1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFile.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore noalias because it doesn't affect the call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     unsigned Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
102                                                      unsigned ArgIdx) {
103   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment  = CS->getParamAlignment(ArgIdx);
114 }
115 
116 /// Generate a libcall taking the given operands as arguments and returning a
117 /// result of type RetVT.
118 std::pair<SDValue, SDValue>
119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
120                             ArrayRef<SDValue> Ops, bool isSigned,
121                             const SDLoc &dl, bool doesNotReturn,
122                             bool isReturnValueUsed) const {
123   TargetLowering::ArgListTy Args;
124   Args.reserve(Ops.size());
125 
126   TargetLowering::ArgListEntry Entry;
127   for (SDValue Op : Ops) {
128     Entry.Node = Op;
129     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
130     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
131     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Args.push_back(Entry);
133   }
134 
135   if (LC == RTLIB::UNKNOWN_LIBCALL)
136     report_fatal_error("Unsupported library call operation!");
137   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
138                                          getPointerTy(DAG.getDataLayout()));
139 
140   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
141   TargetLowering::CallLoweringInfo CLI(DAG);
142   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
143   CLI.setDebugLoc(dl)
144       .setChain(DAG.getEntryNode())
145       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
146       .setNoReturn(doesNotReturn)
147       .setDiscardResult(!isReturnValueUsed)
148       .setSExtResult(signExtend)
149       .setZExtResult(!signExtend);
150   return LowerCallTo(CLI);
151 }
152 
153 /// Soften the operands of a comparison. This code is shared among BR_CC,
154 /// SELECT_CC, and SETCC handlers.
155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
156                                          SDValue &NewLHS, SDValue &NewRHS,
157                                          ISD::CondCode &CCCode,
158                                          const SDLoc &dl) const {
159   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
160          && "Unsupported setcc type!");
161 
162   // Expand into one or more soft-fp libcall(s).
163   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
164   bool ShouldInvertCC = false;
165   switch (CCCode) {
166   case ISD::SETEQ:
167   case ISD::SETOEQ:
168     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
169           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
170           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
171     break;
172   case ISD::SETNE:
173   case ISD::SETUNE:
174     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
175           (VT == MVT::f64) ? RTLIB::UNE_F64 :
176           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
177     break;
178   case ISD::SETGE:
179   case ISD::SETOGE:
180     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
181           (VT == MVT::f64) ? RTLIB::OGE_F64 :
182           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
183     break;
184   case ISD::SETLT:
185   case ISD::SETOLT:
186     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187           (VT == MVT::f64) ? RTLIB::OLT_F64 :
188           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
189     break;
190   case ISD::SETLE:
191   case ISD::SETOLE:
192     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
193           (VT == MVT::f64) ? RTLIB::OLE_F64 :
194           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
195     break;
196   case ISD::SETGT:
197   case ISD::SETOGT:
198     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
199           (VT == MVT::f64) ? RTLIB::OGT_F64 :
200           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
201     break;
202   case ISD::SETUO:
203     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
204           (VT == MVT::f64) ? RTLIB::UO_F64 :
205           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
206     break;
207   case ISD::SETO:
208     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
209           (VT == MVT::f64) ? RTLIB::O_F64 :
210           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
211     break;
212   case ISD::SETONE:
213     // SETONE = SETOLT | SETOGT
214     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
215           (VT == MVT::f64) ? RTLIB::OLT_F64 :
216           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
217     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
218           (VT == MVT::f64) ? RTLIB::OGT_F64 :
219           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
220     break;
221   case ISD::SETUEQ:
222     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
223           (VT == MVT::f64) ? RTLIB::UO_F64 :
224           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
225     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
226           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
227           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
228     break;
229   default:
230     // Invert CC for unordered comparisons
231     ShouldInvertCC = true;
232     switch (CCCode) {
233     case ISD::SETULT:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
235             (VT == MVT::f64) ? RTLIB::OGE_F64 :
236             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
237       break;
238     case ISD::SETULE:
239       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
240             (VT == MVT::f64) ? RTLIB::OGT_F64 :
241             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
242       break;
243     case ISD::SETUGT:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
245             (VT == MVT::f64) ? RTLIB::OLE_F64 :
246             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
247       break;
248     case ISD::SETUGE:
249       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
250             (VT == MVT::f64) ? RTLIB::OLT_F64 :
251             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
252       break;
253     default: llvm_unreachable("Do not know how to soften this setcc!");
254     }
255   }
256 
257   // Use the target specific return value for comparions lib calls.
258   EVT RetVT = getCmpLibcallReturnType();
259   SDValue Ops[2] = {NewLHS, NewRHS};
260   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
261                        dl).first;
262   NewRHS = DAG.getConstant(0, dl, RetVT);
263 
264   CCCode = getCmpLibcallCC(LC1);
265   if (ShouldInvertCC)
266     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
267 
268   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
269     SDValue Tmp = DAG.getNode(
270         ISD::SETCC, dl,
271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
272         NewLHS, NewRHS, DAG.getCondCode(CCCode));
273     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
274                          dl).first;
275     NewLHS = DAG.getNode(
276         ISD::SETCC, dl,
277         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
278         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
279     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
280     NewRHS = SDValue();
281   }
282 }
283 
284 /// Return the entry encoding for a jump table in the current function. The
285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
286 unsigned TargetLowering::getJumpTableEncoding() const {
287   // In non-pic modes, just use the address of a block.
288   if (!isPositionIndependent())
289     return MachineJumpTableInfo::EK_BlockAddress;
290 
291   // In PIC mode, if the target supports a GPRel32 directive, use it.
292   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
293     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
294 
295   // Otherwise, use a label difference.
296   return MachineJumpTableInfo::EK_LabelDifference32;
297 }
298 
299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
300                                                  SelectionDAG &DAG) const {
301   // If our PIC model is GP relative, use the global offset table as the base.
302   unsigned JTEncoding = getJumpTableEncoding();
303 
304   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
305       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
306     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
307 
308   return Table;
309 }
310 
311 /// This returns the relocation base for the given PIC jumptable, the same as
312 /// getPICJumpTableRelocBase, but as an MCExpr.
313 const MCExpr *
314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
315                                              unsigned JTI,MCContext &Ctx) const{
316   // The normal PIC reloc base is the label at the start of the jump table.
317   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
318 }
319 
320 bool
321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
322   const TargetMachine &TM = getTargetMachine();
323   const GlobalValue *GV = GA->getGlobal();
324 
325   // If the address is not even local to this DSO we will have to load it from
326   // a got and then add the offset.
327   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
328     return false;
329 
330   // If the code is position independent we will have to add a base register.
331   if (isPositionIndependent())
332     return false;
333 
334   // Otherwise we can do it.
335   return true;
336 }
337 
338 //===----------------------------------------------------------------------===//
339 //  Optimization Methods
340 //===----------------------------------------------------------------------===//
341 
342 /// If the specified instruction has a constant integer operand and there are
343 /// bits set in that constant that are not demanded, then clear those bits and
344 /// return true.
345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
346                                             TargetLoweringOpt &TLO) const {
347   SelectionDAG &DAG = TLO.DAG;
348   SDLoc DL(Op);
349   unsigned Opcode = Op.getOpcode();
350 
351   // Do target-specific constant optimization.
352   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
353     return TLO.New.getNode();
354 
355   // FIXME: ISD::SELECT, ISD::SELECT_CC
356   switch (Opcode) {
357   default:
358     break;
359   case ISD::XOR:
360   case ISD::AND:
361   case ISD::OR: {
362     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
363     if (!Op1C)
364       return false;
365 
366     // If this is a 'not' op, don't touch it because that's a canonical form.
367     const APInt &C = Op1C->getAPIntValue();
368     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
369       return false;
370 
371     if (!C.isSubsetOf(Demanded)) {
372       EVT VT = Op.getValueType();
373       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
374       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
375       return TLO.CombineTo(Op, NewOp);
376     }
377 
378     break;
379   }
380   }
381 
382   return false;
383 }
384 
385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
387 /// generalized for targets with other types of implicit widening casts.
388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
389                                       const APInt &Demanded,
390                                       TargetLoweringOpt &TLO) const {
391   assert(Op.getNumOperands() == 2 &&
392          "ShrinkDemandedOp only supports binary operators!");
393   assert(Op.getNode()->getNumValues() == 1 &&
394          "ShrinkDemandedOp only supports nodes with one result!");
395 
396   SelectionDAG &DAG = TLO.DAG;
397   SDLoc dl(Op);
398 
399   // Early return, as this function cannot handle vector types.
400   if (Op.getValueType().isVector())
401     return false;
402 
403   // Don't do this if the node has another user, which may require the
404   // full value.
405   if (!Op.getNode()->hasOneUse())
406     return false;
407 
408   // Search for the smallest integer type with free casts to and from
409   // Op's type. For expedience, just check power-of-2 integer types.
410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
411   unsigned DemandedSize = Demanded.getActiveBits();
412   unsigned SmallVTBits = DemandedSize;
413   if (!isPowerOf2_32(SmallVTBits))
414     SmallVTBits = NextPowerOf2(SmallVTBits);
415   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
416     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
417     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
418         TLI.isZExtFree(SmallVT, Op.getValueType())) {
419       // We found a type with free casts.
420       SDValue X = DAG.getNode(
421           Op.getOpcode(), dl, SmallVT,
422           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
424       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
425       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
426       return TLO.CombineTo(Op, Z);
427     }
428   }
429   return false;
430 }
431 
432 bool
433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
434                                      const APInt &Demanded,
435                                      DAGCombinerInfo &DCI,
436                                      TargetLoweringOpt &TLO) const {
437   SDValue Op = User->getOperand(OpIdx);
438   KnownBits Known;
439 
440   if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true))
441     return false;
442 
443 
444   // Old will not always be the same as Op.  For example:
445   //
446   // Demanded = 0xffffff
447   // Op = i64 truncate (i32 and x, 0xffffff)
448   // In this case simplify demand bits will want to replace the 'and' node
449   // with the value 'x', which will give us:
450   // Old = i32 and x, 0xffffff
451   // New = x
452   if (TLO.Old.hasOneUse()) {
453     // For the one use case, we just commit the change.
454     DCI.CommitTargetLoweringOpt(TLO);
455     return true;
456   }
457 
458   // If Old has more than one use then it must be Op, because the
459   // AssumeSingleUse flag is not propogated to recursive calls of
460   // SimplifyDemanded bits, so the only node with multiple use that
461   // it will attempt to combine will be Op.
462   assert(TLO.Old == Op);
463 
464   SmallVector <SDValue, 4> NewOps;
465   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
466     if (i == OpIdx) {
467       NewOps.push_back(TLO.New);
468       continue;
469     }
470     NewOps.push_back(User->getOperand(i));
471   }
472   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
473   // Op has less users now, so we may be able to perform additional combines
474   // with it.
475   DCI.AddToWorklist(Op.getNode());
476   // User's operands have been updated, so we may be able to do new combines
477   // with it.
478   DCI.AddToWorklist(User);
479   return true;
480 }
481 
482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
483                                           DAGCombinerInfo &DCI) const {
484 
485   SelectionDAG &DAG = DCI.DAG;
486   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
487                         !DCI.isBeforeLegalizeOps());
488   KnownBits Known;
489 
490   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO);
491   if (Simplified)
492     DCI.CommitTargetLoweringOpt(TLO);
493   return Simplified;
494 }
495 
496 /// Look at Op. At this point, we know that only the DemandedMask bits of the
497 /// result of Op are ever used downstream. If we can use this information to
498 /// simplify Op, create a new simplified DAG node and return true, returning the
499 /// original and new nodes in Old and New. Otherwise, analyze the expression and
500 /// return a mask of Known bits for the expression (used to simplify the
501 /// caller).  The Known bits may only be accurate for those bits in the
502 /// DemandedMask.
503 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
504                                           const APInt &DemandedMask,
505                                           KnownBits &Known,
506                                           TargetLoweringOpt &TLO,
507                                           unsigned Depth,
508                                           bool AssumeSingleUse) const {
509   unsigned BitWidth = DemandedMask.getBitWidth();
510   assert(Op.getScalarValueSizeInBits() == BitWidth &&
511          "Mask size mismatches value type size!");
512   APInt NewMask = DemandedMask;
513   SDLoc dl(Op);
514   auto &DL = TLO.DAG.getDataLayout();
515 
516   // Don't know anything.
517   Known = KnownBits(BitWidth);
518 
519   if (Op.getOpcode() == ISD::Constant) {
520     // We know all of the bits for a constant!
521     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
522     Known.Zero = ~Known.One;
523     return false;
524   }
525 
526   // Other users may use these bits.
527   EVT VT = Op.getValueType();
528   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
529     if (Depth != 0) {
530       // If not at the root, Just compute the Known bits to
531       // simplify things downstream.
532       TLO.DAG.computeKnownBits(Op, Known, Depth);
533       return false;
534     }
535     // If this is the root being simplified, allow it to have multiple uses,
536     // just set the NewMask to all bits.
537     NewMask = APInt::getAllOnesValue(BitWidth);
538   } else if (DemandedMask == 0) {
539     // Not demanding any bits from Op.
540     if (!Op.isUndef())
541       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
542     return false;
543   } else if (Depth == 6) {        // Limit search depth.
544     return false;
545   }
546 
547   KnownBits Known2, KnownOut;
548   switch (Op.getOpcode()) {
549   case ISD::BUILD_VECTOR:
550     // Collect the known bits that are shared by every constant vector element.
551     Known.Zero.setAllBits(); Known.One.setAllBits();
552     for (SDValue SrcOp : Op->ops()) {
553       if (!isa<ConstantSDNode>(SrcOp)) {
554         // We can only handle all constant values - bail out with no known bits.
555         Known = KnownBits(BitWidth);
556         return false;
557       }
558       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
559       Known2.Zero = ~Known2.One;
560 
561       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
562       if (Known2.One.getBitWidth() != BitWidth) {
563         assert(Known2.getBitWidth() > BitWidth &&
564                "Expected BUILD_VECTOR implicit truncation");
565         Known2 = Known2.trunc(BitWidth);
566       }
567 
568       // Known bits are the values that are shared by every element.
569       // TODO: support per-element known bits.
570       Known.One &= Known2.One;
571       Known.Zero &= Known2.Zero;
572     }
573     return false;   // Don't fall through, will infinitely loop.
574   case ISD::AND:
575     // If the RHS is a constant, check to see if the LHS would be zero without
576     // using the bits from the RHS.  Below, we use knowledge about the RHS to
577     // simplify the LHS, here we're using information from the LHS to simplify
578     // the RHS.
579     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) {
580       SDValue Op0 = Op.getOperand(0);
581       KnownBits LHSKnown;
582       // Do not increment Depth here; that can cause an infinite loop.
583       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
584       // If the LHS already has zeros where RHSC does, this 'and' is dead.
