. 2419 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2420 SDValue LegalShuffle = 2421 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2422 NewMask, TLO.DAG); 2423 if (LegalShuffle) 2424 return TLO.CombineTo(Op, LegalShuffle); 2425 } 2426 2427 // Propagate undef/zero elements from LHS/RHS. 2428 for (unsigned i = 0; i != NumElts; ++i) { 2429 int M = ShuffleMask[i]; 2430 if (M < 0) { 2431 KnownUndef.setBit(i); 2432 } else if (M < (int)NumElts) { 2433 if (UndefLHS[M]) 2434 KnownUndef.setBit(i); 2435 if (ZeroLHS[M]) 2436 KnownZero.setBit(i); 2437 } else { 2438 if (UndefRHS[M - NumElts]) 2439 KnownUndef.setBit(i); 2440 if (ZeroRHS[M - NumElts]) 2441 KnownZero.setBit(i); 2442 } 2443 } 2444 break; 2445 } 2446 case ISD::ANY_EXTEND_VECTOR_INREG: 2447 case ISD::SIGN_EXTEND_VECTOR_INREG: 2448 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2449 APInt SrcUndef, SrcZero; 2450 SDValue Src = Op.getOperand(0); 2451 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2452 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2453 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2454 Depth + 1)) 2455 return true; 2456 KnownZero = SrcZero.zextOrTrunc(NumElts); 2457 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2458 2459 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2460 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2461 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2462 // aext - if we just need the bottom element then we can bitcast. 2463 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2464 } 2465 2466 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2467 // zext(undef) upper bits are guaranteed to be zero. 2468 if (DemandedElts.isSubsetOf(KnownUndef)) 2469 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2470 KnownUndef.clearAllBits(); 2471 } 2472 break; 2473 } 2474 2475 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2476 // MAX, saturated math, etc. 2477 case ISD::OR: 2478 case ISD::XOR: 2479 case ISD::ADD: 2480 case ISD::SUB: 2481 case ISD::FADD: 2482 case ISD::FSUB: 2483 case ISD::FMUL: 2484 case ISD::FDIV: 2485 case ISD::FREM: { 2486 APInt UndefRHS, ZeroRHS; 2487 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2488 ZeroRHS, TLO, Depth + 1)) 2489 return true; 2490 APInt UndefLHS, ZeroLHS; 2491 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2492 ZeroLHS, TLO, Depth + 1)) 2493 return true; 2494 2495 KnownZero = ZeroLHS & ZeroRHS; 2496 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2497 break; 2498 } 2499 case ISD::SHL: 2500 case ISD::SRL: 2501 case ISD::SRA: 2502 case ISD::ROTL: 2503 case ISD::ROTR: { 2504 APInt UndefRHS, ZeroRHS; 2505 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2506 ZeroRHS, TLO, Depth + 1)) 2507 return true; 2508 APInt UndefLHS, ZeroLHS; 2509 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2510 ZeroLHS, TLO, Depth + 1)) 2511 return true; 2512 2513 KnownZero = ZeroLHS; 2514 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2515 break; 2516 } 2517 case ISD::MUL: 2518 case ISD::AND: { 2519 APInt SrcUndef, SrcZero; 2520 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2521 SrcZero, TLO, Depth + 1)) 2522 return true; 2523 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2524 KnownZero, TLO, Depth + 1)) 2525 return true; 2526 2527 // If either side has a zero element, then the result element is zero, even 2528 // if the other is an UNDEF. 2529 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2530 // and then handle 'and' nodes with the rest of the binop opcodes. 2531 KnownZero |= SrcZero; 2532 KnownUndef &= SrcUndef; 2533 KnownUndef &= ~KnownZero; 2534 break; 2535 } 2536 case ISD::TRUNCATE: 2537 case ISD::SIGN_EXTEND: 2538 case ISD::ZERO_EXTEND: 2539 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2540 KnownZero, TLO, Depth + 1)) 2541 return true; 2542 2543 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2544 // zext(undef) upper bits are guaranteed to be zero. 2545 if (DemandedElts.isSubsetOf(KnownUndef)) 2546 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2547 KnownUndef.clearAllBits(); 2548 } 2549 break; 2550 default: { 2551 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2552 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2553 KnownZero, TLO, Depth)) 2554 return true; 2555 } else { 2556 KnownBits Known; 2557 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2558 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2559 TLO, Depth, AssumeSingleUse)) 2560 return true; 2561 } 2562 break; 2563 } 2564 } 2565 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2566 2567 // Constant fold all undef cases. 2568 // TODO: Handle zero cases as well. 2569 if (DemandedElts.isSubsetOf(KnownUndef)) 2570 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2571 2572 return false; 2573 } 2574 2575 /// Determine which of the bits specified in Mask are known to be either zero or 2576 /// one and return them in the Known. 2577 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2578 KnownBits &Known, 2579 const APInt &DemandedElts, 2580 const SelectionDAG &DAG, 2581 unsigned Depth) const { 2582 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2583 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2584 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2585 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2586 "Should use MaskedValueIsZero if you don't know whether Op" 2587 " is a target node!"); 2588 Known.resetAll(); 2589 } 2590 2591 void TargetLowering::computeKnownBitsForTargetInstr( 2592 Register R, KnownBits &Known, const APInt &DemandedElts, 2593 const MachineRegisterInfo &MRI, unsigned Depth) const { 2594 Known.resetAll(); 2595 } 2596 2597 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2598 KnownBits &Known, 2599 const APInt &DemandedElts, 2600 const SelectionDAG &DAG, 2601 unsigned Depth) const { 2602 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2603 2604 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2605 // The low bits are known zero if the pointer is aligned. 2606 Known.Zero.setLowBits(Log2_32(Align)); 2607 } 2608 } 2609 2610 /// This method can be implemented by targets that want to expose additional 2611 /// information about sign bits to the DAG Combiner. 2612 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2613 const APInt &, 2614 const SelectionDAG &, 2615 unsigned Depth) const { 2616 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2617 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2618 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2619 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2620 "Should use ComputeNumSignBits if you don't know whether Op" 2621 " is a target node!"); 2622 return 1; 2623 } 2624 2625 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2626 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2627 TargetLoweringOpt &TLO, unsigned Depth) const { 2628 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2629 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2630 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2631 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2632 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2633 " is a target node!"); 2634 return false; 2635 } 2636 2637 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2638 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2639 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2640 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2641 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2642 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2643 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2644 "Should use SimplifyDemandedBits if you don't know whether Op" 2645 " is a target node!"); 2646 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2647 return false; 2648 } 2649 2650 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2651 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2652 SelectionDAG &DAG, unsigned Depth) const { 2653 assert( 2654 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2655 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2656 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2657 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2658 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2659 " is a target node!"); 2660 return SDValue(); 2661 } 2662 2663 SDValue 2664 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2665 SDValue N1, MutableArrayRef<int> Mask, 2666 SelectionDAG &DAG) const { 2667 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2668 if (!LegalMask) { 2669 std::swap(N0, N1); 2670 ShuffleVectorSDNode::commuteMask(Mask); 2671 LegalMask = isShuffleMaskLegal(Mask, VT); 2672 } 2673 2674 if (!LegalMask) 2675 return SDValue(); 2676 2677 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2678 } 2679 2680 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2681 return nullptr; 2682 } 2683 2684 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2685 const SelectionDAG &DAG, 2686 bool SNaN, 2687 unsigned Depth) const { 2688 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2689 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2690 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2691 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2692 "Should use isKnownNeverNaN if you don't know whether Op" 2693 " is a target node!"); 2694 return false; 2695 } 2696 2697 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2698 // work with truncating build vectors and vectors with elements of less than 2699 // 8 bits. 2700 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2701 if (!N) 2702 return false; 2703 2704 APInt CVal; 2705 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2706 CVal = CN->getAPIntValue(); 2707 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2708 auto *CN = BV->getConstantSplatNode(); 2709 if (!CN) 2710 return false; 2711 2712 // If this is a truncating build vector, truncate the splat value. 2713 // Otherwise, we may fail to match the expected values below. 2714 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2715 CVal = CN->getAPIntValue(); 2716 if (BVEltWidth < CVal.getBitWidth()) 2717 CVal = CVal.trunc(BVEltWidth); 2718 } else { 2719 return false; 2720 } 2721 2722 switch (getBooleanContents(N->getValueType(0))) { 2723 case UndefinedBooleanContent: 2724 return CVal[0]; 2725 case ZeroOrOneBooleanContent: 2726 return CVal.isOneValue(); 2727 case ZeroOrNegativeOneBooleanContent: 2728 return CVal.isAllOnesValue(); 2729 } 2730 2731 llvm_unreachable("Invalid boolean contents"); 2732 } 2733 2734 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2735 if (!N) 2736 return false; 2737 2738 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2739 if (!CN) { 2740 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2741 if (!BV) 2742 return false; 2743 2744 // Only interested in constant splats, we don't care about undef 2745 // elements in identifying boolean constants and getConstantSplatNode 2746 // returns NULL if all ops are undef; 2747 CN = BV->getConstantSplatNode(); 2748 if (!CN) 2749 return false; 2750 } 2751 2752 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2753 return !CN->getAPIntValue()[0]; 2754 2755 return CN->isNullValue(); 2756 } 2757 2758 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2759 bool SExt) const { 2760 if (VT == MVT::i1) 2761 return N->isOne(); 2762 2763 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2764 switch (Cnt) { 2765 case TargetLowering::ZeroOrOneBooleanContent: 2766 // An extended value of 1 is always true, unless its original type is i1, 2767 // in which case it will be sign extended to -1. 2768 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2769 case TargetLowering::UndefinedBooleanContent: 2770 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2771 return N->isAllOnesValue() && SExt; 2772 } 2773 llvm_unreachable("Unexpected enumeration."); 2774 } 2775 2776 /// This helper function of SimplifySetCC tries to optimize the comparison when 2777 /// either operand of the SetCC node is a bitwise-and instruction. 2778 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2779 ISD::CondCode Cond, const SDLoc &DL, 2780 DAGCombinerInfo &DCI) const { 2781 // Match these patterns in any of their permutations: 2782 // (X & Y) == Y 2783 // (X & Y) != Y 2784 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2785 std::swap(N0, N1); 2786 2787 EVT OpVT = N0.getValueType(); 2788 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2789 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2790 return SDValue(); 2791 2792 SDValue X, Y; 2793 if (N0.getOperand(0) == N1) { 2794 X = N0.getOperand(1); 2795 Y = N0.getOperand(0); 2796 } else if (N0.getOperand(1) == N1) { 2797 X = N0.getOperand(0); 2798 Y = N0.getOperand(1); 2799 } else { 2800 return SDValue(); 2801 } 2802 2803 SelectionDAG &DAG = DCI.DAG; 2804 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2805 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2806 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2807 // Note that where Y is variable and is known to have at most one bit set 2808 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2809 // equivalent when Y == 0. 2810 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2811 if (DCI.isBeforeLegalizeOps() || 2812 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2813 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2814 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2815 // If the target supports an 'and-not' or 'and-complement' logic operation, 2816 // try to use that to make a comparison operation more efficient. 2817 // But don't do this transform if the mask is a single bit because there are 2818 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2819 // 'rlwinm' on PPC). 2820 2821 // Bail out if the compare operand that we want to turn into a zero is 2822 // already a zero (otherwise, infinite loop). 2823 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2824 if (YConst && YConst->isNullValue()) 2825 return SDValue(); 2826 2827 // Transform this into: ~X & Y == 0. 2828 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2829 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2830 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2831 } 2832 2833 return SDValue(); 2834 } 2835 2836 /// There are multiple IR patterns that could be checking whether certain 2837 /// truncation of a signed number would be lossy or not. The pattern which is 2838 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2839 /// We are looking for the following pattern: (KeptBits is a constant) 2840 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2841 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2842 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2843 /// We will unfold it into the natural trunc+sext pattern: 2844 /// ((%x << C) a>> C) dstcond %x 2845 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2846 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2847 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2848 const SDLoc &DL) const { 2849 // We must be comparing with a constant. 2850 ConstantSDNode *C1; 2851 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2852 return SDValue(); 2853 2854 // N0 should be: add %x, (1 << (KeptBits-1)) 2855 if (N0->getOpcode() != ISD::ADD) 2856 return SDValue(); 2857 2858 // And we must be 'add'ing a constant. 2859 ConstantSDNode *C01; 2860 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2861 return SDValue(); 2862 2863 SDValue X = N0->getOperand(0); 2864 EVT XVT = X.getValueType(); 2865 2866 // Validate constants ... 2867 2868 APInt I1 = C1->getAPIntValue(); 2869 2870 ISD::CondCode NewCond; 2871 if (Cond == ISD::CondCode::SETULT) { 2872 NewCond = ISD::CondCode::SETEQ; 2873 } else if (Cond == ISD::CondCode::SETULE) { 2874 NewCond = ISD::CondCode::SETEQ; 2875 // But need to 'canonicalize' the constant. 2876 I1 += 1; 2877 } else if (Cond == ISD::CondCode::SETUGT) { 2878 NewCond = ISD::CondCode::SETNE; 2879 // But need to 'canonicalize' the constant. 2880 I1 += 1; 2881 } else if (Cond == ISD::CondCode::SETUGE) { 2882 NewCond = ISD::CondCode::SETNE; 2883 } else 2884 return SDValue(); 2885 2886 APInt I01 = C01->getAPIntValue(); 2887 2888 auto checkConstants = [&I1, &I01]() -> bool { 2889 // Both of them must be power-of-two, and the constant from setcc is bigger. 2890 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2891 }; 2892 2893 if (checkConstants()) { 2894 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2895 } else { 2896 // What if we invert constants? (and the target predicate) 2897 I1.negate(); 2898 I01.negate(); 2899 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2900 if (!checkConstants()) 2901 return SDValue(); 2902 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2903 } 2904 2905 // They are power-of-two, so which bit is set? 2906 const unsigned KeptBits = I1.logBase2(); 2907 const unsigned KeptBitsMinusOne = I01.logBase2(); 2908 2909 // Magic! 2910 if (KeptBits != (KeptBitsMinusOne + 1)) 2911 return SDValue(); 2912 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2913 2914 // We don't want to do this in every single case. 2915 SelectionDAG &DAG = DCI.DAG; 2916 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2917 XVT, KeptBits)) 2918 return SDValue(); 2919 2920 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2921 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2922 2923 // Unfold into: ((%x << C) a>> C) cond %x 2924 // Where 'cond' will be either 'eq' or 'ne'. 2925 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2926 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2927 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2928 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2929 2930 return T2; 2931 } 2932 2933 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 2934 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 2935 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 2936 DAGCombinerInfo &DCI, const SDLoc &DL) const { 2937 assert(isConstOrConstSplat(N1C) && 2938 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 2939 "Should be a comparison with 0."); 2940 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2941 "Valid only for [in]equality comparisons."); 2942 2943 unsigned NewShiftOpcode; 2944 SDValue X, C, Y; 2945 2946 SelectionDAG &DAG = DCI.DAG; 2947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2948 2949 // Look for '(C l>>/<< Y)'. 2950 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 2951 // The shift should be one-use. 2952 if (!V.hasOneUse()) 2953 return false; 2954 unsigned OldShiftOpcode = V.getOpcode(); 2955 switch (OldShiftOpcode) { 2956 case ISD::SHL: 2957 NewShiftOpcode = ISD::SRL; 2958 break; 2959 case ISD::SRL: 2960 NewShiftOpcode = ISD::SHL; 2961 break; 2962 default: 2963 return false; // must be a logical shift. 2964 } 2965 // We should be shifting a constant. 2966 // FIXME: best to use isConstantOrConstantVector(). 2967 C = V.getOperand(0); 2968 ConstantSDNode *CC = 2969 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2970 if (!CC) 2971 return false; 2972 Y = V.getOperand(1); 2973 2974 ConstantSDNode *XC = 2975 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2976 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 2977 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 2978 }; 2979 2980 // LHS of comparison should be an one-use 'and'. 2981 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 2982 return SDValue(); 2983 2984 X = N0.getOperand(0); 2985 SDValue Mask = N0.getOperand(1); 2986 2987 // 'and' is commutative! 2988 if (!Match(Mask)) { 2989 std::swap(X, Mask); 2990 if (!Match(Mask)) 2991 return SDValue(); 2992 } 2993 2994 EVT VT = X.getValueType(); 2995 2996 // Produce: 2997 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 2998 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 2999 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3000 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3001 return T2; 3002 } 3003 3004 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3005 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3006 /// handle the commuted versions of these patterns. 3007 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3008 ISD::CondCode Cond, const SDLoc &DL, 3009 DAGCombinerInfo &DCI) const { 3010 unsigned BOpcode = N0.getOpcode(); 3011 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3012 "Unexpected binop"); 3013 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3014 3015 // (X + Y) == X --> Y == 0 3016 // (X - Y) == X --> Y == 0 3017 // (X ^ Y) == X --> Y == 0 3018 SelectionDAG &DAG = DCI.DAG; 3019 EVT OpVT = N0.getValueType(); 3020 SDValue X = N0.getOperand(0); 3021 SDValue Y = N0.getOperand(1); 3022 if (X == N1) 3023 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3024 3025 if (Y != N1) 3026 return SDValue(); 3027 3028 // (X + Y) == Y --> X == 0 3029 // (X ^ Y) == Y --> X == 0 3030 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3031 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3032 3033 // The shift would not be valid if the operands are boolean (i1). 3034 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3035 return SDValue(); 3036 3037 // (X - Y) == Y --> X == Y << 1 3038 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3039 !DCI.isBeforeLegalize()); 3040 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3041 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3042 if (!DCI.isCalledByLegalizer()) 3043 DCI.AddToWorklist(YShl1.getNode()); 3044 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3045 } 3046 3047 /// Try to simplify a setcc built with the specified operands and cc. If it is 3048 /// unable to simplify it, return a null SDValue. 3049 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3050 ISD::CondCode Cond, bool foldBooleans, 3051 DAGCombinerInfo &DCI, 3052 const SDLoc &dl) const { 3053 SelectionDAG &DAG = DCI.DAG; 3054 EVT OpVT = N0.getValueType(); 3055 3056 // Constant fold or commute setcc. 