1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFile.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore noalias because it doesn't affect the call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     unsigned Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
102                                                      unsigned ArgIdx) {
103   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment  = CS->getParamAlignment(ArgIdx);
114 }
115 
116 /// Generate a libcall taking the given operands as arguments and returning a
117 /// result of type RetVT.
118 std::pair<SDValue, SDValue>
119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
120                             ArrayRef<SDValue> Ops, bool isSigned,
121                             const SDLoc &dl, bool doesNotReturn,
122                             bool isReturnValueUsed) const {
123   TargetLowering::ArgListTy Args;
124   Args.reserve(Ops.size());
125 
126   TargetLowering::ArgListEntry Entry;
127   for (SDValue Op : Ops) {
128     Entry.Node = Op;
129     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
130     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
131     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Args.push_back(Entry);
133   }
134 
135   if (LC == RTLIB::UNKNOWN_LIBCALL)
136     report_fatal_error("Unsupported library call operation!");
137   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
138                                          getPointerTy(DAG.getDataLayout()));
139 
140   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
141   TargetLowering::CallLoweringInfo CLI(DAG);
142   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
143   CLI.setDebugLoc(dl)
144       .setChain(DAG.getEntryNode())
145       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
146       .setNoReturn(doesNotReturn)
147       .setDiscardResult(!isReturnValueUsed)
148       .setSExtResult(signExtend)
149       .setZExtResult(!signExtend);
150   return LowerCallTo(CLI);
151 }
152 
153 /// Soften the operands of a comparison. This code is shared among BR_CC,
154 /// SELECT_CC, and SETCC handlers.
155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
156                                          SDValue &NewLHS, SDValue &NewRHS,
157                                          ISD::CondCode &CCCode,
158                                          const SDLoc &dl) const {
159   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
160          && "Unsupported setcc type!");
161 
162   // Expand into one or more soft-fp libcall(s).
163   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
164   bool ShouldInvertCC = false;
165   switch (CCCode) {
166   case ISD::SETEQ:
167   case ISD::SETOEQ:
168     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
169           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
170           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
171     break;
172   case ISD::SETNE:
173   case ISD::SETUNE:
174     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
175           (VT == MVT::f64) ? RTLIB::UNE_F64 :
176           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
177     break;
178   case ISD::SETGE:
179   case ISD::SETOGE:
180     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
181           (VT == MVT::f64) ? RTLIB::OGE_F64 :
182           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
183     break;
184   case ISD::SETLT:
185   case ISD::SETOLT:
186     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187           (VT == MVT::f64) ? RTLIB::OLT_F64 :
188           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
189     break;
190   case ISD::SETLE:
191   case ISD::SETOLE:
192     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
193           (VT == MVT::f64) ? RTLIB::OLE_F64 :
194           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
195     break;
196   case ISD::SETGT:
197   case ISD::SETOGT:
198     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
199           (VT == MVT::f64) ? RTLIB::OGT_F64 :
200           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
201     break;
202   case ISD::SETUO:
203     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
204           (VT == MVT::f64) ? RTLIB::UO_F64 :
205           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
206     break;
207   case ISD::SETO:
208     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
209           (VT == MVT::f64) ? RTLIB::O_F64 :
210           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
211     break;
212   case ISD::SETONE:
213     // SETONE = SETOLT | SETOGT
214     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
215           (VT == MVT::f64) ? RTLIB::OLT_F64 :
216           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
217     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
218           (VT == MVT::f64) ? RTLIB::OGT_F64 :
219           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
220     break;
221   case ISD::SETUEQ:
222     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
223           (VT == MVT::f64) ? RTLIB::UO_F64 :
224           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
225     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
226           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
227           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
228     break;
229   default:
230     // Invert CC for unordered comparisons
231     ShouldInvertCC = true;
232     switch (CCCode) {
233     case ISD::SETULT:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
235             (VT == MVT::f64) ? RTLIB::OGE_F64 :
236             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
237       break;
238     case ISD::SETULE:
239       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
240             (VT == MVT::f64) ? RTLIB::OGT_F64 :
241             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
242       break;
243     case ISD::SETUGT:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
245             (VT == MVT::f64) ? RTLIB::OLE_F64 :
246             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
247       break;
248     case ISD::SETUGE:
249       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
250             (VT == MVT::f64) ? RTLIB::OLT_F64 :
251             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
252       break;
253     default: llvm_unreachable("Do not know how to soften this setcc!");
254     }
255   }
256 
257   // Use the target specific return value for comparions lib calls.
258   EVT RetVT = getCmpLibcallReturnType();
259   SDValue Ops[2] = {NewLHS, NewRHS};
260   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
261                        dl).first;
262   NewRHS = DAG.getConstant(0, dl, RetVT);
263 
264   CCCode = getCmpLibcallCC(LC1);
265   if (ShouldInvertCC)
266     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
267 
268   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
269     SDValue Tmp = DAG.getNode(
270         ISD::SETCC, dl,
271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
272         NewLHS, NewRHS, DAG.getCondCode(CCCode));
273     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
274                          dl).first;
275     NewLHS = DAG.getNode(
276         ISD::SETCC, dl,
277         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
278         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
279     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
280     NewRHS = SDValue();
281   }
282 }
283 
284 /// Return the entry encoding for a jump table in the current function. The
285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
286 unsigned TargetLowering::getJumpTableEncoding() const {
287   // In non-pic modes, just use the address of a block.
288   if (!isPositionIndependent())
289     return MachineJumpTableInfo::EK_BlockAddress;
290 
291   // In PIC mode, if the target supports a GPRel32 directive, use it.
292   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
293     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
294 
295   // Otherwise, use a label difference.
296   return MachineJumpTableInfo::EK_LabelDifference32;
297 }
298 
299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
300                                                  SelectionDAG &DAG) const {
301   // If our PIC model is GP relative, use the global offset table as the base.
302   unsigned JTEncoding = getJumpTableEncoding();
303 
304   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
305       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
306     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
307 
308   return Table;
309 }
310 
311 /// This returns the relocation base for the given PIC jumptable, the same as
312 /// getPICJumpTableRelocBase, but as an MCExpr.
313 const MCExpr *
314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
315                                              unsigned JTI,MCContext &Ctx) const{
316   // The normal PIC reloc base is the label at the start of the jump table.
317   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
318 }
319 
320 bool
321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
322   const TargetMachine &TM = getTargetMachine();
323   const GlobalValue *GV = GA->getGlobal();
324 
325   // If the address is not even local to this DSO we will have to load it from
326   // a got and then add the offset.
327   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
328     return false;
329 
330   // If the code is position independent we will have to add a base register.
331   if (isPositionIndependent())
332     return false;
333 
334   // Otherwise we can do it.
335   return true;
336 }
337 
338 //===----------------------------------------------------------------------===//
339 //  Optimization Methods
340 //===----------------------------------------------------------------------===//
341 
342 /// If the specified instruction has a constant integer operand and there are
343 /// bits set in that constant that are not demanded, then clear those bits and
344 /// return true.
345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
346                                             TargetLoweringOpt &TLO) const {
347   SelectionDAG &DAG = TLO.DAG;
348   SDLoc DL(Op);
349   unsigned Opcode = Op.getOpcode();
350 
351   // Do target-specific constant optimization.
352   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
353     return TLO.New.getNode();
354 
355   // FIXME: ISD::SELECT, ISD::SELECT_CC
356   switch (Opcode) {
357   default:
358     break;
359   case ISD::XOR:
360   case ISD::AND:
361   case ISD::OR: {
362     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
363     if (!Op1C)
364       return false;
365 
366     // If this is a 'not' op, don't touch it because that's a canonical form.
367     const APInt &C = Op1C->getAPIntValue();
368     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
369       return false;
370 
371     if (!C.isSubsetOf(Demanded)) {
372       EVT VT = Op.getValueType();
373       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
374       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
375       return TLO.CombineTo(Op, NewOp);
376     }
377 
378     break;
379   }
380   }
381 
382   return false;
383 }
384 
385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
387 /// generalized for targets with other types of implicit widening casts.
388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
389                                       const APInt &Demanded,
390                                       TargetLoweringOpt &TLO) const {
391   assert(Op.getNumOperands() == 2 &&
392          "ShrinkDemandedOp only supports binary operators!");
393   assert(Op.getNode()->getNumValues() == 1 &&
394          "ShrinkDemandedOp only supports nodes with one result!");
395 
396   SelectionDAG &DAG = TLO.DAG;
397   SDLoc dl(Op);
398 
399   // Early return, as this function cannot handle vector types.
400   if (Op.getValueType().isVector())
401     return false;
402 
403   // Don't do this if the node has another user, which may require the
404   // full value.
405   if (!Op.getNode()->hasOneUse())
406     return false;
407 
408   // Search for the smallest integer type with free casts to and from
409   // Op's type. For expedience, just check power-of-2 integer types.
410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
411   unsigned DemandedSize = Demanded.getActiveBits();
412   unsigned SmallVTBits = DemandedSize;
413   if (!isPowerOf2_32(SmallVTBits))
414     SmallVTBits = NextPowerOf2(SmallVTBits);
415   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
416     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
417     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
418         TLI.isZExtFree(SmallVT, Op.getValueType())) {
419       // We found a type with free casts.
420       SDValue X = DAG.getNode(
421           Op.getOpcode(), dl, SmallVT,
422           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
424       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
425       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
426       return TLO.CombineTo(Op, Z);
427     }
428   }
429   return false;
430 }
431 
432 bool
433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
434                                      const APInt &Demanded,
435                                      DAGCombinerInfo &DCI,
436                                      TargetLoweringOpt &TLO) const {
437   SDValue Op = User->getOperand(OpIdx);
438   KnownBits Known;
439 
440   if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true))
441     return false;
442 
443 
444   // Old will not always be the same as Op.  For example:
445   //
446   // Demanded = 0xffffff
447   // Op = i64 truncate (i32 and x, 0xffffff)
448   // In this case simplify demand bits will want to replace the 'and' node
449   // with the value 'x', which will give us:
450   // Old = i32 and x, 0xffffff
451   // New = x
452   if (TLO.Old.hasOneUse()) {
453     // For the one use case, we just commit the change.
454     DCI.CommitTargetLoweringOpt(TLO);
455     return true;
456   }
457 
458   // If Old has more than one use then it must be Op, because the
459   // AssumeSingleUse flag is not propogated to recursive calls of
460   // SimplifyDemanded bits, so the only node with multiple use that
461   // it will attempt to combine will be Op.
462   assert(TLO.Old == Op);
463 
464   SmallVector <SDValue, 4> NewOps;
465   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
466     if (i == OpIdx) {
467       NewOps.push_back(TLO.New);
468       continue;
469     }
470     NewOps.push_back(User->getOperand(i));
471   }
472   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
473   // Op has less users now, so we may be able to perform additional combines
474   // with it.
475   DCI.AddToWorklist(Op.getNode());
476   // User's operands have been updated, so we may be able to do new combines
477   // with it.
478   DCI.AddToWorklist(User);
479   return true;
480 }
481 
482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
483                                           DAGCombinerInfo &DCI) const {
484 
485   SelectionDAG &DAG = DCI.DAG;
486   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
487                         !DCI.isBeforeLegalizeOps());
488   KnownBits Known;
489 
490   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO);
491   if (Simplified)
492     DCI.CommitTargetLoweringOpt(TLO);
493   return Simplified;
494 }
495 
496 /// Look at Op. At this point, we know that only the DemandedMask bits of the
497 /// result of Op are ever used downstream. If we can use this information to
498 /// simplify Op, create a new simplified DAG node and return true, returning the
499 /// original and new nodes in Old and New. Otherwise, analyze the expression and
500 /// return a mask of Known bits for the expression (used to simplify the
501 /// caller).  The Known bits may only be accurate for those bits in the
502 /// DemandedMask.
503 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
504                                           const APInt &DemandedMask,
505                                           KnownBits &Known,
506                                           TargetLoweringOpt &TLO,
507                                           unsigned Depth,
508                                           bool AssumeSingleUse) const {
509   unsigned BitWidth = DemandedMask.getBitWidth();
510   assert(Op.getScalarValueSizeInBits() == BitWidth &&
511          "Mask size mismatches value type size!");
512   APInt NewMask = DemandedMask;
513   SDLoc dl(Op);
514   auto &DL = TLO.DAG.getDataLayout();
515 
516   // Don't know anything.
517   Known = KnownBits(BitWidth);
518 
519   if (Op.getOpcode() == ISD::Constant) {
520     // We know all of the bits for a constant!
521     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
522     Known.Zero = ~Known.One;
523     return false;
524   }
525 
526   // Other users may use these bits.
527   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
528     if (Depth != 0) {
529       // If not at the root, Just compute the Known bits to
530       // simplify things downstream.
531       TLO.DAG.computeKnownBits(Op, Known, Depth);
532       return false;
533     }
534     // If this is the root being simplified, allow it to have multiple uses,
535     // just set the NewMask to all bits.
536     NewMask = APInt::getAllOnesValue(BitWidth);
537   } else if (DemandedMask == 0) {
538     // Not demanding any bits from Op.
539     if (!Op.isUndef())
540       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
541     return false;
542   } else if (Depth == 6) {        // Limit search depth.
543     return false;
544   }
545 
546   KnownBits Known2, KnownOut;
547   switch (Op.getOpcode()) {
548   case ISD::BUILD_VECTOR:
549     // Collect the known bits that are shared by every constant vector element.
550     Known.Zero.setAllBits(); Known.One.setAllBits();
551     for (SDValue SrcOp : Op->ops()) {
552       if (!isa<ConstantSDNode>(SrcOp)) {
553         // We can only handle all constant values - bail out with no known bits.
554         Known = KnownBits(BitWidth);
555         return false;
556       }
557       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
558       Known2.Zero = ~Known2.One;
559 
560       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
561       if (Known2.One.getBitWidth() != BitWidth) {
562         assert(Known2.getBitWidth() > BitWidth &&
563                "Expected BUILD_VECTOR implicit truncation");
564         Known2 = Known2.trunc(BitWidth);
565       }
566 
567       // Known bits are the values that are shared by every element.
568       // TODO: support per-element known bits.
569       Known.One &= Known2.One;
570       Known.Zero &= Known2.Zero;
571     }
572     return false;   // Don't fall through, will infinitely loop.
573   case ISD::AND:
574     // If the RHS is a constant, check to see if the LHS would be zero without
575     // using the bits from the RHS.  Below, we use knowledge about the RHS to
576     // simplify the LHS, here we're using information from the LHS to simplify
577     // the RHS.
578     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) {
579       SDValue Op0 = Op.getOperand(0);
580       KnownBits LHSKnown;
581       // Do not increment Depth here; that can cause an infinite loop.
582       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
583       // If the LHS already has zeros where RHSC does, this 'and' is dead.
584       if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
585         return TLO.CombineTo(Op, Op0);
586 
587       // If any of the set bits in the RHS are known zero on the LHS, shrink
588       // the constant.