585       if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
586         return TLO.CombineTo(Op, Op0);
587 
588       // If any of the set bits in the RHS are known zero on the LHS, shrink
589       // the constant.
590       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO))
591         return true;
592 
593       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
594       // constant, but if this 'and' is only clearing bits that were just set by
595       // the xor, then this 'and' can be eliminated by shrinking the mask of
596       // the xor. For example, for a 32-bit X:
597       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
598       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
599           LHSKnown.One == ~RHSC->getAPIntValue()) {
600         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0),
601                                       Op.getOperand(1));
602         return TLO.CombineTo(Op, Xor);
603       }
604     }
605 
606     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
607       return true;
608     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
609     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask,
610                              Known2, TLO, Depth+1))
611       return true;
612     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
613 
614     // If all of the demanded bits are known one on one side, return the other.
615     // These bits cannot contribute to the result of the 'and'.
616     if (NewMask.isSubsetOf(Known2.Zero | Known.One))
617       return TLO.CombineTo(Op, Op.getOperand(0));
618     if (NewMask.isSubsetOf(Known.Zero | Known2.One))
619       return TLO.CombineTo(Op, Op.getOperand(1));
620     // If all of the demanded bits in the inputs are known zeros, return zero.
621     if (NewMask.isSubsetOf(Known.Zero | Known2.Zero))
622       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
623     // If the RHS is a constant, see if we can simplify it.
624     if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO))
625       return true;
626     // If the operation can be done in a smaller type, do so.
627     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
628       return true;
629 
630     // Output known-1 bits are only known if set in both the LHS & RHS.
631     Known.One &= Known2.One;
632     // Output known-0 are known to be clear if zero in either the LHS | RHS.
633     Known.Zero |= Known2.Zero;
634     break;
635   case ISD::OR:
636     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
637       return true;
638     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
639     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask,
640                              Known2, TLO, Depth+1))
641       return true;
642     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
643 
644     // If all of the demanded bits are known zero on one side, return the other.
645     // These bits cannot contribute to the result of the 'or'.
646     if (NewMask.isSubsetOf(Known2.One | Known.Zero))
647       return TLO.CombineTo(Op, Op.getOperand(0));
648     if (NewMask.isSubsetOf(Known.One | Known2.Zero))
649       return TLO.CombineTo(Op, Op.getOperand(1));
650     // If the RHS is a constant, see if we can simplify it.
651     if (ShrinkDemandedConstant(Op, NewMask, TLO))
652       return true;
653     // If the operation can be done in a smaller type, do so.
654     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
655       return true;
656 
657     // Output known-0 bits are only known if clear in both the LHS & RHS.
658     Known.Zero &= Known2.Zero;
659     // Output known-1 are known to be set if set in either the LHS | RHS.
660     Known.One |= Known2.One;
661     break;
662   case ISD::XOR: {
663     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
664       return true;
665     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
666     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1))
667       return true;
668     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
669 
670     // If all of the demanded bits are known zero on one side, return the other.
671     // These bits cannot contribute to the result of the 'xor'.
672     if (NewMask.isSubsetOf(Known.Zero))
673       return TLO.CombineTo(Op, Op.getOperand(0));
674     if (NewMask.isSubsetOf(Known2.Zero))
675       return TLO.CombineTo(Op, Op.getOperand(1));
676     // If the operation can be done in a smaller type, do so.
677     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
678       return true;
679 
680     // If all of the unknown bits are known to be zero on one side or the other
681     // (but not both) turn this into an *inclusive* or.
682     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
683     if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0)
684       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT,
685                                                Op.getOperand(0),
686                                                Op.getOperand(1)));
687 
688     // Output known-0 bits are known if clear or set in both the LHS & RHS.
689     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
690     // Output known-1 are known to be set if set in only one of the LHS, RHS.
691     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
692 
693     // If all of the demanded bits on one side are known, and all of the set
694     // bits on that side are also known to be set on the other side, turn this
695     // into an AND, as we know the bits will be cleared.
696     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
697     // NB: it is okay if more bits are known than are requested
698     if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side
699       if (Known.One == Known2.One) { // set bits are the same on both sides
700         SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT);
701         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
702                                                  Op.getOperand(0), ANDC));
703       }
704     }
705 
706     // If the RHS is a constant, see if we can change it. Don't alter a -1
707     // constant because that's a 'not' op, and that is better for combining and
708     // codegen.
709     ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1));
710     if (C && !C->isAllOnesValue()) {
711       if (NewMask.isSubsetOf(C->getAPIntValue())) {
712         // We're flipping all demanded bits. Flip the undemanded bits too.
713         SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), VT);
714         return TLO.CombineTo(Op, New);
715       }
716       // If we can't turn this into a 'not', try to shrink the constant.
717       if (ShrinkDemandedConstant(Op, NewMask, TLO))
718         return true;
719     }
720 
721     Known = std::move(KnownOut);
722     break;
723   }
724   case ISD::SELECT:
725     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1))
726       return true;
727     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1))
728       return true;
729     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
730     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
731 
732     // If the operands are constants, see if we can simplify them.
733     if (ShrinkDemandedConstant(Op, NewMask, TLO))
734       return true;
735 
736     // Only known if known in both the LHS and RHS.
737     Known.One &= Known2.One;
738     Known.Zero &= Known2.Zero;
739     break;
740   case ISD::SELECT_CC:
741     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1))
742       return true;
743     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1))
744       return true;
745     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
746     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
747 
748     // If the operands are constants, see if we can simplify them.
749     if (ShrinkDemandedConstant(Op, NewMask, TLO))
750       return true;
751 
752     // Only known if known in both the LHS and RHS.
753     Known.One &= Known2.One;
754     Known.Zero &= Known2.Zero;
755     break;
756   case ISD::SETCC: {
757     SDValue Op0 = Op.getOperand(0);
758     SDValue Op1 = Op.getOperand(1);
759     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
760     // If (1) we only need the sign-bit, (2) the setcc operands are the same
761     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
762     // -1, we may be able to bypass the setcc.
763     if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth &&
764         getBooleanContents(VT) ==
765             BooleanContent::ZeroOrNegativeOneBooleanContent) {
766       // If we're testing X < 0, then this compare isn't needed - just use X!
767       // FIXME: We're limiting to integer types here, but this should also work
768       // if we don't care about FP signed-zero. The use of SETLT with FP means
769       // that we don't care about NaNs.
770       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
771           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
772         return TLO.CombineTo(Op, Op0);
773 
774       // TODO: Should we check for other forms of sign-bit comparisons?
775       // Examples: X <= -1, X >= 0
776     }
777     if (getBooleanContents(Op0.getValueType()) ==
778             TargetLowering::ZeroOrOneBooleanContent &&
779         BitWidth > 1)
780       Known.Zero.setBitsFrom(1);
781     break;
782   }
783   case ISD::SHL:
784     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
785       SDValue InOp = Op.getOperand(0);
786 
787       // If the shift count is an invalid immediate, don't do anything.
788       if (SA->getAPIntValue().uge(BitWidth))
789         break;
790 
791       unsigned ShAmt = SA->getZExtValue();
792 
793       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
794       // single shift.  We can do this if the bottom bits (which are shifted
795       // out) are never demanded.
796       if (InOp.getOpcode() == ISD::SRL) {
797         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
798           if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
799             if (SA2->getAPIntValue().ult(BitWidth)) {
800               unsigned C1 = SA2->getZExtValue();
801               unsigned Opc = ISD::SHL;
802               int Diff = ShAmt-C1;
803               if (Diff < 0) {
804                 Diff = -Diff;
805                 Opc = ISD::SRL;
806               }
807 
808               SDValue NewSA =
809                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
810               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
811                                                        InOp.getOperand(0),
812                                                        NewSA));
813             }
814           }
815         }
816       }
817 
818       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1))
819         return true;
820 
821       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
822       // are not demanded. This will likely allow the anyext to be folded away.
823       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
824         SDValue InnerOp = InOp.getOperand(0);
825         EVT InnerVT = InnerOp.getValueType();
826         unsigned InnerBits = InnerVT.getScalarSizeInBits();
827         if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits &&
828             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
829           EVT ShTy = getShiftAmountTy(InnerVT, DL);
830           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
831             ShTy = InnerVT;
832           SDValue NarrowShl =
833             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
834                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
835           return
836             TLO.CombineTo(Op,
837                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
838         }
839         // Repeat the SHL optimization above in cases where an extension
840         // intervenes: (shl (anyext (shr x, c1)), c2) to
841         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
842         // aren't demanded (as above) and that the shifted upper c1 bits of
843         // x aren't demanded.
844         if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
845             InnerOp.hasOneUse()) {
846           if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) {
847             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
848             if (InnerShAmt < ShAmt &&
849                 InnerShAmt < InnerBits &&
850                 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) &&
851                 NewMask.countTrailingZeros() >= ShAmt) {
852               SDValue NewSA =
853                 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
854                                     Op.getOperand(1).getValueType());
855               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
856                                                InnerOp.getOperand(0));
857               return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
858                                                        NewExt, NewSA));
859             }
860           }
861         }
862       }
863 
864       Known.Zero <<= ShAmt;
865       Known.One  <<= ShAmt;
866       // low bits known zero.
867       Known.Zero.setLowBits(ShAmt);
868     }
869     break;
870   case ISD::SRL:
871     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
872       SDValue InOp = Op.getOperand(0);
873 
874       // If the shift count is an invalid immediate, don't do anything.
875       if (SA->getAPIntValue().uge(BitWidth))
876         break;
877 
878       unsigned ShAmt = SA->getZExtValue();
879       APInt InDemandedMask = (NewMask << ShAmt);
880 
881       // If the shift is exact, then it does demand the low bits (and knows that
882       // they are zero).
883       if (Op->getFlags().hasExact())
884         InDemandedMask.setLowBits(ShAmt);
885 
886       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
887       // single shift.  We can do this if the top bits (which are shifted out)
888       // are never demanded.
889       if (InOp.getOpcode() == ISD::SHL) {
890         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
891           if (ShAmt &&
892               (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
893             if (SA2->getAPIntValue().ult(BitWidth)) {
894               unsigned C1 = SA2->getZExtValue();
895               unsigned Opc = ISD::SRL;
896               int Diff = ShAmt-C1;
897               if (Diff < 0) {
898                 Diff = -Diff;
899                 Opc = ISD::SHL;
900               }
901 
902               SDValue NewSA =
903                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
904               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
905                                                        InOp.getOperand(0),
906                                                        NewSA));
907             }
908           }
909         }
910       }
911 
912       // Compute the new bits that are at the top now.
913       if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1))
914         return true;
915       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
916       Known.Zero.lshrInPlace(ShAmt);
917       Known.One.lshrInPlace(ShAmt);
918 
919       Known.Zero.setHighBits(ShAmt);  // High bits known zero.
920     }
921     break;
922   case ISD::SRA:
923     // If this is an arithmetic shift right and only the low-bit is set, we can
924     // always convert this into a logical shr, even if the shift amount is
925     // variable.  The low bit of the shift cannot be an input sign bit unless
926     // the shift amount is >= the size of the datatype, which is undefined.
927     if (NewMask.isOneValue())
928       return TLO.CombineTo(Op,
929                            TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
930                                            Op.getOperand(1)));
931 
932     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
933       // If the shift count is an invalid immediate, don't do anything.
934       if (SA->getAPIntValue().uge(BitWidth))
935         break;
936 
937       unsigned ShAmt = SA->getZExtValue();
938       APInt InDemandedMask = (NewMask << ShAmt);
939 
940       // If the shift is exact, then it does demand the low bits (and knows that
941       // they are zero).
942       if (Op->getFlags().hasExact())
943         InDemandedMask.setLowBits(ShAmt);
944 
945       // If any of the demanded bits are produced by the sign extension, we also
946       // demand the input sign bit.
947       if (NewMask.countLeadingZeros() < ShAmt)
948         InDemandedMask.setSignBit();
949 
950       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO,
951                                Depth+1))
952         return true;
953       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
954       Known.Zero.lshrInPlace(ShAmt);
955       Known.One.lshrInPlace(ShAmt);
956 
957       // If the input sign bit is known to be zero, or if none of the top bits
958       // are demanded, turn this into an unsigned shift right.
959       if (Known.Zero[BitWidth - ShAmt - 1] ||
960           NewMask.countLeadingZeros() >= ShAmt) {
961         SDNodeFlags Flags;
962         Flags.setExact(Op->getFlags().hasExact());
963         return TLO.CombineTo(Op,
964                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
965                                              Op.getOperand(1), Flags));
966       }
967 
968       int Log2 = NewMask.exactLogBase2();
969       if (Log2 >= 0) {
970         // The bit must come from the sign.
971         SDValue NewSA =
972           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
973                               Op.getOperand(1).getValueType());
974         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
975                                                  Op.getOperand(0), NewSA));
976       }
977 
978       if (Known.One[BitWidth - ShAmt - 1])
979         // New bits are known one.
980         Known.One.setHighBits(ShAmt);
981     }
982     break;
983   case ISD::SIGN_EXTEND_INREG: {
984     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
985     unsigned ExVTBits = ExVT.getScalarSizeInBits();
986 
987     // If we only care about the highest bit, don't bother shifting right.
988     if (NewMask.isSignMask()) {
989       SDValue InOp = Op.getOperand(0);
990       bool AlreadySignExtended =
991         TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1;
992       // However if the input is already sign extended we expect the sign
993       // extension to be dropped altogether later and do not simplify.
994       if (!AlreadySignExtended) {
995         // Compute the correct shift amount type, which must be getShiftAmountTy
996         // for scalar types after legalization.
997         EVT ShiftAmtTy = VT;
998         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
999           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1000 
1001         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
1002                                                ShiftAmtTy);
1003         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, InOp,
1004                                                  ShiftAmt));
1005       }
1006     }
1007 
1008     // If none of the extended bits are demanded, eliminate the sextinreg.
1009     if (NewMask.getActiveBits() <= ExVTBits)
1010       return TLO.CombineTo(Op, Op.getOperand(0));
1011 
1012     APInt InputDemandedBits = NewMask.getLoBits(ExVTBits);
1013 
1014     // Since the sign extended bits are demanded, we know that the sign
1015     // bit is demanded.
1016     InputDemandedBits.setBit(ExVTBits - 1);
1017 
1018     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1019                              Known, TLO, Depth+1))
1020       return true;
1021     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1022 
1023     // If the sign bit of the input is known set or clear, then we know the
1024     // top bits of the result.
1025 
1026     // If the input sign bit is known zero, convert this into a zero extension.