3057 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3058 return Fold; 3059 3060 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3061 // TODO: Handle non-splat vector constants. All undef causes trouble. 3062 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3063 if (isConstOrConstSplat(N0) && 3064 (DCI.isBeforeLegalizeOps() || 3065 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3066 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3067 3068 // If we have a subtract with the same 2 non-constant operands as this setcc 3069 // -- but in reverse order -- then try to commute the operands of this setcc 3070 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3071 // instruction on some targets. 3072 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3073 (DCI.isBeforeLegalizeOps() || 3074 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3075 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3076 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3077 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3078 3079 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3080 const APInt &C1 = N1C->getAPIntValue(); 3081 3082 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3083 // equality comparison, then we're just comparing whether X itself is 3084 // zero. 3085 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3086 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3087 N0.getOperand(1).getOpcode() == ISD::Constant) { 3088 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3089 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3090 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3091 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3092 // (srl (ctlz x), 5) == 0 -> X != 0 3093 // (srl (ctlz x), 5) != 1 -> X != 0 3094 Cond = ISD::SETNE; 3095 } else { 3096 // (srl (ctlz x), 5) != 0 -> X == 0 3097 // (srl (ctlz x), 5) == 1 -> X == 0 3098 Cond = ISD::SETEQ; 3099 } 3100 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3101 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3102 Zero, Cond); 3103 } 3104 } 3105 3106 SDValue CTPOP = N0; 3107 // Look through truncs that don't change the value of a ctpop. 3108 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3109 CTPOP = N0.getOperand(0); 3110 3111 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3112 (N0 == CTPOP || 3113 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3114 EVT CTVT = CTPOP.getValueType(); 3115 SDValue CTOp = CTPOP.getOperand(0); 3116 3117 // (ctpop x) u< 2 -> (x & x-1) == 0 3118 // (ctpop x) u> 1 -> (x & x-1) != 0 3119 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3120 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3121 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3122 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3123 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3124 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3125 } 3126 3127 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3128 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3129 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3130 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3131 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3132 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3133 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3134 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true); 3135 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3136 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3137 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3138 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3139 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3140 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3141 } 3142 } 3143 3144 // (zext x) == C --> x == (trunc C) 3145 // (sext x) == C --> x == (trunc C) 3146 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3147 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3148 unsigned MinBits = N0.getValueSizeInBits(); 3149 SDValue PreExt; 3150 bool Signed = false; 3151 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3152 // ZExt 3153 MinBits = N0->getOperand(0).getValueSizeInBits(); 3154 PreExt = N0->getOperand(0); 3155 } else if (N0->getOpcode() == ISD::AND) { 3156 // DAGCombine turns costly ZExts into ANDs 3157 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3158 if ((C->getAPIntValue()+1).isPowerOf2()) { 3159 MinBits = C->getAPIntValue().countTrailingOnes(); 3160 PreExt = N0->getOperand(0); 3161 } 3162 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3163 // SExt 3164 MinBits = N0->getOperand(0).getValueSizeInBits(); 3165 PreExt = N0->getOperand(0); 3166 Signed = true; 3167 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3168 // ZEXTLOAD / SEXTLOAD 3169 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3170 MinBits = LN0->getMemoryVT().getSizeInBits(); 3171 PreExt = N0; 3172 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3173 Signed = true; 3174 MinBits = LN0->getMemoryVT().getSizeInBits(); 3175 PreExt = N0; 3176 } 3177 } 3178 3179 // Figure out how many bits we need to preserve this constant. 3180 unsigned ReqdBits = Signed ? 3181 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3182 C1.getActiveBits(); 3183 3184 // Make sure we're not losing bits from the constant. 3185 if (MinBits > 0 && 3186 MinBits < C1.getBitWidth() && 3187 MinBits >= ReqdBits) { 3188 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3189 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3190 // Will get folded away. 3191 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3192 if (MinBits == 1 && C1 == 1) 3193 // Invert the condition. 3194 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3195 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3196 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3197 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3198 } 3199 3200 // If truncating the setcc operands is not desirable, we can still 3201 // simplify the expression in some cases: 3202 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3203 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3204 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3205 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3206 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3207 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3208 SDValue TopSetCC = N0->getOperand(0); 3209 unsigned N0Opc = N0->getOpcode(); 3210 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3211 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3212 TopSetCC.getOpcode() == ISD::SETCC && 3213 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3214 (isConstFalseVal(N1C) || 3215 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3216 3217 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3218 (!N1C->isNullValue() && Cond == ISD::SETNE); 3219 3220 if (!Inverse) 3221 return TopSetCC; 3222 3223 ISD::CondCode InvCond = ISD::getSetCCInverse( 3224 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3225 TopSetCC.getOperand(0).getValueType().isInteger()); 3226 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3227 TopSetCC.getOperand(1), 3228 InvCond); 3229 } 3230 } 3231 } 3232 3233 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3234 // equality or unsigned, and all 1 bits of the const are in the same 3235 // partial word, see if we can shorten the load. 3236 if (DCI.isBeforeLegalize() && 3237 !ISD::isSignedIntSetCC(Cond) && 3238 N0.getOpcode() == ISD::AND && C1 == 0 && 3239 N0.getNode()->hasOneUse() && 3240 isa<LoadSDNode>(N0.getOperand(0)) && 3241 N0.getOperand(0).getNode()->hasOneUse() && 3242 isa<ConstantSDNode>(N0.getOperand(1))) { 3243 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3244 APInt bestMask; 3245 unsigned bestWidth = 0, bestOffset = 0; 3246 if (Lod->isSimple() && Lod->isUnindexed()) { 3247 unsigned origWidth = N0.getValueSizeInBits(); 3248 unsigned maskWidth = origWidth; 3249 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3250 // 8 bits, but have to be careful... 3251 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3252 origWidth = Lod->getMemoryVT().getSizeInBits(); 3253 const APInt &Mask = N0.getConstantOperandAPInt(1); 3254 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3255 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3256 for (unsigned offset=0; offset<origWidth/width; offset++) { 3257 if (Mask.isSubsetOf(newMask)) { 3258 if (DAG.getDataLayout().isLittleEndian()) 3259 bestOffset = (uint64_t)offset * (width/8); 3260 else 3261 bestOffset = (origWidth/width - offset - 1) * (width/8); 3262 bestMask = Mask.lshr(offset * (width/8) * 8); 3263 bestWidth = width; 3264 break; 3265 } 3266 newMask <<= width; 3267 } 3268 } 3269 } 3270 if (bestWidth) { 3271 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3272 if (newVT.isRound() && 3273 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3274 EVT PtrType = Lod->getOperand(1).getValueType(); 3275 SDValue Ptr = Lod->getBasePtr(); 3276 if (bestOffset != 0) 3277 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 3278 DAG.getConstant(bestOffset, dl, PtrType)); 3279 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3280 SDValue NewLoad = DAG.getLoad( 3281 newVT, dl, Lod->getChain(), Ptr, 3282 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3283 return DAG.getSetCC(dl, VT, 3284 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3285 DAG.getConstant(bestMask.trunc(bestWidth), 3286 dl, newVT)), 3287 DAG.getConstant(0LL, dl, newVT), Cond); 3288 } 3289 } 3290 } 3291 3292 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3293 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3294 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3295 3296 // If the comparison constant has bits in the upper part, the 3297 // zero-extended value could never match. 3298 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3299 C1.getBitWidth() - InSize))) { 3300 switch (Cond) { 3301 case ISD::SETUGT: 3302 case ISD::SETUGE: 3303 case ISD::SETEQ: 3304 return DAG.getConstant(0, dl, VT); 3305 case ISD::SETULT: 3306 case ISD::SETULE: 3307 case ISD::SETNE: 3308 return DAG.getConstant(1, dl, VT); 3309 case ISD::SETGT: 3310 case ISD::SETGE: 3311 // True if the sign bit of C1 is set. 3312 return DAG.getConstant(C1.isNegative(), dl, VT); 3313 case ISD::SETLT: 3314 case ISD::SETLE: 3315 // True if the sign bit of C1 isn't set. 3316 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3317 default: 3318 break; 3319 } 3320 } 3321 3322 // Otherwise, we can perform the comparison with the low bits. 3323 switch (Cond) { 3324 case ISD::SETEQ: 3325 case ISD::SETNE: 3326 case ISD::SETUGT: 3327 case ISD::SETUGE: 3328 case ISD::SETULT: 3329 case ISD::SETULE: { 3330 EVT newVT = N0.getOperand(0).getValueType(); 3331 if (DCI.isBeforeLegalizeOps() || 3332 (isOperationLegal(ISD::SETCC, newVT) && 3333 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3334 EVT NewSetCCVT = 3335 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 3336 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3337 3338 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3339 NewConst, Cond); 3340 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3341 } 3342 break; 3343 } 3344 default: 3345 break; // todo, be more careful with signed comparisons 3346 } 3347 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3348 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3349 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3350 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3351 EVT ExtDstTy = N0.getValueType(); 3352 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3353 3354 // If the constant doesn't fit into the number of bits for the source of 3355 // the sign extension, it is impossible for both sides to be equal. 3356 if (C1.getMinSignedBits() > ExtSrcTyBits) 3357 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3358 3359 SDValue ZextOp; 3360 EVT Op0Ty = N0.getOperand(0).getValueType(); 3361 if (Op0Ty == ExtSrcTy) { 3362 ZextOp = N0.getOperand(0); 3363 } else { 3364 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3365 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3366 DAG.getConstant(Imm, dl, Op0Ty)); 3367 } 3368 if (!DCI.isCalledByLegalizer()) 3369 DCI.AddToWorklist(ZextOp.getNode()); 3370 // Otherwise, make this a use of a zext. 3371 return DAG.getSetCC(dl, VT, ZextOp, 3372 DAG.getConstant(C1 & APInt::getLowBitsSet( 3373 ExtDstTyBits, 3374 ExtSrcTyBits), 3375 dl, ExtDstTy), 3376 Cond); 3377 } else if ((N1C->isNullValue() || N1C->isOne()) && 3378 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3379 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3380 if (N0.getOpcode() == ISD::SETCC && 3381 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 3382 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3383 if (TrueWhenTrue) 3384 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3385 // Invert the condition. 3386 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3387 CC = ISD::getSetCCInverse(CC, 3388 N0.getOperand(0).getValueType().isInteger()); 3389 if (DCI.isBeforeLegalizeOps() || 3390 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3391 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3392 } 3393 3394 if ((N0.getOpcode() == ISD::XOR || 3395 (N0.getOpcode() == ISD::AND && 3396 N0.getOperand(0).getOpcode() == ISD::XOR && 3397 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3398 isa<ConstantSDNode>(N0.getOperand(1)) && 3399 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3400 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3401 // can only do this if the top bits are known zero. 3402 unsigned BitWidth = N0.getValueSizeInBits(); 3403 if (DAG.MaskedValueIsZero(N0, 3404 APInt::getHighBitsSet(BitWidth, 3405 BitWidth-1))) { 3406 // Okay, get the un-inverted input value. 3407 SDValue Val; 3408 if (N0.getOpcode() == ISD::XOR) { 3409 Val = N0.getOperand(0); 3410 } else { 3411 assert(N0.getOpcode() == ISD::AND && 3412 N0.getOperand(0).getOpcode() == ISD::XOR); 3413 // ((X^1)&1)^1 -> X & 1 3414 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3415 N0.getOperand(0).getOperand(0), 3416 N0.getOperand(1)); 3417 } 3418 3419 return DAG.getSetCC(dl, VT, Val, N1, 3420 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3421 } 3422 } else if (N1C->isOne() && 3423 (VT == MVT::i1 || 3424 getBooleanContents(N0->getValueType(0)) == 3425 ZeroOrOneBooleanContent)) { 3426 SDValue Op0 = N0; 3427 if (Op0.getOpcode() == ISD::TRUNCATE) 3428 Op0 = Op0.getOperand(0); 3429 3430 if ((Op0.getOpcode() == ISD::XOR) && 3431 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3432 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3433 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3434 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3435 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 3436 Cond); 3437 } 3438 if (Op0.getOpcode() == ISD::AND && 3439 isa<ConstantSDNode>(Op0.getOperand(1)) && 3440 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3441 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3442 if (Op0.getValueType().bitsGT(VT)) 3443 Op0 = DAG.getNode(ISD::AND, dl, VT, 3444 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3445 DAG.getConstant(1, dl, VT)); 3446 else if (Op0.getValueType().bitsLT(VT)) 3447 Op0 = DAG.getNode(ISD::AND, dl, VT, 3448 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3449 DAG.getConstant(1, dl, VT)); 3450 3451 return DAG.getSetCC(dl, VT, Op0, 3452 DAG.getConstant(0, dl, Op0.getValueType()), 3453 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3454 } 3455 if (Op0.getOpcode() == ISD::AssertZext && 3456 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3457 return DAG.getSetCC(dl, VT, Op0, 3458 DAG.getConstant(0, dl, Op0.getValueType()), 3459 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3460 } 3461 } 3462 3463 // Given: 3464 // icmp eq/ne (urem %x, %y), 0 3465 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3466 // icmp eq/ne %x, 0 3467 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3468 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3469 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3470 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3471 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3472 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3473 } 3474 3475 if (SDValue V = 3476 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3477 return V; 3478 } 3479 3480 // These simplifications apply to splat vectors as well. 3481 // TODO: Handle more splat vector cases. 3482 if (auto *N1C = isConstOrConstSplat(N1)) { 3483 const APInt &C1 = N1C->getAPIntValue(); 3484 3485 APInt MinVal, MaxVal; 3486 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3487 if (ISD::isSignedIntSetCC(Cond)) { 3488 MinVal = APInt::getSignedMinValue(OperandBitSize); 3489 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3490 } else { 3491 MinVal = APInt::getMinValue(OperandBitSize); 3492 MaxVal = APInt::getMaxValue(OperandBitSize); 3493 } 3494 3495 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3496 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3497 // X >= MIN --> true 3498 if (C1 == MinVal) 3499 return DAG.getBoolConstant(true, dl, VT, OpVT); 3500 3501 if (!VT.isVector()) { // TODO: Support this for vectors. 3502 // X >= C0 --> X > (C0 - 1) 3503 APInt C = C1 - 1; 3504 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3505 if ((DCI.isBeforeLegalizeOps() || 3506 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3507 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3508 isLegalICmpImmediate(C.getSExtValue())))) { 3509 return DAG.getSetCC(dl, VT, N0, 3510 DAG.getConstant(C, dl, N1.getValueType()), 3511 NewCC); 3512 } 3513 } 3514 } 3515 3516 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3517 // X <= MAX --> true 3518 if (C1 == MaxVal) 3519 return DAG.getBoolConstant(true, dl, VT, OpVT); 3520 3521 // X <= C0 --> X < (C0 + 1) 3522 if (!VT.isVector()) { // TODO: Support this for vectors. 3523 APInt C = C1 + 1; 3524 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3525 if ((DCI.isBeforeLegalizeOps() || 3526 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3527 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3528 isLegalICmpImmediate(C.getSExtValue())))) { 3529 return DAG.getSetCC(dl, VT, N0, 3530 DAG.getConstant(C, dl, N1.getValueType()), 3531 NewCC); 3532 } 3533 } 3534 } 3535 3536 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3537 if (C1 == MinVal) 3538 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3539 3540 // TODO: Support this for vectors after legalize ops. 3541 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3542 // Canonicalize setlt X, Max --> setne X, Max 3543 if (C1 == MaxVal) 3544 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3545 3546 // If we have setult X, 1, turn it into seteq X, 0 3547 if (C1 == MinVal+1) 3548 return DAG.getSetCC(dl, VT, N0, 3549 DAG.getConstant(MinVal, dl, N0.getValueType()), 3550 ISD::SETEQ); 3551 } 3552 } 3553 3554 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3555 if (C1 == MaxVal) 3556 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3557 3558 // TODO: Support this for vectors after legalize ops. 3559 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3560 // Canonicalize setgt X, Min --> setne X, Min 3561 if (C1 == MinVal) 3562 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3563 3564 // If we have setugt X, Max-1, turn it into seteq X, Max 3565 if (C1 == MaxVal-1) 3566 return DAG.getSetCC(dl, VT, N0, 3567 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3568 ISD::SETEQ); 3569 } 3570 } 3571 3572 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3573 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3574 if (C1.isNullValue()) 3575 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3576 VT, N0, N1, Cond, DCI, dl)) 3577 return CC; 3578 } 3579 3580 // If we have "setcc X, C0", check to see if we can shrink the immediate 3581 // by changing cc. 3582 // TODO: Support this for vectors after legalize ops. 3583 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3584 // SETUGT X, SINTMAX -> SETLT X, 0 3585 if (Cond == ISD::SETUGT && 3586 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3587 return DAG.getSetCC(dl, VT, N0, 3588 DAG.getConstant(0, dl, N1.getValueType()), 3589 ISD::SETLT); 3590 3591 // SETULT X, SINTMIN -> SETGT X, -1 3592 if (Cond == ISD::SETULT && 3593 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3594 SDValue ConstMinusOne = 3595 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3596 N1.getValueType()); 3597 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3598 } 3599 } 3600 } 3601 3602 // Back to non-vector simplifications. 3603 // TODO: Can we do these for vector splats? 