589       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO))
590         return true;
591 
592       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
593       // constant, but if this 'and' is only clearing bits that were just set by
594       // the xor, then this 'and' can be eliminated by shrinking the mask of
595       // the xor. For example, for a 32-bit X:
596       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
597       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
598           LHSKnown.One == ~RHSC->getAPIntValue()) {
599         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
600                                       Op0.getOperand(0), Op.getOperand(1));
601         return TLO.CombineTo(Op, Xor);
602       }
603     }
604 
605     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
606       return true;
607     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
608     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask,
609                              Known2, TLO, Depth+1))
610       return true;
611     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
612 
613     // If all of the demanded bits are known one on one side, return the other.
614     // These bits cannot contribute to the result of the 'and'.
615     if (NewMask.isSubsetOf(Known2.Zero | Known.One))
616       return TLO.CombineTo(Op, Op.getOperand(0));
617     if (NewMask.isSubsetOf(Known.Zero | Known2.One))
618       return TLO.CombineTo(Op, Op.getOperand(1));
619     // If all of the demanded bits in the inputs are known zeros, return zero.
620     if (NewMask.isSubsetOf(Known.Zero | Known2.Zero))
621       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
622     // If the RHS is a constant, see if we can simplify it.
623     if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO))
624       return true;
625     // If the operation can be done in a smaller type, do so.
626     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
627       return true;
628 
629     // Output known-1 bits are only known if set in both the LHS & RHS.
630     Known.One &= Known2.One;
631     // Output known-0 are known to be clear if zero in either the LHS | RHS.
632     Known.Zero |= Known2.Zero;
633     break;
634   case ISD::OR:
635     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
636       return true;
637     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
638     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask,
639                              Known2, TLO, Depth+1))
640       return true;
641     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
642 
643     // If all of the demanded bits are known zero on one side, return the other.
644     // These bits cannot contribute to the result of the 'or'.
645     if (NewMask.isSubsetOf(Known2.One | Known.Zero))
646       return TLO.CombineTo(Op, Op.getOperand(0));
647     if (NewMask.isSubsetOf(Known.One | Known2.Zero))
648       return TLO.CombineTo(Op, Op.getOperand(1));
649     // If the RHS is a constant, see if we can simplify it.
650     if (ShrinkDemandedConstant(Op, NewMask, TLO))
651       return true;
652     // If the operation can be done in a smaller type, do so.
653     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
654       return true;
655 
656     // Output known-0 bits are only known if clear in both the LHS & RHS.
657     Known.Zero &= Known2.Zero;
658     // Output known-1 are known to be set if set in either the LHS | RHS.
659     Known.One |= Known2.One;
660     break;
661   case ISD::XOR: {
662     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
663       return true;
664     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
665     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1))
666       return true;
667     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
668 
669     // If all of the demanded bits are known zero on one side, return the other.
670     // These bits cannot contribute to the result of the 'xor'.
671     if (NewMask.isSubsetOf(Known.Zero))
672       return TLO.CombineTo(Op, Op.getOperand(0));
673     if (NewMask.isSubsetOf(Known2.Zero))
674       return TLO.CombineTo(Op, Op.getOperand(1));
675     // If the operation can be done in a smaller type, do so.
676     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
677       return true;
678 
679     // If all of the unknown bits are known to be zero on one side or the other
680     // (but not both) turn this into an *inclusive* or.
681     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
682     if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0)
683       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
684                                                Op.getOperand(0),
685                                                Op.getOperand(1)));
686 
687     // Output known-0 bits are known if clear or set in both the LHS & RHS.
688     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
689     // Output known-1 are known to be set if set in only one of the LHS, RHS.
690     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
691 
692     // If all of the demanded bits on one side are known, and all of the set
693     // bits on that side are also known to be set on the other side, turn this
694     // into an AND, as we know the bits will be cleared.
695     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
696     // NB: it is okay if more bits are known than are requested
697     if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side
698       if (Known.One == Known2.One) { // set bits are the same on both sides
699         EVT VT = Op.getValueType();
700         SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT);
701         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
702                                                  Op.getOperand(0), ANDC));
703       }
704     }
705 
706     // If the RHS is a constant, see if we can change it. Don't alter a -1
707     // constant because that's a 'not' op, and that is better for combining and
708     // codegen.
709     ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1));
710     if (C && !C->isAllOnesValue()) {
711       if (NewMask.isSubsetOf(C->getAPIntValue())) {
712         // We're flipping all demanded bits. Flip the undemanded bits too.
713         SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), Op.getValueType());
714         return TLO.CombineTo(Op, New);
715       }
716       // If we can't turn this into a 'not', try to shrink the constant.
717       if (ShrinkDemandedConstant(Op, NewMask, TLO))
718         return true;
719     }
720 
721     Known = std::move(KnownOut);
722     break;
723   }
724   case ISD::SELECT:
725     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1))
726       return true;
727     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1))
728       return true;
729     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
730     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
731 
732     // If the operands are constants, see if we can simplify them.
733     if (ShrinkDemandedConstant(Op, NewMask, TLO))
734       return true;
735 
736     // Only known if known in both the LHS and RHS.
737     Known.One &= Known2.One;
738     Known.Zero &= Known2.Zero;
739     break;
740   case ISD::SELECT_CC:
741     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1))
742       return true;
743     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1))
744       return true;
745     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
746     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
747 
748     // If the operands are constants, see if we can simplify them.
749     if (ShrinkDemandedConstant(Op, NewMask, TLO))
750       return true;
751 
752     // Only known if known in both the LHS and RHS.
753     Known.One &= Known2.One;
754     Known.Zero &= Known2.Zero;
755     break;
756   case ISD::SETCC: {
757     SDValue Op0 = Op.getOperand(0);
758     SDValue Op1 = Op.getOperand(1);
759     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
760     // If (1) we only need the sign-bit, (2) the setcc operands are the same
761     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
762     // -1, we may be able to bypass the setcc.
763     if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth &&
764         getBooleanContents(Op.getValueType()) ==
765             BooleanContent::ZeroOrNegativeOneBooleanContent) {
766       // If we're testing X < 0, then this compare isn't needed - just use X!
767       // FIXME: We're limiting to integer types here, but this should also work
768       // if we don't care about FP signed-zero. The use of SETLT with FP means
769       // that we don't care about NaNs.
770       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
771           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
772         return TLO.CombineTo(Op, Op0);
773 
774       // TODO: Should we check for other forms of sign-bit comparisons?
775       // Examples: X <= -1, X >= 0
776     }
777     if (getBooleanContents(Op0.getValueType()) ==
778             TargetLowering::ZeroOrOneBooleanContent &&
779         BitWidth > 1)
780       Known.Zero.setBitsFrom(1);
781     break;
782   }
783   case ISD::SHL:
784     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
785       SDValue InOp = Op.getOperand(0);
786 
787       // If the shift count is an invalid immediate, don't do anything.
788       if (SA->getAPIntValue().uge(BitWidth))
789         break;
790 
791       unsigned ShAmt = SA->getZExtValue();
792 
793       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
794       // single shift.  We can do this if the bottom bits (which are shifted
795       // out) are never demanded.
796       if (InOp.getOpcode() == ISD::SRL) {
797         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
798           if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
799             if (SA2->getAPIntValue().ult(BitWidth)) {
800               unsigned C1 = SA2->getZExtValue();
801               unsigned Opc = ISD::SHL;
802               int Diff = ShAmt-C1;
803               if (Diff < 0) {
804                 Diff = -Diff;
805                 Opc = ISD::SRL;
806               }
807 
808               SDValue NewSA =
809                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
810               EVT VT = Op.getValueType();
811               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
812                                                        InOp.getOperand(0),
813                                                        NewSA));
814             }
815           }
816         }
817       }
818 
819       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1))
820         return true;
821 
822       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
823       // are not demanded. This will likely allow the anyext to be folded away.
824       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
825         SDValue InnerOp = InOp.getOperand(0);
826         EVT InnerVT = InnerOp.getValueType();
827         unsigned InnerBits = InnerVT.getScalarSizeInBits();
828         if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits &&
829             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
830           EVT ShTy = getShiftAmountTy(InnerVT, DL);
831           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
832             ShTy = InnerVT;
833           SDValue NarrowShl =
834             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
835                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
836           return
837             TLO.CombineTo(Op,
838                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
839                                           NarrowShl));
840         }
841         // Repeat the SHL optimization above in cases where an extension
842         // intervenes: (shl (anyext (shr x, c1)), c2) to
843         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
844         // aren't demanded (as above) and that the shifted upper c1 bits of
845         // x aren't demanded.
846         if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
847             InnerOp.hasOneUse()) {
848           if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) {
849             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
850             if (InnerShAmt < ShAmt &&
851                 InnerShAmt < InnerBits &&
852                 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) &&
853                 NewMask.countTrailingZeros() >= ShAmt) {
854               SDValue NewSA =
855                 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
856                                     Op.getOperand(1).getValueType());
857               EVT VT = Op.getValueType();
858               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
859                                                InnerOp.getOperand(0));
860               return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
861                                                        NewExt, NewSA));
862             }
863           }
864         }
865       }
866 
867       Known.Zero <<= ShAmt;
868       Known.One  <<= ShAmt;
869       // low bits known zero.
870       Known.Zero.setLowBits(ShAmt);
871     }
872     break;
873   case ISD::SRL:
874     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
875       SDValue InOp = Op.getOperand(0);
876 
877       // If the shift count is an invalid immediate, don't do anything.
878       if (SA->getAPIntValue().uge(BitWidth))
879         break;
880 
881       unsigned ShAmt = SA->getZExtValue();
882       APInt InDemandedMask = (NewMask << ShAmt);
883 
884       // If the shift is exact, then it does demand the low bits (and knows that
885       // they are zero).
886       if (Op->getFlags().hasExact())
887         InDemandedMask.setLowBits(ShAmt);
888 
889       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
890       // single shift.  We can do this if the top bits (which are shifted out)
891       // are never demanded.
892       if (InOp.getOpcode() == ISD::SHL) {
893         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
894           if (ShAmt &&
895               (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
896             if (SA2->getAPIntValue().ult(BitWidth)) {
897               unsigned C1 = SA2->getZExtValue();
898               unsigned Opc = ISD::SRL;
899               int Diff = ShAmt-C1;
900               if (Diff < 0) {
901                 Diff = -Diff;
902                 Opc = ISD::SHL;
903               }
904 
905               SDValue NewSA =
906                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
907               EVT VT = Op.getValueType();
908               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
909                                                        InOp.getOperand(0),
910                                                        NewSA));
911             }
912           }
913         }
914       }
915 
916       // Compute the new bits that are at the top now.
917       if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1))
918         return true;
919       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
920       Known.Zero.lshrInPlace(ShAmt);
921       Known.One.lshrInPlace(ShAmt);
922 
923       Known.Zero.setHighBits(ShAmt);  // High bits known zero.
924     }
925     break;
926   case ISD::SRA:
927     // If this is an arithmetic shift right and only the low-bit is set, we can
928     // always convert this into a logical shr, even if the shift amount is
929     // variable.  The low bit of the shift cannot be an input sign bit unless
930     // the shift amount is >= the size of the datatype, which is undefined.
931     if (NewMask.isOneValue())
932       return TLO.CombineTo(Op,
933                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
934                                            Op.getOperand(0), Op.getOperand(1)));
935 
936     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
937       EVT VT = Op.getValueType();
938 
939       // If the shift count is an invalid immediate, don't do anything.
940       if (SA->getAPIntValue().uge(BitWidth))
941         break;
942 
943       unsigned ShAmt = SA->getZExtValue();
944       APInt InDemandedMask = (NewMask << ShAmt);
945 
946       // If the shift is exact, then it does demand the low bits (and knows that
947       // they are zero).
948       if (Op->getFlags().hasExact())
949         InDemandedMask.setLowBits(ShAmt);
950 
951       // If any of the demanded bits are produced by the sign extension, we also
952       // demand the input sign bit.
953       if (NewMask.countLeadingZeros() < ShAmt)
954         InDemandedMask.setSignBit();
955 
956       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO,
957                                Depth+1))
958         return true;
959       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
960       Known.Zero.lshrInPlace(ShAmt);
961       Known.One.lshrInPlace(ShAmt);
962 
963       // If the input sign bit is known to be zero, or if none of the top bits
964       // are demanded, turn this into an unsigned shift right.
965       if (Known.Zero[BitWidth - ShAmt - 1] ||
966           NewMask.countLeadingZeros() >= ShAmt) {
967         SDNodeFlags Flags;
968         Flags.setExact(Op->getFlags().hasExact());
969         return TLO.CombineTo(Op,
970                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
971                                              Op.getOperand(1), Flags));
972       }
973 
974       int Log2 = NewMask.exactLogBase2();
975       if (Log2 >= 0) {
976         // The bit must come from the sign.
977         SDValue NewSA =
978           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
979                               Op.getOperand(1).getValueType());
980         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
981                                                  Op.getOperand(0), NewSA));
982       }
983 
984       if (Known.One[BitWidth - ShAmt - 1])
985         // New bits are known one.
986         Known.One.setHighBits(ShAmt);
987     }
988     break;
989   case ISD::SIGN_EXTEND_INREG: {
990     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
991     unsigned ExVTBits = ExVT.getScalarSizeInBits();
992 
993     // If we only care about the highest bit, don't bother shifting right.
994     if (NewMask.isSignMask()) {
995       SDValue InOp = Op.getOperand(0);
996       bool AlreadySignExtended =
997         TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1;
998       // However if the input is already sign extended we expect the sign
999       // extension to be dropped altogether later and do not simplify.
1000       if (!AlreadySignExtended) {
1001         // Compute the correct shift amount type, which must be getShiftAmountTy
1002         // for scalar types after legalization.
1003         EVT ShiftAmtTy = Op.getValueType();
1004         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1005           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1006 
1007         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
1008                                                ShiftAmtTy);
1009         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1010                                                  Op.getValueType(), InOp,
1011                                                  ShiftAmt));
1012       }
1013     }
1014 
1015     // If none of the extended bits are demanded, eliminate the sextinreg.
1016     if (NewMask.getActiveBits() <= ExVTBits)
1017       return TLO.CombineTo(Op, Op.getOperand(0));
1018 
1019     APInt InputDemandedBits = NewMask.getLoBits(ExVTBits);
1020 
1021     // Since the sign extended bits are demanded, we know that the sign
1022     // bit is demanded.
1023     InputDemandedBits.setBit(ExVTBits - 1);
1024 
1025     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1026                              Known, TLO, Depth+1))
1027       return true;
1028     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1029 
1030     // If the sign bit of the input is known set or clear, then we know the
1031     // top bits of the result.
1032 
1033     // If the input sign bit is known zero, convert this into a zero extension.