1027     if (Known.Zero[ExVTBits - 1])
1028       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1029                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1030 
1031     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1032     if (Known.One[ExVTBits - 1]) {    // Input sign bit known set
1033       Known.One.setBitsFrom(ExVTBits);
1034       Known.Zero &= Mask;
1035     } else {                       // Input sign bit unknown
1036       Known.Zero &= Mask;
1037       Known.One &= Mask;
1038     }
1039     break;
1040   }
1041   case ISD::BUILD_PAIR: {
1042     EVT HalfVT = Op.getOperand(0).getValueType();
1043     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1044 
1045     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1046     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1047 
1048     KnownBits KnownLo, KnownHi;
1049 
1050     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1051       return true;
1052 
1053     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1054       return true;
1055 
1056     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1057                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1058 
1059     Known.One = KnownLo.One.zext(BitWidth) |
1060                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1061     break;
1062   }
1063   case ISD::ZERO_EXTEND: {
1064     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1065 
1066     // If none of the top bits are demanded, convert this into an any_extend.
1067     if (NewMask.getActiveBits() <= OperandBitWidth)
1068       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1069                                                Op.getOperand(0)));
1070 
1071     APInt InMask = NewMask.trunc(OperandBitWidth);
1072     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1073       return true;
1074     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1075     Known = Known.zext(BitWidth);
1076     Known.Zero.setBitsFrom(OperandBitWidth);
1077     break;
1078   }
1079   case ISD::SIGN_EXTEND: {
1080     unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits();
1081 
1082     // If none of the top bits are demanded, convert this into an any_extend.
1083     if (NewMask.getActiveBits() <= InBits)
1084       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1085                                               Op.getOperand(0)));
1086 
1087     // Since some of the sign extended bits are demanded, we know that the sign
1088     // bit is demanded.
1089     APInt InDemandedBits = NewMask.trunc(InBits);
1090     InDemandedBits.setBit(InBits - 1);
1091 
1092     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO,
1093                              Depth+1))
1094       return true;
1095     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1096     // If the sign bit is known one, the top bits match.
1097     Known = Known.sext(BitWidth);
1098 
1099     // If the sign bit is known zero, convert this to a zero extend.
1100     if (Known.isNonNegative())
1101       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT,
1102                                                Op.getOperand(0)));
1103     break;
1104   }
1105   case ISD::ANY_EXTEND: {
1106     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1107     APInt InMask = NewMask.trunc(OperandBitWidth);
1108     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1109       return true;
1110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1111     Known = Known.zext(BitWidth);
1112     break;
1113   }
1114   case ISD::TRUNCATE: {
1115     // Simplify the input, using demanded bit information, and compute the known
1116     // zero/one bits live out.
1117     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1118     APInt TruncMask = NewMask.zext(OperandBitWidth);
1119     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1))
1120       return true;
1121     Known = Known.trunc(BitWidth);
1122 
1123     // If the input is only used by this truncate, see if we can shrink it based
1124     // on the known demanded bits.
1125     if (Op.getOperand(0).getNode()->hasOneUse()) {
1126       SDValue In = Op.getOperand(0);
1127       switch (In.getOpcode()) {
1128       default: break;
1129       case ISD::SRL:
1130         // Shrink SRL by a constant if none of the high bits shifted in are
1131         // demanded.
1132         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1133           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1134           // undesirable.
1135           break;
1136         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1137         if (!ShAmt)
1138           break;
1139         SDValue Shift = In.getOperand(1);
1140         if (TLO.LegalTypes()) {
1141           uint64_t ShVal = ShAmt->getZExtValue();
1142           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1143         }
1144 
1145         if (ShAmt->getZExtValue() < BitWidth) {
1146           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1147                                                  OperandBitWidth - BitWidth);
1148           HighBits.lshrInPlace(ShAmt->getZExtValue());
1149           HighBits = HighBits.trunc(BitWidth);
1150 
1151           if (!(HighBits & NewMask)) {
1152             // None of the shifted in bits are needed.  Add a truncate of the
1153             // shift input, then shift it.
1154             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, VT,
1155                                                In.getOperand(0));
1156             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc,
1157                                                      Shift));
1158           }
1159         }
1160         break;
1161       }
1162     }
1163 
1164     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1165     break;
1166   }
1167   case ISD::AssertZext: {
1168     // AssertZext demands all of the high bits, plus any of the low bits
1169     // demanded by its users.
1170     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1171     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1172     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1173                              Known, TLO, Depth+1))
1174       return true;
1175     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1176 
1177     Known.Zero |= ~InMask;
1178     break;
1179   }
1180   case ISD::BITCAST:
1181     // If this is an FP->Int bitcast and if the sign bit is the only
1182     // thing demanded, turn this into a FGETSIGN.
1183     if (!TLO.LegalOperations() && !VT.isVector() &&
1184         !Op.getOperand(0).getValueType().isVector() &&
1185         NewMask == APInt::getSignMask(Op.getValueSizeInBits()) &&
1186         Op.getOperand(0).getValueType().isFloatingPoint()) {
1187       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1188       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1189       if ((OpVTLegal || i32Legal) && VT.isSimple() &&
1190            Op.getOperand(0).getValueType() != MVT::f128) {
1191         // Cannot eliminate/lower SHL for f128 yet.
1192         EVT Ty = OpVTLegal ? VT : MVT::i32;
1193         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1194         // place.  We expect the SHL to be eliminated by other optimizations.
1195         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1196         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1197         if (!OpVTLegal && OpVTSizeInBits > 32)
1198           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1199         unsigned ShVal = Op.getValueSizeInBits() - 1;
1200         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1201         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1202       }
1203     }
1204     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1205     // recursive call where Known may be useful to the caller.
1206     if (Depth > 0) {
1207       TLO.DAG.computeKnownBits(Op, Known, Depth);
1208       return false;
1209     }
1210     break;
1211   case ISD::ADD:
1212   case ISD::MUL:
1213   case ISD::SUB: {
1214     // Add, Sub, and Mul don't demand any bits in positions beyond that
1215     // of the highest bit demanded of them.
1216     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1217     unsigned NewMaskLZ = NewMask.countLeadingZeros();
1218     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMaskLZ);
1219     if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) ||
1220         SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) ||
1221         // See if the operation should be performed at a smaller bit width.
1222         ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) {
1223       SDNodeFlags Flags = Op.getNode()->getFlags();
1224       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1225         // Disable the nsw and nuw flags. We can no longer guarantee that we
1226         // won't wrap after simplification.
1227         Flags.setNoSignedWrap(false);
1228         Flags.setNoUnsignedWrap(false);
1229         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1230                                         Flags);
1231         return TLO.CombineTo(Op, NewOp);
1232       }
1233       return true;
1234     }
1235 
1236     // If we have a constant operand, we may be able to turn it into -1 if we
1237     // do not demand the high bits. This can make the constant smaller to
1238     // encode, allow more general folding, or match specialized instruction
1239     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1240     // is probably not useful (and could be detrimental).
1241     ConstantSDNode *C = isConstOrConstSplat(Op1);
1242     APInt HighMask = APInt::getHighBitsSet(NewMask.getBitWidth(), NewMaskLZ);
1243     if (C && !C->isAllOnesValue() && !C->isOne() &&
1244         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1245       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1246       // We can't guarantee that the new math op doesn't wrap, so explicitly
1247       // clear those flags to prevent folding with a potential existing node
1248       // that has those flags set.
1249       SDNodeFlags Flags;
1250       Flags.setNoSignedWrap(false);
1251       Flags.setNoUnsignedWrap(false);
1252       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1253       return TLO.CombineTo(Op, NewOp);
1254     }
1255 
1256     LLVM_FALLTHROUGH;
1257   }
1258   default:
1259     // Just use computeKnownBits to compute output bits.
1260     TLO.DAG.computeKnownBits(Op, Known, Depth);
1261     break;
1262   }
1263 
1264   // If we know the value of all of the demanded bits, return this as a
1265   // constant.
1266   if (NewMask.isSubsetOf(Known.Zero|Known.One)) {
1267     // Avoid folding to a constant if any OpaqueConstant is involved.
1268     const SDNode *N = Op.getNode();
1269     for (SDNodeIterator I = SDNodeIterator::begin(N),
1270          E = SDNodeIterator::end(N); I != E; ++I) {
1271       SDNode *Op = *I;
1272       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1273         if (C->isOpaque())
1274           return false;
1275     }
1276     return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1277   }
1278 
1279   return false;
1280 }
1281 
1282 /// Determine which of the bits specified in Mask are known to be either zero or
1283 /// one and return them in the Known.
1284 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1285                                                    KnownBits &Known,
1286                                                    const APInt &DemandedElts,
1287                                                    const SelectionDAG &DAG,
1288                                                    unsigned Depth) const {
1289   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1290           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1291           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1292           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1293          "Should use MaskedValueIsZero if you don't know whether Op"
1294          " is a target node!");
1295   Known.resetAll();
1296 }
1297 
1298 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1299                                                    KnownBits &Known,
1300                                                    const APInt &DemandedElts,
1301                                                    const SelectionDAG &DAG,
1302                                                    unsigned Depth) const {
1303   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1304 
1305   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1306     // The low bits are known zero if the pointer is aligned.
1307     Known.Zero.setLowBits(Log2_32(Align));
1308   }
1309 }
1310 
1311 /// This method can be implemented by targets that want to expose additional
1312 /// information about sign bits to the DAG Combiner.
1313 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1314                                                          const APInt &,
1315                                                          const SelectionDAG &,
1316                                                          unsigned Depth) const {
1317   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1318           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1319           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1320           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1321          "Should use ComputeNumSignBits if you don't know whether Op"
1322          " is a target node!");
1323   return 1;
1324 }
1325 
1326 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
1327 // work with truncating build vectors and vectors with elements of less than
1328 // 8 bits.
1329 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1330   if (!N)
1331     return false;
1332 
1333   APInt CVal;
1334   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
1335     CVal = CN->getAPIntValue();
1336   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
1337     auto *CN = BV->getConstantSplatNode();
1338     if (!CN)
1339       return false;
1340 
1341     // If this is a truncating build vector, truncate the splat value.
1342     // Otherwise, we may fail to match the expected values below.
1343     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
1344     CVal = CN->getAPIntValue();
1345     if (BVEltWidth < CVal.getBitWidth())
1346       CVal = CVal.trunc(BVEltWidth);
1347   } else {
1348     return false;
1349   }
1350 
1351   switch (getBooleanContents(N->getValueType(0))) {
1352   case UndefinedBooleanContent:
1353     return CVal[0];
1354   case ZeroOrOneBooleanContent:
1355     return CVal.isOneValue();
1356   case ZeroOrNegativeOneBooleanContent:
1357     return CVal.isAllOnesValue();
1358   }
1359 
1360   llvm_unreachable("Invalid boolean contents");
1361 }
1362 
1363 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1364   if (!N)
1365     return false;
1366 
1367   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1368   if (!CN) {
1369     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1370     if (!BV)
1371       return false;
1372 
1373     // Only interested in constant splats, we don't care about undef
1374     // elements in identifying boolean constants and getConstantSplatNode
1375     // returns NULL if all ops are undef;
1376     CN = BV->getConstantSplatNode();
1377     if (!CN)
1378       return false;
1379   }
1380 
1381   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1382     return !CN->getAPIntValue()[0];
1383 
1384   return CN->isNullValue();
1385 }
1386 
1387 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1388                                        bool SExt) const {
1389   if (VT == MVT::i1)
1390     return N->isOne();
1391 
1392   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1393   switch (Cnt) {
1394   case TargetLowering::ZeroOrOneBooleanContent:
1395     // An extended value of 1 is always true, unless its original type is i1,
1396     // in which case it will be sign extended to -1.
1397     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1398   case TargetLowering::UndefinedBooleanContent:
1399   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1400     return N->isAllOnesValue() && SExt;
1401   }
1402   llvm_unreachable("Unexpected enumeration.");
1403 }
1404 
1405 /// This helper function of SimplifySetCC tries to optimize the comparison when
1406 /// either operand of the SetCC node is a bitwise-and instruction.
1407 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1408                                              ISD::CondCode Cond,
1409                                              DAGCombinerInfo &DCI,
1410                                              const SDLoc &DL) const {
1411   // Match these patterns in any of their permutations:
1412   // (X & Y) == Y
1413   // (X & Y) != Y
1414   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1415     std::swap(N0, N1);
1416 
1417   EVT OpVT = N0.getValueType();
1418   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1419       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1420     return SDValue();
1421 
1422   SDValue X, Y;
1423   if (N0.getOperand(0) == N1) {
1424     X = N0.getOperand(1);
1425     Y = N0.getOperand(0);
1426   } else if (N0.getOperand(1) == N1) {
1427     X = N0.getOperand(0);
1428     Y = N0.getOperand(1);
1429   } else {
1430     return SDValue();
1431   }
1432 
1433   SelectionDAG &DAG = DCI.DAG;
1434   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1435   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1436     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1437     // Note that where Y is variable and is known to have at most one bit set
1438     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1439     // equivalent when Y == 0.
1440     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1441     if (DCI.isBeforeLegalizeOps() ||
1442         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1443       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1444   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1445     // If the target supports an 'and-not' or 'and-complement' logic operation,
1446     // try to use that to make a comparison operation more efficient.
1447     // But don't do this transform if the mask is a single bit because there are
1448     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1449     // 'rlwinm' on PPC).
1450 
1451     // Bail out if the compare operand that we want to turn into a zero is
1452     // already a zero (otherwise, infinite loop).
1453     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1454     if (YConst && YConst->isNullValue())
1455       return SDValue();
1456 
1457     // Transform this into: ~X & Y == 0.
1458     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1459     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1460     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1461   }
1462 
1463   return SDValue();
1464 }
1465 
1466 /// Try to simplify a setcc built with the specified operands and cc. If it is
1467 /// unable to simplify it, return a null SDValue.
1468 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1469                                       ISD::CondCode Cond, bool foldBooleans,
1470                                       DAGCombinerInfo &DCI,
1471                                       const SDLoc &dl) const {
1472   SelectionDAG &DAG = DCI.DAG;
1473   EVT OpVT = N0.getValueType();
1474 
1475   // These setcc operations always fold.
1476   switch (Cond) {
1477   default: break;
1478   case ISD::SETFALSE:
1479   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
1480   case ISD::SETTRUE:
1481   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
1482   }
1483 
1484   // Ensure that the constant occurs on the RHS and fold constant comparisons.
1485   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1486   if (isa<ConstantSDNode>(N0.getNode()) &&
1487       (DCI.isBeforeLegalizeOps() ||
1488        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1489     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1490 
1491   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1492     const APInt &C1 = N1C->getAPIntValue();
1493 
1494     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1495     // equality comparison, then we're just comparing whether X itself is
1496     // zero.