3604 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3605 const APInt &C1 = N1C->getAPIntValue(); 3606 3607 // Fold bit comparisons when we can. 3608 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3609 (VT == N0.getValueType() || 3610 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 3611 N0.getOpcode() == ISD::AND) { 3612 auto &DL = DAG.getDataLayout(); 3613 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3614 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3615 !DCI.isBeforeLegalize()); 3616 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3617 // Perform the xform if the AND RHS is a single bit. 3618 if (AndRHS->getAPIntValue().isPowerOf2()) { 3619 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3620 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3621 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 3622 ShiftTy))); 3623 } 3624 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3625 // (X & 8) == 8 --> (X & 8) >> 3 3626 // Perform the xform if C1 is a single bit. 3627 if (C1.isPowerOf2()) { 3628 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3629 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3630 DAG.getConstant(C1.logBase2(), dl, 3631 ShiftTy))); 3632 } 3633 } 3634 } 3635 } 3636 3637 if (C1.getMinSignedBits() <= 64 && 3638 !isLegalICmpImmediate(C1.getSExtValue())) { 3639 // (X & -256) == 256 -> (X >> 8) == 1 3640 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3641 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3642 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3643 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3644 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3645 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3646 auto &DL = DAG.getDataLayout(); 3647 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3648 !DCI.isBeforeLegalize()); 3649 EVT CmpTy = N0.getValueType(); 3650 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 3651 DAG.getConstant(ShiftBits, dl, 3652 ShiftTy)); 3653 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 3654 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3655 } 3656 } 3657 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3658 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3659 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3660 // X < 0x100000000 -> (X >> 32) < 1 3661 // X >= 0x100000000 -> (X >> 32) >= 1 3662 // X <= 0x0ffffffff -> (X >> 32) < 1 3663 // X > 0x0ffffffff -> (X >> 32) >= 1 3664 unsigned ShiftBits; 3665 APInt NewC = C1; 3666 ISD::CondCode NewCond = Cond; 3667 if (AdjOne) { 3668 ShiftBits = C1.countTrailingOnes(); 3669 NewC = NewC + 1; 3670 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3671 } else { 3672 ShiftBits = C1.countTrailingZeros(); 3673 } 3674 NewC.lshrInPlace(ShiftBits); 3675 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3676 isLegalICmpImmediate(NewC.getSExtValue())) { 3677 auto &DL = DAG.getDataLayout(); 3678 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3679 !DCI.isBeforeLegalize()); 3680 EVT CmpTy = N0.getValueType(); 3681 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 3682 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3683 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 3684 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3685 } 3686 } 3687 } 3688 } 3689 3690 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3691 auto *CFP = cast<ConstantFPSDNode>(N1); 3692 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3693 3694 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3695 // constant if knowing that the operand is non-nan is enough. We prefer to 3696 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3697 // materialize 0.0. 3698 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3699 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3700 3701 // setcc (fneg x), C -> setcc swap(pred) x, -C 3702 if (N0.getOpcode() == ISD::FNEG) { 3703 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3704 if (DCI.isBeforeLegalizeOps() || 3705 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3706 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3707 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3708 } 3709 } 3710 3711 // If the condition is not legal, see if we can find an equivalent one 3712 // which is legal. 3713 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3714 // If the comparison was an awkward floating-point == or != and one of 3715 // the comparison operands is infinity or negative infinity, convert the 3716 // condition to a less-awkward <= or >=. 3717 if (CFP->getValueAPF().isInfinity()) { 3718 if (CFP->getValueAPF().isNegative()) { 3719 if (Cond == ISD::SETOEQ && 3720 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3721 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3722 if (Cond == ISD::SETUEQ && 3723 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3724 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3725 if (Cond == ISD::SETUNE && 3726 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3727 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3728 if (Cond == ISD::SETONE && 3729 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3730 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3731 } else { 3732 if (Cond == ISD::SETOEQ && 3733 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3734 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3735 if (Cond == ISD::SETUEQ && 3736 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3737 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3738 if (Cond == ISD::SETUNE && 3739 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3740 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3741 if (Cond == ISD::SETONE && 3742 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3743 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3744 } 3745 } 3746 } 3747 } 3748 3749 if (N0 == N1) { 3750 // The sext(setcc()) => setcc() optimization relies on the appropriate 3751 // constant being emitted. 3752 assert(!N0.getValueType().isInteger() && 3753 "Integer types should be handled by FoldSetCC"); 3754 3755 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3756 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3757 if (UOF == 2) // FP operators that are undefined on NaNs. 3758 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3759 if (UOF == unsigned(EqTrue)) 3760 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3761 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3762 // if it is not already. 3763 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3764 if (NewCond != Cond && 3765 (DCI.isBeforeLegalizeOps() || 3766 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3767 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3768 } 3769 3770 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3771 N0.getValueType().isInteger()) { 3772 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3773 N0.getOpcode() == ISD::XOR) { 3774 // Simplify (X+Y) == (X+Z) --> Y == Z 3775 if (N0.getOpcode() == N1.getOpcode()) { 3776 if (N0.getOperand(0) == N1.getOperand(0)) 3777 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3778 if (N0.getOperand(1) == N1.getOperand(1)) 3779 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3780 if (isCommutativeBinOp(N0.getOpcode())) { 3781 // If X op Y == Y op X, try other combinations. 3782 if (N0.getOperand(0) == N1.getOperand(1)) 3783 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3784 Cond); 3785 if (N0.getOperand(1) == N1.getOperand(0)) 3786 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3787 Cond); 3788 } 3789 } 3790 3791 // If RHS is a legal immediate value for a compare instruction, we need 3792 // to be careful about increasing register pressure needlessly. 3793 bool LegalRHSImm = false; 3794 3795 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3796 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3797 // Turn (X+C1) == C2 --> X == C2-C1 3798 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3799 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3800 DAG.getConstant(RHSC->getAPIntValue()- 3801 LHSR->getAPIntValue(), 3802 dl, N0.getValueType()), Cond); 3803 } 3804 3805 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3806 if (N0.getOpcode() == ISD::XOR) 3807 // If we know that all of the inverted bits are zero, don't bother 3808 // performing the inversion. 3809 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3810 return 3811 DAG.getSetCC(dl, VT, N0.getOperand(0), 3812 DAG.getConstant(LHSR->getAPIntValue() ^ 3813 RHSC->getAPIntValue(), 3814 dl, N0.getValueType()), 3815 Cond); 3816 } 3817 3818 // Turn (C1-X) == C2 --> X == C1-C2 3819 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3820 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3821 return 3822 DAG.getSetCC(dl, VT, N0.getOperand(1), 3823 DAG.getConstant(SUBC->getAPIntValue() - 3824 RHSC->getAPIntValue(), 3825 dl, N0.getValueType()), 3826 Cond); 3827 } 3828 } 3829 3830 // Could RHSC fold directly into a compare? 3831 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3832 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3833 } 3834 3835 // (X+Y) == X --> Y == 0 and similar folds. 3836 // Don't do this if X is an immediate that can fold into a cmp 3837 // instruction and X+Y has other uses. It could be an induction variable 3838 // chain, and the transform would increase register pressure. 3839 if (!LegalRHSImm || N0.hasOneUse()) 3840 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3841 return V; 3842 } 3843 3844 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3845 N1.getOpcode() == ISD::XOR) 3846 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3847 return V; 3848 3849 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3850 return V; 3851 } 3852 3853 // Fold remainder of division by a constant. 3854 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3855 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3856 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3857 3858 // When division is cheap or optimizing for minimum size, 3859 // fall through to DIVREM creation by skipping this fold. 3860 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3861 if (N0.getOpcode() == ISD::UREM) { 3862 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3863 return Folded; 3864 } else if (N0.getOpcode() == ISD::SREM) { 3865 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3866 return Folded; 3867 } 3868 } 3869 } 3870 3871 // Fold away ALL boolean setcc's. 3872 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3873 SDValue Temp; 3874 switch (Cond) { 3875 default: llvm_unreachable("Unknown integer setcc!"); 3876 case ISD::SETEQ: // X == Y -> ~(X^Y) 3877 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3878 N0 = DAG.getNOT(dl, Temp, OpVT); 3879 if (!DCI.isCalledByLegalizer()) 3880 DCI.AddToWorklist(Temp.getNode()); 3881 break; 3882 case ISD::SETNE: // X != Y --> (X^Y) 3883 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3884 break; 3885 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3886 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3887 Temp = DAG.getNOT(dl, N0, OpVT); 3888 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3889 if (!DCI.isCalledByLegalizer()) 3890 DCI.AddToWorklist(Temp.getNode()); 3891 break; 3892 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3893 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3894 Temp = DAG.getNOT(dl, N1, OpVT); 3895 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3896 if (!DCI.isCalledByLegalizer()) 3897 DCI.AddToWorklist(Temp.getNode()); 3898 break; 3899 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3900 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3901 Temp = DAG.getNOT(dl, N0, OpVT); 3902 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3903 if (!DCI.isCalledByLegalizer()) 3904 DCI.AddToWorklist(Temp.getNode()); 3905 break; 3906 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3907 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3908 Temp = DAG.getNOT(dl, N1, OpVT); 3909 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3910 break; 3911 } 3912 if (VT.getScalarType() != MVT::i1) { 3913 if (!DCI.isCalledByLegalizer()) 3914 DCI.AddToWorklist(N0.getNode()); 3915 // FIXME: If running after legalize, we probably can't do this. 3916 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3917 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3918 } 3919 return N0; 3920 } 3921 3922 // Could not fold it. 3923 return SDValue(); 3924 } 3925 3926 /// Returns true (and the GlobalValue and the offset) if the node is a 3927 /// GlobalAddress + offset. 3928 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3929 int64_t &Offset) const { 3930 3931 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3932 3933 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3934 GA = GASD->getGlobal(); 3935 Offset += GASD->getOffset(); 3936 return true; 3937 } 3938 3939 if (N->getOpcode() == ISD::ADD) { 3940 SDValue N1 = N->getOperand(0); 3941 SDValue N2 = N->getOperand(1); 3942 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3943 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3944 Offset += V->getSExtValue(); 3945 return true; 3946 } 3947 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3948 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3949 Offset += V->getSExtValue(); 3950 return true; 3951 } 3952 } 3953 } 3954 3955 return false; 3956 } 3957 3958 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3959 DAGCombinerInfo &DCI) const { 3960 // Default implementation: no optimization. 3961 return SDValue(); 3962 } 3963 3964 //===----------------------------------------------------------------------===// 3965 // Inline Assembler Implementation Methods 3966 //===----------------------------------------------------------------------===// 3967 3968 TargetLowering::ConstraintType 3969 TargetLowering::getConstraintType(StringRef Constraint) const { 3970 unsigned S = Constraint.size(); 3971 3972 if (S == 1) { 3973 switch (Constraint[0]) { 3974 default: break; 3975 case 'r': 3976 return C_RegisterClass; 3977 case 'm': // memory 3978 case 'o': // offsetable 3979 case 'V': // not offsetable 3980 return C_Memory; 3981 case 'n': // Simple Integer 3982 case 'E': // Floating Point Constant 3983 case 'F': // Floating Point Constant 3984 return C_Immediate; 3985 case 'i': // Simple Integer or Relocatable Constant 3986 case 's': // Relocatable Constant 3987 case 'p': // Address. 3988 case 'X': // Allow ANY value. 3989 case 'I': // Target registers. 3990 case 'J': 3991 case 'K': 3992 case 'L': 3993 case 'M': 3994 case 'N': 3995 case 'O': 3996 case 'P': 3997 case '<': 3998 case '>': 3999 return C_Other; 4000 } 4001 } 4002 4003 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4004 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4005 return C_Memory; 4006 return C_Register; 4007 } 4008 return C_Unknown; 4009 } 4010 4011 /// Try to replace an X constraint, which matches anything, with another that 4012 /// has more specific requirements based on the type of the corresponding 4013 /// operand. 4014 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4015 if (ConstraintVT.isInteger()) 4016 return "r"; 4017 if (ConstraintVT.isFloatingPoint()) 4018 return "f"; // works for many targets 4019 return nullptr; 4020 } 4021 4022 SDValue TargetLowering::LowerAsmOutputForConstraint( 4023 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4024 SelectionDAG &DAG) const { 4025 return SDValue(); 4026 } 4027 4028 /// Lower the specified operand into the Ops vector. 4029 /// If it is invalid, don't add anything to Ops. 4030 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4031 std::string &Constraint, 4032 std::vector<SDValue> &Ops, 4033 SelectionDAG &DAG) const { 4034 4035 if (Constraint.length() > 1) return; 4036 4037 char ConstraintLetter = Constraint[0]; 4038 switch (ConstraintLetter) { 4039 default: break; 4040 case 'X': // Allows any operand; labels (basic block) use this. 4041 if (Op.getOpcode() == ISD::BasicBlock || 4042 Op.getOpcode() == ISD::TargetBlockAddress) { 4043 Ops.push_back(Op); 4044 return; 4045 } 4046 LLVM_FALLTHROUGH; 4047 case 'i': // Simple Integer or Relocatable Constant 4048 case 'n': // Simple Integer 4049 case 's': { // Relocatable Constant 4050 4051 GlobalAddressSDNode *GA; 4052 ConstantSDNode *C; 4053 BlockAddressSDNode *BA; 4054 uint64_t Offset = 0; 4055 4056 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4057 // etc., since getelementpointer is variadic. We can't use 4058 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4059 // while in this case the GA may be furthest from the root node which is 4060 // likely an ISD::ADD. 4061 while (1) { 4062 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4063 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4064 GA->getValueType(0), 4065 Offset + GA->getOffset())); 4066 return; 4067 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4068 ConstraintLetter != 's') { 4069 // gcc prints these as sign extended. Sign extend value to 64 bits 4070 // now; without this it would get ZExt'd later in 4071 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4072 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4073 BooleanContent BCont = getBooleanContents(MVT::i64); 4074 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4075 : ISD::SIGN_EXTEND; 4076 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4077 : C->getSExtValue(); 4078 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4079 SDLoc(C), MVT::i64)); 4080 return; 4081 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4082 ConstraintLetter != 'n') { 4083 Ops.push_back(DAG.getTargetBlockAddress( 4084 BA->getBlockAddress(), BA->getValueType(0), 4085 Offset + BA->getOffset(), BA->getTargetFlags())); 4086 return; 4087 } else { 4088 const unsigned OpCode = Op.getOpcode(); 4089 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4090 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4091 Op = Op.getOperand(1); 4092 // Subtraction is not commutative. 4093 else if (OpCode == ISD::ADD && 4094 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4095 Op = Op.getOperand(0); 4096 else 4097 return; 4098 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4099 continue; 4100 } 4101 } 4102 return; 4103 } 4104 break; 4105 } 4106 } 4107 } 4108 4109 std::pair<unsigned, const TargetRegisterClass *> 4110 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4111 StringRef Constraint, 4112 MVT VT) const { 4113 if (Constraint.empty() || Constraint[0] != '{') 4114 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4115 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4116 4117 // Remove the braces from around the name. 4118 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4119 4120 std::pair<unsigned, const TargetRegisterClass *> R = 4121 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4122 4123 // Figure out which register class contains this reg. 4124 for (const TargetRegisterClass *RC : RI->regclasses()) { 4125 // If none of the value types for this register class are valid, we 4126 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4127 if (!isLegalRC(*RI, *RC)) 4128 continue; 4129 4130 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4131 I != E; ++I) { 4132 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4133 std::pair<unsigned, const TargetRegisterClass *> S = 4134 std::make_pair(*I, RC); 4135 4136 // If this register class has the requested value type, return it, 4137 // otherwise keep searching and return the first class found 4138 // if no other is found which explicitly has the requested type. 4139 if (RI->isTypeLegalForClass(*RC, VT)) 4140 return S; 4141 if (!R.second) 4142 R = S; 4143 } 4144 } 4145 } 4146 4147 return R; 4148 } 4149 4150 //===----------------------------------------------------------------------===// 4151 // Constraint Selection. 4152 4153 /// Return true of this is an input operand that is a matching constraint like 4154 /// "4". 4155 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4156 assert(!ConstraintCode.empty() && "No known constraint!"); 4157 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4158 } 4159 4160 /// If this is an input matching constraint, this method returns the output 4161 /// operand it matches. 4162 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4163 assert(!ConstraintCode.empty() && "No known constraint!"); 4164 return atoi(ConstraintCode.c_str()); 4165 } 4166 4167 /// Split up the constraint string from the inline assembly value into the 4168 /// specific constraints and their prefixes, and also tie in the associated 4169 /// operand values. 4170 /// If this returns an empty vector, and if the constraint string itself 4171 /// isn't empty, there was an error parsing. 4172 TargetLowering::AsmOperandInfoVector 4173 TargetLowering::ParseConstraints(const DataLayout &DL, 4174 const TargetRegisterInfo *TRI, 4175 ImmutableCallSite CS) const { 4176 /// Information about all of the constraints. 4177 AsmOperandInfoVector ConstraintOperands; 4178 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4179 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4180 4181 // Do a prepass over the constraints, canonicalizing them, and building up the 4182 // ConstraintOperands list. 4183 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4184 unsigned ResNo = 0; // ResNo - The result number of the next output. 4185 4186 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4187 ConstraintOperands.emplace_back(std::move(CI)); 4188 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4189 4190 // Update multiple alternative constraint count. 4191 if (OpInfo.multipleAlternatives.size() > maCount) 4192 maCount = OpInfo.multipleAlternatives.size(); 4193 4194 OpInfo.ConstraintVT = MVT::Other; 4195 4196 // Compute the value type for each operand. 4197 switch (OpInfo.Type) { 4198 case InlineAsm::isOutput: 4199 // Indirect outputs just consume an argument. 4200 if (OpInfo.isIndirect) { 4201 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4202 break; 4203 } 4204 4205 // The return value of the call is this value. As such, there is no 4206 // corresponding argument. 4207 assert(!CS.getType()->isVoidTy() && 4208 "Bad inline asm!"); 4209 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4210 OpInfo.ConstraintVT = 4211 getSimpleValueType(DL, STy->getElementType(ResNo)); 4212 } else { 4213 assert(ResNo == 0 && "Asm only has one result!"); 4214 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4215 } 4216 ++ResNo; 4217 break; 4218 case InlineAsm::isInput: 4219 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4220 break; 4221 case InlineAsm::isClobber: 4222 // Nothing to do. 4223 break; 4224 } 4225 4226 if (OpInfo.CallOperandVal) { 4227 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4228 if (OpInfo.isIndirect) { 4229 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4230 if (!PtrTy) 4231 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4232 OpTy = PtrTy->getElementType(); 4233 } 4234 4235 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4236 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4237 if (STy->getNumElements() == 1) 4238 OpTy = STy->getElementType(0); 4239 4240 // If OpTy is not a single value, it may be a struct/union that we 4241 // can tile with integers. 