1034     if (Known.Zero[ExVTBits - 1])
1035       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1036                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1037 
1038     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1039     if (Known.One[ExVTBits - 1]) {    // Input sign bit known set
1040       Known.One.setBitsFrom(ExVTBits);
1041       Known.Zero &= Mask;
1042     } else {                       // Input sign bit unknown
1043       Known.Zero &= Mask;
1044       Known.One &= Mask;
1045     }
1046     break;
1047   }
1048   case ISD::BUILD_PAIR: {
1049     EVT HalfVT = Op.getOperand(0).getValueType();
1050     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1051 
1052     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1053     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1054 
1055     KnownBits KnownLo, KnownHi;
1056 
1057     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1058       return true;
1059 
1060     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1061       return true;
1062 
1063     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1064                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1065 
1066     Known.One = KnownLo.One.zext(BitWidth) |
1067                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1068     break;
1069   }
1070   case ISD::ZERO_EXTEND: {
1071     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1072 
1073     // If none of the top bits are demanded, convert this into an any_extend.
1074     if (NewMask.getActiveBits() <= OperandBitWidth)
1075       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1076                                                Op.getValueType(),
1077                                                Op.getOperand(0)));
1078 
1079     APInt InMask = NewMask.trunc(OperandBitWidth);
1080     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1081       return true;
1082     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1083     Known = Known.zext(BitWidth);
1084     Known.Zero.setBitsFrom(OperandBitWidth);
1085     break;
1086   }
1087   case ISD::SIGN_EXTEND: {
1088     unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits();
1089 
1090     // If none of the top bits are demanded, convert this into an any_extend.
1091     if (NewMask.getActiveBits() <= InBits)
1092       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1093                                               Op.getValueType(),
1094                                               Op.getOperand(0)));
1095 
1096     // Since some of the sign extended bits are demanded, we know that the sign
1097     // bit is demanded.
1098     APInt InDemandedBits = NewMask.trunc(InBits);
1099     InDemandedBits.setBit(InBits - 1);
1100 
1101     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO,
1102                              Depth+1))
1103       return true;
1104     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1105     // If the sign bit is known one, the top bits match.
1106     Known = Known.sext(BitWidth);
1107 
1108     // If the sign bit is known zero, convert this to a zero extend.
1109     if (Known.isNonNegative())
1110       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1111                                                Op.getValueType(),
1112                                                Op.getOperand(0)));
1113     break;
1114   }
1115   case ISD::ANY_EXTEND: {
1116     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1117     APInt InMask = NewMask.trunc(OperandBitWidth);
1118     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1119       return true;
1120     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1121     Known = Known.zext(BitWidth);
1122     break;
1123   }
1124   case ISD::TRUNCATE: {
1125     // Simplify the input, using demanded bit information, and compute the known
1126     // zero/one bits live out.
1127     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1128     APInt TruncMask = NewMask.zext(OperandBitWidth);
1129     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1))
1130       return true;
1131     Known = Known.trunc(BitWidth);
1132 
1133     // If the input is only used by this truncate, see if we can shrink it based
1134     // on the known demanded bits.
1135     if (Op.getOperand(0).getNode()->hasOneUse()) {
1136       SDValue In = Op.getOperand(0);
1137       switch (In.getOpcode()) {
1138       default: break;
1139       case ISD::SRL:
1140         // Shrink SRL by a constant if none of the high bits shifted in are
1141         // demanded.
1142         if (TLO.LegalTypes() &&
1143             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1144           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1145           // undesirable.
1146           break;
1147         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1148         if (!ShAmt)
1149           break;
1150         SDValue Shift = In.getOperand(1);
1151         if (TLO.LegalTypes()) {
1152           uint64_t ShVal = ShAmt->getZExtValue();
1153           Shift = TLO.DAG.getConstant(ShVal, dl,
1154                                       getShiftAmountTy(Op.getValueType(), DL));
1155         }
1156 
1157         if (ShAmt->getZExtValue() < BitWidth) {
1158           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1159                                                  OperandBitWidth - BitWidth);
1160           HighBits.lshrInPlace(ShAmt->getZExtValue());
1161           HighBits = HighBits.trunc(BitWidth);
1162 
1163           if (!(HighBits & NewMask)) {
1164             // None of the shifted in bits are needed.  Add a truncate of the
1165             // shift input, then shift it.
1166             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1167                                                Op.getValueType(),
1168                                                In.getOperand(0));
1169             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1170                                                      Op.getValueType(),
1171                                                      NewTrunc,
1172                                                      Shift));
1173           }
1174         }
1175         break;
1176       }
1177     }
1178 
1179     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1180     break;
1181   }
1182   case ISD::AssertZext: {
1183     // AssertZext demands all of the high bits, plus any of the low bits
1184     // demanded by its users.
1185     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1186     APInt InMask = APInt::getLowBitsSet(BitWidth,
1187                                         VT.getSizeInBits());
1188     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1189                              Known, TLO, Depth+1))
1190       return true;
1191     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1192 
1193     Known.Zero |= ~InMask;
1194     break;
1195   }
1196   case ISD::BITCAST:
1197     // If this is an FP->Int bitcast and if the sign bit is the only
1198     // thing demanded, turn this into a FGETSIGN.
1199     if (!TLO.LegalOperations() &&
1200         !Op.getValueType().isVector() &&
1201         !Op.getOperand(0).getValueType().isVector() &&
1202         NewMask == APInt::getSignMask(Op.getValueSizeInBits()) &&
1203         Op.getOperand(0).getValueType().isFloatingPoint()) {
1204       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1205       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1206       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1207            Op.getOperand(0).getValueType() != MVT::f128) {
1208         // Cannot eliminate/lower SHL for f128 yet.
1209         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1210         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1211         // place.  We expect the SHL to be eliminated by other optimizations.
1212         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1213         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1214         if (!OpVTLegal && OpVTSizeInBits > 32)
1215           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1216         unsigned ShVal = Op.getValueSizeInBits() - 1;
1217         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1218         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1219                                                  Op.getValueType(),
1220                                                  Sign, ShAmt));
1221       }
1222     }
1223     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1224     // recursive call where Known may be useful to the caller.
1225     if (Depth > 0) {
1226       TLO.DAG.computeKnownBits(Op, Known, Depth);
1227       return false;
1228     }
1229     break;
1230   case ISD::ADD:
1231   case ISD::MUL:
1232   case ISD::SUB: {
1233     // Add, Sub, and Mul don't demand any bits in positions beyond that
1234     // of the highest bit demanded of them.
1235     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1236                                         BitWidth - NewMask.countLeadingZeros());
1237     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, Known2, TLO, Depth+1) ||
1238         SimplifyDemandedBits(Op.getOperand(1), LoMask, Known2, TLO, Depth+1) ||
1239         // See if the operation should be performed at a smaller bit width.
1240         ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) {
1241       SDNodeFlags Flags = Op.getNode()->getFlags();
1242       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1243         // Disable the nsw and nuw flags. We can no longer guarantee that we
1244         // won't wrap after simplification.
1245         Flags.setNoSignedWrap(false);
1246         Flags.setNoUnsignedWrap(false);
1247         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
1248                                         Op.getOperand(0), Op.getOperand(1),
1249                                         Flags);
1250         return TLO.CombineTo(Op, NewOp);
1251       }
1252       return true;
1253     }
1254     LLVM_FALLTHROUGH;
1255   }
1256   default:
1257     // Just use computeKnownBits to compute output bits.
1258     TLO.DAG.computeKnownBits(Op, Known, Depth);
1259     break;
1260   }
1261 
1262   // If we know the value of all of the demanded bits, return this as a
1263   // constant.
1264   if (NewMask.isSubsetOf(Known.Zero|Known.One)) {
1265     // Avoid folding to a constant if any OpaqueConstant is involved.
1266     const SDNode *N = Op.getNode();
1267     for (SDNodeIterator I = SDNodeIterator::begin(N),
1268          E = SDNodeIterator::end(N); I != E; ++I) {
1269       SDNode *Op = *I;
1270       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1271         if (C->isOpaque())
1272           return false;
1273     }
1274     return TLO.CombineTo(Op,
1275                          TLO.DAG.getConstant(Known.One, dl, Op.getValueType()));
1276   }
1277 
1278   return false;
1279 }
1280 
1281 /// Determine which of the bits specified in Mask are known to be either zero or
1282 /// one and return them in the Known.
1283 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1284                                                    KnownBits &Known,
1285                                                    const APInt &DemandedElts,
1286                                                    const SelectionDAG &DAG,
1287                                                    unsigned Depth) const {
1288   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1289           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1290           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1291           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1292          "Should use MaskedValueIsZero if you don't know whether Op"
1293          " is a target node!");
1294   Known.resetAll();
1295 }
1296 
1297 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1298                                                    KnownBits &Known,
1299                                                    const APInt &DemandedElts,
1300                                                    const SelectionDAG &DAG,
1301                                                    unsigned Depth) const {
1302   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1303 
1304   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1305     // The low bits are known zero if the pointer is aligned.
1306     Known.Zero.setLowBits(Log2_32(Align));
1307   }
1308 }
1309 
1310 /// This method can be implemented by targets that want to expose additional
1311 /// information about sign bits to the DAG Combiner.
1312 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1313                                                          const APInt &,
1314                                                          const SelectionDAG &,
1315                                                          unsigned Depth) const {
1316   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1317           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1318           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1319           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1320          "Should use ComputeNumSignBits if you don't know whether Op"
1321          " is a target node!");
1322   return 1;
1323 }
1324 
1325 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
1326 // work with truncating build vectors and vectors with elements of less than
1327 // 8 bits.
1328 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1329   if (!N)
1330     return false;
1331 
1332   APInt CVal;
1333   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
1334     CVal = CN->getAPIntValue();
1335   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
1336     auto *CN = BV->getConstantSplatNode();
1337     if (!CN)
1338       return false;
1339 
1340     // If this is a truncating build vector, truncate the splat value.
1341     // Otherwise, we may fail to match the expected values below.
1342     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
1343     CVal = CN->getAPIntValue();
1344     if (BVEltWidth < CVal.getBitWidth())
1345       CVal = CVal.trunc(BVEltWidth);
1346   } else {
1347     return false;
1348   }
1349 
1350   switch (getBooleanContents(N->getValueType(0))) {
1351   case UndefinedBooleanContent:
1352     return CVal[0];
1353   case ZeroOrOneBooleanContent:
1354     return CVal.isOneValue();
1355   case ZeroOrNegativeOneBooleanContent:
1356     return CVal.isAllOnesValue();
1357   }
1358 
1359   llvm_unreachable("Invalid boolean contents");
1360 }
1361 
1362 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
1363                                         const SDLoc &DL) const {
1364   unsigned ElementWidth = VT.getScalarSizeInBits();
1365   APInt TrueInt =
1366       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
1367           ? APInt(ElementWidth, 1)
1368           : APInt::getAllOnesValue(ElementWidth);
1369   return DAG.getConstant(TrueInt, DL, VT);
1370 }
1371 
1372 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1373   if (!N)
1374     return false;
1375 
1376   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1377   if (!CN) {
1378     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1379     if (!BV)
1380       return false;
1381 
1382     // Only interested in constant splats, we don't care about undef
1383     // elements in identifying boolean constants and getConstantSplatNode
1384     // returns NULL if all ops are undef;
1385     CN = BV->getConstantSplatNode();
1386     if (!CN)
1387       return false;
1388   }
1389 
1390   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1391     return !CN->getAPIntValue()[0];
1392 
1393   return CN->isNullValue();
1394 }
1395 
1396 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1397                                        bool SExt) const {
1398   if (VT == MVT::i1)
1399     return N->isOne();
1400 
1401   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1402   switch (Cnt) {
1403   case TargetLowering::ZeroOrOneBooleanContent:
1404     // An extended value of 1 is always true, unless its original type is i1,
1405     // in which case it will be sign extended to -1.
1406     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1407   case TargetLowering::UndefinedBooleanContent:
1408   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1409     return N->isAllOnesValue() && SExt;
1410   }
1411   llvm_unreachable("Unexpected enumeration.");
1412 }
1413 
1414 /// This helper function of SimplifySetCC tries to optimize the comparison when
1415 /// either operand of the SetCC node is a bitwise-and instruction.
1416 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1417                                              ISD::CondCode Cond,
1418                                              DAGCombinerInfo &DCI,
1419                                              const SDLoc &DL) const {
1420   // Match these patterns in any of their permutations:
1421   // (X & Y) == Y
1422   // (X & Y) != Y
1423   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1424     std::swap(N0, N1);
1425 
1426   EVT OpVT = N0.getValueType();
1427   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1428       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1429     return SDValue();
1430 
1431   SDValue X, Y;
1432   if (N0.getOperand(0) == N1) {
1433     X = N0.getOperand(1);
1434     Y = N0.getOperand(0);
1435   } else if (N0.getOperand(1) == N1) {
1436     X = N0.getOperand(0);
1437     Y = N0.getOperand(1);
1438   } else {
1439     return SDValue();
1440   }
1441 
1442   SelectionDAG &DAG = DCI.DAG;
1443   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1444   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1445     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1446     // Note that where Y is variable and is known to have at most one bit set
1447     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1448     // equivalent when Y == 0.
1449     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1450     if (DCI.isBeforeLegalizeOps() ||
1451         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1452       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1453   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1454     // If the target supports an 'and-not' or 'and-complement' logic operation,
1455     // try to use that to make a comparison operation more efficient.
1456     // But don't do this transform if the mask is a single bit because there are
1457     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1458     // 'rlwinm' on PPC).
1459 
1460     // Bail out if the compare operand that we want to turn into a zero is
1461     // already a zero (otherwise, infinite loop).
1462     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1463     if (YConst && YConst->isNullValue())
1464       return SDValue();
1465 
1466     // Transform this into: ~X & Y == 0.
1467     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1468     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1469     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1470   }
1471 
1472   return SDValue();
1473 }
1474 
1475 /// Try to simplify a setcc built with the specified operands and cc. If it is
1476 /// unable to simplify it, return a null SDValue.
1477 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1478                                       ISD::CondCode Cond, bool foldBooleans,
1479                                       DAGCombinerInfo &DCI,
1480                                       const SDLoc &dl) const {
1481   SelectionDAG &DAG = DCI.DAG;
1482 
1483   // These setcc operations always fold.
1484   switch (Cond) {
1485   default: break;
1486   case ISD::SETFALSE:
1487   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1488   case ISD::SETTRUE:
1489   case ISD::SETTRUE2: {
1490     TargetLowering::BooleanContent Cnt =
1491         getBooleanContents(N0->getValueType(0));
1492     return DAG.getConstant(
1493         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1494         VT);
1495   }
1496   }
1497 
1498   // Ensure that the constant occurs on the RHS and fold constant comparisons.
1499   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1500   if (isa<ConstantSDNode>(N0.getNode()) &&
1501       (DCI.isBeforeLegalizeOps() ||
1502        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1503     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1504 
1505   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1506     const APInt &C1 = N1C->getAPIntValue();
1507 
1508     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1509     // equality comparison, then we're just comparing whether X itself is
1510     // zero.