1497     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
1498         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1499         N0.getOperand(1).getOpcode() == ISD::Constant) {
1500       const APInt &ShAmt
1501         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1502       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1503           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1504         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1505           // (srl (ctlz x), 5) == 0  -> X != 0
1506           // (srl (ctlz x), 5) != 1  -> X != 0
1507           Cond = ISD::SETNE;
1508         } else {
1509           // (srl (ctlz x), 5) != 0  -> X == 0
1510           // (srl (ctlz x), 5) == 1  -> X == 0
1511           Cond = ISD::SETEQ;
1512         }
1513         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1514         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1515                             Zero, Cond);
1516       }
1517     }
1518 
1519     SDValue CTPOP = N0;
1520     // Look through truncs that don't change the value of a ctpop.
1521     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1522       CTPOP = N0.getOperand(0);
1523 
1524     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1525         (N0 == CTPOP ||
1526          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1527       EVT CTVT = CTPOP.getValueType();
1528       SDValue CTOp = CTPOP.getOperand(0);
1529 
1530       // (ctpop x) u< 2 -> (x & x-1) == 0
1531       // (ctpop x) u> 1 -> (x & x-1) != 0
1532       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1533         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1534                                   DAG.getConstant(1, dl, CTVT));
1535         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1536         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1537         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1538       }
1539 
1540       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1541     }
1542 
1543     // (zext x) == C --> x == (trunc C)
1544     // (sext x) == C --> x == (trunc C)
1545     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1546         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1547       unsigned MinBits = N0.getValueSizeInBits();
1548       SDValue PreExt;
1549       bool Signed = false;
1550       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1551         // ZExt
1552         MinBits = N0->getOperand(0).getValueSizeInBits();
1553         PreExt = N0->getOperand(0);
1554       } else if (N0->getOpcode() == ISD::AND) {
1555         // DAGCombine turns costly ZExts into ANDs
1556         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1557           if ((C->getAPIntValue()+1).isPowerOf2()) {
1558             MinBits = C->getAPIntValue().countTrailingOnes();
1559             PreExt = N0->getOperand(0);
1560           }
1561       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1562         // SExt
1563         MinBits = N0->getOperand(0).getValueSizeInBits();
1564         PreExt = N0->getOperand(0);
1565         Signed = true;
1566       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1567         // ZEXTLOAD / SEXTLOAD
1568         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1569           MinBits = LN0->getMemoryVT().getSizeInBits();
1570           PreExt = N0;
1571         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1572           Signed = true;
1573           MinBits = LN0->getMemoryVT().getSizeInBits();
1574           PreExt = N0;
1575         }
1576       }
1577 
1578       // Figure out how many bits we need to preserve this constant.
1579       unsigned ReqdBits = Signed ?
1580         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1581         C1.getActiveBits();
1582 
1583       // Make sure we're not losing bits from the constant.
1584       if (MinBits > 0 &&
1585           MinBits < C1.getBitWidth() &&
1586           MinBits >= ReqdBits) {
1587         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1588         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1589           // Will get folded away.
1590           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1591           if (MinBits == 1 && C1 == 1)
1592             // Invert the condition.
1593             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1594                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1595           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1596           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1597         }
1598 
1599         // If truncating the setcc operands is not desirable, we can still
1600         // simplify the expression in some cases:
1601         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1602         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1603         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1604         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1605         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1606         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1607         SDValue TopSetCC = N0->getOperand(0);
1608         unsigned N0Opc = N0->getOpcode();
1609         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1610         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1611             TopSetCC.getOpcode() == ISD::SETCC &&
1612             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1613             (isConstFalseVal(N1C) ||
1614              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1615 
1616           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1617                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1618 
1619           if (!Inverse)
1620             return TopSetCC;
1621 
1622           ISD::CondCode InvCond = ISD::getSetCCInverse(
1623               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1624               TopSetCC.getOperand(0).getValueType().isInteger());
1625           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1626                                       TopSetCC.getOperand(1),
1627                                       InvCond);
1628         }
1629       }
1630     }
1631 
1632     // If the LHS is '(and load, const)', the RHS is 0, the test is for
1633     // equality or unsigned, and all 1 bits of the const are in the same
1634     // partial word, see if we can shorten the load.
1635     if (DCI.isBeforeLegalize() &&
1636         !ISD::isSignedIntSetCC(Cond) &&
1637         N0.getOpcode() == ISD::AND && C1 == 0 &&
1638         N0.getNode()->hasOneUse() &&
1639         isa<LoadSDNode>(N0.getOperand(0)) &&
1640         N0.getOperand(0).getNode()->hasOneUse() &&
1641         isa<ConstantSDNode>(N0.getOperand(1))) {
1642       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1643       APInt bestMask;
1644       unsigned bestWidth = 0, bestOffset = 0;
1645       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1646         unsigned origWidth = N0.getValueSizeInBits();
1647         unsigned maskWidth = origWidth;
1648         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1649         // 8 bits, but have to be careful...
1650         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1651           origWidth = Lod->getMemoryVT().getSizeInBits();
1652         const APInt &Mask =
1653           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1654         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1655           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1656           for (unsigned offset=0; offset<origWidth/width; offset++) {
1657             if (Mask.isSubsetOf(newMask)) {
1658               if (DAG.getDataLayout().isLittleEndian())
1659                 bestOffset = (uint64_t)offset * (width/8);
1660               else
1661                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1662               bestMask = Mask.lshr(offset * (width/8) * 8);
1663               bestWidth = width;
1664               break;
1665             }
1666             newMask <<= width;
1667           }
1668         }
1669       }
1670       if (bestWidth) {
1671         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1672         if (newVT.isRound()) {
1673           EVT PtrType = Lod->getOperand(1).getValueType();
1674           SDValue Ptr = Lod->getBasePtr();
1675           if (bestOffset != 0)
1676             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1677                               DAG.getConstant(bestOffset, dl, PtrType));
1678           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1679           SDValue NewLoad = DAG.getLoad(
1680               newVT, dl, Lod->getChain(), Ptr,
1681               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1682           return DAG.getSetCC(dl, VT,
1683                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1684                                       DAG.getConstant(bestMask.trunc(bestWidth),
1685                                                       dl, newVT)),
1686                               DAG.getConstant(0LL, dl, newVT), Cond);
1687         }
1688       }
1689     }
1690 
1691     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1692     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1693       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
1694 
1695       // If the comparison constant has bits in the upper part, the
1696       // zero-extended value could never match.
1697       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1698                                               C1.getBitWidth() - InSize))) {
1699         switch (Cond) {
1700         case ISD::SETUGT:
1701         case ISD::SETUGE:
1702         case ISD::SETEQ:
1703           return DAG.getConstant(0, dl, VT);
1704         case ISD::SETULT:
1705         case ISD::SETULE:
1706         case ISD::SETNE:
1707           return DAG.getConstant(1, dl, VT);
1708         case ISD::SETGT:
1709         case ISD::SETGE:
1710           // True if the sign bit of C1 is set.
1711           return DAG.getConstant(C1.isNegative(), dl, VT);
1712         case ISD::SETLT:
1713         case ISD::SETLE:
1714           // True if the sign bit of C1 isn't set.
1715           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1716         default:
1717           break;
1718         }
1719       }
1720 
1721       // Otherwise, we can perform the comparison with the low bits.
1722       switch (Cond) {
1723       case ISD::SETEQ:
1724       case ISD::SETNE:
1725       case ISD::SETUGT:
1726       case ISD::SETUGE:
1727       case ISD::SETULT:
1728       case ISD::SETULE: {
1729         EVT newVT = N0.getOperand(0).getValueType();
1730         if (DCI.isBeforeLegalizeOps() ||
1731             (isOperationLegal(ISD::SETCC, newVT) &&
1732              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1733           EVT NewSetCCVT =
1734               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1735           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1736 
1737           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1738                                           NewConst, Cond);
1739           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1740         }
1741         break;
1742       }
1743       default:
1744         break;   // todo, be more careful with signed comparisons
1745       }
1746     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1747                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1748       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1749       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1750       EVT ExtDstTy = N0.getValueType();
1751       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1752 
1753       // If the constant doesn't fit into the number of bits for the source of
1754       // the sign extension, it is impossible for both sides to be equal.
1755       if (C1.getMinSignedBits() > ExtSrcTyBits)
1756         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1757 
1758       SDValue ZextOp;
1759       EVT Op0Ty = N0.getOperand(0).getValueType();
1760       if (Op0Ty == ExtSrcTy) {
1761         ZextOp = N0.getOperand(0);
1762       } else {
1763         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1764         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1765                               DAG.getConstant(Imm, dl, Op0Ty));
1766       }
1767       if (!DCI.isCalledByLegalizer())
1768         DCI.AddToWorklist(ZextOp.getNode());
1769       // Otherwise, make this a use of a zext.
1770       return DAG.getSetCC(dl, VT, ZextOp,
1771                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1772                                                               ExtDstTyBits,
1773                                                               ExtSrcTyBits),
1774                                           dl, ExtDstTy),
1775                           Cond);
1776     } else if ((N1C->isNullValue() || N1C->isOne()) &&
1777                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1778       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1779       if (N0.getOpcode() == ISD::SETCC &&
1780           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1781         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
1782         if (TrueWhenTrue)
1783           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1784         // Invert the condition.
1785         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1786         CC = ISD::getSetCCInverse(CC,
1787                                   N0.getOperand(0).getValueType().isInteger());
1788         if (DCI.isBeforeLegalizeOps() ||
1789             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1790           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1791       }
1792 
1793       if ((N0.getOpcode() == ISD::XOR ||
1794            (N0.getOpcode() == ISD::AND &&
1795             N0.getOperand(0).getOpcode() == ISD::XOR &&
1796             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1797           isa<ConstantSDNode>(N0.getOperand(1)) &&
1798           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
1799         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1800         // can only do this if the top bits are known zero.
1801         unsigned BitWidth = N0.getValueSizeInBits();
1802         if (DAG.MaskedValueIsZero(N0,
1803                                   APInt::getHighBitsSet(BitWidth,
1804                                                         BitWidth-1))) {
1805           // Okay, get the un-inverted input value.
1806           SDValue Val;
1807           if (N0.getOpcode() == ISD::XOR) {
1808             Val = N0.getOperand(0);
1809           } else {
1810             assert(N0.getOpcode() == ISD::AND &&
1811                     N0.getOperand(0).getOpcode() == ISD::XOR);
1812             // ((X^1)&1)^1 -> X & 1
1813             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1814                               N0.getOperand(0).getOperand(0),
1815                               N0.getOperand(1));
1816           }
1817 
1818           return DAG.getSetCC(dl, VT, Val, N1,
1819                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1820         }
1821       } else if (N1C->isOne() &&
1822                  (VT == MVT::i1 ||
1823                   getBooleanContents(N0->getValueType(0)) ==
1824                       ZeroOrOneBooleanContent)) {
1825         SDValue Op0 = N0;
1826         if (Op0.getOpcode() == ISD::TRUNCATE)
1827           Op0 = Op0.getOperand(0);
1828 
1829         if ((Op0.getOpcode() == ISD::XOR) &&
1830             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1831             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1832           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1833           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1834           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1835                               Cond);
1836         }
1837         if (Op0.getOpcode() == ISD::AND &&
1838             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1839             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
1840           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1841           if (Op0.getValueType().bitsGT(VT))
1842             Op0 = DAG.getNode(ISD::AND, dl, VT,
1843                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1844                           DAG.getConstant(1, dl, VT));
1845           else if (Op0.getValueType().bitsLT(VT))
1846             Op0 = DAG.getNode(ISD::AND, dl, VT,
1847                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1848                         DAG.getConstant(1, dl, VT));
1849 
1850           return DAG.getSetCC(dl, VT, Op0,
1851                               DAG.getConstant(0, dl, Op0.getValueType()),
1852                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1853         }
1854         if (Op0.getOpcode() == ISD::AssertZext &&
1855             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1856           return DAG.getSetCC(dl, VT, Op0,
1857                               DAG.getConstant(0, dl, Op0.getValueType()),
1858                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1859       }
1860     }
1861 
1862     APInt MinVal, MaxVal;
1863     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1864     if (ISD::isSignedIntSetCC(Cond)) {
1865       MinVal = APInt::getSignedMinValue(OperandBitSize);
1866       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1867     } else {
1868       MinVal = APInt::getMinValue(OperandBitSize);
1869       MaxVal = APInt::getMaxValue(OperandBitSize);
1870     }
1871 
1872     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1873     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1874       // X >= MIN --> true
1875       if (C1 == MinVal)
1876         return DAG.getBoolConstant(true, dl, VT, OpVT);
1877 
1878       // X >= C0 --> X > (C0 - 1)
1879       APInt C = C1 - 1;
1880       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1881       if ((DCI.isBeforeLegalizeOps() ||
1882            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1883           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1884                                 isLegalICmpImmediate(C.getSExtValue())))) {
1885         return DAG.getSetCC(dl, VT, N0,
1886                             DAG.getConstant(C, dl, N1.getValueType()),
1887                             NewCC);
1888       }
1889     }
1890 
1891     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1892       // X <= MAX --> true
1893       if (C1 == MaxVal)
1894         return DAG.getBoolConstant(true, dl, VT, OpVT);
1895 
1896       // X <= C0 --> X < (C0 + 1)
1897       APInt C = C1 + 1;
1898       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1899       if ((DCI.isBeforeLegalizeOps() ||
1900            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1901           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1902                                 isLegalICmpImmediate(C.getSExtValue())))) {
1903         return DAG.getSetCC(dl, VT, N0,
1904                             DAG.getConstant(C, dl, N1.getValueType()),
1905                             NewCC);
1906       }
1907     }
1908 
1909     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1910       return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
1911     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1912       return DAG.getBoolConstant(true, dl, VT, OpVT);  // X >= MIN --> true
1913     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1914       return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
1915     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1916       return DAG.getBoolConstant(true, dl, VT, OpVT);  // X <= MAX --> true
1917 
1918     // Canonicalize setgt X, Min --> setne X, Min
1919     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1920       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1921     // Canonicalize setlt X, Max --> setne X, Max
1922     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1923       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1924 
1925     // If we have setult X, 1, turn it into seteq X, 0
1926     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1927       return DAG.getSetCC(dl, VT, N0,
1928                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1929                           ISD::SETEQ);
1930     // If we have setugt X, Max-1, turn it into seteq X, Max
1931     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1932       return DAG.getSetCC(dl, VT, N0,
1933                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1934                           ISD::SETEQ);
1935 
1936     // If we have "setcc X, C0", check to see if we can shrink the immediate
1937     // by changing cc.
1938 
1939     // SETUGT X, SINTMAX  -> SETLT X, 0
1940     if (Cond == ISD::SETUGT &&
1941         C1 == APInt::getSignedMaxValue(OperandBitSize))
1942       return DAG.getSetCC(dl, VT, N0,
1943                           DAG.getConstant(0, dl, N1.getValueType()),
1944                           ISD::SETLT);
1945 
1946     // SETULT X, SINTMIN  -> SETGT X, -1
1947     if (Cond == ISD::SETULT &&
1948         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1949       SDValue ConstMinusOne =
1950           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1951                           N1.getValueType());
1952       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1953     }
1954 
1955     // Fold bit comparisons when we can.