4242 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4243 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4244 switch (BitSize) { 4245 default: break; 4246 case 1: 4247 case 8: 4248 case 16: 4249 case 32: 4250 case 64: 4251 case 128: 4252 OpInfo.ConstraintVT = 4253 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4254 break; 4255 } 4256 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4257 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4258 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4259 } else { 4260 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4261 } 4262 } 4263 } 4264 4265 // If we have multiple alternative constraints, select the best alternative. 4266 if (!ConstraintOperands.empty()) { 4267 if (maCount) { 4268 unsigned bestMAIndex = 0; 4269 int bestWeight = -1; 4270 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4271 int weight = -1; 4272 unsigned maIndex; 4273 // Compute the sums of the weights for each alternative, keeping track 4274 // of the best (highest weight) one so far. 4275 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4276 int weightSum = 0; 4277 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4278 cIndex != eIndex; ++cIndex) { 4279 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4280 if (OpInfo.Type == InlineAsm::isClobber) 4281 continue; 4282 4283 // If this is an output operand with a matching input operand, 4284 // look up the matching input. If their types mismatch, e.g. one 4285 // is an integer, the other is floating point, or their sizes are 4286 // different, flag it as an maCantMatch. 4287 if (OpInfo.hasMatchingInput()) { 4288 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4289 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4290 if ((OpInfo.ConstraintVT.isInteger() != 4291 Input.ConstraintVT.isInteger()) || 4292 (OpInfo.ConstraintVT.getSizeInBits() != 4293 Input.ConstraintVT.getSizeInBits())) { 4294 weightSum = -1; // Can't match. 4295 break; 4296 } 4297 } 4298 } 4299 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4300 if (weight == -1) { 4301 weightSum = -1; 4302 break; 4303 } 4304 weightSum += weight; 4305 } 4306 // Update best. 4307 if (weightSum > bestWeight) { 4308 bestWeight = weightSum; 4309 bestMAIndex = maIndex; 4310 } 4311 } 4312 4313 // Now select chosen alternative in each constraint. 4314 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4315 cIndex != eIndex; ++cIndex) { 4316 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4317 if (cInfo.Type == InlineAsm::isClobber) 4318 continue; 4319 cInfo.selectAlternative(bestMAIndex); 4320 } 4321 } 4322 } 4323 4324 // Check and hook up tied operands, choose constraint code to use. 4325 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4326 cIndex != eIndex; ++cIndex) { 4327 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4328 4329 // If this is an output operand with a matching input operand, look up the 4330 // matching input. If their types mismatch, e.g. one is an integer, the 4331 // other is floating point, or their sizes are different, flag it as an 4332 // error. 4333 if (OpInfo.hasMatchingInput()) { 4334 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4335 4336 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4337 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4338 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4339 OpInfo.ConstraintVT); 4340 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4341 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4342 Input.ConstraintVT); 4343 if ((OpInfo.ConstraintVT.isInteger() != 4344 Input.ConstraintVT.isInteger()) || 4345 (MatchRC.second != InputRC.second)) { 4346 report_fatal_error("Unsupported asm: input constraint" 4347 " with a matching output constraint of" 4348 " incompatible type!"); 4349 } 4350 } 4351 } 4352 } 4353 4354 return ConstraintOperands; 4355 } 4356 4357 /// Return an integer indicating how general CT is. 4358 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4359 switch (CT) { 4360 case TargetLowering::C_Immediate: 4361 case TargetLowering::C_Other: 4362 case TargetLowering::C_Unknown: 4363 return 0; 4364 case TargetLowering::C_Register: 4365 return 1; 4366 case TargetLowering::C_RegisterClass: 4367 return 2; 4368 case TargetLowering::C_Memory: 4369 return 3; 4370 } 4371 llvm_unreachable("Invalid constraint type"); 4372 } 4373 4374 /// Examine constraint type and operand type and determine a weight value. 4375 /// This object must already have been set up with the operand type 4376 /// and the current alternative constraint selected. 4377 TargetLowering::ConstraintWeight 4378 TargetLowering::getMultipleConstraintMatchWeight( 4379 AsmOperandInfo &info, int maIndex) const { 4380 InlineAsm::ConstraintCodeVector *rCodes; 4381 if (maIndex >= (int)info.multipleAlternatives.size()) 4382 rCodes = &info.Codes; 4383 else 4384 rCodes = &info.multipleAlternatives[maIndex].Codes; 4385 ConstraintWeight BestWeight = CW_Invalid; 4386 4387 // Loop over the options, keeping track of the most general one. 4388 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4389 ConstraintWeight weight = 4390 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4391 if (weight > BestWeight) 4392 BestWeight = weight; 4393 } 4394 4395 return BestWeight; 4396 } 4397 4398 /// Examine constraint type and operand type and determine a weight value. 4399 /// This object must already have been set up with the operand type 4400 /// and the current alternative constraint selected. 4401 TargetLowering::ConstraintWeight 4402 TargetLowering::getSingleConstraintMatchWeight( 4403 AsmOperandInfo &info, const char *constraint) const { 4404 ConstraintWeight weight = CW_Invalid; 4405 Value *CallOperandVal = info.CallOperandVal; 4406 // If we don't have a value, we can't do a match, 4407 // but allow it at the lowest weight. 4408 if (!CallOperandVal) 4409 return CW_Default; 4410 // Look at the constraint type. 4411 switch (*constraint) { 4412 case 'i': // immediate integer. 4413 case 'n': // immediate integer with a known value. 4414 if (isa<ConstantInt>(CallOperandVal)) 4415 weight = CW_Constant; 4416 break; 4417 case 's': // non-explicit intregal immediate. 4418 if (isa<GlobalValue>(CallOperandVal)) 4419 weight = CW_Constant; 4420 break; 4421 case 'E': // immediate float if host format. 4422 case 'F': // immediate float. 4423 if (isa<ConstantFP>(CallOperandVal)) 4424 weight = CW_Constant; 4425 break; 4426 case '<': // memory operand with autodecrement. 4427 case '>': // memory operand with autoincrement. 4428 case 'm': // memory operand. 4429 case 'o': // offsettable memory operand 4430 case 'V': // non-offsettable memory operand 4431 weight = CW_Memory; 4432 break; 4433 case 'r': // general register. 4434 case 'g': // general register, memory operand or immediate integer. 4435 // note: Clang converts "g" to "imr". 4436 if (CallOperandVal->getType()->isIntegerTy()) 4437 weight = CW_Register; 4438 break; 4439 case 'X': // any operand. 4440 default: 4441 weight = CW_Default; 4442 break; 4443 } 4444 return weight; 4445 } 4446 4447 /// If there are multiple different constraints that we could pick for this 4448 /// operand (e.g. "imr") try to pick the 'best' one. 4449 /// This is somewhat tricky: constraints fall into four classes: 4450 /// Other -> immediates and magic values 4451 /// Register -> one specific register 4452 /// RegisterClass -> a group of regs 4453 /// Memory -> memory 4454 /// Ideally, we would pick the most specific constraint possible: if we have 4455 /// something that fits into a register, we would pick it. The problem here 4456 /// is that if we have something that could either be in a register or in 4457 /// memory that use of the register could cause selection of *other* 4458 /// operands to fail: they might only succeed if we pick memory. Because of 4459 /// this the heuristic we use is: 4460 /// 4461 /// 1) If there is an 'other' constraint, and if the operand is valid for 4462 /// that constraint, use it. This makes us take advantage of 'i' 4463 /// constraints when available. 4464 /// 2) Otherwise, pick the most general constraint present. This prefers 4465 /// 'm' over 'r', for example. 4466 /// 4467 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4468 const TargetLowering &TLI, 4469 SDValue Op, SelectionDAG *DAG) { 4470 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4471 unsigned BestIdx = 0; 4472 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4473 int BestGenerality = -1; 4474 4475 // Loop over the options, keeping track of the most general one. 4476 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4477 TargetLowering::ConstraintType CType = 4478 TLI.getConstraintType(OpInfo.Codes[i]); 4479 4480 // If this is an 'other' or 'immediate' constraint, see if the operand is 4481 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4482 // the operand is an integer in the range [0..31] we want to use I (saving a 4483 // load of a register), otherwise we must use 'r'. 4484 if ((CType == TargetLowering::C_Other || 4485 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4486 assert(OpInfo.Codes[i].size() == 1 && 4487 "Unhandled multi-letter 'other' constraint"); 4488 std::vector<SDValue> ResultOps; 4489 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4490 ResultOps, *DAG); 4491 if (!ResultOps.empty()) { 4492 BestType = CType; 4493 BestIdx = i; 4494 break; 4495 } 4496 } 4497 4498 // Things with matching constraints can only be registers, per gcc 4499 // documentation. This mainly affects "g" constraints. 4500 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4501 continue; 4502 4503 // This constraint letter is more general than the previous one, use it. 4504 int Generality = getConstraintGenerality(CType); 4505 if (Generality > BestGenerality) { 4506 BestType = CType; 4507 BestIdx = i; 4508 BestGenerality = Generality; 4509 } 4510 } 4511 4512 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4513 OpInfo.ConstraintType = BestType; 4514 } 4515 4516 /// Determines the constraint code and constraint type to use for the specific 4517 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4518 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4519 SDValue Op, 4520 SelectionDAG *DAG) const { 4521 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4522 4523 // Single-letter constraints ('r') are very common. 4524 if (OpInfo.Codes.size() == 1) { 4525 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4526 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4527 } else { 4528 ChooseConstraint(OpInfo, *this, Op, DAG); 4529 } 4530 4531 // 'X' matches anything. 4532 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4533 // Labels and constants are handled elsewhere ('X' is the only thing 4534 // that matches labels). For Functions, the type here is the type of 4535 // the result, which is not what we want to look at; leave them alone. 4536 Value *v = OpInfo.CallOperandVal; 4537 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4538 OpInfo.CallOperandVal = v; 4539 return; 4540 } 4541 4542 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4543 return; 4544 4545 // Otherwise, try to resolve it to something we know about by looking at 4546 // the actual operand type. 4547 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4548 OpInfo.ConstraintCode = Repl; 4549 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4550 } 4551 } 4552 } 4553 4554 /// Given an exact SDIV by a constant, create a multiplication 4555 /// with the multiplicative inverse of the constant. 4556 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4557 const SDLoc &dl, SelectionDAG &DAG, 4558 SmallVectorImpl<SDNode *> &Created) { 4559 SDValue Op0 = N->getOperand(0); 4560 SDValue Op1 = N->getOperand(1); 4561 EVT VT = N->getValueType(0); 4562 EVT SVT = VT.getScalarType(); 4563 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4564 EVT ShSVT = ShVT.getScalarType(); 4565 4566 bool UseSRA = false; 4567 SmallVector<SDValue, 16> Shifts, Factors; 4568 4569 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4570 if (C->isNullValue()) 4571 return false; 4572 APInt Divisor = C->getAPIntValue(); 4573 unsigned Shift = Divisor.countTrailingZeros(); 4574 if (Shift) { 4575 Divisor.ashrInPlace(Shift); 4576 UseSRA = true; 4577 } 4578 // Calculate the multiplicative inverse, using Newton's method. 4579 APInt t; 4580 APInt Factor = Divisor; 4581 while ((t = Divisor * Factor) != 1) 4582 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4583 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4584 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4585 return true; 4586 }; 4587 4588 // Collect all magic values from the build vector. 4589 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4590 return SDValue(); 4591 4592 SDValue Shift, Factor; 4593 if (VT.isVector()) { 4594 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4595 Factor = DAG.getBuildVector(VT, dl, Factors); 4596 } else { 4597 Shift = Shifts[0]; 4598 Factor = Factors[0]; 4599 } 4600 4601 SDValue Res = Op0; 4602 4603 // Shift the value upfront if it is even, so the LSB is one. 4604 if (UseSRA) { 4605 // TODO: For UDIV use SRL instead of SRA. 4606 SDNodeFlags Flags; 4607 Flags.setExact(true); 4608 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4609 Created.push_back(Res.getNode()); 4610 } 4611 4612 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4613 } 4614 4615 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4616 SelectionDAG &DAG, 4617 SmallVectorImpl<SDNode *> &Created) const { 4618 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4620 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4621 return SDValue(N, 0); // Lower SDIV as SDIV 4622 return SDValue(); 4623 } 4624 4625 /// Given an ISD::SDIV node expressing a divide by constant, 4626 /// return a DAG expression to select that will generate the same value by 4627 /// multiplying by a magic number. 4628 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4629 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4630 bool IsAfterLegalization, 4631 SmallVectorImpl<SDNode *> &Created) const { 4632 SDLoc dl(N); 4633 EVT VT = N->getValueType(0); 4634 EVT SVT = VT.getScalarType(); 4635 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4636 EVT ShSVT = ShVT.getScalarType(); 4637 unsigned EltBits = VT.getScalarSizeInBits(); 4638 4639 // Check to see if we can do this. 4640 // FIXME: We should be more aggressive here. 4641 if (!isTypeLegal(VT)) 4642 return SDValue(); 4643 4644 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4645 if (N->getFlags().hasExact()) 4646 return BuildExactSDIV(*this, N, dl, DAG, Created); 4647 4648 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4649 4650 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4651 if (C->isNullValue()) 4652 return false; 4653 4654 const APInt &Divisor = C->getAPIntValue(); 4655 APInt::ms magics = Divisor.magic(); 4656 int NumeratorFactor = 0; 4657 int ShiftMask = -1; 4658 4659 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4660 // If d is +1/-1, we just multiply the numerator by +1/-1. 4661 NumeratorFactor = Divisor.getSExtValue(); 4662 magics.m = 0; 4663 magics.s = 0; 4664 ShiftMask = 0; 4665 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4666 // If d > 0 and m < 0, add the numerator. 4667 NumeratorFactor = 1; 4668 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4669 // If d < 0 and m > 0, subtract the numerator. 4670 NumeratorFactor = -1; 4671 } 4672 4673 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4674 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4675 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4676 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4677 return true; 4678 }; 4679 4680 SDValue N0 = N->getOperand(0); 4681 SDValue N1 = N->getOperand(1); 4682 4683 // Collect the shifts / magic values from each element. 4684 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4685 return SDValue(); 4686 4687 SDValue MagicFactor, Factor, Shift, ShiftMask; 4688 if (VT.isVector()) { 4689 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4690 Factor = DAG.getBuildVector(VT, dl, Factors); 4691 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4692 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4693 } else { 4694 MagicFactor = MagicFactors[0]; 4695 Factor = Factors[0]; 4696 Shift = Shifts[0]; 4697 ShiftMask = ShiftMasks[0]; 4698 } 4699 4700 // Multiply the numerator (operand 0) by the magic value. 4701 // FIXME: We should support doing a MUL in a wider type. 4702 SDValue Q; 4703 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4704 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4705 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4706 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4707 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4708 SDValue LoHi = 4709 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4710 Q = SDValue(LoHi.getNode(), 1); 4711 } else 4712 return SDValue(); // No mulhs or equivalent. 4713 Created.push_back(Q.getNode()); 4714 4715 // (Optionally) Add/subtract the numerator using Factor. 4716 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4717 Created.push_back(Factor.getNode()); 4718 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4719 Created.push_back(Q.getNode()); 4720 4721 // Shift right algebraic by shift value. 4722 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4723 Created.push_back(Q.getNode()); 4724 4725 // Extract the sign bit, mask it and add it to the quotient. 4726 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4727 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4728 Created.push_back(T.getNode()); 4729 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4730 Created.push_back(T.getNode()); 4731 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4732 } 4733 4734 /// Given an ISD::UDIV node expressing a divide by constant, 4735 /// return a DAG expression to select that will generate the same value by 4736 /// multiplying by a magic number. 4737 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4738 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4739 bool IsAfterLegalization, 4740 SmallVectorImpl<SDNode *> &Created) const { 4741 SDLoc dl(N); 4742 EVT VT = N->getValueType(0); 4743 EVT SVT = VT.getScalarType(); 4744 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4745 EVT ShSVT = ShVT.getScalarType(); 4746 unsigned EltBits = VT.getScalarSizeInBits(); 4747 4748 // Check to see if we can do this. 4749 // FIXME: We should be more aggressive here. 4750 if (!isTypeLegal(VT)) 4751 return SDValue(); 4752 4753 bool UseNPQ = false; 4754 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4755 4756 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4757 if (C->isNullValue()) 4758 return false; 4759 // FIXME: We should use a narrower constant when the upper 4760 // bits are known to be zero. 4761 APInt Divisor = C->getAPIntValue(); 4762 APInt::mu magics = Divisor.magicu(); 4763 unsigned PreShift = 0, PostShift = 0; 4764 4765 // If the divisor is even, we can avoid using the expensive fixup by 4766 // shifting the divided value upfront. 4767 if (magics.a != 0 && !Divisor[0]) { 4768 PreShift = Divisor.countTrailingZeros(); 4769 // Get magic number for the shifted divisor. 4770 magics = Divisor.lshr(PreShift).magicu(PreShift); 4771 assert(magics.a == 0 && "Should use cheap fixup now"); 4772 } 4773 4774 APInt Magic = magics.m; 4775 4776 unsigned SelNPQ; 4777 if (magics.a == 0 || Divisor.isOneValue()) { 4778 assert(magics.s < Divisor.getBitWidth() && 4779 "We shouldn't generate an undefined shift!"); 4780 PostShift = magics.s; 4781 SelNPQ = false; 4782 } else { 4783 PostShift = magics.s - 1; 4784 SelNPQ = true; 4785 } 4786 4787 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4788 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4789 NPQFactors.push_back( 4790 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4791 : APInt::getNullValue(EltBits), 4792 dl, SVT)); 4793 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4794 UseNPQ |= SelNPQ; 4795 return true; 4796 }; 4797 4798 SDValue N0 = N->getOperand(0); 4799 SDValue N1 = N->getOperand(1); 4800 4801 // Collect the shifts/magic values from each element. 4802 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4803 return SDValue(); 4804 4805 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4806 if (VT.isVector()) { 4807 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4808 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4809 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4810 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4811 } else { 4812 PreShift = PreShifts[0]; 4813 MagicFactor = MagicFactors[0]; 4814 PostShift = PostShifts[0]; 4815 } 4816 4817 SDValue Q = N0; 4818 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4819 Created.push_back(Q.getNode()); 4820 4821 // FIXME: We should support doing a MUL in a wider type. 4822 auto GetMULHU = [&](SDValue X, SDValue Y) { 4823 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4824 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4825 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4826 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4827 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4828 SDValue LoHi = 4829 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4830 return SDValue(LoHi.getNode(), 1); 4831 } 4832 return SDValue(); // No mulhu or equivalent 4833 }; 4834 4835 // Multiply the numerator (operand 0) by the magic value. 