1511     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
1512         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1513         N0.getOperand(1).getOpcode() == ISD::Constant) {
1514       const APInt &ShAmt
1515         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1516       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1517           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1518         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1519           // (srl (ctlz x), 5) == 0  -> X != 0
1520           // (srl (ctlz x), 5) != 1  -> X != 0
1521           Cond = ISD::SETNE;
1522         } else {
1523           // (srl (ctlz x), 5) != 0  -> X == 0
1524           // (srl (ctlz x), 5) == 1  -> X == 0
1525           Cond = ISD::SETEQ;
1526         }
1527         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1528         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1529                             Zero, Cond);
1530       }
1531     }
1532 
1533     SDValue CTPOP = N0;
1534     // Look through truncs that don't change the value of a ctpop.
1535     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1536       CTPOP = N0.getOperand(0);
1537 
1538     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1539         (N0 == CTPOP ||
1540          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1541       EVT CTVT = CTPOP.getValueType();
1542       SDValue CTOp = CTPOP.getOperand(0);
1543 
1544       // (ctpop x) u< 2 -> (x & x-1) == 0
1545       // (ctpop x) u> 1 -> (x & x-1) != 0
1546       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1547         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1548                                   DAG.getConstant(1, dl, CTVT));
1549         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1550         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1551         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1552       }
1553 
1554       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1555     }
1556 
1557     // (zext x) == C --> x == (trunc C)
1558     // (sext x) == C --> x == (trunc C)
1559     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1560         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1561       unsigned MinBits = N0.getValueSizeInBits();
1562       SDValue PreExt;
1563       bool Signed = false;
1564       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1565         // ZExt
1566         MinBits = N0->getOperand(0).getValueSizeInBits();
1567         PreExt = N0->getOperand(0);
1568       } else if (N0->getOpcode() == ISD::AND) {
1569         // DAGCombine turns costly ZExts into ANDs
1570         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1571           if ((C->getAPIntValue()+1).isPowerOf2()) {
1572             MinBits = C->getAPIntValue().countTrailingOnes();
1573             PreExt = N0->getOperand(0);
1574           }
1575       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1576         // SExt
1577         MinBits = N0->getOperand(0).getValueSizeInBits();
1578         PreExt = N0->getOperand(0);
1579         Signed = true;
1580       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1581         // ZEXTLOAD / SEXTLOAD
1582         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1583           MinBits = LN0->getMemoryVT().getSizeInBits();
1584           PreExt = N0;
1585         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1586           Signed = true;
1587           MinBits = LN0->getMemoryVT().getSizeInBits();
1588           PreExt = N0;
1589         }
1590       }
1591 
1592       // Figure out how many bits we need to preserve this constant.
1593       unsigned ReqdBits = Signed ?
1594         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1595         C1.getActiveBits();
1596 
1597       // Make sure we're not losing bits from the constant.
1598       if (MinBits > 0 &&
1599           MinBits < C1.getBitWidth() &&
1600           MinBits >= ReqdBits) {
1601         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1602         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1603           // Will get folded away.
1604           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1605           if (MinBits == 1 && C1 == 1)
1606             // Invert the condition.
1607             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1608                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1609           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1610           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1611         }
1612 
1613         // If truncating the setcc operands is not desirable, we can still
1614         // simplify the expression in some cases:
1615         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1616         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1617         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1618         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1619         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1620         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1621         SDValue TopSetCC = N0->getOperand(0);
1622         unsigned N0Opc = N0->getOpcode();
1623         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1624         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1625             TopSetCC.getOpcode() == ISD::SETCC &&
1626             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1627             (isConstFalseVal(N1C) ||
1628              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1629 
1630           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1631                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1632 
1633           if (!Inverse)
1634             return TopSetCC;
1635 
1636           ISD::CondCode InvCond = ISD::getSetCCInverse(
1637               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1638               TopSetCC.getOperand(0).getValueType().isInteger());
1639           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1640                                       TopSetCC.getOperand(1),
1641                                       InvCond);
1642         }
1643       }
1644     }
1645 
1646     // If the LHS is '(and load, const)', the RHS is 0, the test is for
1647     // equality or unsigned, and all 1 bits of the const are in the same
1648     // partial word, see if we can shorten the load.
1649     if (DCI.isBeforeLegalize() &&
1650         !ISD::isSignedIntSetCC(Cond) &&
1651         N0.getOpcode() == ISD::AND && C1 == 0 &&
1652         N0.getNode()->hasOneUse() &&
1653         isa<LoadSDNode>(N0.getOperand(0)) &&
1654         N0.getOperand(0).getNode()->hasOneUse() &&
1655         isa<ConstantSDNode>(N0.getOperand(1))) {
1656       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1657       APInt bestMask;
1658       unsigned bestWidth = 0, bestOffset = 0;
1659       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1660         unsigned origWidth = N0.getValueSizeInBits();
1661         unsigned maskWidth = origWidth;
1662         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1663         // 8 bits, but have to be careful...
1664         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1665           origWidth = Lod->getMemoryVT().getSizeInBits();
1666         const APInt &Mask =
1667           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1668         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1669           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1670           for (unsigned offset=0; offset<origWidth/width; offset++) {
1671             if (Mask.isSubsetOf(newMask)) {
1672               if (DAG.getDataLayout().isLittleEndian())
1673                 bestOffset = (uint64_t)offset * (width/8);
1674               else
1675                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1676               bestMask = Mask.lshr(offset * (width/8) * 8);
1677               bestWidth = width;
1678               break;
1679             }
1680             newMask <<= width;
1681           }
1682         }
1683       }
1684       if (bestWidth) {
1685         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1686         if (newVT.isRound()) {
1687           EVT PtrType = Lod->getOperand(1).getValueType();
1688           SDValue Ptr = Lod->getBasePtr();
1689           if (bestOffset != 0)
1690             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1691                               DAG.getConstant(bestOffset, dl, PtrType));
1692           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1693           SDValue NewLoad = DAG.getLoad(
1694               newVT, dl, Lod->getChain(), Ptr,
1695               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1696           return DAG.getSetCC(dl, VT,
1697                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1698                                       DAG.getConstant(bestMask.trunc(bestWidth),
1699                                                       dl, newVT)),
1700                               DAG.getConstant(0LL, dl, newVT), Cond);
1701         }
1702       }
1703     }
1704 
1705     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1706     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1707       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
1708 
1709       // If the comparison constant has bits in the upper part, the
1710       // zero-extended value could never match.
1711       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1712                                               C1.getBitWidth() - InSize))) {
1713         switch (Cond) {
1714         case ISD::SETUGT:
1715         case ISD::SETUGE:
1716         case ISD::SETEQ:
1717           return DAG.getConstant(0, dl, VT);
1718         case ISD::SETULT:
1719         case ISD::SETULE:
1720         case ISD::SETNE:
1721           return DAG.getConstant(1, dl, VT);
1722         case ISD::SETGT:
1723         case ISD::SETGE:
1724           // True if the sign bit of C1 is set.
1725           return DAG.getConstant(C1.isNegative(), dl, VT);
1726         case ISD::SETLT:
1727         case ISD::SETLE:
1728           // True if the sign bit of C1 isn't set.
1729           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1730         default:
1731           break;
1732         }
1733       }
1734 
1735       // Otherwise, we can perform the comparison with the low bits.
1736       switch (Cond) {
1737       case ISD::SETEQ:
1738       case ISD::SETNE:
1739       case ISD::SETUGT:
1740       case ISD::SETUGE:
1741       case ISD::SETULT:
1742       case ISD::SETULE: {
1743         EVT newVT = N0.getOperand(0).getValueType();
1744         if (DCI.isBeforeLegalizeOps() ||
1745             (isOperationLegal(ISD::SETCC, newVT) &&
1746              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1747           EVT NewSetCCVT =
1748               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1749           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1750 
1751           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1752                                           NewConst, Cond);
1753           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1754         }
1755         break;
1756       }
1757       default:
1758         break;   // todo, be more careful with signed comparisons
1759       }
1760     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1761                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1762       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1763       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1764       EVT ExtDstTy = N0.getValueType();
1765       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1766 
1767       // If the constant doesn't fit into the number of bits for the source of
1768       // the sign extension, it is impossible for both sides to be equal.
1769       if (C1.getMinSignedBits() > ExtSrcTyBits)
1770         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1771 
1772       SDValue ZextOp;
1773       EVT Op0Ty = N0.getOperand(0).getValueType();
1774       if (Op0Ty == ExtSrcTy) {
1775         ZextOp = N0.getOperand(0);
1776       } else {
1777         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1778         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1779                               DAG.getConstant(Imm, dl, Op0Ty));
1780       }
1781       if (!DCI.isCalledByLegalizer())
1782         DCI.AddToWorklist(ZextOp.getNode());
1783       // Otherwise, make this a use of a zext.
1784       return DAG.getSetCC(dl, VT, ZextOp,
1785                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1786                                                               ExtDstTyBits,
1787                                                               ExtSrcTyBits),
1788                                           dl, ExtDstTy),
1789                           Cond);
1790     } else if ((N1C->isNullValue() || N1C->isOne()) &&
1791                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1792       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1793       if (N0.getOpcode() == ISD::SETCC &&
1794           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1795         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
1796         if (TrueWhenTrue)
1797           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1798         // Invert the condition.
1799         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1800         CC = ISD::getSetCCInverse(CC,
1801                                   N0.getOperand(0).getValueType().isInteger());
1802         if (DCI.isBeforeLegalizeOps() ||
1803             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1804           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1805       }
1806 
1807       if ((N0.getOpcode() == ISD::XOR ||
1808            (N0.getOpcode() == ISD::AND &&
1809             N0.getOperand(0).getOpcode() == ISD::XOR &&
1810             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1811           isa<ConstantSDNode>(N0.getOperand(1)) &&
1812           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
1813         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1814         // can only do this if the top bits are known zero.
1815         unsigned BitWidth = N0.getValueSizeInBits();
1816         if (DAG.MaskedValueIsZero(N0,
1817                                   APInt::getHighBitsSet(BitWidth,
1818                                                         BitWidth-1))) {
1819           // Okay, get the un-inverted input value.
1820           SDValue Val;
1821           if (N0.getOpcode() == ISD::XOR) {
1822             Val = N0.getOperand(0);
1823           } else {
1824             assert(N0.getOpcode() == ISD::AND &&
1825                     N0.getOperand(0).getOpcode() == ISD::XOR);
1826             // ((X^1)&1)^1 -> X & 1
1827             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1828                               N0.getOperand(0).getOperand(0),
1829                               N0.getOperand(1));
1830           }
1831 
1832           return DAG.getSetCC(dl, VT, Val, N1,
1833                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1834         }
1835       } else if (N1C->isOne() &&
1836                  (VT == MVT::i1 ||
1837                   getBooleanContents(N0->getValueType(0)) ==
1838                       ZeroOrOneBooleanContent)) {
1839         SDValue Op0 = N0;
1840         if (Op0.getOpcode() == ISD::TRUNCATE)
1841           Op0 = Op0.getOperand(0);
1842 
1843         if ((Op0.getOpcode() == ISD::XOR) &&
1844             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1845             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1846           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1847           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1848           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1849                               Cond);
1850         }
1851         if (Op0.getOpcode() == ISD::AND &&
1852             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1853             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
1854           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1855           if (Op0.getValueType().bitsGT(VT))
1856             Op0 = DAG.getNode(ISD::AND, dl, VT,
1857                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1858                           DAG.getConstant(1, dl, VT));
1859           else if (Op0.getValueType().bitsLT(VT))
1860             Op0 = DAG.getNode(ISD::AND, dl, VT,
1861                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1862                         DAG.getConstant(1, dl, VT));
1863 
1864           return DAG.getSetCC(dl, VT, Op0,
1865                               DAG.getConstant(0, dl, Op0.getValueType()),
1866                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1867         }
1868         if (Op0.getOpcode() == ISD::AssertZext &&
1869             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1870           return DAG.getSetCC(dl, VT, Op0,
1871                               DAG.getConstant(0, dl, Op0.getValueType()),
1872                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1873       }
1874     }
1875 
1876     APInt MinVal, MaxVal;
1877     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1878     if (ISD::isSignedIntSetCC(Cond)) {
1879       MinVal = APInt::getSignedMinValue(OperandBitSize);
1880       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1881     } else {
1882       MinVal = APInt::getMinValue(OperandBitSize);
1883       MaxVal = APInt::getMaxValue(OperandBitSize);
1884     }
1885 
1886     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1887     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1888       // X >= MIN --> true
1889       if (C1 == MinVal)
1890         return DAG.getConstant(1, dl, VT);
1891 
1892       // X >= C0 --> X > (C0 - 1)
1893       APInt C = C1 - 1;
1894       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1895       if ((DCI.isBeforeLegalizeOps() ||
1896            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1897           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1898                                 isLegalICmpImmediate(C.getSExtValue())))) {
1899         return DAG.getSetCC(dl, VT, N0,
1900                             DAG.getConstant(C, dl, N1.getValueType()),
1901                             NewCC);
1902       }
1903     }
1904 
1905     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1906       // X <= MAX --> true
1907       if (C1 == MaxVal)
1908           return DAG.getConstant(1, dl, VT);
1909 
1910       // X <= C0 --> X < (C0 + 1)
1911       APInt C = C1 + 1;
1912       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1913       if ((DCI.isBeforeLegalizeOps() ||
1914            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1915           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1916                                 isLegalICmpImmediate(C.getSExtValue())))) {
1917         return DAG.getSetCC(dl, VT, N0,
1918                             DAG.getConstant(C, dl, N1.getValueType()),
1919                             NewCC);
1920       }
1921     }
1922 
1923     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1924       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1925     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1926       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1927     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1928       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1929     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1930       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1931 
1932     // Canonicalize setgt X, Min --> setne X, Min
1933     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1934       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1935     // Canonicalize setlt X, Max --> setne X, Max
1936     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1937       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1938 
1939     // If we have setult X, 1, turn it into seteq X, 0
1940     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1941       return DAG.getSetCC(dl, VT, N0,
1942                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1943                           ISD::SETEQ);
1944     // If we have setugt X, Max-1, turn it into seteq X, Max
1945     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1946       return DAG.getSetCC(dl, VT, N0,
1947                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1948                           ISD::SETEQ);
1949 
1950     // If we have "setcc X, C0", check to see if we can shrink the immediate
1951     // by changing cc.
1952 
1953     // SETUGT X, SINTMAX  -> SETLT X, 0
1954     if (Cond == ISD::SETUGT &&
1955         C1 == APInt::getSignedMaxValue(OperandBitSize))
1956       return DAG.getSetCC(dl, VT, N0,
1957                           DAG.getConstant(0, dl, N1.getValueType()),
1958                           ISD::SETLT);
1959 
1960     // SETULT X, SINTMIN  -> SETGT X, -1
1961     if (Cond == ISD::SETULT &&
1962         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1963       SDValue ConstMinusOne =
1964           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1965                           N1.getValueType());
1966       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1967     }
1968 
1969     // Fold bit comparisons when we can.