1956     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1957         (VT == N0.getValueType() ||
1958          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1959         N0.getOpcode() == ISD::AND) {
1960       auto &DL = DAG.getDataLayout();
1961       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1962         EVT ShiftTy = DCI.isBeforeLegalize()
1963                           ? getPointerTy(DL)
1964                           : getShiftAmountTy(N0.getValueType(), DL);
1965         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1966           // Perform the xform if the AND RHS is a single bit.
1967           if (AndRHS->getAPIntValue().isPowerOf2()) {
1968             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1969                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1970                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1971                                    ShiftTy)));
1972           }
1973         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1974           // (X & 8) == 8  -->  (X & 8) >> 3
1975           // Perform the xform if C1 is a single bit.
1976           if (C1.isPowerOf2()) {
1977             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1978                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1979                                       DAG.getConstant(C1.logBase2(), dl,
1980                                                       ShiftTy)));
1981           }
1982         }
1983       }
1984     }
1985 
1986     if (C1.getMinSignedBits() <= 64 &&
1987         !isLegalICmpImmediate(C1.getSExtValue())) {
1988       // (X & -256) == 256 -> (X >> 8) == 1
1989       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1990           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1991         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1992           const APInt &AndRHSC = AndRHS->getAPIntValue();
1993           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1994             unsigned ShiftBits = AndRHSC.countTrailingZeros();
1995             auto &DL = DAG.getDataLayout();
1996             EVT ShiftTy = DCI.isBeforeLegalize()
1997                               ? getPointerTy(DL)
1998                               : getShiftAmountTy(N0.getValueType(), DL);
1999             EVT CmpTy = N0.getValueType();
2000             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2001                                         DAG.getConstant(ShiftBits, dl,
2002                                                         ShiftTy));
2003             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2004             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2005           }
2006         }
2007       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2008                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2009         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2010         // X <  0x100000000 -> (X >> 32) <  1
2011         // X >= 0x100000000 -> (X >> 32) >= 1
2012         // X <= 0x0ffffffff -> (X >> 32) <  1
2013         // X >  0x0ffffffff -> (X >> 32) >= 1
2014         unsigned ShiftBits;
2015         APInt NewC = C1;
2016         ISD::CondCode NewCond = Cond;
2017         if (AdjOne) {
2018           ShiftBits = C1.countTrailingOnes();
2019           NewC = NewC + 1;
2020           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2021         } else {
2022           ShiftBits = C1.countTrailingZeros();
2023         }
2024         NewC.lshrInPlace(ShiftBits);
2025         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2026           isLegalICmpImmediate(NewC.getSExtValue())) {
2027           auto &DL = DAG.getDataLayout();
2028           EVT ShiftTy = DCI.isBeforeLegalize()
2029                             ? getPointerTy(DL)
2030                             : getShiftAmountTy(N0.getValueType(), DL);
2031           EVT CmpTy = N0.getValueType();
2032           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2033                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2034           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2035           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2036         }
2037       }
2038     }
2039   }
2040 
2041   if (isa<ConstantFPSDNode>(N0.getNode())) {
2042     // Constant fold or commute setcc.
2043     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2044     if (O.getNode()) return O;
2045   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2046     // If the RHS of an FP comparison is a constant, simplify it away in
2047     // some cases.
2048     if (CFP->getValueAPF().isNaN()) {
2049       // If an operand is known to be a nan, we can fold it.
2050       switch (ISD::getUnorderedFlavor(Cond)) {
2051       default: llvm_unreachable("Unknown flavor!");
2052       case 0:  // Known false.
2053         return DAG.getBoolConstant(false, dl, VT, OpVT);
2054       case 1:  // Known true.
2055         return DAG.getBoolConstant(true, dl, VT, OpVT);
2056       case 2:  // Undefined.
2057         return DAG.getUNDEF(VT);
2058       }
2059     }
2060 
2061     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2062     // constant if knowing that the operand is non-nan is enough.  We prefer to
2063     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2064     // materialize 0.0.
2065     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2066       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2067 
2068     // setcc (fneg x), C -> setcc swap(pred) x, -C
2069     if (N0.getOpcode() == ISD::FNEG) {
2070       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2071       if (DCI.isBeforeLegalizeOps() ||
2072           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2073         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2074         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2075       }
2076     }
2077 
2078     // If the condition is not legal, see if we can find an equivalent one
2079     // which is legal.
2080     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2081       // If the comparison was an awkward floating-point == or != and one of
2082       // the comparison operands is infinity or negative infinity, convert the
2083       // condition to a less-awkward <= or >=.
2084       if (CFP->getValueAPF().isInfinity()) {
2085         if (CFP->getValueAPF().isNegative()) {
2086           if (Cond == ISD::SETOEQ &&
2087               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2088             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2089           if (Cond == ISD::SETUEQ &&
2090               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2091             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2092           if (Cond == ISD::SETUNE &&
2093               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2094             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2095           if (Cond == ISD::SETONE &&
2096               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2097             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2098         } else {
2099           if (Cond == ISD::SETOEQ &&
2100               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2101             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2102           if (Cond == ISD::SETUEQ &&
2103               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2104             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2105           if (Cond == ISD::SETUNE &&
2106               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2107             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2108           if (Cond == ISD::SETONE &&
2109               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2110             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2111         }
2112       }
2113     }
2114   }
2115 
2116   if (N0 == N1) {
2117     // The sext(setcc()) => setcc() optimization relies on the appropriate
2118     // constant being emitted.
2119 
2120     bool EqTrue = ISD::isTrueWhenEqual(Cond);
2121 
2122     // We can always fold X == X for integer setcc's.
2123     if (N0.getValueType().isInteger())
2124       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2125 
2126     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2127     if (UOF == 2)   // FP operators that are undefined on NaNs.
2128       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2129     if (UOF == unsigned(EqTrue))
2130       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2131     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2132     // if it is not already.
2133     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2134     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2135           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2136       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2137   }
2138 
2139   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2140       N0.getValueType().isInteger()) {
2141     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2142         N0.getOpcode() == ISD::XOR) {
2143       // Simplify (X+Y) == (X+Z) -->  Y == Z
2144       if (N0.getOpcode() == N1.getOpcode()) {
2145         if (N0.getOperand(0) == N1.getOperand(0))
2146           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2147         if (N0.getOperand(1) == N1.getOperand(1))
2148           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2149         if (isCommutativeBinOp(N0.getOpcode())) {
2150           // If X op Y == Y op X, try other combinations.
2151           if (N0.getOperand(0) == N1.getOperand(1))
2152             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2153                                 Cond);
2154           if (N0.getOperand(1) == N1.getOperand(0))
2155             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2156                                 Cond);
2157         }
2158       }
2159 
2160       // If RHS is a legal immediate value for a compare instruction, we need
2161       // to be careful about increasing register pressure needlessly.
2162       bool LegalRHSImm = false;
2163 
2164       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2165         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2166           // Turn (X+C1) == C2 --> X == C2-C1
2167           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2168             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2169                                 DAG.getConstant(RHSC->getAPIntValue()-
2170                                                 LHSR->getAPIntValue(),
2171                                 dl, N0.getValueType()), Cond);
2172           }
2173 
2174           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2175           if (N0.getOpcode() == ISD::XOR)
2176             // If we know that all of the inverted bits are zero, don't bother
2177             // performing the inversion.
2178             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2179               return
2180                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2181                              DAG.getConstant(LHSR->getAPIntValue() ^
2182                                                RHSC->getAPIntValue(),
2183                                              dl, N0.getValueType()),
2184                              Cond);
2185         }
2186 
2187         // Turn (C1-X) == C2 --> X == C1-C2
2188         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2189           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2190             return
2191               DAG.getSetCC(dl, VT, N0.getOperand(1),
2192                            DAG.getConstant(SUBC->getAPIntValue() -
2193                                              RHSC->getAPIntValue(),
2194                                            dl, N0.getValueType()),
2195                            Cond);
2196           }
2197         }
2198 
2199         // Could RHSC fold directly into a compare?
2200         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2201           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2202       }
2203 
2204       // Simplify (X+Z) == X -->  Z == 0
2205       // Don't do this if X is an immediate that can fold into a cmp
2206       // instruction and X+Z has other uses. It could be an induction variable
2207       // chain, and the transform would increase register pressure.
2208       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2209         if (N0.getOperand(0) == N1)
2210           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2211                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2212         if (N0.getOperand(1) == N1) {
2213           if (isCommutativeBinOp(N0.getOpcode()))
2214             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2215                                 DAG.getConstant(0, dl, N0.getValueType()),
2216                                 Cond);
2217           if (N0.getNode()->hasOneUse()) {
2218             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2219             auto &DL = DAG.getDataLayout();
2220             // (Z-X) == X  --> Z == X<<1
2221             SDValue SH = DAG.getNode(
2222                 ISD::SHL, dl, N1.getValueType(), N1,
2223                 DAG.getConstant(1, dl,
2224                                 getShiftAmountTy(N1.getValueType(), DL)));
2225             if (!DCI.isCalledByLegalizer())
2226               DCI.AddToWorklist(SH.getNode());
2227             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2228           }
2229         }
2230       }
2231     }
2232 
2233     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2234         N1.getOpcode() == ISD::XOR) {
2235       // Simplify  X == (X+Z) -->  Z == 0
2236       if (N1.getOperand(0) == N0)
2237         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2238                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2239       if (N1.getOperand(1) == N0) {
2240         if (isCommutativeBinOp(N1.getOpcode()))
2241           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2242                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2243         if (N1.getNode()->hasOneUse()) {
2244           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2245           auto &DL = DAG.getDataLayout();
2246           // X == (Z-X)  --> X<<1 == Z
2247           SDValue SH = DAG.getNode(
2248               ISD::SHL, dl, N1.getValueType(), N0,
2249               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2250           if (!DCI.isCalledByLegalizer())
2251             DCI.AddToWorklist(SH.getNode());
2252           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2253         }
2254       }
2255     }
2256 
2257     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2258       return V;
2259   }
2260 
2261   // Fold away ALL boolean setcc's.
2262   SDValue Temp;
2263   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
2264     EVT OpVT = N0.getValueType();
2265     switch (Cond) {
2266     default: llvm_unreachable("Unknown integer setcc!");
2267     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2268       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2269       N0 = DAG.getNOT(dl, Temp, OpVT);
2270       if (!DCI.isCalledByLegalizer())
2271         DCI.AddToWorklist(Temp.getNode());
2272       break;
2273     case ISD::SETNE:  // X != Y   -->  (X^Y)
2274       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2275       break;
2276     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2277     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2278       Temp = DAG.getNOT(dl, N0, OpVT);
2279       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
2280       if (!DCI.isCalledByLegalizer())
2281         DCI.AddToWorklist(Temp.getNode());
2282       break;
2283     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2284     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2285       Temp = DAG.getNOT(dl, N1, OpVT);
2286       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
2287       if (!DCI.isCalledByLegalizer())
2288         DCI.AddToWorklist(Temp.getNode());
2289       break;
2290     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2291     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2292       Temp = DAG.getNOT(dl, N0, OpVT);
2293       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
2294       if (!DCI.isCalledByLegalizer())
2295         DCI.AddToWorklist(Temp.getNode());
2296       break;
2297     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2298     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2299       Temp = DAG.getNOT(dl, N1, OpVT);
2300       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
2301       break;
2302     }
2303     if (VT.getScalarType() != MVT::i1) {
2304       if (!DCI.isCalledByLegalizer())
2305         DCI.AddToWorklist(N0.getNode());
2306       // FIXME: If running after legalize, we probably can't do this.
2307       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
2308       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
2309     }
2310     return N0;
2311   }
2312 
2313   // Could not fold it.
2314   return SDValue();
2315 }
2316 
2317 /// Returns true (and the GlobalValue and the offset) if the node is a
2318 /// GlobalAddress + offset.
2319 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2320                                     int64_t &Offset) const {
2321   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2322     GA = GASD->getGlobal();
2323     Offset += GASD->getOffset();
2324     return true;
2325   }
2326 
2327   if (N->getOpcode() == ISD::ADD) {
2328     SDValue N1 = N->getOperand(0);
2329     SDValue N2 = N->getOperand(1);
2330     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2331       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2332         Offset += V->getSExtValue();
2333         return true;
2334       }
2335     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2336       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2337         Offset += V->getSExtValue();
2338         return true;
2339       }
2340     }
2341   }
2342 
2343   return false;
2344 }
2345 
2346 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2347                                           DAGCombinerInfo &DCI) const {
2348   // Default implementation: no optimization.
2349   return SDValue();
2350 }
2351 
2352 //===----------------------------------------------------------------------===//
2353 //  Inline Assembler Implementation Methods
2354 //===----------------------------------------------------------------------===//
2355 
2356 TargetLowering::ConstraintType
2357 TargetLowering::getConstraintType(StringRef Constraint) const {
2358   unsigned S = Constraint.size();
2359 
2360   if (S == 1) {
2361     switch (Constraint[0]) {
2362     default: break;
2363     case 'r': return C_RegisterClass;
2364     case 'm':    // memory
2365     case 'o':    // offsetable
2366     case 'V':    // not offsetable
2367       return C_Memory;
2368     case 'i':    // Simple Integer or Relocatable Constant
2369     case 'n':    // Simple Integer
2370     case 'E':    // Floating Point Constant
2371     case 'F':    // Floating Point Constant
2372     case 's':    // Relocatable Constant
2373     case 'p':    // Address.
2374     case 'X':    // Allow ANY value.
2375     case 'I':    // Target registers.
2376     case 'J':
2377     case 'K':
2378     case 'L':
2379     case 'M':
2380     case 'N':
2381     case 'O':
2382     case 'P':
2383     case '<':
2384     case '>':
2385       return C_Other;
2386     }
2387   }
2388 
2389   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2390     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2391       return C_Memory;
2392     return C_Register;
2393   }
2394   return C_Unknown;
2395 }
2396 
2397 /// Try to replace an X constraint, which matches anything, with another that
2398 /// has more specific requirements based on the type of the corresponding
2399 /// operand.
2400 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2401   if (ConstraintVT.isInteger())
2402     return "r";
2403   if (ConstraintVT.isFloatingPoint())
2404     return "f";      // works for many targets
2405   return nullptr;
2406 }
2407 
2408 /// Lower the specified operand into the Ops vector.
2409 /// If it is invalid, don't add anything to Ops.
2410 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2411                                                   std::string &Constraint,
2412                                                   std::vector<SDValue> &Ops,
2413                                                   SelectionDAG &DAG) const {
2414 
2415   if (Constraint.length() > 1) return;
2416 
2417   char ConstraintLetter = Constraint[0];
2418   switch (ConstraintLetter) {
2419   default: break;
2420   case 'X':     // Allows any operand; labels (basic block) use this.