4836 Q = GetMULHU(Q, MagicFactor); 4837 if (!Q) 4838 return SDValue(); 4839 4840 Created.push_back(Q.getNode()); 4841 4842 if (UseNPQ) { 4843 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4844 Created.push_back(NPQ.getNode()); 4845 4846 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4847 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4848 if (VT.isVector()) 4849 NPQ = GetMULHU(NPQ, NPQFactor); 4850 else 4851 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4852 4853 Created.push_back(NPQ.getNode()); 4854 4855 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4856 Created.push_back(Q.getNode()); 4857 } 4858 4859 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4860 Created.push_back(Q.getNode()); 4861 4862 SDValue One = DAG.getConstant(1, dl, VT); 4863 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4864 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4865 } 4866 4867 /// If all values in Values that *don't* match the predicate are same 'splat' 4868 /// value, then replace all values with that splat value. 4869 /// Else, if AlternativeReplacement was provided, then replace all values that 4870 /// do match predicate with AlternativeReplacement value. 4871 static void 4872 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4873 std::function<bool(SDValue)> Predicate, 4874 SDValue AlternativeReplacement = SDValue()) { 4875 SDValue Replacement; 4876 // Is there a value for which the Predicate does *NOT* match? What is it? 4877 auto SplatValue = llvm::find_if_not(Values, Predicate); 4878 if (SplatValue != Values.end()) { 4879 // Does Values consist only of SplatValue's and values matching Predicate? 4880 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4881 return Value == *SplatValue || Predicate(Value); 4882 })) // Then we shall replace values matching predicate with SplatValue. 4883 Replacement = *SplatValue; 4884 } 4885 if (!Replacement) { 4886 // Oops, we did not find the "baseline" splat value. 4887 if (!AlternativeReplacement) 4888 return; // Nothing to do. 4889 // Let's replace with provided value then. 4890 Replacement = AlternativeReplacement; 4891 } 4892 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4893 } 4894 4895 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4896 /// where the divisor is constant and the comparison target is zero, 4897 /// return a DAG expression that will generate the same comparison result 4898 /// using only multiplications, additions and shifts/rotations. 4899 /// Ref: "Hacker's Delight" 10-17. 4900 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4901 SDValue CompTargetNode, 4902 ISD::CondCode Cond, 4903 DAGCombinerInfo &DCI, 4904 const SDLoc &DL) const { 4905 SmallVector<SDNode *, 2> Built; 4906 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4907 DCI, DL, Built)) { 4908 for (SDNode *N : Built) 4909 DCI.AddToWorklist(N); 4910 return Folded; 4911 } 4912 4913 return SDValue(); 4914 } 4915 4916 SDValue 4917 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4918 SDValue CompTargetNode, ISD::CondCode Cond, 4919 DAGCombinerInfo &DCI, const SDLoc &DL, 4920 SmallVectorImpl<SDNode *> &Created) const { 4921 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4922 // - D must be constant, with D = D0 * 2^K where D0 is odd 4923 // - P is the multiplicative inverse of D0 modulo 2^W 4924 // - Q = floor(((2^W) - 1) / D) 4925 // where W is the width of the common type of N and D. 4926 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4927 "Only applicable for (in)equality comparisons."); 4928 4929 SelectionDAG &DAG = DCI.DAG; 4930 4931 EVT VT = REMNode.getValueType(); 4932 EVT SVT = VT.getScalarType(); 4933 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4934 EVT ShSVT = ShVT.getScalarType(); 4935 4936 // If MUL is unavailable, we cannot proceed in any case. 4937 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 4938 return SDValue(); 4939 4940 // TODO: Could support comparing with non-zero too. 4941 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 4942 if (!CompTarget || !CompTarget->isNullValue()) 4943 return SDValue(); 4944 4945 bool HadOneDivisor = false; 4946 bool AllDivisorsAreOnes = true; 4947 bool HadEvenDivisor = false; 4948 bool AllDivisorsArePowerOfTwo = true; 4949 SmallVector<SDValue, 16> PAmts, KAmts, QAmts; 4950 4951 auto BuildUREMPattern = [&](ConstantSDNode *C) { 4952 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 4953 if (C->isNullValue()) 4954 return false; 4955 4956 const APInt &D = C->getAPIntValue(); 4957 // If all divisors are ones, we will prefer to avoid the fold. 4958 HadOneDivisor |= D.isOneValue(); 4959 AllDivisorsAreOnes &= D.isOneValue(); 4960 4961 // Decompose D into D0 * 2^K 4962 unsigned K = D.countTrailingZeros(); 4963 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 4964 APInt D0 = D.lshr(K); 4965 4966 // D is even if it has trailing zeros. 4967 HadEvenDivisor |= (K != 0); 4968 // D is a power-of-two if D0 is one. 4969 // If all divisors are power-of-two, we will prefer to avoid the fold. 4970 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 4971 4972 // P = inv(D0, 2^W) 4973 // 2^W requires W + 1 bits, so we have to extend and then truncate. 4974 unsigned W = D.getBitWidth(); 4975 APInt P = D0.zext(W + 1) 4976 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 4977 .trunc(W); 4978 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 4979 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 4980 4981 // Q = floor((2^W - 1) / D) 4982 APInt Q = APInt::getAllOnesValue(W).udiv(D); 4983 4984 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 4985 "We are expecting that K is always less than all-ones for ShSVT"); 4986 4987 // If the divisor is 1 the result can be constant-folded. 4988 if (D.isOneValue()) { 4989 // Set P and K amount to a bogus values so we can try to splat them. 4990 P = 0; 4991 K = -1; 4992 assert(Q.isAllOnesValue() && 4993 "Expecting all-ones comparison for one divisor"); 4994 } 4995 4996 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 4997 KAmts.push_back( 4998 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 4999 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5000 return true; 5001 }; 5002 5003 SDValue N = REMNode.getOperand(0); 5004 SDValue D = REMNode.getOperand(1); 5005 5006 // Collect the values from each element. 5007 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern)) 5008 return SDValue(); 5009 5010 // If this is a urem by a one, avoid the fold since it can be constant-folded. 5011 if (AllDivisorsAreOnes) 5012 return SDValue(); 5013 5014 // If this is a urem by a powers-of-two, avoid the fold since it can be 5015 // best implemented as a bit test. 5016 if (AllDivisorsArePowerOfTwo) 5017 return SDValue(); 5018 5019 SDValue PVal, KVal, QVal; 5020 if (VT.isVector()) { 5021 if (HadOneDivisor) { 5022 // Try to turn PAmts into a splat, since we don't care about the values 5023 // that are currently '0'. If we can't, just keep '0'`s. 5024 turnVectorIntoSplatVector(PAmts, isNullConstant); 5025 // Try to turn KAmts into a splat, since we don't care about the values 5026 // that are currently '-1'. If we can't, change them to '0'`s. 5027 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5028 DAG.getConstant(0, DL, ShSVT)); 5029 } 5030 5031 PVal = DAG.getBuildVector(VT, DL, PAmts); 5032 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5033 QVal = DAG.getBuildVector(VT, DL, QAmts); 5034 } else { 5035 PVal = PAmts[0]; 5036 KVal = KAmts[0]; 5037 QVal = QAmts[0]; 5038 } 5039 5040 // (mul N, P) 5041 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5042 Created.push_back(Op0.getNode()); 5043 5044 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5045 // divisors as a performance improvement, since rotating by 0 is a no-op. 5046 if (HadEvenDivisor) { 5047 // We need ROTR to do this. 5048 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5049 return SDValue(); 5050 SDNodeFlags Flags; 5051 Flags.setExact(true); 5052 // UREM: (rotr (mul N, P), K) 5053 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5054 Created.push_back(Op0.getNode()); 5055 } 5056 5057 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5058 return DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5059 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5060 } 5061 5062 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5063 /// where the divisor is constant and the comparison target is zero, 5064 /// return a DAG expression that will generate the same comparison result 5065 /// using only multiplications, additions and shifts/rotations. 5066 /// Ref: "Hacker's Delight" 10-17. 5067 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5068 SDValue CompTargetNode, 5069 ISD::CondCode Cond, 5070 DAGCombinerInfo &DCI, 5071 const SDLoc &DL) const { 5072 SmallVector<SDNode *, 7> Built; 5073 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5074 DCI, DL, Built)) { 5075 assert(Built.size() <= 7 && "Max size prediction failed."); 5076 for (SDNode *N : Built) 5077 DCI.AddToWorklist(N); 5078 return Folded; 5079 } 5080 5081 return SDValue(); 5082 } 5083 5084 SDValue 5085 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5086 SDValue CompTargetNode, ISD::CondCode Cond, 5087 DAGCombinerInfo &DCI, const SDLoc &DL, 5088 SmallVectorImpl<SDNode *> &Created) const { 5089 // Fold: 5090 // (seteq/ne (srem N, D), 0) 5091 // To: 5092 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5093 // 5094 // - D must be constant, with D = D0 * 2^K where D0 is odd 5095 // - P is the multiplicative inverse of D0 modulo 2^W 5096 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5097 // - Q = floor((2 * A) / (2^K)) 5098 // where W is the width of the common type of N and D. 5099 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5100 "Only applicable for (in)equality comparisons."); 5101 5102 SelectionDAG &DAG = DCI.DAG; 5103 5104 EVT VT = REMNode.getValueType(); 5105 EVT SVT = VT.getScalarType(); 5106 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5107 EVT ShSVT = ShVT.getScalarType(); 5108 5109 // If MUL is unavailable, we cannot proceed in any case. 5110 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5111 return SDValue(); 5112 5113 // TODO: Could support comparing with non-zero too. 5114 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5115 if (!CompTarget || !CompTarget->isNullValue()) 5116 return SDValue(); 5117 5118 bool HadIntMinDivisor = false; 5119 bool HadOneDivisor = false; 5120 bool AllDivisorsAreOnes = true; 5121 bool HadEvenDivisor = false; 5122 bool NeedToApplyOffset = false; 5123 bool AllDivisorsArePowerOfTwo = true; 5124 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5125 5126 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5127 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5128 if (C->isNullValue()) 5129 return false; 5130 5131 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5132 5133 // WARNING: this fold is only valid for positive divisors! 5134 APInt D = C->getAPIntValue(); 5135 if (D.isNegative()) 5136 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5137 5138 HadIntMinDivisor |= D.isMinSignedValue(); 5139 5140 // If all divisors are ones, we will prefer to avoid the fold. 5141 HadOneDivisor |= D.isOneValue(); 5142 AllDivisorsAreOnes &= D.isOneValue(); 5143 5144 // Decompose D into D0 * 2^K 5145 unsigned K = D.countTrailingZeros(); 5146 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5147 APInt D0 = D.lshr(K); 5148 5149 if (!D.isMinSignedValue()) { 5150 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5151 // we don't care about this lane in this fold, we'll special-handle it. 5152 HadEvenDivisor |= (K != 0); 5153 } 5154 5155 // D is a power-of-two if D0 is one. This includes INT_MIN. 5156 // If all divisors are power-of-two, we will prefer to avoid the fold. 5157 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5158 5159 // P = inv(D0, 2^W) 5160 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5161 unsigned W = D.getBitWidth(); 5162 APInt P = D0.zext(W + 1) 5163 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5164 .trunc(W); 5165 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5166 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5167 5168 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5169 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5170 A.clearLowBits(K); 5171 5172 if (!D.isMinSignedValue()) { 5173 // If divisor INT_MIN, then we don't care about this lane in this fold, 5174 // we'll special-handle it. 5175 NeedToApplyOffset |= A != 0; 5176 } 5177 5178 // Q = floor((2 * A) / (2^K)) 5179 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5180 5181 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5182 "We are expecting that A is always less than all-ones for SVT"); 5183 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5184 "We are expecting that K is always less than all-ones for ShSVT"); 5185 5186 // If the divisor is 1 the result can be constant-folded. Likewise, we 5187 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5188 if (D.isOneValue()) { 5189 // Set P, A and K to a bogus values so we can try to splat them. 5190 P = 0; 5191 A = -1; 5192 K = -1; 5193 5194 // x ?% 1 == 0 <--> true <--> x u<= -1 5195 Q = -1; 5196 } 5197 5198 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5199 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5200 KAmts.push_back( 5201 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5202 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5203 return true; 5204 }; 5205 5206 SDValue N = REMNode.getOperand(0); 5207 SDValue D = REMNode.getOperand(1); 5208 5209 // Collect the values from each element. 5210 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5211 return SDValue(); 5212 5213 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5214 if (AllDivisorsAreOnes) 5215 return SDValue(); 5216 5217 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5218 // since it can be best implemented as a bit test. 5219 if (AllDivisorsArePowerOfTwo) 5220 return SDValue(); 5221 5222 SDValue PVal, AVal, KVal, QVal; 5223 if (VT.isVector()) { 5224 if (HadOneDivisor) { 5225 // Try to turn PAmts into a splat, since we don't care about the values 5226 // that are currently '0'. If we can't, just keep '0'`s. 5227 turnVectorIntoSplatVector(PAmts, isNullConstant); 5228 // Try to turn AAmts into a splat, since we don't care about the 5229 // values that are currently '-1'. If we can't, change them to '0'`s. 5230 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5231 DAG.getConstant(0, DL, SVT)); 5232 // Try to turn KAmts into a splat, since we don't care about the values 5233 // that are currently '-1'. If we can't, change them to '0'`s. 5234 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5235 DAG.getConstant(0, DL, ShSVT)); 5236 } 5237 5238 PVal = DAG.getBuildVector(VT, DL, PAmts); 5239 AVal = DAG.getBuildVector(VT, DL, AAmts); 5240 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5241 QVal = DAG.getBuildVector(VT, DL, QAmts); 5242 } else { 5243 PVal = PAmts[0]; 5244 AVal = AAmts[0]; 5245 KVal = KAmts[0]; 5246 QVal = QAmts[0]; 5247 } 5248 5249 // (mul N, P) 5250 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5251 Created.push_back(Op0.getNode()); 5252 5253 if (NeedToApplyOffset) { 5254 // We need ADD to do this. 5255 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5256 return SDValue(); 5257 5258 // (add (mul N, P), A) 5259 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5260 Created.push_back(Op0.getNode()); 5261 } 5262 5263 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5264 // divisors as a performance improvement, since rotating by 0 is a no-op. 5265 if (HadEvenDivisor) { 5266 // We need ROTR to do this. 5267 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5268 return SDValue(); 5269 SDNodeFlags Flags; 5270 Flags.setExact(true); 5271 // SREM: (rotr (add (mul N, P), A), K) 5272 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5273 Created.push_back(Op0.getNode()); 5274 } 5275 5276 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5277 SDValue Fold = 5278 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5279 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5280 5281 // If we didn't have lanes with INT_MIN divisor, then we're done. 5282 if (!HadIntMinDivisor) 5283 return Fold; 5284 5285 // That fold is only valid for positive divisors. Which effectively means, 5286 // it is invalid for INT_MIN divisors. So if we have such a lane, 5287 // we must fix-up results for said lanes. 5288 assert(VT.isVector() && "Can/should only get here for vectors."); 5289 5290 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5291 !isOperationLegalOrCustom(ISD::AND, VT) || 5292 !isOperationLegalOrCustom(Cond, VT) || 5293 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5294 return SDValue(); 5295 5296 Created.push_back(Fold.getNode()); 5297 5298 SDValue IntMin = DAG.getConstant( 5299 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5300 SDValue IntMax = DAG.getConstant( 5301 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5302 SDValue Zero = 5303 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5304 5305 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5306 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5307 Created.push_back(DivisorIsIntMin.getNode()); 5308 5309 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5310 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5311 Created.push_back(Masked.getNode()); 5312 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5313 Created.push_back(MaskedIsZero.getNode()); 5314 5315 // To produce final result we need to blend 2 vectors: 'SetCC' and 5316 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5317 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5318 // constant-folded, select can get lowered to a shuffle with constant mask. 5319 SDValue Blended = 5320 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5321 5322 return Blended; 5323 } 5324 5325 bool TargetLowering:: 5326 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5327 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5328 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5329 "be a constant integer"); 5330 return true; 5331 } 5332 5333 return false; 5334 } 5335 5336 //===----------------------------------------------------------------------===// 5337 // Legalization Utilities 5338 //===----------------------------------------------------------------------===// 5339 5340 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5341 SDValue LHS, SDValue RHS, 5342 SmallVectorImpl<SDValue> &Result, 5343 EVT HiLoVT, SelectionDAG &DAG, 5344 MulExpansionKind Kind, SDValue LL, 5345 SDValue LH, SDValue RL, SDValue RH) const { 5346 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5347 Opcode == ISD::SMUL_LOHI); 5348 5349 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5350 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5351 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5352 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5353 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5354 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5355 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5356 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5357 5358 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5359 return false; 5360 5361 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5362 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5363 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5364 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5365 5366 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5367 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5368 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5369 5370 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5371 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5372 bool Signed) -> bool { 5373 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5374 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5375 Hi = SDValue(Lo.getNode(), 1); 5376 return true; 5377 } 5378 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5379 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5380 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5381 return true; 5382 } 5383 return false; 5384 }; 5385 5386 SDValue Lo, Hi; 5387 5388 if (!LL.getNode() && !RL.getNode() && 5389 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5390 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5391 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5392 } 5393 5394 if (!LL.getNode()) 5395 return false; 5396 5397 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5398 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5399 DAG.MaskedValueIsZero(RHS, HighMask)) { 5400 // The inputs are both zero-extended. 5401 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5402 Result.push_back(Lo); 5403 Result.push_back(Hi); 5404 if (Opcode != ISD::MUL) { 5405 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5406 Result.push_back(Zero); 5407 Result.push_back(Zero); 5408 } 5409 return true; 5410 } 5411 } 5412 5413 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5414 RHSSB > InnerBitSize) { 5415 // The input values are both sign-extended. 5416 // TODO non-MUL case? 5417 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5418 Result.push_back(Lo); 5419 Result.push_back(Hi); 5420 return true; 5421 } 5422 } 5423 5424 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5425 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5426 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5427 // FIXME getShiftAmountTy does not always return a sensible result when VT 5428 // is an illegal type, and so the type may be too small to fit the shift 5429 // amount. Override it with i32. The shift will have to be legalized. 