1970     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1971         (VT == N0.getValueType() ||
1972          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1973         N0.getOpcode() == ISD::AND) {
1974       auto &DL = DAG.getDataLayout();
1975       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1976         EVT ShiftTy = DCI.isBeforeLegalize()
1977                           ? getPointerTy(DL)
1978                           : getShiftAmountTy(N0.getValueType(), DL);
1979         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1980           // Perform the xform if the AND RHS is a single bit.
1981           if (AndRHS->getAPIntValue().isPowerOf2()) {
1982             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1983                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1984                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1985                                    ShiftTy)));
1986           }
1987         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1988           // (X & 8) == 8  -->  (X & 8) >> 3
1989           // Perform the xform if C1 is a single bit.
1990           if (C1.isPowerOf2()) {
1991             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1992                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1993                                       DAG.getConstant(C1.logBase2(), dl,
1994                                                       ShiftTy)));
1995           }
1996         }
1997       }
1998     }
1999 
2000     if (C1.getMinSignedBits() <= 64 &&
2001         !isLegalICmpImmediate(C1.getSExtValue())) {
2002       // (X & -256) == 256 -> (X >> 8) == 1
2003       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2004           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2005         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2006           const APInt &AndRHSC = AndRHS->getAPIntValue();
2007           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2008             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2009             auto &DL = DAG.getDataLayout();
2010             EVT ShiftTy = DCI.isBeforeLegalize()
2011                               ? getPointerTy(DL)
2012                               : getShiftAmountTy(N0.getValueType(), DL);
2013             EVT CmpTy = N0.getValueType();
2014             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2015                                         DAG.getConstant(ShiftBits, dl,
2016                                                         ShiftTy));
2017             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2018             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2019           }
2020         }
2021       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2022                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2023         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2024         // X <  0x100000000 -> (X >> 32) <  1
2025         // X >= 0x100000000 -> (X >> 32) >= 1
2026         // X <= 0x0ffffffff -> (X >> 32) <  1
2027         // X >  0x0ffffffff -> (X >> 32) >= 1
2028         unsigned ShiftBits;
2029         APInt NewC = C1;
2030         ISD::CondCode NewCond = Cond;
2031         if (AdjOne) {
2032           ShiftBits = C1.countTrailingOnes();
2033           NewC = NewC + 1;
2034           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2035         } else {
2036           ShiftBits = C1.countTrailingZeros();
2037         }
2038         NewC.lshrInPlace(ShiftBits);
2039         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2040           isLegalICmpImmediate(NewC.getSExtValue())) {
2041           auto &DL = DAG.getDataLayout();
2042           EVT ShiftTy = DCI.isBeforeLegalize()
2043                             ? getPointerTy(DL)
2044                             : getShiftAmountTy(N0.getValueType(), DL);
2045           EVT CmpTy = N0.getValueType();
2046           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2047                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2048           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2049           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2050         }
2051       }
2052     }
2053   }
2054 
2055   if (isa<ConstantFPSDNode>(N0.getNode())) {
2056     // Constant fold or commute setcc.
2057     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2058     if (O.getNode()) return O;
2059   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2060     // If the RHS of an FP comparison is a constant, simplify it away in
2061     // some cases.
2062     if (CFP->getValueAPF().isNaN()) {
2063       // If an operand is known to be a nan, we can fold it.
2064       switch (ISD::getUnorderedFlavor(Cond)) {
2065       default: llvm_unreachable("Unknown flavor!");
2066       case 0:  // Known false.
2067         return DAG.getConstant(0, dl, VT);
2068       case 1:  // Known true.
2069         return DAG.getConstant(1, dl, VT);
2070       case 2:  // Undefined.
2071         return DAG.getUNDEF(VT);
2072       }
2073     }
2074 
2075     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2076     // constant if knowing that the operand is non-nan is enough.  We prefer to
2077     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2078     // materialize 0.0.
2079     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2080       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2081 
2082     // setcc (fneg x), C -> setcc swap(pred) x, -C
2083     if (N0.getOpcode() == ISD::FNEG) {
2084       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2085       if (DCI.isBeforeLegalizeOps() ||
2086           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2087         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2088         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2089       }
2090     }
2091 
2092     // If the condition is not legal, see if we can find an equivalent one
2093     // which is legal.
2094     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2095       // If the comparison was an awkward floating-point == or != and one of
2096       // the comparison operands is infinity or negative infinity, convert the
2097       // condition to a less-awkward <= or >=.
2098       if (CFP->getValueAPF().isInfinity()) {
2099         if (CFP->getValueAPF().isNegative()) {
2100           if (Cond == ISD::SETOEQ &&
2101               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2102             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2103           if (Cond == ISD::SETUEQ &&
2104               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2105             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2106           if (Cond == ISD::SETUNE &&
2107               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2108             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2109           if (Cond == ISD::SETONE &&
2110               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2111             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2112         } else {
2113           if (Cond == ISD::SETOEQ &&
2114               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2115             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2116           if (Cond == ISD::SETUEQ &&
2117               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2118             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2119           if (Cond == ISD::SETUNE &&
2120               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2121             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2122           if (Cond == ISD::SETONE &&
2123               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2124             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2125         }
2126       }
2127     }
2128   }
2129 
2130   if (N0 == N1) {
2131     // The sext(setcc()) => setcc() optimization relies on the appropriate
2132     // constant being emitted.
2133     uint64_t EqVal = 0;
2134     switch (getBooleanContents(N0.getValueType())) {
2135     case UndefinedBooleanContent:
2136     case ZeroOrOneBooleanContent:
2137       EqVal = ISD::isTrueWhenEqual(Cond);
2138       break;
2139     case ZeroOrNegativeOneBooleanContent:
2140       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2141       break;
2142     }
2143 
2144     // We can always fold X == X for integer setcc's.
2145     if (N0.getValueType().isInteger()) {
2146       return DAG.getConstant(EqVal, dl, VT);
2147     }
2148     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2149     if (UOF == 2)   // FP operators that are undefined on NaNs.
2150       return DAG.getConstant(EqVal, dl, VT);
2151     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2152       return DAG.getConstant(EqVal, dl, VT);
2153     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2154     // if it is not already.
2155     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2156     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2157           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2158       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2159   }
2160 
2161   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2162       N0.getValueType().isInteger()) {
2163     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2164         N0.getOpcode() == ISD::XOR) {
2165       // Simplify (X+Y) == (X+Z) -->  Y == Z
2166       if (N0.getOpcode() == N1.getOpcode()) {
2167         if (N0.getOperand(0) == N1.getOperand(0))
2168           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2169         if (N0.getOperand(1) == N1.getOperand(1))
2170           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2171         if (isCommutativeBinOp(N0.getOpcode())) {
2172           // If X op Y == Y op X, try other combinations.
2173           if (N0.getOperand(0) == N1.getOperand(1))
2174             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2175                                 Cond);
2176           if (N0.getOperand(1) == N1.getOperand(0))
2177             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2178                                 Cond);
2179         }
2180       }
2181 
2182       // If RHS is a legal immediate value for a compare instruction, we need
2183       // to be careful about increasing register pressure needlessly.
2184       bool LegalRHSImm = false;
2185 
2186       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2187         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2188           // Turn (X+C1) == C2 --> X == C2-C1
2189           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2190             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2191                                 DAG.getConstant(RHSC->getAPIntValue()-
2192                                                 LHSR->getAPIntValue(),
2193                                 dl, N0.getValueType()), Cond);
2194           }
2195 
2196           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2197           if (N0.getOpcode() == ISD::XOR)
2198             // If we know that all of the inverted bits are zero, don't bother
2199             // performing the inversion.
2200             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2201               return
2202                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2203                              DAG.getConstant(LHSR->getAPIntValue() ^
2204                                                RHSC->getAPIntValue(),
2205                                              dl, N0.getValueType()),
2206                              Cond);
2207         }
2208 
2209         // Turn (C1-X) == C2 --> X == C1-C2
2210         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2211           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2212             return
2213               DAG.getSetCC(dl, VT, N0.getOperand(1),
2214                            DAG.getConstant(SUBC->getAPIntValue() -
2215                                              RHSC->getAPIntValue(),
2216                                            dl, N0.getValueType()),
2217                            Cond);
2218           }
2219         }
2220 
2221         // Could RHSC fold directly into a compare?
2222         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2223           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2224       }
2225 
2226       // Simplify (X+Z) == X -->  Z == 0
2227       // Don't do this if X is an immediate that can fold into a cmp
2228       // instruction and X+Z has other uses. It could be an induction variable
2229       // chain, and the transform would increase register pressure.
2230       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2231         if (N0.getOperand(0) == N1)
2232           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2233                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2234         if (N0.getOperand(1) == N1) {
2235           if (isCommutativeBinOp(N0.getOpcode()))
2236             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2237                                 DAG.getConstant(0, dl, N0.getValueType()),
2238                                 Cond);
2239           if (N0.getNode()->hasOneUse()) {
2240             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2241             auto &DL = DAG.getDataLayout();
2242             // (Z-X) == X  --> Z == X<<1
2243             SDValue SH = DAG.getNode(
2244                 ISD::SHL, dl, N1.getValueType(), N1,
2245                 DAG.getConstant(1, dl,
2246                                 getShiftAmountTy(N1.getValueType(), DL)));
2247             if (!DCI.isCalledByLegalizer())
2248               DCI.AddToWorklist(SH.getNode());
2249             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2250           }
2251         }
2252       }
2253     }
2254 
2255     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2256         N1.getOpcode() == ISD::XOR) {
2257       // Simplify  X == (X+Z) -->  Z == 0
2258       if (N1.getOperand(0) == N0)
2259         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2260                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2261       if (N1.getOperand(1) == N0) {
2262         if (isCommutativeBinOp(N1.getOpcode()))
2263           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2264                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2265         if (N1.getNode()->hasOneUse()) {
2266           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2267           auto &DL = DAG.getDataLayout();
2268           // X == (Z-X)  --> X<<1 == Z
2269           SDValue SH = DAG.getNode(
2270               ISD::SHL, dl, N1.getValueType(), N0,
2271               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2272           if (!DCI.isCalledByLegalizer())
2273             DCI.AddToWorklist(SH.getNode());
2274           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2275         }
2276       }
2277     }
2278 
2279     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2280       return V;
2281   }
2282 
2283   // Fold away ALL boolean setcc's.
2284   SDValue Temp;
2285   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
2286     EVT OpVT = N0.getValueType();
2287     switch (Cond) {
2288     default: llvm_unreachable("Unknown integer setcc!");
2289     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2290       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2291       N0 = DAG.getNOT(dl, Temp, OpVT);
2292       if (!DCI.isCalledByLegalizer())
2293         DCI.AddToWorklist(Temp.getNode());
2294       break;
2295     case ISD::SETNE:  // X != Y   -->  (X^Y)
2296       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2297       break;
2298     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2299     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2300       Temp = DAG.getNOT(dl, N0, OpVT);
2301       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
2302       if (!DCI.isCalledByLegalizer())
2303         DCI.AddToWorklist(Temp.getNode());
2304       break;
2305     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2306     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2307       Temp = DAG.getNOT(dl, N1, OpVT);
2308       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
2309       if (!DCI.isCalledByLegalizer())
2310         DCI.AddToWorklist(Temp.getNode());
2311       break;
2312     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2313     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2314       Temp = DAG.getNOT(dl, N0, OpVT);
2315       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
2316       if (!DCI.isCalledByLegalizer())
2317         DCI.AddToWorklist(Temp.getNode());
2318       break;
2319     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2320     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2321       Temp = DAG.getNOT(dl, N1, OpVT);
2322       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
2323       break;
2324     }
2325     if (VT.getScalarType() != MVT::i1) {
2326       if (!DCI.isCalledByLegalizer())
2327         DCI.AddToWorklist(N0.getNode());
2328       // FIXME: If running after legalize, we probably can't do this.
2329       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
2330       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
2331     }
2332     return N0;
2333   }
2334 
2335   // Could not fold it.
2336   return SDValue();
2337 }
2338 
2339 /// Returns true (and the GlobalValue and the offset) if the node is a
2340 /// GlobalAddress + offset.
2341 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2342                                     int64_t &Offset) const {
2343   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2344     GA = GASD->getGlobal();
2345     Offset += GASD->getOffset();
2346     return true;
2347   }
2348 
2349   if (N->getOpcode() == ISD::ADD) {
2350     SDValue N1 = N->getOperand(0);
2351     SDValue N2 = N->getOperand(1);
2352     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2353       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2354         Offset += V->getSExtValue();
2355         return true;
2356       }
2357     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2358       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2359         Offset += V->getSExtValue();
2360         return true;
2361       }
2362     }
2363   }
2364 
2365   return false;
2366 }
2367 
2368 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2369                                           DAGCombinerInfo &DCI) const {
2370   // Default implementation: no optimization.
2371   return SDValue();
2372 }
2373 
2374 //===----------------------------------------------------------------------===//
2375 //  Inline Assembler Implementation Methods
2376 //===----------------------------------------------------------------------===//
2377 
2378 TargetLowering::ConstraintType
2379 TargetLowering::getConstraintType(StringRef Constraint) const {
2380   unsigned S = Constraint.size();
2381 
2382   if (S == 1) {
2383     switch (Constraint[0]) {
2384     default: break;
2385     case 'r': return C_RegisterClass;
2386     case 'm':    // memory
2387     case 'o':    // offsetable
2388     case 'V':    // not offsetable
2389       return C_Memory;
2390     case 'i':    // Simple Integer or Relocatable Constant
2391     case 'n':    // Simple Integer
2392     case 'E':    // Floating Point Constant
2393     case 'F':    // Floating Point Constant
2394     case 's':    // Relocatable Constant
2395     case 'p':    // Address.
2396     case 'X':    // Allow ANY value.
2397     case 'I':    // Target registers.
2398     case 'J':
2399     case 'K':
2400     case 'L':
2401     case 'M':
2402     case 'N':
2403     case 'O':
2404     case 'P':
2405     case '<':
2406     case '>':
2407       return C_Other;
2408     }
2409   }
2410 
2411   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2412     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2413       return C_Memory;
2414     return C_Register;
2415   }
2416   return C_Unknown;
2417 }
2418 
2419 /// Try to replace an X constraint, which matches anything, with another that
2420 /// has more specific requirements based on the type of the corresponding
2421 /// operand.
2422 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2423   if (ConstraintVT.isInteger())
2424     return "r";
2425   if (ConstraintVT.isFloatingPoint())
2426     return "f";      // works for many targets
2427   return nullptr;
2428 }
2429 
2430 /// Lower the specified operand into the Ops vector.
2431 /// If it is invalid, don't add anything to Ops.