2421     if (Op.getOpcode() == ISD::BasicBlock) {
2422       Ops.push_back(Op);
2423       return;
2424     }
2425     LLVM_FALLTHROUGH;
2426   case 'i':    // Simple Integer or Relocatable Constant
2427   case 'n':    // Simple Integer
2428   case 's': {  // Relocatable Constant
2429     // These operands are interested in values of the form (GV+C), where C may
2430     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2431     // is possible and fine if either GV or C are missing.
2432     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2433     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2434 
2435     // If we have "(add GV, C)", pull out GV/C
2436     if (Op.getOpcode() == ISD::ADD) {
2437       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2438       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2439       if (!C || !GA) {
2440         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2441         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2442       }
2443       if (!C || !GA) {
2444         C = nullptr;
2445         GA = nullptr;
2446       }
2447     }
2448 
2449     // If we find a valid operand, map to the TargetXXX version so that the
2450     // value itself doesn't get selected.
2451     if (GA) {   // Either &GV   or   &GV+C
2452       if (ConstraintLetter != 'n') {
2453         int64_t Offs = GA->getOffset();
2454         if (C) Offs += C->getZExtValue();
2455         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2456                                                  C ? SDLoc(C) : SDLoc(),
2457                                                  Op.getValueType(), Offs));
2458       }
2459       return;
2460     }
2461     if (C) {   // just C, no GV.
2462       // Simple constants are not allowed for 's'.
2463       if (ConstraintLetter != 's') {
2464         // gcc prints these as sign extended.  Sign extend value to 64 bits
2465         // now; without this it would get ZExt'd later in
2466         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2467         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
2468                                             SDLoc(C), MVT::i64));
2469       }
2470       return;
2471     }
2472     break;
2473   }
2474   }
2475 }
2476 
2477 std::pair<unsigned, const TargetRegisterClass *>
2478 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2479                                              StringRef Constraint,
2480                                              MVT VT) const {
2481   if (Constraint.empty() || Constraint[0] != '{')
2482     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2483   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2484 
2485   // Remove the braces from around the name.
2486   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2487 
2488   std::pair<unsigned, const TargetRegisterClass*> R =
2489     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2490 
2491   // Figure out which register class contains this reg.
2492   for (const TargetRegisterClass *RC : RI->regclasses()) {
2493     // If none of the value types for this register class are valid, we
2494     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2495     if (!isLegalRC(*RI, *RC))
2496       continue;
2497 
2498     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2499          I != E; ++I) {
2500       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2501         std::pair<unsigned, const TargetRegisterClass*> S =
2502           std::make_pair(*I, RC);
2503 
2504         // If this register class has the requested value type, return it,
2505         // otherwise keep searching and return the first class found
2506         // if no other is found which explicitly has the requested type.
2507         if (RI->isTypeLegalForClass(*RC, VT))
2508           return S;
2509         if (!R.second)
2510           R = S;
2511       }
2512     }
2513   }
2514 
2515   return R;
2516 }
2517 
2518 //===----------------------------------------------------------------------===//
2519 // Constraint Selection.
2520 
2521 /// Return true of this is an input operand that is a matching constraint like
2522 /// "4".
2523 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2524   assert(!ConstraintCode.empty() && "No known constraint!");
2525   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2526 }
2527 
2528 /// If this is an input matching constraint, this method returns the output
2529 /// operand it matches.
2530 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2531   assert(!ConstraintCode.empty() && "No known constraint!");
2532   return atoi(ConstraintCode.c_str());
2533 }
2534 
2535 /// Split up the constraint string from the inline assembly value into the
2536 /// specific constraints and their prefixes, and also tie in the associated
2537 /// operand values.
2538 /// If this returns an empty vector, and if the constraint string itself
2539 /// isn't empty, there was an error parsing.
2540 TargetLowering::AsmOperandInfoVector
2541 TargetLowering::ParseConstraints(const DataLayout &DL,
2542                                  const TargetRegisterInfo *TRI,
2543                                  ImmutableCallSite CS) const {
2544   /// Information about all of the constraints.
2545   AsmOperandInfoVector ConstraintOperands;
2546   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2547   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2548 
2549   // Do a prepass over the constraints, canonicalizing them, and building up the
2550   // ConstraintOperands list.
2551   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2552   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2553 
2554   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2555     ConstraintOperands.emplace_back(std::move(CI));
2556     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2557 
2558     // Update multiple alternative constraint count.
2559     if (OpInfo.multipleAlternatives.size() > maCount)
2560       maCount = OpInfo.multipleAlternatives.size();
2561 
2562     OpInfo.ConstraintVT = MVT::Other;
2563 
2564     // Compute the value type for each operand.
2565     switch (OpInfo.Type) {
2566     case InlineAsm::isOutput:
2567       // Indirect outputs just consume an argument.
2568       if (OpInfo.isIndirect) {
2569         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2570         break;
2571       }
2572 
2573       // The return value of the call is this value.  As such, there is no
2574       // corresponding argument.
2575       assert(!CS.getType()->isVoidTy() &&
2576              "Bad inline asm!");
2577       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2578         OpInfo.ConstraintVT =
2579             getSimpleValueType(DL, STy->getElementType(ResNo));
2580       } else {
2581         assert(ResNo == 0 && "Asm only has one result!");
2582         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2583       }
2584       ++ResNo;
2585       break;
2586     case InlineAsm::isInput:
2587       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2588       break;
2589     case InlineAsm::isClobber:
2590       // Nothing to do.
2591       break;
2592     }
2593 
2594     if (OpInfo.CallOperandVal) {
2595       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2596       if (OpInfo.isIndirect) {
2597         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2598         if (!PtrTy)
2599           report_fatal_error("Indirect operand for inline asm not a pointer!");
2600         OpTy = PtrTy->getElementType();
2601       }
2602 
2603       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2604       if (StructType *STy = dyn_cast<StructType>(OpTy))
2605         if (STy->getNumElements() == 1)
2606           OpTy = STy->getElementType(0);
2607 
2608       // If OpTy is not a single value, it may be a struct/union that we
2609       // can tile with integers.
2610       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2611         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2612         switch (BitSize) {
2613         default: break;
2614         case 1:
2615         case 8:
2616         case 16:
2617         case 32:
2618         case 64:
2619         case 128:
2620           OpInfo.ConstraintVT =
2621             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2622           break;
2623         }
2624       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2625         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2626         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2627       } else {
2628         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2629       }
2630     }
2631   }
2632 
2633   // If we have multiple alternative constraints, select the best alternative.
2634   if (!ConstraintOperands.empty()) {
2635     if (maCount) {
2636       unsigned bestMAIndex = 0;
2637       int bestWeight = -1;
2638       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2639       int weight = -1;
2640       unsigned maIndex;
2641       // Compute the sums of the weights for each alternative, keeping track
2642       // of the best (highest weight) one so far.
2643       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2644         int weightSum = 0;
2645         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2646             cIndex != eIndex; ++cIndex) {
2647           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2648           if (OpInfo.Type == InlineAsm::isClobber)
2649             continue;
2650 
2651           // If this is an output operand with a matching input operand,
2652           // look up the matching input. If their types mismatch, e.g. one
2653           // is an integer, the other is floating point, or their sizes are
2654           // different, flag it as an maCantMatch.
2655           if (OpInfo.hasMatchingInput()) {
2656             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2657             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2658               if ((OpInfo.ConstraintVT.isInteger() !=
2659                    Input.ConstraintVT.isInteger()) ||
2660                   (OpInfo.ConstraintVT.getSizeInBits() !=
2661                    Input.ConstraintVT.getSizeInBits())) {
2662                 weightSum = -1;  // Can't match.
2663                 break;
2664               }
2665             }
2666           }
2667           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2668           if (weight == -1) {
2669             weightSum = -1;
2670             break;
2671           }
2672           weightSum += weight;
2673         }
2674         // Update best.
2675         if (weightSum > bestWeight) {
2676           bestWeight = weightSum;
2677           bestMAIndex = maIndex;
2678         }
2679       }
2680 
2681       // Now select chosen alternative in each constraint.
2682       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2683           cIndex != eIndex; ++cIndex) {
2684         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2685         if (cInfo.Type == InlineAsm::isClobber)
2686           continue;
2687         cInfo.selectAlternative(bestMAIndex);
2688       }
2689     }
2690   }
2691 
2692   // Check and hook up tied operands, choose constraint code to use.
2693   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2694       cIndex != eIndex; ++cIndex) {
2695     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2696 
2697     // If this is an output operand with a matching input operand, look up the
2698     // matching input. If their types mismatch, e.g. one is an integer, the
2699     // other is floating point, or their sizes are different, flag it as an
2700     // error.
2701     if (OpInfo.hasMatchingInput()) {
2702       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2703 
2704       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2705         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2706             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2707                                          OpInfo.ConstraintVT);
2708         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2709             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2710                                          Input.ConstraintVT);
2711         if ((OpInfo.ConstraintVT.isInteger() !=
2712              Input.ConstraintVT.isInteger()) ||
2713             (MatchRC.second != InputRC.second)) {
2714           report_fatal_error("Unsupported asm: input constraint"
2715                              " with a matching output constraint of"
2716                              " incompatible type!");
2717         }
2718       }
2719     }
2720   }
2721 
2722   return ConstraintOperands;
2723 }
2724 
2725 /// Return an integer indicating how general CT is.
2726 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2727   switch (CT) {
2728   case TargetLowering::C_Other:
2729   case TargetLowering::C_Unknown:
2730     return 0;
2731   case TargetLowering::C_Register:
2732     return 1;
2733   case TargetLowering::C_RegisterClass:
2734     return 2;
2735   case TargetLowering::C_Memory:
2736     return 3;
2737   }
2738   llvm_unreachable("Invalid constraint type");
2739 }
2740 
2741 /// Examine constraint type and operand type and determine a weight value.
2742 /// This object must already have been set up with the operand type
2743 /// and the current alternative constraint selected.
2744 TargetLowering::ConstraintWeight
2745   TargetLowering::getMultipleConstraintMatchWeight(
2746     AsmOperandInfo &info, int maIndex) const {
2747   InlineAsm::ConstraintCodeVector *rCodes;
2748   if (maIndex >= (int)info.multipleAlternatives.size())
2749     rCodes = &info.Codes;
2750   else
2751     rCodes = &info.multipleAlternatives[maIndex].Codes;
2752   ConstraintWeight BestWeight = CW_Invalid;
2753 
2754   // Loop over the options, keeping track of the most general one.
2755   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2756     ConstraintWeight weight =
2757       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2758     if (weight > BestWeight)
2759       BestWeight = weight;
2760   }
2761 
2762   return BestWeight;
2763 }
2764 
2765 /// Examine constraint type and operand type and determine a weight value.
2766 /// This object must already have been set up with the operand type
2767 /// and the current alternative constraint selected.
2768 TargetLowering::ConstraintWeight
2769   TargetLowering::getSingleConstraintMatchWeight(
2770     AsmOperandInfo &info, const char *constraint) const {
2771   ConstraintWeight weight = CW_Invalid;
2772   Value *CallOperandVal = info.CallOperandVal;
2773     // If we don't have a value, we can't do a match,
2774     // but allow it at the lowest weight.
2775   if (!CallOperandVal)
2776     return CW_Default;
2777   // Look at the constraint type.
2778   switch (*constraint) {
2779     case 'i': // immediate integer.
2780     case 'n': // immediate integer with a known value.
2781       if (isa<ConstantInt>(CallOperandVal))
2782         weight = CW_Constant;
2783       break;
2784     case 's': // non-explicit intregal immediate.
2785       if (isa<GlobalValue>(CallOperandVal))
2786         weight = CW_Constant;
2787       break;
2788     case 'E': // immediate float if host format.
2789     case 'F': // immediate float.
2790       if (isa<ConstantFP>(CallOperandVal))
2791         weight = CW_Constant;
2792       break;
2793     case '<': // memory operand with autodecrement.
2794     case '>': // memory operand with autoincrement.
2795     case 'm': // memory operand.
2796     case 'o': // offsettable memory operand
2797     case 'V': // non-offsettable memory operand
2798       weight = CW_Memory;
2799       break;
2800     case 'r': // general register.
2801     case 'g': // general register, memory operand or immediate integer.
2802               // note: Clang converts "g" to "imr".
2803       if (CallOperandVal->getType()->isIntegerTy())
2804         weight = CW_Register;
2805       break;
2806     case 'X': // any operand.
2807     default:
2808       weight = CW_Default;
2809       break;
2810   }
2811   return weight;
2812 }
2813 
2814 /// If there are multiple different constraints that we could pick for this
2815 /// operand (e.g. "imr") try to pick the 'best' one.
2816 /// This is somewhat tricky: constraints fall into four classes:
2817 ///    Other         -> immediates and magic values
2818 ///    Register      -> one specific register
2819 ///    RegisterClass -> a group of regs
2820 ///    Memory        -> memory
2821 /// Ideally, we would pick the most specific constraint possible: if we have
2822 /// something that fits into a register, we would pick it.  The problem here
2823 /// is that if we have something that could either be in a register or in
2824 /// memory that use of the register could cause selection of *other*
2825 /// operands to fail: they might only succeed if we pick memory.  Because of
2826 /// this the heuristic we use is:
2827 ///
2828 ///  1) If there is an 'other' constraint, and if the operand is valid for
2829 ///     that constraint, use it.  This makes us take advantage of 'i'
2830 ///     constraints when available.
2831 ///  2) Otherwise, pick the most general constraint present.  This prefers
2832 ///     'm' over 'r', for example.
2833 ///
2834 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2835                              const TargetLowering &TLI,
2836                              SDValue Op, SelectionDAG *DAG) {
2837   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2838   unsigned BestIdx = 0;
2839   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2840   int BestGenerality = -1;
2841 
2842   // Loop over the options, keeping track of the most general one.
2843   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2844     TargetLowering::ConstraintType CType =
2845       TLI.getConstraintType(OpInfo.Codes[i]);
2846 
2847     // If this is an 'other' constraint, see if the operand is valid for it.
2848     // For example, on X86 we might have an 'rI' constraint.  If the operand
2849     // is an integer in the range [0..31] we want to use I (saving a load
2850     // of a register), otherwise we must use 'r'.
2851     if (CType == TargetLowering::C_Other && Op.getNode()) {
2852       assert(OpInfo.Codes[i].size() == 1 &&
2853              "Unhandled multi-letter 'other' constraint");
2854       std::vector<SDValue> ResultOps;
2855       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2856                                        ResultOps, *DAG);
2857       if (!ResultOps.empty()) {
2858         BestType = CType;
2859         BestIdx = i;
2860         break;
2861       }
2862     }
2863 
2864     // Things with matching constraints can only be registers, per gcc
2865     // documentation.  This mainly affects "g" constraints.
2866     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2867       continue;
2868 
2869     // This constraint letter is more general than the previous one, use it.