5430 ShiftAmountTy = MVT::i32; 5431 } 5432 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5433 5434 if (!LH.getNode() && !RH.getNode() && 5435 isOperationLegalOrCustom(ISD::SRL, VT) && 5436 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5437 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5438 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5439 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5440 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5441 } 5442 5443 if (!LH.getNode()) 5444 return false; 5445 5446 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5447 return false; 5448 5449 Result.push_back(Lo); 5450 5451 if (Opcode == ISD::MUL) { 5452 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5453 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5454 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5455 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5456 Result.push_back(Hi); 5457 return true; 5458 } 5459 5460 // Compute the full width result. 5461 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5462 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5463 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5464 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5465 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5466 }; 5467 5468 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5469 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5470 return false; 5471 5472 // This is effectively the add part of a multiply-add of half-sized operands, 5473 // so it cannot overflow. 5474 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5475 5476 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5477 return false; 5478 5479 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5480 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5481 5482 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5483 isOperationLegalOrCustom(ISD::ADDE, VT)); 5484 if (UseGlue) 5485 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5486 Merge(Lo, Hi)); 5487 else 5488 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5489 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5490 5491 SDValue Carry = Next.getValue(1); 5492 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5493 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5494 5495 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5496 return false; 5497 5498 if (UseGlue) 5499 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5500 Carry); 5501 else 5502 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5503 Zero, Carry); 5504 5505 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5506 5507 if (Opcode == ISD::SMUL_LOHI) { 5508 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5509 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5510 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5511 5512 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5513 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5514 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5515 } 5516 5517 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5518 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5519 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5520 return true; 5521 } 5522 5523 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5524 SelectionDAG &DAG, MulExpansionKind Kind, 5525 SDValue LL, SDValue LH, SDValue RL, 5526 SDValue RH) const { 5527 SmallVector<SDValue, 2> Result; 5528 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5529 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5530 DAG, Kind, LL, LH, RL, RH); 5531 if (Ok) { 5532 assert(Result.size() == 2); 5533 Lo = Result[0]; 5534 Hi = Result[1]; 5535 } 5536 return Ok; 5537 } 5538 5539 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5540 SelectionDAG &DAG) const { 5541 EVT VT = Node->getValueType(0); 5542 5543 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5544 !isOperationLegalOrCustom(ISD::SRL, VT) || 5545 !isOperationLegalOrCustom(ISD::SUB, VT) || 5546 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5547 return false; 5548 5549 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5550 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5551 SDValue X = Node->getOperand(0); 5552 SDValue Y = Node->getOperand(1); 5553 SDValue Z = Node->getOperand(2); 5554 5555 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5556 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5557 SDLoc DL(SDValue(Node, 0)); 5558 5559 EVT ShVT = Z.getValueType(); 5560 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5561 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5562 5563 SDValue ShAmt; 5564 if (isPowerOf2_32(EltSizeInBits)) { 5565 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5566 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5567 } else { 5568 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5569 } 5570 5571 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5572 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5573 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5574 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5575 5576 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5577 // and that is undefined. We must compare and select to avoid UB. 5578 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5579 5580 // For fshl, 0-shift returns the 1st arg (X). 5581 // For fshr, 0-shift returns the 2nd arg (Y). 5582 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5583 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5584 return true; 5585 } 5586 5587 // TODO: Merge with expandFunnelShift. 5588 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5589 SelectionDAG &DAG) const { 5590 EVT VT = Node->getValueType(0); 5591 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5592 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5593 SDValue Op0 = Node->getOperand(0); 5594 SDValue Op1 = Node->getOperand(1); 5595 SDLoc DL(SDValue(Node, 0)); 5596 5597 EVT ShVT = Op1.getValueType(); 5598 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5599 5600 // If a rotate in the other direction is legal, use it. 5601 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5602 if (isOperationLegal(RevRot, VT)) { 5603 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5604 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 5605 return true; 5606 } 5607 5608 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5609 !isOperationLegalOrCustom(ISD::SRL, VT) || 5610 !isOperationLegalOrCustom(ISD::SUB, VT) || 5611 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 5612 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5613 return false; 5614 5615 // Otherwise, 5616 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 5617 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 5618 // 5619 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 5620 "Expecting the type bitwidth to be a power of 2"); 5621 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 5622 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 5623 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5624 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5625 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 5626 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 5627 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 5628 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 5629 return true; 5630 } 5631 5632 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 5633 SelectionDAG &DAG) const { 5634 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5635 SDValue Src = Node->getOperand(OpNo); 5636 EVT SrcVT = Src.getValueType(); 5637 EVT DstVT = Node->getValueType(0); 5638 SDLoc dl(SDValue(Node, 0)); 5639 5640 // FIXME: Only f32 to i64 conversions are supported. 5641 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 5642 return false; 5643 5644 if (Node->isStrictFPOpcode()) 5645 // When a NaN is converted to an integer a trap is allowed. We can't 5646 // use this expansion here because it would eliminate that trap. Other 5647 // traps are also allowed and cannot be eliminated. See 5648 // IEEE 754-2008 sec 5.8. 5649 return false; 5650 5651 // Expand f32 -> i64 conversion 5652 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5653 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5654 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 5655 EVT IntVT = SrcVT.changeTypeToInteger(); 5656 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 5657 5658 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 5659 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 5660 SDValue Bias = DAG.getConstant(127, dl, IntVT); 5661 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 5662 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 5663 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 5664 5665 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 5666 5667 SDValue ExponentBits = DAG.getNode( 5668 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 5669 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 5670 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 5671 5672 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 5673 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 5674 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 5675 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 5676 5677 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 5678 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 5679 DAG.getConstant(0x00800000, dl, IntVT)); 5680 5681 R = DAG.getZExtOrTrunc(R, dl, DstVT); 5682 5683 R = DAG.getSelectCC( 5684 dl, Exponent, ExponentLoBit, 5685 DAG.getNode(ISD::SHL, dl, DstVT, R, 5686 DAG.getZExtOrTrunc( 5687 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 5688 dl, IntShVT)), 5689 DAG.getNode(ISD::SRL, dl, DstVT, R, 5690 DAG.getZExtOrTrunc( 5691 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 5692 dl, IntShVT)), 5693 ISD::SETGT); 5694 5695 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 5696 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 5697 5698 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 5699 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 5700 return true; 5701 } 5702 5703 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 5704 SDValue &Chain, 5705 SelectionDAG &DAG) const { 5706 SDLoc dl(SDValue(Node, 0)); 5707 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5708 SDValue Src = Node->getOperand(OpNo); 5709 5710 EVT SrcVT = Src.getValueType(); 5711 EVT DstVT = Node->getValueType(0); 5712 EVT SetCCVT = 5713 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 5714 5715 // Only expand vector types if we have the appropriate vector bit operations. 5716 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 5717 ISD::FP_TO_SINT; 5718 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 5719 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 5720 return false; 5721 5722 // If the maximum float value is smaller then the signed integer range, 5723 // the destination signmask can't be represented by the float, so we can 5724 // just use FP_TO_SINT directly. 5725 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 5726 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 5727 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 5728 if (APFloat::opOverflow & 5729 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 5730 if (Node->isStrictFPOpcode()) { 5731 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 5732 { Node->getOperand(0), Src }); 5733 Chain = Result.getValue(1); 5734 } else 5735 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 5736 return true; 5737 } 5738 5739 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 5740 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 5741 5742 bool Strict = Node->isStrictFPOpcode() || 5743 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 5744 5745 if (Strict) { 5746 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 5747 // signmask then offset (the result of which should be fully representable). 5748 // Sel = Src < 0x8000000000000000 5749 // Val = select Sel, Src, Src - 0x8000000000000000 5750 // Ofs = select Sel, 0, 0x8000000000000000 5751 // Result = fp_to_sint(Val) ^ Ofs 5752 5753 // TODO: Should any fast-math-flags be set for the FSUB? 5754 SDValue SrcBiased; 5755 if (Node->isStrictFPOpcode()) 5756 SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 5757 { Node->getOperand(0), Src, Cst }); 5758 else 5759 SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst); 5760 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased); 5761 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 5762 DAG.getConstant(SignMask, dl, DstVT)); 5763 SDValue SInt; 5764 if (Node->isStrictFPOpcode()) { 5765 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 5766 { SrcBiased.getValue(1), Val }); 5767 Chain = SInt.getValue(1); 5768 } else 5769 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 5770 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs); 5771 } else { 5772 // Expand based on maximum range of FP_TO_SINT: 5773 // True = fp_to_sint(Src) 5774 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 5775 // Result = select (Src < 0x8000000000000000), True, False 5776 5777 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 5778 // TODO: Should any fast-math-flags be set for the FSUB? 5779 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 5780 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 5781 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 5782 DAG.getConstant(SignMask, dl, DstVT)); 5783 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 5784 } 5785 return true; 5786 } 5787 5788 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 5789 SelectionDAG &DAG) const { 5790 SDValue Src = Node->getOperand(0); 5791 EVT SrcVT = Src.getValueType(); 5792 EVT DstVT = Node->getValueType(0); 5793 5794 if (SrcVT.getScalarType() != MVT::i64) 5795 return false; 5796 5797 SDLoc dl(SDValue(Node, 0)); 5798 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 5799 5800 if (DstVT.getScalarType() == MVT::f32) { 5801 // Only expand vector types if we have the appropriate vector bit 5802 // operations. 5803 if (SrcVT.isVector() && 5804 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 5805 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 5806 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 5807 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 5808 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 5809 return false; 5810 5811 // For unsigned conversions, convert them to signed conversions using the 5812 // algorithm from the x86_64 __floatundidf in compiler_rt. 5813 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 5814 5815 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 5816 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 5817 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 5818 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 5819 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 5820 5821 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 5822 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 5823 5824 // TODO: This really should be implemented using a branch rather than a 5825 // select. We happen to get lucky and machinesink does the right 5826 // thing most of the time. This would be a good candidate for a 5827 // pseudo-op, or, even better, for whole-function isel. 5828 EVT SetCCVT = 5829 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 5830 5831 SDValue SignBitTest = DAG.getSetCC( 5832 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 5833 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 5834 return true; 5835 } 5836 5837 if (DstVT.getScalarType() == MVT::f64) { 5838 // Only expand vector types if we have the appropriate vector bit 5839 // operations. 5840 if (SrcVT.isVector() && 5841 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 5842 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 5843 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 5844 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 5845 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 5846 return false; 5847 5848 // Implementation of unsigned i64 to f64 following the algorithm in 5849 // __floatundidf in compiler_rt. This implementation has the advantage 5850 // of performing rounding correctly, both in the default rounding mode 5851 // and in all alternate rounding modes. 5852 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 5853 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 5854 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 5855 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 5856 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 5857 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 5858 5859 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 5860 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 5861 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 5862 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 5863 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 5864 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 5865 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 5866 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 5867 return true; 5868 } 5869 5870 return false; 5871 } 5872 5873 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 5874 SelectionDAG &DAG) const { 5875 SDLoc dl(Node); 5876 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 5877 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 5878 EVT VT = Node->getValueType(0); 5879 if (isOperationLegalOrCustom(NewOp, VT)) { 5880 SDValue Quiet0 = Node->getOperand(0); 5881 SDValue Quiet1 = Node->getOperand(1); 5882 5883 if (!Node->getFlags().hasNoNaNs()) { 5884 // Insert canonicalizes if it's possible we need to quiet to get correct 5885 // sNaN behavior. 5886 if (!DAG.isKnownNeverSNaN(Quiet0)) { 5887 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 5888 Node->getFlags()); 5889 } 5890 if (!DAG.isKnownNeverSNaN(Quiet1)) { 5891 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 5892 Node->getFlags()); 5893 } 5894 } 5895 5896 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 5897 } 5898 5899 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 5900 // instead if there are no NaNs. 5901 if (Node->getFlags().hasNoNaNs()) { 5902 unsigned IEEE2018Op = 5903 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 5904 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 5905 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 5906 Node->getOperand(1), Node->getFlags()); 5907 } 5908 } 5909 5910 return SDValue(); 5911 } 5912 5913 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 5914 SelectionDAG &DAG) const { 5915 SDLoc dl(Node); 5916 EVT VT = Node->getValueType(0); 5917 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5918 SDValue Op = Node->getOperand(0); 5919 unsigned Len = VT.getScalarSizeInBits(); 5920 assert(VT.isInteger() && "CTPOP not implemented for this type."); 5921 5922 // TODO: Add support for irregular type lengths. 5923 if (!(Len <= 128 && Len % 8 == 0)) 5924 return false; 5925 5926 // Only expand vector types if we have the appropriate vector bit operations. 5927 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 5928 !isOperationLegalOrCustom(ISD::SUB, VT) || 5929 !isOperationLegalOrCustom(ISD::SRL, VT) || 5930 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 5931 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5932 return false; 5933 5934 // This is the "best" algorithm from 5935 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 5936 SDValue Mask55 = 5937 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 5938 SDValue Mask33 = 5939 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 5940 SDValue Mask0F = 5941 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 5942 SDValue Mask01 = 5943 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 5944 5945 // v = v - ((v >> 1) & 0x55555555...) 5946 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 5947 DAG.getNode(ISD::AND, dl, VT, 5948 DAG.getNode(ISD::SRL, dl, VT, Op, 5949 DAG.getConstant(1, dl, ShVT)), 5950 Mask55)); 5951 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 5952 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 5953 DAG.getNode(ISD::AND, dl, VT, 5954 DAG.getNode(ISD::SRL, dl, VT, Op, 5955 DAG.getConstant(2, dl, ShVT)), 5956 Mask33)); 5957 // v = (v + (v >> 4)) & 0x0F0F0F0F... 5958 Op = DAG.getNode(ISD::AND, dl, VT, 5959 DAG.getNode(ISD::ADD, dl, VT, Op, 5960 DAG.getNode(ISD::SRL, dl, VT, Op, 5961 DAG.getConstant(4, dl, ShVT))), 5962 Mask0F); 5963 // v = (v * 0x01010101...) >> (Len - 8) 5964 if (Len > 8) 5965 Op = 5966 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 5967 DAG.getConstant(Len - 8, dl, ShVT)); 5968 5969 Result = Op; 5970 return true; 5971 } 5972 5973 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 5974 SelectionDAG &DAG) const { 5975 SDLoc dl(Node); 5976 EVT VT = Node->getValueType(0); 5977 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5978 SDValue Op = Node->getOperand(0); 5979 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5980 5981 // If the non-ZERO_UNDEF version is supported we can use that instead. 5982 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 5983 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 5984 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 5985 return true; 5986 } 5987 5988 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5989 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 5990 EVT SetCCVT = 5991 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5992 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 5993 SDValue Zero = DAG.getConstant(0, dl, VT); 5994 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5995 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5996 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 5997 return true; 5998 } 5999 6000 // Only expand vector types if we have the appropriate vector bit operations. 