2432 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2433                                                   std::string &Constraint,
2434                                                   std::vector<SDValue> &Ops,
2435                                                   SelectionDAG &DAG) const {
2436 
2437   if (Constraint.length() > 1) return;
2438 
2439   char ConstraintLetter = Constraint[0];
2440   switch (ConstraintLetter) {
2441   default: break;
2442   case 'X':     // Allows any operand; labels (basic block) use this.
2443     if (Op.getOpcode() == ISD::BasicBlock) {
2444       Ops.push_back(Op);
2445       return;
2446     }
2447     LLVM_FALLTHROUGH;
2448   case 'i':    // Simple Integer or Relocatable Constant
2449   case 'n':    // Simple Integer
2450   case 's': {  // Relocatable Constant
2451     // These operands are interested in values of the form (GV+C), where C may
2452     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2453     // is possible and fine if either GV or C are missing.
2454     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2455     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2456 
2457     // If we have "(add GV, C)", pull out GV/C
2458     if (Op.getOpcode() == ISD::ADD) {
2459       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2460       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2461       if (!C || !GA) {
2462         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2463         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2464       }
2465       if (!C || !GA) {
2466         C = nullptr;
2467         GA = nullptr;
2468       }
2469     }
2470 
2471     // If we find a valid operand, map to the TargetXXX version so that the
2472     // value itself doesn't get selected.
2473     if (GA) {   // Either &GV   or   &GV+C
2474       if (ConstraintLetter != 'n') {
2475         int64_t Offs = GA->getOffset();
2476         if (C) Offs += C->getZExtValue();
2477         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2478                                                  C ? SDLoc(C) : SDLoc(),
2479                                                  Op.getValueType(), Offs));
2480       }
2481       return;
2482     }
2483     if (C) {   // just C, no GV.
2484       // Simple constants are not allowed for 's'.
2485       if (ConstraintLetter != 's') {
2486         // gcc prints these as sign extended.  Sign extend value to 64 bits
2487         // now; without this it would get ZExt'd later in
2488         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2489         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
2490                                             SDLoc(C), MVT::i64));
2491       }
2492       return;
2493     }
2494     break;
2495   }
2496   }
2497 }
2498 
2499 std::pair<unsigned, const TargetRegisterClass *>
2500 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2501                                              StringRef Constraint,
2502                                              MVT VT) const {
2503   if (Constraint.empty() || Constraint[0] != '{')
2504     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2505   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2506 
2507   // Remove the braces from around the name.
2508   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2509 
2510   std::pair<unsigned, const TargetRegisterClass*> R =
2511     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2512 
2513   // Figure out which register class contains this reg.
2514   for (const TargetRegisterClass *RC : RI->regclasses()) {
2515     // If none of the value types for this register class are valid, we
2516     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2517     if (!isLegalRC(*RI, *RC))
2518       continue;
2519 
2520     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2521          I != E; ++I) {
2522       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2523         std::pair<unsigned, const TargetRegisterClass*> S =
2524           std::make_pair(*I, RC);
2525 
2526         // If this register class has the requested value type, return it,
2527         // otherwise keep searching and return the first class found
2528         // if no other is found which explicitly has the requested type.
2529         if (RI->isTypeLegalForClass(*RC, VT))
2530           return S;
2531         if (!R.second)
2532           R = S;
2533       }
2534     }
2535   }
2536 
2537   return R;
2538 }
2539 
2540 //===----------------------------------------------------------------------===//
2541 // Constraint Selection.
2542 
2543 /// Return true of this is an input operand that is a matching constraint like
2544 /// "4".
2545 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2546   assert(!ConstraintCode.empty() && "No known constraint!");
2547   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2548 }
2549 
2550 /// If this is an input matching constraint, this method returns the output
2551 /// operand it matches.
2552 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2553   assert(!ConstraintCode.empty() && "No known constraint!");
2554   return atoi(ConstraintCode.c_str());
2555 }
2556 
2557 /// Split up the constraint string from the inline assembly value into the
2558 /// specific constraints and their prefixes, and also tie in the associated
2559 /// operand values.
2560 /// If this returns an empty vector, and if the constraint string itself
2561 /// isn't empty, there was an error parsing.
2562 TargetLowering::AsmOperandInfoVector
2563 TargetLowering::ParseConstraints(const DataLayout &DL,
2564                                  const TargetRegisterInfo *TRI,
2565                                  ImmutableCallSite CS) const {
2566   /// Information about all of the constraints.
2567   AsmOperandInfoVector ConstraintOperands;
2568   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2569   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2570 
2571   // Do a prepass over the constraints, canonicalizing them, and building up the
2572   // ConstraintOperands list.
2573   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2574   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2575 
2576   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2577     ConstraintOperands.emplace_back(std::move(CI));
2578     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2579 
2580     // Update multiple alternative constraint count.
2581     if (OpInfo.multipleAlternatives.size() > maCount)
2582       maCount = OpInfo.multipleAlternatives.size();
2583 
2584     OpInfo.ConstraintVT = MVT::Other;
2585 
2586     // Compute the value type for each operand.
2587     switch (OpInfo.Type) {
2588     case InlineAsm::isOutput:
2589       // Indirect outputs just consume an argument.
2590       if (OpInfo.isIndirect) {
2591         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2592         break;
2593       }
2594 
2595       // The return value of the call is this value.  As such, there is no
2596       // corresponding argument.
2597       assert(!CS.getType()->isVoidTy() &&
2598              "Bad inline asm!");
2599       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2600         OpInfo.ConstraintVT =
2601             getSimpleValueType(DL, STy->getElementType(ResNo));
2602       } else {
2603         assert(ResNo == 0 && "Asm only has one result!");
2604         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2605       }
2606       ++ResNo;
2607       break;
2608     case InlineAsm::isInput:
2609       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2610       break;
2611     case InlineAsm::isClobber:
2612       // Nothing to do.
2613       break;
2614     }
2615 
2616     if (OpInfo.CallOperandVal) {
2617       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2618       if (OpInfo.isIndirect) {
2619         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2620         if (!PtrTy)
2621           report_fatal_error("Indirect operand for inline asm not a pointer!");
2622         OpTy = PtrTy->getElementType();
2623       }
2624 
2625       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2626       if (StructType *STy = dyn_cast<StructType>(OpTy))
2627         if (STy->getNumElements() == 1)
2628           OpTy = STy->getElementType(0);
2629 
2630       // If OpTy is not a single value, it may be a struct/union that we
2631       // can tile with integers.
2632       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2633         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2634         switch (BitSize) {
2635         default: break;
2636         case 1:
2637         case 8:
2638         case 16:
2639         case 32:
2640         case 64:
2641         case 128:
2642           OpInfo.ConstraintVT =
2643             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2644           break;
2645         }
2646       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2647         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2648         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2649       } else {
2650         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2651       }
2652     }
2653   }
2654 
2655   // If we have multiple alternative constraints, select the best alternative.
2656   if (!ConstraintOperands.empty()) {
2657     if (maCount) {
2658       unsigned bestMAIndex = 0;
2659       int bestWeight = -1;
2660       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2661       int weight = -1;
2662       unsigned maIndex;
2663       // Compute the sums of the weights for each alternative, keeping track
2664       // of the best (highest weight) one so far.
2665       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2666         int weightSum = 0;
2667         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2668             cIndex != eIndex; ++cIndex) {
2669           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2670           if (OpInfo.Type == InlineAsm::isClobber)
2671             continue;
2672 
2673           // If this is an output operand with a matching input operand,
2674           // look up the matching input. If their types mismatch, e.g. one
2675           // is an integer, the other is floating point, or their sizes are
2676           // different, flag it as an maCantMatch.
2677           if (OpInfo.hasMatchingInput()) {
2678             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2679             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2680               if ((OpInfo.ConstraintVT.isInteger() !=
2681                    Input.ConstraintVT.isInteger()) ||
2682                   (OpInfo.ConstraintVT.getSizeInBits() !=
2683                    Input.ConstraintVT.getSizeInBits())) {
2684                 weightSum = -1;  // Can't match.
2685                 break;
2686               }
2687             }
2688           }
2689           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2690           if (weight == -1) {
2691             weightSum = -1;
2692             break;
2693           }
2694           weightSum += weight;
2695         }
2696         // Update best.
2697         if (weightSum > bestWeight) {
2698           bestWeight = weightSum;
2699           bestMAIndex = maIndex;
2700         }
2701       }
2702 
2703       // Now select chosen alternative in each constraint.
2704       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2705           cIndex != eIndex; ++cIndex) {
2706         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2707         if (cInfo.Type == InlineAsm::isClobber)
2708           continue;
2709         cInfo.selectAlternative(bestMAIndex);
2710       }
2711     }
2712   }
2713 
2714   // Check and hook up tied operands, choose constraint code to use.
2715   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2716       cIndex != eIndex; ++cIndex) {
2717     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2718 
2719     // If this is an output operand with a matching input operand, look up the
2720     // matching input. If their types mismatch, e.g. one is an integer, the
2721     // other is floating point, or their sizes are different, flag it as an
2722     // error.
2723     if (OpInfo.hasMatchingInput()) {
2724       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2725 
2726       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2727         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2728             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2729                                          OpInfo.ConstraintVT);
2730         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2731             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2732                                          Input.ConstraintVT);
2733         if ((OpInfo.ConstraintVT.isInteger() !=
2734              Input.ConstraintVT.isInteger()) ||
2735             (MatchRC.second != InputRC.second)) {
2736           report_fatal_error("Unsupported asm: input constraint"
2737                              " with a matching output constraint of"
2738                              " incompatible type!");
2739         }
2740       }
2741     }
2742   }
2743 
2744   return ConstraintOperands;
2745 }
2746 
2747 /// Return an integer indicating how general CT is.
2748 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2749   switch (CT) {
2750   case TargetLowering::C_Other:
2751   case TargetLowering::C_Unknown:
2752     return 0;
2753   case TargetLowering::C_Register:
2754     return 1;
2755   case TargetLowering::C_RegisterClass:
2756     return 2;
2757   case TargetLowering::C_Memory:
2758     return 3;
2759   }
2760   llvm_unreachable("Invalid constraint type");
2761 }
2762 
2763 /// Examine constraint type and operand type and determine a weight value.
2764 /// This object must already have been set up with the operand type
2765 /// and the current alternative constraint selected.
2766 TargetLowering::ConstraintWeight
2767   TargetLowering::getMultipleConstraintMatchWeight(
2768     AsmOperandInfo &info, int maIndex) const {
2769   InlineAsm::ConstraintCodeVector *rCodes;
2770   if (maIndex >= (int)info.multipleAlternatives.size())
2771     rCodes = &info.Codes;
2772   else
2773     rCodes = &info.multipleAlternatives[maIndex].Codes;
2774   ConstraintWeight BestWeight = CW_Invalid;
2775 
2776   // Loop over the options, keeping track of the most general one.
2777   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2778     ConstraintWeight weight =
2779       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2780     if (weight > BestWeight)
2781       BestWeight = weight;
2782   }
2783 
2784   return BestWeight;
2785 }
2786 
2787 /// Examine constraint type and operand type and determine a weight value.
2788 /// This object must already have been set up with the operand type
2789 /// and the current alternative constraint selected.
2790 TargetLowering::ConstraintWeight
2791   TargetLowering::getSingleConstraintMatchWeight(
2792     AsmOperandInfo &info, const char *constraint) const {
2793   ConstraintWeight weight = CW_Invalid;
2794   Value *CallOperandVal = info.CallOperandVal;
2795     // If we don't have a value, we can't do a match,
2796     // but allow it at the lowest weight.
2797   if (!CallOperandVal)
2798     return CW_Default;
2799   // Look at the constraint type.
2800   switch (*constraint) {
2801     case 'i': // immediate integer.
2802     case 'n': // immediate integer with a known value.
2803       if (isa<ConstantInt>(CallOperandVal))
2804         weight = CW_Constant;
2805       break;
2806     case 's': // non-explicit intregal immediate.
2807       if (isa<GlobalValue>(CallOperandVal))
2808         weight = CW_Constant;
2809       break;
2810     case 'E': // immediate float if host format.
2811     case 'F': // immediate float.
2812       if (isa<ConstantFP>(CallOperandVal))
2813         weight = CW_Constant;
2814       break;
2815     case '<': // memory operand with autodecrement.
2816     case '>': // memory operand with autoincrement.
2817     case 'm': // memory operand.
2818     case 'o': // offsettable memory operand
2819     case 'V': // non-offsettable memory operand
2820       weight = CW_Memory;
2821       break;
2822     case 'r': // general register.
2823     case 'g': // general register, memory operand or immediate integer.
2824               // note: Clang converts "g" to "imr".
2825       if (CallOperandVal->getType()->isIntegerTy())
2826         weight = CW_Register;
2827       break;
2828     case 'X': // any operand.
2829     default:
2830       weight = CW_Default;
2831       break;
2832   }
2833   return weight;
2834 }
2835 
2836 /// If there are multiple different constraints that we could pick for this
2837 /// operand (e.g. "imr") try to pick the 'best' one.
2838 /// This is somewhat tricky: constraints fall into four classes:
2839 ///    Other         -> immediates and magic values
2840 ///    Register      -> one specific register
2841 ///    RegisterClass -> a group of regs
2842 ///    Memory        -> memory
2843 /// Ideally, we would pick the most specific constraint possible: if we have
2844 /// something that fits into a register, we would pick it.  The problem here
2845 /// is that if we have something that could either be in a register or in
2846 /// memory that use of the register could cause selection of *other*
2847 /// operands to fail: they might only succeed if we pick memory.  Because of
2848 /// this the heuristic we use is:
2849 ///
2850 ///  1) If there is an 'other' constraint, and if the operand is valid for
2851 ///     that constraint, use it.  This makes us take advantage of 'i'
2852 ///     constraints when available.
2853 ///  2) Otherwise, pick the most general constraint present.  This prefers
2854 ///     'm' over 'r', for example.
2855 ///
2856 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2857                              const TargetLowering &TLI,
2858                              SDValue Op, SelectionDAG *DAG) {
2859   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2860   unsigned BestIdx = 0;
2861   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2862   int BestGenerality = -1;
2863 
2864   // Loop over the options, keeping track of the most general one.
2865   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2866     TargetLowering::ConstraintType CType =
2867       TLI.getConstraintType(OpInfo.Codes[i]);
2868 
2869     // If this is an 'other' constraint, see if the operand is valid for it.
2870     // For example, on X86 we might have an 'rI' constraint.  If the operand
2871     // is an integer in the range [0..31] we want to use I (saving a load
2872     // of a register), otherwise we must use 'r'.
2873     if (CType == TargetLowering::C_Other && Op.getNode()) {
2874       assert(OpInfo.Codes[i].size() == 1 &&
2875              "Unhandled multi-letter 'other' constraint");
2876       std::vector<SDValue> ResultOps;
2877       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2878                                        ResultOps, *DAG);
2879       if (!ResultOps.empty()) {
2880         BestType = CType;
2881         BestIdx = i;
2882         break;
2883       }
2884     }
2885 
2886     // Things with matching constraints can only be registers, per gcc
2887     // documentation.  This mainly affects "g" constraints.