2870     int Generality = getConstraintGenerality(CType);
2871     if (Generality > BestGenerality) {
2872       BestType = CType;
2873       BestIdx = i;
2874       BestGenerality = Generality;
2875     }
2876   }
2877 
2878   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2879   OpInfo.ConstraintType = BestType;
2880 }
2881 
2882 /// Determines the constraint code and constraint type to use for the specific
2883 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2884 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2885                                             SDValue Op,
2886                                             SelectionDAG *DAG) const {
2887   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2888 
2889   // Single-letter constraints ('r') are very common.
2890   if (OpInfo.Codes.size() == 1) {
2891     OpInfo.ConstraintCode = OpInfo.Codes[0];
2892     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2893   } else {
2894     ChooseConstraint(OpInfo, *this, Op, DAG);
2895   }
2896 
2897   // 'X' matches anything.
2898   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2899     // Labels and constants are handled elsewhere ('X' is the only thing
2900     // that matches labels).  For Functions, the type here is the type of
2901     // the result, which is not what we want to look at; leave them alone.
2902     Value *v = OpInfo.CallOperandVal;
2903     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2904       OpInfo.CallOperandVal = v;
2905       return;
2906     }
2907 
2908     // Otherwise, try to resolve it to something we know about by looking at
2909     // the actual operand type.
2910     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2911       OpInfo.ConstraintCode = Repl;
2912       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2913     }
2914   }
2915 }
2916 
2917 /// \brief Given an exact SDIV by a constant, create a multiplication
2918 /// with the multiplicative inverse of the constant.
2919 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2920                               const SDLoc &dl, SelectionDAG &DAG,
2921                               std::vector<SDNode *> &Created) {
2922   assert(d != 0 && "Division by zero!");
2923 
2924   // Shift the value upfront if it is even, so the LSB is one.
2925   unsigned ShAmt = d.countTrailingZeros();
2926   if (ShAmt) {
2927     // TODO: For UDIV use SRL instead of SRA.
2928     SDValue Amt =
2929         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2930                                                         DAG.getDataLayout()));
2931     SDNodeFlags Flags;
2932     Flags.setExact(true);
2933     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags);
2934     Created.push_back(Op1.getNode());
2935     d.ashrInPlace(ShAmt);
2936   }
2937 
2938   // Calculate the multiplicative inverse, using Newton's method.
2939   APInt t, xn = d;
2940   while ((t = d*xn) != 1)
2941     xn *= APInt(d.getBitWidth(), 2) - t;
2942 
2943   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2944   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2945   Created.push_back(Mul.getNode());
2946   return Mul;
2947 }
2948 
2949 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2950                                       SelectionDAG &DAG,
2951                                       std::vector<SDNode *> *Created) const {
2952   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
2953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2954   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2955     return SDValue(N,0); // Lower SDIV as SDIV
2956   return SDValue();
2957 }
2958 
2959 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2960 /// return a DAG expression to select that will generate the same value by
2961 /// multiplying by a magic number.
2962 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2963 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2964                                   SelectionDAG &DAG, bool IsAfterLegalization,
2965                                   std::vector<SDNode *> *Created) const {
2966   assert(Created && "No vector to hold sdiv ops.");
2967 
2968   EVT VT = N->getValueType(0);
2969   SDLoc dl(N);
2970 
2971   // Check to see if we can do this.
2972   // FIXME: We should be more aggressive here.
2973   if (!isTypeLegal(VT))
2974     return SDValue();
2975 
2976   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2977   if (N->getFlags().hasExact())
2978     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2979 
2980   APInt::ms magics = Divisor.magic();
2981 
2982   // Multiply the numerator (operand 0) by the magic value
2983   // FIXME: We should support doing a MUL in a wider type
2984   SDValue Q;
2985   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2986                             isOperationLegalOrCustom(ISD::MULHS, VT))
2987     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2988                     DAG.getConstant(magics.m, dl, VT));
2989   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2990                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2991     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2992                               N->getOperand(0),
2993                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2994   else
2995     return SDValue();       // No mulhs or equvialent
2996   // If d > 0 and m < 0, add the numerator
2997   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2998     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2999     Created->push_back(Q.getNode());
3000   }
3001   // If d < 0 and m > 0, subtract the numerator.
3002   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3003     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3004     Created->push_back(Q.getNode());
3005   }
3006   auto &DL = DAG.getDataLayout();
3007   // Shift right algebraic if shift value is nonzero
3008   if (magics.s > 0) {
3009     Q = DAG.getNode(
3010         ISD::SRA, dl, VT, Q,
3011         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3012     Created->push_back(Q.getNode());
3013   }
3014   // Extract the sign bit and add it to the quotient
3015   SDValue T =
3016       DAG.getNode(ISD::SRL, dl, VT, Q,
3017                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3018                                   getShiftAmountTy(Q.getValueType(), DL)));
3019   Created->push_back(T.getNode());
3020   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3021 }
3022 
3023 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3024 /// return a DAG expression to select that will generate the same value by
3025 /// multiplying by a magic number.
3026 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3027 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3028                                   SelectionDAG &DAG, bool IsAfterLegalization,
3029                                   std::vector<SDNode *> *Created) const {
3030   assert(Created && "No vector to hold udiv ops.");
3031 
3032   EVT VT = N->getValueType(0);
3033   SDLoc dl(N);
3034   auto &DL = DAG.getDataLayout();
3035 
3036   // Check to see if we can do this.
3037   // FIXME: We should be more aggressive here.
3038   if (!isTypeLegal(VT))
3039     return SDValue();
3040 
3041   // FIXME: We should use a narrower constant when the upper
3042   // bits are known to be zero.
3043   APInt::mu magics = Divisor.magicu();
3044 
3045   SDValue Q = N->getOperand(0);
3046 
3047   // If the divisor is even, we can avoid using the expensive fixup by shifting
3048   // the divided value upfront.
3049   if (magics.a != 0 && !Divisor[0]) {
3050     unsigned Shift = Divisor.countTrailingZeros();
3051     Q = DAG.getNode(
3052         ISD::SRL, dl, VT, Q,
3053         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3054     Created->push_back(Q.getNode());
3055 
3056     // Get magic number for the shifted divisor.
3057     magics = Divisor.lshr(Shift).magicu(Shift);
3058     assert(magics.a == 0 && "Should use cheap fixup now");
3059   }
3060 
3061   // Multiply the numerator (operand 0) by the magic value
3062   // FIXME: We should support doing a MUL in a wider type
3063   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3064                             isOperationLegalOrCustom(ISD::MULHU, VT))
3065     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3066   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3067                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3068     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3069                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3070   else
3071     return SDValue();       // No mulhu or equivalent
3072 
3073   Created->push_back(Q.getNode());
3074 
3075   if (magics.a == 0) {
3076     assert(magics.s < Divisor.getBitWidth() &&
3077            "We shouldn't generate an undefined shift!");
3078     return DAG.getNode(
3079         ISD::SRL, dl, VT, Q,
3080         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3081   } else {
3082     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3083     Created->push_back(NPQ.getNode());
3084     NPQ = DAG.getNode(
3085         ISD::SRL, dl, VT, NPQ,
3086         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3087     Created->push_back(NPQ.getNode());
3088     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3089     Created->push_back(NPQ.getNode());
3090     return DAG.getNode(
3091         ISD::SRL, dl, VT, NPQ,
3092         DAG.getConstant(magics.s - 1, dl,
3093                         getShiftAmountTy(NPQ.getValueType(), DL)));
3094   }
3095 }
3096 
3097 bool TargetLowering::
3098 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3099   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3100     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3101                                 "be a constant integer");
3102     return true;
3103   }
3104 
3105   return false;
3106 }
3107 
3108 //===----------------------------------------------------------------------===//
3109 // Legalization Utilities
3110 //===----------------------------------------------------------------------===//
3111 
3112 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3113                                     SDValue LHS, SDValue RHS,
3114                                     SmallVectorImpl<SDValue> &Result,
3115                                     EVT HiLoVT, SelectionDAG &DAG,
3116                                     MulExpansionKind Kind, SDValue LL,
3117                                     SDValue LH, SDValue RL, SDValue RH) const {
3118   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3119          Opcode == ISD::SMUL_LOHI);
3120 
3121   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3122                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3123   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3124                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3125   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3126                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3127   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3128                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3129 
3130   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3131     return false;
3132 
3133   unsigned OuterBitSize = VT.getScalarSizeInBits();
3134   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3135   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3136   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3137 
3138   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3139   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3140          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3141 
3142   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3143   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3144                           bool Signed) -> bool {
3145     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3146       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3147       Hi = SDValue(Lo.getNode(), 1);
3148       return true;
3149     }
3150     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3151       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3152       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3153       return true;
3154     }
3155     return false;
3156   };
3157 
3158   SDValue Lo, Hi;
3159 
3160   if (!LL.getNode() && !RL.getNode() &&
3161       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3162     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3163     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3164   }
3165 
3166   if (!LL.getNode())
3167     return false;
3168 
3169   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3170   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3171       DAG.MaskedValueIsZero(RHS, HighMask)) {
3172     // The inputs are both zero-extended.
3173     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3174       Result.push_back(Lo);
3175       Result.push_back(Hi);
3176       if (Opcode != ISD::MUL) {
3177         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3178         Result.push_back(Zero);
3179         Result.push_back(Zero);
3180       }
3181       return true;
3182     }
3183   }
3184 
3185   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3186       RHSSB > InnerBitSize) {
3187     // The input values are both sign-extended.
3188     // TODO non-MUL case?
3189     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3190       Result.push_back(Lo);
3191       Result.push_back(Hi);
3192       return true;
3193     }
3194   }
3195 
3196   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3197   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3198   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3199     // FIXME getShiftAmountTy does not always return a sensible result when VT
3200     // is an illegal type, and so the type may be too small to fit the shift
3201     // amount. Override it with i32. The shift will have to be legalized.
3202     ShiftAmountTy = MVT::i32;
3203   }
3204   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3205 
3206   if (!LH.getNode() && !RH.getNode() &&
3207       isOperationLegalOrCustom(ISD::SRL, VT) &&
3208       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3209     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3210     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3211     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3212     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3213   }
3214 
3215   if (!LH.getNode())
3216     return false;
3217 
3218   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3219     return false;
3220 
3221   Result.push_back(Lo);
3222 
3223   if (Opcode == ISD::MUL) {
3224     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3225     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3226     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3227     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3228     Result.push_back(Hi);
3229     return true;
3230   }
3231 
3232   // Compute the full width result.
3233   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3234     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3235     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3236     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3237     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3238   };
3239 
3240   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3241   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3242     return false;
3243 
3244   // This is effectively the add part of a multiply-add of half-sized operands,
3245   // so it cannot overflow.
3246   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3247 
3248   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3249     return false;
3250 
3251   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3252                      Merge(Lo, Hi));
3253 
3254   SDValue Carry = Next.getValue(1);
3255   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3256   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3257 
3258   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3259     return false;
3260 
3261   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3262   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3263                    Carry);
3264   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3265 
3266   if (Opcode == ISD::SMUL_LOHI) {
3267     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3268                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3269     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3270 
3271     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3272                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3273     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3274   }
3275 
3276   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3277   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3278   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3279   return true;
3280 }
3281 
3282 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3283                                SelectionDAG &DAG, MulExpansionKind Kind,
3284                                SDValue LL, SDValue LH, SDValue RL,
3285                                SDValue RH) const {
3286   SmallVector<SDValue, 2> Result;
3287   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3288                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3289                            DAG, Kind, LL, LH, RL, RH);
3290   if (Ok) {
3291     assert(Result.size() == 2);
3292     Lo = Result[0];
3293     Hi = Result[1];
3294   }
3295   return Ok;
3296 }
3297 
3298 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3299                                SelectionDAG &DAG) const {
3300   EVT VT = Node->getOperand(0).getValueType();
3301   EVT NVT = Node->getValueType(0);
3302   SDLoc dl(SDValue(Node, 0));
3303 
3304   // FIXME: Only f32 to i64 conversions are supported.
3305   if (VT != MVT::f32 || NVT != MVT::i64)
3306     return false;
3307 
3308   // Expand f32 -> i64 conversion
3309   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3310   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3311   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3312                                 VT.getSizeInBits());
3313   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3314   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3315   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3316   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
3317                                      IntVT);
3318   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3319   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3320 
3321   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3322 
3323   auto &DL = DAG.getDataLayout();
3324   SDValue ExponentBits = DAG.getNode(
3325       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3326       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3327   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3328 
3329   SDValue Sign = DAG.getNode(
3330       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3331       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3332   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3333 
3334   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3335       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3336       DAG.getConstant(0x00800000, dl, IntVT));
3337 
3338   R = DAG.getZExtOrTrunc(R, dl, NVT);
3339 
3340   R = DAG.getSelectCC(
3341       dl, Exponent, ExponentLoBit,
3342       DAG.getNode(ISD::SHL, dl, NVT, R,
3343                   DAG.getZExtOrTrunc(
3344                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3345                       dl, getShiftAmountTy(IntVT, DL))),
3346       DAG.getNode(ISD::SRL, dl, NVT, R,
3347                   DAG.getZExtOrTrunc(
3348                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3349                       dl, getShiftAmountTy(IntVT, DL))),
3350       ISD::SETGT);
3351 
3352   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3353       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3354       Sign);
3355 
3356   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3357       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3358   return true;
3359 }
3360 
3361 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3362                                             SelectionDAG &DAG) const {
3363   SDLoc SL(LD);
3364   SDValue Chain = LD->getChain();
3365   SDValue BasePTR = LD->getBasePtr();
3366   EVT SrcVT = LD->getMemoryVT();
3367   ISD::LoadExtType ExtType = LD->getExtensionType();
3368 
3369   unsigned NumElem = SrcVT.getVectorNumElements();
3370 
3371   EVT SrcEltVT = SrcVT.getScalarType();
3372   EVT DstEltVT = LD->getValueType(0).getScalarType();
3373 
3374   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3375   assert(SrcEltVT.isByteSized());
3376 
3377   EVT PtrVT = BasePTR.getValueType();
3378 
3379   SmallVector<SDValue, 8> Vals;
3380   SmallVector<SDValue, 8> LoadChains;
3381 
3382   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3383     SDValue ScalarLoad =
3384         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3385                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3386                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3387                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3388 
3389     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3390                           DAG.getConstant(Stride, SL, PtrVT));
3391 
3392     Vals.push_back(ScalarLoad.getValue(0));
3393     LoadChains.push_back(ScalarLoad.getValue(1));
3394   }
3395 
3396   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3397   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3398 
3399   return DAG.getMergeValues({ Value, NewChain }, SL);
3400 }
3401 
3402 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3403                                              SelectionDAG &DAG) const {
3404   SDLoc SL(ST);
3405 
3406   SDValue Chain = ST->getChain();
3407   SDValue BasePtr = ST->getBasePtr();
3408   SDValue Value = ST->getValue();
3409   EVT StVT = ST->getMemoryVT();
3410 
3411   // The type of the data we want to save
3412   EVT RegVT = Value.getValueType();
3413   EVT RegSclVT = RegVT.getScalarType();
3414 
3415   // The type of data as saved in memory.