6001 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6002 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6003 !isOperationLegalOrCustom(ISD::SRL, VT) || 6004 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6005 return false; 6006 6007 // for now, we do this: 6008 // x = x | (x >> 1); 6009 // x = x | (x >> 2); 6010 // ... 6011 // x = x | (x >>16); 6012 // x = x | (x >>32); // for 64-bit input 6013 // return popcount(~x); 6014 // 6015 // Ref: "Hacker's Delight" by Henry Warren 6016 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6017 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6018 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6019 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6020 } 6021 Op = DAG.getNOT(dl, Op, VT); 6022 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6023 return true; 6024 } 6025 6026 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6027 SelectionDAG &DAG) const { 6028 SDLoc dl(Node); 6029 EVT VT = Node->getValueType(0); 6030 SDValue Op = Node->getOperand(0); 6031 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6032 6033 // If the non-ZERO_UNDEF version is supported we can use that instead. 6034 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6035 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6036 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6037 return true; 6038 } 6039 6040 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6041 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6042 EVT SetCCVT = 6043 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6044 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6045 SDValue Zero = DAG.getConstant(0, dl, VT); 6046 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6047 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6048 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6049 return true; 6050 } 6051 6052 // Only expand vector types if we have the appropriate vector bit operations. 6053 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6054 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6055 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6056 !isOperationLegalOrCustom(ISD::SUB, VT) || 6057 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6058 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6059 return false; 6060 6061 // for now, we use: { return popcount(~x & (x - 1)); } 6062 // unless the target has ctlz but not ctpop, in which case we use: 6063 // { return 32 - nlz(~x & (x-1)); } 6064 // Ref: "Hacker's Delight" by Henry Warren 6065 SDValue Tmp = DAG.getNode( 6066 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6067 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6068 6069 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6070 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6071 Result = 6072 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6073 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6074 return true; 6075 } 6076 6077 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6078 return true; 6079 } 6080 6081 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6082 SelectionDAG &DAG) const { 6083 SDLoc dl(N); 6084 EVT VT = N->getValueType(0); 6085 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6086 SDValue Op = N->getOperand(0); 6087 6088 // Only expand vector types if we have the appropriate vector operations. 6089 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6090 !isOperationLegalOrCustom(ISD::ADD, VT) || 6091 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6092 return false; 6093 6094 SDValue Shift = 6095 DAG.getNode(ISD::SRA, dl, VT, Op, 6096 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6097 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6098 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6099 return true; 6100 } 6101 6102 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6103 SelectionDAG &DAG) const { 6104 SDLoc SL(LD); 6105 SDValue Chain = LD->getChain(); 6106 SDValue BasePTR = LD->getBasePtr(); 6107 EVT SrcVT = LD->getMemoryVT(); 6108 ISD::LoadExtType ExtType = LD->getExtensionType(); 6109 6110 unsigned NumElem = SrcVT.getVectorNumElements(); 6111 6112 EVT SrcEltVT = SrcVT.getScalarType(); 6113 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6114 6115 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6116 assert(SrcEltVT.isByteSized()); 6117 6118 SmallVector<SDValue, 8> Vals; 6119 SmallVector<SDValue, 8> LoadChains; 6120 6121 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6122 SDValue ScalarLoad = 6123 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6124 LD->getPointerInfo().getWithOffset(Idx * Stride), 6125 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6126 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6127 6128 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6129 6130 Vals.push_back(ScalarLoad.getValue(0)); 6131 LoadChains.push_back(ScalarLoad.getValue(1)); 6132 } 6133 6134 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6135 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6136 6137 return DAG.getMergeValues({Value, NewChain}, SL); 6138 } 6139 6140 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6141 SelectionDAG &DAG) const { 6142 SDLoc SL(ST); 6143 6144 SDValue Chain = ST->getChain(); 6145 SDValue BasePtr = ST->getBasePtr(); 6146 SDValue Value = ST->getValue(); 6147 EVT StVT = ST->getMemoryVT(); 6148 6149 // The type of the data we want to save 6150 EVT RegVT = Value.getValueType(); 6151 EVT RegSclVT = RegVT.getScalarType(); 6152 6153 // The type of data as saved in memory. 6154 EVT MemSclVT = StVT.getScalarType(); 6155 6156 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6157 unsigned NumElem = StVT.getVectorNumElements(); 6158 6159 // A vector must always be stored in memory as-is, i.e. without any padding 6160 // between the elements, since various code depend on it, e.g. in the 6161 // handling of a bitcast of a vector type to int, which may be done with a 6162 // vector store followed by an integer load. A vector that does not have 6163 // elements that are byte-sized must therefore be stored as an integer 6164 // built out of the extracted vector elements. 6165 if (!MemSclVT.isByteSized()) { 6166 unsigned NumBits = StVT.getSizeInBits(); 6167 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6168 6169 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6170 6171 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6172 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6173 DAG.getConstant(Idx, SL, IdxVT)); 6174 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6175 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6176 unsigned ShiftIntoIdx = 6177 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6178 SDValue ShiftAmount = 6179 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6180 SDValue ShiftedElt = 6181 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6182 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6183 } 6184 6185 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6186 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6187 ST->getAAInfo()); 6188 } 6189 6190 // Store Stride in bytes 6191 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6192 assert(Stride && "Zero stride!"); 6193 // Extract each of the elements from the original vector and save them into 6194 // memory individually. 6195 SmallVector<SDValue, 8> Stores; 6196 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6197 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6198 DAG.getConstant(Idx, SL, IdxVT)); 6199 6200 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6201 6202 // This scalar TruncStore may be illegal, but we legalize it later. 6203 SDValue Store = DAG.getTruncStore( 6204 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6205 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6206 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6207 6208 Stores.push_back(Store); 6209 } 6210 6211 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6212 } 6213 6214 std::pair<SDValue, SDValue> 6215 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6216 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6217 "unaligned indexed loads not implemented!"); 6218 SDValue Chain = LD->getChain(); 6219 SDValue Ptr = LD->getBasePtr(); 6220 EVT VT = LD->getValueType(0); 6221 EVT LoadedVT = LD->getMemoryVT(); 6222 SDLoc dl(LD); 6223 auto &MF = DAG.getMachineFunction(); 6224 6225 if (VT.isFloatingPoint() || VT.isVector()) { 6226 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6227 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6228 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6229 LoadedVT.isVector()) { 6230 // Scalarize the load and let the individual components be handled. 6231 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 6232 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 6233 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 6234 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 6235 } 6236 6237 // Expand to a (misaligned) integer load of the same size, 6238 // then bitconvert to floating point or vector. 6239 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6240 LD->getMemOperand()); 6241 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6242 if (LoadedVT != VT) 6243 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6244 ISD::ANY_EXTEND, dl, VT, Result); 6245 6246 return std::make_pair(Result, newLoad.getValue(1)); 6247 } 6248 6249 // Copy the value to a (aligned) stack slot using (unaligned) integer 6250 // loads and stores, then do a (aligned) load from the stack slot. 6251 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6252 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6253 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6254 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6255 6256 // Make sure the stack slot is also aligned for the register type. 6257 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6258 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6259 SmallVector<SDValue, 8> Stores; 6260 SDValue StackPtr = StackBase; 6261 unsigned Offset = 0; 6262 6263 EVT PtrVT = Ptr.getValueType(); 6264 EVT StackPtrVT = StackPtr.getValueType(); 6265 6266 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6267 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6268 6269 // Do all but one copies using the full register width. 6270 for (unsigned i = 1; i < NumRegs; i++) { 6271 // Load one integer register's worth from the original location. 6272 SDValue Load = DAG.getLoad( 6273 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6274 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6275 LD->getAAInfo()); 6276 // Follow the load with a store to the stack slot. Remember the store. 6277 Stores.push_back(DAG.getStore( 6278 Load.getValue(1), dl, Load, StackPtr, 6279 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6280 // Increment the pointers. 6281 Offset += RegBytes; 6282 6283 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6284 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6285 } 6286 6287 // The last copy may be partial. Do an extending load. 6288 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6289 8 * (LoadedBytes - Offset)); 6290 SDValue Load = 6291 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6292 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6293 MinAlign(LD->getAlignment(), Offset), 6294 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6295 // Follow the load with a store to the stack slot. Remember the store. 6296 // On big-endian machines this requires a truncating store to ensure 6297 // that the bits end up in the right place. 6298 Stores.push_back(DAG.getTruncStore( 6299 Load.getValue(1), dl, Load, StackPtr, 6300 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6301 6302 // The order of the stores doesn't matter - say it with a TokenFactor. 6303 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6304 6305 // Finally, perform the original load only redirected to the stack slot. 6306 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6307 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6308 LoadedVT); 6309 6310 // Callers expect a MERGE_VALUES node. 6311 return std::make_pair(Load, TF); 6312 } 6313 6314 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6315 "Unaligned load of unsupported type."); 6316 6317 // Compute the new VT that is half the size of the old one. This is an 6318 // integer MVT. 6319 unsigned NumBits = LoadedVT.getSizeInBits(); 6320 EVT NewLoadedVT; 6321 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6322 NumBits >>= 1; 6323 6324 unsigned Alignment = LD->getAlignment(); 6325 unsigned IncrementSize = NumBits / 8; 6326 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6327 6328 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6329 if (HiExtType == ISD::NON_EXTLOAD) 6330 HiExtType = ISD::ZEXTLOAD; 6331 6332 // Load the value in two parts 6333 SDValue Lo, Hi; 6334 if (DAG.getDataLayout().isLittleEndian()) { 6335 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6336 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6337 LD->getAAInfo()); 6338 6339 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6340 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6341 LD->getPointerInfo().getWithOffset(IncrementSize), 6342 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6343 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6344 } else { 6345 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6346 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6347 LD->getAAInfo()); 6348 6349 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6350 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6351 LD->getPointerInfo().getWithOffset(IncrementSize), 6352 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6353 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6354 } 6355 6356 // aggregate the two parts 6357 SDValue ShiftAmount = 6358 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6359 DAG.getDataLayout())); 6360 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6361 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6362 6363 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6364 Hi.getValue(1)); 6365 6366 return std::make_pair(Result, TF); 6367 } 6368 6369 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6370 SelectionDAG &DAG) const { 6371 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6372 "unaligned indexed stores not implemented!"); 6373 SDValue Chain = ST->getChain(); 6374 SDValue Ptr = ST->getBasePtr(); 6375 SDValue Val = ST->getValue(); 6376 EVT VT = Val.getValueType(); 6377 int Alignment = ST->getAlignment(); 6378 auto &MF = DAG.getMachineFunction(); 6379 EVT StoreMemVT = ST->getMemoryVT(); 6380 6381 SDLoc dl(ST); 6382 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6383 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6384 if (isTypeLegal(intVT)) { 6385 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6386 StoreMemVT.isVector()) { 6387 // Scalarize the store and let the individual components be handled. 6388 SDValue Result = scalarizeVectorStore(ST, DAG); 6389 return Result; 6390 } 6391 // Expand to a bitconvert of the value to the integer type of the 6392 // same size, then a (misaligned) int store. 6393 // FIXME: Does not handle truncating floating point stores! 6394 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6395 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6396 Alignment, ST->getMemOperand()->getFlags()); 6397 return Result; 6398 } 6399 // Do a (aligned) store to a stack slot, then copy from the stack slot 6400 // to the final destination using (unaligned) integer loads and stores. 6401 MVT RegVT = getRegisterType( 6402 *DAG.getContext(), 6403 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6404 EVT PtrVT = Ptr.getValueType(); 6405 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6406 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6407 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6408 6409 // Make sure the stack slot is also aligned for the register type. 6410 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6411 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6412 6413 // Perform the original store, only redirected to the stack slot. 6414 SDValue Store = DAG.getTruncStore( 6415 Chain, dl, Val, StackPtr, 6416 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6417 6418 EVT StackPtrVT = StackPtr.getValueType(); 6419 6420 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6421 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6422 SmallVector<SDValue, 8> Stores; 6423 unsigned Offset = 0; 6424 6425 // Do all but one copies using the full register width. 6426 for (unsigned i = 1; i < NumRegs; i++) { 6427 // Load one integer register's worth from the stack slot. 6428 SDValue Load = DAG.getLoad( 6429 RegVT, dl, Store, StackPtr, 6430 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6431 // Store it to the final location. Remember the store. 6432 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6433 ST->getPointerInfo().getWithOffset(Offset), 6434 MinAlign(ST->getAlignment(), Offset), 6435 ST->getMemOperand()->getFlags())); 6436 // Increment the pointers. 6437 Offset += RegBytes; 6438 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6439 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6440 } 6441 6442 // The last store may be partial. Do a truncating store. On big-endian 6443 // machines this requires an extending load from the stack slot to ensure 6444 // that the bits are in the right place. 6445 EVT LoadMemVT = 6446 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6447 6448 // Load from the stack slot. 6449 SDValue Load = DAG.getExtLoad( 6450 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6451 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6452 6453 Stores.push_back( 6454 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6455 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6456 MinAlign(ST->getAlignment(), Offset), 6457 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6458 // The order of the stores doesn't matter - say it with a TokenFactor. 6459 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6460 return Result; 6461 } 6462 6463 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6464 "Unaligned store of unknown type."); 6465 // Get the half-size VT 6466 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6467 int NumBits = NewStoredVT.getSizeInBits(); 6468 int IncrementSize = NumBits / 8; 6469 6470 // Divide the stored value in two parts. 6471 SDValue ShiftAmount = DAG.getConstant( 6472 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6473 SDValue Lo = Val; 6474 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6475 6476 // Store the two parts 6477 SDValue Store1, Store2; 6478 Store1 = DAG.getTruncStore(Chain, dl, 6479 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6480 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6481 ST->getMemOperand()->getFlags()); 6482 6483 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6484 Alignment = MinAlign(Alignment, IncrementSize); 6485 Store2 = DAG.getTruncStore( 6486 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6487 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6488 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6489 6490 SDValue Result = 6491 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6492 return Result; 6493 } 6494 6495 SDValue 6496 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6497 const SDLoc &DL, EVT DataVT, 6498 SelectionDAG &DAG, 6499 bool IsCompressedMemory) const { 6500 SDValue Increment; 6501 EVT AddrVT = Addr.getValueType(); 6502 EVT MaskVT = Mask.getValueType(); 6503 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6504 "Incompatible types of Data and Mask"); 6505 if (IsCompressedMemory) { 6506 // Incrementing the pointer according to number of '1's in the mask. 6507 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6508 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6509 if (MaskIntVT.getSizeInBits() < 32) { 6510 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6511 MaskIntVT = MVT::i32; 6512 } 6513 6514 // Count '1's with POPCNT. 6515 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6516 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6517 // Scale is an element size in bytes. 6518 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6519 AddrVT); 6520 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6521 } else 6522 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6523 6524 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6525 } 6526 6527 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6528 SDValue Idx, 6529 EVT VecVT, 6530 const SDLoc &dl) { 6531 if (isa<ConstantSDNode>(Idx)) 6532 return Idx; 6533 6534 EVT IdxVT = Idx.getValueType(); 6535 unsigned NElts = VecVT.getVectorNumElements(); 6536 if (isPowerOf2_32(NElts)) { 6537 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6538 Log2_32(NElts)); 6539 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 6540 DAG.getConstant(Imm, dl, IdxVT)); 6541 } 6542 6543 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 6544 DAG.getConstant(NElts - 1, dl, IdxVT)); 6545 } 6546 6547 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 6548 SDValue VecPtr, EVT VecVT, 6549 SDValue Index) const { 6550 SDLoc dl(Index); 6551 // Make sure the index type is big enough to compute in. 6552 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 6553 6554 EVT EltVT = VecVT.getVectorElementType(); 6555 6556 // Calculate the element offset and add it to the pointer. 