2888     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2889       continue;
2890 
2891     // This constraint letter is more general than the previous one, use it.
2892     int Generality = getConstraintGenerality(CType);
2893     if (Generality > BestGenerality) {
2894       BestType = CType;
2895       BestIdx = i;
2896       BestGenerality = Generality;
2897     }
2898   }
2899 
2900   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2901   OpInfo.ConstraintType = BestType;
2902 }
2903 
2904 /// Determines the constraint code and constraint type to use for the specific
2905 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2906 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2907                                             SDValue Op,
2908                                             SelectionDAG *DAG) const {
2909   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2910 
2911   // Single-letter constraints ('r') are very common.
2912   if (OpInfo.Codes.size() == 1) {
2913     OpInfo.ConstraintCode = OpInfo.Codes[0];
2914     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2915   } else {
2916     ChooseConstraint(OpInfo, *this, Op, DAG);
2917   }
2918 
2919   // 'X' matches anything.
2920   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2921     // Labels and constants are handled elsewhere ('X' is the only thing
2922     // that matches labels).  For Functions, the type here is the type of
2923     // the result, which is not what we want to look at; leave them alone.
2924     Value *v = OpInfo.CallOperandVal;
2925     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2926       OpInfo.CallOperandVal = v;
2927       return;
2928     }
2929 
2930     // Otherwise, try to resolve it to something we know about by looking at
2931     // the actual operand type.
2932     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2933       OpInfo.ConstraintCode = Repl;
2934       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2935     }
2936   }
2937 }
2938 
2939 /// \brief Given an exact SDIV by a constant, create a multiplication
2940 /// with the multiplicative inverse of the constant.
2941 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2942                               const SDLoc &dl, SelectionDAG &DAG,
2943                               std::vector<SDNode *> &Created) {
2944   assert(d != 0 && "Division by zero!");
2945 
2946   // Shift the value upfront if it is even, so the LSB is one.
2947   unsigned ShAmt = d.countTrailingZeros();
2948   if (ShAmt) {
2949     // TODO: For UDIV use SRL instead of SRA.
2950     SDValue Amt =
2951         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2952                                                         DAG.getDataLayout()));
2953     SDNodeFlags Flags;
2954     Flags.setExact(true);
2955     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags);
2956     Created.push_back(Op1.getNode());
2957     d.ashrInPlace(ShAmt);
2958   }
2959 
2960   // Calculate the multiplicative inverse, using Newton's method.
2961   APInt t, xn = d;
2962   while ((t = d*xn) != 1)
2963     xn *= APInt(d.getBitWidth(), 2) - t;
2964 
2965   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2966   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2967   Created.push_back(Mul.getNode());
2968   return Mul;
2969 }
2970 
2971 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2972                                       SelectionDAG &DAG,
2973                                       std::vector<SDNode *> *Created) const {
2974   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
2975   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2976   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2977     return SDValue(N,0); // Lower SDIV as SDIV
2978   return SDValue();
2979 }
2980 
2981 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2982 /// return a DAG expression to select that will generate the same value by
2983 /// multiplying by a magic number.
2984 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2985 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2986                                   SelectionDAG &DAG, bool IsAfterLegalization,
2987                                   std::vector<SDNode *> *Created) const {
2988   assert(Created && "No vector to hold sdiv ops.");
2989 
2990   EVT VT = N->getValueType(0);
2991   SDLoc dl(N);
2992 
2993   // Check to see if we can do this.
2994   // FIXME: We should be more aggressive here.
2995   if (!isTypeLegal(VT))
2996     return SDValue();
2997 
2998   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2999   if (N->getFlags().hasExact())
3000     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
3001 
3002   APInt::ms magics = Divisor.magic();
3003 
3004   // Multiply the numerator (operand 0) by the magic value
3005   // FIXME: We should support doing a MUL in a wider type
3006   SDValue Q;
3007   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3008                             isOperationLegalOrCustom(ISD::MULHS, VT))
3009     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3010                     DAG.getConstant(magics.m, dl, VT));
3011   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3012                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3013     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3014                               N->getOperand(0),
3015                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3016   else
3017     return SDValue();       // No mulhs or equvialent
3018   // If d > 0 and m < 0, add the numerator
3019   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3020     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3021     Created->push_back(Q.getNode());
3022   }
3023   // If d < 0 and m > 0, subtract the numerator.
3024   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3025     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3026     Created->push_back(Q.getNode());
3027   }
3028   auto &DL = DAG.getDataLayout();
3029   // Shift right algebraic if shift value is nonzero
3030   if (magics.s > 0) {
3031     Q = DAG.getNode(
3032         ISD::SRA, dl, VT, Q,
3033         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3034     Created->push_back(Q.getNode());
3035   }
3036   // Extract the sign bit and add it to the quotient
3037   SDValue T =
3038       DAG.getNode(ISD::SRL, dl, VT, Q,
3039                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3040                                   getShiftAmountTy(Q.getValueType(), DL)));
3041   Created->push_back(T.getNode());
3042   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3043 }
3044 
3045 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3046 /// return a DAG expression to select that will generate the same value by
3047 /// multiplying by a magic number.
3048 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3049 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3050                                   SelectionDAG &DAG, bool IsAfterLegalization,
3051                                   std::vector<SDNode *> *Created) const {
3052   assert(Created && "No vector to hold udiv ops.");
3053 
3054   EVT VT = N->getValueType(0);
3055   SDLoc dl(N);
3056   auto &DL = DAG.getDataLayout();
3057 
3058   // Check to see if we can do this.
3059   // FIXME: We should be more aggressive here.
3060   if (!isTypeLegal(VT))
3061     return SDValue();
3062 
3063   // FIXME: We should use a narrower constant when the upper
3064   // bits are known to be zero.
3065   APInt::mu magics = Divisor.magicu();
3066 
3067   SDValue Q = N->getOperand(0);
3068 
3069   // If the divisor is even, we can avoid using the expensive fixup by shifting
3070   // the divided value upfront.
3071   if (magics.a != 0 && !Divisor[0]) {
3072     unsigned Shift = Divisor.countTrailingZeros();
3073     Q = DAG.getNode(
3074         ISD::SRL, dl, VT, Q,
3075         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3076     Created->push_back(Q.getNode());
3077 
3078     // Get magic number for the shifted divisor.
3079     magics = Divisor.lshr(Shift).magicu(Shift);
3080     assert(magics.a == 0 && "Should use cheap fixup now");
3081   }
3082 
3083   // Multiply the numerator (operand 0) by the magic value
3084   // FIXME: We should support doing a MUL in a wider type
3085   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3086                             isOperationLegalOrCustom(ISD::MULHU, VT))
3087     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3088   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3089                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3090     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3091                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3092   else
3093     return SDValue();       // No mulhu or equivalent
3094 
3095   Created->push_back(Q.getNode());
3096 
3097   if (magics.a == 0) {
3098     assert(magics.s < Divisor.getBitWidth() &&
3099            "We shouldn't generate an undefined shift!");
3100     return DAG.getNode(
3101         ISD::SRL, dl, VT, Q,
3102         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3103   } else {
3104     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3105     Created->push_back(NPQ.getNode());
3106     NPQ = DAG.getNode(
3107         ISD::SRL, dl, VT, NPQ,
3108         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3109     Created->push_back(NPQ.getNode());
3110     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3111     Created->push_back(NPQ.getNode());
3112     return DAG.getNode(
3113         ISD::SRL, dl, VT, NPQ,
3114         DAG.getConstant(magics.s - 1, dl,
3115                         getShiftAmountTy(NPQ.getValueType(), DL)));
3116   }
3117 }
3118 
3119 bool TargetLowering::
3120 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3121   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3122     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3123                                 "be a constant integer");
3124     return true;
3125   }
3126 
3127   return false;
3128 }
3129 
3130 //===----------------------------------------------------------------------===//
3131 // Legalization Utilities
3132 //===----------------------------------------------------------------------===//
3133 
3134 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3135                                     SDValue LHS, SDValue RHS,
3136                                     SmallVectorImpl<SDValue> &Result,
3137                                     EVT HiLoVT, SelectionDAG &DAG,
3138                                     MulExpansionKind Kind, SDValue LL,
3139                                     SDValue LH, SDValue RL, SDValue RH) const {
3140   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3141          Opcode == ISD::SMUL_LOHI);
3142 
3143   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3144                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3145   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3146                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3147   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3148                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3149   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3150                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3151 
3152   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3153     return false;
3154 
3155   unsigned OuterBitSize = VT.getScalarSizeInBits();
3156   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3157   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3158   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3159 
3160   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3161   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3162          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3163 
3164   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3165   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3166                           bool Signed) -> bool {
3167     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3168       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3169       Hi = SDValue(Lo.getNode(), 1);
3170       return true;
3171     }
3172     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3173       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3174       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3175       return true;
3176     }
3177     return false;
3178   };
3179 
3180   SDValue Lo, Hi;
3181 
3182   if (!LL.getNode() && !RL.getNode() &&
3183       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3184     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3185     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3186   }
3187 
3188   if (!LL.getNode())
3189     return false;
3190 
3191   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3192   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3193       DAG.MaskedValueIsZero(RHS, HighMask)) {
3194     // The inputs are both zero-extended.
3195     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3196       Result.push_back(Lo);
3197       Result.push_back(Hi);
3198       if (Opcode != ISD::MUL) {
3199         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3200         Result.push_back(Zero);
3201         Result.push_back(Zero);
3202       }
3203       return true;
3204     }
3205   }
3206 
3207   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3208       RHSSB > InnerBitSize) {
3209     // The input values are both sign-extended.
3210     // TODO non-MUL case?
3211     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3212       Result.push_back(Lo);
3213       Result.push_back(Hi);
3214       return true;
3215     }
3216   }
3217 
3218   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3219   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3220   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3221     // FIXME getShiftAmountTy does not always return a sensible result when VT
3222     // is an illegal type, and so the type may be too small to fit the shift
3223     // amount. Override it with i32. The shift will have to be legalized.
3224     ShiftAmountTy = MVT::i32;
3225   }
3226   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3227 
3228   if (!LH.getNode() && !RH.getNode() &&
3229       isOperationLegalOrCustom(ISD::SRL, VT) &&
3230       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3231     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3232     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3233     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3234     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3235   }
3236 
3237   if (!LH.getNode())
3238     return false;
3239 
3240   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3241     return false;
3242 
3243   Result.push_back(Lo);
3244 
3245   if (Opcode == ISD::MUL) {
3246     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3247     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3248     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3249     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3250     Result.push_back(Hi);
3251     return true;
3252   }
3253 
3254   // Compute the full width result.
3255   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3256     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3257     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3258     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3259     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3260   };
3261 
3262   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3263   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3264     return false;
3265 
3266   // This is effectively the add part of a multiply-add of half-sized operands,
3267   // so it cannot overflow.
3268   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3269 
3270   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3271     return false;
3272 
3273   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3274                      Merge(Lo, Hi));
3275 
3276   SDValue Carry = Next.getValue(1);
3277   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3278   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3279 
3280   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3281     return false;
3282 
3283   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3284   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3285                    Carry);
3286   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3287 
3288   if (Opcode == ISD::SMUL_LOHI) {
3289     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3290                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3291     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3292 
3293     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3294                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3295     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3296   }
3297 
3298   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3299   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3300   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3301   return true;
3302 }
3303 
3304 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3305                                SelectionDAG &DAG, MulExpansionKind Kind,
3306                                SDValue LL, SDValue LH, SDValue RL,
3307                                SDValue RH) const {
3308   SmallVector<SDValue, 2> Result;
3309   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3310                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3311                            DAG, Kind, LL, LH, RL, RH);
3312   if (Ok) {
3313     assert(Result.size() == 2);
3314     Lo = Result[0];
3315     Hi = Result[1];
3316   }
3317   return Ok;
3318 }
3319 
3320 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3321                                SelectionDAG &DAG) const {
3322   EVT VT = Node->getOperand(0).getValueType();
3323   EVT NVT = Node->getValueType(0);
3324   SDLoc dl(SDValue(Node, 0));
3325 
3326   // FIXME: Only f32 to i64 conversions are supported.
3327   if (VT != MVT::f32 || NVT != MVT::i64)
3328     return false;
3329 
3330   // Expand f32 -> i64 conversion
3331   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3332   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3333   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3334                                 VT.getSizeInBits());
3335   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3336   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3337   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3338   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
3339                                      IntVT);
3340   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3341   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3342 
3343   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3344 
3345   auto &DL = DAG.getDataLayout();
3346   SDValue ExponentBits = DAG.getNode(
3347       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3348       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3349   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3350 
3351   SDValue Sign = DAG.getNode(
3352       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3353       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3354   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3355 
3356   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3357       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3358       DAG.getConstant(0x00800000, dl, IntVT));
3359 
3360   R = DAG.getZExtOrTrunc(R, dl, NVT);
3361 
3362   R = DAG.getSelectCC(
3363       dl, Exponent, ExponentLoBit,
3364       DAG.getNode(ISD::SHL, dl, NVT, R,
3365                   DAG.getZExtOrTrunc(
3366                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3367                       dl, getShiftAmountTy(IntVT, DL))),
3368       DAG.getNode(ISD::SRL, dl, NVT, R,
3369                   DAG.getZExtOrTrunc(
3370                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3371                       dl, getShiftAmountTy(IntVT, DL))),
3372       ISD::SETGT);
3373 
3374   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3375       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3376       Sign);
3377 
3378   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3379       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3380   return true;
3381 }
3382 
3383 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3384                                             SelectionDAG &DAG) const {
3385   SDLoc SL(LD);
3386   SDValue Chain = LD->getChain();
3387   SDValue BasePTR = LD->getBasePtr();
3388   EVT SrcVT = LD->getMemoryVT();
3389   ISD::LoadExtType ExtType = LD->getExtensionType();
3390 
3391   unsigned NumElem = SrcVT.getVectorNumElements();
3392 
3393   EVT SrcEltVT = SrcVT.getScalarType();
3394   EVT DstEltVT = LD->getValueType(0).getScalarType();
3395 
3396   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3397   assert(SrcEltVT.isByteSized());
3398 
3399   EVT PtrVT = BasePTR.getValueType();
3400 
3401   SmallVector<SDValue, 8> Vals;
3402   SmallVector<SDValue, 8> LoadChains;
3403 
3404   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3405     SDValue ScalarLoad =
3406         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3407                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3408                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3409                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3410 
3411     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3412                           DAG.getConstant(Stride, SL, PtrVT));
3413 
3414     Vals.push_back(ScalarLoad.getValue(0));
3415     LoadChains.push_back(ScalarLoad.getValue(1));
3416   }
3417 
3418   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3419   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3420 
3421   return DAG.getMergeValues({ Value, NewChain }, SL);
3422 }
3423 
3424 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3425                                              SelectionDAG &DAG) const {
3426   SDLoc SL(ST);
3427 
3428   SDValue Chain = ST->getChain();
3429   SDValue BasePtr = ST->getBasePtr();
3430   SDValue Value = ST->getValue();
3431   EVT StVT = ST->getMemoryVT();
3432 
3433   // The type of the data we want to save
3434   EVT RegVT = Value.getValueType();
3435   EVT RegSclVT = RegVT.getScalarType();
3436 
3437   // The type of data as saved in memory.