3416   EVT MemSclVT = StVT.getScalarType();
3417 
3418   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3419   unsigned NumElem = StVT.getVectorNumElements();
3420 
3421   // A vector must always be stored in memory as-is, i.e. without any padding
3422   // between the elements, since various code depend on it, e.g. in the
3423   // handling of a bitcast of a vector type to int, which may be done with a
3424   // vector store followed by an integer load. A vector that does not have
3425   // elements that are byte-sized must therefore be stored as an integer
3426   // built out of the extracted vector elements.
3427   if (!MemSclVT.isByteSized()) {
3428     unsigned NumBits = StVT.getSizeInBits();
3429     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
3430 
3431     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
3432 
3433     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3434       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3435                                 DAG.getConstant(Idx, SL, IdxVT));
3436       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
3437       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
3438       unsigned ShiftIntoIdx =
3439           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
3440       SDValue ShiftAmount =
3441           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
3442       SDValue ShiftedElt =
3443           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
3444       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
3445     }
3446 
3447     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
3448                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
3449                         ST->getAAInfo());
3450   }
3451 
3452   // Store Stride in bytes
3453   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3454   assert (Stride && "Zero stride!");
3455   // Extract each of the elements from the original vector and save them into
3456   // memory individually.
3457   SmallVector<SDValue, 8> Stores;
3458   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3459     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3460                               DAG.getConstant(Idx, SL, IdxVT));
3461 
3462     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
3463 
3464     // This scalar TruncStore may be illegal, but we legalize it later.
3465     SDValue Store = DAG.getTruncStore(
3466         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3467         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3468         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3469 
3470     Stores.push_back(Store);
3471   }
3472 
3473   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3474 }
3475 
3476 std::pair<SDValue, SDValue>
3477 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3478   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3479          "unaligned indexed loads not implemented!");
3480   SDValue Chain = LD->getChain();
3481   SDValue Ptr = LD->getBasePtr();
3482   EVT VT = LD->getValueType(0);
3483   EVT LoadedVT = LD->getMemoryVT();
3484   SDLoc dl(LD);
3485   auto &MF = DAG.getMachineFunction();
3486 
3487   if (VT.isFloatingPoint() || VT.isVector()) {
3488     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3489     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3490       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3491         // Scalarize the load and let the individual components be handled.
3492         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3493         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3494       }
3495 
3496       // Expand to a (misaligned) integer load of the same size,
3497       // then bitconvert to floating point or vector.
3498       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3499                                     LD->getMemOperand());
3500       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3501       if (LoadedVT != VT)
3502         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3503                              ISD::ANY_EXTEND, dl, VT, Result);
3504 
3505       return std::make_pair(Result, newLoad.getValue(1));
3506     }
3507 
3508     // Copy the value to a (aligned) stack slot using (unaligned) integer
3509     // loads and stores, then do a (aligned) load from the stack slot.
3510     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3511     unsigned LoadedBytes = LoadedVT.getStoreSize();
3512     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3513     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3514 
3515     // Make sure the stack slot is also aligned for the register type.
3516     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3517     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
3518     SmallVector<SDValue, 8> Stores;
3519     SDValue StackPtr = StackBase;
3520     unsigned Offset = 0;
3521 
3522     EVT PtrVT = Ptr.getValueType();
3523     EVT StackPtrVT = StackPtr.getValueType();
3524 
3525     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3526     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3527 
3528     // Do all but one copies using the full register width.
3529     for (unsigned i = 1; i < NumRegs; i++) {
3530       // Load one integer register's worth from the original location.
3531       SDValue Load = DAG.getLoad(
3532           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3533           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3534           LD->getAAInfo());
3535       // Follow the load with a store to the stack slot.  Remember the store.
3536       Stores.push_back(DAG.getStore(
3537           Load.getValue(1), dl, Load, StackPtr,
3538           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
3539       // Increment the pointers.
3540       Offset += RegBytes;
3541 
3542       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
3543       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
3544     }
3545 
3546     // The last copy may be partial.  Do an extending load.
3547     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3548                                   8 * (LoadedBytes - Offset));
3549     SDValue Load =
3550         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3551                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3552                        MinAlign(LD->getAlignment(), Offset),
3553                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3554     // Follow the load with a store to the stack slot.  Remember the store.
3555     // On big-endian machines this requires a truncating store to ensure
3556     // that the bits end up in the right place.
3557     Stores.push_back(DAG.getTruncStore(
3558         Load.getValue(1), dl, Load, StackPtr,
3559         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
3560 
3561     // The order of the stores doesn't matter - say it with a TokenFactor.
3562     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3563 
3564     // Finally, perform the original load only redirected to the stack slot.
3565     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3566                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
3567                           LoadedVT);
3568 
3569     // Callers expect a MERGE_VALUES node.
3570     return std::make_pair(Load, TF);
3571   }
3572 
3573   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3574          "Unaligned load of unsupported type.");
3575 
3576   // Compute the new VT that is half the size of the old one.  This is an
3577   // integer MVT.
3578   unsigned NumBits = LoadedVT.getSizeInBits();
3579   EVT NewLoadedVT;
3580   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3581   NumBits >>= 1;
3582 
3583   unsigned Alignment = LD->getAlignment();
3584   unsigned IncrementSize = NumBits / 8;
3585   ISD::LoadExtType HiExtType = LD->getExtensionType();
3586 
3587   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3588   if (HiExtType == ISD::NON_EXTLOAD)
3589     HiExtType = ISD::ZEXTLOAD;
3590 
3591   // Load the value in two parts
3592   SDValue Lo, Hi;
3593   if (DAG.getDataLayout().isLittleEndian()) {
3594     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3595                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3596                         LD->getAAInfo());
3597 
3598     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
3599     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3600                         LD->getPointerInfo().getWithOffset(IncrementSize),
3601                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3602                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3603   } else {
3604     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3605                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3606                         LD->getAAInfo());
3607 
3608     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
3609     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3610                         LD->getPointerInfo().getWithOffset(IncrementSize),
3611                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3612                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3613   }
3614 
3615   // aggregate the two parts
3616   SDValue ShiftAmount =
3617       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3618                                                     DAG.getDataLayout()));
3619   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3620   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3621 
3622   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3623                              Hi.getValue(1));
3624 
3625   return std::make_pair(Result, TF);
3626 }
3627 
3628 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3629                                              SelectionDAG &DAG) const {
3630   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3631          "unaligned indexed stores not implemented!");
3632   SDValue Chain = ST->getChain();
3633   SDValue Ptr = ST->getBasePtr();
3634   SDValue Val = ST->getValue();
3635   EVT VT = Val.getValueType();
3636   int Alignment = ST->getAlignment();
3637   auto &MF = DAG.getMachineFunction();
3638 
3639   SDLoc dl(ST);
3640   if (ST->getMemoryVT().isFloatingPoint() ||
3641       ST->getMemoryVT().isVector()) {
3642     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3643     if (isTypeLegal(intVT)) {
3644       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3645         // Scalarize the store and let the individual components be handled.
3646         SDValue Result = scalarizeVectorStore(ST, DAG);
3647 
3648         return Result;
3649       }
3650       // Expand to a bitconvert of the value to the integer type of the
3651       // same size, then a (misaligned) int store.
3652       // FIXME: Does not handle truncating floating point stores!
3653       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3654       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3655                             Alignment, ST->getMemOperand()->getFlags());
3656       return Result;
3657     }
3658     // Do a (aligned) store to a stack slot, then copy from the stack slot
3659     // to the final destination using (unaligned) integer loads and stores.
3660     EVT StoredVT = ST->getMemoryVT();
3661     MVT RegVT =
3662       getRegisterType(*DAG.getContext(),
3663                       EVT::getIntegerVT(*DAG.getContext(),
3664                                         StoredVT.getSizeInBits()));
3665     EVT PtrVT = Ptr.getValueType();
3666     unsigned StoredBytes = StoredVT.getStoreSize();
3667     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3668     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3669 
3670     // Make sure the stack slot is also aligned for the register type.
3671     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3672     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
3673 
3674     // Perform the original store, only redirected to the stack slot.
3675     SDValue Store = DAG.getTruncStore(
3676         Chain, dl, Val, StackPtr,
3677         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
3678 
3679     EVT StackPtrVT = StackPtr.getValueType();
3680 
3681     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3682     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3683     SmallVector<SDValue, 8> Stores;
3684     unsigned Offset = 0;
3685 
3686     // Do all but one copies using the full register width.
3687     for (unsigned i = 1; i < NumRegs; i++) {
3688       // Load one integer register's worth from the stack slot.
3689       SDValue Load = DAG.getLoad(
3690           RegVT, dl, Store, StackPtr,
3691           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
3692       // Store it to the final location.  Remember the store.
3693       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3694                                     ST->getPointerInfo().getWithOffset(Offset),
3695                                     MinAlign(ST->getAlignment(), Offset),
3696                                     ST->getMemOperand()->getFlags()));
3697       // Increment the pointers.
3698       Offset += RegBytes;
3699       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
3700       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
3701     }
3702 
3703     // The last store may be partial.  Do a truncating store.  On big-endian
3704     // machines this requires an extending load from the stack slot to ensure
3705     // that the bits are in the right place.
3706     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3707                                   8 * (StoredBytes - Offset));
3708 
3709     // Load from the stack slot.
3710     SDValue Load = DAG.getExtLoad(
3711         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3712         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
3713 
3714     Stores.push_back(
3715         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3716                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3717                           MinAlign(ST->getAlignment(), Offset),
3718                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3719     // The order of the stores doesn't matter - say it with a TokenFactor.
3720     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3721     return Result;
3722   }
3723 
3724   assert(ST->getMemoryVT().isInteger() &&
3725          !ST->getMemoryVT().isVector() &&
3726          "Unaligned store of unknown type.");
3727   // Get the half-size VT
3728   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3729   int NumBits = NewStoredVT.getSizeInBits();
3730   int IncrementSize = NumBits / 8;
3731 
3732   // Divide the stored value in two parts.
3733   SDValue ShiftAmount =
3734       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3735                                                     DAG.getDataLayout()));
3736   SDValue Lo = Val;
3737   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3738 
3739   // Store the two parts
3740   SDValue Store1, Store2;
3741   Store1 = DAG.getTruncStore(Chain, dl,
3742                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3743                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3744                              ST->getMemOperand()->getFlags());
3745 
3746   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
3747   Alignment = MinAlign(Alignment, IncrementSize);
3748   Store2 = DAG.getTruncStore(
3749       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3750       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3751       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3752 
3753   SDValue Result =
3754     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3755   return Result;
3756 }
3757 
3758 SDValue
3759 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
3760                                        const SDLoc &DL, EVT DataVT,
3761                                        SelectionDAG &DAG,
3762                                        bool IsCompressedMemory) const {
3763   SDValue Increment;
3764   EVT AddrVT = Addr.getValueType();
3765   EVT MaskVT = Mask.getValueType();
3766   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
3767          "Incompatible types of Data and Mask");
3768   if (IsCompressedMemory) {
3769     // Incrementing the pointer according to number of '1's in the mask.
3770     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
3771     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
3772     if (MaskIntVT.getSizeInBits() < 32) {
3773       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
3774       MaskIntVT = MVT::i32;
3775     }
3776 
3777     // Count '1's with POPCNT.
3778     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
3779     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
3780     // Scale is an element size in bytes.
3781     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
3782                                     AddrVT);
3783     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
3784   } else
3785     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
3786 
3787   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
3788 }
3789 
3790 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
3791                                        SDValue Idx,
3792                                        EVT VecVT,
3793                                        const SDLoc &dl) {
3794   if (isa<ConstantSDNode>(Idx))
3795     return Idx;
3796 
3797   EVT IdxVT = Idx.getValueType();
3798   unsigned NElts = VecVT.getVectorNumElements();
3799   if (isPowerOf2_32(NElts)) {
3800     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
3801                                      Log2_32(NElts));
3802     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
3803                        DAG.getConstant(Imm, dl, IdxVT));
3804   }
3805 
3806   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
3807                      DAG.getConstant(NElts - 1, dl, IdxVT));
3808 }
3809 
3810 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
3811                                                 SDValue VecPtr, EVT VecVT,
3812                                                 SDValue Index) const {
3813   SDLoc dl(Index);
3814   // Make sure the index type is big enough to compute in.
3815   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
3816 
3817   EVT EltVT = VecVT.getVectorElementType();
3818 
3819   // Calculate the element offset and add it to the pointer.
3820   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
3821   assert(EltSize * 8 == EltVT.getSizeInBits() &&
3822          "Converting bits to bytes lost precision");
3823 
3824   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
3825 
3826   EVT IdxVT = Index.getValueType();
3827 
3828   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
3829                       DAG.getConstant(EltSize, dl, IdxVT));
3830   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
3831 }
3832 
3833 //===----------------------------------------------------------------------===//
3834 // Implementation of Emulated TLS Model
3835 //===----------------------------------------------------------------------===//
3836 
3837 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3838                                                 SelectionDAG &DAG) const {
3839   // Access to address of TLS varialbe xyz is lowered to a function call:
3840   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3841   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3842   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3843   SDLoc dl(GA);
3844 
3845   ArgListTy Args;
3846   ArgListEntry Entry;
3847   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3848   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3849   StringRef EmuTlsVarName(NameString);
3850   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3851   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3852   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3853   Entry.Ty = VoidPtrType;
3854   Args.push_back(Entry);
3855 
3856   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3857 
3858   TargetLowering::CallLoweringInfo CLI(DAG);
3859   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3860   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3861   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3862 
3863   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3864   // At last for X86 targets, maybe good for other targets too?
3865   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3866   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3867   MFI.setHasCalls(true);
3868 
3869   assert((GA->getOffset() == 0) &&
3870          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3871   return CallResult.first;
3872 }
3873 
3874 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3875                                                 SelectionDAG &DAG) const {
3876   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3877   if (!isCtlzFast())
3878     return SDValue();
3879   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3880   SDLoc dl(Op);
3881   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3882     if (C->isNullValue() && CC == ISD::SETEQ) {
3883       EVT VT = Op.getOperand(0).getValueType();
3884       SDValue Zext = Op.getOperand(0);
3885       if (VT.bitsLT(MVT::i32)) {
3886         VT = MVT::i32;
3887         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3888       }
3889       unsigned Log2b = Log2_32(VT.getSizeInBits());
3890       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3891       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3892                                 DAG.getConstant(Log2b, dl, MVT::i32));
3893       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3894     }
3895   }
3896   return SDValue();
3897 }
3898