6557 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 6558 assert(EltSize * 8 == EltVT.getSizeInBits() && 6559 "Converting bits to bytes lost precision"); 6560 6561 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 6562 6563 EVT IdxVT = Index.getValueType(); 6564 6565 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 6566 DAG.getConstant(EltSize, dl, IdxVT)); 6567 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 6568 } 6569 6570 //===----------------------------------------------------------------------===// 6571 // Implementation of Emulated TLS Model 6572 //===----------------------------------------------------------------------===// 6573 6574 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 6575 SelectionDAG &DAG) const { 6576 // Access to address of TLS varialbe xyz is lowered to a function call: 6577 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 6578 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6579 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 6580 SDLoc dl(GA); 6581 6582 ArgListTy Args; 6583 ArgListEntry Entry; 6584 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 6585 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 6586 StringRef EmuTlsVarName(NameString); 6587 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 6588 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 6589 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 6590 Entry.Ty = VoidPtrType; 6591 Args.push_back(Entry); 6592 6593 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 6594 6595 TargetLowering::CallLoweringInfo CLI(DAG); 6596 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 6597 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 6598 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6599 6600 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 6601 // At last for X86 targets, maybe good for other targets too? 6602 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6603 MFI.setAdjustsStack(true); // Is this only for X86 target? 6604 MFI.setHasCalls(true); 6605 6606 assert((GA->getOffset() == 0) && 6607 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 6608 return CallResult.first; 6609 } 6610 6611 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 6612 SelectionDAG &DAG) const { 6613 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 6614 if (!isCtlzFast()) 6615 return SDValue(); 6616 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6617 SDLoc dl(Op); 6618 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6619 if (C->isNullValue() && CC == ISD::SETEQ) { 6620 EVT VT = Op.getOperand(0).getValueType(); 6621 SDValue Zext = Op.getOperand(0); 6622 if (VT.bitsLT(MVT::i32)) { 6623 VT = MVT::i32; 6624 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 6625 } 6626 unsigned Log2b = Log2_32(VT.getSizeInBits()); 6627 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 6628 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 6629 DAG.getConstant(Log2b, dl, MVT::i32)); 6630 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 6631 } 6632 } 6633 return SDValue(); 6634 } 6635 6636 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 6637 unsigned Opcode = Node->getOpcode(); 6638 SDValue LHS = Node->getOperand(0); 6639 SDValue RHS = Node->getOperand(1); 6640 EVT VT = LHS.getValueType(); 6641 SDLoc dl(Node); 6642 6643 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 6644 assert(VT.isInteger() && "Expected operands to be integers"); 6645 6646 // usub.sat(a, b) -> umax(a, b) - b 6647 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 6648 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 6649 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 6650 } 6651 6652 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 6653 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 6654 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 6655 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 6656 } 6657 6658 unsigned OverflowOp; 6659 switch (Opcode) { 6660 case ISD::SADDSAT: 6661 OverflowOp = ISD::SADDO; 6662 break; 6663 case ISD::UADDSAT: 6664 OverflowOp = ISD::UADDO; 6665 break; 6666 case ISD::SSUBSAT: 6667 OverflowOp = ISD::SSUBO; 6668 break; 6669 case ISD::USUBSAT: 6670 OverflowOp = ISD::USUBO; 6671 break; 6672 default: 6673 llvm_unreachable("Expected method to receive signed or unsigned saturation " 6674 "addition or subtraction node."); 6675 } 6676 6677 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 6678 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6679 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 6680 LHS, RHS); 6681 SDValue SumDiff = Result.getValue(0); 6682 SDValue Overflow = Result.getValue(1); 6683 SDValue Zero = DAG.getConstant(0, dl, VT); 6684 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 6685 6686 if (Opcode == ISD::UADDSAT) { 6687 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6688 // (LHS + RHS) | OverflowMask 6689 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6690 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 6691 } 6692 // Overflow ? 0xffff.... : (LHS + RHS) 6693 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 6694 } else if (Opcode == ISD::USUBSAT) { 6695 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6696 // (LHS - RHS) & ~OverflowMask 6697 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6698 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 6699 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 6700 } 6701 // Overflow ? 0 : (LHS - RHS) 6702 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 6703 } else { 6704 // SatMax -> Overflow && SumDiff < 0 6705 // SatMin -> Overflow && SumDiff >= 0 6706 APInt MinVal = APInt::getSignedMinValue(BitWidth); 6707 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 6708 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 6709 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6710 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 6711 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 6712 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 6713 } 6714 } 6715 6716 SDValue 6717 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 6718 assert((Node->getOpcode() == ISD::SMULFIX || 6719 Node->getOpcode() == ISD::UMULFIX || 6720 Node->getOpcode() == ISD::SMULFIXSAT || 6721 Node->getOpcode() == ISD::UMULFIXSAT) && 6722 "Expected a fixed point multiplication opcode"); 6723 6724 SDLoc dl(Node); 6725 SDValue LHS = Node->getOperand(0); 6726 SDValue RHS = Node->getOperand(1); 6727 EVT VT = LHS.getValueType(); 6728 unsigned Scale = Node->getConstantOperandVal(2); 6729 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 6730 Node->getOpcode() == ISD::UMULFIXSAT); 6731 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 6732 Node->getOpcode() == ISD::SMULFIXSAT); 6733 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6734 unsigned VTSize = VT.getScalarSizeInBits(); 6735 6736 if (!Scale) { 6737 // [us]mul.fix(a, b, 0) -> mul(a, b) 6738 if (!Saturating) { 6739 if (isOperationLegalOrCustom(ISD::MUL, VT)) 6740 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6741 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 6742 SDValue Result = 6743 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 6744 SDValue Product = Result.getValue(0); 6745 SDValue Overflow = Result.getValue(1); 6746 SDValue Zero = DAG.getConstant(0, dl, VT); 6747 6748 APInt MinVal = APInt::getSignedMinValue(VTSize); 6749 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 6750 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 6751 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6752 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 6753 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 6754 return DAG.getSelect(dl, VT, Overflow, Result, Product); 6755 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 6756 SDValue Result = 6757 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 6758 SDValue Product = Result.getValue(0); 6759 SDValue Overflow = Result.getValue(1); 6760 6761 APInt MaxVal = APInt::getMaxValue(VTSize); 6762 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6763 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 6764 } 6765 } 6766 6767 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 6768 "Expected scale to be less than the number of bits if signed or at " 6769 "most the number of bits if unsigned."); 6770 assert(LHS.getValueType() == RHS.getValueType() && 6771 "Expected both operands to be the same type"); 6772 6773 // Get the upper and lower bits of the result. 6774 SDValue Lo, Hi; 6775 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 6776 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 6777 if (isOperationLegalOrCustom(LoHiOp, VT)) { 6778 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 6779 Lo = Result.getValue(0); 6780 Hi = Result.getValue(1); 6781 } else if (isOperationLegalOrCustom(HiOp, VT)) { 6782 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6783 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 6784 } else if (VT.isVector()) { 6785 return SDValue(); 6786 } else { 6787 report_fatal_error("Unable to expand fixed point multiplication."); 6788 } 6789 6790 if (Scale == VTSize) 6791 // Result is just the top half since we'd be shifting by the width of the 6792 // operand. Overflow impossible so this works for both UMULFIX and 6793 // UMULFIXSAT. 6794 return Hi; 6795 6796 // The result will need to be shifted right by the scale since both operands 6797 // are scaled. The result is given to us in 2 halves, so we only want part of 6798 // both in the result. 6799 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6800 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 6801 DAG.getConstant(Scale, dl, ShiftTy)); 6802 if (!Saturating) 6803 return Result; 6804 6805 if (!Signed) { 6806 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 6807 // widened multiplication) aren't all zeroes. 6808 6809 // Saturate to max if ((Hi >> Scale) != 0), 6810 // which is the same as if (Hi > ((1 << Scale) - 1)) 6811 APInt MaxVal = APInt::getMaxValue(VTSize); 6812 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 6813 dl, VT); 6814 Result = DAG.getSelectCC(dl, Hi, LowMask, 6815 DAG.getConstant(MaxVal, dl, VT), Result, 6816 ISD::SETUGT); 6817 6818 return Result; 6819 } 6820 6821 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 6822 // widened multiplication) aren't all ones or all zeroes. 6823 6824 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 6825 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 6826 6827 if (Scale == 0) { 6828 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 6829 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 6830 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 6831 // Saturated to SatMin if wide product is negative, and SatMax if wide 6832 // product is positive ... 6833 SDValue Zero = DAG.getConstant(0, dl, VT); 6834 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 6835 ISD::SETLT); 6836 // ... but only if we overflowed. 6837 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 6838 } 6839 6840 // We handled Scale==0 above so all the bits to examine is in Hi. 6841 6842 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 6843 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 6844 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 6845 dl, VT); 6846 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 6847 // Saturate to min if (Hi >> (Scale - 1)) < -1), 6848 // which is the same as if (HI < (-1 << (Scale - 1)) 6849 SDValue HighMask = 6850 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 6851 dl, VT); 6852 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 6853 return Result; 6854 } 6855 6856 void TargetLowering::expandUADDSUBO( 6857 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 6858 SDLoc dl(Node); 6859 SDValue LHS = Node->getOperand(0); 6860 SDValue RHS = Node->getOperand(1); 6861 bool IsAdd = Node->getOpcode() == ISD::UADDO; 6862 6863 // If ADD/SUBCARRY is legal, use that instead. 6864 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 6865 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 6866 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 6867 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 6868 { LHS, RHS, CarryIn }); 6869 Result = SDValue(NodeCarry.getNode(), 0); 6870 Overflow = SDValue(NodeCarry.getNode(), 1); 6871 return; 6872 } 6873 6874 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 6875 LHS.getValueType(), LHS, RHS); 6876 6877 EVT ResultType = Node->getValueType(1); 6878 EVT SetCCType = getSetCCResultType( 6879 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 6880 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 6881 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 6882 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 6883 } 6884 6885 void TargetLowering::expandSADDSUBO( 6886 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 6887 SDLoc dl(Node); 6888 SDValue LHS = Node->getOperand(0); 6889 SDValue RHS = Node->getOperand(1); 6890 bool IsAdd = Node->getOpcode() == ISD::SADDO; 6891 6892 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 6893 LHS.getValueType(), LHS, RHS); 6894 6895 EVT ResultType = Node->getValueType(1); 6896 EVT OType = getSetCCResultType( 6897 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 6898 6899 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6900 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 6901 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 6902 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 6903 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 6904 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 6905 return; 6906 } 6907 6908 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 6909 6910 // LHSSign -> LHS >= 0 6911 // RHSSign -> RHS >= 0 6912 // SumSign -> Result >= 0 6913 // 6914 // Add: 6915 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 6916 // Sub: 6917 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 6918 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 6919 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 6920 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 6921 IsAdd ? ISD::SETEQ : ISD::SETNE); 6922 6923 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE); 6924 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 6925 6926 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 6927 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType); 6928 } 6929 6930 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 6931 SDValue &Overflow, SelectionDAG &DAG) const { 6932 SDLoc dl(Node); 6933 EVT VT = Node->getValueType(0); 6934 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6935 SDValue LHS = Node->getOperand(0); 6936 SDValue RHS = Node->getOperand(1); 6937 bool isSigned = Node->getOpcode() == ISD::SMULO; 6938 6939 // For power-of-two multiplications we can use a simpler shift expansion. 6940 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 6941 const APInt &C = RHSC->getAPIntValue(); 6942 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 6943 if (C.isPowerOf2()) { 6944 // smulo(x, signed_min) is same as umulo(x, signed_min). 6945 bool UseArithShift = isSigned && !C.isMinSignedValue(); 6946 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6947 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 6948 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 6949 Overflow = DAG.getSetCC(dl, SetCCVT, 6950 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 6951 dl, VT, Result, ShiftAmt), 6952 LHS, ISD::SETNE); 6953 return true; 6954 } 6955 } 6956 6957 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 6958 if (VT.isVector()) 6959 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6960 VT.getVectorNumElements()); 6961 6962 SDValue BottomHalf; 6963 SDValue TopHalf; 6964 static const unsigned Ops[2][3] = 6965 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 6966 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 6967 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 6968 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6969 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 6970 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 6971 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 6972 RHS); 6973 TopHalf = BottomHalf.getValue(1); 6974 } else if (isTypeLegal(WideVT)) { 6975 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 6976 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 6977 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 6978 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 6979 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 6980 getShiftAmountTy(WideVT, DAG.getDataLayout())); 6981 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 6982 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 6983 } else { 6984 if (VT.isVector()) 6985 return false; 6986 6987 // We can fall back to a libcall with an illegal type for the MUL if we 6988 // have a libcall big enough. 6989 // Also, we can fall back to a division in some cases, but that's a big 6990 // performance hit in the general case. 6991 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6992 if (WideVT == MVT::i16) 6993 LC = RTLIB::MUL_I16; 6994 else if (WideVT == MVT::i32) 6995 LC = RTLIB::MUL_I32; 6996 else if (WideVT == MVT::i64) 6997 LC = RTLIB::MUL_I64; 6998 else if (WideVT == MVT::i128) 6999 LC = RTLIB::MUL_I128; 7000 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7001 7002 SDValue HiLHS; 7003 SDValue HiRHS; 7004 if (isSigned) { 7005 // The high part is obtained by SRA'ing all but one of the bits of low 7006 // part. 7007 unsigned LoSize = VT.getSizeInBits(); 7008 HiLHS = 7009 DAG.getNode(ISD::SRA, dl, VT, LHS, 7010 DAG.getConstant(LoSize - 1, dl, 7011 getPointerTy(DAG.getDataLayout()))); 7012 HiRHS = 7013 DAG.getNode(ISD::SRA, dl, VT, RHS, 7014 DAG.getConstant(LoSize - 1, dl, 7015 getPointerTy(DAG.getDataLayout()))); 7016 } else { 7017 HiLHS = DAG.getConstant(0, dl, VT); 7018 HiRHS = DAG.getConstant(0, dl, VT); 7019 } 7020 7021 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7022 // pre-lowered to the correct types. This all depends upon WideVT not 7023 // being a legal type for the architecture and thus has to be split to 7024 // two arguments. 7025 SDValue Ret; 7026 TargetLowering::MakeLibCallOptions CallOptions; 7027 CallOptions.setSExt(isSigned); 7028 CallOptions.setIsPostTypeLegalization(true); 7029 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7030 // Halves of WideVT are packed into registers in different order 7031 // depending on platform endianness. This is usually handled by 7032 // the C calling convention, but we can't defer to it in 7033 // the legalizer. 7034 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7035 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7036 } else { 7037 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7038 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7039 } 7040 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7041 "Ret value is a collection of constituent nodes holding result."); 7042 if (DAG.getDataLayout().isLittleEndian()) { 7043 // Same as above. 7044 BottomHalf = Ret.getOperand(0); 7045 TopHalf = Ret.getOperand(1); 7046 } else { 7047 BottomHalf = Ret.getOperand(1); 7048 TopHalf = Ret.getOperand(0); 7049 } 7050 } 7051 7052 Result = BottomHalf; 7053 if (isSigned) { 7054 SDValue ShiftAmt = DAG.getConstant( 7055 VT.getScalarSizeInBits() - 1, dl, 7056 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7057 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7058 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7059 } else { 7060 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7061 DAG.getConstant(0, dl, VT), ISD::SETNE); 7062 } 7063 7064 // Truncate the result if SetCC returns a larger type than needed. 7065 EVT RType = Node->getValueType(1); 7066 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7067 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7068 7069 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7070 "Unexpected result type for S/UMULO legalization"); 7071 return true; 7072 } 7073 7074 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7075 SDLoc dl(Node); 7076 bool NoNaN = Node->getFlags().hasNoNaNs(); 7077 unsigned BaseOpcode = 0; 7078 switch (Node->getOpcode()) { 7079 default: llvm_unreachable("Expected VECREDUCE opcode"); 7080 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7081 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7082 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7083 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7084 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7085 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7086 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7087 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7088 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7089 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7090 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7091 case ISD::VECREDUCE_FMAX: 7092 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7093 break; 7094 case ISD::VECREDUCE_FMIN: 7095 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7096 break; 7097 } 7098 7099 SDValue Op = Node->getOperand(0); 7100 EVT VT = Op.getValueType(); 7101 7102 // Try to use a shuffle reduction for power of two vectors. 7103 if (VT.isPow2VectorType()) { 7104 while (VT.getVectorNumElements() > 1) { 7105 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7106 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7107 break; 7108 7109 SDValue Lo, Hi; 7110 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7111 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7112 VT = HalfVT; 7113 } 7114 } 7115 7116 EVT EltVT = VT.getVectorElementType(); 7117 unsigned NumElts = VT.getVectorNumElements(); 7118 7119 SmallVector<SDValue, 8> Ops; 7120 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7121 7122 SDValue Res = Ops[0]; 7123 for (unsigned i = 1; i < NumElts; i++) 7124 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7125 7126 // Result type may be wider than element type. 7127 if (EltVT != Node->getValueType(0)) 7128 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7129 return Res; 7130 } 7131