3438   EVT MemSclVT = StVT.getScalarType();
3439 
3440   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3441   unsigned NumElem = StVT.getVectorNumElements();
3442 
3443   // A vector must always be stored in memory as-is, i.e. without any padding
3444   // between the elements, since various code depend on it, e.g. in the
3445   // handling of a bitcast of a vector type to int, which may be done with a
3446   // vector store followed by an integer load. A vector that does not have
3447   // elements that are byte-sized must therefore be stored as an integer
3448   // built out of the extracted vector elements.
3449   if (!MemSclVT.isByteSized()) {
3450     unsigned NumBits = StVT.getSizeInBits();
3451     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
3452 
3453     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
3454 
3455     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3456       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3457                                 DAG.getConstant(Idx, SL, IdxVT));
3458       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
3459       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
3460       SDValue ShiftAmount =
3461         DAG.getConstant(Idx * MemSclVT.getSizeInBits(), SL, IntVT);
3462       SDValue ShiftedElt = DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
3463       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
3464     }
3465 
3466     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
3467                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
3468                         ST->getAAInfo());
3469   }
3470 
3471   // Store Stride in bytes
3472   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3473   assert (Stride && "Zero stride!");
3474   // Extract each of the elements from the original vector and save them into
3475   // memory individually.
3476   SmallVector<SDValue, 8> Stores;
3477   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3478     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3479                               DAG.getConstant(Idx, SL, IdxVT));
3480 
3481     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
3482 
3483     // This scalar TruncStore may be illegal, but we legalize it later.
3484     SDValue Store = DAG.getTruncStore(
3485         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3486         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3487         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3488 
3489     Stores.push_back(Store);
3490   }
3491 
3492   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3493 }
3494 
3495 std::pair<SDValue, SDValue>
3496 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3497   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3498          "unaligned indexed loads not implemented!");
3499   SDValue Chain = LD->getChain();
3500   SDValue Ptr = LD->getBasePtr();
3501   EVT VT = LD->getValueType(0);
3502   EVT LoadedVT = LD->getMemoryVT();
3503   SDLoc dl(LD);
3504   auto &MF = DAG.getMachineFunction();
3505 
3506   if (VT.isFloatingPoint() || VT.isVector()) {
3507     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3508     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3509       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3510         // Scalarize the load and let the individual components be handled.
3511         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3512         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3513       }
3514 
3515       // Expand to a (misaligned) integer load of the same size,
3516       // then bitconvert to floating point or vector.
3517       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3518                                     LD->getMemOperand());
3519       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3520       if (LoadedVT != VT)
3521         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3522                              ISD::ANY_EXTEND, dl, VT, Result);
3523 
3524       return std::make_pair(Result, newLoad.getValue(1));
3525     }
3526 
3527     // Copy the value to a (aligned) stack slot using (unaligned) integer
3528     // loads and stores, then do a (aligned) load from the stack slot.
3529     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3530     unsigned LoadedBytes = LoadedVT.getStoreSize();
3531     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3532     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3533 
3534     // Make sure the stack slot is also aligned for the register type.
3535     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3536     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
3537     SmallVector<SDValue, 8> Stores;
3538     SDValue StackPtr = StackBase;
3539     unsigned Offset = 0;
3540 
3541     EVT PtrVT = Ptr.getValueType();
3542     EVT StackPtrVT = StackPtr.getValueType();
3543 
3544     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3545     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3546 
3547     // Do all but one copies using the full register width.
3548     for (unsigned i = 1; i < NumRegs; i++) {
3549       // Load one integer register's worth from the original location.
3550       SDValue Load = DAG.getLoad(
3551           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3552           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3553           LD->getAAInfo());
3554       // Follow the load with a store to the stack slot.  Remember the store.
3555       Stores.push_back(DAG.getStore(
3556           Load.getValue(1), dl, Load, StackPtr,
3557           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
3558       // Increment the pointers.
3559       Offset += RegBytes;
3560 
3561       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
3562       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
3563     }
3564 
3565     // The last copy may be partial.  Do an extending load.
3566     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3567                                   8 * (LoadedBytes - Offset));
3568     SDValue Load =
3569         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3570                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3571                        MinAlign(LD->getAlignment(), Offset),
3572                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3573     // Follow the load with a store to the stack slot.  Remember the store.
3574     // On big-endian machines this requires a truncating store to ensure
3575     // that the bits end up in the right place.
3576     Stores.push_back(DAG.getTruncStore(
3577         Load.getValue(1), dl, Load, StackPtr,
3578         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
3579 
3580     // The order of the stores doesn't matter - say it with a TokenFactor.
3581     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3582 
3583     // Finally, perform the original load only redirected to the stack slot.
3584     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3585                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
3586                           LoadedVT);
3587 
3588     // Callers expect a MERGE_VALUES node.
3589     return std::make_pair(Load, TF);
3590   }
3591 
3592   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3593          "Unaligned load of unsupported type.");
3594 
3595   // Compute the new VT that is half the size of the old one.  This is an
3596   // integer MVT.
3597   unsigned NumBits = LoadedVT.getSizeInBits();
3598   EVT NewLoadedVT;
3599   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3600   NumBits >>= 1;
3601 
3602   unsigned Alignment = LD->getAlignment();
3603   unsigned IncrementSize = NumBits / 8;
3604   ISD::LoadExtType HiExtType = LD->getExtensionType();
3605 
3606   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3607   if (HiExtType == ISD::NON_EXTLOAD)
3608     HiExtType = ISD::ZEXTLOAD;
3609 
3610   // Load the value in two parts
3611   SDValue Lo, Hi;
3612   if (DAG.getDataLayout().isLittleEndian()) {
3613     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3614                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3615                         LD->getAAInfo());
3616 
3617     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
3618     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3619                         LD->getPointerInfo().getWithOffset(IncrementSize),
3620                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3621                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3622   } else {
3623     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3624                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3625                         LD->getAAInfo());
3626 
3627     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
3628     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3629                         LD->getPointerInfo().getWithOffset(IncrementSize),
3630                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3631                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3632   }
3633 
3634   // aggregate the two parts
3635   SDValue ShiftAmount =
3636       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3637                                                     DAG.getDataLayout()));
3638   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3639   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3640 
3641   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3642                              Hi.getValue(1));
3643 
3644   return std::make_pair(Result, TF);
3645 }
3646 
3647 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3648                                              SelectionDAG &DAG) const {
3649   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3650          "unaligned indexed stores not implemented!");
3651   SDValue Chain = ST->getChain();
3652   SDValue Ptr = ST->getBasePtr();
3653   SDValue Val = ST->getValue();
3654   EVT VT = Val.getValueType();
3655   int Alignment = ST->getAlignment();
3656   auto &MF = DAG.getMachineFunction();
3657 
3658   SDLoc dl(ST);
3659   if (ST->getMemoryVT().isFloatingPoint() ||
3660       ST->getMemoryVT().isVector()) {
3661     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3662     if (isTypeLegal(intVT)) {
3663       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3664         // Scalarize the store and let the individual components be handled.
3665         SDValue Result = scalarizeVectorStore(ST, DAG);
3666 
3667         return Result;
3668       }
3669       // Expand to a bitconvert of the value to the integer type of the
3670       // same size, then a (misaligned) int store.
3671       // FIXME: Does not handle truncating floating point stores!
3672       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3673       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3674                             Alignment, ST->getMemOperand()->getFlags());
3675       return Result;
3676     }
3677     // Do a (aligned) store to a stack slot, then copy from the stack slot
3678     // to the final destination using (unaligned) integer loads and stores.
3679     EVT StoredVT = ST->getMemoryVT();
3680     MVT RegVT =
3681       getRegisterType(*DAG.getContext(),
3682                       EVT::getIntegerVT(*DAG.getContext(),
3683                                         StoredVT.getSizeInBits()));
3684     EVT PtrVT = Ptr.getValueType();
3685     unsigned StoredBytes = StoredVT.getStoreSize();
3686     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3687     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3688 
3689     // Make sure the stack slot is also aligned for the register type.
3690     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3691     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
3692 
3693     // Perform the original store, only redirected to the stack slot.
3694     SDValue Store = DAG.getTruncStore(
3695         Chain, dl, Val, StackPtr,
3696         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
3697 
3698     EVT StackPtrVT = StackPtr.getValueType();
3699 
3700     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3701     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3702     SmallVector<SDValue, 8> Stores;
3703     unsigned Offset = 0;
3704 
3705     // Do all but one copies using the full register width.
3706     for (unsigned i = 1; i < NumRegs; i++) {
3707       // Load one integer register's worth from the stack slot.
3708       SDValue Load = DAG.getLoad(
3709           RegVT, dl, Store, StackPtr,
3710           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
3711       // Store it to the final location.  Remember the store.
3712       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3713                                     ST->getPointerInfo().getWithOffset(Offset),
3714                                     MinAlign(ST->getAlignment(), Offset),
3715                                     ST->getMemOperand()->getFlags()));
3716       // Increment the pointers.
3717       Offset += RegBytes;
3718       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
3719       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
3720     }
3721 
3722     // The last store may be partial.  Do a truncating store.  On big-endian
3723     // machines this requires an extending load from the stack slot to ensure
3724     // that the bits are in the right place.
3725     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3726                                   8 * (StoredBytes - Offset));
3727 
3728     // Load from the stack slot.
3729     SDValue Load = DAG.getExtLoad(
3730         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3731         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
3732 
3733     Stores.push_back(
3734         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3735                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3736                           MinAlign(ST->getAlignment(), Offset),
3737                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3738     // The order of the stores doesn't matter - say it with a TokenFactor.
3739     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3740     return Result;
3741   }
3742 
3743   assert(ST->getMemoryVT().isInteger() &&
3744          !ST->getMemoryVT().isVector() &&
3745          "Unaligned store of unknown type.");
3746   // Get the half-size VT
3747   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3748   int NumBits = NewStoredVT.getSizeInBits();
3749   int IncrementSize = NumBits / 8;
3750 
3751   // Divide the stored value in two parts.
3752   SDValue ShiftAmount =
3753       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3754                                                     DAG.getDataLayout()));
3755   SDValue Lo = Val;
3756   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3757 
3758   // Store the two parts
3759   SDValue Store1, Store2;
3760   Store1 = DAG.getTruncStore(Chain, dl,
3761                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3762                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3763                              ST->getMemOperand()->getFlags());
3764 
3765   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
3766   Alignment = MinAlign(Alignment, IncrementSize);
3767   Store2 = DAG.getTruncStore(
3768       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3769       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3770       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3771 
3772   SDValue Result =
3773     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3774   return Result;
3775 }
3776 
3777 SDValue
3778 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
3779                                        const SDLoc &DL, EVT DataVT,
3780                                        SelectionDAG &DAG,
3781                                        bool IsCompressedMemory) const {
3782   SDValue Increment;
3783   EVT AddrVT = Addr.getValueType();
3784   EVT MaskVT = Mask.getValueType();
3785   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
3786          "Incompatible types of Data and Mask");
3787   if (IsCompressedMemory) {
3788     // Incrementing the pointer according to number of '1's in the mask.
3789     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
3790     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
3791     if (MaskIntVT.getSizeInBits() < 32) {
3792       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
3793       MaskIntVT = MVT::i32;
3794     }
3795 
3796     // Count '1's with POPCNT.
3797     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
3798     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
3799     // Scale is an element size in bytes.
3800     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
3801                                     AddrVT);
3802     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
3803   } else
3804     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
3805 
3806   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
3807 }
3808 
3809 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
3810                                        SDValue Idx,
3811                                        EVT VecVT,
3812                                        const SDLoc &dl) {
3813   if (isa<ConstantSDNode>(Idx))
3814     return Idx;
3815 
3816   EVT IdxVT = Idx.getValueType();
3817   unsigned NElts = VecVT.getVectorNumElements();
3818   if (isPowerOf2_32(NElts)) {
3819     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
3820                                      Log2_32(NElts));
3821     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
3822                        DAG.getConstant(Imm, dl, IdxVT));
3823   }
3824 
3825   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
3826                      DAG.getConstant(NElts - 1, dl, IdxVT));
3827 }
3828 
3829 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
3830                                                 SDValue VecPtr, EVT VecVT,
3831                                                 SDValue Index) const {
3832   SDLoc dl(Index);
3833   // Make sure the index type is big enough to compute in.
3834   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
3835 
3836   EVT EltVT = VecVT.getVectorElementType();
3837 
3838   // Calculate the element offset and add it to the pointer.
3839   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
3840   assert(EltSize * 8 == EltVT.getSizeInBits() &&
3841          "Converting bits to bytes lost precision");
3842 
3843   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
3844 
3845   EVT IdxVT = Index.getValueType();
3846 
3847   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
3848                       DAG.getConstant(EltSize, dl, IdxVT));
3849   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
3850 }
3851 
3852 //===----------------------------------------------------------------------===//
3853 // Implementation of Emulated TLS Model
3854 //===----------------------------------------------------------------------===//
3855 
3856 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3857                                                 SelectionDAG &DAG) const {
3858   // Access to address of TLS varialbe xyz is lowered to a function call:
3859   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3860   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3861   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3862   SDLoc dl(GA);
3863 
3864   ArgListTy Args;
3865   ArgListEntry Entry;
3866   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3867   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3868   StringRef EmuTlsVarName(NameString);
3869   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3870   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3871   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3872   Entry.Ty = VoidPtrType;
3873   Args.push_back(Entry);
3874 
3875   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3876 
3877   TargetLowering::CallLoweringInfo CLI(DAG);
3878   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3879   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3880   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3881 
3882   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3883   // At last for X86 targets, maybe good for other targets too?
3884   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3885   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3886   MFI.setHasCalls(true);
3887 
3888   assert((GA->getOffset() == 0) &&
3889          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3890   return CallResult.first;
3891 }
3892 
3893 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3894                                                 SelectionDAG &DAG) const {
3895   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3896   if (!isCtlzFast())
3897     return SDValue();
3898   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3899   SDLoc dl(Op);
3900   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3901     if (C->isNullValue() && CC == ISD::SETEQ) {
3902       EVT VT = Op.getOperand(0).getValueType();
3903       SDValue Zext = Op.getOperand(0);
3904       if (VT.bitsLT(MVT::i32)) {
3905         VT = MVT::i32;
3906         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3907       }
3908       unsigned Log2b = Log2_32(VT.getSizeInBits());
3909       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3910       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3911                                 DAG.getConstant(Log2b, dl, MVT::i32));
3912       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3913     }
3914   }
3915   return SDValue();
3916 }
3917